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CHAPTER I

INTRODUCTION

I.1 Beam-driven radiation sources and electron-beam brightness

Free electron beams have been used as the basis for radiationsources over a large

extent of the electromagnetic spectrum from the GHz to the x-ray. These sources have the

important property of wavelength tunability through both the electron beam energy and the

device geometry and operational characteristics. Devicessuch as the klystron and cavity

magnetron provide high power levels in the GHz range. Backward wave oscillators (BWO),

traveling-wave tubes (TWT), and similar devices have excellent coverage of the centimeter

and millimeter wave range [1]. Traditional undulator basedfree-electron lasers (FEL) have

been, or are being, constructed in virtually every part of the spectrum from the THz [2] to

the x-ray [3]. Additionally, tabletop THz devices based on Cerenkov [4] or Smith-Purcell

radiation [5] have been developed and are beginning to fill animportant gap where few

other sources exist.

The challenge of extracting kinetic energy from an electronbeam in the form of

electromagnetic radiation is one that hinges principally on beam quality. Generally

speaking, in a beam-driven radiation source the electron beam must be confined to a certain

transverse area for sustained interaction. This interaction region is set by the geometry

of the source’s radiation modes and sets the principal requirements for electron beam

intensity and focusability. These qualities include, above all, the electron beam’s transverse

brightness, i.e. the beam ensemble’s current density in so-called trace space, which is given

by

B =
d4I (x, x′, y, y′)

dxdx′dydy′
, (1.1)

whereI (x, x′, y, y′) is the current density,x andy are the transverse position coordinates,
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and x′ = dx/dz and y′ = dy/dz are thex and y divergence relative to the electron-

beam axis (z). A large brightness indicates an intense beam that may be well collimated

while having a small transverse spatial extent. This brightness can be normalized as

BN = B/ (β2γ2), whereβ andγ have the usual relativistic meaning, so that it is invariant

under accelerations. Another useful quantity is the electron beam’s normalized transverse

emittance, which is

ǫNx = βγσxσx′ , (1.2)

whereσx andσx′ are the rms radius and rms divergence of the beam respectively. The

emittance and its relevance in describing beam ensembles isdiscussed in further detail in

Chapter 4. The typical requirement on the emittance of a beam in an FEL is that it be

smaller than the emittance of the photon beam, i.e.

ǫNx

βγ
≤ λfel

4π
, (1.3)

whereλfel is the resonant wavelength of the FEL interaction.

Presently, there are two main frontiers in FEL development,both depending on the use

of bright electron beams: x-ray FELs such as the Linear Coherent Light Source (LCLS),

and high-average power FELs (HAPFEL) in excess of the 14 kW average power record

set at Thomas Jefferson National Accelerator Facility (TJNAF, J-Lab). While the beams

required for x-ray devices are higher brightness than thoseof high-power IR FELs, they

do not require large average currents. The LCLS gun has already achieved bunch charges

of ∼ 1 nC at normalized transverse emittances of∼ 1.2 µm-rad, however the average

current of this injector is only∼ 100 nA. Among the most important development areas

in the field of HAPFELs is that of high-brightness, high average current electron injectors.

It can be argued that injector development is the last opportunity for order-of-magnitude

improvements in FEL performance as the extension to higher average power operation

is made. There are presently several different approaches for developing such injectors.
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These include the normal conducting (NC) RF photo-injector atLos Alamos National

Laboratory (LANL), the high voltage DC photo-injector at J-Lab, and the superconducting

(SC) RF photo-injector being jointly developed by Advanced Energy Systems (AES) and

Brookhaven National Laboratory (BNL).

I.2 Existing cathode technology

Figure 1.1 presents the normalized brightness and peak operating current for various

cathode and injector technologies; the current spans ten orders of magnitude and brightness

spans nine orders of magnitude. There are three primary cathode technologies: thermionic,

photocathodes, and field emitters. There are also intermediate varieties such as photo-field

emitters and photo-thermal cathodes (not plotted) [6]. While field and photo-field emitters

have been recently tested in a high-voltage DC gun (100 kV) [7, 8], feasibility has not

yet been demonstrated in RF injectors. Thermionic sources provide beams with moderate

current and emittance, but the emission is not easily gated.Without gating, the cathode

emits into RF phases that result in electron back bombardmentand excessive cathode

heating. This is prohibitive in the context of a high-average-current injector.

By far, the dominant cathode technology in modern FEL development is the

photocathode. The nature of the emission mechanism allows gating with the drive laser at

the proper RF phase, avoiding the problem of electron back bombardment. Photocathodes

are divided into two main subtypes: metal, and semiconductor. Metal photocathodes

require higher photon energy for emission and have lower quantum efficiency (QE), but are

rugged and have extremely fast response times. The semiconductor variety, while having

high QE and requiring low photon energy, have slower response times, are very fragile,

easily contaminated, have shorter operational lifetimes,and must be produced and stored in

vacuum. The use of photocathode technology is complicated,especially for high-average-

power operation, by the need for complex mode-locked-lasersystems. The laser systems

required for 100 kW class FELs are currently being developed, however, those required for
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Quantum-degenerate limit

Figure 1.1: The brightness of various cathode and injector technologies span
ten orders of magnitude in current and nine orders of magnitude in normalized
transverse brightness.
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MW class FELs are far beyond the state of the art. Presently, all of the high-average-current

injector designs are based on the use of photocathodes.

Field emitters offer an interesting alternative to photocathodes in future injector

systems. Field emission is exquisitely sensitive to the applied electric field at the cathode

surface. This can be used to gate the emission at the proper RF phase using various

techniques discussed in Chapter 2. Perhaps the most important feature of field emitter

cathodes is the elimination of the drive laser. This removesthe need for a laser window on

the injector and avoids the laser heating present with photocathodes. This is especially

important when considering the thermal constraints placedon SCRF injectors. The

only waste heat produced by field emitters is the self-joule heating from conducting

electrons to the emitter surface. While the pulsed-field-emission current demonstrated

with single needle cathodes is too low for use in high-average current injectors, high-

brightness, moderate current beams have recently been produced by pulsed photo-assisted

field emission from ZrC needle cathodes. A more promising cathode utilizing field

emission is the so-called field-emitter array (FEA), a planar array of micro-fabricated

field emitters. These devices can be manufactured with and without self-aligned gating

electrodes. Additional gating electrodes can be added for focusing or beam collimation to

minimize transverse emittance. Of principal interest in this thesis are diamond field emitter

arrays (DFEA).

I.3 Diamond Field Emitter Arrays

DFEAs, shown in Figure 1.2, were developed at Vanderbilt in the Department of

Electrical and Computer Engineering more than a decade ago. Originally investigated for

a variety of uses involving high-power vacuum electronics,high-current switching, and

thermal-electric conversion, only recently have DFEAs been considered and developed for

use in beam-driven radiation sources. DFEAs have demonstrated their rugged nature by

providing high per-tip currents, excellent temporal stability, and significant resistance to
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Figure 1.2: SEM micrographs of a DFEA; wide view (left) and tip detail (right).

back-bombardment damage during poor vacuum, close-diode DC operation. The material

properties of diamond have allowed DFEA operation in regimes inaccessible to traditional

metal field emitters. The performance of DFEAs is rapidly increasing and under picosecond

pulsing will likely reach kA/cm2 current densities at the cathode. DFEAs are currently

slated for testing in the 250 kV DC injector at the Naval Postgraduate School (NPS), and

collaborative testing in SCRF and NCRF injector systems is beingplanned at NPS and

other institutions. While much work remains involving theirintegration into RF injectors,

DFEAs have demonstrated exciting potential for greatly simplifying the injector system for

HAPFELs.

I.4 The Quantum-Degenerate Limit of Brightness

The potential inside a solid defines certain allowed energy states which the conduction

electrons occupy with a spectral density of one spin pair perstate. These states are filled up

to the so-called Fermi energy, and the ensemble is quantum degenerate. This degeneracy,

a consequence of the anti-symmetry of fermionic wave functions, suppresses electron-

electron scattering and is the source of the high electricalconductivity of metals. The

effects of degeneracy also exist in an ensemble of free electrons, however, with most

cathode types the degeneracy is so low that it is of no practical consequence. Field
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emission is the only emission mechanism that approaches thebrightness required to

produce significant levels of quantum degeneracy [9–11]. A weak degeneracy signature

has been successfully measured for a tungsten field emitter in recent years [12]. These

experiments observed clear deviations from Poissonian arrival statistics of electrons at the

detector system, an unmistakable signature of quantum degeneracy. A simpler technique

for estimating a source’s quantum degeneracy is the use of low-energy point-projection

microscopy [9]. As the electron waves pass a hard edge, they scatter and interfere with

themselves at a downstream detector. The Fresnel fringes produced by this interference

can be used to measure the transverse coherence length for the beam, which can in turn

be used to estimate the quantum degeneracy. As the brightness of an electron beam is

increased, the phase space volume occupied by the beam is packed more and more densely.

Eventually one reaches a quantum degenerate limit, where the geometric symmetry of the

electron wave functions prohibits denser packing. For a given spread in electron energy,

the transverse brightness is restricted by degeneracy. Thedegenerate limit corresponding

to an energy spread∆E ≈ 0.3 eV (typical of field emitters) is displayed in Figure 1.1.

Calculations demonstrate that recent experiments at Vanderbilt involving multi-wall carbon

nanotubes (MWCNT) and adsorbed species have approached this quantum limit. While

these sources are not well suited for use in FELs, there are exciting effects and techniques

to be explored in the use of degenerate beams as a new imaging modality.

I.5 Thesis Outline

The primary purpose of this thesis is to detail recent progress in the development of

high-brightness cathodes for use in beam driven radiation sources. In Chapter 2, DFEAs are

introduced, details of their fabrication are given, and their application to conventional free-

electron lasers is considered. Chapter 3 details the successful development of uniformity

conditioning techniques, which address differences in contamination and morphology

between emitters in DFEAs. Chapter 4 presents measurements and simulations of the
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transverse emittance of beams from DFEAs. Chapter 5 discusses the design, construction,

and testing of a high-resolution energy analyzer and measurements of the emitted energy

spectrum from DFEAs. Chapter 6 considers the Smith-Purcell free-electron laser (SPFEL),

a compact terahertz device, as an application of DFEA cathodes. The SPFEL is covered in

extensive theoretical detail, including three-dimensional, and three-dimensional confined-

mode variations. This theory is used to guide the design of a DFEA driven SPFEL. Chapter

7 discusses the concept of quantum degeneracy in a free-electron beam and presents recent

progress in our development of a carbon nanotube based quantum-degenerate electron

beam source. In the conclusions, the results of this thesis are summarized and details

of future DFEA development are discussed.

8



CHAPTER II

DIAMOND FIELD-EMITTER ARRAYS

II.1 Introduction

Field-emitter arrays were first developed by Spindt at SRI in the mid 1960’s [13]

marking the birth of what is now known as vacuum microelectronics. These devices are

based on the physical process known as field emission, where ametal or semiconductor

immersed in an electric field of order 1-10 V/nm will begin to emit electrons from its

surface. The emission depends fundamentally on the quantummechanical principle of

tunneling whereby the wave function of electrons inside thesolid penetrates through

the local surface energy barrier into the vacuum. This penetration provides a nonzero

probability that electrons will spontaneously appear on the vacuum side of the interface

where they are subsequently swept away under the influence ofthe applied electric field.

The rate of electron emission from metals based on this principle was first derived by

Fowler and Nordheim in 1928 [14], and subsequently refined byMurphy and Good in

1955 [15]. At low temperature (even up to room temperature) the emitted current density,

JFN , is shown to have the form

JFN (F ) = afnF
2e−bfn/F (2.1)

whereafn and bfn are constants depending on the work function, andF is the electric

field at the emitter surface. Field emisison may typically beidentified as such by plotting

the I-V data withln (I/V 2) as the ordinate and1/V as the abscissa. Fowler-Nordheim-

like emission will appear as a straight line where the slope and y-intercept depend on the

constantsbfn andafn respectively. When the emitter is a semiconductor, the emission

is Fowler-Nordheim like for low current operation. However, at high enough current the
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electron supply from the bulk semiconductor is mobility limited and theI-V response

becomes Ohmic in character. The theory of field emission fromsemiconductors was first

reported by Stratton in 1955 [16, 17], an analysis which included the effects of surface

states, field penetration and the resulting band bending.

More interesting field-emission effects occur when atoms ormolecules are adsorbed

onto the emitter surface. The electronic states of an adsorbate immersed in the applied field

have certain allowed energy levels. When these energies are resonant with an occupied

region of the emitter’s density of states, large enhancements of the field-emitted current

occur. Moreover, because the adsorbate’s electronic states are confined to a small spatial

extent, the emission enhancement is highly localized. Resonant tunneling also causes

significant changes in emitted electron energy distribution, both in structure and in position

relative to the Fermi energy. Resonant tunneling enhancement and angular collimation of

electron beams from single adsorbates has been described indetail by Gadzuk [18,19].

II.2 Fabrication of DFEAs

II.2.1 Ungated devices

Ungated diamond field-emitter arrays are produced using a mold-transfer process

pioneered by researchers in the Department of Electrical and Computer Engineering at

Vanderbilt [20]. This eight step process is presented in detail in Figure 2.1. Oxidized Si

wafers are patterned in preparation for an anisotropic KOH etch that produces pyramidal

molds with an opening angle of70.6 ◦. These molds are sharpened by oxidation in

preparation for diamond deposition. The oxide grows preferentially on the walls of the

mold, avoiding the corners (Figure 2.2). The result is a sharp recess in the tip of the mold

where the faces of the pyramid converge. By using mask holes that are slightly rectangular

we can produce two sharp tips rather than a single. Over or under etching of the mold prior

to oxidation allows production of quad-tip emitters.

After sharpening, the mold is pretreated by ultrasonication in a diamond slurry, a step
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Dry oxidation of Si @ 1100 C

Oxide patterning

Anisotropic KOH etch @ 60 C

Tip mold sharpening:

Dry oxidation @ 1100 C

Diamond seeding and growth

Ni and Ti sputtering ~1µm

TiCuSil braze on Mo substrate

@ ~900 C, or eutectic bonding

KOH @ 60-80 C BOE etch

& cleaning process

Figure 2.1: DFEA fabrication process flow
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Figure 2.2: Si mold before (left) and after (right) oxide sharpening

Figure 2.3: Conformal nanodiamond layer on Si mold prior to microdiamond
deposition

which provides nucleation sites for diamond growth. Diamond is then grown in the mold

by microwave-plasma chemical-vapor deposition (MPCVD). A variety of growth recipes

are used to achieve a desired combination ofsp 2 andsp 3 carbon, dopant concentration,

and nitrogen content. A thin, conformal, nanodiamond layeris deposited first (Figure 2.3),

while microdiamond is used to back fill the bulk of the structure. The diamond is then

sputtered with a Ni/Ti coating that serves as a buffer/adhesion layer during substrate

brazing. TiCuSil braze is used to attach the cathode-mold structure to a polished Mo

substrate. After brazing, the protective Si mold is removedwith a KOH etch, and

the sharpening oxide is removed with a buffered oxide etch (BOE). Following standard

cleaning procedures, the cathode is ready for testing. A completed diamond field-emitter

array is seen in Figure 2.4.

II.2.2 Gated devices

In gated device development it is important to use a process which guarantees self

alignment of the gate electrodes to the emitter tips. This reduces the number of required
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Figure 2.4: Completed diamond FEA with tip detail

steps and the required precision of the process. The gated DFEA fabrication process, shown

in Figure 2.5, is identical to that of the ungated device up through the brazing procedure.

However, an SOI wafer with a buried oxide layer (BOX) is used inplace of the plain Silicon

wafer of the ungated process. After brazing, the handle Si isetched with the BOX serving

as an etch stop. After BOX removal, the remaining Si is thinnedusing an isotropic etch.

This etch is terminated shortly after the Si level passes theburied emitter tips. The gate

oxide is then removed from the tip area and the completed device is ready for testing. An

example of a gated DFEA is shown in Figure 2.6. One of the primary challenges with

gated device development thus far has been the presence of conductive leakage pathways

in the gate oxide. Presently it is believed that the plasma exposure during diamond growth

may result in loss of electrical standoff capabiilty. Otherpossible explanations include

cracking of the oxide layer during fabrication and contamination of the exposed oxide near

the emitter tip. Several experiments are underway to determine the source of this leakage.

Procedures are also being developed for the addition of a second self-aligned-gate electrode

which can be used to collimate the individual beamlets emerging from the array as seen in

Figure 2.7. This will provide a substantial reduction in thearray’s transverse emittance.

II.2.3 Diamond coated Silicon devices

A parallel FEA development program involves deposition of various types of CVD

diamond on silicon microtip arrays. Silicon microtip arrays are produced by isotropic

etching of a silicon wafer with a patterned surface oxide. Tips may be subsequently

sharpened by a dry oxidation technique. The smooth silicon surface must be prepared
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Dry oxidation of SOI @ 1100 C

Oxid patterning

Anisotropic KOH etch @ 60 C

Tip mold sharpening: oxidation

Diamond seeding and growth

Metal deposition and brazing

Handle Si removal

BOX removal and Si thinning

Exposed gate oxide removal

Figure 2.5: Gated DFEA process flow.
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Figure 2.6: Completed gated DFEA with tip detail.

Figure 2.7: Simulation of beamlet propagation through a double-gated FEA
cell. The current density plot to the right shows the (x, βx) phase space
projection of the beam ensemble at end of the simulation.
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for diamond growth by sonication in a diamond slurry. Prior to sonication, photoresist is

spun on the array such that only the very tips are exposed. This ensures enhanced diamond

nucleation on the tips during the growth process. Multiple diamond growth recipes have

been used resulting in the different diamond structures in Figure 2.8.

Figure 2.8: Various types of CVD diamond deposited on a singleSi tip. The
top row presents a detailed view of the microstructure of each diamond type.

Thus far, it has proven difficult to grow thin conformal layers of diamond that maintain

a small tip radius. Accordingly, field enhancement at the tiphas been small and the

required macrofields are prohibitively large for convenient testing in existing DC teststands.

A coated Si tip is pictured in Figure 2.9. Once growth procedures are improved, the

performance of different types of diamond can be examined.

Figure 2.9: Nanodiamond coated Si tip
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II.3 Integration of DFEAs with Electron Guns

There are three different injector types into which DFEAs must be integrated: high-

voltage DC, NCRF, and SCRF. The transverse-emittance measurements detailed in Chapter

4 demonstrate that ungated DFEAs possess sufficient beam quality for driving HPFELs.

While ungated devices are very rugged, control of the emission level and timing is not

very flexible and depends on geometric enhancement of the electron gun’s applied field. In

contrast, for a gated device the emission timing and tip fieldare controlled by the potential

applied to the nearby gate electrode, and the gun’s field serves only for extraction. However,

generally speaking, gated devices are more susceptible to catastrophic failure. If the gate

electrode and cathode are shorted together at even a single point, either by damage or

contamination, the ability to apply the requisite fields is lost. We consider first the general

integration strategies for DC guns.

Integration of an ungated cathode with a high-voltage DC system is rather

straightforward. As an example, we consider the 250 kV DC gunat NPS. In its present

configuration the NPS gun can provide fields on the order of 1.5V/µm at the cathode

surface. Currently DFEAs require∼ 10 V/µm for moderate current operation. To increase

the electric field, the cathode can be secured to the end of a stalk that is extended towards the

anode. Early simulations by Lewellen [21] demonstrate available fields on the order of∼ 7

V/µm in this configuration. This will be sufficient for preliminary investigation of the long-

term emission stability of DFEAs in the presence of high-energy ion back bombardment.

If the stalk is actuated, then the emission level may be controlled without changing the

total beam energy. However, the variable geometry will change the beam propagation

through the gun optics. Care must be taken to avoid excessive beam scraping or beam

quality degradation. For gated devices, it is only requiredthat an electrical feedthrough be

provided to energize the gate electrode. Simple schematicsof gated and ungated device

integration in the existing NPS gun are shown in Figure 2.10.

The primary challenge of DFEA integration with RF injectors is that of timing the
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Pierce electrode

First anode ~125 kV

second anode ~250 kV

~1.5 MV/m

~7 MV/m

Present NPS/gated 

DFEA configuration

Preliminary Ungated

 NPS Configuration

Figure 2.10: Integration of gated and ungated DFEAs into thepresent
configuration of the NPS DC gun.

electron emission relative to the RF phase. From (2.1) we see that the emission current is

exponentially sensitive to the applied electric field. As a result, the emission current from

a DFEA in an RF injector would be strongly peaked at the peak of the RF phase. Emitting

at this late phase may prevent the electron beam from exitingthe first cell before the fields

reverse polarity. This leads to large degradations in beam quality and should be avoided.

One technique for decreasing the transit time in the first cell is the extension of the cathode

into the cavity on a stalk. Another solution is to design a cavity which permits mixing of

the RF fundamental with a higher harmonic as suggested by Lewellen [22]. The peak of the

total RF field can be moved to an earlier time than the peak of theRF fundamental. Ideally,

the third harmonic component is strong only near the cathodesurface. This could possibly

be achieved by recession of the cathode into the back wall of the gun [23]. As with DC

guns, gated devices have more flexibility regarding time gating of the electron emission.

The gate electrode may be driven by a low power coaxial feed with either harmonics of
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Harmonic feed

Gated DFEA

RF cavity

Figure 2.11: Integration of a gated DFEA with an rf cavity using a low-power
harmonic feed to gate the emission.

the RF fundamental or a phase-shifted fundamental. Such an arrangement is shown in

Figure 2.11. To date, the high frequency response of gated DFEAs has not bean measured.

Also, the level of Ohmic and dielectric losses in the gate electrode and gate oxide must be

measured, and their consequences for high frequency operation in both NC and SC guns

must be considered. These measurements may be taken once theaforementioned gate oxide

leakage has been eliminated.
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CHAPTER III

EMISSION UNIFORMITY OF DFEAS

III.1 FEA Non-uniformity and its Origins

Historically, one of the most significant barriers to the adoption of FEA technology

has been the difficulty of providing uniform emission current over a large spatial extent.

Consider a single field emission source; The emitted current is extremely sensitive to

properties such as geometry, work function, and surface contamination. Small fabrication

variations in emitter tip radius, height, chemical composition, and crystalline orientation

can result in order of magnitude differences in the emissioncurrent between tips in an FEA.

Additionally, the strong electric field gradient near the cathode attracts polarizable species

from the vacuum to the cathode surface. The induced dipole moment of an adsorbate can

significantly lower the local-surface energy barrier for emission. Additionally, adsorbate

effects such as resonant tunneling may produce order-of-magnitude enhancements in the

local emission current. The configuration of adsorbates on the cathode surface is in a

state of constant flux. There are three primary effects involved, each leading to changes in

temporal and spatial emission uniformity: adsorption, surface diffusion, and desorption.

The adsorption dynamics are driven primarily by backgroundgas levels, binding site

availability, and the probability of successful binding when an attempt is made. Once

an adsorbate is bound to the cathode surface it undergoes a pseudo-random walk, hopping

between binding sites toward the region of highest field, with an approximate rate given

by [24]

Rdiff = ν e−∆E/kBT , (3.1)

whereν is the attempt frequency (typically the vibrational frequency of the adsorbate

on the surface),∆E is the approximate energy barrier for the transition,kB is the
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Boltzmann constant, andT is the local surface temperature. Similarly, the desorption rate

is approximately

Rdes = ν e−∆G/kBT , (3.2)

where∆G is the difference in the free energy of the adsorbed and desorbed states. The

most important feature of these processes is their exponential sensitivity to the local surface

temperature. Non-uniform emission produces different levels of self Joule heating from tip

to tip, which in turn leads to fundamentally different contamination states. The population

of adsorbates on tips with high emission levels should consist of a higher fraction of tightly

bound species compared with weakly bound species. Simply put, when the tips heat up

due to emission, the equilibrium concentration and composition of the adsorbates shifts.

This can lead to tip-to-tip variations in temporal stability and emission level. There are

also adsorbate effects such as resonant tunneling that can cause significant deviations from

standard Fowler-Nordheim-like field-emission behavior, and change both the total current

and the emitted energy spectrum markedly.

While non-uniformity due to contamination effects may be addressed by techniques

such as UHV operation, global annealing of the cathode, or plasma treatment, the

underlying morphological differences must be addressed toachieve a high degree of

emission uniformity. As an example, consider the arrangement shown in Figure 3.1. Using

the hyperbolic model of Jensen et al [25], the anode-tip separation is

d = r cot2 (θ) , (3.3)

wherer is the tip radius andθ is the emitter-cone half angle. Assuming a grounded cathode,

the approximate electric field at the emitter tip is given by

Ftip =
2 Vanode

r cos (θ) ln
(

1+cos(θ)
1−cos(θ)

) =
2 Vanode

r ln (4d/r)θ→0

, (3.4)
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whereVanode is the applied anode potential. The current density as a function of the local

tip radius : r

tip to anode : d

half angle : θ

Figure 3.1: A single field emitter with cone half angleθ, tip radiusr, and
anode-tip separationd.

electric field is approximated by the Fowler-Nordheim equation (2.1). Integrating over the

entire emitter surface provides an estimate of the emitted current given by

I (Vanode) = 2πr2

[

Ftip cos2 (θ)

bfn + Ftip sin2 (θ)

]

JFN (Ftip) . (3.5)

In Figure 3.2, equation (3.5) is used to calculate the emission current from each

individual tip in a 100×100 array. The 10,000 tips in the ensemble are given the same work

function, but have a Gaussian distribution of tip radii witha 10% rms spread. Figure 3.3

presents a histogram of the resulting emission. The difference between the highest and

lowest emission level is an order of magnitude. The effect iseven more pronounced when

the tip radius is uniform across the array and the same10% rms spread is applied to the work

function. The highest and lowest emission levels differ by afactor of 50. Clearly, what we

require are conditioning techniques that discriminate based on a tip’s emission level. An

excellent example of such a technique is described by Schwoebel et al [26,27] using Spindt-

type Molybdenum cathodes. Nearly identical I-V response was attained for two initially

dissimilar emitters by high-current pulsed conditioning,as seen in Figure 3.5 (borrowed

from [27]). In this technique the combination of self Joule heating and field stress drives
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Figure 3.2: Emission distribution from an array of 10,000 tips, with an rms
Gaussian spread in tip radii of10%. r = 10 nm, φ = 5 eV, θ = 35.3 ◦,
Vanode = 66.5 V, z-scale is given in Amps

Figure 3.3: Emission histogram from results of Figure 3.2. Tip currents range
from 1µA to 10µA
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Figure 3.4: Emission histogram when using a uniform tip radius of 10nm and
a10% rms gaussian spread in work function, centered atφ = 5eV. Tip currents
range from 0.5µA to 25µA

geometrically similar emitters toward uniformity throughsurface diffusion. Such self-

limiting conditioning techniques improve spatial uniformity by dulling the sharpest tips,

effectively increasing the required applied field for a given current.

III.2 Uniformity Conditioning Techniques

III.2.1 Vacuum-Thermal-Electric Conditioning

When a newly fabricated DFEA is initially turned on, the emission is highly non-

uniform and the observed beamlets undergo rapid flickering due to the diffusion of weakly

bound adsorbates. The emitted beam from an individual tip comprises multiple small

beamlets from these adsorbed species as demonstrated in Figure 3.6. Annealing the cathode

at a few hundred◦C while emission level fields are applied has been found to increase

temporal stability and spatial uniformity significantly. We refer to this process as Vacuum-

Thermal-Electric Conditioning (VTEC) [28]. A qualitative understanding can be described

as follows: Elevating the temperature in equations (3.1) and (3.2) increases desorption
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Figure 3.5: Circles show I-V response from two as-fabricatedSpindt-type
field emitters, and the triangles correspond to the I-V response after pulsed
conditioning. The I-V behavior of the emitters after conditioning is nearly
identical [27].

Figure 3.6: Detail of beams from individual DFEA tips. Each beam comprises
multiple beamlets from adsorbed species which fluctuate dueto adsorbate
migration. The tips are laid out on a square grid with a 300µm pitch.
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Figure 3.7: Schematic of close-diode conditioning arrangement. Anode-
cathode gap is typically 120 - 300µm, applied potential 0 - 5 kV.

and diffusion rates dramatically. Weakly bound adsorbatesare rapidly driven off while

tightly bound species are mobilized by the enhanced diffusion rate, migrating preferentially

along the field gradient toward the emitter tips. Returning the cathode to room temperature

restores the slow diffusion rates for tightly bound adsorbates and results in extremely stable

field emission. Additionally, the presence of these adsorbates on the active emitting area

typically results in significant reductions of the array’s turn-on field.

Figure 3.7 presents the experimental configuration for conditioning studies. The

cathode is set in a close-diode arrangement with a phosphor anode; Planarity and spacing

are guaranteed by using precision quartz capillaries. The anode is charged to +HV

and field-emitted current is measured using a logarithmic ammeter that is fiber-optically

coupled to a computer data-acquisition system. The logarithmic ammeter provides good

resolution over a wide dynamic range of input currents (∼ 1 nA-1 mA). The conditioning

apparatus used in these experiments is seen in Figure 3.8. The system is capable of

providing electric fields up to∼ 30 V/µm, substrate heating to∼ 350 ◦C, and controlled

gaseous environments at pressures of10−3-10−8 Torr.
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Figure 3.8: VTEC apparatus: provides 30V/µm, 350 ◦C substrate heating,
and10−3 - 10−8 Torr controlled gaseous environment.

Figure 3.9 shows typical current data from a VTEC treatment.While the turn-on field is

significantly reduced by VTEC, the effects are not permanent and decay over the course of

several hours. This implies that the effects are adsorbate based rather than morphological

in nature. An example of uniformity enhancement due to VTEC is shown in Figure 3.10.

The apparent asymmetry in the emission intensity is due to a systematic gradient in the

anode-cathode spacing for this particular run. The same 16×16 array is pictured before

(left) and after (right) a 300◦C VTEC treatment. The same electric field was applied for

both images, however, the current increased from 10µA to 50µA during VTEC. The total

active fraction of emitters was increased from∼ 30% to∼ 60%.

III.2.2 High-Current Conditioning

While the ability to control adsorbed species through VTEC orsimilar techniques may

be useful, relying on a surface-contamination effect for uniformity enhancement is not

ideal. The potential target environments for DFEAs range from UHV superconducting RF

guns to close-diode arrangements in field-emission displays. Conditioning techniques that
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Figure 3.9: Increase in the emitted current for a fixed electric field strength
during VTEC.

Figure 3.10: Uniformity improvement following a 300◦C VTEC treatment.
The active emitter fraction increased from∼ 30% (left) to∼ 60% (right).
Intensity values have been inverted for clarity.
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Figure 3.11: Emission uniformity progression during HCC of a5×5 DFEA.
Images were taken at progressively higher fields, ending at 15 V/µm. The
uppermost tip was malformed during fabrication and not expected to emit

remove or compensate for variations in morphology and emitter composition are required

to ensure uniform operation in this wide range of parameters.

DFEAs possess an inherent self-limiting conditioning mechanism which results in

highly uniform emission after operation at moderate per-tip current levels. We observe no

morphological or emission uniformity changes below currents of∼ 1 µA per tip. Driving

the emitters past this level induces emission uniformity enhancement, possibly through

thermal-assisted field evaporation. This phenomenon has been observed in experiments

with carbon nanotube field emitters [29–31]. Self-Joule heating and the large field stresses

at the emitter surface result in the evaporation of carbon clusters into the vacuum. An

example of the effect of this high-current conditioning (HCC)on a 5×5 ungated DFEA

is shown in Figure 3.11. The emitter base size is 10µm and the array pitch is 100µm.

During the investigation of conditioning procedures the array pitch was typically large

so that the evolution of individual emitters could be studied. The uppermost tip in

this array was malformed and not expected to emit. Figure 3.12 shows detail of several

of the DFEA emitters before (top) and after (bottom) conditioning. The length of the
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Figure 3.12: DFEA nanotips before (top) and after (bottom) HCC up to 15µA
per tip. Tips are noticeably shorter with significantly increased tip radii

nanotips is noticeably shorter and the tip radius has becomesignificantly larger. Following

conditioning, a uniform emission level of 15µA per tip DC was achieved at an applied

field of 15V/µm. The high-input-power density removed the 5nm Ni metalization from

the anode locally, resulting in significant charging and preventing higher current testing.

In subsequent conditioning studies, the array parameters were progressively scaled toward

the desired final device, a large area array (∼ cm2) with high tip density (∼ 4-6µm pitch).

To confirm the possibility of high tip density scaling the conditioning procedures needed

validation with smaller tip geometries. As expected, conditioning of the small geometries

(≤ 5 µm base) has been identical to that of larger emitters (10-20µm base). Additionally,

there has been no discernable difference in the conditioning of large numbers of emitters

compared to that of small ensembles. Figures 3.13 and 3.14 provide further examples of

the results of HCC. Both arrays consist of 5µm base emitters and have the same overall

area. The array pitch in Figure 3.13 is 200µm while the array pitch in Figure 3.14 is 100

µm.

A careful conditioning study was performed using a 3×24 ungated DFEA to rule out

anode back sputtering as the source of the observed uniformity enhancement. The emitters

had a 20µm base length and were packed with a 28µm pitch while the anode-cathode

gap was 300µm. At this spacing the individual beamlets were approximately 80µm in

diameter. As a result, the back sputtered material due to a single beamlet covered multiple
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before conditioning after conditioning

Figure 3.13: Phosphor screen images before and after HCC of a 10x10 DFEA
with 5 µm emitter base and 200µm pitch. The plot demonstrates a linescan of
a single row.
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before conditioning after conditioning

Figure 3.14: Phosphor screen images before and after HCC of a 20x20 DFEA
with 5 µm emitter base and 100µm pitch. The plot demonstrates a linescan of
a single row.
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Figure 3.15: HCC progression for a 3×24 ungated DFEA. No emission
uniformity changes are noted until an average per-tip current of∼ 1 µA.

Figure 3.16: Typical morphology evolution of a DFEA emitterduring the HCC
conditioning process.

emitters. The conditioning procedure follows: An initial image of every emitter in the 72

tip array was taken in an SEM prior to conditioning. An initial uniformity check was made

using a Y2O3:Eu phosphor anode at a low current level of∼ 10nA per tip. The array was

conditioned with progressively higher per-tip-current levels for half an hour at a time. A

polished Molybdenum anode was used during conditioning to minimize back sputtering.

Each tip was imaged in the SEM and the emission uniformity wasrechecked at∼ 10

nA per tip after each conditioning iteration. No changes in tipmorphology or emission

uniformity are noted until the per-tip current (current divided by the total number of tips, not

by the total number of actively emitting tips) reached levels of∼ 1 µA. The progression of

emission uniformity and an example of the corresponding morphology changes are shown

in Figure 3.15 and Figure 3.16 respectively. Examination ofthe Molybdenum anode

and the cathode surface after operation at the highest current levels showed evidence of

small amounts of material transfer. The sputtered materialwas distributed rather uniformly
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Figure 3.17: Roughly uniform distribution of back-sputtered anode material on
the cathode surface following moderate current operation.

over the cathode’s active area as seen in Figure 3.17. Examination of the evolution of

tip morphology has not conclusively ruled out anode back bombardment as a contributing

factor in HCC. However, it is difficult to understand how back bombardment with a roughly

uniform spatial distribution could discriminately condition tips based on emission level.

Microsecond pulsing of the emission will prevent anode sublimation and should help

determine the source of HCC.

Another type of morphological modification was noted duringthese conditioning

studies; nanotip deformation under the stress of the applied electric field was observed.

This effect provides a self healing mechanism for certain fabrication or post-processing

defects. Figure 3.18 shows the conditioning progression (left to right) for two such defects.

Tips that were initially bent at extreme angles to the pyramid’s central axis deformed to

align with the direction of the macroscopic electric field. Additionally, in some cases

double-tips that were stuck together separated. The importance of self-Joule heating to

these field-forming effects is not currently known.
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Figure 3.18: Self correction of fabrication and post-processing defects during
HCC. The top and bottom are separate tips, and the conditioningprogression
moves left to right.

III.3 Future Conditioning Experiments

The most significant problem with high-current density DC operation of DFEAs

in close-diode arrangements is anode back bombardment. This is best illustrated by

Figure 3.19. Observations includes catastrophic tip damage and deposition of large

particulate matter,∼ 100nm in size. The estimated power density incident on the phosphor

anode in this case was∼ 600W/cm2. For a 4µm pitch array, a per-tip current of 15µA,

and a beam energy of 1.5 kV, the input power density at the anode is∼ 100kW/cm2. This

is two orders of magnitude higher than the power densities typically used for sputtering

refractory metals. Obviously close-diode DC operation is not possible at these levels,

however pulsing the current at microsecond time scales can avoid anode destruction and

allow HCC of dense arrays. While the maximum DC current achieved thus far is 15µA per

tip, this is certainly a limitation of the anode and not the cathode. Microsecond pulsing and

the resulting removal of anode back bombardment should unlock new levels of performance

for DFEAs.

Recently, preliminary experiments on pulsed conditioning of DFEAs have been
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Figure 3.19: Tips from a 28µm pitch 5×5 ungated DFEA before (four tips on
left) and after (four tips on right) HCC and back bombardment damage. The
before and after pictures are not of the same emitters, but are representative of
the array.

performed in the Department of Electrical and Computer Engineering at Vanderbilt [32].

A Magnavolt (5 kV, 5 A) pulser has been used to test high density, large area arrays in a

close-diode configuration. These cathodes have been successfully conditioned with pulsed

operation at 1 kHz with a 1% duty factor (10µs pulses). As expected, HCC procedures

are still valid in this regime of operation. The reduced average power density at the anode

has prevented back bombardment and facilitated the achievement of peak per-tip currents

in excess of 40µA. This result was from a 224×224 array of 10µm base emitters with a

20µm pitch. The corresponding peak current density was then∼ 10A/cm2. When scaled

for our highest packing density, 4µm pitch, the current density is∼ 250A/cm2. Testing

at higher currents was not attempted as the particular cathodes in question were slated for

delivery to collaborators. Subsequent tests will explore the maximum achievable currents

for single emitters under pulsed operation.

The problem of back bombardment during DC operation becomesless important for a

gated device. The high fields required for emission are provided by a low voltage and the

gate electrode’s close proximity to the emitter, not by the high voltage of a distant electrode.

This provides significant flexibility in the physical geometry of the collector system, and
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enables minimization of back bombardment. Furthermore, the gate electrode can easily be

pulsed near ground and requires very little current. It is anticipated that HCC procedures

will be equally effective with gated devices. Ultimately DFEAs will be integrated into

environments where anode back bombardment is not present. RFguns do not require an

anode to establish the accelerating field and high-voltage DC guns have relaxed physical

dimensions which allow extraction of the electron beam.
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CHAPTER IV

EMITTANCE AND BRIGHTNESS OF DFEAS

IV.1 Emittance and Brightness

In examining the properties of beams, it is useful to introduce the concepts of

trace space and distribution moments. Each beam particle has a trajectory given by
(

xi,x
′

i = dxi

dz

)

, wherexi = xix̂ + yiŷ is the transverse position of theith particle. A

coordinate space representation of a beam ensemble at a focus is given in Figure 4.1. To

visualize the collective behavior of the beam it is useful toplot these trajectories in so-called

trace space, wherex′ or y′ is the ordinate andx or y is the abscissa. In trace space the beam

ensemble occupies some volume whose shape evolves as the beam propagates through

an electron optical system. While these trajectory points are discrete, for sufficiently high

particle number the ensemble can be approximated by a smoothdistribution,n (x, y, x′, y′).

Statistically the beam ensemble is described in terms of moments of its distribution. These

moments quantify observables such as beam size, divergence, and correlations between

position and divergence. The first moments inx andx′ vanish about the beam axis, and the

x

z

^

^

( x , x' )i i

Figure 4.1: Electron trajectories inside the beam envelopeat a focus.
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Figure 4.2: (x, x′) Three trace space projections: at a beam focus, when the
beam is diverging, and when the beam is collimated

second moments inx andx′

σ2
x =

〈

x2
〉

=
1

N

N
∑

i

x2
i =

∫ ∫
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〈

x′2
〉

=
1

N

N
∑

i

x′2
i =

∫ ∫

x′2n (x, x′) dxdx′, (4.2)

give the rms beam size,σx, and the rms angular divergence,σx′. The correlation moment

〈xx′〉 indicates whether an electron’s transverse position is related to its angular divergence.

Figure 4.2 demonstrates three(x, x′) trace space projections: at a beam focus, when the

beam is diverging, and when the beam is collimated. We may usethese distribution

moments describe the quality of an electron beam by introducing a quantity called the

rms emittance, which is given by

ǫx =

√

〈x2〉 〈x′2〉 − 〈xx′〉2. (4.3)
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Emittance depends on the inherent angular spread that exists at each transverse position

in the beam. If we examine 4.3, it is apparent that beam quality does not suffer from the

presence of correlations. This is because correlations canbe introduced and removed by

drift spaces and linear focusing optics. Furthermore, for an ideal beam, all correlations

vanish at a beam focus. In this case equation 4.3 reduces to

ǫx = σxσx′ . (4.4)

It is also common to consider the beam in phase space, where the coordinates use transverse

momenta rather than divergence. At any point in phase space the beam ensemble has a

density ofρ (x,p, t) and a corresponding velocityv = (ẋ, ṗ). Assuming that the number

of particles in the beam in conserved, the continuity equation is

ρ∇ · v + v · ∇ρ +
∂ρ

∂t
= 0, (4.5)

where∇ is the phase space gradient. If all forces in the system are derivable from

a Hamiltonian, then Hamilton’s canonical equations of motion may be substituted into

equation 4.5, causing the first term to vanish. The two remaining terms are recognized as

the total time derivative of the phase space density

df

dt
= v · ∇ρ +

∂ρ

∂t
= 0. (4.6)

This is known as Liouville’s theorem [33], and it states thatthe local density of the beam

ensemble in phase space, as viewed while moving with a particle, is constant in time.

Liouville’s theorem is a statement about density conservation in 6N -dimensional phase

space, whereN is the number of electrons in the ensemble. However, if the electrons can

be regarded as non-interacting, and the space-charge forces are approximated as an external

field applied to all electrons, then Liouville’s theorem maybe applied to 6-D phase space.
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When the beam electrons undergo acceleration, the rms emittance we have described is

not constant. Consider the slope of an electron trajectory inthe paraxial approximation

x′ =
dx

dz
=

px

pz

, (4.7)

wherepx andpz are the momenta in thex andz directions respectively. When the electron

is accelerated in thez direction,pz changes whilepx remains constant. This raises or lowers

the divergence of every electron in the beam, effectively changing the volume occupied in

trace space. A more useful parameter that is invariant underaccelerations is the normalized

emittance, given by [34]

ǫNx = βγǫx =
1

mec

√

〈x2〉 〈p2
x〉 − 〈xpx〉2. (4.8)

whereme is the electron mass. As before, when the beam is at a focus, wehave

ǫNx =
1

mec

√

〈x2〉 〈p2
x〉 =

1

mec
σxσpx . (4.9)

The transverse emittance describes how well a particle beammay be focused. However,

it does not involve the intensity of that beam. Another measure of beam quality is the

amount of current that lies within a given trace-space volume. This differential quantity,

mentioned in Chapter 1, is called the transverse brightness and is simply the local current

density in 4-D transverse trace space. As with emittance, the brightness has a normalized

version that is invariant under accelerations. This normalized transverse brightness is given

by

BN =
1

β2γ2

d4I

dxdx′dydy′
, (4.10)

or equivalently, in phase space variables

BN = m2c2 d4I

dxdpxdydpy

. (4.11)
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For convenience, an average brightness is typically used inwhich the total current is divided

by the approximate 4-D trace space volume occupied by the beam ensemble,

BN =
1

β2γ2

I

∆Vxx′yy′

= m2c2 I

∆Vxpxypy

. (4.12)

IV.2 Experimental Arrangement and Results

There are two primary techniques for determining the emittance of an electron beam.

The first technique determines only the emittance rather than the details of the trace space

projection. The electron beam is focused by an optical system, and the beam envelope is

determined as a function of the distance along the beam axis,for example, by scanning a

phosphor screen or a wire scanner along the length of the electron beam. This measured

envelope is compared to envelope equation, using the emittance as a fitting parameter.

Alternatively, the beam profile can be measured at a single point while scanning the strength

of a focusing solenoid. An example of this technique appliedto the beam from an FEA is

given in [7].

The other method of emittance measurement involves sampling the electron beam at

various transverse positions and examining the angular spread emanating from each point.

This constructs a map of the density in transverse trace or phase space. This is commonly

refered to as a pepperpot technique and utilizes masks consisting of either pinholes or

slits. In the case of a slit array, the beam divergence is sampled in a single transverse

dimension, whereas a pinhole array examines both transverse dimensions simultaneously.

After passing through the aperture mask, the beamlets entera field-free drift space where

their angular spread is translated into a transverse position spread. The beamlets are

examined after this drift using a phosphor screen and CCD camera. The aperture mask

parameters and the length of the drift space are such that thebeamlets are well correlated

at the phosphor but do not have significant overlap with one another. A schematic of
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Figure 4.3: The pepperpot technique of determining an electron beam’s trace
space distribution.

this technique and the resulting trace-space distributionare seen in Figures 4.3 and 4.4

respectively.

For our case of a DFEA cathode, the capability for a high degree of emission uniformity

over a large physical area has been demonstrated. Therefore, we simplify the process by

measuring the beamlet emitted by a single pinhole and then assuming that the same result is

obtained irrespective of transverse position in the beam. An ungated, 3×24, 28µm pitch,

diamond field-emitter array (Figure 4.5) is placed in a close-diode configuration with a

pepperpot as the primary anode The experimental arrangement is shown in Figure 4.6.

The anode-cathode gap is set using precision quartz capillaries, 330µm in diameter. When

the thickness of the diamond film is included, the gap is∼ 300µm. In this configuration,

fields up to∼ 17 V/µm can be applied. The pepperpot (Figure 4.7)is fabricated from

a single SOI wafer, using a multistage patterning and etching process, and has 30-µm

square holes with a 200-µm pitch. A field-free-drift space of 5 mm is set with a cylindrical
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Figure 4.4: The(x, x′) trace space distribution obtained using a pepperpot
technique

Figure 4.5: 3×24, 28µm pitch, ungated DFEA used in preliminary emittance
measurements.
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Figure 4.6: The experimental arrangement for emittance measurements with
DFEAs.

Figure 4.7: SEM micrographs of the pepperpot used in preliminary emittance
measurements.

metal spacer and terminates at a high-sensitivity ZnO phophor screen. The apparatus has

an integrated resistive heater, allowing annealing of the cathode up to∼ 350 ◦C. This

annealing improves uniformity due to modification of adsorbed species on the emitter

surface. In the current experiment, the beamlet that emerges from the pepperpot comprises

emission from fewer than a dozen tips. As a result, the beam has nonzero correlations that

slightly preserve the aperture’s square shape in the final image. Figure 4.8 shows one of the

collected beamlets with the approximate location of a linescan that is used to estimate the

cathode’s rms angular divergence. The sporadic bright spots in the image are the result of

phosphor damage from unrelated experiments. The results ofthe linescan are presented in

Figure 4.9. The rms radius of the beamlet at the screen is estimated at approximately 250
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Figure 4.8: Phosphor screen image of a beamlet during an emittance
measurement. The line overlay gives the approximate location of the linescan
used to calculate the angular divergence.

Figure 4.9: This linescan of the beamlet gives an approximate rms radius of 250
µm, corresponding to an rms angular divergence of∼ 38 mrad before aperture
defocusing.
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µm, which corresponds to an rms angular divergence ofσx′ ≈ 50 mrad. The fields around

a pepperpot aperture act as a diverging lens and increase themeasured divergence at the

collector. The focal length of the effective diverging lensis given byf = 4L, whereL is

the anode-cathode spacing. Correcting for the focal length of 1.2 mm reduces the measured

rms angular divergence toσx′ ≈ 38 mrad. For a beam energy of 2 kV(βγ ≈ 0.09) and a

cathode size ofd = 1 mm, the normalized x-emittance is

ǫNx = βγσxσx′ = 0.97 mm · mrad (4.13)

Assuming spatial uniformity, and identical Gaussian distributions inx andy, the effective

trace space volume occupied by a beam with this divergence is[35]

∆V = 2πσ2
x′d2. (4.14)

We may then calculate the normalized brightness 4.12 as a function of current density

(A/m2),

BN =
1

β2γ2

J

2πσ2
x′

. (4.15)

For the highest per-tip currents and tip densities producedthus far, the current density

averaged over the area of the array isJ ≈ 2.5 × 106 A/m2, and the normalized transverse

brightness isBN ≈ 3.5 × 1010 A/m2 · steradian. With the successful development of

pulsed conditioning techniques, high-density (4-µm pitch) arrays are now available for

emittance testing. This represents an increase in tip density of >30 times compared with

the present results, and will significantly refine these measurements.

IV.3 Simulation of Single Tip Emission for Estimating Array Emittan ce

For comparison with our experimental results, we have performed simulations of the

beamlet from an individual emitter. Field solving for the emitter structure is carried out in

POISSON while electron beam trajectories are computed in General Particle Tracer (GPT).
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Figure 4.10: Detail of an individual emitters nanotip structure with field solving
mesh and trajectories.

These simulations are axially symmetric and cannot emulatethe pyramidal geometry of the

actual emitters or the double tips sometimes observed. The anode-cathode gap is 300µm,

taking into account the thickness of the diamond layer, and the applied voltage is 2 kV.

The electron beam is started at the surface of the emitter nanotip and is given Gaussian

distributions in velocity transverse to the surface normal, and transverse position. The rms

radius for the transverse velocity distribution,β = 10−3, was determined using preliminary

energy spread measurements of the field emitted beam from a cvd-diamond film. These

early measurements suggest a FWHM energy spread of 1.3 eV. A close up view of the

emitter’s nanotip, electron trajectories, and field solving mesh are seen in Figure 4.10.

Figure 4.11 demonstrates propagation of the beam to the pepperpot position, and details of

the electron trajectories near the emitter surface are shown in Figure 4.12. The beam’s

transverse profile and(x, x′) trace space projection are shown in Figures 4.13 and 4.14

respectively. The calculated beam spot of∼ 50 µm is comparable to that measured in

uniformity conditioning experiments, and the rms divergence at the pepperpot position is

∼ 40 mrad, which agrees well with the measured value of 38 mrad.
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Figure 4.11: Propagation of beamlet to the pepperpot position.
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Figure 4.12: Detail of the electron trajectories near the nanotip surface. Some
spurious trajectories are present due to imperfect matching of the electric field
map to the tip geometry
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Figure 4.13: Electron beam’s transverse profile at the pepperpot anode.
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Figure 4.14:(x, x′) trace space projection of the electron beam at the pepperpot
anode.
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CHAPTER V

ENERGY SPECTRUM FROM DFEAS

V.1 Introduction

The name ”diamond field-emitter array” does not hint at the complexity of the

emitter material in these devices. The nanodiamond that constitutes the emitter surface

consists ofsp 3 crystals with interstitialsp 2 and varying levels of incorporated Nitrogen

and Boron. Furthermore, the bulk of the emitter’s internal structure is large grain

microdiamond. Details of the emitter’s nanotip structure and chemical composition are

slated for investigation with TEM and other techniques in the near future [36]. There is

perhaps little reason to believe that these diamond structures should behave as either pure

metal or semiconductor field emitters. While Fowler-Nordheim like emission has been

demonstrated, a full picture of the emission physics cannotbe derived from these data.

From a fundamental perspective, perhaps the most illuminating measurement that can be

made is that of the emitted energy spectrum from DFEAs. The energy spectrum emitted

from a clean nanodiamond surface can give insight into its density of states near the Fermi

level, while the spectrum from adsorbed molecules and atomscan aid in the understanding

of resonant tunneling effects between the nanodiamond and the surface states due to those

adsorbates.

V.2 Energy Analyzer Design, Simulation, and Testing

To measure the emitted energy spectrum we have developed a high-resolution

retardation energy analyzer based on previous work at [37].The measured energy spread

in a standard retardation analyzer is artificially high due to trajectories having nonzero

transverse momentum. By including a cylindrical focusing electrode, the energy resolution

can be improved by several orders of magnitude. A schematic of the analyzer accompanied
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Figure 5.1: High-resolution retardation energy analyzer schematic (with
cathode).

by a cathode is shown in Figure 5.1. The system was modeled in SIMION 7.0, an

ion/electron optics workbench, in order to predict performance of the analyzer. An

isometric-cutaway view of the analyzer is shown in Figure 5.2. To find the achievable

energy resolution, we provide the analyzer with a monoenergetic beam having a 5◦

correlated-full-angle spread. Prior to energy scans, the focusing electrode is adjusted until

the electron trajectories are normal to the retarding mesh.Alternatively, the measured

energy spread may be minimized as a function of focusing voltage as seen in Figure 5.3.

Operating the analyzer at this minimum provides resolutionthat is smaller than the kinetic-

energy error in the simulation. The optimum focusing voltage is found to beVfocus =

0.97Vbeam. Figure 5.4 shows the integrated collector signal as a function of retardation

voltage for beams of different energies. The error as a fraction of the total beam energy is

10 ppm, 10 mV for a 1 kV beam. Equipotentials and trajectoriesfor an energy scan of a 1

kV beam withVfocus = 970 V are presented in Figure 5.5.

These simulations demonstrate that the idealized geometryof this analyzer is capable
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Figure 5.2: Cutaway view of the energy analyzer with electronbeam.
Simulation geometry by C. L. Stewart.

Figure 5.3: Measured energy spread (due to KE error) as a function of focusing
voltage. Simulations by C. L. Stewart.
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Figure 5.4: Integrated energy distributions for three different beam energies.
The focusing is set to optimum for each scan. Simulations by C.L. Stewart.

Figure 5.5: Trajectories and equipotentials inside the energy analyzer during a
scan.
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of very high resolution, however, effects that are excludedfrom these simulations, such

as retarding mesh granularity, are found to have a significant impact on the achievable

resolution. Because the emission spectrum from these diamond cathodes has never been

measured before, care must be taken to investigate the instrumental broadening due to these

non-idealities.

An excellent treatment of a retardation analyzer’s broadening function and its

deconvolution from experimentally measured energy spectra is given by Reifenberger,

Goldberg, and Lee [38]. The measured total energy distribution distributionj′e is the result

of sweeping the analyzer’s resolution functionT ′ across the unknown true distribution,j′0.

The measured energy distribution is then given by the convolution

j′e (ǫm) =

∫

∞

−∞

j′0 (ǫ) T ′ (ǫm − ǫ) dǫ (5.1)

whereǫm is the mesh potential relative to the Fermi energy. Using theFaltung theorem to

deconvolve these functions into their Fourier transforms,we have

j̃e
′

(ω) = j̃0
′

(ω) T̃ ′ (ω) , (5.2)

where

j̃e
′

(ω) =
1√
2π

∫

∞

−∞

j′e (ǫ) eiωǫdǫ (5.3)

If the true energy distribution,j′0 (ǫ), is known, then the resolution function of the analyzer

can be found by

T ′ (ǫ) =
1√
2π

∫

∞

−∞

j̃e
′

(ω)

j̃0
′

(ω)
e−iωǫdω. (5.4)

If the assumed Fermi energy in the calculation of the resolution function is different from

the actual Fermi energy, this exact difference is revealed as a shift in the resolution function

from the origin. In this way the Fermi energy can be accurately determined for a given

distribution, provided the shape of the theoretical distribution is known. When calculating
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the resolution function, high-frequency noise componentsin the experimentally measured

spectra can complicate matters. The effects of this noise may be mitigated in frequency

space by applying a Gaussian filter,

G̃ (ω) = e−ω2/2α2

(5.5)

to the experimental distribution. The parameterα determines the extent of the high-

frequency damping and typicallyα ≈ 30 eV−1. Once the resolution function or its Fourier

transform is calculated, it may be deconvolved from measured spectra to yield the corrected

distribution

j′c (ǫ) =
1

2π

∫

∞

−∞

G̃ (ω) j̃e
′

(ω)

T̃ ′ (ω)
e−iωǫdω. (5.6)

Thermionic cathodes have a simple and well known energy spectrum that can be used

to extract the resolution function. When emission occurs farfrom the Fermi level and

the density of states is locally uniform, ingnoring normalization constants, the theoretical

total-energy distribution for a thermionic emitter has theform

j′ (ǫ) = ǫ e−ǫ/kBT , (5.7)

whereT is the emitter temperature. The Fourier transform of (5.7) is straightforward, and

given by

j̃′0 (ω) =
1√
2π

[

1

kBT
− iω

]

−2

. (5.8)

Substituting into (5.4), we have

T ′ (ǫ) =
1√
2π

∫

∞

−∞

∫

∞

−∞

[

1

kBT
− iω

]2

eiω(ǫ′−ǭ+η)j′e (ǫ′) dωdǫ′, (5.9)

whereǭ = ǫ + η, andη is the difference in the assumed and actual Fermi energy.

Our thermionic source of choice is a large area (∼ 1.5 mm diameter) LaB6 〈100〉 (2.69
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Figure 5.6: Detail of LaB6 thermionic source and Tungsten heater coil for
fiducial testing of the energy analyzer.

eV work function) button cathode. Detail of the experimental arrangement is given in

Figure 5.6. Figure 5.7 shows the extracted resolution function for a cathode temperature

of ∼ 1790 K and a beam energy of 500 V. The resolution function is approximated by a

Gaussian least-squares fit with a FWHM of 0.147 eV that is subsequently used to correct

measured spectra. The difference in the assumed and actual Fermi energy for this case, is

found to beη = 1.705 eV. The as-measured, theoretical, and corrected spectra are shown in

Figure 5.8. While the Gaussian correction sharpens the low energy rise, it does not correct

the shift in the peak value’s location. This is because the actual resolution function bears a

small degree of asymmetry that is not reproduced in the Gaussian. Also, the finite freqency

spectrum used in reconstructing the corrected distribution results in ringing on the sharp,

low-energy side. In Figure 5.8 this ringing has been truncated at the first zero crossing.

V.3 Measurement of emitted energy spectrum from DFEAs

For measurement of the energy spectrum from a DFEA, the cathode and energy

analyzer are integrated with the test stand shown in Figure 5.9. The test stand can be

operated at UHV pressures and can apply electric fields of up to ∼ 25 V/µm. The cathode

is held in a miniature vise that is attached to a spring-loaded kinematic mount. This
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Figure 5.7: The extracted resolution function for the energy analyzer. The
Gaussian least-squares fit that will be used for deconvolution of measured
spectra is also shown.

Figure 5.8: As-measured, theoretical, and deconvolved spectra from a 1790 K
LaB6 thermionic emitter. The energy values on the x-axis are given relative to
the work function.
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Figure 5.9: General purpose UHV test stand for measuring emission properties
of DFEAs.

allows arbitrary adjustment of the planarity of the cathodeand analyzer surfaces during

HV operation. Additionally, the anode carriage holding theanalyzer can be adjusted

during operation to change the anode-cathode spacing. The parameters of the DFEA used

in these experiments were selected with the following reasoning: The required electric

field for moderate current operation is∼ 10 V/µm, which is conveniently produced by

a 3 kV anode bias and an anode-cathode gap of 300µm. In experiments under similar

conditions we have observed a beamlet diameter of∼ 80 µm from an individual emitter.

The array is then chosen to have a 100-µm pitch and a dimension of 20×20 tips. This

guarantees a macroscopic-array size for assisting in alignment of the analyzer. With these

dimensions and conditions, roughly 50% of the array area is covered with electron beam at
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Figure 5.10: 20×20, 100-µm pitch DFEA and energy analyzer in teststand
during alignment procedure.

the analyzer’s aperture plane. This gives a reasonable probability of successful alignment,

and with a front-aperture diameter of 50µm, a roughly 60% chance that the analyzer will

examine current from a single tip.

In these experiments the background pressure ranged from5 × 10−10 to 2 × 10−9

Torr depending on the emission current level. The first alignment attempt was successful,

and beam current was immediately detected at the collector electrode. The analyzer was

configured in an observation mode where the accepted beamletis magnified and allowed to

impact the phosphor-screen collector at high energy. In this mode, spatial fluctuations

due to adsorbate action can easily be seen. It was clear from these observations that

the beam comprised emission from multiple adsorbates. Furthermore, the aperture was

completely filled by the beam, suggestive that the accepted beam originated from a single

tip. In this configuration, the beam may also be focused near the retarding mesh for fiducial
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VF = -241 V -210 V -181 V

Figure 5.11: Phosphor images produced by focusing the accepted beamlet near
the retarding mesh. The 50-µm pitch of the grid can be used for fiducial
purposes.

purposes such as estimating the relative importance of spherical and chromatic aberration

in the optical system. Figure 5.11 shows the phosphor screenimage as the beam focus is

longitudinally swept through the retarding mesh. In this case the beam energy was 3 kV,

and the retarding mesh and collector were both held at 1.5 kV.WhenVF = −210 V, the

beam was focused directly on the mesh. Although complicatedby aberration at the focus,

the beam-spot size was estimated at∼ 50-100µm based on the 50-µm pitch of the mesh.

When a monoenergetic beam is used in simulations, then the estimated spot size under

these conditions is on the order of a few microns. However, when an energy spread of 1-2

eV is introduced, then the estimated spot size is on the orderof many tens of microns. This

suggests that spherical aberration in the optical system isunimportant for these beams.

During experiments with the LaB6 source, the optimum focal setting for energy analysis

was found to be 97% of the beam voltage. This focal setting wassubsequently used for

all DFEA measurements. During these measurements it was very clear if the adsorbate

configuration changed during an energy scan. Typically, a given adsorbate configuration

would persist for between one and twenty seconds. For a moderate step size of 0.1 V,

each scan lasts for approximately 1-3 seconds. As expected,the presence of adsorbates on
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the emitter surface has dramatic effects on the spectrum shape and position. Figure 5.12

presents a sampling of the measured spectra. Narrow lines are single spectra (averaged

over several scans) taken at different times but under the same experimental conditions,

and the thick black and green traces are the measured spectraaveraged over∼ 600 scans.

Figure 5.13 presents two isolated adsorbate events. The traces are given chronologically

from earlier to later times (1,2...). The plot on the right demonstrates the power of adsorbate

modification of field emission through resonant tunneling. This was a rapid event in which

the current in the accepted beamlet increased by an order of magnitude while maintaining

a spectral width of∼ 0.4 eV. The collection of spectra on the left seems to suggest

the arrival of an adsorbate on the emitter surface followed by a gradual change in its

configuration. For instance, this could correspond to a slowrotation of the adsorbate’s

molecular axis or a progressive migration to regions of higher field. The presence of

adsorbed species on the emitter can create surface states that are resonant with certain

electron energies in the emitter’s density of states [19, 39]. This resonance can result in

order-of-magnitude enhancements of the local tunneling current. Thus, it is anticipated that

emission from the clean diamond surface is much weaker than that observed for adsorbed

species. Furthermore, the adsorbates tend to shift the peakposition of the distribution

to lower energies. This suggests that weak spectra with highcentral energies should be

examined as the most likely candidates for origination froma clean emitter surface. In these

experiments, spectra with the most energetic peak positions (∼-5.5 eV) have corresponded

to the weakest intensities. Figure 5.14 shows unnormalizedand normalized versions of

these spectra. While some adsorbate modification is observed, it is obvious that all of these

distributions share a single spectral feature: a strong peak at a bias of -5.5 V. The black

trace appears to be the most likely candidate for emission from a clean surface.

If we ignore normalization factors, the total-energy distribution for thermal-field
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Figure 5.12: Measured emitted energy spectra from a DFEA microtip.
Fluctuations in the adsorbate configuration on the emitter surface cause changes
in the shape and positions of the spectra. Thin lines are individual spectra and
the thick black and green traces are averaged over∼ 600 spectra.

Figure 5.13: Selected adsorbate events; Traces are chronological beginning at
the index 1. A significant transition followed by a gradual shifting of the central
energy (left). A discrete event resulting in an order of magnitude increase in
the emitted current, a peak shift of∼ 2 V, and a narrow energy spread of∼ 0.4
eV (right)
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Figure 5.14: Emission spectra that may have originated froma clean diamond
surface. These distributions share a well defined spectral feature at -5.5 eV.

emission is given by [40,41]

j′TFE (T,E) =
eE/d

1 + eE/kBT
, (5.10)

where

d =
qhF

4πt (y0)
√

2meφ
, (5.11)

φ is the emitter’s work function,h is Planck’s constant,q is the electron charge,me is the

electron mass, andt (y0) is given by

t (y0) = 1 + 0.1107y1.33
0 . (5.12)

The argumenty0 is

y0 =

√

q3F/4πǫ0

φ
, (5.13)

whereǫ0 is the permittivity of free space. This model may be used to fitthe purported clean

diamond spectrum once the instrumental broadening has beendeconvolved. The results

of this fit are seen in Figure 5.15. The work function is assumed to be∼ 5 eV, and the

temperature and electric field are allowed to vary as fitting parameters. The best fit is given
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Fit parameters:

T = 767   C 

Φ = 5 eV

F = 3.88E9 V/m

Figure 5.15: The proposed clean-diamond emission spectrumwith and without
resolution function correction. The corrected trace is fit with a thermal-field
emission model.

by T = 767 ◦C andF = 3.88 × 109 V/m. While there is significant joule heating of the

emitter tips during large per-tip current operation (several µA/tip), these data were taken at

a per-tip current of∼ 30 nA, so the fit temperature seems rather high. Further experiments

are needed to constrain the values ofT andF , and to determineφ. The proposed clean

spectrum is very similar, both in shape and width (∼ 0.5 eV), to the field emission spectra

from a nitrogen-containing diamond-like-carbon film, reported in [42]. A heating system

is presently being integrated with the cathode holder to allow substrate temperatures up

to ∼ 350 ◦C. Operation at elevated temperatures will enable rapid desorption of adsorbed

species from the emitter surface. Additionally, flexibility is being added to provide limited

translational capability for the cathode holder. This willfacilitate the examination of

multiple emitters, one by one, so that tip-to-tip variations in the emitted spectra can be

studied.
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CHAPTER VI

THE SMITH-PURCELL FREE-ELECTRON LASER: AN APPLICATION OF
DFEAS

VI.1 Smith-Purcell Radiation and Superradiant Effects

An electron passing in close proximity to a metallic grating(Figure 6.1) emits a wide

spectrum of radiation into the space above. This is called Smith-Purcell radiation (SPR) and

can be viewed as scattering of the electron’s virtual photonfield by the grating. Smith and

Purcell first demonstrated SPR in 1953 [43] by using a 1.67µm grating pitch and a beam

of ∼ 300 kV electrons to produce radiation in the visible spectrum. The periodic nature

of the scattering surface provides a coherence condition relating the emitted wavelength to

the angle of observation in the far field. This relation, proposed and verified by Smith and

Purcell, is given by

λSP =
L

|p|

[

1

β
− cos (θ)

]

, (6.1)

whereL is the grating period, the integerp is the grating order,β is the electron velocity as

x

z

βc

θ

φ

H

L

A

Figure 6.1: An electron passing near a metallic lamellar grating.

a fraction of the speed of light, andθ is the angle of observation measured from the beam
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axis. For a given grating period and order the Smith-Purcellband is given by

L

|p|

(

1 − β

β

)

≤ λSP ≤ L

|p|

(

1 + β

β

)

. (6.2)

A multitude of theoretical treatments of SPR have been performed which address

incoherent, coherent, and superradiant effects [44–51]. In this discussion we follow our

previous analysis of SPR and superradiant emission [52]. This theory has been verified

with particle-in-cell simulations by Li [53]. We consider the incoherent radiation from

a single electron and then extend this result to the cases of single and periodic bunches.

The angular spectral fluence emitted by a single electron passing over the grating is given

by [54]
d2W(1)

dωdΩ
=

2cR2

µ0

∣

∣

∣
B̃(1) (ω)

∣

∣

∣

2

(6.3)

wherec is the speed of light,R is the distance to the far-field observation point,µ0 is the

permeability of free space, and̃B(1) (ω) is the Fourier transform of the magnetic field at the

observation point. Assuming a long grating and ignoring edge radiation and bound surface

modes,̃B(1) (ω) is shown to be

B̃(1) (ω) =
Zg√
2π

1 − βcos (θ)

βcR
eiω/c(R−δz/β) (6.4)

×
∞
∑

p=−∞

apsinc

[

Zg

2

(

ω

c

1 − βcos (θ)

β
+ pK

)]

whereZg is the grating length,δz is the electron’s initial longitudinal position, andK =

2π/L is the grating wavenumber. The coefficientsap depend on the unit vector̂R (θ, φ), the

electron energy and height above the grating, and the geometric profile of the grating [52].

The argument of thesinc function can be recognized as the aforementioned Smith-Purcell

relation. The field is maximized for a given frequency when

ω

c

(

1 − βcos (θ)

β

)

+ pK = 0, (6.5)
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and the spectral width of orderp is approximately

δω

ω
=

1

|p|Ng

(6.6)

whereNg is the number of periods in the grating. IfNg >> 1 then the radiation on adjacent

grating orders is well separated in frequency, and the angular spectral fluence on orderp

from a single electron is given by

d2W(1)
p

dωdΩ
=

Z2
g

πµ0c

(

1 − βcos (θ)

β

)2

|ap|2 (6.7)

× sinc2

[

Zg

2

(

ω

c

1 − βcos (θ)

β
+ pK

)]

.

ConsiderNe electrons passing over the grating simultaneously with thejth electron

having an initial positionδzj; the total angular spectral fluence on order p is then given by

d2W(Ne)
p

dωdΩ
=

d2W(1)
p

dωdΩ

∣

∣

∣

∣

∣

Ne
∑

j=1

e−iωδzj/βc

∣

∣

∣

∣

∣

2

. (6.8)

The behavior of the phase-factor summation in (6.8) dependson the bunching spectrum of

the electron ensemble. For a large number of electrons with random spacings comparable

to the radiation wavelength the summation is∼
√

Ne, and the resulting angular spectral

fluence is a factor ofNe larger than the single electron case. If the electrons are concentrated

in a single bunch with length∆z << βc/ω then the radiation is emitted coherently and the

angular spectral fluence increases by a factor ofN2
e relative to the single electron case. In

both of these cases the simple proportionality of the angular spectral fluence to the single

particle case indicates unchanged spectral and angular distributions. IfNb electron bunches

are spaced periodically with frequencyωb then the phase-factor summation is

∣

∣

∣

∣

∣

Ne
∑

j=1

e−iωδzj/βc

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

Nb
∑

j=1

nee
−iωjzb/βc

∣

∣

∣

∣

∣

=
sin
(

Nb

2
ωzb

βc

)

sin
(

1
2

ωzb

βc

) (6.9)
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wherene is the number of electrons per bunch andzb = 2πβc/ωb is the bunch separation.

When the number of bunches is large, sharp resonances appear at harmonics of the

bunching frequencyωh = hωb = 2πhβc/zb whereh is an integer. Expansion of the

denominator of (6.9) around these harmonics and substitution into (6.8) gives

d2W(Ne)
ph

dωdΩ
= N2

e sinc2

(

πNb
ω − ωh

ωb

)

d2W(1)
p

dωdΩ
. (6.10)

When a bunching harmonic is within the Smith-Purcell band theangular power spectrum

changes dramatically. The SPR is concentrated into narrow angular peaks centered at

cos (θh) =
1

β
− |p| cK

ωh

. (6.11)

In addition to SPR the grating supports non-radiative subluminal electromagnetic

modes. The grating periodicity slows the phase velocity of this radiation and facilitates

interaction with a passing electron beam. The electron beambehaves as a gain medium

for these evanescent modes and under certain conditions thesystem may spontaneously

oscillate. The electron beam becomes bunched on the wavelength of the radiation and

superradiant emission results as described in (6.10) and (6.11). Using an evanescent mode

of the grating to bunch the electron beam and produce superradiant SPR is the basis of a

Smith-Purcell free-electron laser.

VI.2 SPFEL Experiments

The generation of superradiant SPR from an SPFEL configuration was first reported

by Urata, et al. at Dartmouth College [5]. The experimental apparatus, pictured in

Figure 6.2 [5], was a scanning electron microscope (SEM) that had been converted for high

current operation. Modification of an existing SEM is a natural choice for SPR sources

due to the flexible electron optical systems and low emittance beams that they employ.

This device utilized a tungsten-hairpin cathode and produced a continuous electron beam
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Figure 6.2: Experimental arrangement of the Dartmouth SPFEL [5].

of up to 1 mA in current, beam energies of 20-40 kV, and a minimum beam diameter

of ∼ 25 µm. The theory of van den Berg [55] was used to design gratings that were

optimized for maximum emission of first order SPR directed normally from the grating.

The radiation was detected with a Helium-cooled Silicon bolometer and spectra were taken

with either a Czerny-Turner monochromater or a Michelson interferometer. Spectra of

the radiation were in strong agreement with (6.2) and the radiation was srongly polarized,

ruling out blackbody radiation from a beam heated grating [56] as a source. The average

power was measured as a function of the electron beam currentand two distinct regimes of

operation were observed: linear, and superlinear. In the superlinear regime the measured

power varied asIα whereα ranged from 3-6 depending on the focal settings of the electron

optical system. The transition between these two operatingregimes was marked by a hard

threshold and was interpreted as the onset of a stimulated emission process between the

grating and the electron beam [57]. An example of this superradiant behavior is pictured
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Figure 6.3: Linear and superlinear regimes of operation in the original
Dartmouth experiments [5].

in Figure 6.3 [5]. While superlinear current dependence was observed for a multitude

of grating parameters and electron beam conditions, the spectral-power distribution was

unchanged by the transition to the superlinear regime. The onset of superradiance marks

the presence of periodic density modulations in the electron beam. Provided the period

of these modulations is on the order of the radiation wavelength, the coherence conditions

mentioned in section VI.1 should produce dramatic changes in the spectral-power-density.

The lack of observed spectral modification is perhaps the most surprising characteristic of

the Dartmouth experiments.

Several years after the original Dartmouth experiments, another SEM based Smith-

Purcell device was demonstrated by Kapp et al. at the University of Chicago [56]. This

device was capable of producing up to 30-kV, 10-mA, low-emittance electron beams. The

beam envelope was characterized by rapidly scanning over a specially made Molybdenum

profilometer. It was found that the beam brightness could be changed by an order

of magnitude through the range of accessible currents, while the emittance remained
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relatively constant. The beam was rastered perpendicular to the grating surface producing

a modulated THz output that was detected with a Silicon bolometer, lock-in amplifier, and

oscilloscope. A light pipe was positioned close to the grating for efficient THz transport

to the system’s polyethylene output window. A filter set was used to confirm that the

central wavelength of the emission was in agreement with theSmith-Purcell relation (6.2).

Estimated power levels were very low,∼ 1 nW, even for high current operation of∼ 5

mA. Furthermore, the best performance was achieved with smaller, low divergence beams

even if they contained less total current. While these experiments produced both linear

and nonlinear emission regimes, it was concluded that the nonlinearity was due entirely

to blackbody radiation from electron beam heating of the grating and other apparatus

components. The nonlinear regime disappeared with the application of water cooling and

minimization of current interception by the grating.

Two other SPFEL devices are located at Vermont Photonics, Inc. in Bellows Falls,

Vermont. Vermont Photonics has produced two identical SPFEL systems that are

functionally similar to the SEM based sources mentioned previously. These devices

demonstrate nonlinear behavior similar to the Dartmouth system and the spectral-power

distribution remains unchanged in the superlinear regime.Electron beam energies of 20-40

kV and currents up to 15 mA are achievable with spot sizes on the order of∼ 50µm. The

Rayleigh range of the beam is approximately equal to half the grating length,∼ 4 mm, to

maximize the beam-wave interaction. Tunable THz SPR has been produced from 10-100

cm−1 and at power levels up to∼ 30 µW. These sources are unique in that the grating

assembly has metallic sidewalls which confine the evanescent modes in the transverse

dimension and aid in the transport of SPR to the output window. The theory of such

a confined-mode SPFEL is presented in detail in section VI.3.2. Recently, the Vermont

Photonics system has been used to explore the Vanderbilt theory of SPFEL operation.

These experiments and their comparison to the Vanderbilt SPFEL theory are discussed

in section VI.4.
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VI.3 SPFEL Theory

Some of the earliest theoretical analysis of resonant coupling between an electron beam

and a slow-wave structure (SWS) was that of Pierce on the traveling-wave tube (TWT)

[58, 59]. Pierce interpreted the interaction as the coupling between a structure wave of the

SWS geometry and two space-charge waves of the electron beam.The only structure waves

that interact strongly are those that have a phase velocity synchronous with the electron

beam. In a TWT the group velocity of the laser mode is positive,and thus its stored

energy co-propagates with the electron beam. TWTs are therefore amplifiers and operate

on a convective instability. However, such devices can be made to oscillate by utilizing an

external resonator or, less efficiently, with parasitic endreflections. If the group velocity

at the synchronous point is negative, then the device operates on an absolute instability

and may spontaneously oscillate without the assistance of cavity mirrors or end reflections.

Such backward-wave oscillators (BWO) were demonstrated experimentally [60, 61] and

described theoretically [62] by the early 1950’s.

Although different in structure from the early helical and axially symmetric devices,

the fundamental operating principle of the SPFEL is the same: resonant energy transfer

between the electron beam and a synchronous structure wave causes bunching of the

electrons and amplitude growth of the wave. The open gratingof the SPFEL supports

structure waves which evanesce in the direction normal to the grating surface. The group

velocity of these evanescent modes can be either positive ornegative, facilitating amplifier

or oscillator operation. The two-dimensional theory of this device, including the effects

of losses and end reflections, has been examined in detail forthe exponential gain/growth

regime [63–66], and is closely supported by particle-in-cell (PIC) simulations [65, 67].

Three-dimensional PIC simulations have also been performed for gratings with and without

sidewalls [68,69]. A two-dimensional numerical treatmentof device operation from startup

to saturation, with one-dimensional electron dynamics, has also been performed [66].

Recently we have developed an analytic theory of SPFEL operation in three dimensions
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for the case of an infinitely wide grating (section VI.3.1) [70,71]. The primary conclusion

of section VI.3.1 is that some form of transverse mode confinement is required if an SPFEL

is to be experimentally viable. The theory of such a confined-mode SPFEL is presented in

section VI.3.2 [72].

In the following theoretical treatments the electron beam is modeled as a relativistic

moving-plasma dielectric, and we confine our analysis to theexponential gain/growth

regime. In each case the dispersion relation is calculated subject to the boundary conditions

of the grating geometry. The electron beam is then added as a perturbation and the resulting

complex wavenumber and frequency shifts are calculated forthe synchronous structure

wave. These shifts result in growth or decay of the evanescent field in space and time, and

in this way the electron beam behaves as a gain medium for the radiation mode. While

the two-dimensional theory of this process is not considered in the following sections, the

reader is referred to [63–65].

VI.3.1 Three-dimensional theory

In this section, we include the effects of transverse diffraction in the optical beam of a

SPFEL. The approach is similar to that used for the 3-D theoryof the Cerenkov FEL [73].

As expected, three-dimensional effects increase the gain length substantially compared to

the 2-D theory. Furthermore, the dependence of the gain length on beam current increases

due to gain guiding. We find that diffraction of the optical beam in the grating subdivides

device operation into two amplifier regions and two oscillator regions. For the amplifier

and oscillator regions furthest from the Bragg point, where the group velocity vanishes,

we find the inclusion of a fast wave in the physically allowed solutions. This is surprising,

considering the nature of a guided system. For the oscillator region closest to the Bragg

point there are only two physically allowed solutions. It isnot known how the required

boundary conditions on the electron and optical beams can besatisfied in this region.
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Dispersion: In an SPFEL, resonant energy exchange between the electron beam and

bound surface modes gives rise to spatial modulations in thebeam density. For an electron

beam energy of 150 kV and the grating parameters of Table 6.1,the intensity scale height

of the evanescent wave is∆x = βγλ/4π ≈ 40 µm, whereβ ≈ 0.43 is the normalized

electron velocity,γ = 1/
√

1 − β2, andλ ≈ 10−3 m is the free-space wavelength. We

Table 6.1: Example grating and beam parameters used in 3-D theory
calculations

Grating period 173µm
Groove width 62µm
Groove depth 100µm
Grating length 12.7mm
E-beam width/height 60µm
E-beam centroid height from grating top 30µm
E-beam current 1 mA

anticipate from simple diffraction arguments that the transverse mode width is of order

∆y =
√

βλZg/2π, whereZg is the gain length. For a gain length on the order of the

grating length, the transverse width is on the order of millimeters. Schematics of the device

geometry with all pertinent dimensions are given in Figure 6.4. Because the fields vanish

exponentially above the scale height, we simplify the theory by allowing the electron beam

to extend to infinity in thex direction. A filling factor can be used to correct for errors

introduced by this approximation [74].

In the following analysis we consider only transverse-magnetic (TM) modes of the

grating for two reasons. First, to lowest order in the fields,the electron beam resonantly

exchanges energy with only the TM modes longitudinal-electric-field component. Energy

exchange with transverse-electric (TE) modes is of higher order in the fields and is ignored.

Secondly, because the beam is a perturbation, the modes of the inhomogeneous system

should resemble those of the empty grating. The empty grating of infinite width does not

support TE modes.
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Figure 6.4: Schematic representation of an SPFEL with an infinitely wide
grating.

We begin by expressing the fields inside the grooves as Fourier series

E(g)
z =

∞
∑

n=0

E(g)
n (x, y) cos

(nπ

A
z
)

e−iωt (6.12)

H(g)
y =

∞
∑

n=0

H(g)
n (x, y) cos

(nπ

A
z
)

e−iωt (6.13)

whereA is the groove width, andω is the frequency. Each term in the fields must satisfy

the wave equation, which is given in the grooves by

[

∇2
t −

n2π2

A2
+

ω2

c2

]

E(g)
n (x, y) = 0 (6.14)

where∇t is the transverse gradient operator. Taking the Fourier transform of (6.14) in the

y direction we have

[

∂2

∂x2
− k2

y −
n2π2

A2
+

ω2

c2

]

Ẽ(g)
n (x, ky) = 0. (6.15)

whereky is the wavenumber in they direction. The solution for̃E(g)
n (x, ky) that vanishes
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at the bottom of the grooves(x = −H) is

Ẽ(g)
n (x, ky) = ¯̃E(g)

n (ky) sinh [κn (ky) (x + H)] , (6.16)

where

κ2
n = k2

y +
n2π2

A2
− ω2

c2
. (6.17)

For a TM mode, the components̃E(g)
n (x, ky) andH̃

(g)
n (x, ky) are related through the

Maxwell equations by [75]

H̃(g)
n (x, ky) =

iωǫ0c
2

ω2 − n2π2

A2 c2

∂

∂x
Ẽ(g)

n (x, ky) . (6.18)

Substituting the solution for̃E(g)
n (x, ky) into (6.18), we get

H̃(g)
n (x, ky) = ¯̃H(g)

n (ky) cosh [κn (ky) (x + H)] , (6.19)

where

¯̃H(g)
n (ky) =

iωǫ0c
2

ω2 − n2π2

A2 c2
κn (ky)

¯̃E(g)
n (ky) . (6.20)

Above the grating we expand the fields in Floquet series (space harmonics) of the form

E(e)
z =

∞
∑

p=−∞

E(e)
p (x, y) e−ipKzei(kz−ωt) (6.21)

H(e)
y =

∞
∑

p=−∞

H(e)
p (x, y) e−ipKzei(kz−ωt) (6.22)

wherek is the longitudinal wavenumber,K = 2π/L is the grating wavenumber, andL is

the grating period. The electron beam is treated as an isotropic dielectric in its rest frame

(primed coordinates), having an index of refraction given by [76]

n′ (ω′)
2

= 1 + χ′

e (ω′) = 1 − ω′2
e

ω′2
(6.23)
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whereχ′

e = −ω′2
e /ω′2 is the frequency-dependent susceptibility, andω′

e is the plasma

frequency in the rest frame. The wave equation above the grating is

[

∇′2
t − (k′ + pK ′)

2
+

ω′2
p

c2
− ω′2

e

c2

]

E(e)′
p (x′, y′) = 0 (6.24)

We note that(k + pK)2 −ω2
p/c

2, E
(e)
p , and the transverse dimensions,x andy, are Lorentz

invariant. In terms of rest-frame variables, the frequencyω′

p depends on the wavenumber,

as denoted by thep subscript. Using the parameters of Table 6.1, the plasma frequency is

calculated to be of the order∼ 1010 Hz, while the operating frequency is of the order∼

1012 Hz. We then make the approximationω′2
e << (k′ + pK ′)2 c2−ω′2

p and simplify (6.24)

as
[

∇2
t − (k + pK)2 +

ω2

c2

]

E(e)
p (x, y) = 0 (6.25)

As before, we Fourier transform the wave equation iny and get

[

∂2

∂x2
− (k + pK)2 +

ω2

c2

]

Ẽ(e)
p (x, ky) +

1√
2π

∫

∞

−∞

dyeikyy ∂2

∂y2
E(e)

p (x, y) = 0 (6.26)

If we integrate by parts and ignore the discontinuities in∂E
(e)
p /∂y, for an optical beam with

∆x/∆y << 1 [73], (6.26) becomes

∂2

∂x2
Ẽ(e)

p (x, ky) =

[

(k + pK)2 + k2
y −

ω2

c2

]

Ẽ(e)
p (x, ky) . (6.27)

The solution that vanishes atx = ∞ is

Ẽ(e)
p (x, ky) = ¯̃E(e)

p (ky) e−αp(ky)x, (6.28)

where

α2
p = (k + pK)2 + k2

y −
ω2

c2
. (6.29)
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The Maxwell equations relateH(e)′
p (x, y) andE

(e)′
p (x, y) above the grating by

H(e)′
p (x, y) =

iω′

pǫ0

(

1 + χ′

p

)

c2

ω2 − (k + pK)2 c2

∂

∂x
E(e)

p (x, y) , (6.30)

where we ignoreω′2
e << (k′ + pK ′)2 c2 in the denominator. To transformH(e)′

p (x, y) to

the laboratory frame we use

Hp = γ
(

H ′

p + βcD′

p

)

, (6.31)

where D′

p is the x component of the displacement field. From the Maxwell-Ampere

law we haveω′

pD
′

p = (k′ + pK ′) H ′

p. Combining this with (6.31), and recognizing that

γ
[

ω′

p + β (k′ + pK ′)
]

is the Lorentz transformation ofω, we see thatH(e)′
p (x, y) and

H
(e)
p (x, y) are related byH(e)

p (x, y) = ω
ω′

p
H

(e)′
p (x, y). The field in the laboratory frame

is then

H(e)
p (x, y) =

iωǫ0

(

1 + χ′

p

)

c2

ω2 − (k + pK)2 c2

∂

∂x
E(e)

p (x, y) . (6.32)

Fourier transforming (6.32) in y, we get

H̃(e)
p (x, ky) =

iωǫ0c
2

ω2 − (k + pK)2 c2
(6.33)

×
[

∂

∂x
Ẽ(e)

p (x, ky) +
1√
2π

∫

∞

−∞

dyeikyyχ′

p (y)
∂

∂x
E(e)

p (x, y)

]

.

We simplify (6.34) by using the Faltung theorem to write the integral as

1√
2π

∫

∞

−∞

dy eikyy χ′

p (y)
∂

∂x
E(e)

p (x, y) = (6.34)

− 1√
2π

∫

∞

−∞

dk′

yχ̃
′

p

(

ky − k′

y

)

αp

(

k′

y

) ¯̃E(e)
p

(

k′

y

)

e−αp(k′

y)x

wherek′

y is a dummy variable and the Fourier transform of the susceptibility is

χ̃e
′
(

ky − k′

y

)

= − 1√
2π

ω′2
e

ω′2
p

∫ W/2

−W/2

dyei(ky−k′

y)y − W√
2π

ω′2
e

ω′2
p

sinc

[

W

2

(

ky − k′

y

)

]

. (6.35)
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When written in terms of lab-frame variables,ω′2
e /ω′2

p becomes

ω′2
e

ω′2
p

=
ω2

e

γ3 [ω − βc (k + pK)]2
. (6.36)

This is divergent near the synchronous pointω = βck only for p = 0. For all otherp 6= 0

we may ignore the perturbation and rewrite (6.34) as

H̃(e)
p (x, ky) =

iωǫ0c
2

ω2 − (k + pK)2 c2

{

−αp (ky) e−αp(ky)x ¯̃E(e)
p + δp,0

W

2π
(6.37)

× ω2
e

γ3 (ω − βck)2

∫

∞

−∞

dk′

ysinc

[

W

2

(

ky − k′

y

)

]

α0

(

k′

y

) ¯̃E
(e)
0

(

k′

y

)

e−α0(k′

y)x

}

whereδp,0 is the Kronecker delta.

Next we force continuity inẼz and H̃y at the x = 0 interface. In the grooves

(0 < z < A), suppressing the harmonic time dependence, we have

Ẽ(g)
z (x = 0, ky) =

∞
∑

n=0

¯̃E(g)
n (ky) sinh [κn (ky) H] cos

(nπ

A
z
)

, (6.38)

H̃(g)
y (x = 0, ky) =

∞
∑

n=0

¯̃H(g)
n (ky) cosh [κn (ky) H] cos

(nπ

A
z
)

, (6.39)

and on the teeth(A < z < L)

Ẽ(g)
z (x = 0, ky) = 0. (6.40)

Just above the grating,̃E
(e)
z is given by

Ẽ(e)
z (x = 0, ky) =

∞
∑

p=−∞

¯̃E(e)
p (ky) ei(k+pK)z. (6.41)

Setting (6.39) equal to (6.41), multiplying both sides bye−i(k+pK)z, and integrating over
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the grating periodL, we get

¯̃E(e)
q (ky) =

1

L

∞
∑

n=0

¯̃E(g)
n (ky) sinh [κn (ky) H] Kqn (6.42)

where

Kqn = iA
(k + qK) A

(k + qK)2 A2 − n2π2

[

(−1)n e−i(k+qK)A − 1
]

. (6.43)

Similarly, makingH̃y continuous across thex = 0 interface within the groove, multiplying

both sides bycos
(

mπ
A

z
)

, and integrating from 0 toA, we find

¯̃H(g)
m (ky)

1 + δm,0

2
Acosh [κm (ky) H] =

∞
∑

p=−∞

H̃(e)
p (0, ky) K∗

pm. (6.44)

We may now substitute expressions (6.20) and (6.38) into (6.44), remembering to

evaluate atx = 0, and then use (6.42) to arrive at the dispersion relation

¯̃E(g)
m (ky) =

∞
∑

n=0

[

Rmn (ky)
¯̃E(g)

n (ky) + Smn

(

ky,
¯̃E(g)

n (ky)
)]

. (6.45)

The first term in the square brackets represents modes admitted by the empty (no beam)

grating. The second term embodies the modification of those modes by the presence of the

electron beam. The matrix elements are given by

Rmn (ky) = − 4

1 + δm,0

A

L

sinh [κn (ky)]

cosh [κn (ky)]

ω2 − m2π2

A2 c2

κm (ky)
(6.46)

×
∞
∑

p=−∞

(k + pK) A

(k + pK)2 A2 − n2π2

(k + pK) A

(k + pK)2 A2 − m2π2

αp (ky)

ω2 − (k + pK)2 c2

×











1 − (−1)m cos [(k + pK) A] m + n = even

i (−1)m sin [(k + pK) A] m + n = odd
,
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and

Smn

(

ky,
¯̃E(g)

n

)

(6.47)

=
W

ALπ (1 + δm,0)

1

cosh [κm (ky) H]

ω2 − m2π2

A2 c2

κm (ky)

K0nK∗

0m

ω2 − k2c2

ω2
e

γ3 [ω − βck]2

×
∫

∞

−∞

dk′

ysinc

[

W

2

(

ky − k′

y

)

]

α0

(

k′

y

)

sinh
[

κn

(

k′

y

)

H
] ¯̃E(g)

n

(

k′

y

)

Calculations show that the dispersion relation for the grating is well described using a

single term(m,n = 0) for the groove fields, provided that we use at least three terms

(−1 < p < 1) for the fields above the grating. We therefore define the dispersion function

D (ω, k, ky) as

D (ω, k, ky) = 1 − R00 (ω, k, ky) . (6.48)

The dispersion curveD (ω, k, 0) = 0, for waves traveling normal to the grooves of the

empty grating described by Table 6.1, is plotted in Figure 6.5, along with a 150-kV beam

line. At the intersection of these curves the phase velocityof the evanescent wave and the

electron beam are synchronous, i.e.ω/k = βc. Energy in the evanescent mode will travel

along the grating at the group velocityβg = dω/dk.

When the electron beam is present, the dispersion relation (6.45) becomes

D (ω, k, ky) ¯̃E
(g)
0 (ky) =

W

πALk2

ω2
e

γ3 [ω − βck]2
1 − cos (kA)

cosh [κ0 (ky) H]

ω2

κ0 (ky)

1

ω2 − k2c2
(6.49)

×
∫

∞

−∞

dk′

ysinc

[

W

2

(

ky − k′

y

)

]

α0

(

k′

y

)

sinh
[

κ0

(

k′

y

)

H
] ¯̃E

(g)
0

(

k′

y

)

We expect that the gain will be maximal near the synchronous point (ω0, k0, ky = 0) where

D (ω0, k0, 0) = 0, (6.50)

ω0 = βck0. (6.51)
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Figure 6.5: Grating dispersion curve and electron beamline. The synchronous
point isω/k = βc and the group velocity isβg = dω/dk.

Noting that the dispersion function is symmetric inky, we expand as

D (ω, k, ky) ≈ Dωδω + Dkδk + Dyδk
2
y, (6.52)

where

δω = ω − ω0, (6.53)

δk = k − k0, (6.54)

δky = ky, (6.55)

and

Dω (ω0, k0) =
∂D

∂ω
(ω0, k0, 0) , (6.56)

Dk (ω0, k0) =
∂D

∂k
(ω0, k0, 0) , (6.57)

Dy (ω0, k0) =
∂D

∂k2
y

(ω0, k0, 0) . (6.58)
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The derivativesDω andDk are related by

dD

dk
= 0 =

∂D

∂k
+

∂D

∂ω

∂ω

∂k
= Dk + βgcDω, (6.59)

whereβgc = ∂ω/∂k is the group velocity. This allows us to rewrite the dispersion function

as

D (ω, k, ky) ∼= Dω (δω − βgcδk) + Dyδk
2
y. (6.60)

Becauseky << k ≈ O (ω/c), we can make the approximations

α0 (ω, k, ky) ≈ α0 (ω0, k0, 0) =
ω0

βγc
, (6.61)

and

κ0 (ω, k, ky) ≈ κ0 (ω0, k0, 0) = i
ω0

c
, (6.62)

near the sychronous point. We also note that

ω − βck = δω − βcδk. (6.63)

Including these approximations, the dispersion relation (6.50) becomes

(δω − βcδk)2 [Dω (δω − βgcδk) + Dyδk
2
y

] ¯̃E
(g)
0 (ky) = −β3c2W

πAL

ω2
e

γ2ω2
0

(6.64)

×tan
(ω0

c
H
)

[1 − cos (k0A)]

∫

∞

−∞

dk′

ysinc

[

W

2

(

ky − k′

y

)

]

¯̃E
(g)
0

(

k′

y

)

.

This result may be compared to the 2-D theory of the SPFEL by taking the limit asW → ∞

and subsequently evaluating atky = 0. In this limit, the sinc function behaves as a delta
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function, selecting out the integrand value atk′

y = ky = 0. Evaluaing (6.65) gives

(δω − βcδk)2(δω − βgcδk) (6.65)

= − 2β3c2

ALDω

ω2
e

γ2ω2
0

tan
(ω0

c
H
)

[1 − cos (k0A)] ,

which matches the dispersion relation for the 2-D theory [63–65].

Of more interest is the limit in which the electron beam is very narrow compared to the

mode width. In this case,sinc
[

W
2

(

ky − k′

y

)]

≈ 1, and the remaining integral is recognized

as
√

2πĒ0
(g)

(0). The dispersion relation is simplified by the substitution

∆k2
y =

Dω

Dy

(δω − βgcδk) . (6.66)

The roots of this equation are∆k
(+)
y and∆k

(−)
y = −∆k

(+)
y , which lie in the right half

and left half of the complex plane, respectively. Solving (6.65) for ¯̃E
(g)
0 and inverting the

Fourier transform, we get

Ē
(g)
0 (y) = − β3c2W

πALDy

ω2
e

γ2ω2
0

tan
(ω0

c
H
)

(6.67)

× [1 − cos (k0A)]
Ē

(g)
0 (0)

(δω − βcδk)2

∫

∞

−∞

dky
e−ikyy

∆k2
y + k2

y

.

The integrand has poles ati∆k
(+)
y andi∆k

(−)
y = −i∆k

(+)
y , which lie above and below

the real axis respectively. The integral is evaluated usingcontour integration and the residue

theorem. Fory > 0 the contour is closed in the lower half plane, so the integrand vanishes

along the curved segment. Integrating clockwise around thecontour, we find

Ē
(g)
0 (y) =

β3c2W

ALDy

ω2
e

γ2ω2
0

tan
(ω0

c
H
)

[1 − cos (k0A)]
Ē

(g)
0 (0)

(δω − βcδk)2

e∆k
(−)
y y

∆k
(−)
y

. (6.68)

The pole in the lower half plane hasIm
(

i∆k
(−)
y

)

= Re
(

∆k
(−)
y

)

< 0; therefore, the field
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I II III IV

Figure 6.6: The number of physically allowed roots changes depending on the
operating point,(ω, k). Regions I, II, III, and IV have three, two, two, and three
roots respectively.

vanishes aty = ∞, as required. Similarly, fory < 0 the contour is closed in the upper half

plane andIm
(

i∆k
(+)
y

)

= Re
(

∆k
(+)
y

)

> 0, and the field vanishes aty = −∞.

Evaluating (6.68) aty = 0 we arrive at the dispersion relation for the narrow beam case,

(δω − βcδk)2

[

Dω

Dy

(δω − βgcδk)

]
1
2

= ∆, (6.69)

where

∆ =
β3c2W

ALDy

ω2
e

γ2ω2
0

tan
(ω0

c
H
)

[1 − cos (k0A)] , (6.70)

and the sign of
[

Dω

Dy
(δω − βgcδk)

]
1
2

= ∆k
(−)
y is chosen so that its real part is negative.

Calculations show thatDω is negative, irrespective ofk, but Dy changes sign such that

Dy > 0 near the center of the Brillouin zone(k/K = 1/2) andDy < 0 towards the edges

of the zone(k = 0, K). This subdivides the dispersion curve into the four distinct regions

pictured in Figure 6.6. We now consider the amplifier and oscillator regimes of the SPFEL.
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Amplifier: When the device operates as a steady-state amplifier,δω = 0 and βg is

positive. In region II, the dispersion relation becomes

δk
5
2 = Γ (6.71)

where

Γ =
∆

β2c2

∣

∣

∣

∣

Dy

Dωβgc

∣

∣

∣

∣

1
2

. (6.72)

We find the roots of (6.71) to be

δkn = Γ
2
5 ei 4

5
nπ. (6.73)

Similarly, for region I, the roots are given by

δkn = Γ
2
5 ei( 4

5
nπ+π

5 ) (6.74)

The solutions from (6.73) are plotted on the complex plane inFigure 6.7. To relateδk and

∆ky, we rearrange (6.69) as

δk2 =
1

∆k
(−)
y

∆

β2c2
. (6.75)

Valid roots obey the conditionRe (∆ky) < 0, i.e. Re (δk2) < 0. For region II, only two

roots satisfy this condition,n = 2, 3. From Figure 6.8 we see that these are slow waves, i.e.

they have a phase velocity lower than that of the synchronouspoint. In region I, however,

there are three physically allowed roots including one fastwave solution. It is surprising

that a fast wave is allowed in a gain-guided system.

In region II, then = 3 root has loss and then = 2 has gain. The gain for then = 2 root

is given by

µ3D = −Im (δk2) = Γ
2
5 sin

(

2

5
π

)

. (6.76)
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Figure 6.7: Roots of the narrow-beam dispersion relation.
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Figure 6.8: Selection diagram for allowed roots.
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The transverse decay rate of the field is found from (6.66) to be

∆k(−)
y = −

(∣

∣

∣

∣

Dω

Dy

βg

∣

∣

∣

∣

c

)
1
2

Γ
1
5 ei 4

5
π, (6.77)

and the corresponding1/e width of the optical mode is

∆y = − 2

Re
(

∆k
(−)
y

) = 2

(∣

∣

∣

∣

Dω

Dy

βg

∣

∣

∣

∣

c

)

−
1
2

Γ−
1
5 cos

(π

5

)

. (6.78)

The prefactors of (6.77) are positive real, and upon examination we see that the real part of

∆k
(−)
y is indeed negative, as required for the fields to vanish aty = ∞.

From (6.76) we see that the gain length and the electron-beamcurrent are related by

µ =
1

Zg

∝ n
2
5
e ∝ I

2
5 . (6.79)

To understand this result we consider the relationship fromprevious two-dimensional

analyses [63–65], given by
1

Zg

∝ n
1
3
e ∝ I

1
3 . (6.80)

In the three-dimensional case, the average electron density over the area of the mode is of

order

ne ≈
I

∆x∆yβc
∝ I
√

Zg

. (6.81)

Combining (6.80) and (6.81), we get

1

Zg

∝ I
2
5 . (6.82)

The relationship given in (6.82) is simply understood to be the manifestation of gain

guiding in the SPFEL. As an example we consider the grating and beam described in

Table 6.1. For this particular grating the Bragg point(βg = 0) is located atVBragg ≈
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Figure 6.9: Gain coefficient (1/m) vs. beam voltage (V)

126kV. For an operating voltage of 150 kV, the scale height of the evanescent wave is

calculated to be∆x ≈ 38µm. To compensate for errors introduced in our assumption that

the beam stretches from the grating top to infinity, we scale the electron density by the

filling factor [74]

Ffill = e−
he−W/2

∆x − e
he+W/2

∆x , (6.83)

where he is the height of the beam centroid relative to the grating top, and ∆x =

1/2α0 (0) = βγλ/4π is the intensity scale height for the synchronous evanescent wave. For

this case the filling factor isFfill ≈ 0.8. The three-dimensional gain is plotted in Figure 6.9,

along with the two-dimensional gain which has been scaled down by a factor of three to

appear on the same graph. The transverse profile of the electric field is given in Figure 6.10,

and the1/e mode width is found to be∆y ≈ 4.4 mm. By examining the geometry of this

mode, it is clear that the initial assumptions made concerning its dimensions are justified.

Oscillator: When the synchronous point is to the right of the Bragg point, the group

velocity of the evanescent mode is negative. This allows energy exchanged in the beam-

wave interaction to be transported to the up-stream end of the grating. This serves as an
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Figure 6.10: Transverse profile of the longitudinal electric field strength.

intrinsic form of feedback and, provided that the beam current exceeds the so-called start

current, allows the device to oscillate. For a solution to exist in the oscillator case, three

boundary conditions must be satisfied in conjunction with the dispersion relation (6.69).

The electron beam must be free of density and velocity modulations at the upstream end

of the grating, and the input optical field at the downstream end must vanish [64, 65].

These boundary conditions are satisfied by interference of the three waves that compose

the mode. We find that while region IV has three physically allowed roots, only two waves

are admitted in region III. It is not clear how all three boundary conditions may be satisfied

without the presence of a third wave. PIC code simulations donot provide a clear answer

to this problem since they are influenced by the finite width ofthe grating even without

sidewalls [69]. Furthermore, solutions to the inhomogeneous system can have different

transverse widths due to the presence of gain guiding. While beyond the scope of this

work, it may be possible to use additional waves supported bythe grating to satisfy the

boundary conditions on the input field for ally. Based on our calculations of gain dilution

by diffraction effects in the amplifier case, it seems unlikely that functional SPFELs will be
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constructed without some form of mode confinement. This viewpoint is supported by the

PIC simulations of Li [69], which show a significant increasein the oscillator start current.

VI.3.2 Three-dimensional theory of the confined-mode SPFEL

In the previous section we found that transverse diffraction effects reduce the strength

of the beam-wave interaction. The reduced overlap between the electron beam and the

optical mode effectively dilutes the gain medium and increases the device’s gain length

(amplifier) and start current (oscillator). The competition between gain guiding and

diffraction results in a mode width on the order of several millimeters. Adding metallic

sidewalls with submillimeter spacing confines the optical mode and mitigates the effects

of transverse diffraction. In this section the theory of such a confined-mode device is

presented, including amplifier and oscillator operation. The general approach is similar

to that of section VI.3.

Dispersion: As before, we begin by expressing the fields in the grooves andabove

the grating. In previous analyses it was found that the lowest order longitudinal term, a

constant, was sufficient for describing the groove fields. The fields may then be expanded

as Fourier series in they (transverse) direction as

E(g)
z =

∞
∑

r=0

E(g)
r sin [κr (x + H)] cos

[

(2r + 1)
π

G
y
]

e−iωt (6.84)

H(g)
y =

∞
∑

r=0

H(g)
r cos [κr (x + H)] cos

[

(2r + 1)
π

G
y
]

e−iωt (6.85)

whereG is the spacing between the grating sidewalls. From the wave equation we have

κ2
r + (2r + 1)2 π2

G2
− ω2

c2
(6.86)
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From the Maxwell equations the coefficients are related by

ω2

c2
H(g)

s = iωκsǫ0E
(g)
s . (6.87)

As before, the fields above the grating can be expanded as Floquet series of the form

E(e)
z =

∞
∑

r=0

∞
∑

p=−∞

E(e)
rp e−αrpxcos

[

(2r + 1)
π

G
y
]

eipKzei(kz−ωt) (6.88)

H(e)
y =

∞
∑

r=0

∞
∑

p=−∞

H(e)
rp e−αrpxcos

[

(2r + 1)
π

G
y
]

eipKzei(kz−ωt) (6.89)

The electron beam is again treated as a relativistic moving plasma dielectric. The electron

beam’s index of refraction is the same as in section VI.3, andthe approximationω′2
e <<

(k′ + pK ′)2 c2 − ω′2
p is still valid. The wave equation gives

α2
rp − (2r + 1)2 π2

G2
− (k + pK)2 +

ω2

c2
= 0. (6.90)

Invoking the Lorentz invariance of the displacementDz and the Maxwell equations we

have

∞
∑

r=0

∞
∑

p=−∞

H(e)
rp

[

α2
rp − (2r + 1)2 π2

G2

]

e−αrpxcos
[

(2r + 1)
π

G
y
]

eipKzei(kz−ωt) (6.91)

= ǫ0

∞
∑

r=0

∞
∑

p=−∞

E(e)
rp

(

1 − ω′2
e

ω′2
p

)

(iωαrp) e−αrpxcos
[

(2r + 1)
π

G
y
]

eipKzei(kz−ωt).

Multiplying by cos
[

(2s + 1) π
G
y
]

e−i(k+qK)z and integrating over the grating width and

grating period, we have

H(e)
sq

[

(k + pK)2 − ω2

c2

]

= iωǫ0

[

αsqE
(e)
sq − ω′2

e

ω′2
p

∞
∑

r=0

αrqJrsE
(e)
rq

]

. (6.92)

Jrs describes the coupling between transverse modes, mediatedby the electron beam, and
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is given by

Jrs =
W

G

{

sinc

[

(r + s + 1) π
W

G

]

+ sinc

[

(r − s) π
W

G

]}

. (6.93)

Examining (6.36), we see that the susceptibility is divergent near the synchronous point for

only thep = 0 component. Accordingly (6.92) may be simplified as

H(e)
sq

[

(k + pK)2 − ω2

c2

]

= iωǫ0

[

αsqE
(e)
sq − ωe

γ3 (ω − βck)2

∞
∑

r=0

αrqJrsE
(e)
rq

]

. (6.94)

Matching (6.84) and (6.88) at thex = 0 interface, multiplying bye−i(k+qK)z, and

integrating over the grating period, we get

E(e)
sq = Kq sin [κsH] E(q)

s (6.95)

where

Kq = i
e−i(k+qK)A − 1

(k + qK) L
(6.96)

Similarly, matching (6.85) and (6.89) and integrating overthe groove width, we get

H(g)
s A cos [κsH] = L

∞
∑

p=−∞

K∗

pHsp (6.97)

Combining (6.87), (6.94), (6.95) and (6.97) gives the matrixequation

DsE
(g)
s =

∞
∑

r=0

RsrE
(g)
r (6.98)

where

Ds (ω, k) = 1 +
L

A
tan (κsH)

∞
∑

p=−∞

ω2K∗

pKp

ω2 − (k + pK)2 c2

αsp

κs

(6.99)

is the dispersion function for thesth field component of the empty grating and the matrix
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elements

Rsr (ω, k) =
L

A

ω2K∗

0K0

ω2 − k2c2

ω2
e

γ3 (ω − βck)

αr0

κs

Jrs
sin (κrH)

cos (κsH)
(6.100)

describe the coupling between transverse orders of the field.

Table 6.2: Example grating and beam parameters used in confined-mode-
theory calculations

Grating period 157µm
Groove width 61µm
Groove depth 226µm
Grating length 7.85mm
Grating width 500µm
E-beam width/height 44µm
E-beam centroid height from grating top 35µm
E-beam voltage 30kV
E-beam current 10mA

Figure 6.11 compares the dispersion relation from the two-dimensional theory with the

first three transverse orders of the confined-mode theory fora grating with the parameters

in Table 6.2. Additionally, electron beamlines for 30, 34, and 38 kV are shown, and we note

that the synchronous point for each energy corresponds to(βg > 0) for the two-dimensional

theory and(βg < 0) for the confined-mode theory.

The matrix equation must be solved numerically, and to facilitate this, we recast it in

the form of the eigenvalue equation

λǫs =
∞
∑

r=0

Tsrǫr (6.101)

where

ǫr = DrE
(g)
r (6.102)

Tsr =
Rsr

Dr

. (6.103)
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Figure 6.11: Dispersion relation for 2-D, and 3-D confined mode theories. 30,
34, and 38 kV electron beamlines are included.

The dispersion relation is then

λ (ω, k) − 1 = 0. (6.104)

This can be solved with a root finding algorithm. To minimize gain dilution, the sidewalls

are separated on the order of the wavelength of the optical mode. In this case thes = 0

mode is widely separated in frequency from the higher order components. To solve the

exact multi-mode system, (6.101), we require an initial guess for the complex wavenumber

and frequency shifts. To obtain this initial value, we simplify the system by allowing the

electron-beam width to be comparable to the grating width; The coupling constants(Jrs)

for r 6= s are small and the matrix,Rsr, is largely diagonal. In this case ther = s = 0

mode should dominate the interaction and we may simplify theDispersion relation as

D0 (ω, k) = R00 (ω, k) . (6.105)

As before, we Taylor expand the empty grating dispersion function near the synchronous
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point as

D0 (ω, k) = Dωδω + Dkδk. (6.106)

Writing Dk in terms ofDω, (6.106) becomes

D0 (ω, k) ≈ Dω (δω − βcδk) (6.107)

and the dispersion relation is then

(δω − βcδk)2 (δω − βgcδk) =
ω2

e

γ3

Q00 (ω0, k0)

Dω (ω0, k0)
(6.108)

where

Qsr (ω, k) =
L

A

ω2K∗

0K0

ω2 − k2c2

ω2
e

γ3

αr0

κs

Jrs
sin (κrH)

cos (κsH)
. (6.109)

We now consider the cases of amplifier(β0 > 0) and oscillator(β0 < 0) operation.

Amplifier: When the device operates as a steady state amplifier, the maximum gain

occurs atδω = 0 [64]. The dispersion relation reduces to

δk3 = − ω2
e

γ3β2c3β0

Q00 (ω0, k0)

Dω (ω0, k0)
(6.110)

Calculations show thatQ00 andDω are negative irrespective of operating voltage. The roots

of (6.110) are then

δkn =

∣

∣

∣

∣

ω2
e

γ3β2c3β0

Q00 (ω0, k0)

Dω (ω0, k0)

∣

∣

∣

∣

1
3

ei 2π
3

n (6.111)

Examining Figure 6.12 we see that only then = 2 root has gain; the gain is given by

−Im (δk2) = µ =

√
3

2

∣

∣

∣

∣

ω2
e

γ3β2c3β0

Q00 (ω0, k0)

Dω (ω0, k0)

∣

∣

∣

∣

1
3

. (6.112)
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Figure 6.12: Roots of the dispersion relation for amplifier operation of the
confined-mode SPFEL.

Figure 6.13: Comparison of the exact and approximate solutions for the gain.

We now have an approximate solution to (6.101) which can be used to seed an numerical

computation of the multi-mode gain. A comparison of the approximate and exact results

is shown in Figure 6.13. The close agreement suggests that the interaction is indeed

dominated by the lowest order mode, and the approximate dispersion relation (6.108) is

sufficiently accurate.
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Oscillator: For oscillator operation(β0 < 0) the boundary conditions on the electron

beam and the radiation field are discussed in the previous section. The electron beam

must be free of density and velocity modulations at the upstream end of the grating, and

the input optical field at the downstream end must vanish. In again guided system, the

optical mode width depends on that particular mode’s gain. If multiple orders with different

transverse profiles are used to describe the interaction, complications arise in satisfying the

aforementioned boundary conditions. However, as found in the preceeding analysis, the

interaction is typically dominated by the lowest order mode. Each of the three allowed

roots have the same transverse profile and the boundary conditions may be satisfied as in

previous two-dimensional analyses [64, 65]. During oscillator operation these three waves

become frequency locked, having the sameδω. However, each wave may take on a different

δk, interfering with one another to satisfy the boundary conditions at the ends of the grating.

To simplify the analysis we define the dimensionless variables

δj =

∣

∣

∣

∣

γ3β2c3β0

ω2
e

Dω (ω0, k0)

Q00 (ω0, k0)

∣

∣

∣

∣

1
3
(

δω

βc
− δkj

)

(6.113)

κ =

∣

∣

∣

∣

γ3β2c3β0

ω2
e

Dω (ω0, k0)

Q00 (ω0, k0)

∣

∣

∣

∣

1
3
(

1

β
− 1

β0

)

δω (6.114)

wherej = 1, 2, 3 corresponds to the three roots. The dispersion relation (6.108) may then

be written in the dimensionless form

δ2
j (δj − κ) + 1 = 0. (6.115)

As in the two-dimensional theory [64], the boundary conditions are given by

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1/δ2
1 1/δ2

2 1/δ2
3

1/δ1 1/δ2 1/δ3

e−iξδ1 e−iξδ2 e−iξδ3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (6.116)
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where

ξ =

∣

∣

∣

∣

ω2
e

γ3β2c3β0

Q00 (ω0, k0)

Dω (ω0, k0)

∣

∣

∣

∣

1
3

Z =
2√
3
µZ (6.117)

is the dimensionless gain. By solving the system numericallyfor (κ, δ1, δ2, δ3) as a function

of ξ, we can determine the growth rate(Im (δω)) and the start current for the oscillator.

Results: The confined-mode theory may be readily compared with PIC code simulations

by D. Li et al [69]. While the grating used in the simulations and our analytic theory is

identical, a few differences regarding the electron beam should be noted. The simulations

use a finite beam with a circular cross section extending fromhb = 13 µm to ht = 57

µm while the theory assumes a beam which extends tox = ∞. To calculate the

plasma frequency, we use a square beam with the same cross-sectional area as that of the

simulations. A filling factor corrects for the finite nature of the beam, giving an effective

plasma frequency of

ωeff =
√

Ffillωe =
[

e−2hbα00 − e−2hf α00
]

1
2 ωe (6.118)

For the parameters of Table 6.2 the filling factor isF ≈ 0.5. The simulations also utilize

a strong axial magnetic field to confine the electron beam. Themagnetic field further

reduces the effective plasma frequency by a factor of1/
√

2 [74]. Figure 6.14 presents a

comparison of theory and simulations [69] for the growth rate of ther = 0 evanescent

mode as a function of the electron beam current.

VI.4 Theoretical Analysis of the Vermont Photonics Device

Recently, we have collaborated with Vermont Photonics to test the confined-mode

SPFEL theory. There were several primary objectives of these experiments: to measure a

non-linear emission regime concurrent with the spectral modification discussed in section

VI.1, to observe the spectrum of excited evanescent modes, and to investigate the possibility

that a GHz electron beam instability has been responsible for the observed non-linearity
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Figure 6.14: Comparison of the analytic confined-mode theorywith
simulations by D. Li.

thus far. We hoped to confirm lasing (oscillator) in this system, but were not successful

in this. The grating parameters used in these experiments are given in Table 6.3. The

experimental arrangement is summarized in Figures 6.15, 6.16, and 6.17. The grating

Table 6.3: Parameters of the grating used in the collaborative experiments with
Vermont Photonics

Grating period 155µm
Groove width 51µm
Groove depth 218µm
Grating length 7.85mm
Grating width 500µm

is bordered by vertical sidewalls that transition into longangled wings to improve the

transport efficiency of THz radiation to the output window. The primary collector for the

THz radiation is an off-axis paraboloid that can be scanned along the length of the grating.

The system is aligned using a pair of autocollimators such that radiation emitted near the

grating surface is collimated and directed to the output window. Additionally, a planar

reflector that is optimized for directing superradiant emission to the output window can
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Figure 6.15: Schematic representation of the Vermont Photonics SPFEL.
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Figure 6.16: Interaction region detail in the Vermont Photonics experimental
arrangement.

be added to the downstream end of the grating. This is useful when the superradiant SPR

happens to be emitted at foward angles. The radiation is detected with a Helium cooled

Silicon bolometer from IR labs, and the spectral content is obtained with an automated

Michelson interferometer. The achievable spectral resolution is typically∼ 0.2 cm−1, and

while the minimum detectable power is∼ 1 nW,∼ 30 nW is required for accurate spectral

analysis.

In previous collaborative experiments with Vermont Photonics we observed for the

first time the evanescent wave in a Smith-Purcell device. Theparameters of the grating

from these experiments are given in Table 6.3. Sample spectra are given in Figure 6.18.

As expected, thes = 0 evanescent-wave signal is strongest when the collector system

is centered on the upstream end of the grating. The reader should note the absence of

higher transverse order modes in these spectra. PIC simulations, like those shown in

Figure 6.19 [68], provide an excellent visualization of thescattering of these evanescent

waves from the ends of the grating.
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Figure 6.17: Schematic of the THz collector and interferometer arrangement in
the Vermont Photonics experiments.

Figure 6.18: Spectra taken with the collection optics centered above the
upstream (solid) and downstream (dotted) ends of the grating. The intensity
difference between the two positions is indicative of a backward group velocity
for the evanescent wave.
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Figure 6.19: The impedance mismatch at the grating ends causes scattering of
the evanescent modes [68].

In the most recent experiments, we have observed for the firsttime thes = 1 evanescent

mode. It was believed that the transfer of energy from the electron beam to the higher order

modes would be weak due to their much higher group velocity. However, under certain

conditions this mode dominated the collected radiation power. For efficient excitation of

the structure waves we begin by focusing the collection system on the longitudinal center

of the grating and then we adjust the electron beam for maximum radiation power. This

roughly corresponds to the situation where the beam is focused at the grating center and

the Rayleigh range is approximately half the grating length.The simulated electron beam

waist at the grating region is shown in Figure 6.20. The electron-beam current used in these

experiments ranges from∼ 5 - 15mA. The high power density of the beam prevents the

use of many traditional techniques for measuring the beam profile, and we are forced to use

the THz signal as our primary diagnostic. This makes tuning the device a challenge in that

maximum THz during the alignment procedure does not necessarily indicate the optimum

beam condition for efficient excitation of the evanescent mode.

It was noticed early in the experiments that the spectral content of the detected radiation

changed depending on the transverse position of the electron beam in the grating channel.
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Figure 6.20: Beam waist at the Vermont Photonics SPFEL grating region as
simulated in POISSON/GPT. Dimensions are given in meters.
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Figure 6.21: Spectra taken as a function of longitudinal mirror position
when the electron beam is in the transverse center of the grating (left) and
approximately 100µm right of center (right).
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Figure 6.22: Mirror scan procedure for the data in Figures 6.24, 6.25, and 6.26.

Figure 6.23: An example of the collected total power maxima observed when
scanning the electron beam in the transverse dimension. While many different
profiles were observed, this was the most common.
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Figure 6.24: Spectra taken from the upstream end of the grating; The largest
feature of each spectrum is normalized to 1 for comparison. Ther = 0 mode,
∼ 13 cm−1, is only observed at 30 kV, possibly due to lower Ohmic lossesat
largerβg or grating damage effects.

Consider the spectra in Figure 6.21, which were obtained using the procedure shown in

Figure 6.22. In general, evanescent waves of the grating were driven more efficiently when

the electron beam was centered (Figure 6.21 left), while SPRwas enhanced for an off-

center beam (Figure 6.21 right). It is not clear whether thisis due to preferential excitation

of different radiation modes or variations in the collection efficiency with beam position.

Also, for a fixed mirror position, transverse scanning of theelectron beam revealed two

maxima in the detected total power. Figure 6.23 provides an example of this observation.

These maxima were typically equally spaced from a central minimum that is thought

to correspond to the grating’s transverse center. The relative intensity of these two peaks

varied depending on the beam conditions. Based on a calibration of the(x, y) scanning

coils, the separation of the two peaks was on the order of 200µm when the mirror was at the

longitudinal grating center. This profile was less symmetric for some mirror positions and

beam conditions and sometimes included multiple shoulderswithout a central minimum.

However, as the mirror was moved toward the upstream gratingend, this transverse profile
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Figure 6.25: THz emission spectrum (log and linear) for different electron
beam energies. Ther = 1 evanescent mode is dominant, two orders of
magnitude larger than the first-order SPR (at∼ 20 cm−1, not shown).

transitioned into a single peak and the collected power was dominated by the scattered

s = 1 structure wave(∼ 16 cm−1). The origin of these transverse distributions is not fully

understood.

The scattereds = 1 mode was observed for three different voltages, 30, 34, and 38

kV, so that the shift of the synchronous point could be measured. For the data in Figures

6.24 and 6.25, the electron beam was optimized using the procedure detailed above. In

Figure 6.24 the spectra are normalized to one so that the relative distribution of their

spectral power may be easily observed. All other spectra arenormalized in the following

manner: The bolometer signal at zero-path difference (ZPD)for the interferometer is

proportional to the total power. We divide this maximum signal by the integral of the

spectrum and multiply by the original spectrum. This normalization ensures that the spectra

may be accurately compared to one another. A comparison between these measurements

and the wavelengths predicted by the confined-mode theory isgiven in Figure 6.26. For 30

kV operation we observe the normal Smith-Purcell radiation, a weaks = 0 mode signal,

and a strongers = 1 peak. When the beam energy is increased to 34 kV the fundamental

110



Figure 6.26: Comparison of experiment and theory for the wavenumber of the
r = 1 evanescent mode. The error bars represent the spectrometerresolution

evanescent mode and the SPR largely vanish while thes = 1 signal becomes significantly

stronger. At 38 kV thes = 1 mode grows dramatically and is the only detectable feature

in the spectrum. Currently, the disappearance of thes = 0 and the dominance of thes = 1

mode is not understood. However, one possible explanation is that the Ohmic losses for

thes = 0 mode are more severe; due to its very low group velocity this mode transports

energy upstream very slowly. While this explains the extinction of mode with increasing

voltage, it does not explain previous results in which thes = 0 mode was dominant at

the grating end and thes = 1 mode was completely unexcited. Another possibility is that

the fundamental mode is more sensitive to grating damage than the higher order modes.

The first 25% of the grating teeth and sidewalls can experience significant damage during

the tuning process from exposure to the electron beam. Typically largers = 0 signal was

observed with a pristine grating, but this signal tended to diminish over several hours of

operation.

Another primary objective of these experiments was to investigate the suspected

presence of a GHz instability in the electron beam. Previousexperiments at Dartmouth and
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Figure 6.27: Typical example of the linear and non-linear emission regimes in
the Vermont Photonics device.

Vermont Photonics exhibited a nonlinear dependence of the output power on the electron

beam current. An example of this nonlinearity from the Vermont Photonics device is

shown in Figure 6.27. Initially, this nonlinearity was thought to result from the onset

of superradiance. However, superradiant emission is accompanied by modification of

the angular power spectrum as detailed in section VI.1. No such modification has been

observed in either device. Furthermore, nonlinear emission is always observed irrespective

of the grating geometry, and the beam current threshold for onset of nonlinear emission

seems relatively insensitive to said geometry. These same effects were observed for

Cerenkov devices at Dartmouth [77] and the device propertieswere largely insensitive to

the dielectric properties. Nonlinearity in the emitted SPRmust be the result of a modulated

electron beam density. This modulation would have been easily observed if it occured at a

frequency in the THz region. This suggests that the modulation frequency lies below the

frequency resolution of the spectrometers that were used, i.e. ≤∼ 5GHz. Alternatively, if

the modulation is unstable and fluctuates in frequency, thenits spectral signature could be

washed out during signal acquisition.
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Figure 6.28: Experimental arrangement for measurement of GHz electron
beam instabilities.

To produce the observed nonlinear emission, the beam oscillation must persist until it

reaches the grating region. A simple loop antenna, designedfor ∼ 2 GHz, was used in a

first attempt at searching for this signal. The system was arranged as seen in Figure 6.28.

The grating was left in place so that the beam conditions required for nonlinear emission

could be verified while searching for the GHz instability. The initial search failed to detect

any GHz signals, however, further experiments are being planned using other antenna

and measurement techniques. Additionally, simulations ofthe electron gun are being

considered to estimate the expected frequency of any supported cathode oscillations.

VI.5 Design of a DFEA Driven Confined-Mode SPFEL

The high current density of DFEAs and the ability to pulse their emission at

microsecond time scales makes the development of a simple SPFEL possible. Until now,

attempts to construct SPFELs have been based on modified electron microscopes or similar

electron optical columns. These devices are typically large and thus far have produced

tightly focused electron beams of no more than 20 mA. Considerthe DFEA based SPFEL

113



x

zy^

^

^

x

z
y^

^

^

DFEA Einzel Lens Grating &

 sidewalls

Figure 6.29: Experimental configuration for a DFEA-SPFEL. The total length
of the system is∼ 2 cm.

configuration pictured in Figure 6.29. A large area DFEA (∼ 3× 1 mm) is integrated with

a simple Einzel lens that uses an aperture plate on the grating face as its third electrode.

The dimensions of the lens electrodes from left to right are 200µm × 2 mm, 400µm × 2

mm, and 100µm × 1 mm. The grating has sidewalls separated by 1 mm. The macroscopic

cathode area greatly simplifies alignment by flooding a largearea on the anode plate with

current. However, this relaxation of alignment constraints comes with the requirement of

pulsing the emission on microsecond time scales. Heating calculations with a copper anode

have demonstrated∼ 500◦C temperature rise from∼ 5 µs pulses at current densities of∼

250 A/cm2 [78]. The thermal relaxation of the system occurs on roughlymillisecond time

scales. Therefore, the system may be pulsed at frequencies in the hundreds of Hertz range

with duty factors of∼ 0.05 % - 0.5 %.

The parameters of the grating are set in part by the need for a practical beam energy.

The beam energy is chosen to be 10 kV for the purposes of the design presented here. The

primary requirements on the grating geometry are that its fundamental evanescent mode

has a low group velocity at the interaction point (so that thegain is large), and that the scale

height of that mode is a comfortable size in the context of theelectron optical system. A

suitable set of grating parameters is given in Table 6.4. Thedispersion curves for the first
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Figure 6.30: Dispersion curves for the first three transverse orders of the
evanescent wave. Light lines and a 10 kV electron beamline are also displayed.

three transverse orders of the evanescent wave are plotted in Figure 6.30 along with a 10 kV

electron beamline. This grating has a free-space wavelength for thes = 0 evanescent wave

of λ00 = 1.084 mm, and the first-order Smith-Purcell band is619µm ≤ λSP ≤ 919 µm.

The group velocity at the interaction point isβg = −0.061c and the scale height of the

s = 0 mode is1/α0 = 34 µm.

Table 6.4: Parameters of the grating used in designing the DFEA-SPFEL

Grating period 150µm
Groove width 50µm
Groove depth 260µm
Grating length 1 cm
Grating width 1 mm

The electron optical system has been simulated in SIMION 7.0for determination of

the optimum focusing parameters and the approximate beam envelope over the grating. A

cutaway view of the device with an electron beam is shown in Figure 6.31. The optimum

focal strength for the device was determined by the following procedure: We define an
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Figure 6.31: Cutaway view of the simulated DFEA driven SPFEL geometry
with an electron beam.

effective interaction strength for an electron passing over the grating given by

η (z) = ex(z)α0 , (6.119)

wherex (z) is the height of the electron above the grating surface as a function of the

longitudinal coordinatez, and α0 is the scale height of thes = 0 evanescent wave.

The parameterη represents the exponentially decaying interaction of the evanescent wave

with the electron as the electron’s height above the gratingis increased. This parameter

is summed over the entire ensemble at a givenz position while scanning the focusing

bias. This determines the longitudinal profile of the effective strength of the beam-wave

interaction as a function of the focusing potential. The results of these scans are shown

in Figure 6.32 The optimum focusing strength for this arrangement is determined to be

Vf = 0.58Vbeam = 5850 V. The initial electron beam hasx andy dimensions of 0.2 mm

and 1 mm respectively. Under these conditions∼ 70 % of the electron beam passes the

grating aperture and∼ 65 % reaches the grating exit. The effective aperture is defined by
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Figure 6.32: Determination of the optimal focusing bias using an interaction-
strength weighting parameter for each electron. The plot tothe right presents
the longitudinal profile of the effective interaction strength for optimum
focusing,Vf = 5.85 V.

the first lens electrode for thex dimension and by the grating aperture for they dimension.

A side view of the beam’s propagation through the device is shown in Figure 6.33. The

rms beam envelope was calculated for optimum focusing and isshown in Figure 6.34.

The beam centroid drifts further away from the grating surface near the grating end due

to intercept losses of aberrated trajectories. Now the simulated beam envelope can

be used in calculating the start current and growth rate for the SPFEL interaction. We

approximate the actual beam envelope as a uniform density beam that fills the region

xc −
√

3σbottom ≤ x ≤ xc +
√

3σtop, wherexc is the average position of the beam centroid,

andσbottom andσtop are the average values of the rms beam radius above and below the

centroid. All positions are measured relative to the grating’s top surface. Fine-pitch DFEAs

are capable of current densities in excess of 250 A/cm2 in 10 µs pulses. This corresponds

to currents through the grating of up to 350 mA. Additional simulation will be required to

determine the effects of space charge on the propagation of such a beam. The resulting

beam parameters of the simulations are presented in Table 6.5

When the beam parameters of Table 6.5 are used in conjunction with the grating of
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Figure 6.33: Side view of the electron beam’s propagation throught the DFEA-
SPFEL.

Figure 6.34: Rms beam envelope for the electron beam at optimum focusing
conditions.
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Table 6.5: Electron beam parameters determined by simulation of the DFEA-
SPFEL electron optical system.

Beam width 1 mm
Beam bottom 34µm
Beam top 86µm
Beam current 0 ≤ Ibeam ≤ 350 mA
Beam voltage 10kV

Figure 6.35: Calculated growth rate for thes = 0 evanescent wave as a function
of electron beam current.

Table 6.4, the start current for oscillation on thes = 0 backward wave isIstart = 11.4

mA. This current level is easily achieved with the current densities that have already been

demonstrated for sparse, 20-µm pitch arrays. The growth rate for the evanescent mode as

a function of current is shown in Figure 6.35. The growth rateis on the order of several

GHz, meaning that the beam-wave resonance should saturate in nanoseconds. For these

grating and beam parameters, the dominant superradiant-SPemission should occur where

the third harmonic of the evanescent wave coincides with thesecond order SPR:θ = 72◦

andλSP = 361 µm (0.831 THz).
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CHAPTER VII

QUANTUM-DEGENERATE ELECTRON BEAMS AND A PROSPECTIVE
SOURCE

VII.1 Introduction

In recent years our development of high-brightness electron-beam sources has led us

to consider the ultimate limit of brightness, the so-calledquantum-degenerate limit. This

limit represents the maximum phase-space density that can be achieved with a beam of

fermions, and is a direct consequence of the anti-symmetricnature of their wavefunctions.

The uncertainty principle sets a fundamental unit of volumefor 6-dimensional phase space

of h3. Eachh3 of phase space contains a single spin pair of electrons for a degenerate beam.

The level of quantum degeneracy in a beam can be written in terms of the 6-dimensional

brightness (6-dimensional phase-space density as

δ =
h3B6D

2
=

h3d6Ne

2dxdpxdydpydEdt
(7.1)

whereNe is the number of electrons,x andy are the transverse spatial coordinates,px and

py are the transverse momenta,E is the longitudinal energy, andt is the time coordinate.

In terms of this degeneracy parameter, the normalized transverse brightness is given by

BN =
m2c2d4I

dxdydpxdpy

= 2
m2c2q2∆V

h3
δ (7.2)

where∆V in the electron-energy spread in eV. The quantum-degenerate limit, δ = 1, is

then calculated for a field emitter (∆V ≈ 0.3 eV) to beBN ≈ 3 × 1018 A/m2-str. Figure

1.1 (Chapter 1) displays this brightness limit and the estimated brightness from a range

of different cathode technologies. Thus far, specialized field emitters are the only sources

capable of reaching this limit.
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VII.2 Measurement of Quantum Degeneracy

Simple estimates of the quantum degeneracy in an electron beam require knowledge

of the transverse brightness and the electron-energy spread. The transverse brightness is

typically not measured directly but is rather estimated based on the measurement of other

beam parameters. One such technique, described by [9], involves the use of low-energy

point-projection microscopy for determining the transverse coherence length of the electron

source. The electron waves diffract around a hard edge and interfere at a downstream

detector producing Fresnel fringes. The number of observedfringes depends on the emitter

surface area over which the electrons are emitted coherently, Ac. The coherence time for

the electrons follows from the uncertainty principle and isapproximatelytc = h/∆E. The

degeneracy is roughly the number of electrons that pass through the coherence areaAc

during the coherence timetc, i.e. δ = (J/q) Actc, whereJ is the current density.

A more sophisticated and definitive method of measuring degeneracy is the Hanbury

Brown-Twiss coincidence measurement. This technique is also known as intensity

interferometry, and it provides a direct measure of quantumdegeneracy. A diagram of such

a measurement is shown in Figure 7.1. When a beam has insignificant levels of degeneracy,

the arrival of electrons at the detector plane is stochasticand Poissonian statistics accurately

describe the system. However, as the degeneracy is increased, temporal antibunching

begins to develop in the beam. This antibunching can be detected as anticorrelations

in electron arrivals at the two detectors, which are placed within the beam’s magnified

transverse-coherence area. A measurement of this type has been performed on the beam

from a tungsten field emitter [12]. Weak antibunching was successfully detected and that

signature was only present when both detectors were coherently illuminated by the beam.

The corresponding quantum degeneracy in this case wasδ ≈ 1.6 × 10−4.
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Figure 7.1: Experimental arrangement for measuring electron-beam
antibunching. The same arrangement was used by Kiesel et al to measure the
degeneracy of a beam from a tungsten field emitter.
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VII.3 A Carbon Nano-Tube Based Quantum-Degenerate Electron Beam Source

We have recently begun a program to develop high-brightnesselectron sources capable

of reaching the quantum-degenerate limit. From a practicalstandpoint, it is important

that these sources operate with very high local current densities in a stable manner for

extended periods of time. Covalently bonded carbon structures such as carbon nanotubes

and diamond microtips have excellent high-current-emission stability due to their stable

structure and chemically inert nature. In contrast, for tungsten emitters we have observed

significant emission fluctuations during field-emission microscopy studies. Additionally,

metals are less chemically stable and are more prone to back bombardment damage and

catastrophic failure modes such as explosive evaporation.Carbon nanotubes and diamond

are known to have excellent thermal conductivity which helps mitigate such thermally

driven failure modes.

It has been known for many decades that the presence of adsorbed molecules or atoms

on the surface of a field emitter can produce order-of-magnitude enhancements of the local

emission current. Typically, the adsorbed species are residual gases from the vacuum

system. Depending on the operating conditions, these adsorbates are typically stable for

many seconds. We are beginning experimental and theoretical efforts to determine which

types of adsorbates provide the greatest emission and stability enhancements. In recent

months we have observed beams of extraordinary brightness from adsorbed gas molecules

on individual MWCNT. Collaborators at Leiden University in theNetherlands mount these

individual MWCNTs on a tungsten-needle support for handling and mechanical stability

[79]. An example of the completed cathode is shown in Figure 7.2. A simple diagram of

the field-emission microscope used to examine these cathodes is presented in Figure 7.3.

Figure 7.4 shows a field-emission micrograph of a MWCNT whose surface was cleaned

with a combination of laser irradiation and high-current operation.

The underlying covalent structure of the closed-cap nanotube is clearly seen in the

form of bright pentagonal rings. Figure 7.4 also demonstrates a transient adsorbate event
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Figure 7.2: An individual MWCNT mounted on a tungsten needle.

cathode mesh anode

phosphor screen

-HV +HV

Lm Lp

Figure 7.3: Diagram of the FEM apparatus used for these experiments. The
addition of a mesh anode enables the application of a boosterfield between
the phosphor and mesh. This allows observation of the emission pattern at any
anode-cathode spacing/potential combination.
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Figure 7.4: In these FEM micrographs, the underlying symmetry of the clean
MWCNT is clearly seen in the form of bright pentagonal rings. Additionally a
transient adsorbate event was observed which correspondedto a 6-µA increase
in the emission current.

that resulted in a current enhancement of 6µA. The phosphor image of this event and

the operational parameters of the experiment can be used to estimate the brightness and

quantum degeneracy of the resulting beamlet. For a symmetric beam the normalized

transverse brightness is given by

BN = m2c2 d4I

dx2dp2
x

. (7.3)

If we assume that the transverse momentum is constant, then the transverse-momentum

spread can be estimated in terms of the observed spot size by

∆px =
dm

Lm

√

m
2qVm

+ Lp

√

m
2qVp

(7.4)
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whered is the measured spot diameter,Lm andLp are the mesh-emitter and mesh-phosphor

distances respectively, andVm andVp are the applied voltages at the mesh and phosphor

relative to the cathode bias. The approximate parameters under which the data in Figure 7.4

were acquired are given in Table 7.1. In terms of these parameters the brightness is given

Table 7.1: Experimental parameters from Figure 7.4

Lm 1 cm
Lp 1 cm
Vm 360V
Vm 1360V
d 5 mm

by

BN =
c2I

∆x2

m

2qd2

(

Lm√
Vm

+
Lp
√

Vp

)2

, (7.5)

where∆x is the emitter size. If the beamlet originates from a single adsorbed atom or small

molecule, then∆x ≈ 10−10 m. For a beamlet current of 6µA the brightness is estimated

to beBN ≈ 4 × 1018 A/m2-str. This estimate suggests that the observed beam is nearly

quantum-degenerate. As seen in Figure 7.4, the effective lifetime of this source was less

than one second. To make a long lifetime source, adsorbates with higher surface binding

energies must be found.

VII.4 Continuing Experimental and Theoretical Efforts

There are two proposed methods for preferential depositionof adsorbates on the emitter

tips: thermal evaporation and pulsed-laser ablation. Laser ablation has the advantage of

being time gated. This helps to discriminate between residual gas and atoms emitted from

the target during ablation. The atoms to be tested include cesium, strontium, yttrium,

barium, magnesium, and gold. The energy analyzer discussedin Chapter 5 will be

integrated with the system and will be used to search for signs of degeneracy such as

anomalous spectral broadening at high currents. Deflectionplates near the cathode and

a phosphor on the front of the analyzer will facilitate spectral analysis of the emitted
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beams from the clean CNT (pentagons) and from the adsorbed species independently.

The measured energy distributions can be compared to the emitted distributions calculated

by advanced density-functional theory techniques at Vanderbilt [80]. These calculations

might be used to guide the experimental efforts by quickly estimating current enhancement,

stability, lifetime and emitted energy spread for various atoms and molecules of interest.

Once a mastery of the techniques for producing and preserving these bright sources has

been developed, intensity interferometry measurements will be performed to measure

the quantum degeneracy of these beams. Additionally, thesesame investigations and

techniques will be applied to gated diamond emitters once they reach operational status.
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CHAPTER VIII

CONCLUSIONS

This primary purpose of this thesis has been to discuss the recent developments of

diamond field-emitter arrays and their integration with electron-beam-driven radiation

sources. These sources include, but are not limited to, conventional free-electron lasers

and compact FEL paradigms such as the Smith-Purcell or Cerenkov free-electron laser.

Important questions exist related to the operation of DFEAsin the various injector systems

used to drive these lasers. DFEAs are slated for near term integration into several different

injector types at various institutions. In the work presented here, important emission

properties of DFEAs such as spatial uniformity, transverseemittance, and emitted energy

spread have been reported. Additionally, the 3-dimensional theory of the Smith-Purcell

free-electron laser has been developed and experimental support for this theory has been

reported. Also, preliminary results from a proposed quantum-degenerate electron-beam

source have been given. In the folowing pages, the motivation, results, and conclusions for

each chapter of this thesis are presented.

Chapter 1: Introduction The next major advancements in electron-beam-driven

radiation sources are closely tied to the development of cathode and electron injector

technologies. X-ray FEL devices depend on the capability toreliably produce high bunch

charges while maintaining very high beam brightness. The demonstration of 100-kW

and 1-MW class high-average-power FELs relies on the development of high-average-

current injectors. Such an injector using present photocathode technology is complicated

by the need for complex and unstable high-power cathode-drive-laser systems and the

delicate nature of high-efficiency photocathodes. Compact THz FELs require the delivery

of high current densities over large areas while maintaining a reasonably low emittance.

DFEAs are in a unique position to provide cathode solutions for many of these important
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problems. Of particular interest to this author is the use ofDFEAs in the aforementioned

compact THz FELs. The theory and design of such a device was presented in Chapter

6. Finally, the concept of quantum degeneracy in a free-electron ensemble is discussed.

In most beams, the electron density in phase space is too dilute to observe the quantum

effects of degeneracy. However, for the ultra-high-brightness beams produced by single-

atom-electron sources, the degeneracy becomes significantand its effects may be readily

observed. Chapter 7 discussed these concepts in more detail and preliminary results from

a proposed degenerate-beam source were presented.

Chapter 2: Diamond Field-Emitter Arrays The development of DFEAs has spanned

nearly two decades, however until now their primary application was to concepts such

as vacuum microelectronics, high-power switching, and thermal-electric conversion.

Through a fruitful collaboration with the diamond microelectronics group in the Vanderbilt

University Department of Electrical and Computer Engineering, we have advanced the

development of DFEAs as free-electron-beam sources. In this chapter we discussed the

inverse-mold-transfer processes by which DFEAs are fabricated. These processes were

detailed for both gated and ungated DFEAs as well as for diamond-coated Si devices.

Vanderbilt is currently in collaboration with the Naval Postgraduate school to test DFEAs

in both HV DC and SCRF injector systems. The DC tests will examine the lifetime and

stability of DFEAs under the stress of high-energy ion back bombardment. Operation in a

superconducting environment and strategies for proper time gating of the emission will be

examined when the SCRF gun is completed.

Chapter 3: Emission Uniformity of DFEAs The discussions of this chapter centered

on the fundamental challenge of producing spatially uniform emission from FEAs.

Nonuniformity in an ensemble of field emitters is due primarily to the variability of each

emitter’s surface-contamination state and variations in the underlying morphology and

composition from tip to tip. While certain techniques such asthermal annealing and
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plasma exposure may be used to normalize the contamination states, normalization of tip

morphology in large ensembles of emitters requires a self-limiting conditioning process.

This process must discriminate based on a tip’s emission current and surface electric field.

Such a conditioning technique for DFEAs was discovered, characterized, and optimized

in this work. High-current conditioning has successfully produced uniform emission from

large numbers of tips while maintaining reasonable turn-onfields. Thus far, per-tip currents

of 40 µA have been demonstrated. For high-density arrays (4-µm pitch), this corresponds

to a current density of∼ 250 A/cm2. These tests were performed under conservative

conditions and were not designed to drive the cathode to its failure limits. These limits will

be tested in coming months with high-current operation at microsecond time scales. So far

the primary limitation of DC operation has been back bombardment from sputtered anode

material at high current densities. The tests in the DC gun atNPS should help determine the

limits of DC operation in the absence of this particular backbombardment. Conditioning

tests demonstrated that DFEAs were capable of high current operation in extremely poor

environments for prolonged periods of time.

Chapter 4: Emittance and Brightness of DFEAs This chapter discussed the concepts

of transverse emittance and transverse beam brightness, and techniques for determining

these measures experimentally. These techniques includedmeasurement and fitting of

a focused beam envelope as well the standard pepperpot technique which is used to

determine transverse-trace-space projections of the electron ensemble. The experimental

arrangement for a pepperpot emittance measurement of DFEAswas given. The aperture

mask was specially fabricated from an SOI wafer. This mask served as the primary

anode in a close-diode arrangement with a 3×24, 20-µm pitch DFEA. The measured

divergence of the electron beam corresponds to a normalizedtransverse emittance of∼ 10

mm·mrad for a uniform beam with transverse dimensions of 1 cm×1 cm. This satisfies the
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emittance requirements of IR HAPFELs. The experimental results are closely supported

by simulations of the emitted beamlet from a single diamond microtip.

Chapter 5: Energy Spread from DFEAs The emitted energy spectrum from DFEAs

can provide insight into the fundamental physics of their electron emission process. A

high-resolution retardation energy analyzer was designed, constructed, and tested for the

purpose of measuring this emission spectrum. The analyzer was simulated in SIMION and

shown to be capable of mV resolution for kV beams. However, nonidealities in the actual

analyzer such as mesh granularity and imperfect alignment of components produce an

instrumental broadening that decreases the resolution to∼ 0.15 eV. This resolution function

was determined by energy analysis of the beam emitted from a LaB6 thermionic cathode.

The resolution function is deconvolved from any measured spectra to mathematically

improve the instrument resolution. After these fiducial measurements, the analyzer was

used to measure the emitted spectrum from a DFEA. The array parameters were chosen

to provide a high probability of current acceptance from a single emitter. Subsequent

observations with the analyzer suggest that the accepted current did indeed originate from a

single tip. Temporal modulations in the total current and emitted spectrum were observed,

and were interpreted as the result of resonant tunneling through adsorbed species on the

emitter surface. These fluctuations draw close analogy to those observed with carbon-

nanotube field emitters. It is believed that 5-10 % of the emitted spectra contained the

spectral signature of a clean emitter surface. This suposedclean spectrum has a FWHM of

∼ 0.55 eV, and it was fit with a thermal-field emission model using reasonable parameters.

Chapter 6: The Smith-Purcell Free-Electron Laser: an Application of DFEAs The

SPFEL and similar compact FELs have the potential to fill a very important source gap

in the electromagnetic spectrum, the so-called THz gap. Thedevelopment of compact,

narrow-band, moderate power THz sources would serve as an important catalyst for new

discoveries in material science, medical imaging, remote detection, and biomolecular
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dynamics. In this chapter the 3-dimensional theory of small-signal SPFEL operation was

developed for an infinitely wide grating. It was found that the evanescent modes of the

grating are gain guided by the electron beam, resulting in a gain which depends onI2/5

rather than the standardI1/3 of 2-dimensional theories. The dilution effects of transverse

diffraction in the optical beam lower the gain substantially. This makes lasing exceedingly

difficult for the case of a narrow electron beam. One solutionis to confine the optical mode

in the transverse dimension with conductive grating sidewalls. The theory of this confined-

mode SPFEL was developed, and subsequenty applied to collaborative experiments with

Vermont Photonics. The first observation of higher-transverse-order evanescent modes was

reported, and found to be in excellent agreement with the confined-mode theory. Lasing of

an SPFEL on an evanescent mode of the grating has yet to be achieved. Finally, a design

for a DFEA driven SPFEL was presented. Propagation of the electron beam through this

compact device (∼ 1 in3) was simulated and the resulting beam profile was used to calculate

the performance characteristics of the FEL interaction.

Chapter 7: Quantum-Degenerate Electron Beams and a Prospective Source In this

chapter the intriguing concept of quantum degeneracy free-electron beam was discussed.

The development of reliable and robust quantum-degenerateelectron sources would mark

an achievement similar to the development of the laser, which produces degenerate

ensembles of photons. Widespread access to quantum-degenerate electron beams may

open up new frontiers in imaging through techniques such as intensity interferometry and

high-speed electron holography. Further applications might include the miniaturization

of high-resolution electron microscopes, or advances in quantum computation. Thus far,

we have demonstrated electron beams that are near the quantum-degenerate limit of beam

brightness using MWCNTs with adsorbed gas molecules. However, these beams are only

stable for seconds at a time. We are preparing to selectivelydeposit a variety of adatoms

on the emitter surface in an effort to produce beams with longer operational lifetimes.
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These efforts are being paralleled by collaborators performing calculations with advanced

density-functional theory techniques. With the successful development of a stable source,

we will estimate the degeneracy first through energy spread measurements, noise-spectrum

measurements, or point-projection microscopy, and subsequently measure it directly with

intensity interferometry.

Future Directions The results of this thesis suggest a number of directions forfuture

work:

1. The electron-emission physics for DFEA emitters with andwithout adsorbed species

should be subject to further experimental and theoretical investigations. These

studies may provide insight on how to take advantage of adsorbate effects to improve

DFEA emission properties. Such work may also have relevanceto adsorbate effects

with carbon-nanotube field emitters.

2. Of the various DFEA types, ungated arrays have reached themost mature state.

However, the development of gated DFEAs is being actively pursued. The remaining

challenges include the elimination of gate leakage and testing of the high-frequency

response characteristics for these devices.

3. DFEAs will soon be integrated with various electron injector systems. The capability

to properly time gate electron emission from ungated arraysmust be established, and

the lifetime of DFEAs in such environments must be examined.

4. Demonstration of functional gated and multi-gated devices will facilitate the

development of compact, scanning-probe electron microscopes. Such devices focus

the electron beam from a single emitter using multiple self-aligned-gate electrodes,

and collect the secondary electrons scattered from a nearbysample. The sample

may be scanned underneath the stationary beam with high precision piezo-electric
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actuators. Additionally, gate electrodes with higher degrees of symmetry may be

produced, such as sextupoles, for aberration correction.

5. The compact DFEA-SPFEL discussed in Chapter 6 should be developed. This

device should be used to check the validity of the confined-mode SPFEL theory (also

presented in Chapter 6). Once the source is functional, investigations in biomolecular

dynamics and other fields of interest should be undertaken.

6. Development of carbon nanotube quantum-degenerate-electron-beam sources should

continue. The next line of investigation will involve the use of certain adsorbates,

such as strontium, gold, or cesium, for increasing the stability and lifetime of the

source. Measurements of the emitted energy spread from these adsorbates may give

indications of degeneracy, such as anomalous broadening ofthe spectrum. After

these preliminary experiments, coincidence measurementsshould be performed

to observe anti-bunching, thus providing an unmistakable degeneracy signature.

Similar experiments may also be performed with gated diamond field emitters once

they are operational.

7. Quantum-degenerate-electron-beam sources may find practical application in the

fields of high-resolution electron microscopy and high-speed electron holography.

Additionally, the intensity interferometry techniques used to measure quantum

degeneracy may have application as a new imaging modality. These techniques

should be investigated upon successful source development.
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