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CHAPTER I 
 
 
 

INTRODUCTION 
 
 
 

Thesis Overview 
 
 
 

Celiac Disease 
 
 
Background 

 Celiac disease (CD) is a gluten-specific enteropathy triggered in 

genetically susceptible individuals exposed to gluten. CD occurs in approximately 

1 in 133 persons in the United States (1) and affects more than 3 million people, 

although most are undiagnosed. Young children with CD present with diarrhea 

and severe malabsorption, including the inability to absorb vitamins and minerals. 

CD also is associated with chronic sequelae such as extra-intestinal autoimmune 

disorders, infertility, miscarriages, and cancer (2). The most important 

environmental factor that correlates with CD is the ingestion of gluten (3, 4). 

Accordingly, current treatment strategies are centered on maintaining a strict 

gluten-free diet (GFD). While such diets improve the quality of life for many CD 

patients, they are not always successful and can be difficult to follow (5). Due to 

the increasing prevalence of CD (6, 7) and the consequences of misdiagnosis, it 

is essential to better understand CD pathogenesis. 
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Clinical presentation, diagnosis, and treatment of celiac disease 

 Classically, CD was thought to be a pediatric illness, presenting early in 

childhood with diarrhea, steatorrhea, weight loss, and failure to thrive (5). 

However, recent recognition of the disease in older children and adults has 

added to the broad clinical manifestations of CD (8, 9). The spectrum of CD now 

encompasses four different types including typical, atypical, latent, and silent (5) 

(Figure I-1). 

 The typical form of CD occurs in children beginning between the ages of 6 

and 18 months and is characterized by watery stool, malabsorption, and villous 

atrophy. Patients with atypical CD display structural abnormalities in the intestinal 

mucosa and experience minor intestinal symptoms; however, extraintestinal 

presentations are much more common. Such symptoms include anemia, 

infertility, neuropathy, and osteoporosis. Latent CD is diagnosed in genetically 

susceptible individuals who have normal intestinal architecture and possibly 

positive celiac-associated serology. These persons may or may not have 

extraintestinal symptoms and usually present later in life (5). Silent CD is defined 

by positive serology and typical intestinal pathology in the absence of clinical 

symptoms (10). 

The broad spectrum of disease manifestations occurring in CD has made 

clinical diagnosis challenging. Currently, the revised European Society for 

Paediatric Gastroenterology Hepatology and Nutrition algorithm (11) identifies 

typical intestinal pathology (hyperplastic villous atrophy) and remission following 

a GFD as positive indicators of CD. Observation of villous atrophy, using  
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Figure I-1. Broad spectrum of clinical manifestations. (Figure adapted from 
Tack et. al. 2010 (5)). 
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histopathological analysis of small intestinal biopsies, has been the gold standard 

(5). The modified Marsh scale is used to classify the histopathology according to 

the degree of intraepithelial lymphocytosis, crypt hyperplasia, and villous atrophy 

(12, 13). However, technical limitations, patchy mucosal damage, and observer-

bias all hinder the efficacy of using histopathology as the sole indicator of CD (5, 

14). 

 At present, serological analysis of autoantibodies and anti-gluten 

antibodies are being used to supplement histopathologic analysis. CD patients 

maintain higher levels of IgA autoantibodies against the endomysium (EMA) of 

connective tissue and transglutaminase 2 (TG2) (15). Quantification of anti-

gliadin (a byproduct of gluten) antibodies is less sensitive and specific than 

analysis of anti-EMA or anti-TG2 autoantibodies, except in very young children 

(5, 16).  

 In addition to serological testing, genetic analysis of human leukocyte 

antigen (HLA)-type provides a method for screening individuals, especially those 

with limited clinical manifestations or atypical CD (17, 18). The presence of HLA-

DQ2, HLA-DQ8, or both alleles does not necessarily indicate CD, as 30 - 40% of 

healthy individuals have these risk alleles (19). However, the presence of these 

alleles is required for disease onset (20-22). Taken together, the diagnosis of CD 

requires a multifaceted testing platform (Figure I-2) where conclusions based on 

individual test results may be incorrect.  

The only treatment for CD is a strict GFD and supportive care through 

supplementation of vitamins and minerals (23, 24). Life-long adherence to a GFD 
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Figure I-2. Algorithm for diagnosis of celiac disease. (Figure from Tack et. al. 
2010 (5)). 

 

 

 

 

 

 

 



 

 6 

alleviates symptoms in most patients (25); nevertheless, many CD patients 

struggle with gluten contamination in food products, high costs and availability of 

gluten-free products, and the social anxiety associated with dietary restrictions 

(5, 26, 27). Subsequently, there have been substantial efforts to find an 

alternative treatment course for those with CD (5). Some treatment strategies 

include the hydrolysis of toxic gliadin peptide, prevention of gliadin absorption, 

blockade of gliadin deamidation by TG2, vaccination to restore immune 

tolerance, restoration of intestinal architecture, and immune modulators (28). 

With clinical trials ongoing, the safest and most effective treatment for CD 

remains a GFD (5). 

 

Celiac disease epidemiology: genetic and environmental factors 

 Until recently, CD was thought to be a rare genetic disease occurring in 

0.03% of the population (6). However, the prevalence of CD in Europe and the 

United States is approximately 1% (1, 29) and has been on the rise for many 

years, regardless of underdiagnosis (30). The incidence of CD varies globally, 

which can be only partially explained by the prevalence of risk alleles and 

consumption of gluten in a given region (Figure I-3). In the United States, studies 

of serum antibodies and biopsy screens confirmed that CD occurs in 

approximately 1:133 of the total population (1). As with other autoimmune 

diseases, CD occurs more frequently in woman than men, with a male to female 

ratio ranging between 1:2 and 1:3 (31, 32). While CD can develop at any age, the 

peak age of diagnosis occurs early in childhood during the introduction of grains 
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Figure I-3. Prevalence of celiac disease worldwide. (Figure from Gujral et. al. 
2012 (28)). 
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(6 - 24 months of age) and later in life (third and fourth decades for women and 

men, respectively) (5, 28). 

 The significant role of genetics in CD development is indicated by a high 

concordance rate in monozygotic twins (33). Individuals with first- or second-

degree relations to CD patients are at a higher risk with a prevalence of 1:22 and 

1:39, respectively (1). CD is a polygenic disorder with linkage to more than 250 

major histocompatibility complex (MHC) or non-MHC genes (28). The main 

genetic factors associated with CD are the MHC class II genes that encode HLA-

DQ2 and DQ8. Approximately, 80-95% of those with CD possess a variant of 

HLA-DQ2 (encoded by DQA1*05 and DQB1*02 alleles), while the remaining 5% 

express HLA-DQ8 (encoded by DQA1*03 and DQB1*0302 alleles) (20-22, 34). 

Expression of HLA-DQ2 and DQ8 increase the likelihood of developing CD from 

1 in 2518 subjects lacking all predisposing factors to 1 in 7 individuals (35). 

 HLA genotypes contribute to 30 - 50% of the genetic risk for CD (28, 35-

38). HLA-DQ2 is frequently found in Caucasian populations in Western Europe 

(20 – 30%), Northern and Western Africa, the Middle East and central Asia, 

whereas HLA-DQ8 is more prevalent in Latin America and Northern Europe (3, 5, 

39) (Table I-1, Figure I-4). In the United States, HLA-DQ2 and DQ8 occurs in 

approximately 20% and 5 - 20% of individuals, respectively, with a greater 

occurrence in Caucasian populations (28, 40, 41).  

Given the frequency of genetic risk alleles in the US (37%) and prevalence 

of CD (~ 1%), other genetic and environment factors must prompt disease 

development (1). The large discrepancy in concordance rates between  
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Table I-1. Global prevalence of HLA-DQ2 and HLA-DQ8. Estimates are based 
on Allele Frequency Net Database (40, 41). (Figure adapted from Gujral et. al. 
2012 (28)). 

< 5% 5%-20% 20%

Albania Belarus Algeria Algeria
Canada BC Cameroon Australia
Cook Islands Congo Belgium
Indonesia Costa Rica Central African

Republic
Japan China Croatia
Jordan Cuba England
Papua New Guinea Ecuador Africans Equatorial Guinea

Bioko Island
Philippines France Ethiopia
Samoa India Germany

Malaysia Greece
Mexico Iran
Poland Ireland South
Russia Isreal
Singapore Italy
South Korea Mongolia
Spain New Zealand
Sri Lanka Pakistan
Sweden Saudi Arabia
Taiwan, China Slovenia
Thailand Tunesia
Turkey United States
Uganda
Ukraine
Vietnam

Australia Algeria Argentina
China Belgium Ecuador
Georgia Brazil Ethiopia
Greece Canada BC Mexico
North India Croatia Venezuela
Spain England Caucasoid
Uganda France

South India
Isreal
Italy
Japan
Russia
South Korea
Tunisia
Turkey
Ukraine
United States
European American

HLA-DQ8

HLA-DQ2

Frequency of human leukocyte antigen-DQ2, encoded by 
human leukocyte antigen-DQB1*02 and human leukocyte 
antigen-DQ8, encoded by human leukocyte antigen-
DQA1*0301-DQB1*0302
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Figure I-4. Map of global prevalence of HLA-DQ2 and HLA-DQ8. (A) 
Frequency of the DR3-DQ2 haplotype (DRB1∗0301-DQA1∗0501- 
DQB1∗0201). (B) Frequency of the DR4-DQ8 haplotype (DRB1∗04-DQA1∗03-
DQB1∗0302). (Figure from Abadie et. al. 2011 (3)).  
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monozygotic twins (approximately 75%) (33) and HLA-identical siblings 

(approximately 25%) (42) leads to the conclusion that non-MHC genes compose 

greater than 60% of inherited risk (43-45). Genome-wide association studies 

(GWAS) have identified 40 genomic regions and 64 candidate genes outside of 

the HLA as potential risk factors (3, 46). Although these regions explain only 5% 

of disease susceptibility (46), their functions fit well with our knowledge of 

disease pathogenesis.  

The 64 non-HLA genes identified thus far (Table I-2) are enriched in 

immune pathways including chemokine receptor activity, T cell activation, 

lymphocyte differentiation, and cytokine binding. Genes involved in stress 

pathways and innate immunity also associate with CD (3). One risk locus, IL12A, 

encodes the cytokine interleukin (IL)-12 and is produced by antigen-presenting 

cells (APCs) to promote T cell differentiation and interferon (IFN)γ production, 

both of which are involved in CD pathogenesis (3, 38, 47-49). IL-2 and IL-21, 

which are required for proliferation and function of T cells, natural killer (NK) cell 

activation, and differentiation of B cells, are also associated with CD (37). 

Several GWAS studies identified cytotoxic T-lymphocyte associated protein 4 

(CTLA4), a receptor expressed by T cells that suppresses T cell activation, as a 

genetic variant that increases susceptibility to CD (50, 51). Although much work 

remains to develop causative mechanisms for these genetic polymorphisms, 

several connections between risk alleles and CD pathogenesis are evident. 

Human studies suggest that IL-15 (10, 52-54) and IFNα (55) are 

upregulated in the intestinal mucosa of patients with CD. Although GWAS studies  
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Table I-2. Celiac disease susceptibility loci. Associations found through 
GWAS, in which loci replicated in at least two independent cohorts. (Figure 
adapted from Abadie et. al. (3)).  
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have not specifically identified polymorphisms in the genes encoding IL-15 and 

IFNα, several genes identified are associated with CD (Figure I-5). Preliminary 

analysis of intestinal biopsies from CD patients prompts a theory in which 

patients can be segregated into IL-15 high-expressers, IFNα high-expressers, 

and IL-15/IFNα high-expressers (B. Jabri unpublished data). These results may 

explain the heterogeneity of CD and the difficulty that ensues with identification of 

single genes associated with disease. 

The primary environmental factor associated with the onset of CD is 

consumption of gluten (3, 4). Early studies identified gluten feeding as a CD 

trigger, and removal of gluten from the diet was found to alleviate symptoms for 

most individuals (2-4, 56). Compliance with a GFD diminishes anti-gliadin 

antibodies, autoantibodies against TG2, and histopathological findings including 

villous atrophy and intraepithelial lymphocytosis (57-61). Although the expression 

of HLA-DQ2 and DQ8 and consumption of gluten are required for the 

development of CD they are not sufficient (3). Furthermore, the frequency of 

HLA-DQ2 and DQ8 and consumption of gluten are not predictors of CD etiology 

(3) (Figure I-6). A remarkable example supporting a role for environmental 

factors is the high frequency of CD in Finnish Karelia (>2%), which contrasts with 

the low incidence of CD in the adjacent Russian republic of Karelia (0.2%), two 

neighboring regions harboring genetically similar populations and gluten 

consumption levels (3). Together, these observations suggest that additional 

environmental or genetic factors mediating CD onset have yet to be determined. 
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Figure I-5. Network of known functional interactions between celiac 
disease–associated genes and key immunological markers of disease. 
STRING database analysis determines functional interactions among CD 
susceptibility genes, as well as interactions between CD susceptibility genes and 
IL-15 or IFNα. Several CD susceptibility genes functionally interact with IL-15 
(yellow), IFNα (red), or both (purple). (Figure from Abadie et. al. 2011 (3)). 
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Figure I-6. Correlations between the prevalence of celiac disease, wheat 
consumption, and the frequencies of the DR3-DQ2 and DR4-DQ8 
haplotypes. (A) Correlation between the prevalence of CD (y axis) and the 
product of the frequencies of DR3-DQ2 + DR4-DQ8 and the amounts of wheat 
consumption (x axis). (B) Correlation between the prevalence of CD (y axis) and 
the product of the frequencies of DR3-DQ2 + DR4-DQ8 and the amounts of 
wheat consumption (x axis) after excluding the following outlier populations: 
Algeria, Finland, Mexico, North India, and Tunisia. (Figure from Abadie et. al. 
2011 (3)). 
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Table I-3. Factors that contribute to the development of celiac disease. 
(Figure adapted from Stepniak et. al. 2006 and Gujral et. al. 2012 (28)). 
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Since the Swedish epidemic of CD (1984 - 1996), infant feeding has been 

suspected in CD development (62). In this birth cohort, infant breast-feeding was 

abruptly stopped, and gluten feeding begun at 6 months of age. Additionally, 

changes to infant formula took place during this time. Although the prevalence of 

CD increased 3-fold during this epidemic (62), there is still much debate about 

the role of infant feeding in CD onset.  

Epidemiological surveys suggest that socioeconomic status may also 

predict CD development and outcomes. One study completed in neighboring 

regions of Finland and Russia, where genetics and gluten intake are comparable, 

found that children living in worse socioeconomic conditions were slightly 

protected from developing CD. The authors site variations in microbiome 

composition, susceptibility to infections, and diet as factors that may precipitate 

CD (5, 63).  

Finally, several studies have implicated infectious agents in the 

development of CD (64). This topic will be discussed further in the section on 

Viral infections associated with CD. Taken together, CD is an epidemiologically 

complex and multifactorial disease (Table I-3). Further study is required to 

identify the drivers of disease pathogenesis. 

 

Oral tolerance  

During lymphocyte development, repertoire diversity of B and T cell 

receptors is required to mount a successful response against microbial 

pathogens. Central tolerance, occurring in the thymus for T cells and bone 
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marrow for B cells, selects against cells that express receptors that target self-

antigen and thus could be harmful to the host. Peripheral tolerance must occur 

outside these developmental regions to prevent excessive immune responses 

against nonpathogenic intruders. For example, humans ingest over 100 g of food 

protein per day and have approximately 1012 bacteria per gram of gut content 

colonizing the intestine, all of which could serve as targets of unnecessary 

immune responses (65). However, in the intestine, a unique type of peripheral 

tolerance, known as oral tolerance, induces local and systemic 

unresponsiveness following oral administration of antigens. Oral tolerance has 

been demonstrated in rodents using purified food proteins, cellular antigens, and 

haptens (66) and also occurs in humans (67-69). Following antigen feeding, oral 

tolerance can prevent a delayed-type hypersensitivity (DTH) response by 

inhibiting T cell proliferation, cytokine production, and serum antibodies against 

the food protein (70, 71).  

Normally, food proteins absorbed by the intestine are taken up by APCs in 

the lamina propria (LP) underlying the villus epithelium (72, 73). Oral tolerance is 

dependent on LP dendritic cells (DCs) expressing integrin chain αE (CD103) that 

transport oral antigen to the draining mesenteric lymph nodes (MLNs) (74). The 

LP CD103+ DCs that travel to the MLN promote gut-homing T cell responses (75) 

and the proliferation of regulatory T cells (Tregs) (76, 77). T cells with suppressive 

functions, forkhead box P3 (Foxp3)+ Tregs, inhibit inflammatory T cell responses to 

food antigens during oral tolerance (78), a property that can be adoptively 

transferred to naïve animals and abrogated by the removal of these cells (79). 
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Celiac disease immunopathogenesis 

Disruption of oral tolerance to food proteins is thought to mediate food 

allergies and CD, the most prevalent food-induced pathology (65). The loss of 

oral tolerance to gluten produces a proinflammatory immune response in persons 

with CD. Following ingestion of gluten, inflammatory, gluten-specific CD4+ T cells 

license B cells to secrete anti-gluten and autoimmune antibodies and produce 

cytokines that mediate cytotoxic killing of intestinal epithelial cells (IECs) (3, 47). 

In turn, enterocyte destruction results in blunted intestinal villi and a failure to 

properly absorb food nutrients.  

Although gluten remains nonpathogenic in the majority of individuals, the 

molecular structure of the protein offers insight into its conceivably inflammatory 

nature. First, gluten has a high proline concentration, making it resistant to 

cleavage by proteases in the gut lumen (80). Second, uncleaved fragments of 

gluten are highly susceptible to the catalytic activity of TG2, which converts 

glutamine to glutamate. Deaminated, undigested, negatively charged gluten 

peptides preferentially bind to the positively charged HLA-DQ2 and HLA-DQ8 

molecules (80-82), leading to expansion of anti-gluten CD4+ T cells (83, 84). 

Gluten-specific, HLA-restricted CD4+ T cells are found in the intestinal mucosa of 

CD patients (85), further solidifying their importance in disease pathogenesis.  

TG2 is abundantly expressed in many tissues and localizes to extra- and 

intracellular regions. The enzyme functions to alter glutamines in polypeptide 

chains to either cross-link amines (transamidation reaction) or convert glutamine 

to glutamate (deamidation). Transamidation by TG2 aids in tissue repair (86), 



 

 20 

while deamidation functions in CD pathogenesis (83, 84, 87). Specific peptide 

sequences, such as Gln-X-Pro, are preferentially bound by TG2, a common motif 

in gluten proteins, and functions as positive predictors of cereal protein “toxicity” 

in the CD gut (88). Experiments using mice provide evidence that TG2 is inactive 

in the intestinal mucosa (89), but it can be activated following treatment with 

polyinosinic:polycytidylic acid (poly(I:C)), a double-stranded RNA (dsRNA) 

analog (90). Additionally, tissue destruction and inflammation triggered by native 

gluten-specific T cells may lead to the activation of TG2. It is unclear whether T 

cell responses can occur in the absence of TG2 (47); but immunization of HLA-

DQ8 transgenic (HLA-DQ8tg) mice with deamidated gluten peptides results in a 

greater T cell response and broader T cell repertoire (91).  

Oral tolerance to food antigens is dependent on intestinal DCs that 

express tolerogenic factors such as retinoic acid and transforming growth factor β 

(TGFβ) to promote antigen-specific Treg responses (92, 93). However, unlike 

healthy individuals, intestinal DCs stimulate inflammatory CD4+ T cell responses 

against gluten in the intestinal mucosa of CD patients (94). The switch in DC 

state may result from changes in the intestinal environment. Such disruptions 

could be explained by high levels of inflammatory cytokines including IL-15 (52, 

53, 95) and IFNα (55, 96, 97), both of which are elevated in the intestinal mucosa 

of those with CD (Figure I-7) Experiments using HLA-DQ8tg mice illustrate that 

overexpression of IL-15 alters intestinal DC homeostasis, inhibits Treg conversion, 

and breaks tolerance to orally fed gluten (98). Additionally, type I IFN treatment 

also can abrogate oral tolerance in mice (99, 100). Further study is required to 
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Figure I-7. Induction of inflammatory anti-gluten immune responses 
following gluten ingestion. (A) The default response to oral antigens is the 
induction of Treg cells that produce TGFβ and IL-10. (B) Under inflammatory 
conditions, the expression of pro-inflammatory mediators, such as IL-15 and 
IFNα, are upregulated in the intestinal environment. DCs may acquire the ability 
to promote the differentiation of T cells that produce pro-inflammatory cytokines 
such as IFNγ. (Figure adapted from Jabri et. al. 2009 (47)). 
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determine the environmental and genetic triggers that cause higher expression of 

IL-15 and type 1 IFNs in the CD gut. 

Several lines of evidence suggest that CD4+ T cells mediate CD 

pathogenesis, including the identification of HLA-DQ2 and DQ8 as the most 

significant genetic risk determinants, the presence of gluten-specific CD4+ T cells 

in the intestinal mucosa of persons with CD, and the decline of CD4+ T cells 

during a GFD (47). However, gluten-specific CD4+ and CD8+ T cells found in the 

LP of CD patients do not appear to induce enterocyte cell death (85, 101). 

Instead, proinflammatory cytokines such as IFNγ (102) and IL-21 (103), which 

are secreted by these cells, provoke disease by activating intestinal epithelial 

lymphocytes (IELs). IELs are cytotoxic effector cells that cause enterocyte 

destruction in CD and are activated via stress signals instead of classical antigen 

recognition. The source of these stress signals is not well understood. However, 

gluten or other environmental factors, such as infection, may provoke their 

production (34).  

Gluten-specific CD4+ T cells also exacerbate CD immunopathogenesis by 

promoting B cell conversion to plasma cells that produce gluten- and TG2-

specific IgA and IgG antibodies. Anti-gluten and anti-TG2 antibodies are classic 

hallmarks of CD that are lost during remission with a GFD (104, 105). Up to 10% 

of IgA produced in the LP of untreated CD patients is specific for TG2 (106), 

despite the lack of TG2-specific CD4+ T cells. One model suggests that gluten-

specific CD4+ T cells aid in the formation of TG2-autoantibodies by reacting to 

the TG2-gluten composites analogous to hapten-carrier complexes (107). 
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Intestinal IgA antibodies may contribute to enterocyte death by increasing 

transcellular transport of gluten across the epithelial barrier and thus amplify the 

CD4+ T cell response in the LP (108). Nevertheless, more work is required to 

fully understand the role of the B cell response in CD pathogenesis. 

 

Viral infections associated with celiac disease. 

Although 30-45% of the United States population has the HLA haplotypes 

required for CD onset, only 1% of the population develops the disease (1). 

Additionally, the prevalence of HLA haplotypes DQ2 and DQ8 and the amount of 

wheat consumption, although required, do not completely correlate with the 

incidence of CD (3), and HLA-DQ8 humanized mice fed gluten do not develop 

CD-like disease (109). Although gluten binds the MHC pocket with high affinity, 

there is no evidence that the peptide alone produces inflammatory T cell 

responses. Therefore, unidentified triggers of CD must exist to cause the initial 

insult that breaks oral tolerance to gluten and establishes lasting pathogenic 

immune memory.  

There are several clues that implicate infectious agents, specifically 

viruses, as drivers of CD. Viral infections often induce type 1 IFNs (110), which 

precipitate development of CD and break oral tolerance in mice (99, 100, 111). In 

humans, recurrent observations of CD development have been made in patients 

undergoing IFNα treatment (111, 112). Type 1 IFNs also form critical nodes in 

the network of known CD susceptibility genes (3). Finally, viral infections are 

associated with an increased incidence of CD (64, 113, 114).  
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Epidemiological studies of children during the Swedish CD epidemic found 

that repeated neonatal infections were linked to CD onset (odds ratio (OD) = 

1.52) (115). A prospective study of at-risk children also found that children 

infected with rotavirus had a higher prevalence of CD and that repeated 

infections intensified this effect (OD = 1.94 for one infection and OD = 3.76 for 

two or more infections) (114). Despite anecdotal and clinical implications that 

microbial pathogens act as triggers of CD, little is known about the mechanisms 

by which infectious agents evoke disease.  
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Reoviruses 

 
 
Background 

Viruses in the family Reoviridae are nonenveloped, dsRNA viruses that 

infect humans frequently throughout their lifetime (116). Mammalian 

orthoreovirus (reovirus) strains isolated from humans can infect mice via the oral 

route and activate innate immune pathways similar to the related rotavirus (117, 

118). Reovirus also stimulates production of type 1 IFNs (119, 120), which are 

implicated in many autoimmune disorders including CD (110, 111). In concert 

with the availability of mouse models of infection, reovirus is ideal for studies of 

how infectious agents alter the host response to food antigens, as in CD. 

The reovirus genome contains ten segments of dsRNA. The three large 

gene segments (L1, L2, and L3) encode for the λ3, λ2, and λ1 proteins, 

respectively. The three medium gene segments (M1, M2, and M3) encode for the 

µ2, µ1, and µNS proteins, respectively. The four small gene segments (S1, S2, 

S3, and S4) encode for the σ1 and σ1s, σ2, σNS, and σ3 proteins, respectively. 

The ten gene segments are packaged in an inner icosahedral core that is 

surrounded by an outer icosahedral capsid. The outer capsid is composed of 200 

µ1-σ3 heterohexamers. The λ2 protein forms a pentameric turret-like structure at 

each icosahedral five-fold axis from which the trimeric σ1 attachment protein is 

anchored. The inner core is formed by a shell of λ1 decamers that are stabilized 

by σ2. Within the core lies the µ2 and λ3 proteins, the later functioning as the 

viral RNA-dependent RNA polymerase. Three nonstructural proteins, µNS, σNS, 
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and σ1s, are expressed following infection to aid in the formation of replication 

complexes or viral factories (117) (Figure I-8 and Table I-4). Reovirus virions are 

stable in the environment (121, 122) and maintain infectivity for years when 

refrigerated. Large quantities of infectious virions can be purified from infected 

mouse L929 (L) cells and used for cell culture or animal infections (123). 

Reovirus infection begins with the attachment of the S1-encoded σ1 

protein to cell-surface carbohydrates and the proteinaceous receptor junction 

adhesions molecule-A (JAM-A) (124-126). Following attachment, virions enter 

cells via receptor-mediated endocytosis (127-132) whereupon the particles 

uncoat by acid-dependent proteases to form infectious subvirion particles 

(ISVPs) (128, 130-133). ISVPs lack σ3 but retain σ1 and a proteolytically cleaved 

form of µ1 (134, 135). The µ1 cleavage fragments mediate penetration of 

endocytic vesicles and release of the transcriptionally active core into the 

cytoplasm (136-138). Primary synthesis of viral transcripts produces 11 viral 

proteins, including the nonstructural protein µNS, which initiates formation of viral 

factories (139). New virions are assembled when the 10 primary transcripts 

assort with the viral structural proteins that form the core particle (λ1, λ2, λ3, µ2, 

and σ2). Following assortment, this complex replicates each viral mRNA to form 

the 10 dsRNA genome segments, which can serve as templates for additional 

rounds of transcription. Transcriptase activity is inhibited, by a mechanism that is 

not well understood, by the addition of µ1, σ3, and σ1 to form progeny virions. 

Mature progeny virions are released from infected cells to complete the viral 

lifecycle. 
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Figure I-8. The reovirus virion. Schematic of a reovirus virion (left). Cryo-
electron micrograph image reconstruction of a reovirus virion (right). Outer capsid 
composed of σ3 (blue) and µ1 (green). Pentameric λ2 protein (yellow) forms the 
base for the trimeric σ1 attachment protein (added in black). (Figure adapted 
from Nason et. al. 2001 (140)).  
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Table I-4. Reovirus gene segments and protein products. (Figure from The 
Molecular Basis of Serotype 1 Reovirus Glycan Interactions and the Function of 
Glycan-Binding in Pathogenesis, Dissertation, Jennifer Stencel-Baerenwald 
2014). 
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History of common laboratory strains 

There are three reovirus serotypes, type 1 (T1), type 2 (T2), and type 3 

(T3). The prototypic strains, type 1 Lang (T1L), type 2 Jones (T2J), and type 3 

Dearing (T3D), were isolated from children in the early 1950s (141, 142). Strains 

T1L and T3D are classically studied due to important differences in viral infection 

(e.g., replication biology, apoptosis induction, innate immune response activation, 

tissue tropism, and pathogenesis) some of which will be discussed in later 

sections.  

 

Reovirus reverse genetics 

The reverse genetics system for reovirus allows for the manipulation of 

reovirus genomes and the introduction of mutations that alter specific viral 

properties (143, 144). This plasmid-based system enables recovery of infectious 

particles from cloned DNA (cDNA) corresponding to single reovirus genes. T1L 

and T3D gene segment cDNAs are placed into plasmids flanked by promotor 

sequences for T7 RNA polymerase and hepatitis delta virus (HDV) ribozyme 

sequences. Transfection of plasmids into baby hamster kidney (BHK) cells that 

constitutively express the T7 polymerase (BHK-T7 cells) leads to transcription of 

reovirus genes, protein translation, and production of infectious virus. Reovirus 

recovered from BHK-T7 cells can be used to generate high-titer stocks in L cells 

(143, 145).  
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Reovirus tropism and pathogenesis in the intestine 

 Following peroral (PO) inoculation, reovirus T1L transcytoses across M 

cells in the ileum and disseminates to the underlying intestinal tissue (146, 147). 

The virus is then detected in Peyer’s patches (PP), MLNs, and spleen, indicative 

of hematogenous dissemination (148). Reovirus can be detected in the 

duodenum, jejunum, ileum, and colon following PO inoculation. Early work 

suggested that reovirus preferentially infects intestinal IECs at the villus crypts 

proximal to the PP (146). However, more recent studies using neonatal mice 

suggest that IECs at the tip of the villus also are infected (149, 150). Differences 

in reovirus tropism may be linked to the age and strain of mice, housing 

conditions, microflora, as well as other factors yet to be determined.  

Adherence of reovirus and transcellular transport into the gut occurs 

independently of viral serotype, viral surface proteins, and the strain and age of 

mice (151). Nevertheless, reovirus strains T1L and T3D differ in the capacity to 

infect the intestine of neonatal mice, a property that segregates with the S1 and 

L2 genes (152). Proteolytic processing of reovirus virions in the intestinal lumen 

results in generation of ISVPs (153, 154) and is required for infection of the 

intestine (153, 155). However, sequence polymorphisms in T3D S1 allow 

aberrant cleavage of the attachment protein, σ1, which decreases viral infectivity 

(156, 157). For my studies, I used strain T1L and engineered a T3D reassortant 

virus, T3D-RV, by introducing the T1L S1 and L2 gene segments into a T3D 

genetic background, allowing the virus to infect the intestine (152).  

 Reovirus has been used to study viral pathogenesis in the central nervous 
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system, heart, lungs, and hepatobiliary system in neonatal mice (117). Although 

reovirus replicates to high titers in neonatal mice, replication in adults is modest 

and requires large inocula (146, 158). Adult A/J mice inoculated perorally with 

reovirus display dose-dependent pathological changes including ileitis. However, 

no diarrhea occurs in these mice (146). Current dogma suggests that PO 

inoculation of adult mice prompts rapid viral clearance and nonpathogenic 

infection (89, 158).  

 

Reovirus innate immune responses 

During viral infection, cells activate antiviral immune responses to contain 

and inhibit viral replication. Several pattern recognition receptors recognize viral-

associated molecular patterns. Recognition of reovirus requires retinoic acid 

inducible gene I (RIG-I) and melanoma differentiation-associated protein-5 (Mda-

5) (159-161). Following ligand engagement, these intracellular sensors trigger a 

signaling cascade that leads to the activation of nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-κB) and IFN regulatory factor (IRF)-3. 

Activated NF-κB and IRF-3 translocate to the nucleus to induce expression of 

type I IFNs (IFNα and IFNβ). Secreted type 1 IFNs bind to the type 1 IFN 

receptor on the surface of adjacent cells. This binding triggers JAK/STAT 

pathway signaling, the association of phosphorylated STAT1 and STAT2 with 

IRF-9, translocation to the nucleus, and upregulation of type 1 IFN stimulated 

genes (ISGs). One ISG, IRF-7, forms homodimers or heterodimers with IRF-3 to 

induce a positive amplification loop (Figure I-9). 
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Figure I-9. Reovirus induces IFN expression. Reovirus activates RIG-I or Mda-
5, which then stimulate IPS-1 to induce phosphorylation and activation of 
transcription factor IRF-3. Reovirus activation of NF-κB does not require RIG-I or 
IPS-1. Reovirus activation of NF-κB and IRF-3 leads to the production of type I 
IFN, which binds to the IFN-receptor (IFN-R) on adjacent cells. IFN-R binding 
mediates JAK-STAT signaling to elicit the production of ISGs and a positive 
amplification loop through IRF-7. Question mark indicates unknown protein. 
(Figure adapted from Fields Virology (117)).  
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Reovirus strain-specific differences in IFN induction have been well 

characterized. Reovirus T3D promotes greater expression of IFN in cultured cells 

and in cardiac myocytes than does T1L (89, 162), which segregates with the M1, 

S2, and L2 gene segments. The M1-encoded µ2 protein of T1L but not T3D 

functions as an IFN antagonist by sequestering IRF-9 in the nucleus and 

prohibiting induction of ISG expression and feedback by IRF-7 (163). 

Additionally, reovirus T3D is more sensitive to the effects of IFN than T1L (162, 

164), which also segregates with the M1, S2, and L2 gene segments.  

The type I IFN response is required for protection against reovirus 

infection (158, 165). Following PO inoculation, type I IFN and ISGs are 

upregulated in the PPs of infected mice (89). C57BL/6 (WT) mice perorally 

inoculated with reovirus T1L clear intestinal infection by 6 to 10 days post-

inoculation (dpi) (89, 158). However, mice lacking the type 1 IFN receptor 

(IFNAR1-/-) have intestinal necrosis and succumb following infection with T1L. 

Type I IFN recognition by hematopoietic cells is required to restrict reovirus 

infection because irradiated IFNAR-/- mice repopulated with bone marrow from 

WT mice survive lethal infection (158). 

 

Reovirus adaptive immune responses 

Just as loss of innate immune pathways is detrimental during reovirus 

infection, mice lacking adaptive immune responses also succumb to lethal 

disease. PO inoculation of SCID (B cell- and T cell-deficient) mice leads to high 

viral titers, persistent infection, and lethal outcomes (166, 167). Transfer of 
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splenic lymphocytes from reovirus-immune mice protects SCID mice from 

reovirus infection, although, protection is lost with the removal of B cells (167). 

Thus, adaptive immunity is required for control of intestinal reovirus infection. 

Following transcytosis via M cells (which overlay PPs), reovirus 

encounters DCs in the follicular associated epithelium (FAE) and subepithelial 

dome (SED). Actively replicating virus is found in the FAE but not the SED. 

Although DCs do not support viral replication, viral structural proteins are found 

on the surface of DCs, most likely following phagocytosis (168). Loading of viral 

antigen on MHC molecules of DCs and expression of inflammatory cytokines 

leads to the activation of T cells and NK cells for cytolysis (169). DCs from the 

PPs of infected mice also activate virus-specific CD4+ T cells in vitro, an act of 

cross presentation (168). Activated reovirus-specific T cells migrate to the LP and 

intraepithelial sites. Following infection, PP, intraepithelial, and LP lymphocytes 

use perforin, Fas-FasL, and TRAIL pathways for cytotoxic activity against 

reovirus-infected cells (170). Therefore, PO inoculation of reovirus promotes a 

rapid and specific antiviral immune response.  

Humoral immune responses to reovirus are important for protection of the 

intestine, clearance during primary infection, and prevention of secondary 

infection. Reovirus is cleared from the intestines of adult immunocompetent and 

β2 microglobulin-deficient (CD8+ T cell-deficient) mice but not from SCID (B cell- 

and T cell-deficient) and MuMT (B cell- and antibody-deficient) mice (166, 167, 

171). PO inoculation of adult mice with reovirus T1L results in the production of 

intestinal IgA and serum IgG antibodies. IgA-null mice infected with T1L are more 
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susceptible to secondary reovirus infection compared to WT mice, indicating that 

intestinal IgA is protective during mucosal reovirus infection (172). Oral 

administration of σ1-specific IgA or IgG protect PPs from infection with reovirus 

T1L (173).  

 

Epidemiology, clinical features, and diagnosis of reovirus infections 

Reovirus infections are common in humans and usually occur before 

adulthood. Reovirus seropositivity declines between 6 and 9 months of age, 

concordant with the decline in maternal antibodies (116, 174). After initial 

infection, reovirus antibodies increase in frequency through childhood and into 

adulthood (116, 174, 175). Seroprevalence of anti-reovirus IgG antibodies 

detected by enzyme-linked immunosorbent assay (ELISA) reaches 

approximately 75% to 85% in individuals 20 years and older with no decline after 

60 years of age (175). Therefore, reovirus infections are common during early 

childhood and may occur numerous times throughout the lifespan.  

Despite its near ubiquity, reovirus infections in humans are rarely 

symptomatic (117). When reovirus does produce symptoms, the most common 

manifestations occur in the respiratory tract as cough and pharyngitis (176) or in 

the gastrointestinal tract as gastroenteritis (177). A large outbreak of type 1 

reovirus occurred in institutionalized children in Washington, D.C. in 1957. 

Shedding in the stool occurred for at least a week in most children. During the 

outbreak several symptoms were observed including rhinorrhea, pharyngitis, 

diarrhea, and otitis media. However, the frequency of symptoms mimicked that 
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prior to the preoutbreak (178). Consequently, it is unclear that reovirus infections 

are symptomatic.  

 Reovirus infections can be diagnosed by isolating virus from tissues or 

body fluids, detecting viral protein or RNA, or demonstrating an increase in 

reovirus-specific antibody titer (117). Reovirus-specific antibodies from serum 

can be detected by ELISA (116, 175, 179) and immunoblotting (175, 180) and 

confirmed using plaque-reduction neutralization or hemagluttination-inhibition 

assays (117). Currently, there are no commercially available, reovirus-specific 

ELISA kits for clinical use. However, research-based protocols remain relatively 

convenient and easy to use.  
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Apoptosis 

 
 
Background 

 Programmed cell death, or apoptosis, is essential for life. With over 10 

billion cells being produced daily in the adult human body, apoptosis must be well 

orchestrated and efficient to maintain homeostasis (181). Apoptosis is required 

for aging, embryogenesis, immune function, pathogen clearance, and wound 

healing. Improper regulation of apoptosis, either too much or too little, can lead to 

autoimmune disease, developmental defects, ischemic damage, 

neurodegeneration, and cancer (182). Due to its importance, apoptosis has been 

well characterized and most of the proteins involved in the pathway are defined. 

Current research seeks to understand the inducers and inhibitors of apoptosis for 

therapeutic use.  

Apoptosis is characterized by distinct morphological changes that result 

from a tightly regulated proteolytic pathway. Cells undergoing this type of cell 

death are smaller in size, with compacted cytoplasm and organelles, and 

condensed chromatin (183). Although extensive membrane rearrangements 

occur, including membrane-blebbing and externalization of phosphatidylserine, 

the cell membrane remains intact, encapsulating the cellular contents (184). 

Apoptotic cells are rapidly phagocytosed to prevent inflammatory reactions, 

which is a unique process to this type of programmed cell death (185, 186).  

Prior to apoptosis, cysteine-aspartyl proteases, or caspases, are 

sequestered in the cell as proenzymes. Following caspase cleavage, proteolytic 
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cascades result in the positive amplification of death signals to rapidly and 

irrevocably stimulate apoptosis. Ten major caspases have been identified and 

are categorized as initiators (caspase-2, -8, -9, and -10), effectors or executors 

(caspase-3, -6, and -7), and inflammatory mediators (caspase-1, -4, and -5) (182, 

187, 188). There are two distinct but overlapping apoptotic pathways that initiate 

the caspase cascade: the extrinsic or death receptor pathway and the intrinsic or 

mitochondrial pathway. Both the intrinsic and extrinsic pathways converge at the 

execution phase to mediate the biochemical changes characteristic of apoptosis. 

These include cytoskeletal and nuclear protein cleavage, protein cross-linking, 

DNA fragmentation, formation of apoptotic bodies, and expression of ligands for 

recognition by phagocytic cells (182, 189).  

The extrinsic pathway of apoptosis is triggered by ligand binding to death 

receptors in the tumor necrosis factor (TNF) receptor gene family (190). This 

family is defined by a cysteine-rich extracellular domain and an 80 amino acid 

cytoplasmic “death domain” (191). Several known ligand/receptor pairs include 

Apo2L/DR4, Apo2L/DR5, Apo3L/DR3, FasL/FasR, and TNF-α/TNFR1 (191-195). 

Stimulation of death receptors by ligand binding leads to recruitment of death 

domain-specific adapter proteins such as FADD, TRADD, and RIP (196-198). 

Activated adapter proteins associate with procaspase-8 to form the death-

inducing signaling complex (DISC), which functions to auto-catalytically activate 

caspase-8 and trigger the execution phase of apoptosis (199).  

The intrinsic pathway of apoptosis requires intracellular stimuli rather than 

external signaling. Such stimuli may result from cellular starvation of growth 
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factors, hormones, and cytokines or during stress as with hypoxia, hyperthermia, 

radiation, toxins, and viral infection (182). Such pro-apoptotic signals trigger 

changes in mitochondrial membranes, resulting in permeabilization, loss of 

transmembrane potential, and release of cytochrome c and Smac/DIABLO (200-

202). Mitochondrial events are regulated by members of the B cell lymphoma 2 

(Bcl-2) family of proteins (203), which function as pro- or anti-apoptotic regulators 

of mitochondrial membrane permeability. Following release, cytochrome c binds 

Apaf-1 to create the “apoptosome,” leading to the binding, cleavage, and 

activation of procaspase-9 to promote the apoptosis execution phase (204, 205).  

Both the extrinsic and intrinsic apoptotic pathways converge at the 

execution phase with the activation of caspase-3, -6, and -7. These final steps 

produce the morphological features of apoptosis by activating endonucleases to 

degrade nuclear contents and proteases to breakdown cytoskeletal proteins. The 

endonuclease CAD, when activated by caspase-3, cleaves chromosomal DNA 

leading to chromatin condensation. Caspase-3 also promotes cytoskeletal 

reorganization, formation of apoptotic bodies, and phosphatidylserine 

externalization to allow phagocytosis of dying cells (182, 206).  

Several other key components of the apoptotic pathway have been 

described but are not fully understood. Caspase-8-mediated cleavage of Bid, a 

pro-apoptotic Bcl-2 family member, to its truncated form tBid provides a 

mechanism to connect the extrinsic and intrinsic pathways. Activated tBid 

promotes oligermization of other pro-apoptotic Bcl-2 family members to disturb 

mitochondrial membrane permeability (207, 208). Bcl-2 family members Noxa 



 

 40 

and Puma also stimulate pro-apoptotic outcomes. Over-expression of Noxa leads 

to mitochondrial localization, cytochrome c release, and activation of caspase-9 

to promote apoptosis (209). Although Noxa can be activated by p53, other tissue-

specific factors mediate its activation (209-211). Puma, when activated in a p53-

dependent manner, increases expression of Bcl-2 member BAX, causing its 

conformational change and translocation to the mitochondria to promote 

cytochrome c release (212).  

 

Apoptosis induction during reovirus infection 

Aside from an essential function in maintaining cell homeostasis, apoptotic 

cell death also contributes to tissue injury during disease. Several human viruses 

trigger apoptosis in the central nervous system (herpes simplex virus and HIV 

(213-215)), heart (adenovirus, cytomegalovirus, and enterovirus (216)), and liver 

(hepatitis B and C viruses (217-221)). Apoptosis contributes to the pathology 

observed in the central nervous system and heart of newborn mice infected with 

reovirus (117). However, prior to my thesis, the function of apoptosis in intestinal 

reovirus infections was not well studied.  

Reovirus infection triggers cell death in many types of cell lines (222-225) 

and primary cell cultures (226, 227). Infection with reovirus can activate both 

intrinsic and extrinsic pathways of apoptosis (228) (Figure I-10). Following 

reovirus infection, cytochrome c and Smac/DIABLO are released from the 

mitochondria, prompting activation of the intrinsic apoptosis pathway (229). 

Additionally, reovirus infection is associated with elaboration of TRAIL, which 
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Figure I-10. Reovirus activates both intrinsic and extrinsic apoptotic 
pathways. Reovirus-induced apoptosis requires disassembly of virions. Reovirus 
stimulates mitochondrial release of cytochrome c and Smac/DIABLO, which 
together activate caspase-9 as part of the intrinsic apoptotic pathway.  
Smac/DIABLO represses IAP, which inhibits caspase-3. Reovirus activates 
IRF-3 and NF-κB, resulting in induction of the proapoptotic protein, NOXA. 
Reovirus also induces TRAIL binding to DR5, which together activate caspase-8 
as part of the extrinsic apoptotic pathway. Reovirus activates Bid cleavage to tbid 
to promote “cross-talk” between the extrinsic and intrinsic apoptotic pathways. 
Known stimulatory pathways are indicated by dark blue arrows (light blue arrows 
if not required); known inhibitory pathways are indicated by red bars. Possible 
stimulatory pathways are indicated by dashed blue arrows or question marks. 
(Figure adapted from Fields Virology (117)). 
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binds the death receptor DR5 (222), and leads to recruitment of FADD, activation 

of DISC, and cleavage of caspase-8 to stimulate the extrinsic pathway (222, 

228). However, activation of the extrinsic pathway alone is insufficient for 

reovirus-mediated apoptosis, and intrinsic pathway activation must occur for 

maximum cell death (228, 230).  

Reovirus-induced apoptosis requires induction of NF-κB and IRF-3 in most 

cell types and is triggered during recognition of the virus during viral entry by 

cellular pattern recognition receptors (159, 231). NF-κB signaling is required for 

both intrinsic and extrinsic pathway activation (232). For example, NF-κB is 

required for cleavage of Bid and sensitization of cells to TRAIL (230, 233). 

Additionally, reovirus mutants with diminished NF-κB activation also display 

limited apoptosis potential, but the mechanism is unknown (234). Along with 

activation of NF-κB, IRF-3 activation is required for maximal levels of apoptosis 

(159). NF-κB and IRF-3, independent of IFN, can stimulate expression of Noxa, 

which markedly enhances reovirus-induced apoptosis (165). 

Replication of reovirus is not required for programmed cell death (225). 

Therefore, steps in the reovirus replication cycle that occur prior to synthesis of 

viral proteins and RNA, such as attachment, membrane penetration, or particle 

disassembly, likely mediate apoptosis. Strain-specific differences in cell death 

suggest the existence of viral determinants of apoptosis. Cells infected with T3 

strains produce apoptosis significantly more efficiently than T1L, a property that 

segregates with the S1 and M2 gene segments (224, 225, 235). A variant virus 

incapable of expressing σ1s retains the capacity to induce apoptosis, suggesting 
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that σ1 is the S1 gene product required for programmed cell death (236). 

However, the requirement for σ1 may be tissue-specific and has only been 

studied using neonatal mouse models of encephalitis and myocarditis (237). The 

reovirus M2-encoded µ1 protein is delivered to the cytoplasm during viral 

membrane penetration, a step that is required for apoptosis (238). The ϕ domain 

of µ1 is necessary and sufficient to promote apoptosis in cell culture (234, 239). 

Prior to my thesis work, reovirus-induced apoptosis in the intestine had not been 

studied, therefore little was known about the viral determinants required to induce 

cell death in this tissue.  

 

Physiological and pathogenic apoptosis induction in the gut 

 The intestinal epithelium uniquely functions to passively transport nutrients 

and water while remaining impermeable to the external environment. Any insult, 

whether microbial, toxic, or traumatic, can lead to cell death, loss of epithelial 

contiguity, breakdown in gut barrier function, and disease. The intestinal 

epithelium of most mammals is capable of regenerating to alleviate disruptions in 

barrier function and maintain homeostasis. Newly generated IECs or enterocytes 

migrate from the villus crypt towards the villus tip, before being extruded into the 

gut lumen. The rapid renewal of the villus epithelium by stem cells occurs every 2 

to 6 days in adult mammals, with approximately 1011 cells extruded per day in 

humans (240). Mathematical models of the mouse intestine suggest that 1400 

mature enterocytes are shed from a single villus in a 24-hour period, equating to 

2 x 108 cells extruded per day (241). 
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In a healthy gut, extruded IECs are replenished from stem cells 

undergoing mitosis in the villus crypts, maintaining a predefined crypt:villus ratio 

and a homeostatic villus length. With the surface area of the small intestine 

estimated to be about 250 square meters, maintenance of the epithelial barrier 

requires the largest turnover rate of any fixed cell in the body (242). Circadian 

rhythms (243), luminal nutrients (244), hormones (244, 245), the microbiota 

(246), and expression of TGFβ (245) influence the physiological growth rate of 

intestinal villi. Enterocyte shedding at the villus tip is difficult to observe in fixed 

tissue, with only 6% of hematoxylin and eosin (H&E) stained sections of human 

intestines containing evidence of IEC extrusion (247) (Figure I-11). Therefore, 

many studies rely on quantification of crypt:villus ratios, crypt proliferation, and 

cell death as surrogates to understand the effects of various factors in gut 

homeostasis. 

The physiological loss of enterocytes from the villus tip is thought to be a 

passive process by which cells or clusters of cells are sloughed into the intestinal 

lumen (240). Although the process is energy efficient, it requires a complex 

orchestration of cellular events (248). From the small percentage of shedding 

events observed in humans, it appears that whole cells are expelled from the 

intestinal villus without the association of lymphocytes or macrophages. Similar 

processes occur in mice, rats, and hamsters, making these animals useful 

models for studies of enterocyte sloughing (247). The “zipper model” of epithelial 

cell shedding is used to explain the extrusion of IECs (249). Basolateral 

movement of tight junctions down the plasma membrane of neighboring 
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Figure I-11. Morphology of enterocytes during shedding. Small intestinal 
sections were stained with H&E. Representative sections of sloughing cells are 
shown (A-D). The nuclei become condensed and fragmented during shedding. 
Eosin staining is reduced beneath the shedding cell in (D) and highlighted green 
in the line drawing (F). This is extending from the level of neighboring nuclei to 
the basement membrane. A magnification of image (D) is shown in (E). (Figure 
from Bullen et. al. 2006 (247)). 
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Figure I-12. Zipper model of epithelial shedding.  Neighboring cells maneuver 
tight junctions to extrude the cell without breaking the epithelial barrier. (Figure 
from Williams et. al. 2015 (248)). 
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Figure I-13. Apoptosis and cell shedding of enterocytes. Small intestinal 
sections were stained with an antibody against cleaved caspase-3. (A) An 
apoptotic cell, expressing activated caspase-3 sloughs from the epithelial 
membrane. (B) A cell in the process of being shed from a villus tip (vertical 
arrow) and a second cell (horizontal arrow) with activated caspase-3 that does 
not actively shedding and remains attached to the basement membrane. (Figure 
from Bullen et. al. 2006 (247)). 
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enterocytes leads to a joining of the neighbor cells beneath the extruding cell. 

The neighboring cells “zipper” up their tight junctions forcing the extruding cell out 

of the epithelium and enabling the entire cell to be expelled without barrier 

breakdown (Figure I-12) (249).  

Although the exact signals that trigger enterocyte extrusion are unknown, 

shedding of neighboring cells can occur within 5 to 10 minutes of the initial event, 

suggesting that intercellular communication coordinates enterocyte shedding 

(250). IECs undergoing cell death can be identified using biochemical markers of 

apoptosis, such as activated caspase-3 (247) (Figure I-13). However, it is 

unknown whether apoptosis precedes cellular extrusion or whether apoptosis 

occurs rapidly after loss of survival signals due to extrusion (248). Studies of ex-

vivo models of the murine small intestine indicate that loss of tight junction 

proteins, such as E-cadherin, results in intrinsic apoptosis pathway stimulation, 

including the activation of caspase-9 (251). Analysis of cleaved caspase-3 

immunostaining of fixed tissue suggests that apoptotic pathways can be triggered 

prior to cell shedding, although this relationship is temporal and not causal (252-

254).  

Spontaneous apoptosis rarely occurs in healthy intestinal tissue, with only 

0.4% of villus cells expressing activated caspase-3 in mice ((255), Brown 

unpublished). However, pathogenic insults can cause enterocytes to die and 

slough into the intestinal lumen. If crypt cells do not proliferate efficiently, villi 

become blunted and, if unresolved, such insults can cause a breakdown in the 

gut barrier and disease. Pathogenic stimuli of enterocyte sloughing include  
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Figure I-14. Proposed diagram of TNF treatment inducing enterocyte 
apoptosis and cell shedding. TNF binds the TNF receptor (TNFR1) on 
intestinal epithelial cells, triggering NF-κB and pro-apoptotic genes. The 
execution phase of apoptosis is activated by caspase-3 cleavage, which leads to 
cell death and possibly mediates cell sloughing. (Figure adapted from Williams 
et. al. 2015 (248)). 
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Figure I-15. Pathological enterocyte apoptosis and cell shedding following 
lipopolysaccharide (LPS) injection. Small intestinal sections were stained with 
an antibody against cleaved caspase-3. (A) Untreated control. (B) 
Representative image of intestinal epithelium 1 hour after LPS administration. (C) 
Representative image of intestinal epithelium 1.5 h after LPS administration.  A 
magnification of image (C) is shown in (D). Activated caspase-3 labeled apoptotic 
cells in the epithelium (arrows) or undergoing extrusion/cell shedding 
(arrowhead) into the intestinal lumen are shown. (Figure from Williams et. al. 
2015 (248)). 
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bacterial lipopolysaccharide (LPS) (254, 256) and other bacterial toxins (257), 

burn injury (258), ischemia (245), poly(I:C) (253), trauma (259), and TNF (260) 

(261, 262). Treatment with TNF potently stimulates IEC apoptosis and shedding 

in mice (261, 262), which appears to be NF-κB dependent (254) (Figure I-14). 

Administration of bacterial LPS also exacerbates enterocyte apoptosis and cell 

sloughing, causing increased gut permeability and diarrhea (254) (Figure I-15). 

Intraperitoneal (i.p.) injections of mice with poly(I:C) or rotavirus genomic dsRNA 

are sufficient to stimulate enterocyte cell death as observed by activated 

caspase-3 immunostaining, villus shortening, and diarrhea (253, 263). Intestinal 

epithelial pathology caused by dsRNA analogs is dependent on TLR3 recognition 

and caspase-8 signaling. However, more remains to be elucidated about 

pathways used by viruses to promote cell death and sloughing in the gut and 

whether these mechanisms alter viral capacity to induce CD.
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Hypothesis 
 
 

Viral infections of the intestine alter the immune response to oral antigens 

such as gluten and lead to development of celiac disease 

 
 

Significance 
 
 

CD occurs in approximately 1 in 133 persons in the United States and is a 

significant cause of morbidity. Cumulatively, my thesis work has enhanced 

understanding of virus-mediated disruption of immune tolerance to orally fed 

antigen and defined viral determinants required for CD development. 

Understanding the viral factors and mechanisms by which loss of oral tolerance 

is provoked will contribute to the development of improved prevention strategies, 

screening approaches, and treatment for CD patients. 
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CHAPTER II 
 
 
 

REOVIRUS INFECTION TRIGGERS INFLAMMATORY RESPONSES TO 
DIETARY ANTIGENS AND DEVELOPMENT OF CELIAC DISEASE 

 
 
 

Introduction 
 
 

CD is a complex immune disorder with an autoimmune component in 

which genetically susceptible individuals display an inflammatory T-helper 1 

(TH1) immune response against dietary gluten present in wheat (3, 56, 264). The 

HLA-DQ2 or -DQ8 restricted TH1 response against gluten is central to CD 

pathogenesis and thought to precede development of villous atrophy (48). 

However, epidemiological and immunological observations support a role for 

additional genetic and environmental factors in CD pathogenesis. Previous 

studies have implicated adenovirus, enterovirus, hepatitis C virus, and rotavirus 

as triggers of CD (64). Working with the laboratory of Dr. Bana Jabri at the 

University of Chicago, we proposed that viral infections significantly contribute to 

CD development and immunopathogenesis. However, little was known about the 

mechanisms by which viruses evoke the disease. Therefore, we established a 

virus-induced model of oral tolerance abrogation to define the specific viral 

characteristics involved in disease etiology.  
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Results 
 
 
Viral infection experimental model using genetically engineered reoviruses. 

Viruses in the family Reoviridae commonly infect humans during early 

childhood (116), and seroprevalence remains intact throughout life (175). 

Reovirus T1L infects the intestine of mice and perturbs intestinal immune 

homeostasis (168, 265), whereas T3D is incapable of infecting the intestine 

(265). Based on pathobiological differences that occur during infection with T1L 

and T3D, we hypothesized that engineering a T3D reassortant virus capable of 

intestinal infection would yield two viruses with potentially different effects on 

tolerance to dietary antigen. Therefore, we engineered T3D-RV by introducing 

the S1 and L2 gene segments of T1L into a T3D genetic background, thus 

allowing the virus to infect the intestine (152) (Figure II-1A). Such reassortants 

arise naturally (117, 118) and can be readily recovered in the laboratory using 

reverse genetics (168). T1L and T3D-RV replicate comparably in intestinal Caco-

2 cells (Figure II-1B) and display a similar capacity to infect the small intestine at 

early time points (Figure II-1, C and D). As in humans, these viruses are cleared 

(Figure II-1E) without inducing intestinal damage (Figure II-1F) (116) and elicit 

neutralizing anti-reovirus antibodies (Figure II-1G). Of note, although both viruses 

induced high anti-reovirus antibody titers, antibody levels observed following T1L 

infection were significantly higher than those following T3D-RV infection (Figure 

II-1G). However, comparison of the host T cell response in phosphate-buffered 

saline (PBS) (sham) and virus-inoculated mice revealed that T1L and T3D-RV  
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Figure II-1. Experimental model of viral infection using genetically 
engineered reoviruses. (A) Electropherotypes and schematic of T1L, T3D, and 
T3D-RV gene segments. Purified viral particles were electrophoresed in an SDS-
polyacrylamide gel, which was stained with ethidium bromide to visualize viral 
gene segments. Size classes of gene segments, large (L), medium (M), and 
small (S) are indicated. (B) Titers of T1L (red circles) and T3D-RV (blue circles) 
in Caco-2 cells were determined at the indicated times and multiplicity of infection 
(MOIs) by plaque assay. (C to H) WT mice were inoculated perorally with 1010 

plaque forming units (PFU) of T1L or T3D-RV. (C) Titers of T1L (n = 7) and T3D-
RV (n = 7) in the indicated small intestinal compartments, PP, MLN, and spleen 
were determined at 24 hours post-inoculation (hpi) by plaque assay. The small 
intestine was resected from the pylorus to the cecum and sectioned into three 
equal parts comprising the duodenum, jejunum and ileum. (D) At 24 hpi, small 
intestines of infected mice were resected and processed for histology. Sections 
were stained with polyclonal reovirus antiserum (brown). Representative sections 
of PP are shown (scale bar: 100 µm). (E) At 6 dpi, the ileum was resected, and 
titers of T1L and T3D-RV were determined by plaque assay (n = 6 mice per virus 
strain). (F) At 8 dpi, small intestines of infected mice were resected and 
processed for histology. Sections were stained with H&E. Representative 
sections of ileum are shown (scale bar: 100 µm). (G) At 18 (open circles) or 21 
(filled circles) dpi, sera were collected, heat-inactivated, and used for a plaque-
reduction neutralization assay (PRNT60) (n = 10 mice per virus strain). (H) The 
intracellular expression of Foxp3 and T-bet in PP CD4+ T cells at 6 dpi was 
evaluated by flow cytometry. Representative dot plots and percentages of Foxp3- 
and T-bet-expressing CD4+ T cells are shown. (B) Data represent two 
independent experiments performed in triplicate. (C, E, G, and H) Graphs depict 
two independent experiments. (B, C and H) *, P < 0.05; one-way analysis of 
variation (ANOVA)/Tukey’s multiple comparison. (E and G) ***, P < 0.001; 
unpaired t-test.  
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induced similar antiviral TH1 responses in PP (Figure II-1H), the site at which 

protective immunity to reovirus is induced (168). 

 

Reovirus T1L infection promotes inflammatory immunity to dietary antigen. 

Having established that the two strains infect and induce protective 

immunity in PPs, we next investigated whether they affect immune responses to 

dietary antigens at inductive and effector sites of oral tolerance, MLN and LP (65, 

266), respectively. In collaboration with the Jabri laboratory, we transcriptionally 

profiled the virus-host interaction at multiple sites of the gut. Minimum spanning 

trees (MST) (267, 268) and multidimensional scaling ordination (Figure II-2A), 

performed by the laboratory of Dr. Aylwin Ng at Harvard University, revealed 

transcriptional profile clusters that were strongly driven by differences in location 

(epithelium, LP, PP, and MLN) and were influenced by reovirus infection in a 

location- and time-dependent manner. This strong location effect was evident 

and predominantly captured along Dimension 1, which together with Dimension 

2, also captured virus-dependent differences. At the early time point (6 h), the 

transcriptional profile of both viruses segregated from sham in PP and the 

epithelial compartment (primary sites of infection (168)) and had no effect on 

MLN (Figure II-2A). In contrast, at 48 h, the viruses altered the transcriptional 

profile of the LP and MLN (sites of induction of immune responses to dietary 

antigens) (65, 266), and transcriptional differences between the two viruses 

emerged (Figure II-2A). The Ng lab performed an in-depth factorial design 

analyses (Figure II-3) to identify host genes that were differentially expressed in  
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Figure II-2. T1L blocks the differentiation of peripheral Treg (pTregs) and 
promotes TH1 immunity to dietary antigen at inductive and effector sites of 
the gut. (A) For each time point, WT mice were inoculated perorally with 1010 
PFU of T1L (n = 3 mice; red circles), 1010 PFU of T3D-RV (n = 3 mice; blue 
circles), or PBS (sham, n = 3 mice; open circles) and euthanized 6 or 48 hpi. 
RNA of MLN, PP, epithelium, and LP were isolated and analyzed by means of 
microarray. MST is represented on multidimensional scaling ordination. The MST 
traces a path of minimum weight through each vertex or node that represents the 
profile of differentially expressed genes for each sample state shown. The 
lengths of edges (or connecting paths) indicate the level of dissimilarity between 
samples. Each sample state and the distances between them are represented in 
two-dimensional space. The coordinates of each sample along each dimension 
are indicated by the two axes. (B) Mice were inoculated perorally with 108 PFU of 
T1L (n = 6 mice), 108 PFU of T3D-RV (n = 6 mice), or PBS (sham, n = 5 mice) for 
2 d. The expression of IL-12p40 on gated MHC-II+ CD11c+ CD103+ CD11b− 
CD8α+ MLN DCs was evaluated by means of flow cytometry. Representative dot 
plots and percentages of IL-12p40 in the MLN are shown in the CD103+ CD11b– 
CD8α+ DC subset. (C and D) OT-II+ CD45.1+ CD4+ T cells were transferred into 
WT CD45.2+ mice. One day after transfer, mice were inoculated perorally with 
1010 PFU of T1L (n = 4 to 16 mice), 1010 PFU of T3D-RV (n = 5 to 14 mice), or 
PBS (sham, n = 6 to 15 mice) and fed 1.5% ovalbumin (OVA) in the drinking 
water (filled circles) or an OVA-containing diet (open circles) for 6 d. The 
intracellular expression of Foxp3 and Tbet in transferred OT-II+ CD45.1+ CD4+ T 
cells in the MLN and in the LP was evaluated by means of flow cytometry. 
Representative dot plots and percentages of Foxp3+ T-bet− and T-bet+ Foxp3− 
cells are shown in the MLN (C) and in LP (D), respectively. (B to D) Graphs 
depict at least two independent experiments. *, P < 0.05; **, P < 0.01; ***, P < 
0.001; ****, P < 0.0001; one-way ANOVA/Tukey’s multiple comparison. 
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Figure II-3. Temporal and spatial gene expression in response to reovirus 
infection. Heatmap shows the subset of the 2307 gene features used for 
generation of the spanning trees (Fig. II-2 A). These key genes were found to be 
significantly expressed in the virus response with respect to sham and exhibited 
significant expression differences between T1L (T1) and T3D-RV (T3) in the 
indicated tissue types. 
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Figure II-4. Enrichment analysis of pathway and biological processes 
enriched among differentially expressed genes between T1L- and T3D-RV-
infected mice. Pathways or biological processes found enriched among genes 
that were differentially expressed between T1L and T3D-RV in LP or MLN were 
grouped on the basis of their relatedness by performing semantic similarity 
analysis using the relevance similarity measure, simRel (scale ranging from 0 to 1, 
with 0 being distinct and 1 being identical). The analysis examines each pair of 
enriched pathway or process in turn and a semantic similarity matrix of simRel 
values was constructed. From this analysis, a semantic cluster heatmap was 
generated and hierarchical clustering was applied to group similar pathways and 
processes together. The extent of similarity between pathways and processes 
scales with color intensity on the heatmap. Bar graphs showing enrichment 
scores (-Log10(BH-adj.P)) associated with each pathway and process are shown. 
All meet the nominal (unadjusted) enrichment significance threshold of P < 0.05 
as denoted by the grey bars. Red bars denote those achieving enrichment 
significance after Benjamini-Hochberg adjustment (BH-adj.P < 0.05) to control for 
the false discovery rate. Clusters of similar pathways and processes are grouped 
as indicated by dendrograms, and annotated by shared concepts. 
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response to the two viruses, characterizing their expression in a time- and 

location-dependent manner. In both LP and MLN at 48 h, we observed a strong 

enrichment of immune, defense, and antiviral response pathways, including type 

1 IFN signaling, among genes that were differentially expressed following T1L or 

T3D-RV infection (Figure II-4).  

To determine whether the changes in gene expression alter host 

responses to food antigen, the Jabri lab infected MLN DCs in-vivo. The CD103+ 

CD11b- DC subset has the highest tolerogenic potential (269, 270) but also 

drives TH1 responses to intestinal infections (271-273). Relative to T3D-RV, T1L 

more substantially upregulated the costimulatory molecule CD86 (Figure II-5A) 

and IL-12p40 in CD103+ CD11b- CD8α+ DCs (Figure II-2B), the DC subset that 

also exhibited the highest level of ovalbumin (OVA) uptake after oral 

administration (Figure II-5B), which occurs independently of T1L or T3D-RV 

infection (Figure II-5C). However, both viruses induced similar levels of IL-12p40 

in resident CD103- CD11b- CD8α+ DCs (Figure II-5D), while no upregulation of IL-

12p40 was detectable in the other MLN DC subsets (Figure II-5E). Concordantly, 

using a T-cell conversion assay (Figure II-6A) in conjunction with the Jabri lab, 

we found that T1L significantly inhibited the conversion of OVA-specific OT-II 

CD4+ T cells into pTregs (Figure II-2, C and D and Figure II-6B) and instead 

promoted their differentiation into T-bet+ (Figure II-2, C and D and Figure II-6B) 

and IFNγ+ (Figure II-6, B to D) CD4+ T cells in MLN and LP, respectively. 

Conversely, T3D-RV neither markedly blocked the induction of pTregs nor induced 

TH1 immune responses against dietary OVA (Figure II-2, C to D and Figure II-6,   
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Figure II-5. Dendritic cell activation and ovalbumin uptake upon reovirus 
infection. (A) WT mice (n = 5) were gavaged with OVA-Alexa Fluor-647 18 h 
before euthanasia and OVA-Alexa Fluor-647 uptake by DCs in the MLN was 
analyzed by flow cytometry. Representative dot plots and percentages of OVA-
Alexa Fluor-647 uptake are shown in the indicated DC subsets. (B) Similar to (A) 
but mice were inoculated with 108 PFU of T1L (n = 5), 108 PFU of T3D-RV (n = 
5), or PBS (sham, n = 5) at the time of gavaging with OVA-Alexa Fluor-647. (C to 
E) WT mice were inoculated perorally with 108 PFU of T1L (n = 6), 108 PFU of 
T3D-RV (n = 6), or PBS (sham, n = 5) for 2 d. (C and D) The expression of IL-
12p40 in MLN DC subsets was evaluated by flow cytometry. Representative dot 
plots (C) and percentages (C and D) of IL-12p40+ cells in indicated MLN DC 
subsets are shown. (E) The expression of CD86 in MLN DC subsets was 
evaluated by flow cytometry. Representative histogram and MFI for CD86 
expression in the indicated DC subsets in the MLN of WT mice is shown. Graphs 
depict two independent experiments. (A to E) *, P < 0.05; **, P < 0.01; ***, P < 
0.001; ****, P < 0.0001; one-way ANOVA/Tukey’s multiple comparison. 
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Figure II-6. T1L promotes TH1 immunity to dietary antigen at inductive and 
effector sites of the gut. (A) In-vivo T cell conversion assay model. (B) OT-II+ 
CD45.1+ CD4+ T cells were transferred into WT CD45.2+ mice. One day after 
transfer, mice were inoculated perorally with 1010 PFU of T1L (n = 6-12), 1010 

PFU of T3D-RV (n = 6 - 9), or PBS (sham, n = 6 - 9) and fed 1.5% OVA in the 
drinking water for 6 d. The intracellular expression of Foxp3, T-bet, and IFNγ in 
MLN OT-II+ CD45.1+ CD4+ T cells was evaluated by flow cytometry. Absolute 
numbers of Foxp3-, T-bet- and IFNγ-expressing CD45.1+ CD4+ T cells are 
shown. (C and D) OT-II+ CD45.1+ CD4+T cells isolated by MACS beads 
separation (filled circles) or FACS sorting (open circles) were transferred into WT 
CD45.2+ mice. One day after transfer, mice were inoculated perorally with 1010 

PFU of T1L (n = 4-16), 1010 PFU of T3D-RV (n = 5-14), or PBS (sham, n = 6-15) 
and fed 1.5% OVA in the drinking water (filled circles) or an OVA-containing diet 
(open circles) for 6 d. The intracellular expression of IFNγ in transferred OT-II+ 
CD45.1+ CD4+ T cells in the MLN and in the was evaluated by flow cytometry. 
Representative dot plots and percentages of IFNγ-producing CD45.1+ CD4+ T 
cells are shown in MLN (C) and in LP (D) respectively. (B to D) Graphs depict at 
least two independent experiments. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, 
P < 0.0001; one-way ANOVA/Tukey’s multiple comparison.  
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Figure II-7. T cell responses to dietary antigen and viral infection. (A and B) 
OT-II+ CD45.1+ CD4+ T cells were transferred into WT CD45.2+ mice. One day 
after transfer, mice were inoculated perorally with 1010 PFU of T1L (n = 6 - 12), 
1010 PFU of T3D-RV (n = 6 - 9), or PBS (sham, n = 6 - 9) and fed 1.5% OVA in 
the drinking water for 6 d. The intracellular expression of Foxp3, T-bet, and IFNγ 
in MLN CD4+ T cells was evaluated by flow cytometry. Representative dot plots, 
percentages and absolute numbers of Foxp3-, T-bet- (A) and IFNγ-expressing 
CD45.1- recipient CD4+ T cells (B) are shown. (C and D) OT-II+ CD45.1+ CD4+ T 
cells were transferred into WT CD45.2+ mice. One day after transfer, mice were 
inoculated perorally with 1010 PFU of T1L (n = 4), 1010 PFU of T3D-RV (n = 5), or 
PBS (sham, n = 6) and fed with an OVA-containing diet for 6 d. The intracellular 
expression of Foxp3, T-bet and IFNγ in LP CD4+ T cells was evaluated by flow 
cytometry. Representative dot plots, percentages and absolute numbers of 
Foxp3-, T-bet- (C) and IFNγ-expressing CD45.1- recipient CD4+ T cells (D) are 
shown. (E and F) WT mice were inoculated perorally with 1010 PFU of T1L, or 
1010 PFU of T3D-RV, or PBS at the initiation of an oral tolerance protocol. Mice 
were gavaged every other day with OVA or PBS for 8 d and all mice were 
immunized subcutaneously (s.c.) with OVA-complete Freund’s adjuvant (CFA) at 
10 dpi. On day 18, draining lymph node (dLN) cells were harvested and analyzed 
for production of IFNγ by ELISA following OVA in-vitro restimulation. Sham (n = 
11), OVA (n = 11), OVA + T1L (n = 10), and OVA + T3D-RV (n = 6). (G) WT mice 
were inoculated perorally with 1010 PFU of T1L, 1010 PFU of T3D-RV, or PBS at 
the initiation of an oral tolerance protocol. Mice were fed with an OVA-containing 
diet or a control diet (sham) for 8 d and then immunized subcutaneously with 
OVA-CFA at 10 dpi. The levels of OVA-specific IgG2c antibodies were evaluated 
in the serum at day 18 by ELISA. Sham (n = 5), OVA (n = 5), OVA + T1L (n = 5), 
and OVA + T3D-RV (n = 5). (A to D and F and G) Graphs depict at least two 
independent experiments. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 
0.0001; one-way ANOVA/Tukey’s multiple comparison. 
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B to D). In contrast to differences observed between T1L and T3D-RV in the 

response to dietary antigens, both viruses induced similar antiviral TH1 CD45.1- 

CD4+ T cell responses in MLN (Figure II-7, A and B) and LP (Figure II-7, C and 

D). 

Oral tolerance is defined as the establishment of peripheral immune 

tolerance by oral administration of antigen and thought to be dependent on the 

induction of pTregs (274). As expected, T1L but not T3D-RV prevented induction 

of peripheral tolerance upon oral administration of OVA (Figure II-7, E to G). 

Collectively, these results suggest that as a consequence of T1L infection, the 

tolerogenic response to dietary antigens is abrogated and, instead, TH1 immunity 

to dietary antigens is induced.  

 

Distinct host pathways block induction of pTregs and induce TH1 immunity to 

dietary antigen.  

We next sought to determine the mechanistic basis for the differential 

effect of T1L and T3D-RV infection on the response to dietary antigen. Type 1 

IFNs are upregulated in CD and have been suggested to explain development of 

TH1 immunity against dietary gluten (275). Further analysis from MLN confirmed 

that T1L induced higher levels of canonical ISGs such as Mx1 and Isg15 (Figure 

II-8A and II-9A) than T3D-RV. This result was contrary to studies performed in-

vitro (Figure II-9, B to D) and previously reported describing the capacity of T1L, 

but not T3D, to inhibit type 1 IFN signaling (276). Therefore, these findings 

suggest that differences in virus-host interactions displayed by T1L and T3D-RV 
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Figure II-8. Type-1 IFN is required for blockade of pTreg conversion but not 
for induction of TH1 immunity to dietary antigen. (A) WT and IFNAR−/− mice 
were inoculated perorally with 108 PFU of T1L (n = 6 mice), 108 PFU of T3D-RV 
(n = 6 mice), or PBS (sham, n = 6 mice) for 2 d. Mx1 expression in the MLN was 
analyzed by means of RT-PCR. (B and C) OT-II+ CD45.1+ CD4+ T cells were 
transferred into WT CD45.2+ or IFNAR−/− CD45.2+ mice. One day after transfer, 
mice were inoculated perorally with 108 PFU of T1L (n = 6 mice) or PBS (sham, n 
= 4 or 5 mice) and fed 1.5% OVA in the drinking water for 2 d. The expression of 
IL-12p40 on gated MHC-II+ CD11c+ CD103+ CD11b− CD8α+ MLN DCs (B) and T-
bet in OT-II+ CD45.1+ CD4+ T cells (C) in the MLN was evaluated by means of 
flow cytometry. (D to G) OT-II+ CD45.1+ CD4+ T cells were transferred into WT 
CD45.2+ or IFNAR−/− CD45.2+ mice. One day after transfer, mice were inoculated 
with PBS (n = 7 mice) or 50 mg of poly(I:C) (n = 7 mice) intraperitoneally or 1010 
PFU of T1L (n = 5 mice) perorally and fed an OVA-containing diet for 6 d. The 
intracellular expression of Foxp3 and IFNγ in OT II+ CD45.1+ CD4+ T cells in the 
MLN was evaluated by means of flow cytometry. Percentages and absolute 
numbers of Foxp3 (D and E) and IFNγ (F and G) are shown. (A to G) Graphs 
depict at least two independent experiments. *, P < 0.05; **, P < 0.01; ***, P < 
0.001; ****, P < 0.0001; one-way ANOVA/Tukey’s multiple comparison. 
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Figure II-9. Impact of type-1 IFN signaling on the response to dietary 
antigen. (A) WT and IFNAR-/- mice were inoculated perorally with 108 PFU of 
T1L (n = 6), 108 PFU of T3D-RV (n = 6) or PBS (sham, n = 6) and euthanized at 
2 dpi. ISG15 expression in the MLN was analyzed by RT-PCR. (B) IFNβ protein 
expression was analyzed by ELISA in WT mouse embryonic fibroblasts (MEFs) 
16 hpi with T1L or T3D-RV at an MOI of 500 PFU/cell. (C and D) Mx1 and Isg15 
mRNA levels were quantified by RT-PCR in Caco-2 cells 24 hpi with T1L or T3D-
RV at an MOI of 100 PFU/cell. (E) OT-II+ CD45.1+ CD4+ T cells were transferred 
into WT CD45.2+ or IFNAR-/- CD45.2+ mice. One day after transfer, mice were 
inoculated perorally with 108 PFU of T1L and fed 1.5% OVA in the drinking water 
for 2 d. At 2 dpi, a 1 cm section of ileum was resected, and viral titers in WT (n = 
3) and IFNAR-/- (n = 6) tissue were determined by plaque assay and expressed 
as PFU per ml of tissue homogenate. (F, G and H) OT-II+ CD45.1+ CD4+ T cells 
were transferred into WT CD45.2+ or IFNAR-/- CD45.2+ mice. One day after 
transfer, mice were inoculated perorally with 108 PFU of T1L or PBS (sham) and 
fed 1.5% OVA in the drinking water for 2 d. The expression of CD86 (F) IL-12p40 
(G) and T-bet (H) in the MLN was evaluated by flow cytometry. (F) 
Representative histogram and MFI of the expression of CD86 is shown in 
CD103+ CD11b- CD8α+ DCs in the MLN. (G) Representative dot plots of MLN IL-
12p40-producing CD103+ CD11b- CD8α+ DCs are shown. (H) Representative dot 
plots of MLN T-bet-expressing OT-II+ CD45.1+ CD4+ T cells are shown. (A and F) 
*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; one-way 
ANOVA/Tukey’s multiple comparison. (B to E) *, P < 0.05; **, P < 0.01; unpaired 
t-test.  
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can lead to alternative outcomes in-vivo and that type 1 IFN may be responsible 

for initiating TH1 immunity against dietary antigen in T1L-infected mice. To 

assess this possibility, but avoid confounding factors associated with 

uncontrolled viral replication in the absence of type 1 IFN signaling (158), the 

Jabri laboratory analyzed DCs and OVA-specific T cell conversion at 48 h, a time 

point at which viral titers in the ileum during T1L infection are similar in WT and 

IFNAR-/- mice (Figure II-9E). Surprisingly, while CD86 was not induced in IFNAR-

/- CD103+ CD11b- CD8α+ DCs (Figure II-9F), IL-12p40 (Figure II-8B and II-9G) 

was upregulated following T1L infection, suggesting that type 1 IFNs are not 

required for acquisition of an inflammatory phenotype by MLN APCs. Consistent 

with these findings, T1L infection induced comparable T-bet expression in OVA-

specific CD4+ T cells in WT and IFNAR-/- mice (Figure II-8C and II-9H). Of note, 

at this early time point, neither Foxp3 nor IFNγ can be detected in OVA-specific T 

cells in the MLN. To assess the role of type 1 IFN in pTreg conversion, an in-vivo 

OT-II T cell conversion assay was conducted using WT and IFNAR-/- mice 

inoculated intraperitoneally with the dsRNA analog poly(I:C) (executed by the 

Jabri lab). As shown in Figures II-8, D to E, and II-10, A to B, dsRNA was 

sufficient to block pTreg conversion in a type 1 IFN-dependent manner. 

Furthermore, treatment with type 1 IFNs blocked pTreg conversion (Figure II-10C) 

comparable to infection with T1L. However, poly(I:C) (Figure II-8, F and G; and II-

10D) and type 1 IFN (Figure II-10C) did not promote TH1 immunity as indicated 

by levels of IFNγ. 

  



 

 74 

 
Figure II-10. dsRNA is sufficient to block pTreg conversion in a type-1 IFN-
dependent manner. (A and D) OT-II+ CD45.1+ CD4+ T cells were transferred 
into WT CD45.2+ or IFNAR-/- CD45.2+ mice. One day after transfer, mice were 
inoculated with PBS (n = 7) or 50 mg of poly(I:C) (n = 7) i.p. or 1010 PFU of T1L 
(n = 5) perorally, and fed an OVA-containing diet for 6 d. The intracellular 
expression of Foxp3 and IFNγ in OT-II+ CD45.1+ CD4+ T cells in the MLN was 
evaluated by flow cytometry. Representative dot plots of Foxp3- (A) and IFNγ-
expressing CD45.1+ CD4+ T cells (D) are shown. (B) WT mice were inoculated 
with PBS (sham, n = 4) or 50 mg of poly(I:C) (n = 6) i.p. and euthanized 2 d post 
injection. Ifnα expression in the MLN was evaluated by RT-PCR. (C) OTII+ 
CD45.1+ CD4+ T cells were transferred into WT CD45.2+ mice. One day after 
transfer, mice received PBS (sham, n = 5) or IFNβ (n = 4) i.p. or were inoculated 
perorally with 1010 PFU of T1L (n = 5), and fed an OVA-containing diet for 6 d. 
The intracellular expression of Foxp3 and IFNγ in OT-II+ CD45.1+ CD4+ T cells in 
the MLN was evaluated by flow cytometry. Representative dot plots and 
percentages of Foxp3- and IFNγ-expressing CD45.1+ CD4+ T cells are shown. (B 
and C) Graphs depict two independent experiments. (B) *, P < 0.05; unpaired t-
test. (C) **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; (one-way ANOVA / Tukey’s 
multiple comparison). 
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 To define the mechanism underlying T1L-induced TH1 immunity to dietary 

antigen, we probed transcriptional differences occurring in T1L- and T3D-RV-

infected WT and IFNAR-/- mice using RNA-seq data from MLN and defined genes 

that were differently expressed in a type 1 IFN-independent manner (Figure II-

11A). IL-15, which prevents pTreg conversion and induces TH1 immunity to dietary 

antigens (98), was eliminated because IL15 was not upregulated following T1L 

infection in MLN of IFNAR-/- mice (Figure II-11B). In contrast, IRF-1, a 

transcription factor regulated at the transcriptional level (277) and implicated in 

multistage regulation of TH1 immune responses (278), was significantly 

upregulated following T1L infection in both WT and IFNAR-/- mice (Figure II-12 

and II-11A). IRF-1 was a particularly intriguing candidate, as it is upregulated in 

the mucosa of children with CD (279). To determine whether IRF-1 is required in 

T1L-mediated immunopathology, we analyzed DCs and OT-II T cell conversion 

in IRF-1-/- mice (conducted by the Jabri laboratory). Importantly, viral titers were 

similar at 48 hpi and 6 dpi in WT and IRF-1-/- mice (Figure II-11, C and D), 

enabling us to analyze the response to dietary antigen after oral OVA 

administration at these two time points. We found that IL-12p40 (Figure II-12B 

and II-11E) showed significantly less induction in IRF-1-/- mice relative to WT 

mice. Additionally, mRNA expression levels of Il12b, cytokines that function in 

TH1 immunity (278, 280, 281), were significantly impaired in IRF-1-/- mice (Figure 

II-11F). Consistent with preserved type 1 IFN upregulation following T1L infection 

in IRF-1-/- mice (Figure II-11, G and H), absence of IRF-1 failed to restore pTreg 

conversion (Figure II-3, C and D; and II-11I). However, while type 1 IFN signaling  
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Figure II-11. Role of IRF-1 signaling in the response to dietary antigens 
upon reovirus infection. (A) WT and IFNAR-/- mice were inoculated perorally 
with 108 PFU of T1L (n = 3), 108 PFU of T3D-RV (n = 3), or PBS (sham, n = 3) 
and euthanized at 2 dpi. RNA of LP was isolated for RNA-seq analysis. Heatmap 
showing genes differentially expressed between T1L and T3D-RV in a type-1 
IFN-independent manner. Differential transcriptional responses for T1L versus 
sham (T1. vs. S), T3D-RV versus sham (T3. vs. S), and T1L (with respect to 
sham) versus T3D-RV (with respect to sham) (T1. vs. T3) are shown in sub-
sections labeled “WT” or “IFNAR-/-”. Factorial design analysis indicates no 
statistical difference between IFNAR-/- and WT MLN (third sub-section labeled 
“IFNAR-/- vs. WT”) for these genes. **denotes Benjamini-Hochberg-adjusted P 
<0.05, *denotes nominal P < 0.05. (B) WT and IFNAR-/- mice were inoculated 
perorally with 108 PFU of T1L, 108 PFU of T3D-RV or PBS (sham) and 
euthanized at 2 dpi. Il15 expression in the MLN was analyzed by RT-PCR. WT 
sham (n = 5), WT T1L (n = 6), WT T3D-RV (n = 6), IFNAR-/- sham (n = 3), 
IFNAR-/- T1L (n = 3), and IFNAR-/- T3D-RV (n = 3). (C, E, J to L) OT-II+ CD45.1+ 
CD4+ T cells were transferred into WT CD45.2+ or IRF-1-/- CD45.2+ mice. One 
day after transfer, mice were inoculated perorally with 108 PFU of T1L or PBS 
(sham) and fed 1.5% OVA in the drinking water for 2 d. (C) At 2 dpi, a 1 cm 
section of ileum was resected, and viral titers in this tissue were determined by 
plaque assay. (E, J to L) The expression of IL-12p40 and T-bet in the MLN was 
evaluated by flow cytometry. (E) Representative dot plots of MLN IL-12p40-
producing CD103+ CD11b- CD8α+ DC are shown. (J) Representative dot plots, 
(K) percentages and, (L) absolute numbers of T-bet-expressing CD45.1+ CD4+ T 
cells are shown. (D, I, and M) OT-II+ CD45.1+ CD4+ T cells were transferred into 
WT CD45.2+ or IRF-1-/- CD45.2+ mice. One day after transfer, mice were 
inoculated perorally with 1010 PFU of T1L or PBS (sham) and fed 1.5% OVA in 
the drinking water for 6 d. (D) At 6 dpi, a 1 cm section of ileum was resected, and 
viral titers in this tissue were determined by plaque assay. (I and M) Intracellular 
expressions of Foxp3 and IFNγ were evaluated by flow cytometry. Absolute 
numbers of Foxp3- (I) and IFNγ-expressing CD45.1+ CD4+ T cells (M) in the MLN 
are shown. WT sham (n = 6), WT T1L (n = 5), IRF-1-/- sham (n = 4), and IRF-1-/- 
T1L (n = 6). (G to J) WT and IRF-1-/- mice were inoculated perorally with 108 PFU 
of T1L or PBS (sham) and euthanized at 2 dpi. (F) Il12b, (G) Mx1, and (H) Isg15 
expression in the MLN was analyzed by RT-PCR, WT sham (n = 4), WT T1L (n = 
4), IRF-1-/- sham (n = 6), IRF-1-/- T1L (n = 6). (B to M) Graphs depict two 
independent experiments. (B, F to I, K to M) *, P < 0.05; **, P < 0.01; ***, P < 
0.001; ****, P < 0.0001; one-way ANOVA/Tukey’s multiple comparison. (C and D) 
unpaired t-test. 
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Figure II-12. A central role for IRF-1 in reovirus-mediated TH1 immunity to 
dietary antigen. (A) WT and IFNAR−/− mice were inoculated perorally with 108 

PFU of T1L (n = 6 mice), 108 PFU of T3D-RV (n = 6 mice), or PBS (sham, n = 6 
mice) for 2 d. IRF-1 expression in the MLN was analyzed by means of RT-PCR. 
(B) OT-II+ CD45.1+ CD4+ T cells were transferred into WT CD45.2+ or IRF-1−/− 
CD45.2+ mice. One day after transfer, mice were inoculated perorally with 108 
PFU of T1L (n = 4 to 6 mice) or PBS (sham, n = 4 to 6 mice) and fed 1.5% OVA 
in the drinking water for 2 d. The expression of IL-12p40 on gated MHC-II+ 
CD11c+ CD103+ CD11b− CD8α+ MLN DCs was evaluated by means of flow 
cytometry. (C to F) OT-II+ CD45.1+ CD4+ T cells were transferred into WT 
CD45.2+ or IRF-1−/− CD45.2+ mice. One day after transfer, mice were inoculated 
perorally with 1010 PFU of T1L (n = 5 or 6 mice) or PBS (sham, n = 4 to 6 mice) 
and fed 1.5% OVA in the drinking water for 6 d. Intracellular expression of Foxp3 
and IFNγ was evaluated by means of flow cytometry. Representative dot plots 
(C), percentages of Foxp3 (D), representative dot plots (E), and percentages of 
IFNγ (F) are shown in transferred OT-II+ CD4+ T cells in the MLN. (A to F) 
Graphs depict two independent experiments. *, P < 0.05; **, P < 0.01; ***, P < 
0.001; ****, P < 0.0001; one-way ANOVA/Tukey’s multiple comparison. 
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was dispensable at 48 h (Figure II-8C), IRF-1 was required for T1L-mediated TH1 

immunity to oral antigen 48 hours- (Figure II-11, J to L) and 6 days- (Figure II-12, 

E and F; and II-11M) post OVA feeding.  

  Taken together our studies analyzing the effect of T1L on the response to 

dietary antigen using OVA as a model antigen (Figure II-13), suggest that two 

reovirus strains can induce similar antiviral TH1 responses in PPs and yet display 

distinct immunopathological properties. T1L, but not T3D-RV, promotes an 

inflammatory phenotype in DCs taking up dietary antigen. In addition, our results 

indicate that type 1 IFN signaling and IRF-1 upregulation are differentially 

implicated in blocking pTreg conversion and promoting TH1 immunity to dietary 

antigen following T1L infection. IRF-1 functions in T1L-induced TH1 immunity to 

dietary antigen by promoting IL-12 in DCs. Of note, while type 1 IFNs are not 

required (Figure II-12A) for TH1 immunity, they likely contribute to IRF-1 

upregulation (282) following reovirus infection in WT mice. 

 

T1L infection breaks oral tolerance to gluten and TG2 activation in DQ8tg mice. 

 To determine the relevance of these findings to CD, we analyzed the 

effect of T1L infection in transgenic mice expressing CD-predisposing HLA 

molecule DQ8 (HLA-DQ8tg mice) (98). First, the Jabri lab confirmed that IRF-1 

was upregulated in HLA-DQ8tg mice following T1L infection (Figure II-

15A). Next, they verified that like OVA-fed WT mice (Figure II-2B and II-5B), 

gluten peptides were preferentially found in CD103+ CD11b- CD8α+ DCs of HLA-

DQ8tg mice orally inoculated with either PBS (sham) or T1L (Figure II-14, A to  
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Figure II-13. Two reoviruses similarly infect the intestine and induce 
protective immunity, but differ in their immunopathological outcomes. 
Under homeostatic conditions, regulatory T cell responses to dietary antigen are 
induced in the small intestine (Oral tolerance). T1L and T3D-RV reoviruses 
induce immune responses in PPs, the site where protective immunity to reovirus 
is induced. In contrast, in MLN, the site of oral tolerance induction, T1L but not 
T3D-RV upregulates type-1 IFN signaling (Mx1; type-1 IFN induced gene; proxy 
for type-1 IFN) as well as IL-12 production by DCs. Consequently, T1L but not 
T3D-RV infection inhibits the conversion of pTregs and promotes development of 
TH1 immunity to dietary antigen (Loss of oral tolerance). While type-1 IFN 
signaling (Mx1) in APCs plays a role in blocking pTreg conversion, IRF-1 is 
required for the induction of IL-12, and the subsequent development of TH1 
immunity to dietary antigen.  
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C). This DC subset upregulated IL-12p40 (Figure II-15B and II-14D) and CD86 

(Figure II-14E). The pattern of IL-12p40 expression in the other MLN DC subsets 

of HLA-DQ8tg mice also was similar to that in WT mice (Figure II-14F). In 

agreement with MLN DCs acquiring a proinflammatory phenotype, T1L infection 

induced loss of oral tolerance to gluten in HLA-DQ8tg mice as assessed by the 

presence of anti-gluten IgG2c antibodies (Figure II-15C) and the development of 

a TH1 DTH reaction (Figure II-15D, II-14H) (executed by the Jabri lab). In addition 

to intestinal environmental conditions favoring TH1 immunity against dietary 

antigens, TG2 activation is thought to promote CD pathogenesis by increasing 

the affinity of gluten peptides for HLA-DQ2 and HLA-DQ8 molecules (3, 264) 

through post-translational modifications. Importantly, T1L infection induced TG2 

activation, as quantified by incorporation of 5-(biotinamido)-pentylamine (5BP), a 

small-molecule TG2 activity probe, in more than 60% of infected HLA-DQ8tg 

mice (Figure II-15E) without inducing detectable intestinal damage. Thus, in a CD 

relevant mouse model, T1L infection breaks oral tolerance to gluten and 

promotes TG2 activation, supporting the hypothesis that reovirus infection, 

despite being clinically silent, can initiate critical events that set the stage for 

development of CD. 

 

Evidence for a role of reovirus infection in celiac disease.  

 To directly investigate a role for reovirus in human CD, we compared anti-

reovirus antibody titers in control individuals to those with active CD and CD 

patients on a GFD. Interestingly, CD patients tended to have higher anti-reovirus 
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Figure II-14. Dendritic cell activation and gliadin uptake upon reovirus 
infection of HLA-DQ8tg mice. (A and B) HLA-DQ8tg mice (n = 4) were gavaged 
with Alexa Fluor-647-labelled gliadin (Glia-Alexa 32 Fluor-647) 18 h before 
euthanasia, and Glia-Alexa Fluor-647 uptake by DCs was analyzed by flow 
cytometry. (A) Percentages and (B) dot plots depicting Glia-Alexa Fluor-647 
uptake by the indicated DC subsets are shown. (C) HLA-DQ8tg mice were 
gavaged with OVA-Alexa Fluor-647 and inoculated with 108 PFU of T1L (n = 5) 
or PBS (sham, n= 5). At 18 hpi, mice were euthanized, and Glia-Alexa Fluor-647 
uptake by DCs in the MLN was analyzed by flow cytometry. Percentages of Glia-
Alexa Fluor-647 uptake by the indicated DC subsets are shown. (D to F) HLA-
DQ8tg mice were inoculated perorally with 108 PFU of T1L (n = 5) or PBS (sham, 
n = 5) and euthanized at 2 dpi. (D to F) The expression of IL-12p40 and CD86 in 
MLN DCs was evaluated by flow cytometry. (D) Representative dot plots of IL-
12p40-producing CD103+ CD11b- CD8α+ DCs are shown.(E) Representative 
histogram and MFI for CD86 expression and (F) percentage of MLN IL-12p40-
producing DCs are shown. (G) Delayed type hypersensitivity (DTH) experimental 
design. (A to F) Graphs depict two independent experiments. (A) *, P < 0.05; ***, 
P < 0.001; ****, P < 0.0001; one-way ANOVA/Tukey’s multiple comparison. (C 
and E to G) *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; unpaired t-
test.   
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Figure II-15. Role of reovirus infection in loss of oral tolerance to gluten 
and transglutaminase 2 activation. (A and B) HLA-DQ8tg mice were 
inoculated perorally with 108 PFU of T1L (n = 5 mice) or PBS (sham, n = 5 mice) 
for 2 d. (A) Levels of IRF-1 expression in the MLN were analyzed by means of 
RT-PCR. (B) The expression of IL-12p40 on gated CD11c+ CD103+ CD11b− 
CD8α+ MLN DCs was evaluated by means of flow cytometry. (C and D) HLA-
DQ8tg mice were inoculated perorally with 1010 PFU of T1L at the initiation of an 
oral tolerance/delayed type hypersensitivity protocol. Mice were fed orally with 
gliadin (Glia) for 2 d and then immunized subcutaneously with a CFA-Glia 
emulsion. (C) Levels of Glia-specific IgG2c antibodies in the serum were 
quantified at day 18 by means of ELISA. (D) On day 28, mice were challenged 
subcutaneously with Glia, and the degree of ear swelling was determined 24 h 
after challenge. Sham, n = 4 or 5 mice; Glia, n = 6 mice; and Glia + T1L, n = 5 
mice. (E) HLA-DQ8tg mice were inoculated perorally with 1010 PFU of T1L (n = 8 
mice) or PBS (sham, n = 4 mice). TG2−/− mice were inoculated perorally with 1010 
PFU of T1L (n = 2 mice) and used as a negative control. Mice were euthanized at 
18 hpi, and small intestines were collected and frozen in optimal cutting 
temperature compound. Representative images from stained frozen sections of 
the proximal small intestines are shown. Scale bars, 100 mm. Staining with 4′,6-
diamidino-2-phenylindole (DAPI) is shown in blue, TG2 protein is shown in green, 
and TG2 enzymatic activity as assessed by means of 5BP cross-linking is shown 
in red. TG2 enzymatic activity normalized to TG2 protein levels was quantified for 
each villus. The mean enzymatic activity in the proximal small intestine per 
mouse is shown. (A to E) Graph depicts two independent experiments. (A, B, and 
E), **, P < 0.01; ***, P < 0.001; unpaired t test, (C and D), **, P < 0.01; one-way 
ANOVA/Tukey’s multiple comparison.  
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 antibody titers (p = 0.06) (Figure II-16A) and were significantly overrepresented 

among patients with very high titers (Figure II-16B). Furthermore, individuals with 

high anti-reovirus titers (above the median of our samples) have significantly 

higher IRF-1 levels compared with individuals with low anti-reovirus titers (below 

the median of our samples) (Figure II-16C). However, there was no direct 

correlation between the anti-reovirus antibody titers and the level of IRF-1 

expression, indicating that there is not a linear relationship between antibody 

titers and IRF-1 levels. Together, these results suggest that the presence of anti-

reovirus antibody titers above a certain threshold indicates an antecedent virus-

host interaction that caused long-lasting changes in immune homeostasis 

associated with high IRF-1 expression. This hypothesis is in agreement with the 

concept that viruses may leave a permanent mark on the transcriptional program 

of the host (283). A link between rotavirus infection and development of CD was 

suggested in a longitudinal study in children (114). However, our study failed to 

show such an association (Figure II-16, D to F). Our results do not exclude a role 

for rotavirus in CD pathogenesis and could be explained by rotavirus-host 

immune interactions that differ from those observed with reovirus. Finally, high 

anti-reovirus antibody titers in CD patients did not correlate with either high anti-

rotavirus (Figure II-16G) or high anti-herpes simplex virus type 1 (HSV-1) 

antibody titers (Figure II-16H), indicating that CD patients displaying high anti-

reovirus antibody titers do not mount generally high antibody responses against 

viruses. Taken together these results suggest that reovirus infection can trigger 

the onset of CD in a subset of CD patients.  
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Figure II-16. Role of human reovirus infections in celiac disease 
pathogenesis. (A and D) Boxplots showing levels of reovirus antibody titers (A) 
and rotavirus antibody titers (D) in control (n = 73) and CD patients (n = 160). (B 
and E) Percentage of control patients (gray), active CD patients (blue), CD 
patients on a gluten-free diet (GFD) (orange), and active CD and GFD patients 
combined (red) that have reovirus (B) or rotavirus (E) antibody titers above an 
increasingly higher cutoff (left to right). Cutoffs were determined by defining the 
deciles of the distribution of reovirus (B) or rotavirus (E) antibody titers observed 
in the patient samples analyzed. GFD and CD (Active + GFD) patient groups are 
significantly overrepresented among individuals with reovirus titers above a 
PRNT60 = 156 (6th decile) and PRNT60 = 1597 (9th decile), respectively. (C and 
F) IRF-1 expression in small intestinal biopsies of GFD patients (n = 38) was 
analyzed by means of RT-PCR. Relative expression level of IRF-1 in GFD 
patients with low (left) and high (right) levels of reovirus (C) or rotavirus (F) 
antibody titers is shown. (C) Reovirus low and reovirus high were respectively 
defined as individuals with antibody titers below and above the median PRNT60 
= 47 (B, 5th decile). (F) Rotavirus low and rotavirus high were respectively 
defined as individuals with antibody titers below and above the median PRNT60 
= 53 (E, 5th decile). (G and H) Reovirus and rotavirus antibody titers in serum of 
patients were determined by means of plaque-reduction neutralization assay. 
Levels of HSV-1 antibody titers were determined by means of ELISA. 
Correlations between the levels of reovirus antibody titers and rotavirus antibody 
titers (G) or HSV-1 antibody titers (H) in GFD patients are shown. r, Pearson 
correlation. (A to F), *, P < 0.05; mann-whitney U test. 
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Discussion  
 
 
 This study provides support for the concept that viruses can disrupt 

intestinal immune homeostasis and initiate loss of oral tolerance and TH1 

immunity to dietary antigen. Furthermore, our findings suggest that an avirulent 

pathogen, such as reovirus, which is successfully cleared from the infected host, 

can nonetheless promote immunopathology. In support of this idea, clinically 

silent norovirus infections increase susceptibility to development of colitis (284). 

Importantly, our data also indicate that two reovirus strains can have substantially 

different immunopathological effects. Analysis of the transcriptional profiles 

induced in response to T1L and T3D-RV suggests that the capacity of a virus to 

trigger the loss of oral tolerance is associated with its capacity to disrupt immune 

homeostasis at sites where responses to oral antigens are initiated (Figure II-13).  

In addition to reoviruses, it is probable that other enteric viruses, detected 

by different immune sensors and involved in different signaling pathways, also 

trigger loss of tolerance to dietary antigen. Expanding the concept of virotypes 

(283), we propose that the common feature of viruses eliciting pro-inflammatory 

immune responses to dietary antigen is the capacity to alter immune 

homeostasis and in particular endow DCs with proinflammatory properties at 

sites where oral tolerance is induced (Figure II-13). Identification of other viruses 

and defining key aspects of virus-host interactions leading to the abrogation of 

oral tolerance will help to design vaccine strategies to prevent CD and possibly 

other autoimmune disorders in at-risk populations. Based on our findings, even 
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viruses that do not lead to overt clinical pathology could be candidates for such 

prophylactic intervention.  

CD is a complex disorder that likely requires several environmental 

perturbations to permanently disrupt tolerance to gluten. Indeed, epidemiological 

studies longitudinally monitoring genetically at-risk children report transient anti-

gluten immune responses before development of fully developed CD (285, 286) 

and suggest that anti-gluten antibodies precede anti-TG2 antibodies (287). 

Furthermore, induction of TH1 immunity to gluten, while required, is insufficient to 

cause villous atrophy, both in humans and mouse models of CD (288-290). This 

study indicates that while reovirus infections may trigger development of TH1 

immunity to gluten as well as activation of TG2, additional events likely will be 

required for induction of anti-TG2 antibodies and villous atrophy. Furthermore, 

non-viral triggers such as pathogenic members of the microbiota (291, 292), may 

have disease-causing properties similar to reovirus, and it is possible that the 

combination of different types of environmental factors will eventually lead to 

formation of a memory pool of TH1 anti-gluten T cells of sufficient magnitude to 

cause enduring CD with villous atrophy. 
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CHAPTER III 
 
 
 

VIRUS-INDUCED APOPTOSIS IN THE INTESTINE LIMITS ESTABLISHMENT 
OF ENTERIC INFECTION 

 
 
 

Introduction 
 
 

PO inoculation with reovirus strain T1L abrogates tolerance to food 

antigen, whereas inoculation with strain T3D-RV does not. Although T1L 

intestinal infection is well characterized, little is known about T3D-RV infection in 

the intestine or how these viruses differ in interactions with intestinal tissue to 

induce tolerance blockade. T1L and T3D differ in the capacity to induce 

apoptosis in cultured cells (224). In mice, this property is associated with viral 

injury in the heart and brain of newborn animals (117). However, the function of 

apoptosis during reovirus intestinal infection and whether it dictates pathogenesis 

in this tissue is not understood.  

Several viruses, including human norovirus (293), rotavirus (294), and 

simian immunodeficiency virus (295), cause enterocyte cell death in animal 

models of viral gastroenteritis. Following PO inoculation with T1L, apoptotic 

cellular debris from infected enterocytes is observed in phagocytic vesicles of 

DCs found in PPs (168). Additionally, newborn mice inoculated perorally with an 
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apoptosis-deficient strain of reovirus develop higher viral titers in the intestine 

compared with those produced by an apoptosis-proficient strain (296). Therefore, 

I hypothesized that T1L and T3D-RV vary in induction of apoptosis during 

intestinal infection and that this difference associates with viral pathogenesis in 

this tissue, including the capacity to replicate and break oral tolerance.  

To test this hypothesis, I quantified levels of apoptosis induced by T1L and 

T3D-RV during infection of cultured cells, intestinal organoids, and mice. I found 

that T3D-RV induces higher levels of apoptosis relative to T1L in all three assay 

systems. Additionally, T3D-RV intestinal infection was cleared more rapidly than 

T1L. To examine the relationship between apoptosis and infection in the 

intestine, I recovered a panel of T1L x T3D-RV reassortant viruses and found 

that reassortant viruses capable of producing high levels of apoptosis in the 

intestine also displayed diminished infection capacity, similar to T3D-RV. 

Expression of the T1L M1 and M2 genes in a T3D-RV background was sufficient 

to limit epithelial cell apoptosis and enhance viral infection to levels displayed by 

T1L. These results define an important antiviral role for apoptosis during enteric 

viral infection and illuminate strain-specific determinants that may be required for 

reovirus-induced tolerance blockade.  
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Results 
 
 
T1L-infected mice maintain higher titers in the intestine during acute infection. 

To determine whether T1L and T3D-RV produce comparable viral loads in 

intestinal tissue, I infected mice perorally with each virus strain and determined 

viral titers at 24, 48, and 72 hours post-inoculation (hpi). T1L produced higher 

titers in mice than did T3D-RV at 48 and 72 hpi (Figure III-1), a pathobiological 

phenotype I decided to study further. Therefore, although both virus strains 

produced comparable titers in the intestine, PP, MLN, and spleen 24 h after PO 

inoculation, T1L titers remain elevated throughout infection compared to T3D-RV.  

 

T3D-RV infection induces caspase-3 activation and villus shedding in the gut. 

To determine whether T1L and T3D-RV induce cell death and cause 

tissue damage in-vivo, WT mice were inoculated perorally and euthanized 1 and 

8 dpi. Sections of intestinal tissue were stained for activated caspase-3 to identify 

cells undergoing apoptosis. Overall, viral infection led to an increase in caspase-

3 activation relative to PBS-inoculated controls (Figure III-2A). Although activated 

caspase-3 levels increased during viral infection, no pathology was observed at 

either 1 or 8 dpi (Figure III-2A and Figure II-1F), and both strains were cleared by 

8 dpi (data not shown). At 1 dpi, substantial caspase-3-positive cellular debris 

was present in the gut lumen of infected mice. These results suggest that 

reovirus infection leads to cell death and sloughing of enterocytes, perhaps as an 

antiviral response.  
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Figure III-1. Viral titers in murine tissues following reovirus T1L and T3D-RV 
infection. WT mice were inoculated perorally with 1010 PFU of T1L or T3D-RV (n 
= 7-10 mice per virus strain). Titers of T1L and T3D-RV in different regions of the 
intestine and secondary lymphoid organs were determined at 24, 48, and 72 hpi 
by plaque assay. The small intestine was sectioned into thirds, approximately the 
duodenum, jejunum, and ileum. Viral titers are expressed as PFU per tissue. *, P 
< 0.05; **, P < 0.01; ****, P < 0.0001; one-way ANOVA/Sidak’s multiple 
comparison test.   
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FIG 1 Viral titers in murine tissues following reovirus T1L and T3D-RV infection. Mice were inoculated perorally 

with 1010 PFU of T1L or T3D-RV (n = 7-10 mice per virus strain). Titers of T1L and T3D-RV in different regions 

of the intestine and secondary lymphoid organs were determined at the times shown by plaque assay. The 

small intestine was sectioned into thirds, approximating the duodenum, jejunum, and ileum. Viral titers are 

expressed as PFU per tissue. Error bars denote the standard error of the mean. *, P < 0.05; **, P < 0.01; ****, 

P < 0.0001; one-way ANOVA and Sidak’s multiple comparison test.  
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Since T1L and T3D differ in the capacity to induce apoptosis, I 

hypothesized that T3D-RV induces more apoptosis in the gut, which could 

stimulate sloughing of infected enterocytes to mediate rapid viral clearance. To 

determine whether T1L and T3D-RV differ in the capacity to trigger apoptosis, 

cleaved caspase-3-positive epithelial cells were enumerated and normalized to 

the total number of villi examined. T3D-RV-infected mice had significantly more 

cleaved caspase-3-positive epithelial cells per villus than did those infected with 

T1L (Figure III-2B). To test whether T1L and T3D-RV differ in the shedding of 

apoptotic enterocytes into the intestinal lumen, I outlined the luminal region using 

Ariol Review software, demarcated the cleaved caspase-3-positive area, and 

quantified the percentage of positive staining in the lumen relative to the positive 

staining in the entire tissue section. Compared with mice infected with T1L, 

cleaved caspase-3 staining was increased in the lumen of mice infected with 

T3D-RV (Figure III-2C). The distribution of detectable reovirus antigen and 

apoptotic cells did not overlap, suggesting that viral infection is not required for 

activation of caspase-3 in a given cell (Figure III-2A). Therefore, T1L and T3D-

RV infect the intestine comparably at 24 hpi, but T3D-RV promotes rapid 

enterocyte cell death and sloughing of apoptotic cells into the intestinal lumen.  

 

T3D-RV replicates comparably to T1L in cultured cells but stimulates enhanced 

levels of apoptosis. 

 Viral reassortants occur naturally and are useful tools for identifying genes 

required for strain-specific polymorphisms. Before testing T1L x T3D-RV 
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Figure III-2. Cleaved caspase-3 in the intestine of mice following infection 
with reovirus T1L or T3D-RV. WT mice were inoculated perorally with 108 PFU 
of T1L or T3D-RV or PBS (mock). One day after inoculation, intestines were 
resected. The proximal half was prepared for viral titer determination by plaque 
assay, and the distal half was flushed, Swiss-rolled, and processed for histology. 
(A) Sections were stained with H&E, reovirus polyclonal antiserum, or antibody 
against cleaved caspase-3. Representative sections of jejunum are shown (scale 
bar, 100 µM). (B) Cleaved caspase-3-positive-cells were enumerated manually 
and normalized per villus. Each symbol represents an individual mouse (n = 5-18 
mice per group). (C) Cleaved caspase-3 staining in the lumen was quantified by 
outlining the luminal region using the Digital Histology Shared Resource tool (n = 
3 mice per virus). The luminal staining (%) refers to the ([positive cleaved 
caspase-3 staining area in the lumen divided by positive cleaved caspase-3 
staining area in the whole tissue] multiplied by 100). (B) Error bars denote the 
standard error of the mean. (C) Error bars denote standard deviation. *, P < 0.05; 
***, P < 0.001; (B) one-way ANOVA/Tukey’s multiple comparison test and (C) 
Mann-Whitney test. 
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FIG 2 Cleaved caspase-3 in the intestine of mice following infection with reovirus T1L or T3D-RV. Mice were 
inoculated perorally with 108 PFU of T1L or T3D-RV or PBS (mock). One day after inoculation, intestines were 
resected. The distal half was flushed, Swiss-rolled, and processed for histology. (A) Sections were stained with 
H&E, reovirus polyclonal antiserum, or antibody against cleaved caspase-3. Representative sections of 
jejunum are shown (scale bar, 100 µM). (B) Cleaved caspase-3-positive cells were enumerated manually and 
normalized per villus. Each symbol represents an individual mouse (n = 5-18 mice per group). (C) Cleaved 
caspase-3 staining in the lumen was quantified by outlining the luminal region using the Digital Histology 
Shared Resource tool (n = 3 mice per virus). The luminal staining (%) refers to the ([positive cleaved caspase-
3 staining area in the lumen divided by positive cleaved caspase-3 staining area in the whole tissue] multiplied 
by 100). (B) Error bars denote the standard error of the mean. (C) Error bars denote standard deviation. *, P < 
0.05; ***, P < 0.001; (B) one-way ANOVA and Tukey’s multiple comparison test and (C) Mann-Whitney test. 
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reassortants in mice, I assessed whether differences in apoptosis displayed by 

T1L and T3D-RV could be studied using cultured cells. By first testing the 

reassortants in cultured cells, I could define a subset of viral genes required for 

cellular apoptosis and select viruses that express these genes to test using mice, 

thus limiting the number of mice studied. For these experiments, I decided to use 

L cells, a mouse fibroblast cell line highly susceptible to reovirus infection. To 

define the replication efficiency of T1L and T3D-RV, L cells were adsorbed with 

each virus strain, incubated for 0, 24, or 48 hpi, and lysed by freeze-thaw. Viral 

titers in cell lysates were determined by plaque assay (Figure III-3A). T1L and 

T3D-RV replicate comparably in these cells, producing nearly identical yields at 

all time points. To determine whether T1L and T3D-RV differ in the capacity to 

induce apoptosis in cultured cells, L cells were adsorbed with each strain, and 

apoptosis was quantified at 38 hpi using an acridine orange (AO)/ethidium 

bromide stain assay. T3D-RV infection led to a significantly higher percentage of 

apoptotic cells than did T1L. To complement the AO staining assay, L cells were 

adsorbed with T1L and T3D-RV, and caspase-3/7 activity in cell lysates was 

quantified at 24 hpi using a fluorogenic substrate (Figure III-3C). T3D-RV-

infected samples expressed higher levels of activated caspase 3/7 relative to 

T1L- or mock-infected cells. Thus, T1L and T3D-RV replicate comparably in 

cultured cells, but T3D-RV induces the morphological and biochemical hallmarks 

of apoptosis more efficiently. 
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Figure III-3. Viral titers and apoptosis in L cells following reovirus T1L and 
T3D-RV infection. (A) L cells were adsorbed with T1L or T3D-RV at an MOI of 1 
PFU/cell, and viral titers were determined at intervals shown by plaque assay. 
Viral titers are expressed as PFU/mL of cell homogenate. (B and C) L cells were 
adsorbed with T1L or T3D-RV at an MOI of 100 PFU/cell. (B) Cells were 
evaluated by AO assay at 38 hpi. The results are expressed as percentage of 
apoptotic cells per field of view. (C) Cell lysates were subjected to a Caspase Glo 
3/7 assay at 24 hpi. Caspase-3 activity is expressed in relative luminescence 
units. Data represent three independent experiments performed in triplicate. ****; 
P < 0.0001; one-way ANOVA/Tukey’s multiple comparison test. 
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FIG 4 Viral titers and apoptosis in L cells following reovirus T1L and T3D-RV infection. (A) L cells were 

adsorbed with T1L or T3D-RV at an MOI of 1 PFU/cell, and viral titers were determined at the intervals shown 

by plaque assay. Viral titers are expressed as PFU/mL of cell homogenate. (B, C) L cells were adsorbed with 

T1L or T3D-RV at an MOI of 100 PFU/cell. (B) Cells were evaluated by AO assay at 38 hpi. The results are 

expressed as percentage of apoptotic cells per field of view. (C) Cell lysates were subjected to a Caspase Glo 

3/7 assay at 24 hpi. Caspase-3 activity is expressed in relative luminescence units. Data represent three 

independent experiments performed in triplicate. Error bars denote the standard error of the mean. ****; P < 

0.0001; one-way ANOVA and Tukey’s multiple comparison test.  
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T3D-RV provokes apoptosis and cell shedding in infected enteroids. 

 Recent development of techniques to cultivate intestinal organoids or 

“enteroids” in culture has advanced opportunities to study virus-host interactions 

at intestinal sites (297-299). To determine whether reovirus infects tissue-derived 

organoids from mice and promotes apoptotic cell death in these cultures, I 

collaborated with Sarah Short from the laboratory of Dr. Chris Williams at 

Vanderbilt University. Sarah dissected intestines from adult mice and isolated 

intestinal crypts to be grown in 3-D spheroids in Matrigel. These cultures contain 

crypt- and villus-like structures. Based on previous studies, I predicted that IECs 

are exposed to reovirus in the mouse intestine from the apical or luminal side of 

the epithelium (149, 150). To examine the susceptibility of polarized murine 

enteroids to reovirus infection and subsequent virus-induced apoptosis, crypts 

were seeded onto transwell plates, adsorbed with T1L or T3D-RV, and scored for 

reovirus infection and apoptosis. At 24 hpi, infectivity was comparable between 

the strains, as visualized by immunofluorescence using reovirus polyclonal 

antiserum (Figure III-4, A and B). Murine enteroids infected with T3D-RV 

displayed a greater percentage of apoptotic cells, as judged by staining with an 

antibody specific for cleaved caspase-3 (Figure III-4, D and E). At 24 hpi, the 

apical medium was collected, and cells in the medium were enumerated using an 

automated cell counter. T3D-RV-infected enteroids had a larger number of cells 

in the apical medium, as an indicator of cell sloughing (Figure III-4F). T1L titers in 

enteroids were significantly higher than those produced by T3D-RV (Figure III-

4C), which correlates with increased apoptosis and decreased cell number in 
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FIG 3 Viral infectivity and apoptosis in murine-derived enteroids following reovirus T1L and T3D-RV infection. 
Intestinal crypts were harvested from mice and established as enteroids in Matrigel. The enteroids were 

dissociated, seeded onto transwell plates, and incubated at 37°C for 4 d. Enteroids were adsorbed with T1L or 

T3D-RV at an MOI of 100 PFU/cell or PBS as a mock control. At 24 hpi, cells were fixed and stained with 

antibodies specific for β-catenin and reovirus (A) or actin and cleaved caspase-3 (D). Nuclei were labeled with 

ProLong Gold antifade mountant containing DAPI (scale bar, 50 µM). (B) The percentage of infected cells was 

determined by enumeration of reovirus-positive cells from immunofluorescence images. (C) Viral titers were 

determined at the intervals shown by plaque assay and expressed as PFU/mL of cell homogenate. (E) The 

percentage of apoptotic cells was determined using the Nikon Elements Basic Research analysis software and 

represents the number of cleaved caspase-3-positive cells per total number of cells in the selected field. (F) 

The number of cells released into the apical medium was quantified using an automated cell counter. Data 

represent two to four independent experiments performed in triplicate. Error bars denote the standard error of 

the mean. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; (C) Mann-Whitney test and (E and F) one-

way ANOVA and Tukey’s multiple comparison test.  
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Figure III-4. Viral infectivity and apoptosis in murine-derived enteroids 
following reovirus T1L and T3D-RV infection. Intestinal crypts were harvested 
from WT mice and established as enteroids in Matrigel. The enteroids were 
dissociated, seeded onto transwell plates, and incubated at 37° for 4 d. Enteroids 
were adsorbed with T1L or T3D-RV at an MOI of 100 PFU/cell or PBS as a mock 
control. At 24 hpi, cells were fixed and stained with antibodies specific for β-
catenin and reovirus (A) or actin and cleaved caspase-3 (D). Nuclei were labeled 
with ProLong Gold antifade mountant containing DAPI (scale bar, 50 µM). (B) 
The percentage of infected cells was determined by enumeration of reovirus-
positive cells from immunofluorescence images. (C) Viral titers were determined 
at the intervals shown by plaque assay and expressed as PFU/mL of cell 
homogenate. (E) The percentage of apoptotic cells was determined using the 
Nikon Elements Basic Research analysis software and represents the number of 
cleaved caspase-3-positive cells per total number of cells in the selected field. (F) 
The number of cells released into the apical medium was quantified using an 
automated cell counter. Data represent two to four independent experiments 
performed in triplicate. Error bars denote the standard error of the mean. *, P < 
0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; (C) Mann-Whitney test and (E 
and F) one-way ANOVA/Tukey’s multiple comparison test. 
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T3D-RV-infected cultures (data not shown). Therefore, T1L and T3D-RV infect 

enteroids comparably but differ in the capacity to promote apoptosis and cell 

sloughing. 

 

Viral gene segments M1 and M2 dictate reovirus apoptosis induction in cultured 

cells.  

To identify viral genes that segregate with differences in apoptosis 

efficiency displayed by T1L and T3D-RV, eight T1L x T3D-RV reovirus 

reassortants (Figure III-5A) were recovered using reverse genetics (143). All 

reassortants contain the T1L S1 and L2 gene segments, which allows these 

strains to infect the intestine (154). To quantify viral replication efficiency of the 

newly engineered reassortants, L cells were adsorbed with each virus strain, 

incubated for 24 h, and lysed by freeze-thaw. Viral titers in cell lysates were 

determined by plaque assay. All reassortant viruses replicated comparably 

(Figure III-5B). To identify viral gene segments that segregate with apoptosis, L 

cells were adsorbed with T1L, T3D-RV, or one of eight T1L x T3D-RV 

reassortants and scored for apoptosis following AO staining. Reassortant viruses 

containing a T3D M2 gene induced more apoptosis by AO assay than those 

containing a T1L M2 gene (Figure III-5, C and D). Additionally, the T3D M1 gene 

appeared to enhance apoptosis efficiency, albeit not as clearly as the T3D M2 

gene (Figure III-5D). Therefore, the T3D M2 gene segment is required for 

increased levels of apoptosis in cultured cells. However, the M1 gene also may 

influence apoptosis efficiency in this context.  
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Figure III-5. Viral replication and apoptosis in L cells following infection 
with reovirus reassortant viruses. (A) T1L x T3D-RV reassortant viruses used 
to identify genes that segregate with strain-specific differences in the capacity of 
reovirus to induce apoptosis in the intestine. Gene segments labeled “1” in red 
represent those derived from T1L; gene segments labeled “3” in blue represent 
those derived from T3D. (B) L cells were adsorbed with T1L, T3D-RV, or one of 
eight T1L x T3D-RV reassortants at an MOI of 1 PFU/cell, and viral titers were 
determined at 48 hpi by plaque assay. Viral titers are expressed as PFU/mL of 
cell homogenate. (C) L cells were adsorbed with T1L, T3D-RV, or one of eight 
T1L x T3D-RV reassortants at an MOI of 100 PFU/cell. PBS-inoculated samples 
(mock) were used as controls. Cells were evaluated by AO assay at 38 hpi. The 
results are expressed as percentage of apoptotic cells per field of view. (D) Rank 
sum analysis of reassortants used to identify genes that segregate with the 
capacity to induce apoptosis. The rank number of each reassortant and the 
significance levels of each gene segment are shown. Data represent two or three 
experiments performed in triplicate. Error bars denote the standard error of the 
mean. ns = non-significant; #, P = 0.06; **, P < 0.01; ****, P < 0.0001; (C) one-
way ANOVA/Dunnett’s multiple comparison test (as compared with T3D-RV) and 
(D) Wilcoxon rank sum distribution test. 
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FIG 5 Viral replication and apoptosis in L cells following infection with reovirus reassortant viruses. (A) T1L x 

T3D-RV reassortant viruses used to identify genes that segregate with strain-specific differences in the 

capacity of reovirus to induce apoptosis in the intestine. Gene segments labeled “1” in red represent those 

derived from T1L; gene segments labeled “3” in blue represent those derived from T3D. (B) L cells were 

adsorbed with T1L, T3D-RV, or one of eight T1L x T3D-RV reassortants at an MOI of 1 PFU/cell, and viral 

titers were determined at 24 hpi by plaque assay. Viral titers are expressed as PFU/mL of cell homogenate. (C) 

L cells were adsorbed with T1L, T3D-RV, or one of eight T1L x T3D-RV reassortants at an MOI of 100 

PFU/cell. PBS-inoculated samples (mock) were used as controls. Cells were evaluated by AO assay at 38 hpi. 

The results are expressed as percentage of apoptotic cells per field of view. (D) Rank sum analysis of 

reassortants used to identify genes that segregate with the capacity to induce apoptosis. The rank number of 

each reassortant and the significance levels of each gene segment are shown. Data represent two or three 

experiments performed in triplicate. Error bars denote the standard error of the mean. ns = non-significant; #, P 
= 0.06; **, P < 0.01; ****, P < 0.0001; (C) one-way ANOVA and Dunnett’s multiple comparison test (as 

compared with T3D-RV) and (D) Wilcoxon rank sum distribution test. 
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Viral gene segments M1 and M2 dictate reovirus pathogenesis by altering 

apoptosis induction in the gut.  

 To examine the requirement of the M1 and M2 genes for apoptosis 

induction in the murine intestine, I engineered six T1L x T3D-RV M gene 

reciprocal reassortants. The reciprocal reassortants maintain the parental strain 

background but were constructed to exchange the M1 and M2 genes individually 

or together (Figure III-6A). To examine replication capacity and subsequent virus-

induced apoptosis of these reassortant viruses, L cells were adsorbed with each 

virus strain, incubated for various intervals, and scored for reovirus infection and 

apoptosis. The M gene reassortant viruses replicated comparably (Figure III-6B). 

At 38 hpi, the percentage of apoptotic cells was increased 3-fold following T3D-

RV infection compared with T1L (Figure III-6C). The presence of a T3D M2 gene 

on a T1L background was sufficient to reconcile this difference, as the 

percentage of apoptotic cells was increased 2-3-fold following infection with 

these reassortant viruses compared to the parental strain T1L (Figure III-6C). 

Additionally, reciprocal reassortant viruses containing the T1L M2 gene on a 

T3D-RV background displayed a significant reduction in apoptosis efficiency 

relative to parental strain T3D-RV (Figure III-6C). Surprisingly, the reassortant 

virus that contains the T3D M1 gene in a T1L background induced a two-fold 

increase in the percentage of apoptotic cells compared with parental strain T1L 

(Figure III-6C). However, the reciprocal virus (T1L M1 gene in a T3D-RV 

background) produced a high percentage of apoptotic cells, likely due to the T3D 

M2 gene that appears to override any effects of the T1L M1 gene (Figure III-6C). 
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FIG 6 Viral replication and apoptosis in cultured cells and murine intestine following infection with M gene 

reassortant viruses. (A) T1L x T3D-RV M gene reassortant viruses used to define genes that segregate with 

the apoptosis-inducing capacity of reovirus. Gene segments labeled “1” in red represent those derived from 

T1L; gene segments labeled “3” in blue represent those derived from T3D. (B) L cells were adsorbed with T1L, 

T3D-RV, or one of six T1L x T3D-RV M gene reassortants at an MOI of 1 PFU/cell, and viral titers were 

determined at 24 hpi by plaque assay. Viral titers are expressed as PFU/mL of cell homogenate. (C) L cells 

were adsorbed with T1L, T3D-RV, or one of six T1L x T3D-RV M gene reassortants at an MOI of 100 PFU/cell. 

Cells were evaluated by AO assay at 38 hpi. The results are expressed as fold change in apoptosis compared 

with T1L. Data are presented from two experiments performed in triplicate. (D and E) Mice were inoculated 

perorally with 108 PFU of T1L, T3D-RV, or one of six T1L x T3D-RV M gene reassortants. The proximal half of 

the intestine was processed for viral titer, and the distal half was flushed, Swiss-rolled, and processed for 

histology. (D) Titers of reovirus in the intestine were determined at 72 hpi by plaque assay (n ≥ 10 mice per 

virus). (E) At 24 hpi, histological sections were stained with an antibody against cleaved caspase-3. Cleaved 

caspase-3-positive cells were enumerated manually and normalized per villus (n ≥ 8 mice per virus). Error bars 

denote the standard error of the mean. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; (C-E) one-way 

ANOVA and Dunnett’s multiple comparison test (as compared with the parental strain). 
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Figure III-6. Viral replication and apoptosis in cultured cells and murine 
intestine following infection with M gene reassortant viruses.  
Viral replication and apoptosis in cultured cells and murine intestine following 
infection with M gene reassortant viruses. (A) T1L x T3D-RV M gene reassortant 
viruses used to define genes that segregate with the apoptosis-inducing capacity 
of reovirus. Gene segments labeled “1” in red represent those derived from T1L; 
gene segments labeled “3” in blue represent those derived from T3D. (B) L cells 
were adsorbed with T1L, T3D-RV, or one of six T1L x T3D-RV M gene 
reassortants at an MOI of 1 PFU/cell, and viral titers were determined at 24 hpi 
by plaque assay. Viral titers are expressed as PFU/mL of cell homogenate. (C) L 
cells were adsorbed with T1L, T3D-RV, or one of six T1L x T3D-RV M gene 
reassortants at an MOI of 100 PFU/cell. Cells were evaluated by AO assay at 38 
hpi. The results are expressed as fold change in apoptosis compared with T1L. 
Data are presented from two experiments performed in triplicate. (D and E) Mice 
were inoculated perorally with 108 PFU of T1L, T3D-RV, or one of six T1L x T3D-
RV M gene reassortants. The proximal half of the intestine was processed for 
viral titer, and the distal half was flushed, Swiss-rolled, and processed for 
histology. (D) Titers of reovirus in the intestine were determined at 72 hpi by 
plaque assay (n ≥ 10 mice per virus). (E) At 24 hpi, histological sections were 
stained with an antibody against cleaved caspase-3. Cleaved caspase-3-positive 
cells were enumerated manually and normalized per villus (n ≥ 8 mice per virus). 
Error bars denote the standard error of the mean. *, P < 0.05; **, P < 0.01; ***, P 
< 0.001; ****, P < 0.0001; (C-E) one-way ANOVA and Dunnett’s multiple 
comparison test (as compared with the parental strain). 
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Furthermore, the reassortant virus that contains the T3D M1 and M2 genes in the 

T1L background slightly enhanced apoptosis levels compared with those 

expressing the T3D M1 or M2 genes alone (Figure III-6C). Taken together, a T3D 

M2 gene in a T1L background is necessary and sufficient to stimulate apoptosis 

in cultured cells and, in conjunction with the T3D M1 gene, promotes maximum 

levels of apoptosis. 

Since T3D-RV activates apoptosis and subsequent villous sloughing and 

is cleared from the intestine more efficiently than T1L, I hypothesized that genes 

associated with enhanced apoptosis of T3D-RV also are associated with 

diminished infection capacity in the gut. To test this hypothesis, mice were 

inoculated perorally with T1L, T3D-RV, or each of the six T1L x T3D-RV M gene 

reassortant viruses and euthanized 24 hpi for histological analysis and 72 hpi for 

determination of viral titer. Tissue sections were stained for activated caspase-3 

to identify cells undergoing apoptosis within the intestine. At 72 hpi, viral titers in 

the intestine of mice infected with T1L were approximately 30-fold greater than 

those in animals infected with T3D-RV. Reassortant viruses that express T1L 

M1, M2, or M1 and M2 genes in a T3D-RV background replicate comparably to 

T1L, indicating that these gene segments are sufficient to increase T3D-RV titers 

in the intestine (Figure III-6D). Furthermore, reduced numbers of cleaved 

caspase-3-positive enterocytes were observed in mice infected with these 

viruses (Figure III-6D). These findings suggest that enterocyte apoptosis serves 

as an antiviral response to inhibit viral infection in the intestine. Of note, the T3D 

M1 and M2 genes are not sufficient to limit T1L infection to levels comparable to 
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T3D-RV or enhance apoptosis efficiency in the intestine of infected mice (Figure 

III-6, D and E), suggesting that additional viral or host factors contribute to T1L 

replication capacity in the intestine. 

 
 

Discussion 
 
 

Reovirus T1L and T3D-RV differ in the capacity to illicit immune responses 

to orally fed antigen. However, it is not understood how these viruses differ 

during intestinal infection to mediate this response. In this study, I evaluated the 

function of apoptosis in T1L and T3D-RV intestinal infection and found that 

compared to T3D-RV, T1L induces less caspase-3 activation, less sloughing of 

intestinal villi, and prolonged infection, providing a plausible mechanism by which 

T1L abrogates oral tolerance. T1L x T3D-RV reassortant viruses that stimulate 

greater levels of apoptosis in the intestine also display diminished replication 

capacity in this tissue. Therefore, the capacity to promote apoptosis in the 

intestine inversely correlates with replication, suggesting that enterocyte 

apoptosis and sloughing mediate an antiviral response to protect the host.  

The finding that T1L-infected mice produce higher viral loads in the 

intestine could be explained by other pathobiological factors such as replication 

capacity, tissue tropism, and immune evasion, among others. However, T1L and 

T3D-RV do not differ in the capacity to replicate in cultured cells (Figure II-1B and 

III-3A), and there is no evidence that these strains differ in cell tropism in the 

intestine (Figure II-1D). Furthermore, T1L-infected mice express higher levels of 

type 1 IFNs and ISGs compared with T3D-RV-infected mice at 48 hpi (Figure II-
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8A and II-9A). These findings suggest that T1L is recognized by the innate 

antiviral immune response and that subversion of the IFN response is not 

responsible for the differences in viral titers. 

Enterocytes have the highest turnover rate of any cell population in the 

body (242, 248), most likely due to environmental insults and the necessity to 

maintain a healthy gut barrier. Despite the high rate of turnover, shedding events 

are rarely observed in healthy individuals and seldom visualized by biochemical 

markers such as cleaved caspase-3 (248, 255). However, a variety of stimuli and 

disease states can promote apoptosis during pathological cell shedding. For 

example, poly(I:C) (253), viral dsRNA (263), and some enteric viruses (293-295) 

can stimulate apoptotic cell death of IECs, usually in combination with 

gastrointestinal pathology. Infection with reovirus T3D-RV led to extensive 

caspase-3 activation in IECs and sloughing of caspase-3-positive cells into the 

intestinal lumen. Interestingly, apoptosis was not associated with shortening of 

intestinal villi or other pathological markers, and barrier function was maintained. 

Most activated caspase-3 was found at the villus tips, often with multiple cells 

undergoing apoptosis in a localized region of the villus. During infection with T1L 

and T3D-RV, cleaved caspase-3 staining was patchy but could be observed 

throughout the distal half of the small intestine. Virus-induced apoptosis was 

observed within the first 24 h following infection and declined at later time points. 

The distribution of reovirus- and caspase-3-postive antigen staining did not 

overlap, possibly because apoptosis is triggered without reovirus replication or 

the detection of reovirus antigen-positive cells was limited. Future studies will 
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determine whether empty viral particles or UV-inactivated virus can promote 

similar caspase-3 activation in the intestine without viral replication or genomic 

content. If so, follow-up studies would define viral structural proteins required to 

trigger apoptosis in the intestine and identify any strain-specific polymorphisms 

that exist.  

Enteroids are useful for studying virus-host interactions ex vivo. There are 

several methods for enteroid isolation, which differ in the species types, starting 

material, expandability, and developmental stage. For these studies, I used 

murine tissue-derived organoids due to phenotypic similarities to the mouse 

intestine. I found that enteroids are susceptible to reovirus infection and observed 

strain-specific differences in apoptosis efficiency. The research described here 

will provide the basis for studies examining the capacity of other enteric viruses 

to promote apoptosis. Furthermore, enteroids harvested from mice deficient in 

antiviral response pathways may lead to discovery of host factors required for 

virus-induced apoptosis. 

Differences in apoptosis induction segregate with the viral M2 gene (300), 

which differs between T1L and T3D-RV. It is not surprising that in our study the 

M2 gene segment segregated with differences in apoptosis efficiency following 

infection of cultured cells, as this association has been described previously 

(224, 225, 300). More interesting was the observation that the T1L M2 gene on a 

T3D-RV background was sufficient to increase viral titers in the intestine to levels 

comparable to T1L. The T1L M2 gene was identified in a previous study as a 

virulence factor required for replication in the intestine of neonatal mice (301). A 
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subsequent study suggested that only the S1 and L2 genes are required for 

intestinal replication (152). My studies resolve these discrepancies by using 

reassortant viruses with common S1 and L2 genes of T1L. Following PO 

inoculation with these strains, the M2 gene emerges as a determinant of reovirus 

intestinal infection. Furthermore, viruses with the T1L M2 gene promoted less 

apoptosis in the intestine, providing additional evidence that epithelial cell death 

promotes an antiviral state and suggesting a mechanism by which the M2 gene 

dictates intestinal pathogenesis.  

The M2 gene encodes outer-capsid protein µ1, which functions to 

penetrate endosomal membranes during viral entry, a property required for 

apoptosis induction (238). Following infection of IECs, it is possible that the T3D 

M2-encoded µ1 protein mediates penetration of endosomal membranes 

exposing viral particles and dsRNA to pattern recognition receptors. Activation of 

these receptors stimulates proapoptotic signaling by NF-κB and IRF-3 and 

upregulation of IFNs and other cytokines, which may evoke cell death. Such a 

scenario provides a mechanism by which T3D-RV could induce enterocyte 

apoptosis and extrusion from the villus to protect adjacent cells from subsequent 

infection. 

The Φ domain of µ1 is necessary and sufficient to promote apoptosis in 

cell culture (234, 239), and polymorphisms in this domain influence the apoptotic 

efficiency of T3D (234). A virus containing an M2 gene with the apoptosis-

attenuating polymorphisms in a T3D-RV background would likely lose apoptotic 

capacity in cultured cells, enteroids, and mice. Furthermore, other evidence 
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suggests that reovirus strains that have diminished apoptotic capacity replicate to 

higher titers in the intestine (296). 

Although the M2 gene is the primary driver of differences in apoptosis 

efficiency between T1L and T3D-RV, my findings suggest that the M1 gene 

exacerbates cell death when combined with the M2 gene. The reovirus M1 gene-

encoded µ2 protein is a strain-specific IFN antagonist that dictates pathogenesis 

in neonatal mice (276). A single amino acid polymorphism in µ2 modulates 

cytopathic effects by regulating the host IFN response (276). However, the M1 

gene has not been identified in studies of viral genes required for intestinal 

infection. The absence of such linkage might be attributable to the use of 

newborn mice, which may lack mature IFN signaling. The T1L µ2-encoded IFN 

antagonist may subvert host antiviral responses in the gut including the induction 

of apoptosis, allowing this strain to replicate more efficiently in this tissue. 

Compared with T3D-RV, T1L infection induces greater levels of type 1 IFNs and 

ISGs after 24 hpi (Figure II-8A and II-9A), which could be a byproduct of 

prolonged T1L infection. Studies including viruses with the single amino acid 

polymorphism reciprocally exchanged in parental backgrounds would determine 

whether IFN antagonism associates with diminished apoptosis and enhanced 

replication of T1L.  

PO inoculation with reovirus strain T1L stimulates inflammatory responses 

to fed antigen, whereas inoculation with T3D-RV does not. In this study, I found 

that T3D-RV titers are diminished due to a capacity to promote apoptosis in 

IECs. I predict that prolonged viral infection by T1L during the introduction of new 
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food proteins stimulates inflammatory signals such as type 1 IFNs and IRF-1 to 

promote food-antigen-specific TH1 cells and inhibit Tregs (Figure III-7). From 

studies of reassortant viruses, I found that the T1L M1 and M2 genes on a T3D-

RV background are sufficient to increase viral titers in the intestine to levels 

comparable to T1L. Using these reassortant viruses, we can now determine 

whether decreased intestinal apoptosis and prolonged viral replication are 

associated with tolerance blockade. Thus, this work provides a possible 

mechanism by which certain enteric, nonpathogenic viruses establish prolonged 

replication by subverting the host cell-death response to stimulate the 

inflammatory signals required to break immunological tolerance to food antigens. 
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Figure III-7. Model of reovirus strain-specific abrogation of oral tolerance. 
Following PO inoculation, T1L and T3D-RV infect the intestine. T3D-RV induces 
caspase-3 activation and IEC sloughing subsequently leading to rapid viral 
clearance. T1L, however, subverts these antiviral responses to establish 
prolonged infection, triggering type 1 IFN signaling and IRF-1 expression in LP 
DCs. In the context of this inflammatory cytokine milleu, DCs phagocytose new 
food antigen (Gluten or OVA) and traffic to the MLN to activate inflammatory T 
cells. Type 1 IFNs upregulated during T1L infection also inhibit Tregs leading to 
subsequent development of TH1 immunity to dietary antigen.  



 

 116 

CHAPTER IV 
 
 
 

SUMMARY AND FUTURE DIRECTIONS 
 
 
 

Thesis Summary 
 
 
 CD is an immune-mediated intestinal disorder that occurs in genetically 

predisposed individuals exposed to dietary gluten. Although 30-45% of the U.S. 

population carries the risk alleles, only 1% of the population develops the disease 

(1). This finding suggests that other genetic and environmental factors are 

required for CD development. Viral infections are associated with the induction of 

many autoimmune and inflammatory diseases. Accordingly, several viruses have 

been implicated in CD onset, including Reoviridae viruses (114). However, not all 

viruses confer disease susceptibility, and little is known about specific viral 

characteristics that dictate immunopathologic outcomes.  

Mammalian reovirus infects the intestine following oral inoculation. In 

humans, infections are common during early childhood (116) when maternal 

immunity is waning and solid foods, including wheat cereals, are introduced into 

the infant diet. Reovirus infections of the intestine are often nonpathogenic, and 

therefore may go undetected. To study the effects of reovirus infection on oral 

tolerance our lab established a collaboration with the laboratory of Dr. Bana Jabri 

at the University of Chicago.  

Feeding mice OVA as a model antigen results in systemic tolerance to 

OVA following subcutaneous (s.c.) challenge, which is marked by induction of 



 

 117 

regulatory T cells and absence of OVA-specific inflammatory B and T cells (70, 

71). Early studies first performed by Drs. Jennifer Stencel-Baerenwald and 

Romain Bouziat illustrated that PO inoculation with reovirus strain T1L abrogated 

oral tolerance to OVA, as evidenced by the promotion of OVA-specific B cells 

and IFN-γ-producing T cells, whereas inoculation with strain T3D-RV did not. The 

goals of my studies presented in Chapters II and III were to define the 

mechanisms of reovirus-induced tolerance blockade and determine the reovirus 

strain-specific differences that mediate this phenomenon.  

First, I tested whether T1L and T3D-RV differ in the capacity to replicate in 

cultured cells and infect the intestine of mice. T1L and T3D-RV produced 

identical viral yields in two different cell lines (Figure II-1B and III-3A). Following 

PO inoculation of mice, both virus strains produced similar titers in the intestine, 

PP, MLN, and spleen 24 h after PO inoculation (Figure II-1C). T1L and T3D-RV 

were cleared by 6 dpi (Figure II-1E), and no pathology was observed in infected 

mice (Figure II-1F). The antiviral CD4+ T cell response was comparable between 

T1L and T3D-RV (Figure II-1H), although neutralizing antibody titers were slightly 

higher in T1L-infected animals (Figure II-1G). These results confirmed that T1L 

and T3D-RV establish intestinal infection without overt signs of intestinal 

pathology.  

PO inoculation with T1L abrogated tolerance to OVA in experiments in 

which mice were fed OVA and immunized subcutaneously with OVA and 

complete Freund’s adjuvant (CFA). However, the experiments were challenging, 

and the results varied within a given experiment. Therefore, the Jabri laboratory 
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developed a T cell conversion assay to test whether T1L alters the effector state 

of food-antigen-specific T cells and to determine the mechanism by which this 

occurs. We found that T1L significantly inhibited the conversion of OVA-specific 

OT-II CD4+ T cells into pTregs (Figure II-2C and D, Figure II-6 B) and instead 

promoted their differentiation into T-bet+ TH1 cells. Therefore, infection with T1L 

directly inhibited the establishment of tolerance to fed antigen.  

To define the immune cell types required for the development of 

inflammation to dietary antigen, the Jabri laboratory profiled the DC populations 

required for the development of oral tolerance. They found that CD103+ CD11b- 

DCs from the LP exhibited the highest levels of OVA uptake and upregulated 

costimulatory molecules during infection with T1L (Figure II-5A), indicating that 

this normally tolerogenic DC subset (268, 269) is likely activating OVA-specific 

TH1 cells. 

Relative to infection with T3D-RV, T1L infection was associated with 

increased levels of inflammatory cytokines including type 1 IFNs (Figure II-8A 

and II-9A), which also are upregulated in the intestinal mucosa of CD patients 

(55, 96, 97). Additionally, IFN treatment disrupts oral tolerance in mouse models 

(99, 100). To determine whether type I IFNs are required for virus-induced 

tolerance blockade, IFNAR-/- mice were subjected to a T cell conversion assay. 

Surprisingly, type 1 IFNs were not required for the proliferation of inflammatory 

anti-OVA TH1 cells (Figure II-8C). However, IFN activation during poly(I:C) 

treatment was sufficient to inhibit Foxp3+ Treg conversion, suggesting that type 1 

IFN, although not required for the development of inflammatory food-specific T 
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cells, are required to inhibit tolerogenic processes.  

To identify other host factors required for virus-induced inflammation to 

dietary antigen, mice were infected with T1L and T3D-RV, and tissues were 

taken for microarray analysis. IRF-1, a transcription factor implicated in 

multistage regulation of TH1 immune responses (278), was identified due to its 

IFN-independent upregulation during T1L infection (Figure II-11A). Using IRF-1-/- 

mice, we found that IRF-1 is required for the development of OVA-specific 

inflammatory TH1 cells, likely because it stimulates IL-12 expression in CD103+ 

CD11b- DCs.  

After establishing that T1L infection breaks tolerance to OVA, we were 

curious whether T1L breaks tolerance to gluten, as observed in CD. HLA-DQ8tg 

mice inoculated perorally with T1L acquire gluten-specific antibodies and a DTH 

response to the fed antigen, indicating that the mice do not establish tolerance to 

gluten (Figure II-15 C and D). Tolerance blockade was associated with higher 

levels of IRF-1 and inflammatory cytokine expression by the CD103+ CD11b- DCs 

(Figure II-15 A and B). HLA-DQ8tg mice infected with T1L expressed activated 

TG2 (Figure II-15E), an enzyme that enhances gluten peptide loading on the 

MHC of DCs during CD (80-82). Together, these findings suggest that reovirus 

can trigger inflammation to dietary gluten and establishes a model of virus-

induced CD.  

To directly investigate the role of reovirus infection in human CD, we 

analyzed serum from patients and found that persons with CD expressed higher 

levels of reovirus antibodies compared with controls (Figure II-16 A and B). The 
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enhanced humoral response was reovirus-specific, as illustrated by the absence 

of an association between rotavirus and HSV-1 titers and the prevalence of CD 

(Figure II-16 G and H). IRF-1 expression also was increased in patients with high 

reovirus antibody titers, suggesting a correlation between recent infection and 

immune markers that stimulate inflammation to dietary antigen (Figure II-16 C). 

Taken together, these studies provide evidence that reovirus infection may be 

linked to the development of CD in humans.  

At the conclusion of Chapter II, I had two reovirus strains, which differed 

by only eight gene segments; T1L induced loss of tolerance, as seen in CD, 

while T3D-RV did not. The culmination of my thesis project was to understand 

the viral pathobiological properties that differ between these strains in the context 

of an intestinal infection and to determine whether these properties associate 

with tolerance blockade. The most striking difference I observed was the 

enhanced replication capacity of T1L (Figure III-1) and diminished levels of 

cleaved caspase-3 staining in the intestine compared with T3D-RV (Figure III-2 A 

and B).  

Since T3D-RV infection induced greater numbers of caspase-3-positive 

cells in the intestine, I tested whether virus-induced apoptosis could be observed 

following inoculation of cultured cells and enteroids. Infection of L cells with T1L 

and T3D-RV led to an overall increase in the morphological features of apoptosis 

and activation of caspase-3. However, apoptotic efficiency was greater in cells 

infected with T3D-RV compared with those infected with T1L (Figure III-3, B and 

C). In mouse enteroids, which contain a diverse population of IECs, T3D-RV also 
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induced greater numbers of caspase-3-postive cells and cellular sloughing 

(Figure III-4, E and F). Interestingly, T3D-RV-infected enteroids displayed 

diminished viral replication compared to T1L, which mimics the replication defect 

observed in mice.  

Since strain-specific differences in apoptosis efficiency in cultured cells 

tracked with observations made using mice, I decided to screen a panel of T1L x 

T3D-RV reassortant in cultured cells. Each reassortant virus contained the S1 

and L2 genes of T1L but differed in the other eight gene segments (Figure III-

5A). Following inoculation of L cells with the eight reassortant viruses, I observed 

a bimodal distribution in the percentage of apoptotic cells, in which four 

reassortants displayed levels similar to T3D-RV and four reassortants displayed 

levels similar to T1L (Figure III-5C). A rank sum analysis determined that the M2 

gene most strongly correlated with the capacity to induce apoptosis in cultured 

cells, with some additional contribution from the M1 gene.  

Based on these results, I engineered a panel of M gene reassortant 

viruses with the M1, M2, or M1 and M2 genes expressed in reciprocal parental 

backgrounds. As observed previously, the T3D M2 gene, and to a lesser extent 

the M1 gene, were associated with increased frequency of apoptosis when 

expressed in a T1L background. To determine whether apoptotic potential 

affected viral replication in the intestine, mice were infected with T1L, T3D-RV, or 

each of the six M gene reassortants. Analogous to T3D-RV-infected mice, 

reassortants that induced greater levels of caspase-3-positive cells at 24 hpi 

exhibited diminished viral replication in the intestine at 72 hpi (Figure III-6, D and 



 

 122 

E). This association suggests that the host triggers cell death in IECs to illicit 

antiviral responses and protect against enteric infection.  

Collectively, findings presented in this thesis enhance insights into the 

functional viral properties required for loss of tolerance to orally fed antigen and 

establish links between host responses to infection and tolerance abrogation.  

 
 

Future Directions 
 
 
Viral reassortants differ in capacity to induce IRF-1 in WT and IFNAR-/- mice 

IRF-1 is a transcription factor that functions in the antiviral immune 

response. We examined mRNA levels of IRF-1 in WT and IFNAR-/- mice and 

observed higher expression in T1L-infected mice compared to T3D-RV-infected 

or PBS-inoculated controls. T1L tolerance abrogation was reversed in IRF-1-/- 

mice, suggesting that IRF-1 is required for virus-induced tolerance blockade 

To identify the viral gene segments that segregate with increased IRF-1 

expression, I inoculated WT and IFNAR-/- mice with T1L, T3D-RV, and one of 

eight T1L x T3D-RV reassortants. Although all eight viruses replicated in the 

intestines of these mice (Figure IV-1, B and C), differential expression of IRF-1 

occurred between the reassortants (Figure IV-1, D and E). Consequently, I chose 

to study two reciprocal reassortants that showed the greatest difference in IRF-1 

expression. When I repeated these experiments, infecting WT and IFNAR-/- mice 

with only these reassortants, IRF-1 expression was variable. However, 

Reassortant G, which contains the M1, M2, M3, and L1 genes from T1L, induced 

IRF-1 expression comparable to T1L, while Reassortant D, which contains the 
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Figure IV-1. Viral replication in the intestine and IRF-1 expression in 
mesenteric lymph nodes of WT and IFNAR-/- mice infected with reassortant 
viruses. (A) T1L x T3D-RV reassortant viruses used to define genes that 
segregate with strain-specific differences in the capacity of reovirus to induce 
IRF-1 in the MLN. Gene segments in red represent those derived from T1L, while 
gene segments in blue represent those derived from T3D. (B and D) WT and (C 
and E) IFNAR-/- mice were inoculated perorally with 108 PFU of T1L, T3D-RV, or 
one of eight T1L x T3D-RV reassortant viruses. At 48 hpi, the proximal half of the 
intestine was prepared for viral titer and MLN harvested for RNA extraction. (B 
and C) Viral titers were determined by plaque assay. (D and E) RNA was 
extracted from the MLN, and mRNA levels were quantified by RT-PCR using 
primers specific for murine IRF-1. Data represent one experiment.  
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Figure IV-2. Viral replication in the intestine and IRF-1 expression in 
mesenteric lymph nodes of WT and IFNAR-/- mice infected with 
Reassortants D and G. (A) T1L x T3D-RV reassortant viruses used to define 
genes that segregate with strain-specific differences in the capacity of reovirus to 
induce IRF-1 in the MLN. Gene segments in red represent those derived from 
T1L, while gene segments in blue represent those derived from T3D. (B and D) 
WT and (C) IFNAR-/- mice were inoculated perorally with 108 PFU of T1L, T3D-
RV, Reassortant D, or Reassortant G. (B and C) At 48 hpi, MLNs were harvested 
for RNA extraction. RNA was extracted from the MLN, and mRNA levels were 
quantified by RT-PCR using primers specific for murine IRF-1. (D) At 72 hpi, the 
proximal half of the intestine was prepared for viral titer as determined by plaque 
assay. *, P < 0.05; ****, P < 0.0001; one-way ANOVA/Tukey’s multiple 
comparison test. 
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M1, M2, M3, and L1 genes from T3D, more closely resembled T3D-RV (Figure 

IV-2, B and C). Future studies including a larger number of mice will determine 

whether this difference is significant.  

Interestingly, Reassortant D and G differed in replication capacity at later 

times post-inoculation (Figure IV-2D). Analogous to studies using the parental 

strains, viruses that replicated more efficiently in the intestine produced more 

IRF-1 expression. Future studies using the M gene reassortants will determine 

whether viruses that subvert antiviral cell death also upregulate IRF-1 

expression. If so, I predict that viruses capable of enhanced replication 

subsequently induce IRF-1 and alter tolerance to orally-fed antigen, thus 

providing a mechanistic link between the capacity of a virus to replicate in the 

intestine and the promotion of inflammatory responses to dietary antigen. 

 

Role of viral gene segments M1 and M2 during reovirus-induced tolerance 

blockade.  

 From studies in Chapter III, I concluded that the T1L M1 and M2 genes in 

a T3D-RV background are sufficient to inhibit caspase-3 activation in IECs and 

enhance replication in the intestine (Figure III-6, E and D). Although the presence 

of both genes contributed individually to both phenotypes, the effects of the T1L 

M1 and M2 genes together were synergistic. T cell conversion assays testing 

reassortants constructed to exchange the M1 and M2 genes together or the M1 

and M2 genes individually in a T3D-RV background will determine whether these 

genes are sufficient to break oral tolerance. I think it likely that the T1L M1 and 
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M2 genes, which segregated with decreased apoptosis and prolonged viral titer, 

also will associate with inflammation to dietary antigen. Such findings would 

rationalize studies to define the minimum viral gene products required to inhibit 

oral tolerance during the development of CD.  

 

Caspase inhibition promotes viral replication in the intestine. 

Data presented in Chapter III demonstrated an inverse relationship 

between viral induction of apoptosis in epithelial cells and the capacity to 

replicate in the intestine. Therefore, I hypothesize that i.p. injections with a 

caspase inhibitor prior to infection with T3D-RV would promote replication in the 

intestine. Future studies will test this hypothesis by determination of viral titer at 

72 hpi and confirm apoptosis inhibition using immunohistochemical staining of 

cleaved caspase-3 at 24 hpi. 

Based on the culmination of this thesis, I hypothesize that the capacity of 

T1L to subvert antiviral apoptosis and replicate for prolonged intervals in the 

intestine are required for the abrogation of tolerance to dietary antigen. 

Upcoming studies will test this hypothesis by treating mice with caspase 

inhibitors prior to conducting a T cell conversion assay. If T3D-RV viral replication 

is prolonged during caspase inhibitor treatment, subsequent stimulation of 

inflammatory cytokines at the onset of feeding may cause a breakdown in oral 

tolerance, as observed in T1L-infected mice.  
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Function of Noxa, a pro-apoptotic host factor, in viral replication of the intestine 

and abrogation of oral tolerance. 

From previous microarray studies, I observed that relative to T1L, T3D-RV 

stimulates higher expression of Noxa, a transcriptionally regulated proapoptotic 

gene, in the MLN at 48 hpi. Noxa is a member of the Bcl-2 protein family 

activated during noxious stress to promote mitochondrial perturbations by 

inhibiting other Bcl-2 family members (209). T3D upregulates Noxa in cultured 

cells independent of IFN but dependent on IRF-3 and NF-κB and exacerbates 

reovirus-induced apoptosis (165).  

To test whether T1L and T3D-RV induce Noxa expression in cultured 

cells, Caco2 cells were adsorbed with each virus strain, incubated for 24 h, and 

harvested for RNA extraction, followed by RT-qPCR. Although both strains 

replicate comparably in Caco2 cells (Figure II-1B), T3D-RV-infected cells 

expressed higher levels of Noxa compared with T1L-infected or mock-inoculated 

cells (Figure IV-3A). Concordantly, T3D-RV-infected mice also upregulated Noxa 

expression at 24 hpi in the intestinal mucosa (Figure IV-3B). T1L displayed 

slightly lower levels of Noxa expression relative to mock-infected mice, although 

this difference was not statistically significant.  

To determine whether Noxa is required for T3D-RV-induced apoptosis in 

the intestine, Noxa-deficient (Noxa-/-) mice should be infected with T1L and T3D-

RV and euthanized at 24, 48, and 72 hpi for determination of viral titer and 

histological analysis. Tissue sections stained for activated caspase-3 will identify 

cells undergoing apoptosis within the intestine. If Noxa is required for the antiviral  
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Figure IV-3. Noxa gene expression in Caco-2 cells and intestinal mucosa 
after reovirus T1L and T3D-RV infection. (A) Caco-2 cells were adsorbed with 
T1L or T3D-RV at an MOI of 100 PFU/cell. RNA was extracted from infected 
cultures at 24 hpi, and mRNA levels were quantified by RT-PCR using primers 
specific for human Noxa. Levels of Noxa mRNAs were normalized to GAPDH 
mRNA. Data represent two independent experiments performed in triplicate. (B) 
WT mice were inoculated perorally with 108 PFU of T1L or T3D-RV or PBS 
(mock) (n = 9-10 mice per inoculum). One day after inoculation, intestines were 
resected. The proximal half was prepared for viral titer determination by plaque 
assay, and the distal half was flushed and cut longitudinally, and intestinal 
mucosa was harvested. RNA was extracted from the intestinal mucosa, and 
mRNA levels were quantified by RT-PCR using primers specific for murine Noxa. 
*, P < 0.05; **, P < 0.01; ****, P < 0.0001; one-way ANOVA/Tukey’s multiple 
comparison test. 
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apoptotic response, T3D-RV titers in the Noxa-/- mice will increase. Additionally, 

cleaved caspase-3 activation in the intestinal villi will be reduced in the absence 

of Noxa relative to WT mice, and the differences in apoptosis efficiency displayed 

by T1L and T3D-RV will be diminished. These studies will define Noxa as a host 

factor required to limit reovirus replication through the activation of apoptosis in 

IECs and may enhance our understanding of broad intestinal antiviral immunity. 

If the removal of Noxa promotes T3D-RV viral replication in the intestine, it 

would be interesting to determine whether T3D-RV infection of Noxa-/- mice 

breaks tolerance to dietary antigen. To test this, T cell conversion assays could 

be conducted using Noxa-/- mice infected with T1L or T3D-RV at the onset of 

antigen feeding. If Noxa is required for the maintenance of oral tolerance during 

T3D-RV infection, we should observe an increase in inflammatory OVA-specific T 

cells and an inhibition of Tregs in Noxa-/- mice infected with T3D-RV. However, if 

Noxa is not required for viral replication or apoptosis in the intestine, other pro-

apoptotic host factors could be examined using knockout mouse lines.  
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Conclusions 
 
 
 Acute viral infections are thought to be cleared by the host with few lasting 

consequences. However, there may be a much broader and long-lasting effect of 

viruses on immune homeostasis. My thesis work now provides mechanistic 

evidence that acute viral infections influence immune regulation and lead to 

development of chronic autoimmunity and inflammatory disease. I found that 

infection with reovirus, a common, nonpathogenic virus, triggers inflammation 

against innocuous food antigens, implicating this virus in the development of CD. 

For persons with CD, this work provides the basis for prevention strategies based 

on reovirus vaccination and screening approaches focused on acquisition of viral 

infections. This work contributes new knowledge about virus-host interactions 

and opens new fields to determine how viruses induce immunopathology. 
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CHAPTER V 
 
 

 
MATERIALS AND METHODS  

 
 
 

Cells and viruses 

Spinner-adapted murine L cells were grown in either suspension or 

monolayer cultures in Joklik’s modified Eagle’s minimal essential medium 

(SMEM; Lonza) supplemented to contain 5% fetal bovine serum (FBS; Gibco), 2 

mM L-glutamine, 100 U/ml penicillin, 100 µg/ml streptomycin (Gibco), and 25 

ng/ml amphotericin B (Sigma). BHK-T7 cells were grown in Dulbecco’s modified 

Eagle’s minimal essential medium (DMEM; Gibco) supplemented to contain 5% 

FBS, 2 mM L-glutamine, 1 mg/ml geneticin (Gibco), and nonessential amino 

acids (Sigma). Caco-2 cells were grown in DMEM supplemented to contain 10% 

FBS, 100 U/ml penicillin, 100 µg/ml streptomycin, 1 mM sodium pyruvate 

(Gibco), nonessential amino acids, and 12.5 ng/ml amphotericin B. Caco-2 cells 

were plated at a density of 105 cells/well in 24-well plates (Costar). Rhesus 

monkey kidney (MA104) cells were provided by Dr. John Patton and grown in 

DMEM supplemented to contain 5% FBS, 2 mM L-glutamine, nonessential amino 

acids, and 1 mg/ml geneticin as previously described (302). Mouse embryonic 

fibroblasts (MEFs) from C57BL/6 mice were grown in DMEM supplemented to 

contain 10% FBS, 2 mM L-glutamine, 100 U/ml penicillin, 100 µg/ml 

streptomycin, and nonessential amino acids.  

Recombinant reoviruses were generated using plasmid-based reverse 
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genetics (143). Recombinant strain (rs) type 1 Lang (T1L) is a stock generated 

by plasmid-based rescue from T1L cDNAs (144). The engineered reassortant 

virus strain, T3D-RV, was recovered following transfection of BHK-T7 cells with 

plasmid constructs encoding the S1 and L2 gene segments from strain T1L and 

the remaining eight gene segments from strain type 3 Dearing (T3D). T1L x T3D-

RV reassortant viruses were generated using T1L or T3D cDNAs in the 

constellation shown. After 3 to 5 d of incubation, cells were frozen and thawed 

three times, and virus was isolated by plaque purification using monolayers of L 

cells (303). Purified reovirus virions were generated from second- or third-

passage L cell lysate stocks (304). Viral particles were extracted from infected 

cell lysates using Vertrel XF (DuPont), layered onto 1.2- to 1.4- g/cm3 CsCl 

gradients, and centrifuged at 62,000 × g for 16 h. Bands corresponding to virions 

(1.36 g/cm3) were collected and dialyzed in virion storage buffer (150 mM NaCl, 

15 mM MgCl2, and 10 mM Tris-HCl [pH 7.4]) (305). Viral titer was determined by 

plaque assay using L cells (303). Purified viral particles were electrophoresed on 

SDS-polyacrylamide gel. The gel was stained with ethidium bromide to visualize 

viral gene segments.  

 

Mice  

All knockout and transgenic mice used in these studies are on a C57BL/6 

background. C57BL/6 (WT), IFNAR-/- (B6.129S2-Ifnar1tm1Agt/Mmjax), and IRF-

1-/- (B6.129S2-IRF-1tm1Mak/J) were purchased from Jackson Laboratories. 

RAG-/- OT-II+/- CD45.1+/+ mice were provided by Dr. Peter Savage. HLA-DQ8 
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transgenic (HLA-DQ8tg) mice (98) were maintained on a GFD (AIN76A, Envigo) 

at the University of Chicago. TG2-/- mice were previously described (306). For all 

experiments, mice were analyzed at 6-8 weeks of age. WT and IFNAR-/- mice 

were maintained in an SPF environment at the University of Chicago, the 

University of Pittsburgh, and Vanderbilt University. IRF-1-/-, RAG-/- OT-II+/- 

CD45.1+/+, HLA-DQ8tg, and TG2-/- mice were housed exclusively at the 

University of Chicago. Noxa-/- mice were housed exclusively at the University of 

Pittsburgh. Animal husbandry and experimental procedures were performed in 

accordance with Public Health Service policy and approved by the University of 

Chicago, the University of Pittsburgh, and Vanderbilt University School of 

Medicine Institutional Animal Care and Use Committees. 

 

Infection of mice 

Mice were inoculated perorally with 1010 and 108 plaque forming unit 

(PFU)/mouse of purified reovirus diluted in PBS using a 22-gauge round-tipped 

needle (Cadence Science) (146). Titers of virus in the inocula were determined to 

confirm the number of infectious particles in the administered dose. For analysis 

of viral titer, mice were euthanized at various intervals post-inoculation, organs 

were harvested into 1 ml of PBS and stored at -20 °C prior to assay. Samples 

were thawed (37 °C), bead beaten for 8 minutes, frozen (-20 °C), and bead 

beaten again for 5 minutes prior to quantitation by plaque assay. Viral titers in 

organ homogenates were determined as the number of PFU per ml of tissue 

homogenate (303).  



 

 134 

Antibodies and flow cytometry 

The following fluorophore conjugated antibodies were purchased from 

eBioscience: T-bet (4B10), Foxp3 (FJK-16s), MHCII (M5/114.15.2), CD11b 

(M1/70), IL-12p40 (C17.8), CD62L (MEL-14), CD25 (PC61.5), Rat IgG1, Rat 

IgG2a, Rat IgG2b and Mouse IgG1. The following antibodies were purchased 

from BD Biosciences: IFNγ (XMG1.2), CD103 (M290), CD45 (30-F11), and Fc 

BlockTM (2.4G2). The following antibodies were purchased from Biolegend: CD4 

(GK1.5), TCRb (H57-597), CD45.1 (A20), CD11c (N418), CD8a (53-6.7), CD86 

(GL-1), CD44 (IM7), and F4/80 (BM8). Aqua LIVE/DEAD® Fixable Aqua Dead 

Cell Stain Kit was purchased from Life Technologies. Cells were permeabilized 

with the Foxp3 fixation/permeabilization kit for transcription factor (eBioscience) 

or Cytofix/Cytoperm (BD Biosciences) for cytokine staining. Flow cytometry was 

performed with a 9-color BD FACSCanto (BD Biosciences) and data were 

analyzed using FlowJo software (Treestar). Sorting experiments were performed 

with an Aria Fusion (BD Biosciences). Immunoglobulin G (IgG) fractions of rabbit 

antisera raised against reovirus strains (T1L) and (T3D) (307) were purified by 

protein A sepharose chromatography (308). Rabbit anti-cleaved caspase-3 

monoclonal antibody was purchased from Cell Signaling Technologies. Anti-β-

catenin antibody was purchased from BD biosciences.  

 

Assays of reovirus replication and gene/protein expression in cell culture 

L cells (2 × 105) grown in 24-well plates (Costar) were adsorbed with 

reovirus at a multiplicity of infection (MOI) of 1 PFU/cell, washed with PBS, and 
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incubated at 37 ºC for various intervals. Caco-2 cells (1 × 105) were adsorbed 

with reovirus at an MOI of 0.1, 1, or 10 PFU/cell, washed with PBS, and 

incubated at 37 ºC for various intervals. Cells were frozen and thawed twice prior 

to determination of viral titer by plaque assay using L cells (303). Viral titers were 

expressed as PFU per mL of cellular homogenate. Caco-2 cells (1 × 105) were 

adsorbed with reovirus at an MOI of 100 PFU/cell, washed with PBS, and 

incubated at 37 ºC for 24 h, at which time cells were lysed for RNA extraction. 

MEFs were adsorbed with reovirus at a MOI of 500 PFU/cell, washed with PBS, 

and incubated at 37 ºC for 16 h. Supernatants were analyzed for IFNβ by ELISA 

(PBL Interferon Source). 

 

Histology and immunohistochemistry 

Mice were inoculated perorally with purified reovirus diluted in PBS. At 1 

dpi, mice were euthanized, and intestines were resected. The proximal half was 

prepared for viral titer determination by plaque assay, and the distal half was 

flushed with 10% formalin and Swiss-rolled. Samples were submerged in 10% 

formalin at room temperature for 24 or 48 h and embedded in paraffin. 

Consecutive 6-µm sections were stained with H&E for evaluation of 

histopathologic changes or processed for immunohistochemical detection of 

reovirus antigen and cleaved (active) caspase-3. Images were captured at 20x 

magnification at a resolution of 0.5 µm/pixel using a high-throughput Leica 

SCN400 slide scanner automated digital imaging system.  
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Quantification of histology 

For caspase-3-positive staining area, tissue regions were differentiated 

from the glass slide using Ariol Review software. Upper and lower thresholds for 

color, saturation, and intensity were set for both blue, hematoxylin staining of 

nuclei and for brown, 3’diaminobenzidine (DAB) reaction products. Thus, brown 

positive areas were distinguished from blue-only negative areas. The area of 

positive staining per whole tissue region was calculated as a percent area of 

brown (DAB-positive) pixels divided by the total area analyzed.  

Cleaved caspase-3-stained epithelial cells were quantified by an observer 

blinded to the conditions of the experiment by enumerating all positive cells 

(brown) throughout the distal half of the small intestine and normalizing to the 

number of villi counted. Only epithelial cells and villi from properly oriented villus 

structures were included in the analysis. Proper orientation was defined in villi 

containing a clear exterior epithelial cell column, a crypt to villus ratio of 2:1, and 

an unfragmented LP. Intestinal sections with fewer than 70 properly oriented villi 

were excluded. 

 

Isolation of Peyer’s patches, intestinal epithelium, and lamina propria 

PPs were removed, treated with collagenase VIII (Sigma) and processed 

by mechanical disruption through a 70-µm cell strainer. The intestinal epithelium 

was isolated as previously described using RPMI media containing 2 mM EDTA 

(Corning), 1% dialyzed FBS, and 1.5 mM MgCl2. The LP was isolated as 

previously described using RPMI media containing 20% FBS and collagenase 
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VIII (Sigma) (98). 

 

Quantification of apoptosis by acridine orange staining 

L cells (2 × 105) in 24-well plates were adsorbed with reovirus at an MOI of 

100 PFU/cell, washed with PBS, and incubated at 37°C for 38 h. The percentage 

of apoptotic cells was determined using AO staining (225). Images were 

collected from three fields of view per well by epi-illumination fluorescence 

microscopy using a Lionheart FX Automated Microscope (Biotek). The 

percentage of apoptotic cells exhibiting orange nuclei with condensed and 

fragmented chromatin versus live cells exhibiting structurally normal green nuclei 

was quantified using an imaging algorithm developed in the Gen5 software 

(Biotek). The average nucleus size and a fluorescence threshold were 

established by the user. Color values from each individual-pixel RGB triplet were 

obtained and compared to the user-defined threshold. To exclude false-positive 

signals, an exclusion criterion was established based on the average pixels of 

false-positive cells and included in the imaging algorithm. Therefore, green nuclei 

with condensed chromatin (early apoptotic) and red, structurally normal nuclei 

were subtracted from the final count. 

 
 

Detection of caspase-3/7 activity 

L cells (5 × 104) in black, clear-bottom 96-well plates (Costar) were 

adsorbed with reovirus at an MOI of 100 PFU/cell at room temperature for 1 h. 
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Following incubation of cells at 37°C for 24 h, caspase-3/7 activity was quantified 

using the Caspase-Glo 3/7 assay (Promega).  

 

Establishing small intestinal enteroids 

Crypt enteroid cultures were established as described (309). Eight 

centimeters of the proximal small intestine was dissected, flushed with PBS, and 

minced. Following a PBS wash, tissue was transferred to 5 mL chelation buffer 

(2 mM EDTA in PBS) and incubated at 4 °C for 30 min. After removal of chelation 

buffer, tissue fragments were resuspended in 5 mL of shaking buffer (PBS with 

43.3 mM sucrose and 54.9 mM sorbitol) and agitated gently for 2 min to release 

intestinal crypts. Crypt-containing supernatants were filtered through a 100-µM 

filter, enumerated, and transferred into round-bottomed polystyrene tubes. 

Following centrifugation, crypts were resuspended in growth-factor-reduced 

Matrigel (BD Bioscience) at a concentration of 300 crypts per 50 µL of Matrigel. 

Following polymerization, the crypt/Matrigel mixture was overlayed with 500 µL of 

mini-gut culture medium (Advanced Dulbecco's modified Eagle's medium/F12 

(Invitrogen) supplemented to contain 1x glutaMAX (Thermo-Fisher), 100 U/mL 

penicillin (Invitrogen), 100 µg/mL streptomycin (Invitrogen), 1 mM HEPES 

(Gibco), N2 Supplement (R&D Systems), B27 Supplement (Invitrogen), 50 ng/mL 

EGF (R&D Systems), 500 ng/mL R-spondin (Vanderbilt Antibody and Protein 

Resource), 100 ng/mL Noggin (R&D Systems), and 50% Wnt3a conditioned 

media). The medium was replaced every 2-4 days. Enteroids were passaged as 

needed by collection and shearing through a 25-gauge needle prior to plating in 
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Matrigel.  

 

Enteroid transwell plating 

Enteroids were collected 2 d after passage and incubated with TrypLE 

(Thermo Fisher Scientific) solution at 37 °C for 90 min to dissociate cells into 

single-cell suspensions. Cells (2 × 105) were plated onto the top of a 24-well, 0.4 

µm pore transwell filter coated with collagen 1 (Gibco) in medium supplemented 

to contain 10 µM Y27632 (Sigma). After 24 h, medium on the top and bottom of 

the transwell filters was replaced with differentiation medium (Advanced 

DMEM/F12 supplemented to contain 1x Glutamax, 100 U/mL penicillin, 100 

µg/mL streptomycin, and 20% FBS). 

 

Assays for reovirus replication, infectivity, and cell death in enteroids 

On day 4 post-transwell plating, enteroids were adsorbed with virus at a 

MOI of 100 PFU/cell, assuming 2.5 × 105 cells/well, by adding 30 µl of virus 

inoculum to the apical compartment. After adsorption of virus at room 

temperature for 1 h, cells were washed twice with PBS, 200 µl of medium was 

added to the apical compartment, and 1 mL of medium was added to the 

basolateral compartment. Enteroids were incubated at 37 °C for 24 h. For 

quantification of released cells, 100 µL of apical medium was collected, and cells 

in the medium were enumerated using a Scepter Handheld Automated Cell 

Counter. For viral replication assays, transwell membrane inserts were removed 

from transwells with a scalpel, submerged in 500 µL of medium, and frozen and 
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thawed twice. Viral titers in cell lysates were determined by plaque assay using L 

cells (303). For enteroid staining, transwell inserts were gently washed with PBS 

and fixed at room temperature for 30 min in 3% paraformaldehyde before 

continuing with the transwell staining protocol. 

 

Transwell insert staining and quantification 

 After washing and fixing, cells were permeabilized with 0.2% Triton-

X (Sigma) followed by blocking in 3% milk solution. The following primary 

antibodies were used: reovirus polyclonal antiserum (307) at 1:1000, anti-β-

catenin (BD Biosciences) at 1:500, and anti-cleaved caspase-3 (Cell Signaling 

Technology) at 1:400. Appropriate species-specific Alexa Fluor secondary 

antibodies (Thermo Fisher Scientific) were used at a dilution of 1:1000. Enteroids 

were stained with ActinGreen ReadyProbe (Thermo Fisher Scientific). Following 

antibody incubation, inserts were excised from the transwell and mounted on 

glass slides with 4’,6-diamidino-2-phenylindole (DAPI)-containing ProLong Gold 

mounting medium (Thermo Fisher Scientific). Images were collected using a 

Nikon Eclipse E800 Microscope, and cleaved caspase-3 positive cells were 

enumerated using the Nikon Elements Basic Research software. For viral 

infectivity, the percentage of reovirus antigen-positive cells was determined. No 

background staining of uninfected control cells was detected.  

 

In-vivo T cell conversion assay 

To assess T cell conversion in-vivo, CD4+ T cells were purified from the 
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spleen and lymph nodes of RAG-/- OT-II+/- CD45.1+/+ mice using the CD4+ T cell 

isolation Kit (Miltenyi) or sorted on a FACS Aria Fusion (BD Biosciences). CD4+ T 

cells (4 × 105 to 7.5 × 105 cells) were transferred retro-orbitally into congenic 

naïve WT mice. Mice received OVA (grade V, Sigma) dissolved in the drinking 

water (1.5%) for 2 or 6 d, as indicated or were fed an OVA-containing diet 

(Harlan Envigo TD 130362 10 mg/kg) for 6 d. One day after transfer, mice were 

infected perorally with equal PFU of T1L or T3D-RV as indicated or injected 

intraperitoneally every other day with 50 ug of poly(I:C) (Invivogen) or 1000 IU of 

mIFNβ (PBL Interferon Source). Mice were euthanized and intranuclear levels of 

Foxp3, T-bet, or cytokine IFNγ were evaluated by flow cytometry in transferred 

CD45.1+ and recipient T cells from MLN incubated in the presence of 50 ng/ml 

phorbol 12-myristate 13-acetate (PMA), 500 ng/ml ionomycin (Sigma) and 1.3 

µl/ml Golgi Stop (BD Biosciences) for 2 h at 37 ºC, 5% CO2. For IL-12 staining, 

cells were incubated in RPMI (Corning) for 6 h at 37 ºC, 5% CO2 in the presence 

of 1 µl/ml Golgi Plug (BD Biosciences) 

 

In-vitro T cell conversion assays  

MLN DC subsets (CD103+ CD11b- CD8α+, CD103+ CD11b- CD8α-, 

CD103+ CD11b+, CD103- CD11b+) were FACS sorted (Aria Fusion BD 

Biosciences) 2 d after inoculation of WT or IRF-1-/- mice with T1L or PBS (sham). 

DC subsets were then mixed back at a WT ratio and 5 × 103 DC/mix were co-

cultured for 5 d with 2.5 × 104 FACS sorted naïve CD4+ T cells (Aria Fusion BD 

Biosciences) from the spleen and lymph nodes of RAG-/- OT-II+/- CD45.1+/+ mice 
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in presence of 100 µg/ml of OVA (Sigma) with or without 1 µg/ml of anti-mouse 

IL-12p40 neutralizing antibody (BD Pharmingen). 

 

Analysis of cytokine production  

IFNγ and IL-12p40 cytokine levels in culture supernatants were 

determined with BioPlex multianalyte technology (Biorad). 

 

Oral tolerance assay 

Mice were inoculated perorally with purified reovirus diluted in PBS or with 

PBS alone. 100 µg OVA (grade V, Sigma) feeding occurred every other day for 8 

d. At day 10 mice were immunized with CFA-OVA (emulsion of 50 µl CFA 

(Sigma) and 50 µl PBS containing 100 µg OVA) subcutaneously at the back left 

and right flank. Draining lymph nodes (dLN) were harvested on day 18 and cells 

were restimulated for 48 h with OVA. Supernatants were analyzed for IFNγ by 

ELISA (BD Biosciences). Alternatively, when indicated, mice were fed an OVA-

containing diet (10 mg/kcal, Envigo) for 8 d. At day 10, mice were immunized 

subcutaneously between the shoulder blades with an emulsion of 100 µl CFA 

and 100 µl PBS containing 300 µg OVA under isofluorane gas anesthesia. At day 

18, mouse sera were obtained by submandibular bleeding for anti-OVA IgG2c 

ELISA quantification. 
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Preparation of chymotrypsin-digested gliadin 

Gliadin (Sigma) was dissolved in 2 M NH4HCO3 2 M urea buffer pH 8.0, 

by vortexing and digested using a-chymotrypsin (Sigma) for 24 h on a roller 

mixer at room temperature. The reaction was stopped by incubation at 98 ºC for 

10 minutes. Digested gliadin was filtered through a 0.45 µm membrane 

(Millipore) and dialyzed against sterile PBS using snakeskin dialysis tubing with a 

molecular weight cut-off of 3.5 kDa (Thermo Scientific). Concentration of 

chymotrypsin-digested gliadin (CT-gliadin) was determined using a BCA assay 

(Pierce).  

 

Oral antigen uptake by dendritic cells 

OVA or CT-gliadin was labeled with Alexa Fluor-647 succinimidyl ester 

according to the manufacturer’s protocol (Molecular Probes). Mice received 3.2 

mg OVA-Alexa Fluor-647 or Gliadin-Alexa Fluor-647 by intragastric 

administration, respectively. Control mice received similar amounts of unlabeled 

OVA or CT-gliadin (310). Mice were euthanized 18 h post-feeding and DCs in 

MLN were analyzed by flow cytometry. 

 

Complete Freund’s adjuvant immunization and subcutaneous ear challenge 

HLA-DQ8tg mice received 50 mg CT-gliadin orally for 2 d. At the start of 

feeding mice were inoculated perorally with purified T1L. Two days after CT-

gliadin administration, CFA-CT-gliadin was administered subcutaneously 

between the shoulder blades as an emulsion of 100 µl CFA and 100 µl PBS 
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containing 300 µg CT-gliadin under isofluorane gas anesthesia. Ear challenges 

were performed 14 and 24 d after immunization. A volume of 20 µl of 100 µg CT-

gliadin/PBS was injected under isofluorane gas anesthesia. Ear thickness was 

measured on days 1, 2, and 3 after each CT-gliadin challenge using a digital 

precision caliper (Fisher Scientific). Swelling was determined by subtracting pre-

challenge from post-challenge ear thickness. 

 

Anti-ovalbumin and anti-gliadin IgG2c ELISA 

High-binding ELISA 96-well plates (Corning) were coated with 50 µl of 10 

µg/ml OVA in PBS or 50 µl of 100 µg/ml CT-gliadin in 100 mM Na2HPO4 

overnight at 4 °C. Plates were washed three times with PBS 0.05% Tween 20 

and blocked with 200 µl of PBS 10% FBS (Anti-OVA ELISA) or 200 µl of 2% BSA 

in PBS 0.05% Tween 20 (Anti-gliadin ELISA) for 2 h at room temperature. 

Unlabeled IgG2c (Southern Biotech) was used as positive control. Serum was 

assessed in duplicate and at two dilutions, typically 1/1000 and 1/5000. Sera 

were incubated overnight at 4 °C and plates were washed three times with PBS 

0.05% Tween 20. Anti-mouse IgG2c-horseradish peroxidase (HRP) (Southern 

Biotech) in blocking buffer (50 µl at 1/500 dilution) was added to plates and 

incubated for 1 hour at room temperature. Plates were washed five times with 

PBS containing 0.05% Tween 20. HRP substrate TMB (50 µl) was added and the 

reaction stopped by the addition of 50 µl 2 N H2SO4. Absorbance was read at 

450 nm. Levels of anti-OVA IgG2c or anti-gliadin IgG2c were expressed in OD 

values. 
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Visualization and quantification of transglutaminase 2 activity 

HLA-DQ8tg or TG2-/- mice were inoculated perorally with purified T1L 

reovirus diluted in PBS or with PBS alone and in-vivo TG2 enzymatic activity was 

assessed 18 hpi, essentially as previously described (311). Six and three h prior 

to euthanasia, mice were injected i.p. (100 mg/kg) with 5-(biotinamido)-

pentylamine (5BP), a substrate for TG2 transamidation activity, which was 

synthesized following a published protocol (311). Small intestinal pieces were 

collected and frozen in optimum cutting temperature compound (Tissue-Tek). 

Frozen sections of 5 µm thickness were cut, fixed in 1% paraformaldehyde, and 

TG2 protein was visualized by staining with a rabbit polyclonal anti-TG2 antibody 

(custom produced by Pacific Immunology), followed by AF647-conjugated goat 

anti-rabbit IgG (Life Technologies). TG2 enzymatic activity was measured using 

5BP crosslinking, and was visualized by costaining with AF555-conjugated 

streptavidin (Life Technologies). Images were acquired at 10x magnification 

using a Leica SP8 Laser Scanning Confocal microscope. TG2 activity was 

quantified by systematically taking two sections of proximal small intestine from 

each mouse, quantifying the 5BP signal/TG2 protein signal on a per villi basis. 

The mean 5BP signal/TG2 signal is shown for each mouse that was assessed. 

 

Human tissue and serum samples  

Serum and duodenal biopsies were collected from consented controls or 

patients with CD. Diagnosis of CD was based on detection of anti-TG2 

antibodies, villous atrophy, and clinical response to GFD. Gluten-free subjects 
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had been under strict GFD for at least 1 year and had become negative for anti-

TG2 antibodies and recovered a normal or subnormal villous architecture (10). 

Control subjects with normal small intestinal histology, no family history of CD 

and no TG2 antibodies, underwent gastrointestinal endoscopy for a diagnostic 

work-up (e.g., for evaluation of anemia, abdominal discomfort, intestinal 

disorders of non-celiac origin, or failure to thrive).  

 

Control patients: Age range 1-77 (average 24.06); 56.94% females, 43.06% males.  

Active patients: Age range 2-69 (average 26.21); 66.21% females, 33.79% males.  

GFD patients: Age range 2-79 (average 35.13); 70.5% females, 29.5% males.  

These studies were approved by the University of Chicago Institutional Review Board. 

 

Quantification of virus-specific antibody responses  

Reovirus-specific antibody responses were determined using a 60% 

plaque-reduction neutralization assay (PRNT 60). Serum samples were heat-

inactivated at 56 ºC for 30 minutes, serially diluted four-fold beginning with a 

dilution of 1:20, and incubated with an equal volume of a virus stock containing 

100 PFU of T1L for 1 h. The serum-virus mixtures were inoculated in duplicate 

onto confluent L cell monolayers in 12-well tissue culture plates (Costar), 

incubated at room temperature for 1 h, and overlayed with a 1:1 mixture of 1% 

agar (BD Biosciences) and 2x199 medium (Caisson labs) supplemented to 

contain 5% FBS, 4 mM L-glutamine, 200 U/ml penicillin, 200 µg/ml streptomycin 

(Gibco), and 50 ng/ml amphotericin B (Sigma). Cells were stained with neutral 

red on day 7, and plaques were enumerated (303). Serum reciprocal geometric 
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mean titers capable of reducing plaque counts by 60% were calculated using 

regression analysis.  

Rotavirus-specific antibody responses were determined using PRNT 60 

assay with simian rotavirus strain SA11 and MA104 cells both provided by Dr. 

John Patton. Serum samples were heat-inactivated at 56 ºC for 30 minutes, 

serially diluted four-fold beginning with a dilution of 1:20, and incubated with an 

equal volume of a previously trypsin-activated rotavirus stock containing 100 

PFU. After incubation for 1 h, the serum-virus mixtures were inoculated in 

duplicate onto confluent MA104 cell monolayers in 12-well tissue-culture plates. 

On day 3, cells were fixed with neutral-buffered formalin at room temperature for 

1 h, stained with crystal violet, and plaques were enumerated (302). Serum 

reciprocal geometric mean titers capable of reducing plaque counts by 60% were 

calculated using regression analysis.  

Qualitative detection of HSV-1 IgG antibodies were determined in serum 

samples using the Zeus Scientific ELISA HSV-1 IgG Test System (Alere) 

according to manufacturers’ instructions. These studies were approved by the 

Vanderbilt University School of Medicine Institutional Review Board. 

 

RT-PCR  

RNA was prepared using the RNeasy Mini Kit (Qiagen) or High Pure RNA 

isolation kit (Roche). cDNA synthesis was performed using GoScript (Promega) 

or Superscript III First-Strand Synthesis System (Invitrogen) according to the 

manufacturer’s instructions. Expression analysis was performed in duplicate via 
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real-time PCR on a Roche LightCycler 480 using SYBR Green (Clontech) or an 

Applied Biosystems 7500 Real-Time PCR system (Life Technologies) with a 

Power SYBR Green Master Mix (Thermo Fisher Scientific). Expression levels 

were quantified and normalized to Gapdh expression using the following primer 

pairs:  

Species  Gene  Forward Primer Reverse Primer 

Murine  Gapdh  AGGTCGGTGTGAACGGATTTG  TGTAGACCATGTAGTTGAGGTCA  

Murine  IRF-1  CAGAGGAAAGAGAGAAAGTCC  CACACGGTGACAGTGCTGG  

Murine  Isg15  GGTGTCCGTGACTAACTCCAT  TGGAAAGGGTAAGACCGTCCT  

Murine  Mx1  GACCATAGGGGTCTTGACCAA  AGACTTGCTCTTTCTGAAAAGCC  

Murine  Gapdh AGGTCGGTGTGAACGGATTTG TGTAGACCATGTAGTTGAGGTCA 

Murine  Noxa CCCAGATTGGGGACCTTAG CTGCGAACTCAGGTGGTAGC 

Human GAPDH ATGGGGAAGGTGAAGGTCG GGGGTCATTGATGGCAACAATA 

Human  NOXA GAGATGCCTGGGAAGAAGG TTCTGCCGGAAGTTCAGTTT 

 

Transcriptomics (microarray and RNA-sequencing analysis)  

Gene expression was profiled using Illumina Mouse Expression BeadChip 

WG-6 according to manufacturer’s instructions. Array data was background 

corrected using BeadStudio and quantile normalized. A linear model was applied 

and implemented in the R programming language, utilizing functions from linear 

models for microarray data. For each probe, a moderated t-statistic (with 

standard errors moderated across genes) was computed using a Bayesian 

model to assess differential expression (312). The associated p-values were 

adjusted to control the false discovery rate in multiple testing, using the 
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Benjamini and Hochberg’s (BH) method (BH-adjusted p<0.05) (313). Multiple 

dimensional scaling (MDS) was applied to visualize profiles assembled from 

genes that were identified as differentially expressed in each state across the 

tissue types examined. MDS facilitates the representation of distances between 

pairs of samples in lower dimensional space and samples are assigned 

'coordinates' in each dimension. By applying Prim's algorithm implemented as 

priority-first search for graphs (314), a minimum spanning tree (for dissimilarities) 

that connected all vertices or nodes (denoting the profile vector for each sample) 

was found by minimizing the total weighting for its edges.  

For RNA-seq, RNA libraries were prepared using the TruSeq® Stranded 

Total RNA with Ribo-ZeroTM Gold kit (Illumina) and sequenced using 50-base 

pair single-end reading on a HiSeq 2500 instrument (Illumina). Reads were 

mapped to the mouse genome (mm10) using Tophat2 (315). To improve 

mapping, a GTF-file containing exon boundaries of all known RefSeq genes was 

supplied to Tophat. Quality control was performed using the RSEM-based 

quantification approach (316). HTSeq was used to count features from the 

alignment files. The count data was normalized by the trimmed mean of M-values 

normalization method, followed by variance estimation and applying generalized 

linear models in the R language, implementing empirical analysis of digital gene 

expression (317) to identify differentially expressed genes. Factorial designs 

were incorporated into the analysis by fitting these linear models with the 

coefficient for each of the factor combinations and then simultaneously extracting 

contrasts (317) for the respective ‘differential-of-differential’ analysis in the two 
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experimental dimensions (virus infection and genotype status: WT and IFNAR-/-). 

 

Enrichment analysis of pathway / biological processes and semantic 

similarity clustering  

Pathway and biological process enrichment analysis were performed as 

previously described (318-320). Briefly, data were interrogated from KEGG 

pathways and gene ontology biological processes. Each module or category was 

assessed for statistical enrichment or over-representation among differentially 

expressed genes relative to their representation in the global set of genes in the 

genome. Nominal p- and Benjamini-Hochberg-adjusted p-values were computed 

using the hypergeometric test implemented in the R programming language. 

Following enrichment analysis, pathways and biological processes derived from 

gene ontology and identified as over-represented were further subjected to gene 

semantic similarity analysis to establish similarity or ‘relatedness’ between 

pathway/process categories, by applying node-based measures of information 

content (IC), i.e. how informative or specific each pathway/process category, c is. 

IC is defined as the negative log likelihood for the occurrence of c in the 

pathway/process knowledgebase or in the most informative common ancestor in 

the ontology hierarchy, cMICA (321). We utilized the relevance similarity 

measure (322), simRel :  

𝑠𝑖𝑚𝑅𝑒𝑙 𝑐!, 𝑐! =  
2𝐼𝐶(𝑐!"#$)

𝐼𝐶 𝑐! + 𝐼𝐶(𝑐!)
×(1− 𝑝 𝑐! ) 

A semantic similarity map was generated by performing hierarchical 

clustering using the Minkowski distance metric on the resulting symmetric matrix 
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of simRel values for each pairwise comparison between pathway/process 

categories. 

 

Statistical Analysis 

Experiments were performed in triplicate and repeated at least twice. 

Representative results of single experiments are shown. Mean values were 

compared using the unpaired two-tailed Student’s t-test, Mann-Whitney test, 

Wilcoxon rank sum distribution test, or one-way analysis of variance (ANOVA) for 

multiple comparisons. ANOVA analyses were followed by a Dunnett’s post-hoc 

test for multiple comparisons to a control group, a Sidak’s post-hoc test for 

multiple comparisons between sets of data, or a Tukey’s post-hoc test for 

multiple comparisons between all groups. A Grubb’s test was used for exclusion 

of outliers. Error bars denote the standard error of the mean. The statistical test 

used and P values are indicated in each figure legend. P values of < 0.05 were 

considered to be statistically significant. *P < 0.05, **P < 0.01, ***P < 0.001 and 

****P < 0.0001. ns = non significant.  
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ABSTRACT Lambda interferon (IFN-�) has potent antiviral effects against multiple
enteric viral pathogens, including norovirus and rotavirus, in both preventing and
curing infection. Because the intestine includes a diverse array of cell types, how-
ever, the cell(s) upon which IFN-� acts to exert its antiviral effects is unclear. Here,
we sought to identify IFN-�-responsive cells by generation of mice with lineage-
specific deletion of the receptor for IFN-�, Ifnlr1. We found that expression of IFNLR1
on intestinal epithelial cells (IECs) in the small intestine and colon is required for en-
teric IFN-� antiviral activity. IEC Ifnlr1 expression also determines the efficacy of
IFN-� in resolving persistent murine norovirus (MNoV) infection and regulates fecal
shedding and viral titers in tissue. Thus, the expression of Ifnlr1 by IECs is necessary
for the response to both endogenous and exogenous IFN-�. We further demonstrate
that IEC Ifnlr1 expression is required for the sterilizing innate immune effects of
IFN-� by extending these findings in Rag1-deficient mice. Finally, we assessed
whether our findings pertained to multiple viral pathogens by infecting mice spe-
cifically lacking IEC Ifnlr1 expression with reovirus. These mice phenocopied Ifnlr1-
null animals, exhibiting increased intestinal tissue titers and enhanced reovirus
fecal shedding. Thus, IECs are the critical cell type responding to IFN-� to control
multiple enteric viruses. This is the first genetic evidence that supports an essential
role for IECs in IFN-�-mediated control of enteric viral infection, and these findings
provide insight into the mechanism of IFN-�-mediated antiviral activity.

IMPORTANCE Human noroviruses (HNoVs) are the leading cause of epidemic gas-
troenteritis worldwide. Type III interferons (IFN-�) control enteric viral infections in
the gut and have been shown to cure mouse norovirus, a small-animal model for
HNoVs. Using a genetic approach with conditional knockout mice, we identified IECs
as the dominant IFN-�-responsive cells in control of enteric virus infection in vivo.
Upon murine norovirus or reovirus infection, Ifnlr1 depletion in IECs largely recapitu-
lated the phenotype seen in Ifnlr1�/� mice of higher intestinal tissue viral titers and
increased viral shedding in the stool. Moreover, IFN-�-mediated sterilizing immunity
against murine norovirus requires the capacity of IECs to respond to IFN-�. These
findings clarify the mechanism of action of this cytokine and emphasize the thera-
peutic potential of IFN-� for treating mucosal viral infections.
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Norovirus and rotavirus are viral pathogens that infect at mucosal surfaces and
induce gastroenteritis, characterized by vomiting, diarrhea, and malaise (1, 2). Viral

gastroenteritis causes significant morbidity and mortality in children, the elderly, and
immunocompromised persons, thus representing a substantial health care burden (3,
4). Treatments for these illnesses have been limited thus far to symptomatic care,
including rehydration, because currently there is no specific antiviral therapy for these
viral pathogens. Lambda interferon (IFN-�; also called type III IFN) is an antiviral
cytokine that regulates viral infection at mucosal surfaces and in the liver and brain
(5–8). Administration of recombinant IFN-� can prevent and resolve viral infections in
the gastrointestinal tract (8, 9) and at other sites in mice (10). These effects are observed
for murine norovirus (MNoV) in mice lacking adaptive immunity, thus representing
sterilizing innate immunity in the intestine (8). These studies indicate the potential for
IFN-� as a therapeutic for viral infections, including those causing gastroenteritis, in
humans, including immunocompromised hosts (11). Better understanding of the mech-
anisms by which this antiviral cytokine functions is essential to understanding basic
mechanisms of intestinal control of viral infection and for potential therapeutic appli-
cation in humans.

Binding of IFN-� to its receptor, a heterodimer of interleukin-10R2 (IL-10R2) and
IFNLR1 (12, 13), induces an antiviral gene expression program similar to that induced
by type I IFN, with substantial overlap in gene sets in vitro (10, 14, 15). However, type
I and III IFNs exhibit unique antiviral properties in vivo. Ifnlr1�/� mice exhibit elevated
intestinal tissue replication and enhanced fecal shedding of a persistent strain of MNoV
(8, 16), a model virus which allows for more tractable in vitro and in vivo analyses than
human norovirus (reviewed in references 17 and 18). Recombinant IFN-� treatment is
sufficient to prevent and cure MNoV infection (8). In contrast, mice deficient for Ifnar1
(the receptor for type I IFNs) show enhanced extraintestinal spread of virus, but levels
of MNoV fecal shedding are comparable to those of wild-type mice (8, 16). Similarly,
IFNLR1 restricts growth in the epithelium and fecal shedding of reovirus, while IFNAR1
instead regulates reovirus growth in the lamina propria (19). IFN-� exhibits an antiviral
role exclusive of type I IFNs against a murine rotavirus strain (9) but cooperates with
type I IFNs to limit intestinal replication of a heterologous simian strain in neonatal
but not adult mice (20). These findings indicate the likely importance of tissue
compartment-, development-, and cell type-specific effects of type I and III IFNs in vivo.
These effects may be secondary to unique virulence factors that counter specific IFNs
or to differential expression of the IFN receptors (21, 22).

IFNAR1 is thought to be expressed ubiquitously and at especially high levels on cells
of hematopoietic origin (reviewed in references 23 and 24), whereas expression of
detectable IFNLR1 appears to be limited to mucosal epithelial cells (25), human
hepatocytes (6), and neutrophils (26). Although IFNLR1 expression on peripheral leu-
kocytes has also been reported, it does not appear to be functional (27). Upon IFN-�
treatment, IFN-stimulated genes accumulate in intestinal epithelial cells (IECs), indicat-
ing functional IFNLR1 expression (9, 19, 20). In contrast, in IECs of adult mice, IFNAR1
may be expressed at lower levels or alternately trafficked, such as only to the apical
portion of the cell (9, 20). Differential receptor expression thus could account for
complementary roles for different IFNs in protection against systemic infection (type I)
and infection of mucosal (type III) sites. Importantly, however, it has been reported that
cells that do not express detectably high levels of IFNLR1, such as the endothelial cells
of the blood-brain barrier, may still respond to endogenous and exogenous IFN-� with
protective antiviral effects (10). Thus, to successfully identify the cell types required for
the antiviral response to IFN-�, analysis of receptor expression levels may be insuffi-
cient, and definitive resolution requires a genetic approach to selectively delete recep-
tor expression in specific cell types.

To identify the cell types that respond to IFN-� in vivo in the intestine, we generated
mice with a conditional mutant allele for Ifnlr1 and crossed them to mice expressing Cre
recombinase via the action of different cell type-specific promoters (Table 1). Ifnlr1 was
targeted in cell types expected to express high receptor levels (intestinal epithelial cells
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[25] and neutrophils [26]) and cells that are known to be permissive for MNoV
replication in tissue culture (macrophages and dendritic cells [35]). Of all the cell types
tested, only intestinal epithelial cells (IECs) required expression of Ifnlr1 for the antiviral
effects of IFN-� against MNoV. To show the generality of our findings, we demonstrated
the importance of IEC expression of this receptor for control of reovirus infection. This
is the first study to genetically define IFN-�-responsive cells in vivo in the context of two
independent mucosal viral infections. This study also confirms that the cells required for
responding to endogenous IFN-� to attenuate MNoV infection are the same as those
that respond to exogenous IFN-� administration, including in the elicitation of steril-
izing innate immunity.

RESULTS
Ifnlr1 is expressed in the epithelial fraction along the length of the gastroin-

testinal tract. Tissue from adult mice homozygous for a null mutation in Ifnlr1 (28) or
wild-type controls was collected from sites along the intestine, lung, mesenteric lymph
node (MLN), or spleen (Fig. 1A). The small intestine was also dissociated into epithelial
and lamina propria fractions as previously described (36), and RNA was isolated from

TABLE 1 Mouse lines, nomenclature, and cell types targeted by specific Cre lines

Ifnlr1 and Cre mouse line(s) Line namea

Cell type(s) targeted
(reference)

Ifnlr1tm1Palu; no Cre line Ifnlr1�/� All cells (28)
Ifnlr1tm1a(EUCOMM)Wtsi; Villin-Cre Ifnlr1f/f-Villincre Intestinal epithelial cells (29)
Ifnlr1tm1a(EUCOMM)Wtsi; MRP8-Cre Ifnlr1f/f-MRP8cre Neutrophils (30)
Ifnlr1tm1a(EUCOMM)Wtsi; CD11c-Cre Ifnlr1f/f-CD11ccre Dendritic cells and alveolar

macrophages (31)
Ifnlr1tm1a(EUCOMM)Wtsi; LysM-Cre Ifnlr1f/f-LysMcre Macrophages, neutrophils, some

dendritic cells (32, 33)
Ifnlr1tm1a(EUCOMM)Wtsi; Deleter-Cre Ifnlr1f�/� All cells (34)
aA conditional allele of Ifnlr1 (Ifnlr1f/f) was crossed to multiple different Cre lines for lineage-specific deletion
of Ifnlr1 in the specific cell types.
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these fractions and tissues. Expression of Ifnlr1 was detected by quantitative real-time
PCR of cDNA generated from these RNA samples. We found that Ifnlr1 was expressed
along the length of the intestine and in the lung, as well as in systemic tissues,
including MLN and spleen (Fig. 1B). Intestinal Ifnlr1 expression was substantially en-
riched (at least 30-fold; P � 0.0381) in the epithelial fraction compared to the lamina
propria fraction (Fig. 1B), consistent with previous reports (9, 25). As expected, no
transcript was detected in any tissue in Ifnlr1�/� mice (Fig. 1B).

Ifnlr1 expression in the small and large intestine is significantly diminished in
Ifnlr1f/f-Villincre mice. Embryonic stem (ES) cells targeted with a construct containing
sequences homologous to Ifnlr1, an FLP recombinant target (FRT)-flanked lacZ and
neomycin cassette, and loxP sites flanking exon 2 were provided by the Wellcome Trust
Sanger Institute (Fig. 2A). Mice derived from these ES cells were crossed with mice
expressing Flp recombinase for deletion of the FRT-flanked cassette (38), leaving a
conditional allele of Ifnlr1, referred to as Ifnlr1f (Fig. 2A). Following removal of the floxed
region in cells expressing Cre, the resulting transcript is predicted to produce a
truncated protein product (Fig. 2B). For disruption in specific cell lineages, Ifnlr1f/f mice
were crossed with various Cre mouse lines (Table 1). For each line, Cre(�) Ifnlr1f/f mice
were compared to Cre(�) Ifnlr1f/f littermates to assess the effects of cell type-specific
deletion upon Ifnlr1 expression along the intestine and in extraintestinal tissues (Fig.
1A). Ifnlr1f/f-Villincre mice showed significantly diminished Ifnlr1 expression in the small
and large intestine (Fig. 2C). Fractionation of the small intestine into epithelial and
lamina propria fractions revealed efficient deletion of Ifnlr1 in the epithelium of these
mice (Fig. 2C). In contrast, Ifnlr1f/f-MRP8cre, Ifnlr1f/f-LysMcre, and Ifnlr1f/f-CD11ccre mice
showed no alterations in intestinal Ifnlr1 expression at the level of the whole tissues
tested (Fig. 2D, E, and F). Ifnlr1f/f-MRP8cre, Ifnlr1f/f-LysMcre, and Ifnlr1f/f-CD11ccre mice
did exhibit substantial depletion of Ifnlr1 in their respectively targeted cell types of
neutrophils (�85%), macrophages (�91%), and dendritic cells (�85%), consistent with
a previous report (39) (Fig. 2D, E, and F). Expression of Ifnlr1 remained unchanged in
lung, MLN, spleen, stomach, and duodenum in Ifnlr1f/f-Villincre mice, indicating expres-
sion of Cre specific to distal small intestine and colon (Fig. 2C), consistent with previous
reports (29, 40).

Expression of Ifnlr1 in intestinal epithelium regulates MNoV shedding and
response to recombinant IFN-�. Ifnlr1�/� mice and wild-type controls were inocu-
lated with CR6, a persistent strain of MNoV that replicates well in the intestine, is shed
into the feces at readily detectable levels, and is sensitive to treatment with IFN-� (8,
41). As described previously (8), Ifnlr1�/� mice allow higher levels of fecal MNoV
shedding than do wild-type mice at early time points (Fig. 3A and G) and are insensitive
to IFN-� treatment, although this treatment terminates MNoV replication in wild-type
mice (Fig. 3A). These results were also observed in a novel Ifnlr1-deficient mouse model
(Ifnlr1f�/�) (Table 1 and Fig. 3B). This assay was next applied to the four mouse strains
with lineage-specific deletion of Ifnlr1 (Table 1). Ifnlr1f/f-Villincre mice phenocopied
Ifnlr1�/� and Ifnlr1f�/� mice, exhibiting both elevated fecal shedding of MNoV and
resistance to IFN-� treatment (Fig. 3C). In contrast, Ifnlr1f/f-MRP8cre, Ifnlr1f/f-LysMcre, and
Ifnlr1f/f-CD11ccre mice exhibited viral loads and response to IFN-� equivalent to those
of Ifnlr1f/f controls (Fig. 3D, E, and F). At day 7 postinoculation, IFNLR1 regulated fecal
shedding of MNoV, as seen by comparing wild-type and Ifnlr1�/� levels (Fig. 3G).
Ifnlr1f/f-Villincre mice allowed fecal shedding equivalent to Ifnlr1�/� and Ifnlr1f�/� mice,
suggesting that control of MNoV fecal shedding can be fully accounted for by IFNLR1
in Villin-expressing cells (Fig. 3G). Similarly, Ifnlr1f/f-Villincre mice exhibited no difference
in comparison to Ifnlr1�/� and Ifnlr1f�/� mice along the full time course of infection
(Fig. 3H).

Expression of Ifnlr1 in intestinal epithelium is essential for induction of IFN-�-
mediated sterilizing innate immunity to MNoV infection. We previously reported
that recombinant IFN-� can cure persistently infected mice in the absence of adaptive
immunity (8). To determine whether expression of Ifnlr1 in IECs is required for IFN-�-
mediated sterilizing innate immunity to persistent MNoV infection, we established
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FIG 2 Ifnlr1 expression is decreased in the small and large intestines of Ifnlr1f/f-Villincre mice. (A) Schematic depicting the Ifnlr1 gene locus
in Ifnlr1tm1a(EUCOMM)Wtsi mice. After crossing with mice expressing Flp recombinase (�Flp recombinase), the region between the two FRT sites
was deleted, leaving conditional-ready Ifnlr1f/f mice. In the absence of Cre, all exons are present. With the addition of Cre recombinase, the
floxed exon 2 is deleted. (B) In the absence of Cre [Cre(�)], the IFNLR1 protein is expressed. In the presence of Cre [Cre(�)], the protein
sequence is altered at amino acid 20 and a premature stop codon is introduced at amino acid 42. (C to F) Ifnlr1 expression was assessed
by quantitative real-time PCR of sites along the intestine and the lung, MLN and spleen, and epithelial and LP fractions from Ifnlr1f/f-Villincre
(C), Ifnlr1f/f-MRP8cre (D), Ifnlr1f/f-LysMcre (E), and Ifnlr1f/f-CD11ccre (F) mice compared to their Ifnlr1f/f littermates. Ifnlr1 expression was also
assessed by quantitative real-time PCR of isolated bone marrow neutrophils from Ifnlr1f/f-MRP8cre (D), splenic macrophages from Ifnlr1f/f-
LysMcre (E), and splenic dendritic cells from Ifnlr1f/f-CD11ccre (F) mice compared to their Ifnlr1f/f littermates. n � 4 to 7 samples per group,
from two independent experiments, analyzed by Mann-Whitney test. *, P � 0.05; **, P � 0.01; ns, not significant.
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FIG 3 Expression of Ifnlr1 on intestinal epithelial cells is required for the antiviral effects of endogenous and exogenous IFN-� against MNoV.
(A to E) Time course of MNoV genome copies shed into fecal pellets with time points at 7, 14, 21, 24, 28, and 35 days after CR6 infection.
PBS or recombinant IFN-� was injected intraperitoneally on day 21 into wild-type and Ifnlr1�/� (A), wild-type and Ifnlr1f�/� (B), Ifnlr1f/f-
Villincre (C), Ifnlr1f/f-MRP8cre (D), Ifnlr1f/f-LysMcre (E), or Ifnlr1f/f-CD11ccre (F) mice and their Ifnlr1f/f littermates. n � 6 to 12 mice per group, from
two to three independent experiments, analyzed by two-way ANOVA followed by Tukey’s multiple-comparison test; a P value of �0.001 by
ANOVA column factor was found for panels A to F. (G) Individual data points depicting MNoV genome copies shed into fecal pellets on day
7 from panels A to F. n � 9 to 21 mice per group, from two to three independent experiments, analyzed by one-way ANOVA followed by
Tukey’s multiple-comparison test; a P value of �0.001 was determined by ANOVA. (H) Fecal shedding data from PBS-treated mice in panels
A to C is shown superimposed to facilitate comparison between strains. n � 8 to 11 mice per group, from two to three independent
experiments, analyzed by two-way ANOVA followed by Tukey’s multiple-comparison test; a P value of �0.001 was determined by ANOVA
column factor. *, P � 0.05; **, P � 0.01; ***, P � 0.001; ns, not significant.
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Rag1�/� Ifnlr1f/f-Villincre conditional double knockout mice. Rag1�/� Ifnlr1f/f-Villincre
mice were orally inoculated with CR6, and viral shedding in the stool was quantified by
quantitative PCR (qPCR). Rag1�/� Ifnlr1f/f-Villincre mice showed increased viral shed-
ding throughout the infection time course (Fig. 4A). Injection of recombinant IFN-�
terminated MNoV replication in Rag1�/� Ifnlr1f/f mice but did not affect MNoV loads in
Rag1�/� Ifnlr1f/f-Villincre mice (Fig. 4A). At 7 days postinoculation, Rag1�/� Ifnlr1f/f-
Villincre mice had significantly higher viral shedding than Rag1�/� Ifnlr1f/f mice, and the
level of viral shedding in Rag1�/� Ifnlr1f/f-Villincre mice was comparable to the level of
viral shedding in Rag1�/� Ifnlr1�/� mice (Fig. 4B). Therefore, IFN-� responses in IECs
limited persistent MNoV infection in the absence of adaptive immunity, and IFN-�
signaling in IECs was essential for clearance of persistently infected MNoV by IFN-�-
mediated sterilizing innate immunity.

Control of reovirus in intestinal tissue by IFN-� depends upon the expression
of Ifnlr1 in epithelial cells. To assess whether Ifnlr1 expression on IECs was required
for control of other enteric pathogens, Ifnlr1�/� and Ifnlr1f/f-Villincre mice were orally
inoculated with 108 PFU of reovirus strain type 1 Lang (T1L). At 4 days postinfection,
viral titers in small intestinal tissues, including duodenum, jejunum, and ileum, as well
as viral shedding in stools, were significantly higher in Ifnlr1�/� mice (Fig. 5A and B),
consistent with a previous report using another strain of reovirus, type 3 Dearing (19).
Control of reovirus was predominantly through the expression of IFNLR1 on IECs, as
Ifnlr1f/f-Villincre mice displayed increased titers of reovirus in small intestinal tissues as
well as enhanced fecal shedding (Fig. 5A and B). These results demonstrate that
expression of IFNLR1 in epithelial cells is essential for the control of reovirus infection
by IFN-� in the gut and indicate that IFN-� signaling in IECs is an antiviral mechanism
common to multiple enteric viral pathogens.

Interferon-stimulated gene expression in the intestine depends upon the
expression of Ifnlr1 in epithelial cells. Ileum and proximal colon tissues were isolated
from wild-type (WT), Ifnlr1�/�, Ifnlr1f/f, and Ifnlr1f/f-Villincre mice 1 day posttreatment
with either PBS or IFN-�. These tissues were then assessed for expression of canonical
antiviral interferon-stimulated genes (ISGs) Oas1a (42), Ifit1 (43), and Ifi44 (44) (Fig. 6A
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FIG 4 Expression of Ifnlr1 on intestinal epithelial cells is required for the antiviral effects of IFN-� against
MNoV in the absence of adaptive immunity. (A) Time course of MNoV genome copies shed into fecal
pellets with time points at 7, 14, 21, 24, 28, and 35 days after CR6 infection. PBS or recombinant IFN-�
was injected intraperitoneally on day 21 and day 23 into Rag1�/� Ifnlr1f/f-Villincre or Rag1�/� Ifnlr1f/f mice.
n � 6 to 14 mice per group, combined from three independent experiments, analyzed by two-way
ANOVA followed by Tukey’s multiple-comparison test; a P value of �0.001 was found by ANOVA column
factor. (B) Individual data points depicting MNoV genome copies shed into fecal pellets on day 7 from
Rag1�/�, Rag1�/� Ifnlr1�/� double knockouts or mice depicted in panel A. n � 6 to 22 mice per group,
combined from two to three independent experiments, analyzed by Mann-Whitney test. ***, P � 0.001;
ns, not significant.
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to C). While intestinal tissues from WT and Ifnlr1f/f mice exhibited robust ISG induction
in response to IFN-� treatment, tissues from Ifnlr1�/� and Ifnlr1f/f-Villincre mice failed to
significantly upregulate these ISGs in response to IFN-�. These data correlate with the
impaired antiviral response against MNoV in Ifnlr1�/� and Ifnlr1f/f-Villincre mice after
IFN-� treatment (Fig. 3A and C), consistent with a potentially critical role for IFNLR1
expression on epithelial cells for induction of antiviral ISGs in response to IFN-�
treatment.

DISCUSSION

In this study, we found that IECs are the predominant cell type expressing Ifnlr1 in
the small intestine and colon and that this cell type plays a major role in IFN-�-
mediated antiviral immunity in the intestine. Antiviral immunity elicited by IFN-� to
enteric reovirus and norovirus infection depends upon IFNLR1 signaling in Villin-
positive IECs. Using four mouse strains with lineage-specific deletion of Ifnlr1 to study
persistent infection and IFN-�-mediated clearance, we found that only Ifnlr1f/f-Villincre
mice exhibited a complete phenocopy of Ifnlr1�/� mice. Targeting Ifnlr1 in other cells,
including dendritic cells, macrophages, and neutrophils, had no detectable effect on
basal levels of viral shedding or IFN-�-mediated clearance of MNoV. The dominant
IFN-�-dependent antiviral contribution by IECs also was confirmed with reovirus infec-
tion. In studies using reovirus T1L, we observed viral titers in the small intestine of
Ifnlr1f/f-Villincre mice increased comparably to those detected in Ifnlr1�/� mice, al-
though we cannot rule out a minor role for other IFN-�-responding cells in the ileum.
Therefore, IECs are the functionally dominant IFN-�-responding cells for endogenous
and exogenous IFN-� control of viruses in the intestine. There is a clear correlation
between IFN-�-mediated induction of antiviral ISGs and IEC expression of IFNLR1,
suggesting that induction of ISGs in IECs is the mechanism by which IFN-� exerts its
antiviral effects.

Expression of Ifnlr1 mRNA throughout the gut and in other extraintestinal tissues
(MLN, lung, and spleen) was quantified by qPCR analysis. In lamina propria cells, there
were fewer than 500 copies of Ifnlr1 mRNA per 1 �g total RNA. In contrast, IECs express

A B

Wild
-ty

pe

Ifn
lr1

-/-

Ifn
lr1

f/f 

Ifn
lr1

f/f -Villi
ncre

Wild
-ty

pe

Ifn
lr1

-/-

Ifn
lr1

f/f 

Ifn
lr1

f/f -Villi
ncre

Wild
-ty

pe

Ifn
lr1

-/-

Ifn
lr1

f/f 

Ifn
lr1

f/f -Villi
ncre

4

5

6

7

R
eo

vi
ru

s 
vi

ra
l t

ite
rs

 
(L

og
10

 P
FU

)

***
***

***
**

***
***

***
***

***
***

***

***

ns
ns ns

ns
ns

**
Duodenum Jejunum Ileum Stool

Wild
-ty

pe

Ifn
lr1

-/-

Ifn
lr1

f/f

Ifn
lr1

f/f -Villi
ncre

4

5

6

7

R
eo

vi
ru

s 
vi

ra
l t

ite
rs

 
(L

og
10

 P
FU

)

***
**

*** *

ns
ns

FIG 5 Ifnlr1 expression on intestinal epithelial cells limits reovirus infection. (A and B) Titers of reovirus strain T1L
were assessed at day 4 postinoculation in the different compartments of the small intestine (A) and stool (B) from
wild-type, Ifnlr1�/�, Ifnlr1f/f-Villincre, and Ifnlr1f/f littermate control mice. The small intestine was resected from the
pylorus to the cecum and sectioned into three equal parts, representing the duodenum, jejunum, and ileum. Titers
are expressed as PFU per milliliter of tissue homogenate or gram of stool. n � 6 to 8 mice per group, combined
from two independent experiments, analyzed by one-way ANOVA followed by Tukey’s multiple-comparison test;
a P value of �0.001 was determined by ANOVA column factor for all tissues and stool. *, P � 0.05; **, P � 0.01;
***, P � 0.001; ns, not significant.
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FIG 6 Ifnlr1 expression on intestinal epithelial cells is necessary for induction of interferon-stimulated
genes. Oas1a (A), Ifit1 (B), and Ifi44 (C) expression was assessed by quantitative real-time PCR of RNA from
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1 day posttreatment with PBS or recombinant IFN-�. n � 5 to 9 mice per group, combined from two
independent experiments, analyzed by one-way ANOVA followed by Tukey’s multiple-comparison test;
a P value of �0.001 was determined by ANOVA column factor for all tissues. ***, P � 0.001; ns, not
significant.
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more than 10,000 copies of Ifnlr1 mRNA per 1 �g total RNA throughout the small
intestine. Thus, IECs are the dominant Ifnlr1-expressing cells and function as the major
IFN-�-responding cells for antiviral immunity in the intestine. In MLN, spleen, and lung,
we detected comparable expression of Ifnlr1 mRNA. Villin-positive cells were not the
major cell type responsible for Ifnlr1 expression in these tissues, and neither were
neutrophils, dendritic cells, or macrophages. Therefore, there may exist some other cell
types that are important for IFN-� responses in these tissues. Lung epithelial cells,
which do not express Villin, likely reflect a major source of Ifnlr1 in that tissue (29). B or
T cells, which have been reported to express Ifnlr1 even though they lack a robust
response to IFN-�, may account for Ifnlr1 expression in the MLN and spleen (27).
Another possible cellular source for this expression is endothelial cells, based on the
report that blood-brain barrier endothelial cells respond to IFN-� to restrict West Nile
virus neuroinvasion (10). Thus, it would be interesting to study the role of IFN-� in
extraintestinal tissues in control of other pathogens and define the IFN-�-responsive
cell types in these contexts.

In some tissues, such as lung and vagina, there is redundancy between type I and
III IFN-mediated antiviral responses. IFN-� controls influenza virus, severe acute respi-
ratory syndrome (SARS) coronavirus, respiratory syncytial virus infection in the lung
(45–47), and herpes simplex virus 2 (HSV-2) infection in the genital tract (48), redun-
dantly with type I IFNs. In the intestine, however, IFN-�-mediated antiviral immunity
does not redundantly overlap type I IFNs (8, 9, 19). Adult IECs have polarized apical
IFNAR1 expression only at low levels (9), and although IECs in neonates exhibit robust
STAT1 activation after type I IFN treatment, in adult mice they are largely unresponsive
to type I IFN treatment in vivo (9, 19, 20). Moreover, the expression level of Ifnlr1 mRNA
is highly enriched in IECs but minimally detectable in other compartments of intestinal
tissue (Fig. 1 and 2). This study, bolstering previous findings of alternate cellular
expression patterns for type I and III IFN receptors, helps explain why IFN-�-mediated
immunity in the intestine is nonredundant with IFN-�/� in adult mice, even though
they may stimulate transcription of highly overlapping sets of antiviral genes (7, 20).
Our data support a role for IECs as sentinels for enteric virus infection via their response
to compartment-specific IFN-� signaling (19, 20).

One of the important features of IFN-�-mediated immunity is its sterilizing activity
against persistent MNoV infection in the absence of adaptive immunity (8). We ob-
served that persistent MNoV infection of Rag1�/� Ifnlr1f/f-Villincre mice was not re-
solved by IFN-� treatment and showed increased viral titers in the stool, similar to our
observations with Rag1�/� Ifnlr1�/� mice. Thus, IFN-�-mediated sterilizing innate
immunity requires IEC expression of the receptor. Since only macrophages, dendritic
cells, and B cells are known to be susceptible to MNoV infection in vitro (35, 49), it is not
clear how the IFN-� response in IECs ablates persistent MNoV infection in the absence
of adaptive immunity. One possible explanation is that there is a secondary trans-acting
molecule induced by IFN-� in IECs that clears MNoV in other cell types. A related study
has demonstrated that rotavirus can be terminated by injecting IL-22 and IL-18 into
Rag1�/� mice, but this IL-22- and IL-18-mediated viral clearance does not induce IFN-�
or Stat1 activation (50). Thus, there may be multiple innate immunological mechanisms
to resolve persistent viral infection in the absence of adaptive immunity. Identifying the
effectors of IFN-�-mediated sterilizing immunity is an important area to pursue in IFN-�
immunology.

This study reveals that Ifnlr1 expression in IECs is required for control of enteric
MNoV and reovirus infections. Using a genetic approach with conditional knockout
mice, we identified IECs as the dominant cell type that responds to endogenous and
exogenous IFN-� to control enteric viruses. Understanding the identity of IFN-�-
responsive cell types provides further insight into mechanisms that control enteric
viruses and will enhance future development of IFN-�-mediated antiviral therapeu-
tics.
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MATERIALS AND METHODS
Generation of MNoV stocks and determination of titers. Stocks of MNoV strain CR6 were

generated from a molecular clone as previously described (51). Briefly, a plasmid encoding the CR6
genome was transfected into 293T cells to generate infectious virus, which was subsequently passaged
on BV2 cells. After two passages, BV2 cultures were frozen and thawed to liberate virions. Cultures then
were cleared of cellular debris and virus was concentrated by ultracentrifugation through a 30% sucrose
cushion. Titers of virus stocks were determined by plaque assay on BV2 cells (51).

Generation of reovirus stocks and determination of titers. Spinner-adapted murine L929 (L) cells
were grown in either suspension or monolayer cultures in Joklik’s modified Eagle’s minimal essential
medium (SMEM; Lonza) supplemented to contain 5% fetal bovine serum (Gibco), 2 mM L-glutamine, 100
U/ml penicillin, 100 �g/ml streptomycin (Gibco), and 25 ng/ml amphotericin B (Sigma). BHK-T7 cells were
grown in Dulbecco’s modified Eagle’s minimal essential medium (DMEM; Gibco) supplemented to
contain 5% fetal bovine serum, 2 mM L-glutamine, 1 mg/ml Geneticin (Gibco), and nonessential amino
acids (Sigma).

Recombinant reoviruses were generated using plasmid-based reverse genetics (52). Recombinant
strain type 1 Lang (T1L) is a stock generated by plasmid-based rescue from cloned T1L cDNAs (53). After
3 to 5 days of incubation, cells were frozen and thawed three times, and virus was isolated by plaque
purification using monolayers of L cells (54). Purified reovirus virions were generated from second- or
third-passage L-cell lysate stocks (55). Viral particles were extracted from infected cell lysates using
Vertrel XF (Dupont), layered onto 1.2- to 1.4-g/cm3 CsCl gradients, and centrifuged at 62,000 � g for 16
h. Bands corresponding to virions (1.36 g/cm3) were collected and dialyzed in virion storage buffer (150
mM NaCl, 15 mM MgCl2, and 10 mM Tris-HCl [pH 7.4]) (56). The concentration of reovirus virions in
purified preparations was determined from the following equivalence: one optical density (OD) unit at
260 nm equals 2.1 � 1012 virions (56). Viral titer was determined by plaque assay using L cells (54).

For analysis of reoviral titers in organs, mice were euthanized at various intervals postinoculation, and
organs were harvested into 1 ml of PBS and homogenized by freeze-thaw and bead beating. For analysis
of viral titer in stool, samples were harvested at various intervals, weighed, stored in 1 ml of PBS, and
homogenized by freeze-thaw and bead beating. Viral titers in organs and stool homogenates were
determined by plaque assay using L cells (54). Titers are expressed as PFU per milliliter of tissue
homogenate or per gram of stool.

Mice, infections, and IFN-� treatment. Wild-type (WT) C57BL/6J mice (stock number 000664) were
purchased from Jackson Laboratories (Bar Harbor, ME) and housed at the Washington University School
of Medicine under specific-pathogen-free conditions (57) according to university guidelines. Ifnlr1�/�

(B6.Cg-Ifnlr1tm1Palu) mice were obtained from Bristol-Myers Squibb (Seattle, WA) and backcrossed using
speed congenics onto a C57BL/6J background (28).

To generate mice conditionally deficient for Ifnlr1, Ifnlr1tm1a(EUCOMM)Wtsi ES cells on a C57BL/6N
background were provided by the Wellcome Trust Sanger Institute. A conditional-ready (floxed) allele in
which exon 2 is flanked by loxP sites, designated Ifnlr1f/f, was created (Fig. 2A) (38). Ifnlr1f/f mice were
crossed to Villin-Cre (intestinal epithelial cells [29]), LysM-Cre (macrophages and neutrophils, as well as
some dendritic cells [32, 33]), CD11c-Cre (dendritic cells and alveolar macrophages [31]), and MRP8-Cre
(neutrophils [30]) lines for selective disruption of Ifnlr1 in different cell types in vivo. Ifnlr1f/f mice were also
crossed to a Deleter-Cre line (34) to generate an alternate Ifnlr1�/� line, here designated Ifnlr1f�/�.
Ifnlr1f�/� mice were backcrossed using speed congenics onto a C57BL/6J background. Mouse lines and
naming conventions are summarized in Table 1.

For MNoV infections, mice were inoculated with a dose of 106 PFU of strain CR6 at 6 to 8 weeks of
age by the oral route in a volume of 25 �l. For reovirus infections, mice were orally gavaged with a dose
of 108 PFU of strain T1L virus at 6 to 8 weeks in a volume of 100 �l.

Recombinant IFN-� was provided by Bristol-Myers Squibb (Seattle, WA) as a monomeric conjugate
comprised of 20-kDa linear polyethylene glycol (PEG) attached to the amino terminus of murine IFN-�,
as previously reported (8). For treatment of mice, 25 �g of IFN-� diluted in PBS was injected intraperi-
toneally.

Stool and tissues were harvested into 2-ml tubes (Sarstedt, Germany) with 1-mm-diameter zirconia/
silica beads (Biospec, Bartlesville, OK). Tissues were flash frozen in a bath of ethanol and dry ice and either
processed on the same day or stored at �80°C.

Isolation of epithelial and lamina propria fractions of small intestine. Epithelial and lamina
propria fractions were prepared as previously described (36). In brief, after mice were euthanized, small
intestines were collected. Intestinal tissues were washed with cold PBS twice and then chopped and
transferred to new tubes. The tissues were incubated with stripping buffer (10% bovine calf serum, 15
mM HEPES, 5 mM EDTA, 5 mM dithiothreitol [DTT] in 1� Hanks’ balanced salt solution [HBSS]) for 20 min
at 37°C. The dissociated cells were collected as the epithelial fraction, consisting predominantly of IECs.
The remaining tissue was used as the lamina propria fraction.

Isolation of neutrophils, macrophages, and dendritic cells. Neutrophils were isolated from
Ifnlr1f/f-MRP8cre mice and Ifnlr1f/f littermates by collecting bone marrow from femurs and tibias. Red
blood cells were lysed using red blood cell lysis buffer (Sigma, St. Louis, MO), and neutrophils were
isolated using the mouse neutrophil isolation kit (Miltenyi Biotec, Germany). Isolated neutrophils were
confirmed to be 95 to 98% double positive for CD11b-allophycocyanin (APC) and Ly6G-fluorescein
isothiocyanate (FITC) (BioLegend, San Diego, CA) (data not shown). Macrophages were isolated from
Ifnlr1f/f-LysMcre mice and Ifnlr1f/f littermates by collecting and homogenizing spleens, lysing red
blood cells (RBCs), and enriching for macrophages using mouse anti-F4/80 UltraPure MicroBeads
(Miltenyi Biotec). Isolated macrophages were confirmed to be 70 to 85% positive for F4/80-AF488
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(Thermo Fisher Scientific) as well as CD11b-APC and CD45.2-phycoerythrin (PE) (BioLegend) (data
not shown). Dendritic cells were isolated from Ifnlr1f/f-CD11ccre mice and Ifnlr1f/f littermates by
collecting and homogenizing spleens, lysing RBCs, and enriching for dendritic cells using the mouse
pan-dendritic cell isolation kit (Miltenyi Biotec). Isolated dendritic cells were confirmed to be 70 to
85% CD11c-AF488 (BioLegend) single positive or CD11c-AF488 and B220-PE (BD Bioscience) double
positive (data not shown).

Quantitative reverse transcription-PCR. RNA from stool was isolated using a ZR-96 viral RNA kit
(Zymo Research, Irvine, CA). RNA from tissues or cells was isolated using TRI Reagent (Invitrogen) and a
direct-zol-96 RNA kit (Zymo Research, Irvine, CA) according to the manufacturer’s protocol. Five micro-
liters of RNA from stool or 1 �g of RNA from tissue was used as a template for cDNA synthesis with the
ImPromII reverse transcriptase system (Promega, Madison, WI). DNA contamination was removed using
the DNAfree kit (Life Technologies).

MNoV TaqMan assays were performed, using a standard curve for determination of absolute viral
genome copies, as described previously (58). Quantitative PCR for housekeeping gene Rps29 was
performed with forward primer 5=-GCAAATACGGGCTGAACATG-3=, reverse primer 5=-GTCCAACTTAATG
AAGCCTATGTC-3=, and probe 5=-/5HEX/CCTTCGCGT/ZEN/ACTGCCGGAAGC/3IABkFQ/-3= (where 3IABkFQ
is 3= Iowa Black fluorescence quencher; Integrated DNA Technologies), each at a concentration of 0.2 �M,
using AmpliTaq gold DNA polymerase (Applied Biosystems). Quantitative PCRs for Ifnlr1 (Mm.PT.58.
10781457), Oas1a (Mm.PT.58.30459792), Ifi44 (Mm.PT.58.12162024), and Ifit1 (Mm.PT.58.32674307)
were similarly performed using PrimeTime qPCR assays (Integrated DNA Technologies). Standard curves
for quantitative PCR assays were generated to facilitate absolute quantification of transcript copy
numbers. For Rps29, the PCR product using the above-described primers was cloned into the p-ENTR/
D-TOPO vector (Thermo Fisher Scientific), and for Ifnlr1 a full-length Ifnlr1 cDNA clone (5036481; Open
Biosystems) was used. Plasmids were Sanger sequenced to confirm the identity of the inserts. For Oas1a,
Ifit1, and Ifi44, absolute transcripts were quantitated based on target sequence-containing gBlocks
(Integrated DNA Technologies). Cycling parameters for Rps29, Ifnlr1, Oas1a, Ifit1, and Ifi44 were identical
to those for MNoV TaqMan. Absolute values of Ifnlr1, Oas1a, Ifit1, and Ifi44 per microgram of RNA were
normalized to the within-tissue average of housekeeping gene Rps29. No significant changes in absolute
copy number of Rps29 were detected between comparison groups (data not shown).

Statistical analysis. Data were analyzed with Prism 7 software (GraphPad Software, San Diego, CA).
In all graphs, three asterisks indicate a P value of �0.001, two asterisks indicate a P value of �0.01, one
asterisk indicates a P value of �0.05, and ns indicates not significant (P � 0.05) as determined by
Mann-Whitney test, one-way analysis of variance (ANOVA), or two-way ANOVA with Tukey’s multiple-
comparison test, as specified in the relevant figure legends.
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Age-dependent susceptibility to reovirus encephalitis in mice is
influenced by maturation of the type-I interferon response
Allen G Wu1,2,6,7, Andrea J Pruijssers1,2,6, Judy J Brown2,3, Jennifer E Stencel-Baerenwald2,3,8, Danica M Sutherland2,3,
Jason A Iskarpatyoti1,2,9 and Terence S Dermody4,5

BACKGROUND: Infants and young children are particularly
susceptible to viral encephalitis; however, the mechanisms are
unknown. We determined the age-dependent contribution of
innate and adaptive immune functions to reovirus-induced
encephalitis in mice.
METHODS: Newborn wild-type mice, 2–20 days of age, were
inoculated with reovirus or diluent and monitored for
mortality, weight gain, and viral load. Four- and fifteen-day-
old IFNAR− /− and RAG2− /− mice were inoculated with
reovirus and similarly monitored.
RESULTS: Weight gain was impaired in mice inoculated with
reovirus at 8 days of age or less. Clinical signs of encephalitis
were detected in mice inoculated at 10 days of age or less.
Mortality decreased when mice were inoculated after 6 days
of age. Survival was ≤ 15% in wild type (WT), RAG2− /−, and
IFNAR− /− mice inoculated at 4 days of age. All WT mice, 92%
of RAG2− /− mice, and only 48% of IFNAR− /− mice survived
following inoculation at 15 days of age.
CONCLUSIONS: Susceptibility of mice to reovirus-induced
disease decreases between 6 and 8 days of age. Enhanced
reovirus virulence in IFNAR− /− mice relative to WT and
RAG2− /− mice inoculated at 15 days of age suggests that
maturation of the type-I interferon response contributes to
age-related mortality following reovirus infection.

V iral encephalitis is a major cause of morbidity and
mortality worldwide. Neurotropic viruses continue to

emerge and reemerge because of changes in viral virulence,
expanded distribution of viral vectors, fluctuations in
population immunity, and increased travel associated with
globalization (1). The young are particularly susceptible to
poor outcomes of viral encephalitis such as developmental
delays, learning disabilities, epilepsy, and death. Neurotropic

viruses replicate more efficiently and display enhanced
apoptosis capacity in immature vs. mature neurons through
mechanisms that are incompletely understood (2).
Reovirus serves as a highly tractable experimental system in

which to study neurotropic virus–host interactions. Following
peroral inoculation of newborn mice, reovirus infects the
intestine and disseminates systemically to the mesenteric
lymph nodes, liver, spleen, lungs, heart, and brain. Serotype 1
reovirus strains disseminate exclusively via hematogenous
routes, whereas serotype 3 strains disseminate via hemato-
genous and neural routes (3,4). Upon entry into the brain,
serotype 3 strains infect neurons located in the frontal and
parietal cortex, CA1 to CA4 regions of the hippocampus, the
cingulate gyrus, the thalamus, and Purkinje neurons in the
cerebellum (5,6). Reovirus infection of neurons causes
apoptosis and triggers inflammation, resulting in a lethal
meningoencephalitis (3,7–9).
The susceptibility of mice to reovirus infection and death is

age-dependent. Infection of young mice with serotype 3
reovirus leads to a lethal encephalitis and death, whereas signs
of clinical disease are absent following infection of older mice
(10,11). One study suggests that the age susceptibility of mice
to reovirus neurovirulence is due to the inhibition of viral
replication by neuronal cell intrinsic factors (12). However,
the precise mechanism is unknown.
The type-I interferon (IFN) pathway is a major component

of the innate immune system. Following production and
secretion, IFNs act in an autocrine and paracrine manner to
induce an antiviral state in infected and neighboring cells,
promote a balanced natural killer cell response with
controlled anti-inflammatory activities, and enhance antigen
presentation to activate the adaptive immune system (13).
Mice deficient in the signal transducer and activator of
transcription-1, a key component of IFN signaling, display
increased mortality and higher viral loads in the brain
following intracranial inoculation with reovirus at 2 days of
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age, suggesting that IFN signaling reduces reovirus replication
and virulence (14).
Strategies to prevent and treat viral encephalitis are limited

in part because of a lack of knowledge of the cellular factors
and molecular mechanisms that contribute to viral virulence.
We hypothesized that the susceptibility to reovirus disease is
an effect of age-dependent control of the virus by maturing
components of the immune system. To test this hypothesis,
we defined the age at which mice lose susceptibility to
reovirus-induced disease, determined the relationship
between viral replication in vital organs and disease severity,
and delineated age-dependent contributions from innate and
adaptive immune functions. As age restriction is a shared
determinant of disease severity in many neurotropic virus
infections, it is possible that mechanisms underlying reovirus
age restriction will be applicable to other viral infections.

METHODS
Cell Lines and Viruses
Murine L929 cells were maintained in Eagle’s minimal essential
medium (Lonza; Walkersville, MD) with 5% fetal bovine serum
(Gibco; Gaitersburg, MD), 2 mM L-glutamine (Invitrogen; Carlsbad,
CA), 100 U/ml penicillin (Invitrogen), 100 μg/ml streptomycin
(Invitrogen), and 25 ng/ml amphotericin B (Sigma-Aldrich; St.
Louis, MO). Reovirus strain type 3 Dearing (T3D) is a laboratory
stock recovered by plasmid-based reverse genetics (15). Reovirus was
amplified in L929 cells and purified by Vertrel-XF (Dupont;
Wilmington, DE) extraction, followed by CsCl-gradient centrifuga-
tion (16). Viral plaque-forming unit (PFU) titers were determined by
plaque assay using L929 cells (17).

Mouse Strains
C57BL/6J (WT) mice were obtained from The Jackson Laboratory.
C57BL/6 IFNAR− /− mice were provided by John Williams (Vanderbilt
University School of Medicine; Nashville, TN), and C57BL/6 RAG2− /−

mice were provided by Danyvid Olivares-Villagomez (Vanderbilt
University School of Medicine; Nashville, TN).

Infection of Mice
Mice were weighed and inoculated intracranially (18) with purified
reovirus T3D in phosphate-buffered saline (PBS) at 100 PFU/g. For
analysis of virulence, mice were monitored for weight gain and
symptoms of disease for 20 days post inoculation (d p.i.) and killed
when moribund. For analysis of viral replication, organs were
collected into 1 ml of PBS and homogenized using a TissueLyser
(Qiagen; Hilden, Germany). Viral titers were determined by plaque
assay. Animal husbandry and experimental procedures were
performed in accordance with Public Health Service policy and
approved by the Vanderbilt University School of Medicine Institu-
tional Animal Care and Use Committee.

Histology
Mice were inoculated intracranially with reovirus T3D at 100 PFU/g.
Brains were resected and divided sagittally. Left-brain hemispheres
were processed for plaque assay. Right-brain hemispheres were fixed
in 10% formalin and embedded in paraffin. Consecutive 6-μm
sections were stained with hematoxylin and eosin or processed for
immunohistochemical detection of reovirus antigen or the cleaved
(active) form of caspase-3 (ref. 19).

Immunoblotting
Brain homogenates were diluted twofold in RIPA lysis buffer (Sigma-
Aldrich) containing Complete Protease Inhibitor Cocktail (Roche;
Basel, Switzerland). Protein extract (50 μg) was resolved by

electrophoresis in 10% Tris-glycine gels (Bio-Rad; Hercules, CA)
and transferred to Immun-Blot PVDF membranes (Bio-Rad).
Membranes were blocked for at least 1 h in Odyssey blocking buffer
(LI-COR; Lincoln, NE) and incubated with an anti-actin antibody
(1:500; Santa Cruz Biotechnologies; Dallas, TX) and a cleaved
(active) caspase-3 antibody (1:1,000; Cell Signaling Technologies;
Danvers, MA) in Odyssey blocking buffer overnight. Membranes
were washed and incubated with secondary antibodies IRDye
680CW-conjugated donkey anti-goat (1:2,000) and IRDye 800CW-
conjugated goat anti-rabbit (1:5,000) in Odyssey blocking buffer for
2 h. Membranes were washed three times and scanned using an
Odyssey infrared imaging system (LI-COR). Signal intensities of
specific bands were quantified using ImageStudio software (LI-COR).

RESULTS
Survival of Mice from Reovirus Infection Is Age-Dependent
Following infection with a neurotropic serotype 3 strain of
reovirus, neonatal mice will contract encephalitis, which is
often fatal, whereas adult mice do not develop overt signs of
the disease (10,11). To determine the age window during
which WT mice become refractory to reovirus-induced
mortality, mice were inoculated intracranially with 100 PFU/g
T3D in PBS or PBS alone (mock) at 2, 4, 6, 8, 10, 15, and 20 d
of age and monitored for survival for 20 d. Only 37% of 2-day-
old (n= 16), 15% of 4-day-old (n= 20), and 48% of 6-day-old
(n= 27) mice survived (Figure 1a). In contrast, 90% of mice
inoculated with reovirus at 8 d of age (n= 18) and all mice
inoculated at 10, 15, and 20 d of age (n≥ 15) survived. Mice
that became ill exhibited clinical signs of encephalitis including
lethargy, seizures, ataxia, and paralysis. All PBS-inoculated
mice survived. These data indicate that reovirus-induced
mortality is reduced in mice inoculated at or after 8 d of age.

Reovirus-Induced Disease Is Age-Dependent
We monitored the weight gain of reovirus-inoculated mice as
a quantitative surrogate measure of reovirus-induced disease.
Mice were inoculated intracranially with 100 PFU/g T3D in
PBS at 2, 4, 6, 8, 10, 15, or 20 d of age or PBS alone at 2 d of
age and weighed daily for 20 d. The mean weight gain of mice
inoculated with reovirus at 2, 4, 6, and 8 d of age was
significantly less than that of age-matched controls inoculated
with PBS (Figure 1b–e). The mean weight gain of mice
inoculated with reovirus at 10 d was significantly less than
that of age-matched controls at early time points post
inoculation (p.i.), but the differences were reduced at later
time points (Figure 1f). Interestingly, the mean weights of
mice inoculated with reovirus at 15 and 20 d of age were
significantly greater than those of age-matched controls at
later time points (Figure 1g,h). These data suggest that the
capacity of reovirus to induce disease is diminished in mice
inoculated at 10 d of age or older.

Viral Loads in the Brain and Peripheral Organs Do Not Strictly
Correlate with Disease Severity
Disease severity is often proportional to the level of viral
replication in vital organs. To determine whether the age-
dependent severity in reovirus disease is a function of viral
load, we quantified viral titers in organs at 4, 7, and 10 d
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post-intracranial inoculation with T3D. The average peak
viral loads in the brains of mice inoculated at 2 and 4 d of age
were comparable (Figure 2). In contrast, the average peak
viral load in the brains of mice inoculated at 6 d of age was
lower compared with the average peak viral load in the brains
of mice inoculated at a younger age. The average peak viral

load in the brains of mice inoculated at 10 and 15 d of age was
comparable to the average peak viral load in the brains of
mice inoculated at 6 d of age. We calculated the area under
the curve for each age of inoculation to test whether the
cumulative viral loads in the brain for all three time points
differed between mice inoculated at different ages. The areas
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Figure 1. Survival and weight gain in mice following reovirus inoculation at various ages. WT mice were inoculated intracranially with reovirus T3D
at 100 PFU/g at 2, 4, 6, 8, 10, 15, or 20 d of age or with PBS alone (mock; M) at 2 d of age. (a) Mice (n≥ 15 per experimental group) were monitored
for morbidity for 20 d and killed when moribund. Statistical analyses compared each curve to mock, to the next age of inoculation (e.g., 2 vs. 4 d;
4 vs. 6 d, etc.), and between susceptible and nonsusceptible age groups (e.g., 2–6 vs. 8–20 d). *Po0.05; †Po0.005; ‡Po0.0001 as determined by
log-rank test. WT mice were inoculated intracranially with reovirus T3D at 100 PFU/g at (b) 2, (c) 4, (d) 6, (e) 8, (f) 10, (g) 15, or (h) 20 d of age and
monitored for weight gain for 20 d. Data are represented as fold change normalized to weight on the day of inoculation compared with age-
matched, mock controls at 2, 6, 8, 10, and 12 d p.i. *Po0.05; **Po0.01; †Po0.005; ‡Po0.0001 as determined by Mann–Whitney U-test. d p.i., day
post inoculation; PBS, phosphate-buffered saline; PFU, plaque-forming unit; T3D, type 3 Dearing.
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under the curve of mice inoculated at 2 d of age (5.5 × 1014)
and 4 d of age (5.0 × 1013) were markedly greater than the
areas under the curve of mice inoculated at 6 d of age
(4.7 × 107), 10 d of age (4.2 × 107), and 15 d of age (2.2 × 108).
Although viral loads in the brains of mice inoculated at 6 d of
age were comparable to those in mice inoculated at 10 or 15 d
of age, mortality was significantly greater in mice inoculated
at 6 d of age compared with mice inoculated at 10 or 15 d of
age. These data suggest that viral loads in the brain do not
strictly correlate with disease severity.
To determine whether the capacity to disseminate from the

brain to other tissue sites in the host correlates with disease
severity and, if so, whether this process is age-dependent, we
quantified viral loads in the heart, spleen, liver, and intestine.
We found that for each individual mouse, the virus was
present either in all or none of the peripheral organs assayed.
At 4 d p.i., approximately half of the mice inoculated at any
age had detectable viral titers in peripheral organs with the
exception of mice inoculated at 6 d of age, of which only

one-fifth had detectable titers in peripheral organs (Table 1).
At 7 d p.i., viral titers were detectable in peripheral organs of
the majority of mice inoculated at 2 and 4 d of age compared
with less than half the mice inoculated at 6, 10, or 15 d of age.
At 10 d p.i., reovirus was detected in the majority of mice
inoculated at 2 and 4 d of age, but no reovirus was detected in
peripheral organs of mice inoculated at 6, 10, or 15 d of age.
These data indicate that the capacity of reovirus to
disseminate from the brain to peripheral organs is age-
dependent. However, neither viral load in the brain nor the
presence of reovirus in peripheral organs alone explain the
substantial disease severity observed in mice inoculated at 6 d
of age.

Reovirus Displays Enhanced Virulence in IFNAR− /− but Not
RAG2− /− Mice
To test the hypothesis that maturation of innate and adaptive
immune responses contributes to age-dependent susceptibility
to reovirus disease, we compared reovirus virulence following
inoculation of WT, IFNAR− /−, and RAG2− /− mice at
different ages. Mice deficient in expression of the IFN α/β
receptor (IFNAR) lack an essential component of the antiviral
innate immune response, whereas mice deficient in
recombination-activating gene 2 (RAG2) lack functional B
and T lymphocytes and are incapable of mounting adaptive
immune responses. Mice were inoculated intracranially with
T3D at 4 or 15 d of age and monitored for survival, weight
gain, and clinical signs of neurologic diseases such as lethargy,
seizures, ataxia, and paralysis (20) for 20 d. The mean survival
time for IFNAR− /− mice inoculated with reovirus at 4 d of age
was 8 d, whereas the mean survival time for WT and RAG2− /−

mice was 12 and 11 d, respectively (Figure 3a). Only 48% of
IFNAR− /− mice inoculated with reovirus at 15 d of age
survived compared with 92% of RAG2− /− mice and 100% of
WT mice inoculated at 15 d of age (Figure 3b). All PBS-
inoculated mice survived. A majority of IFNAR− /− mice
inoculated at either 4 or 15 d of age displayed reduced weight
gain (Figure 3c,d) without neurological signs of illness.
RAG2− /− mice inoculated with reovirus displayed reduced
weight gain when inoculated at 4 d of age but not when
inoculated at 15 d of age, a trend similar to that of WT mice
inoculated with reovirus at these ages (Figure 3e,f). These
data suggest that the absence of a functional innate but not
adaptive immune response prolongs the susceptibility of mice
to reovirus-induced disease and raises the possibility that
maturation of the IFN response contributes to age-dependent
reovirus virulence.

Viral Loads in the Brains of IFNAR− /− Mice Are Higher than
Those In WT Mice When Inoculated at an Older Age
On the basis of the increased mortality in IFNAR− /− mice at
older ages of inoculation, we hypothesized that reovirus
produces higher titers in IFNAR− /− mice when inoculated at
ages at which WT mice are no longer susceptible to reovirus
disease. To test this hypothesis, WT, IFNAR− /−, and RAG2− /−

mice were inoculated intracranially with T3D at the susceptible
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Figure 2. Viral loads in the brain following reovirus inoculation at
various ages. WT mice were inoculated intracranially with reovirus T3D
at 100 PFU/g at 2, 4, 6, 10, or 15 d of age. At 4, 7, and 10 d p.i., mice
were killed, brains were resected, and viral loads were determined by
plaque assay. n= 5–7 mice per bar. d p.i., day post inoculation; PFU,
plaque-forming unit; T3D, type 3 Dearing.

Table 1. Viral dissemination to peripheral organs

Age of inoculation (d) Time post inoculation (d)

4 7 10

2 3/6 (50%) 5/6 (83%) 6/6 (100%)

4 3/6 (50%) 5/5 (100%) 5/6 (83%)

6 1/5 (20%) 2/5 (40%) 0/7 (0%)

10 3/6 (50%) 2/6 (33%) 0/6 (0%)

15 4/6 (67%) 2/5 (40%) 0/6 (0%)

WT mice were inoculated intracranially with reovirus T3D at 100 PFU/g at 2, 4, 6,
10, or 15 d of age. Viral loads in the brain, heart, liver, spleen, and intestine were
determined by plaque assay at 4, 7, and 10 d p.i. n= 5–7 mice per condition.
Numerals represent the number of mice with detectable titer in peripheral organs
divided by the total number of mice assayed, and the resulting percentage of mice
with detectable titer in peripheral organs in each group.
d, day; d p.i., day post inoculation; PFU, plaque-forming unit; T3D, type 3 Dearing;
WT, wild type.
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age of 4 d and the nonsusceptible age of 15 d, and viral loads in
organs were determined at 4, 7, and 10 d p.i. Viral loads in the
brains of WT, IFNAR− /−, and RAG2− /− mice inoculated at 4 d
of age did not differ significantly on 4 and 7 d p.i (Figure 4a).
However, viral loads in the brains of RAG2− /− mice were
significantly higher than those in the brains of WT mice at 10 d
p.i. We were unable to perform statistics comparing viral loads
in the brains of IFNAR− /− mice at 10 d p.i. because of the lack
of replicates. However, the viral load in the brain of the single
surviving mouse approximated the average load of RAG− /−

mice inoculated at that age. At all time points tested, viral loads
in the brains of IFNAR− /− mice were significantly higher than
those in the brains of WT mice inoculated at 15 d of age
(Figure 4b). No significant differences in viral load were
detected between the brains of WT and RAG2− /− mice
inoculated at 15 d. These data suggest that adaptive immune
responses function in the clearance of reovirus from the brains

of younger mice, whereas IFN-mediated innate immune
responses control viral replication in the brains of older mice.
The lack of overwhelmingly significant immune-related
differences in viral loads in the brains of mice inoculated at 4
d of age suggests that disease severity and mortality at this age
of inoculation are not directly related to the modulation of viral
replication by immune responses in the brain.

IFN Controls Viral Dissemination to Peripheral Organs in Both
Younger and Older Mice
To determine the function of innate and adaptive immune
responses in controlling viral dissemination from the site of
inoculation to sites of secondary replication, viral loads were
quantified in organs of WT, IFNAR− /−, and RAG2− /− mice
inoculated at 4 and 15 d of age (Figure 4 c–j). Contrary
to WT mice (Table 1), reovirus was detected in all
peripheral organs in both strains of immune-deficient mice
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at all time points tested (data not shown). Overall, viral loads
in peripheral organs of IFNAR− /− mice were increased
compared with those in WT mice (Figure 4c–j). Viral loads

in the heart and spleen of RAG2− /− mice inoculated at 4 d
of age were also increased compared with those in WT mice
at 7 d p.i. and in all organs at 10 d p.i. RAG2− /− mice
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inoculated at 15 d of age displayed modestly increased viral
loads in the heart and liver but not in the spleen and intestine
at 4 d p.i., and the differences became smaller at later times
(Figure 4d,f,h,j). Peak viral loads in all organs of IFNAR− /−

mice inoculated at 4 d of age coincide with the sharp
reduction in survival of IFNAR− /− mice (Figure 3a), whereas
differences in weight gain and survival of WT and RAG2− /−

mice inoculated at 4 d of age appear at later times post
infection when viral loads in both the brain and peripheral
organs of RAG2− /− mice are significantly greater than those
in WT mice (Figure 4a,c,e,g,i). Interestingly, viral loads in
IFNAR− /− mice inoculated at 4 d of age increased throughout
infection until death, whereas viral loads in mice inoculated at
15 d of age peaked at 7 d p.i., followed by a decline at 10 d p.i.,
consistent with the enhanced survival of IFNAR− /−

mice inoculated at this age. Together, these results suggest
that IFN has an important role in controlling systemic
dissemination and replication at secondary sites in mice of
both susceptible and nonsusceptible ages at all time points
assessed. Adaptive responses function later during infection of
mice inoculated at a susceptible age and likely contribute to
viral clearance.

Reovirus Tropism Is Unaltered in the Brains of Immune-
Deficient Mice
To determine whether differences in brain pathology link
mortality to altered immune responses, the right hemispheres
of brains that matched as closely as possible for viral load
were processed for histology. Consecutive sections were
stained with hematoxylin and eosin, with polyclonal reovirus
antiserum to detect viral antigen, or with a monoclonal
antibody specific for the cleaved (activated) form of caspase-3
to detect cells undergoing apoptosis—the primary mechanism
of neuronal cell death following reovirus infection (19).
Reovirus antigen was detected in the hippocampus, thalamus,
and cortex (Figure 5a) as well as the cerebellum and
hindbrain (Figure 5b) of brains resected at 7 d p.i. from
mice of all three strains inoculated with reovirus at 4 d of age.
Although the overall staining intensity varied, no qualitative
differences were found in viral tropism. Staining for the
activated form of caspase-3 was modest in all sections
analyzed and localized with reovirus staining, consistent with
the pattern of reovirus-induced tissue injury (8,19,21).
Histological analysis of brains resected from mice inoculated
with reovirus at 15 d of age at 7 d p.i. showed substantially
reduced levels of reovirus antigen-positive cells (data not
shown). Staining was restricted to small areas within the
thalamus and surrounding the lateral ventricles. These areas
of the brain also displayed low levels of activated caspase-3
staining (data not shown).

Apoptosis Is Unaltered in the Brains of Immune-Deficient Mice
To determine whether quantitative age- and immune-
dependent differences exist in reovirus-induced apoptosis,
protein lysates from the brains of three individual mice of
each strain resected 7 d p.i. were resolved by SDS-PAGE and

immunoblotted using an antibody specific for cleaved
caspase-3 and an antiserum specific for actin as a loading
control. The intensity of the cleaved caspase-3 signal was
normalized to the intensity of the actin signal. The overall
magnitude of apoptosis in the brains of IFNAR− /− and
RAG2− /− mice inoculated at 4 d of age (Figure 6a,c) and at
15 d of age (Figure 6b,d) did not differ statistically.
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DISCUSSION
In this study, we determined the precise timing of the age
restriction to reovirus virulence in C57BL/6J mice based on
mortality and determination of weight gain as a surrogate
marker for reovirus-induced disease. We found that the age
restriction for reovirus mortality and disease lies between 6
and 10 d of age. We were surprised to find that a lower
proportion of mice inoculated at 4 d of age survived
compared with mice inoculated at 2 d of age. This finding
might be attributed to experimental variability caused by a
suboptimal nurturing by the dam. Mice inoculated intracra-
nially with serotype 3 reovirus strains likely succumb to
encephalitis rather than to disease at other sites of infection,
as a reovirus mutant incapable of disseminating systemically
is as virulent as WT virus following intracranial inoculation
(22). Interestingly, there was a significant increase in weight
gain following inoculation with reovirus at 15 and 20 d of age
relative to PBS-inoculated controls. It is possible that the
virus-mediated increase in weight gain occurs as a conse-
quence of virus-induced damage to the ventromedial
hypothalamus, which is associated with increased appetite
(23–25). Histological examination of brain tissue from mice
infected at additional ages will provide more information
about the age-dependent differences in reovirus neural
tropism and pathology.
We thought it possible that age-related disease severity

might track with virus titers in target tissues. Our results
indicate that viral replication occurred even in mice that did
not display overt neurological signs of infection. Brains of
mice inoculated at 6 d of age harbored viral loads that were

similar to those in the brains of mice inoculated at
nonsusceptible ages; yet, survival rates and weight gain were
comparable to mice inoculated at susceptible ages. Reovirus
disseminated systemically in mice inoculated at susceptible
ages, whereas systemic dissemination was limited in mice
inoculated at nonsusceptible ages. Thus, we conclude that
viral titers in the brain do not strictly correlate with
susceptibility to reovirus-induced disease.
We used immune-deficient mice to investigate whether

maturation of innate or adaptive immune responses con-
tributes to the age restriction of reovirus disease. Our results
indicate that IFN functions in controlling viral replication in
mice of both susceptible and nonsusceptible ages, whereas
adaptive immune responses are particularly important in
controlling replication at later times post infection in mice of
susceptible age. The increased susceptibility of older IFNAR− /−

mice to reovirus infection suggests that age-dependent
maturation of IFN responses contributes to the age-related
virulence of reovirus. Some IFNAR− /− mice had signs of
encephalitis, but others died quickly after the onset of illness.
A previous study describes intestinal perforation, bacterial
sepsis, and acute hepatitis as causes of death in IFNAR− /−

mice inoculated with reovirus at 2 d of age (26).
Besides contributing to age-dependent susceptibility to

reovirus infection, the type-I IFN response functions in the
age-dependent susceptibility to infection with herpes simplex
virus (HSV-1). Lower basal levels of IFNAR are expressed
in the choroid plexus of uninfected newborn mice compared
with adults. Concordantly, the adult choroid plexus is
less susceptible to infection with HSV-1 relative to the
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newborn brain. Similar to our findings with reovirus, HSV-1
susceptibility was restored in the brains of adult IFNAR− /−

mice (27).
Cells of the innate immune system may also contribute

directly to the age-dependent susceptibility to reovirus central
nervous system disease. Microglia, the resident macrophage
cells in the brain, modulate the immune response to brain
infections by secreting inflammatory cytokines such as
interleukin (IL)-1α, IL-6, and tumor necrosis factor-α (28).
Microglia are virtually absent from the mouse hippocampus
at birth, but the numbers of these cells increase markedly
between 5 and 10 d of age and peak at 15 d of age (29).
Microglial activation and proinflammatory cytokine produc-
tion in the brain decrease with age under normal conditions
and in response to stimulation with lipopolysaccharide
(30,31), suggesting that the inflammatory response to viral
infections of the brain is muted later in life. Consistent with
this idea, the production of the proinflammatory cytokine
IL-1α is increased in the brains of reovirus-infected newborn
mice compared with adults and coincides with nervous tissue
injury that precedes encephalitis (32). Our finding that the
absence of RAG2 expression does not affect the timing of
the age restriction to reovirus disease is consistent with the
kinetics of adaptive immune effector maturation, which is
initiated after the first month of life (33) and, thus, outside the
interval during which reovirus susceptibility diminishes.
The results from this study define an age at which mice

become refractory to reovirus disease and provide evidence
that maturation of innate immune responses contributes to
the mechanism of age restriction. These findings suggest that
innate immune maturity influences diverse types of neural
insults.
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