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CHAPTER I 

OVERVIEW 

Introduction and Motivation  

An un-tethered, portable, and effective power supply for human-scale robots has progressively 

become more important in robotics research. This is because today’s mobile robots must be energetically 

autonomous to be truly effective. Typical electric power supply and actuation systems using batteries and 

motor drives are not capable of powering human-scale robots like the Honda P3 robot or Honda ASIMO 

for more than 25 min. More recent progress includes systems like Big Dog which use hydrocarbon fueled 

IC engines and hydraulic actuators. Although superior in energy and power density to electric systems, IC 

engine based systems are very noisy.  

 The motivation of this research is to develop a more adequate power supply and actuation system 

that provides an order of magnitude greater power and energy density than the state-of-the-art batteries 

and motor drives while also avoiding the drawbacks of IC-based systems. It should also be noted that this 

challenge is very scale-dependent. Miniaturizing IC engines results in very poor efficiencies whereas the 

downscaling of Stirling devices actually enhances their power density [1]. The key to a more effective, 

portable power supply and actuation system is a combined measure of 1) a high energy density fuel 

source, 2) an efficient energy conversion to mechanical work, 3) a low converter mass, and 4) high power 

density actuators. The reason why an electric power supply and actuation system cannot power human-

scale robots for more than 25 min is simply because of the low energy density of batteries and the low 

power density of electric motors compared to the high overall converter mass of the system. This work 

proposes a Stirling pressurizer combined with a power unit to be used as the power supply. The power 

unit could be anything that can be driven by a pressure swing such as a hydraulic pump, a linear electric 

generator, a reciprocating piston compressor, or a high pressure water filtration system, among others.  

 Figure 1-1 compares the energy transduction of a typical electric power supply and actuation system 

with the energy transduction of a Stirling pressurizer combined with a hydraulic pump. The power supply 

and actuation proposed here yields an increased energetic merit on the overall system level. This is 

because the pressurizer uses a much more energy dense fuel source than electric systems. The Stirling 

pressurizer can operate using a variety of heat sources such as high energy density hydrocarbon fuels 

(propane, butane, etc.), natural gas, solar concentrators, geothermal or radioisotope sources or others.  

The energy density of hydrocarbon fuels for example is more than 65 times higher than the energy 

density of Li-ion batteries (46,000 kJ/kg vs 700 kJ/kg). This implies that a fairly poor energy conversion 

from the heat absorption to the pressurizer’s power output (about 10% efficient) will result in a higher 

mechanical work output per unit mass of the overall system compared to electric systems. The Stirling 

pressurizer combined with a hydraulic pump will output about 3500 kJ per unit mass of energy source, 

while a typical battery and DC Motor drive outputs about 350-630kJ per unit mass of energy source. As a 
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result the proposed device has a 5-10 times higher energy figure of merit. Figure 1-2 illustrates 

graphically the energy density vs actuation power density of multiple devices. While batteries and motor 

drives are located in the lower left hand corner of the graph with low energy and power densities, the 

Stirling pressurizer combined with a power unit is located in the upper right hand corner with superior 

energy and power densities.  

 

Figure 1-1: Comparison of the energy transduction of a typical electric system with a Stirling pressurizer 
combined with a hydraulic pump  

 

Figure 1-2: Energy density vs. actuation power density of different devices. 

Li-ion Batteries

electrochemical

reaction
Electrical Power

DC servo
Mech. Power Output

~ 350-630 kJ/kg (servo motor)
(700 kJ/kg)  %100 %90%50 

Batteries / DC Motors

104 HC

(46,500 kJ/kg)

external

combustion
Work Hydraulic

Output

Pump Mech. Power 

Output

~ 3500kJ/kg
Heat absorption

Stirling cycle

actuators

Stirling Pressurizer / Hydraulic Pump

 %108 %9085

Energy Density 

(kJ/kg)

Actuation Power 

Density (kW/kg)
Stirling 

Engine+ 

Hydraulic 

Pump

Stirling 

Engine+ 

Compressor

Battery

DC motor

Pneumatics

Hydraulics

Stirling Engine+

Compressor 

Stirling Engine+

Hydraulic Pump



3 
 

Literature Survey 

The following literature review focuses on the evolution of the Stirling engine from a kinematic 

arrangement to a more power dense, purely dynamic arrangement; the free-piston Stirling engine. This is 

followed by a more recent research focus, namely the concept of a controlled displacer piston.  

A Stirling engine is a heat engine that can operate using a variety of heat sources such as high 

energy density hydrocarbon fuels (propane, butane, natural gas, etc.), solar concentrators, geothermal, 

radioisotope sources, or others. Stirling engines cyclically heat and cool the working fluid which in turn 

induces a pressure change. This pressure change can then be used to drive a power unit. The Stirling 

engine was invented in 1816 by Robert Stirling and has long held the promise of being a clean, reliable, 

safe and quiet source of power. The first Stirling engine built was a purely kinematic arrangement where 

the motion of the displacer piston and the motion of the power piston were kinematically constrained such 

that displacer and power piston were always 90° out of phase. These engines were heavy and produced 

only a small amount of usable power. Stirling engines were outperformed by electric motors and internal 

combustion engines. In the twentieth century, advances in Stirling engines served to replace their 

kinematic arrangements with lightweight, small, purely dynamic elements. Such engines were called 

“free-piston Stirling engines.” The primary advantage of free-piston engines over its kinematic cousin 

include compactness, the ability to completely seal the engine, the elimination of side forces on the 

piston, and the ability to pressurize the engine to obtain higher power densities [4,5]. Nevertheless, this 

purely dynamic arrangement presented new challenges. The dynamic arrangements had to keep the 

engine self-oscillating, achieve the correct phase between the displacer and power piston dynamically, 

and robustly maintain self-oscillation in the face of load variations and disturbances. This is very difficult 

to achieve since free-piston Stirling engines utilize their own pressure change to drive the displacer 

piston. Self-oscillation is very sensitive to parametric properties of the engine and the load itself. Despite 

this, some free-piston Stirling devices have been built and shown to work. Beale built the first free-piston 

Stirling arrangements in the 1960’s [6,7]. Other noteworthy examples include the Harwell 

Thermomechanical Generator [7,8,9] and the liquid piston Fluidyne Stirling engine built by West [10,11]. 

Generally, the sensitivity to engine parameters is not well understood and results in a trial-and-error 

selection of engine specifications to arrive at acceptable parameters. 

More recent research [12,13] overcomes the difficulty of getting the correct phase dynamically by 

controlling the displacer piston directly. By independently driving the displacer, the motion of the displacer 

is decoupled from the pressure dynamics within the engine. Ordinarily, the pressure and load influence 

the power piston which in turn drives the displacer piston through passive dynamics. By decoupling the 

displacer motion and then controlling it independently, the load does not affect the engine’s ability to self-

oscillate. This allows an independent design of the displacer piston motion that can be controlled to shape 

the thermodynamic cycle in the face of arbitrary loads. Avoiding the complex coupling between the 

displacer and power pistons in favor of a fully controlled device transforms a free-piston Stirling engine 

into a mechatronic Stirling engine.  
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The work presented in this document builds on the work of [12,13] by using the position of the 

displacer piston as a control input to a first-principles model of a Stirling engine. An accurate, first-

principles model that is amenable to deriving control laws for the displacer motion is critical for the line of 

work regarding controlled Stirling engines to continue. Furthermore, such a model needs to be rigorously 

validated experimentally. Although other papers [14, 15, 16] present control models of Stirling devices, 

many are not experimentally validated and none present a validated model that will accept an arbitrary 

displacer motion. The contribution of this paper is a first-principles model, amenable to the direct control 

of the displacer piston, that is validated experimentally for a wide range operating conditions. 

Described herein is a Stirling device that uses the position of a displacer piston as a control input to a 

first-principles model. The design, first-principles model, and experimental setup of such a Stirling device 

are described. The first-principles model is experimentally validated for two different motion profiles of the 

displacer piston, a variety of heater head temperatures, and a variety of different average engine 

pressures. Additionally, a system dynamic model of a Stirling pressurizer combined with a hydraulic pump 

is presented.  

Organization of the Document 

 The thesis is organized in four chapters. Chapter I presents the introduction, motivation, and the 

literature survey of the work. Chapter II and III are comprised of the manuscripts that encompass the 

body of the work completed during the author’s two years at Vanderbilt University. Chapter II contains a 

Conference paper on the system dynamic model and design of a Stirling pressurizer combined with a 

hydraulic pump. Chapter III builds on the work of Chapter II by experimentally validating the model of a 

Stirling pressurizer. Chapter IV concludes with a discussion and future directions of the work. 

 

 Manuscript 1: System Dynamic Model and Design of a Stirling Pump 

This paper presents the system dynamic model and design of a Stirling engine combined with a hydraulic 

pump. The Stirling pump is intended to fill the technological gap of a compact high energy density power 

supply for untethered fluid power applications in the 50W to 500W range. The Stirling device uses pre-

pressurized helium as its working fluid for maximum power and efficiency. A directly controlled, loose-fit 

displacer piston moves the pre-pressurized working fluid between the hot and cold side of the sealed 

engine section; therefore inducing a pressure swing. The hydraulic pump uses this pressure swing to 

pump hydraulic fluid to a desired output pressure of 70bar. Manuscript 1 is based on the following 

conference paper: 

 A. Winkelmann, and E. J. Barth, “System Dynamic Model and Design of a Stirling Pump,” 2014 

Proceeding of the 27
th
 Symposium on Fluid Power and Motion Control, ASME/Bath, FPMC2014-7839, 

September 10-12, 2014, Bath, England 
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 Manuscript 2: Design, Modeling and Experimental Validation of a Stirling Pressurizer with a 

Controlled Displacer Piston  

This paper presents the design, first-principles model, and experimental setup of a Stirling Pressurizer. 

The first-principles model is validated with experimental results. This paper builds on the work of 

manuscript 1. More complexity has been added to the first-principle model by incorporating regenerative 

effects and heat transfer losses (shuttle losses and conduction losses) within the engine section. 

Experimental data for two directly controlled motion profiles of the displacer piston, a variety of heater 

head temperatures, and a variety of different average engine pressures validate the first-principle model. 

Experimental results show that the first-principles model can not only be used for the optimization of the 

pressurizer’s efficiency and/or power output through an optimized displacer piston motion profile but the 

model also informs about the design and sizing of Stirling devices in general.  Manuscript 2 is based on 

the following paper: 

A. Winkelmann, and E. J. Barth,”Design, Modeling and Experimental Validation of a Stirling 

Pressurizer with a Controlled Displacer Piston,” Submitted to: IEEE/ASME Transactions on Mechatronics, 

2015. 
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CHAPTER II.  
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Abstract 

This paper presents the design and dynamic modeling of a second generation prototype combined 

Stirling engine pump.  The Stirling pump is intended to fill the technological gap of a compact high energy 

density power supply for untethered fluid power applications in the 50W to 500W range. Specifically, this 

prototype is intended as a compact and quiet, untethered, hydraulic power supply for an ankle foot 

orthosis testbed associated with the Center for Compact and Efficient Fluid Power. The energy source for 

the unit is flexible and can include propane, butane, methane, natural gas, or other high energy density 

hydrocarbon source of heat. The target output pressure of 7 MPa (1000 psig) is obtained from a pumping 

stage that is driven by a sealed engine stage that utilizes high pressure helium as the working fluid. The 

separate pumping stage utilizes the differential pressure swing inside the engine section to pump 

hydraulic fluid to the desired output pressure. This paper presents the system dynamic model of the 

Stirling pump, and includes (1) heat transfer from the heat source to the working fluid in the hot space of 

the engine, (2) heat transfer from the working fluid in the cold space of the engine to the heat sink, (3) 

energetically derived pressure dynamics in the hot and cold spaces, (4) mass flow around the displacer 

piston in between the hot and cold sides, (5) work output to the pump driving section, (6) pumping piston 

inertial dynamics, (7) flow losses through the pump’s check valves, and (8) hydraulic power output.  This 

dynamic model allows components of the Stirling pump to be sized. The paper includes results from the 

dynamic model. 

Introduction  

More than 6 million individuals in the US are affected by an impaired ankle function. Commercially 

available passive Ankle Foot Orthoses (AFO) are compact and durable but lack functionality since they 
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cannot provide active motion control or generate net power. Active AFOs lack utility because they require 

tethered power supplies. One of the goals of the Center for Compact and Efficient Fluid Power (CCEFP) 

is to develop a fluid powered untethered device that operates in the 10 to 100 W power range to address 

the shortcomings of both passive and active AFOs. The Stirling pump is intended to serve as a silent, low 

vibration, compact, efficient, untethered, and high energy-density hydraulic power supply for an AFO, or 

similar application.  

 Stirling engines have been a research curiosity for more than a century. They have the appeal of 

offering power from any heat source including fuels, solar concentration, biomass, geothermal, or 

radioisotope decay. They also have the theoretical appeal of offering high thermodynamic efficiency due 

to the Stirling cycle. In the limited number of applications they have found, Stirling engines have been 

shown to be reliable and requiring little to zero maintenance. Despite their appealing properties, it is also 

fair to say that Stirling engines have fallen far short of their expectations primarily due to their low power 

density.  

 The historical progression of Stirling machines has offered some improvement in power density as 

their configurations have progressed from purely kinematic to free-piston varieties. Purely kinematic 

configurations rely on bulky linkages to enforce the correct phasing between the power piston and the 

displacer piston. Free-piston Stirling engines rely upon dynamic forces developed in the engine and the 

dynamic responses of the displacer and power pistons to enforce the necessary relationship between the 

two. If the engine is designed with these dynamics in mind, it can be shown that kinematic linkages are 

not necessary [1]. The first purely dynamic (non-kinematic) Stirling engine was Beale’s free-piston Stirling 

engine [1]. The free-piston arrangement was not only lighter, but was able to be hermetically sealed and 

eliminated side forces on the pistons due to a connecting rod. Moreover, the ability to pressurize a sealed 

engine allows for higher power densities [2,3].  

 The challenge with free-piston configurations is to get the phase of the displacer and power piston 

correct in order to approximate the Stirling cycle. Designing the dynamics to do this correctly and robustly 

in the face of varying loads and heat input remains a technological barrier. Some success in the design of 

working free-piston Stirling engines is represented by many of Beale’s arrangements [4, 5], the Harwell 

Thermomechanical Generator [6, 5, 7], and the liquid piston Fluidyne Stirling engine by West [8, 9]. The 

analysis of even these working Stirling machines demonstrates a knowledge gap with respect to 

designing their parameters for robust operation [5].  

 The Stirling pump presented in this paper overcomes this knowledge gap by decoupling the sensitive 

interacting dynamics of the displacer and power pistons. This is done by directly controlling the motion of 

the displacer piston. This allows more design degrees of freedom and ensures that the device is 

insensitive to load or internal dynamics variations. This paper describes the design and dynamic model of 

the combined Stirling engine pump. The Stirling pump is pre-pressurized and has a separate pump 

section that uses the pressure swing of the engine to pump hydraulic fluid. 
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Design of Stirling Pump 

The rationale for the design of the proposed device result in large part from results and observations 

from a previous Stirling Thermocompressor device that was designed, fabricated, and experimentally 

tested by our research group [10]. The previous (generation 1) device was a multi-stage, true 

thermocompressor (Fig.2-1). A true thermocompressor uses the working fluid as the output fluid (air in 

this case). As discussed below, results from this previous device motivated: 1) a change in architecture 

from a multistage device to a single stage device, and 2) a change in functionality and architecture from a 

thermocompressor to a hydraulic pump. A single stage of this previous multistage device is shown in Fig. 

2-2.  

The generation 1 device used a brushless DC motor to drive a continuous linear reciprocating lead 

screw onto which the displacer piston was attached. The displacer piston was chosen to be made from 

Macor machinable ceramic due to its low thermal conductivity (1.46 W/m/K at 25°C) and its high service 

temperature. A quartz glass cylinder was chosen to seal the working fluid in between the heater head and 

the heat sink due to the same characteristics - low thermal conductivity and high service temperature. 

 

Figure 2-1: Generation-1 multistage thermocompressor device concept 
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Figure 2-2: Design for a single stage of the generation-1 thermocompressor device. A reciprocating lead 
screw driven by a DC motor moves a loose-fit displacer piston between the hot side and the cold side. In 
response to this, the pressure in the device changes as the working fluid moves between the hot side 
(high pressure) and the cold side (low pressure). As the pressure fluctuates, the thermocompressor 
outputs high pressure fluid to a reservoir and intakes low pressure fluid from the environment (or from a 
previous stage). 

 

Multi-Stage to Single-Stage Design Change 

A dynamic simulation of the multi-stage thermocompressor [10] showed that more than four 

compression stages would be needed to reach the target output pressure. With respect to the multi-stage 

architecture, the prospect of having at least four compression stages to reach a target output pressure of 

80 psig (for pneumatics reservoir) becomes untenable in the face of the mechanical complexity 

encountered in our single stage prototype. A multi-stage device requires that each stage become smaller 

with increasing pressure and the realities of dead-volume in such stages would make them far less than 

ideal as they become smaller. It was clear that a different approach was needed for the next generation of 

the device.  

The generation 2 device will be of single-stage architecture with a sealed pre-pressurized engine 

section and separate pumping stage that pumps hydraulic fluid. Although the prospect of a true 

thermocompressor is appealing, the fundamental work density per stroke [J/(m
3
stroke)] increases by 

more than two orders of magnitude by increasing the pre-pressurization (pressure when cold) to 500 psig. 

This agrees with the observation that almost every Stirling device (actual experimental platform) in the 

literature operates at a high pressure and agrees with the observations of authors such as G. Walker, G. 

T. Reader, O.R. Fauvel, I. Urieli, N. Isshiki, D. Gedeon, M. B. Ibrahim, M. Carlini, L. Bauwens, and others. 
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Pursuing this pre-pressurized architecture, as opposed to a true thermocompressor, requires a separate 

pump section that utilizes the differential pressure swing inside the engine section. Based on the 

experimentally measured heat transfer and pressure ratio of the generation-1 device, an output pressure 

of greater than 1000 psig (7000 kPa) can be obtained by utilizing a separate pumping stage and a single 

pre-pressurized sealed engine section with a similar size as the generation-1 device. 

Working Fluid and Pumping Fluid  

As discussed above, better compactness and power density can be achieved by using a single-stage, 

pre-pressurized engine section. This design change allows a consideration of a different working fluid 

than air. For maximum efficiency and power, helium was selected as the working fluid in the sealed 

engine section. The advantage of helium over air is that helium has a higher heat transfer coefficient than 

air. For our conditions, the use of helium over air would result in a 20 times higher heat transfer coefficient 

(14800 W/m
2
/K for helium vs. 715 W/m

2
/K for air).  

 

Figure 2-3: Design of the generation 2 device 

 The design change to a sealed single-stage also allows for a consideration of the fluid being pumped 

to be something other than air. Hydraulic pumping is inherently more efficient than compressing and 

Pump  
section 



12 
 

pumping air. This is due to the fact that when air is compressed, appreciable energy is stored as pressure 

potential energy that can be lost in the form of heat once pumped to its destination. Driving an air 

compressor also presents the possibility of pressurizing the gas to an inadequate level to pump, and then 

losing the work that was needed for that pressurization. This occurs even in the case where some of the 

air is pumped and may leave a remainder that is not pumped due to dead volume in the compressor 

section. This remainder is then susceptible to heat loss. Due to hydraulic oil’s much higher stiffness as 

compared to a gas, much less energy is stored in the compression of the fluid thereby reducing thermal 

effects during the pumping phase. Finally, since hydraulic fluid is nearly incompressible, it eliminates the 

dead volume in the pumping section. 

 The design of the separate pump stage can be seen in Fig. 2-4. The pump section utilizes the 

differential pressure swing inside the engine section to pump hydraulic fluid at a desired output pressure. 

The pump section is composed of three types of chambers; the driving chamber, the pumping chamber, 

and the return chamber. The driving chamber will be connected to the cold side of the engine section 

such both are always at the same pressure. The bottom chamber represents a self-balancing return 

chamber. This is achieved by staying near an average pressure via a flow restriction implemented with a 

simple needle valve (see Fig. 2-3). The pressure difference in the driving and return chamber will cause 

the piston in the pumping chamber to move. When the pressure in the driver chamber is higher than in 

the return chamber, the piston moves down and pumps the hydraulic fluid in the lower pumping chamber 

through a check valve when the pressure is greater than the supply pressure. Simultaneously, the fluid in 

the upper pumping chamber decompresses and ultimately draws in more fluid through a check valve from 

the low pressure side of the hydraulic system. Conversely, when the piston moves up, fluid is pumped out 

of the upper pumping chamber and drawn in to the lower pumping chamber.  

 

Figure 2-4: Pumping Section 
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Other Design Changes  

Other design changes that need to be made to the generation-1 device include a different driver 

mechanism for the displacer piston and a different sealing mechanism at the hot end. For the generation 

1 device, the position and velocity of the displacer was controlled by driving a reciprocating lead screw 

with a brushless DC motor. The reciprocating lead screw had “criss-crossed’ left-handed and right-

handed threads which enabled the motor to be driven in one direction while achieving a reciprocating 

motion of the displacer piston. This was intended to reduce the power consumption of the motor since it 

does not need to accelerate and decelerate the motor shaft. Nevertheless, the power consumption was 

still found to be much higher than expected due to excessive friction in the lead screw mechanism. As a 

result, the displacer of the generation 1 device could only be driven at a frequency of 2.8 Hz. Dead 

volume around the lead screw mechanism was also a downside of the mechanism and limited the 

pressure swing in the engine. At 800°C and 2.8 Hz, the generation-1 device showed a pressure ratio of 

1.6. While favorably comparable to devices in the literature, it was lower than expected. 

 The dead-volume and the higher than expected motor power necessitated a better solution for the 

linear drive mechanism of the displacer piston. The generation 2 device replaces the DC motor and the 

reciprocating lead-screw with a compact COTS linear actuator (Faulhaber) (see Fig. 2-5). The linear DC-

Servomotor is light weight and has linear Hall sensors for position sensing. The positioning of the rod can 

be controlled very accurately such that dead volume at the cylinder ends can be held to a minimum. The 

smooth shaft of the linear motor also reduces the dead volume seen in the reciprocating lead screw 

design. A linear spring located in between the displacer piston and the linear motor will act as a 

conservative restoring force to minimize actuation energy, and effectively replaces the energetically 

motivated unidirectional operation of the reciprocating lead screw. 

 

Figure 2-5: Linear DC Servomotor 

 Finally, experimental results of the generation-1 device revealed a slow leak resulting from the high 

temperature seal between the fused quartz glass and the heater head. To avoid a leak, the generation 2 
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device will have an engine cylinder made of Inconel 625 as opposed to fused quartz. This will be tougher 

and able to be welded, thus solving the sealing problem at the hot end. 

Dynamic Model  

 The entire Stirling Pump can be dynamically modeled as having two sections, namely, the engine 

section and the pump section. The only input to the pump section is the pressure swing on the cold side 

of the engine section. The displacer piston in the engine section is driven by a linear DC servomotor with 

a sinusoidal velocity of 

 
t)f(flV HzHzStroke  2sin

 (1) 

where fHz is the frequency the displacer motion, and lStroke is the stroke length of the displacer piston in the 

engine section of the Stirling pump. The position of the displacer is given accordingly by: 

 
)2cos(

22
ft

ll
x strokestroke

displacer 
 (2) 

 The engine section of the Stirling pump is modeled as two control volumes of variable size. The 

control volumes represent the volume of the medium in the hot and the cold side of the engine section. 

The two control volumes are separated by the displacer piston which represents a flow restriction. The 

size of the control volume and the rate at which these are changing are governed by the position and 

velocity of the displacer piston above. The walls in the hot control volume (Vh) transfer thermal energy 

from heat source to the medium, and the walls in the cold control volume (Vk) transfer thermal energy from 

the medium out of the engine section of the Stirling pump. The wall temperatures on the hot and cold side 

of the engine section are set to a constant temperature of Th and Tk, respectively. The dead volume 

around the displacer piston is equally divided into the model of Vh and Vk. Since the displacer never hits 

the ends of the cylinder, additional dead volume is added to both sides. 

The pressure dynamics in the cylinder were derived from a fundamental power balance of the stored 

energy, enthalpy, heat flow and work: 

 
WQHU heat
 

 (3) 

Rearranging the terms and solving for the pressure dynamics inside the control volume yields: 

 

 
V

TTAhVPRTm
P

khwallHekhHeHeflowHe 


,,, )1( 


 (4) 

An estimate of the heat transfer coefficient hHe was done by using fully developed pipe flow analysis as 

similar to [11]. In order to determine whether the flow is laminar or turbulent, the Reynolds number was 

calculated: 

 

mx
Re

 (5) 
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where 𝑥̇𝑚 is the mean velocity of helium, δ is the characteristic length, and ν is the kinematic viscosity of 

helium. The hydraulic diameter was used for the characteristic length given by: 

 C

Ac4


 (6) 

where Ac  is the area of the gap in between the engine cylinder and the displacer piston and C is the 

wetted perimeter given by: 

 
)( displacercylinder ddC 

  (7) 

where dcylinder is the inside diameter of the Inconel housing and ddisplacer is the diameter of the displacer 

piston.  

 The heat transfer coefficient is determined by calculating the Nusselt number and solving for the heat 

transfer coefficient h by using the following equation: 

 
nma

k

h
Nu PrRe 


 (8) 

where k is the thermal conductivity, Pr is the Prandtl number and a, m, n are constants that depend on 

the flow regime. For a frequency of 20 Hz, turbulent flow (Re>2300), and a smooth pipe, the constants 

used in the implementation of equations 5-8 are shown in the Table 2-1 below. Solving for the heat 

transfer coefficient yields 14800 W/m
2
/K. Since the calculation of this parameter depends on the mean 

pressure and the mean temperature in determining the kinematic viscosity, conservative values were 

used such that the h calculated is a lower bound for the conditions in the engine. 

Table 2-1: Values of significant parameters 

mx  125 m/s 

δ 0.00099 m 

ν 5.643e-6 m
2
/s 

k 0.245 W/m/K 

a 0.023 

Pr 0.656 

m 0.8 

n 0.3 

h 14800 W/m
2
/K 

 

The mass flow restriction between the displacer piston and the Inconel cylinder that separates the two 

control volumes was modeled using Grinnel’s model of compressible fluid flow [12] in a thin passage, 

which is given by: 

 
 22

3
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du

pistonflowhelium

piston
PP

LRT

sr
m 



















 (9) 
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where Pu and Pd are the upstream and downstream pressures found in the control volumes. 

The constants used in the implementation of Equations 4 and 9 are shown in Table 2-2.

 

Table 2-2: Values of significant parameters 

s = 0.5 mm R = 2.07x10
9
 uJ/kg/K 

Lpiston = 76.2 mm rpiston = 24.5 mm 

helium =1.664 Twall, h = 550ºC 

Twall, k =50ºC µhelium =2.8x10
-8

 Ns/m 

hhelium =14800 W/m
2
/K 

  

The piston position and velocity in the pumping chamber depend on the cross-sectional area of the 

driving/return chamber (Ad), the pressure swing inside the engine, the cross-sectional area of the pumping 

chamber (Ap) and the pressure in both pumping chambers. The equation of motion is  

 

 
xbAPAPAPAPxM davgppdk
  21  (10) 

where M is the mass of the piston/rod assembly in the pumping section, Pk  is the pressure in the driving 

chamber, Pavg is the pressure in the return chamber, P1 and P2 are the pressures in the upper and lower 

pumping chamber respectively, and b is a damping coefficient resulting from the viscous friction of the 

piston and rod.  

The equation for the volumetric flow rate through a small cross-sectional area was used to determine 

the pressure P1 and P2. The volumetric flow rate is given by:  

 
)(

2
duv PPAQ 

  (11) 

where Av is the cross-sectional area of the valve opening,  is the density of the fluid, and  is the 

dimensionless loss coefficient. Dependent on the direction the piston is moving, the upstream pressure 

and the downstream pressure are selected according to Table 2-3. 

Table 2-3: Conditions for Pu and Pd 

 

 

sign of 

Q 

Pumping 

chamber Pu 
Pd 

𝑥̇ > 0 -1 lower P2 via Eq. 12 Ps 

𝑥̇ > 0 1 upper Patm 
P1 via Eq. 13 

𝑥̇ < 0 1 lower Patm 
P2 via Eq. 13 

𝑥̇ < 0 -1 upper P1 via Eq. 12 
Ps 
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The negative sign for the volumetric flow rate indicates that fluid is being pumped out of the pumping 

section while a positive sign indicates that fluid is pumped into the pumping section. By calculating the 

flow rate Q with the equation pAxQ  and then setting Pu  and  Pd  to the boundary conditions indicated in 

Table 2-3, the pressures in the upper and lower pumping chambers P1 and P2 can be found. 
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 These dynamics fully describe the engine and pump section of the Stirling device. To further 

characterize the device, average output power is calculated by filtering the instantaneous power with a 

slow, unity-gain first order filter. The instantaneous power output 
instantP  is calculated by: 

 soutPQinstantP
 (14) 

where xAQ pout
  is the volumetric flow rate out of the two pumping chambers and Ps is the desired supply 

pressure.  

Results  

Results of the dynamic simulation show that the device can pump 1000 psig (7000 kPa) when the 

engine runs at 20 Hz (controlled sinusoidal motion of the displacer as given by Eqn. 2), is initially 

pressurized to 500 psig (3.55 MPa) with cold helium and is then held at a constant temperature Th of 

550°C on the hot side. The parameters for the Stirling pump as designed are given in Table 2-4. 

Table 2-4: Parameters used in simulation 

lcyl 200 mm ldrive 22 mm 

borecyl 50 mm boredrive/return 60 mm 

lpiston 76 mm borepump 10 mm 

dpiston 49 mm dvalve 2.5 mm 

  M 0.2 kg 

  b 500 Ns/m 

  

The pressure difference in the driving and return chamber (Fig.2-6) caused by the pressure swing 

inside the engine results in a displacement of the pumping piston as seen Fig. 2-7. 



18 
 

 

Figure 2-6: Driving (blue) and average (green) pressure vs. time  
 

 
Figure 2-7: Displacement of the pumping piston with respect to time 
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Figure 2-8: Pressure dynamics in the pumping chamber compared to the supply pressure (7 MPa) and 
atmospheric pressure (101kPa) 

 The pumping piston moves up and down in response to the engine and load pressures with a 

maximum displacement of about 10 mm. The pressure inside the pumping section is governed by the 

piston’s velocity according to Equations 12 and 13 and under the conditions shown in Table 2-3. Figure  

2-8 shows the pressure dynamics of P1 and P2 compared to supply and atmospheric pressure. If the 

pressure in either pumping chamber is greater than supply pressure, hydraulic fluid is pumping out of the 

pumping chamber. Conversely, if the pressure is below atmospheric pressure, hydraulic fluid is pumped 

into the pumping chamber. This is captured compactly as xAQ pout
 . An average power output of about 

230 W can be achieved when operated at 20 Hz with a cold helium pre-pressurization of 500 psig.  

Conclusion  

 In this paper the design and dynamic model of a second generation prototype Stirling pump is 

described. Taking into account observations and results from the generation 1 device, the proposed 

design changes for generation 2 are presented and justified. The heat transfer coefficient was greatly 

improved by using helium as the working fluid in the sealed pre-pressurized engine section. Simulation 

results are used to size the dimensions of the Stirling pump to achieve a high output power. A single-

stage unit fulfills the energetic requirements set by the CCEFP for the Stirling pump of a hydraulic output 

power of 1000 psig and an average supply power ranging between 50W to 500W. The new design can 

greatly improve output power of the generation 1 device. Future work will formulate a controller for the 

efficient and precise oscillation of the displacer piston, build and run the engine/pump device, and validate 

the model with experimental data. 
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Abstract 

 This paper presents the design, first-principles model, and experimental setup of a Stirling 

pressurizer. The Stirling pressurizer is a Stirling engine with an independently controlled displacer piston. 

The directly controlled, loose-fit displacer is actuated with a small linear motor and moves the pre-

pressurized working fluid (helium) between the hot and cold side of the sealed engine section; therefore 

inducing a pressure change. The position of the displacer is the only control input to the first-principles 

model. The first-principles model is validated with experimental results for different controlled displacer 

piston motion profiles. Modeled and experimentally measured pressures are compared for average 

pressures ranging from 10 – 20 bar, and heater head temperatures ranging from 250°C – 500°C. The 

first-principles model is intended for: 1) the design and sizing of the pressurizer and power piston / power 

extraction, 2) specification of a displacer piston motion profile to optimize the efficiency and/or power 

output, and 3) the general design of Stirling devices, beyond the design of the experimental prototype 

investigated here, through the use of a lumped parameter model with well-defined and measurable 

parameters. 

Introduction 

A Stirling engine is a heat engine that can operate using a variety of heat sources such as high 

energy density hydrocarbon fuels (propane, butane, natural gas, etc.), solar concentrators, geothermal, 

radioisotope sources, or others. Stirling engines cyclically heat and cool a working fluid, inducing a 

pressure change which in turn drives a power unit. The Stirling engine was invented in 1816 by Robert 

Stirling and has long held the promise of being a clean, reliable, safe and quiet source of power. Stirling 
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engines were outperformed by other power sources such as electric motors and internal combustion 

engines. This was primarily due to the characteristically low power density of Stirling devices. These 

heavy engines with bulky kinematic arrangements produced proportionally small amounts of usable 

power.  

In the twentieth century, advances in Stirling engines served to replace their kinematic arrangements 

with lightweight, small, purely dynamic elements. Such engines were called “free-piston Stirling engines.” 

This compact, new, and lightweight design held the promise of increasing the power density over its 

kinematic cousin. Nevertheless, this purely dynamic arrangement presented new challenges. The 

dynamic arrangements had to keep the engine self-oscillating, achieve the correct phase between the 

displacer and power piston dynamically, and robustly maintain self-oscillation in the face of load variations 

and disturbances. This is very difficult to achieve since free-piston Stirling engines utilize their own 

pressure change to drive the displacer piston. Self-oscillation is very sensitive to parametric properties of 

the engine and the load itself. Despite this, several free piston Stirling engines have been built and shown 

to work. Noteworthy examples include Beale’s free piston engines [1,2], the Harwell Thermomechanical 

Generator [2,3,4] and the liquid piston Fluidyne Stirling engine built by West [5,6]. Generally, the 

sensitivity to engine parameters is not well understood and results in a trial-and-error selection of engine 

specifications to arrive at acceptable parameters. 

The Stirling pressurizer presented in this paper overcomes the difficulty of achieving the correct 

phase between the displacer and power pistons by directly controlling the motion profile of the displacer 

piston. By independently driving the displacer, the motion of the displacer is decoupled from the pressure 

dynamics within the engine. Ordinarily, the pressure and load influence the power piston which in turn 

drives the displacer piston through passive dynamics. By decoupling the displacer motion and then 

controlling it independently, the load does not affect the engine’s ability to self-oscillate. This additional 

control degree of freedom allows an independent design of the displacer piston motion that can be 

controlled to shape the thermodynamic cycle in the face of arbitrary loads. Avoiding the complex coupling 

between the displacer and power pistons in favor of a fully controlled device transforms a free-piston 

Stirling engine into a mechatronic Stirling engine.  

Recent research in Stirling engines with a controlled displacer piston has been conducted in [7] and 

[8]. Both papers investigate whether a controlled displacer motion profile optimizes the thermodynamic 

cycle with regard to efficiency and/or power output of the engine. The work presented in this paper builds 

on the work of [7, 8] by using the position of the displacer piston as a control input to a first-principles 

model of a Stirling engine. An accurate, first-principles model that is amenable to deriving control laws for 

the displacer motion is critical for the line of work regarding controlled Stirling engines to continue. 

Furthermore, such a model needs to be rigorously validated experimentally. Although other papers [9, 10, 

11] present control models of Stirling devices, many are not experimentally validated and none present a 

validated model that will accept an arbitrary displacer motion. The contribution of this paper is a first-



23 
 

principles model, amenable to the direct control of the displacer piston, that is validated experimentally for 

a wide range operating conditions.  

This paper presents and describes the design, dynamic model, and experimental setup of a Stirling 

pressurizer with a controlled displacer. The Stirling pressurizer presented in this paper has no power 

piston attached, which allows isolation and experimental validation of the complex pressure dynamics of 

the engine. The dynamic model is validated with experimental data for two directly controlled motion 

profiles of the displacer piston, a variety of heater head temperatures, and a variety of different average 

engine pressures.  

Design 

 The device has two chambers, namely a sealed engine section that uses pre-pressurized helium as 

its working fluid for enhanced efficiency and power density, and a return chamber. A cross-section of the 

engine design is shown in Fig. 3-1. This engine section is referred to as a Stirling pressurizer since it is 

intended as the portion of a Stirling engine responsible for generating large pressure oscillations that can 

subsequently be used by a power piston connected at the “power connection ports” to output work. The 

sealed engine section contains a loose-fit displacer piston (radial clearance of 0.4 mm). The displacer is 

connected to the linear motor via an extension rod and a shaft coupling which offsets small angular and 

lateral misalignment. The linear motor moves the displacer piston between the hot side (toward the heater 

head) and cold side (toward the cooling fins) and in turn shuttles the helium gas. The resulting 

temperature change of the helium gas produces a pressure change inside the engine section.  

 The return chamber is kept at an average pressure. This is achieved through a flow restriction 

induced by a needle valve which connects the cold side of the engine section with the return chamber 

(needle valve not shown in Fig. 3-1). Two ports, one on the cold side of the engine section and one on the 

return chamber, are installed to connect a power unit with a power piston to the pressurizer. This power 

unit could be anything that can be driven by a pressure change such as a hydraulic pump, a linear electric 

generator, a reciprocating piston compressor, or a high pressure water filtration system, among others. 

 The selection of the working fluid inside the engine section is of importance in order to achieve good 

performance and high efficiency. Gases of significant interest for the working fluid inside the engine 

section are air, helium and hydrogen. Air is of significant interest since it is readily available and easier to 

seal within the engine than helium or hydrogen. Nevertheless, the heat transfer properties of air don’t 

allow an air operated engine to compete with internal combustion engines [1]. Therefore, gases with 

superior heat transfer properties and low viscosities, such as helium or hydrogen, need to be used. Even 

though hydrogen has better heat transfer properties, it is highly combustible in the presence of air. 

Therefore, helium was selected due to its good thermophysical characteristics such as its high heat 

transfer coefficient and its relatively low viscous flow losses. The heat transfer coefficient of helium is 

about 11 times higher than that of air in the pressure and temperature range the engine is operating.  
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 The heater head of the engine section is made from stainless steel. For this prototype, electric 

cartridge heaters were chosen such that accurate temperature control of the heater head is provided. 

Eight tight fit holes for the insertion of cartridge heaters guarantee good conduction between the heaters 

and the heater head such that the working fluid on the hot side can be heated up to a maximum of 600°C. 

The hot and cold sides of the engine section are connected via an Inconel cylinder. Inconel was selected 

due to its high melting point, and its low thermal conductivity. Low thermal conductivity is important since 

the heat flow from the hot to the cold side along the engine section needs to be as small as possible. 

Another advantage of Inconel among other materials is that it can be welded to the heater head; therefore 

providing sealing of helium at high temperatures. To keep helium sealed within the device, static and 

dynamic O-rings were carefully selected. Two static seals are used on the cold side, one on the bottom 

cap that bolts to the cooling fins (Parker part no. OR2-228-V9975), and one at the flange on the return 

chamber (Parker part no. OR2-230-V1475). One dynamic seal is used to seal around the extension rod 

(Parker part no. O2-006-V9975). 

 

Figure 3-1: Design of the Stirling pressurizer 
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 Internal fins inside the heater head and external fins on the cold side of the engine section increase 

the area for heat transfer in and out of the system, respectively. Thermal conduction along the displacer 

piston and the Inconel cylinder are minimized by reducing the wall thicknesses such that it will withstand 

the exposed pressure without failing or deforming significantly. For the displacer design, not only the wall 

thickness but also the length of the displacer is important for thermal isolation of the cold and the hot 

section. A length of three times the diameter was chosen for the displacer piston, since good results on 

other Stirling devices have been recorded for that aspect ratio [1]. The annular gap between the displacer 

piston and the Inconel cylinder serves as the flow passage of the working fluid and also forms the 

regenerator. In most small, low-speed engines it has been found that a formal regenerator as seen in 

most larger Stirling engines has proven inadequate due to its large dead volume. Instead, small Stirling 

engines often rely on the annular gap connecting the cold and the hot side such as in Beale’s small free-

piston engines [1]. Guidelines say that the gap should be between 0.38 and 0.76 mm to minimize thermal 

conduction losses and to maximize the working fluid’s wall contact without increasing the flow restriction 

too much [1]. For this prototype a gap of 0.4 mm was selected. The reciprocating motion of the displacer 

piston moves the working fluid back and forth between the hot and cold control volumes. When the 

working fluid is in the regenerative channel, the fluid liberates or absorbs heat from the displacer and 

cylinder walls, depending on the direction the fluid is moving. When the fluid is moving downward from 

the hot to the cold side of the engine section, heat is transferred from the fluid to the walls. Consequently, 

the fluid leaves the channel at a lower temperature Treg,k. Conversely, when the working fluid moves 

upward, the fluid absorbs heat from the walls and leaves the channel at a higher temperature Treg,h. 

Dynamic Model 

 The only exogenous input to the dynamic model is the position of the displacer piston which is 

determined by the position f(t) of the linear motor which is rigidly attached to the displacer. This position 

function is the result of the linear motor tracking a reference trajectory through any variety of feedback 

control. The position input to the model is arbitrary; for experimental validation, the response to a 

sinusoidal and a square wave reference input was chosen. The position of the displacer piston is given 

by: 

  )(
22

tf
ll

x strokestroke
d   

where lStroke is the stroke length of the displacer piston in the engine section. The velocity of the displacer 

is accordingly given by: 

  )(
2

tf
l

v Stroke
d

  

With the position and velocity of the displacer piston known, the engine section can be modeled as two 

control volumes of variable size, namely the hot control volume (Vh)  and the cold control volume (Vk) (Fig. 
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3-2). In each control volume convection between the walls of the engine housing and the working fluid is 

present. The walls of the hot control volume (Vh) transfer thermal energy from the heat source to the 

working fluid while the working fluid in the cold control volume (Vk) transfers thermal energy to the cylinder 

wall and cooling fins out to the surroundings. The dead volume surrounding the displacer piston is equally 

added to either control volume Vh and Vk. The dead volume due to the internal fins at the heater head is 

also incorporated to the control volume of the hot side.  

A.  Pressure Dynamics  

The pressure dynamics in each control volume were derived from a fundamental power balance 

resulting from the first law of thermodynamics, given by 

  WQHU    

Expanding and rearranging terms, the pressure dynamics in each control volume as influenced by heat 

flux, enthalpy, and volume changes can be found. The pressure dynamics of each control volume (h: hot 

side, k: cold side, r: return chamber) is given by: 
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where Tflow is the temperature of the gas that is entering/leaving the control volume, dependent on the 

pressure difference between the hot and cold sides and the direction the displacer is moving. The mass 

flow rate into or out of the control volume is denoted by m , with a positive sign convention for mass 

flowing into the control volume. The heat transfer rate between the heat source and the working fluid (in), 

or between the working fluid and the cooling fins (out), is denoted 
outinQ /

 , where the sign convention is 

always positive for heat entering the control volume. The conduction and shuttle heat transfer losses are 

denoted 
lossQ , with a positive sign convention for heat entering the control volume.  

 Figure 3-2 is an overview of the system dynamics. These system dynamics are dependent on the 

terms in Eqns. (4a), (4b), and (4c) for each of the three control volumes: hot side, cold side, and return 

chamber, respectively. For the experimental validation presented, the 
rV  term in equation (4c) is zero. 

More generally, it is included in the model to account for a power piston that would utilize the pressure in 

the return chamber. A fourth control volume represents the regenerative channel (to be presented). The 

dynamics of each control volume describes their interaction with external conditions as well as with the 

other control volumes. The dynamic dependencies of each control volume are described below. 
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Figure 3-2: A System overview of all the dynamics taking place within the pressurizer. This diagram 
illustrates dynamic interactions within the system 

B. Mass Flow 

The mass flow rate m  is calculated using the Navier-Stokes equation and the volumetric flow rate 

equation, as is done in [9]. The Navier-Stokes equation for quasi steady, incompressible, fully developed, 

annular flow given by 
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where μ and ρ are the dynamic viscosity and the density of the fluid, respectively. Integrating equation (5) 

and using the following boundary equations 1) v = vd at r = rd , and 2) v = 0 at r = rcyl, the velocity profile vz 

is given by 
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Substituting dP/dz with (Ph-Pk)/lcyl and using the volumetric flow rate equation and the density of the fluid, 

the mass flow equation yields: 
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The sign convention for the mass flow rate is determined positive when the fluid enters the hot control 

volume and leaves the cold control volume such that mmh
   and mmk

  .  

 The mass flow between the return chamber and the cold side of the engine section is calculated 

using Bernoulli’s equation. Assuming steady-state, incompressible, inviscid, laminar flow, the mass flow 

rate is given by 

 
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
)(2

1

1
4

lowhigh

orificedorifice

PP
Acm




  

where cd is the discharge coefficient, Aorifice is the orifice area and β is the ratio of orifice diameter and 

diameter of the pipe. The driving pressures Phigh  and Plow are given by: 

 
),min(

),max(

rklow
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PPP

PPP





 

The mass flow rate into and out of the return section is therefore given as: 

  orificerkr mPPm  )(sign   



C.  Heat transfer 

The heat transfer rate due to convection with the engine walls within each control volume is governed 

by: 
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   rkhrkhwallrkhHeoutin TTAhQ ,,,,,,,/ 
 

where Ah,k,r is the surface area for heat transfer in each control volume and hHe is the heat tranfer 

coefficient for helium. On the hot side and the cold side of the engine the heat transfer rate is limited by 

the rated output power of the electric heaters and the effectivness and thermal resistance of the cooling 

fins, respectively. The heat transfer coefficient is estimated by performing a fully developed pipe flow 

analysis simular to [12]. The Nusselt number given by 

  nm

He

He a
k

h
Nu PrRe 


 

is used to solve for the heat transfer coefficient hHe. Pr  is the Prandtl number and a, m, n are constants 

from the Dittus-Boelter equation for turbulent flow (Table I). The Prandtl number for helium over a wide 

range of temperatures is about 0.7. The characteristic length δ is given by 

 
C

Ac4
  

where Ac and C are the cross-sectional annular area of the gap in between the displacer piston and the 

housing cylinder, and the wetted perimeter given by the interior circumference of the housing cylinder, 

respectively. The Renolds number Re depends on the frequency of the displacer piston. It is calculated 

using  

 


mx
Re  

where ν is the kinematic viscosity of the working fluid and mx is mean velocity of the working fluid which is 

dependent on the frequency and travel of the displacer piston. 

The major heat transfer losses within the engine are the shuttle heat transfer losses and the internal 

conduction losses along the engine cylinder wall. The heat transfer equation for these losses is given by: 

  condshuttleloss QQQ    

The shuttle heat transfer losses occur due to the reciprocating motion of the displacer piston and the 

temperature distribution along the walls of the displacer and housing cylinder. When the displacer piston 

is at top dead center, the temperature profile along the displacer and the wall are similar, but when the 

displacer piston moves down, the temperature profile of the displacer piston is greater than that of the 

engine wall. Consequently heat will be transferred to the cold side of the engine section. This thermal 

effect is generally termed “shuttle losses”. The shuttle heat transfer loss is estimated to be [1]:  
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where S is the radial gap given by rcyl – rd. Figure 3-3 illustrates this phenomenon. The temperature profile 

of the engine housing is a result of the conduction along the cylinder wall between the hot and the cold 

side. These conduction losses are given by: 

 
cyl

kwallhwallcylcylInconel
cond

l

TTtdk
Q

)( ,, 



 

where dcyl and tcyl is the diameter and thickness of the housing cylinder respectively. Given that the total 

heat flux of equation (15) is positive with positive values for both terms given by equations (16) and (17), 

The sign conventions of the control volumes are given as losshloss QQ  ,  and losskloss QQ  , . 

 
Figure 3-3: Diagram explaining the shuttle heat transfer 

D.  Regenerative Channel 

 The regenerative channel uses the first law of thermodynamics in the absence of work and internal 

energy storage to determine the heat transfer rate between the fluid and the walls of the regenerative 

channel. The heat transfer rate is given by: 

   outinreg hhmQ  
 

where hin and hout are the specific enthalpies at the entry and exit of the regenerative channel, 

respectively, and m  is given by Equation (7). The specific enthalpies are calculated using: 
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where cp is the specific heat at constant pressure and T is the temperature of the working fluid at the 

associated location. The temperature of the inlet or outlet fluid is dependent on the flow direction. The 

outlet temperature depends on the effectiveness of the regenerative channel. The effectiveness of the 

regenerative channel is stated as: 

 
changeenthalpyaltheroreticmaximum

changeenthalpyactual
  

The outlet temperature is calculated using an assumed effectiveness. The outlet temperatures depending 

on the direction of fluid flow is given by 

    0,  mforTTTT hkhkreg
  (22a) 

and  

    0,  mforTTTT khkhreg
  (22b) 

where Treg,k is the outlet temperature of the regenerative channel on the cold side, Treg,h is the outlet 

temperature of the regenerative channel on the hot side, and m  is given by Equation (7). These 

regenerator fluid temperatures then determine the following flow temperatures used for Equations (4a) 

and (4b) applied to the hot and cold sides as follows: 
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Experimental Validation of the Model 

A. Experimental Setup 

 The Stirling device was tested in a laboratory fume hood surrounded by half inch thick stainless steel 

plates. Figure 3-4 shows the Stirling pressurizer instrumented within the fume hood.  

 For data acquisition, Matlab Simulink was used in conjunction with a Real-Time Windows target 

machine. The target machine housing one data acquisition board is located outside of the fume hood.  

 Eight electric Firerod Cartridge Heaters (Watlow part no. G2J110-N24H) and a temperature controller 

(Watlow part no. PM6C1CH) were used to regulate the temperature on the hot side of the engine. The 

manufacturers’ recommended hole fit for the insertion of the heaters into the heater head for good 

conduction was followed. To gather temperature and pressure dynamics, a type K thermocouple 

(Nunmac part no. C2-7) and a pressure sensor (PCB part no. 112A05) were installed on the cold side of 



32 
 

the engine section (see. Fig 3-4). The thermocouple is a right-angle ribbon thermocouple especially 

suitable to measure temperatures of gasses and liquids at high pressure with a one millisecond response 

time. To ensure that the working fluid is totally sealed within the engine section and cannot escape 

through the thermocouple port, the thermocouple was welded to the engine housing. An instrumentation 

amplifier (AD 595) was used to amplify the signal of the thermocouple. The pressure sensor (PCB 

112A05) used on the cold side of the engine section was a high-precision charge mode pressure sensor 

that uses the piezoelectric properties of quartz to convert an applied pressure into its analog electric 

output. An IN-Line charge converter (PCB part no. 422E53) and a single-channel, line-operated signal 

conditioner (PCB part no. 482A21) was used to convert the sensor’s high impedance charge signal to a 

low impedance voltage signal and to decouple the signal from the DC bias voltage, respectively. To 

minimize sensor noise, the sensor was connected to the charge converter using a coaxial cable (PCB 

part no. 003A03). 
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Figure 3-4: Experimental setup 

 The return chamber is connected to the engine section via a 1/8 inch stainless steel tube and needle 

valve (Parker part no. 10V2072) (partially obscured in Fig. 3-4). The return chamber houses another 

pressure sensor, a linear motor and a 3-way ball valve. The pressure sensor (Kulite part no. HEM-59-375-

1000A) is used for high temperature, high frequency measurement applications. An instrumentation 

operational amplifier (AD 624) was selected to precisely amplify the signal with common-mode noise 

rejection. The 3-way ball valve (Swagelok part no. XX-41GXS1) was used to either purge air out of the 

engine section, to fill the engine with high purity helium for experimental testing, or to seal the engine 

closed. 

 The linear motor (Faulhaber part no. LM 1247) is a DC-Servomotor. To control the output position of 

the motor, the Faulhaber motion controller (MCLM 3003/06) and its Motion Manager software was used. 

A Sub-D Type connector (Ceramtec part no. 16800-01-W) hermetically feeds the electric wires of the 
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motor out of the pressurized return chamber to the surroundings. A command input from Matlab Simulink 

into the motion controller excites the motor. The actual and the target position of the motor can be 

extracted from the motion manager software. The actual position of the motor was used as the input to 

the dynamic model. 

 An infrared picture was taken with a thermographic camera (Fluke part no. 676-FLK-TI40060Hz) to 

illustrate the temperature distribution of the engine section (Fig. 3-5). As seen in Fig. 3-5 the temperature 

gradually decreases when moving toward to the cold side of the engine section. The cartridge heaters 

heat the heater head up to a desired temperature (up to a maximum temperature of 600°C). The cooling 

fins and the Inconel cylinder absorb heat from the working fluid and transfer it to the surroundings.  

 

Figure 3-5: Thermographic image of the engine section   
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B. Engine Parameters 

 The dynamic model was validated by taking data for different displacer motion profiles and 

frequencies, different average engine pressures and different heater head temperatures. A sinusoidal 

motion profile and a step function motion profile were chosen for the displacer. Table 3-1 shows the 

engine parameters for this prototype.  

 

Table 3-1: Engine Parameters 

maximum stroke length lstroke 23.5 mm 

length of displacer ldisplacer 143.5 mm 

length of housing cylinder lcyl 167 mm 

thickness of cylinder  tcyl 1.245 mm 

thickness of displacer 

piston  
td 0.889mm 

diameter of displacer ddisplacer 47.5 mm 

diameter of cylinder dcyl 48.31 mm 

radial gap S 0.405 mm 

gas constant for Helium R 2070 J/kg/K 

thermal conductivity of He kHe 0.2114 W/m/K 

thermal conductivity of 

Inconel 
kInconel 10.1 W/m/K 

ratio of specific heats for 

He 
γHe 1.664 

constant pressure specific 

heat for Helium 
cp 5196 J/kg/K 

Prandtl Number  Pr 0.7 

from Dittus-Boelter 

equation 
a 0.023 

from Dittus-Boelter 

equation 
m 0.8 

from Dittus-Boelter 

equation 
n 0.3 

Needle valve discharge 

coefficient 
cd 0.7 
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C. Tuned Model Parameters 

 Given all of the model parameters, the only two that are unknown for the dynamic model are the 

effectiveness of the regenerator and the orifice area induced by the needle valve. In order to estimate the 

orifice area of the manually adjustable needle valve (that has no demarcations), the modeled pressure 

within the return chamber determined by Equation (4c) was adjusted by tuning Aorifice in Equation (8) such 

that it fit the measured pressure in the return chamber. Figure 3-6 compares the modeled and actual 

measured pressure change inside the return chamber when the heater temperature was set to 500°C and 

a displacer frequency of 2 Hz. The orifice diameter was found to be about 0.5 mm. Estimating the orifice 

area from Equation (4c) and Equations (8-10) separates much of the dynamics in the upper portion of the 

engine from the estimate since Pk  is measured and used directly as the driving function. It should also be 

noted that Aorifice is a physically meaningful parameter that can be measured directly. 

 

Figure 3-6: Orifice area was adjusted such that modeled and measured pressure inside the return 

chamber would be the same. 

 The effectiveness depends on the annular gap between the displacer piston and the housing cylinder 

and the length of the displacer piston. Based on the long displacer piston and the small gap, the 

effectiveness of the regenerator was selected similarly to [9] to be 0.8.  
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D. Sinusoidal Displacer Motion  

 For a sinusoidal displacer motion profile, data was taken at different heater head temperatures of 

250°C, 350°C, 450°C, and 500°C. For each of these temperatures the engine was run at three different 

average pressures and two different frequencies namely, 10bar, 15bar, and 20bar and, 1Hz and 2Hz. The 

actual positon of the motor and therefore the displacer’s position as measured by the linear motor’s 

position sensor was used as the input to the model. The engine was allowed to run for a duration 

adequate for it to come to steady-state operating condition before the data were taken. The modeled and 

measured pressure Pk inside the engine section is compared in Fig. 3-7 and Fig.3-9. Tables 3-2 and 

Table 3-3 compare measured and modeled pressure ratios of maximum and minimum Pk for other data 

taken that are not shown graphically. The measured and modeled pressures Pk agree within a few 

percent over a wide range of different average pressures, heater head temperatures, and displacer 

frequencies.  

 

Figure 3-7: Measured and modeled pressure Pk inside the engine section at low heater head temperature 
(250°C), low pressure (10 bar), and at a frequency of 1 Hz. The modeled pressure ratio is about 7% lower 
than measured pressure ratio. 
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Figure 3-8: Measured and modeled pressure Pk inside the engine section at 450°C heater head 
temperature, high pressure (20 bar), and at a frequency of 2 Hz. The modeled pressure ratio is about 3% 
higher than measured pressure ratio. 

 

Figure 3-9: Measured and modeled pressure Pk inside the engine section at high heater head 

temperature (500°C), high pressure (20 bar), and at a frequency of 2 Hz. The modeled pressure ratio is 

about 4.6% higher than measured pressure ratio.  
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Table 3-2: Pressure ratio of experimental and  

modeled data at 1 Hz 

1Hz 250°C 350°C 450°C 500°C 

10bar 
1.53 

-7
.1

4
 1.62 

-4
.4

8
 1.78 

3
.2

6
 1.79 

5
.0

7
 

1.42 1.55 1.84 1.88 

15bar 
1.52 

-6
.4

3
 1.63 

-2
.4

4
 1.76 

3
.9

2
 1.77 

4
.6

2
 

1.42 1.59 1.83 1.85 

20bar 
1.49 

-2
.4

1
 1.56 

1
.9

3
 1.56 

6
.8

7
 1.76 

3
.4

5
 

1.45 1.59 1.67 1.82 

 

                                  Key for Tables 3-2 and Table 3-3: 

 

 

 

 

 

Table 3-3: Pressure ratio of experimental and  modeled data at 2 Hz 

2Hz 250°C 350°C 450°C 500°C 

10bar 
1.55 

-9
.8

4
 1.74 

-3
.4

4
 1.89 

-3
.5

1
 1.87 

7
.7

1
 

1.40 1.68 1.82 2.01 

15bar 
1.54 

-3
.7

6
 1.70 

-2
.1

3
 1.86 

1
.8

2
 1.89 

6
.0

0
 

1.48 1.66 1.89 2.00 

20bar 
1.48 

0
.8

2
 1.66 

2
.7

1
 1.86 

2
.8

2
 1.89 

4
.6

1
 

1.49 1.70 1.92 1.98 

 

E. Non-sinusoidal Displacer Motion 

 Part of the motivation for casting a dynamic model of the Stirling pressurizer was to be able to study 

various displacer motion profiles. A model that adequately captures differences with regard to different 

displacer motion profiles would allow a model-based optimization of the displacer motion for maximum 

efficiency, power, or other metrics discernable from the model. This section presents a model validation 

for a non-sinusoidal displacer motion. The displacer piston’s linear motor was given a filtered square 

wave reference input command to track. Figure 3-10 shows the resulting motion profile. Data were 

gathered for a heater head temperature of 450°C and at pressures and frequencies of 15 bar and 20 bar 

and 1Hz and 2Hz, respectively; all other conditions were the same as those for the sinusoidal motion 

tests. The actual and modeled cold-side pressure was compared. Figure 3-11 can be compared to Fig. 3-

8 and shows that the model captures differences between the two motion profiles.  

Experimental 

min,max, / kk PP  

%
 E
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o
r 

Modeled 

min,max, / kk PP  
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Figure 3-10: Filtered square wave motion profile of the displacer piston at 450°C, 20bar and 2Hz 

 

Figure 3-11: Measured and modeled pressure Pk inside the engine section at 450°C heater head 
temperature, high pressure (20 bar), and at a frequency of 2 Hz. The modeled pressure ratio is 8% higher 
than measured pressure ratio. 
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Conclusion 

 The design, first-principles dynamic model and the experimental setup of a Stirling pressurizer has 

been described. The dynamic model has been validated with experimental data. 

 The model matches experimental data for different displacer motion profiles and frequencies, different 

average engine pressures, and different heater head temperatures. Experimental and modeled pressure 

ratios do not differ by more than 10% (in most cases less than 5%). Furthermore, since the dynamic 

model incorporates an arbitrarily specifiable displacer motion, it could be used to optimize such motion 

with respect to the pressurizer’s power, efficiency, or other performance metrics. Additionally, the lumped 

parameter model could be used in deriving control strategies.  

 The dynamic model validation presented here does not show the effects of a power piston extracting 

energy from the system because the experimental setup has no power-piston attached at the power 

connection ports (shown in Fig. 3-1). However, these effects are included in the model as volumes, and 

rates of change of volumes, in both the return chamber and the cold-side chamber (
rV ,

rV ,
kV ,

kV ) that 

would be influenced by a power piston driven by the pressure difference between the return chamber and 

the dynamic engine pressure. It can be stated with high confidence that such terms in the model would 

model the effects well given that such terms are already present for control volume changes in the hot 

and cold sides due to the displacer motion (
hV ,

hV ,
kV ,

kV ).  

 Finally, it should be emphasized that the model required no tuning of parameters with the exception 

of the regenerator effectiveness which was set according to the range in [9]. In conclusion, the model 

presented could be used to inform the design and control of not only this engine arrangement, but for 

others more generically since the dynamic model is built from first-principles with known or measureable 

parameters. 

Acknowledgment 

This work was supported by the Center for Compact and Efficient Fluid Power, an NSF Engineering 

Research Center, grant EEC-0540834. 

References 

[1] G. Walker, Stirling Engines, Oxford University Press, 1980. 

[2] G. Walker and J. R. Senft, Lecture Notes in Engineering: Free Piston Stirling Engines, Springer-

Verlag, New York, 1985. 

[3] E. H. Cooke-Yarborough, E. Franklin, T. Gesow, R. Howlett, C. D. West, “Thermomechanical 

generator: an efficient means of converting heat to electricity at low power levels,” Proceedings 

IEE, no. 121, p. 749-751, 1974. 



42 
 

[4] C. D. West, Principles and Applications of Stirling Engines, Van Nostrand Reinhold Company, 

New York, 1986. 

[5] C. D. West, Liquid Piston Stirling Engines, Van Nostrand Reinhold Company, New York, 1983. 

[6] F. T. Reader and M. A. Clarke, “Liquid Piston Stirling Air Engines,” 2nd International Conference 

of on Stirling Engines, 14 p, 1984 

[7] Gopal, V. K., Duke, R., and Clucas, D., 2009. “Active Stirling Engine”. In TENCON 2009-2009 

IEEE Region 10 Conference, IEEE, pp. 1–6. 

[8] M. Craun, B. Bamieh, “Optimal Periodic Control of an Ideal Stirling Engine Model,” ASME 

Journal of Dynamic Systems, Measurement and Control, Jan 2nd 2015. doi:10.1115/1.4029682  

[9] Chin-Hsiang Cheng, and Ying-Ju Yu, “Numerical model for predicting thermodynamic cycle and 

thermal efficiency of a beta-type Stirling engine with rhombic-drive mechanism”, Renewable 

Energy, vol. 35, pp. 2590-2601, 2010. doi:10.1016/j.renene.2010.04.002 

[10] F. Formosa and G. DEspesse, “Analytical model for Stirling cycle machine design”, Energy 

Conversion and Management, vol. 51, pp. 1855-1863, 2010. 

doi:10.1016/j.enconman.2010.02.010 

[11] H. Karabulut, “Dynamic analysis of a free piston Stirling engine working with closed and open 

thermodynamic cycles”, Renewable Energy, vol. 36, pp. 1704-1709, 2011. 

doi:10.1016/j.renene.2010.12.006 

[12] Van de Ven, J., Gaffuri, P., Mies, B., and Cole, G., 2008, "Developments Towards a Liquid 

Piston Stirling Engine," International Energy Conversion Engineering Conference, Cleveland, 

Ohio 

 

  

http://dx.doi.org/10.1016/j.renene.2010.04.002
http://dx.doi.org/10.1016/j.enconman.2010.02.010
http://dx.doi.org/10.1016/j.renene.2010.12.006
http://www.me.umn.edu/~vandeven/ConfPaper-Developments%20Towards%20a%20LP%20Stirling%20Engine.pdf
http://www.me.umn.edu/~vandeven/ConfPaper-Developments%20Towards%20a%20LP%20Stirling%20Engine.pdf


43 
 

CHAPTER IV.  

FUTURE DIRECTIONS AND DISCUSSION 

The contribution of this work, as presented in Chapter II and Chapter III, is a first principles model of 

the Stirling pressurizer that is validated with experimental data for two different displacer motion profiles, 

a variety of heater head temperatures and a variety of different average engine pressures. Results show 

that the first-principles model can be used to optimize efficiency and/ or power output of the Stirling 

device, can also be used to inform the design of control strategies and the design of the Stirling 

pressurizer.  

The first-principles model can also be used for the design and sizing of an attached power unit. A 

power unit that can be driven by the pressure swing of the Stirling pressurizer would be a hydraulic pump, 

a compressor, or an electric generator, making the Stirling pressurizer an ideal power source for a variety 

of applications. 

Oak Ridge National Laboratory for example is interested in building a Stirling device using their 

Manufacturing Demonstration Facility (MDF) to enable additive manufactured metal components. Additive 

manufacturing enables unprecedented leap-ahead capabilities in Stirling engines due to the ability to 

integrate geometries not previously possible with traditional machining. Increasing the surface area for 

heat transfer along with a controlled displacer could possibly achieve near-ideal Stirling cycle efficiencies. 

Figure 4-1 illustrates how additive manufacturing allows integrating complex geometries to increase the 

surface area for heat transfer. A collaboration with Oak Ridge National Laboratory would seek to build a 

Stirling device to drive an electric generator which in turn could either power a car or deliver electricity to 

the grid when the car is parked.  
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Figure 4- 1: Stirling device using additive manufacturing capabilities  
 

The Stirling pressurizer can also be driven by any excess heat. For example, one by-product of 

compressing gasses from very low pressures to very high pressures is an elevated gas temperature at 

the exit of the compressor. Parker Hannifin is interested in running a Stirling pressurizer as a 

“turbocharger” from the elevated gas temperature exiting a natural gas compressor. This elevated gas 

temperature would represent the heat source for the Stirling pressurizer. In return, the Stirling pressurizer 

could boost the pressure of the natural gas before entering the compressor. As a result, the efficiency of 

the compressor would be increased greatly.  

 

  

Heater Head
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APPENDIX  

A. SIMULINK DIAGRAMS  

 
Figure A-1: Overall system 

 

 

Figure A-2: Volumes 
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Figure A-3: Engine dynamics 
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Figure A-4: Pressure dynamics on hot side 
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Figure A-5: Heat transfer losses 

 

Figure A-6: Regenerative system 
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Figure A-7: Mass flow ate in engine section 

 

Figure A-8: Mass flow rate in engine section times Tflow 
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Figure A-9: Pressure dynamics on cold side 
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Figure A-10: Direction switch 

 

Figure A-11: Mass flow rate between cold side and return chamber 
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Figure A-12: Mass flow rate between cold side and return chamber 
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B. MATLAB CODE 

% Stirling Pressurizer  

  
% Base Units: 
%mm, kg, s, mN, kPa, microJ (uJ), microW (uW), K 

  

  
%%  
% Atmospheric Temperature and Pressure  

  
T_amb=25+273;      % Ambient air temperature (K) 
P_atm=14.65*6.89;  % Atmoshperic Pressure (kPa) 

  
%%  variables  

  
l_stroke=23.6;     %(mm) stroke length 

  
%% working gas constants (helium) in engine section 

  
% data: 
% cv_helium=12.5 % J/mol/K 
% cp_helium=20.8 % J/mol/K 
% molecular weight = 4.002602 g/mol 
% cp_gas=5193.2*1e6; %constant pressure specific heat (in uJ/kg/K) 
% cv_gas=3123*1e6; %constant volume specific heat (in uJ/kg/K) 
% R_univ=8.3145*1e6; %Average gas constant (in uJ/mol/K) 

  
cp_helium=20.8/4.002602*1000*1e6; %constant pressure specific heat (in 

uJ/kg/K) 
cv_helium=12.5/4.002602*1000*1e6; %constant volume specific heat (in uJ/kg/K) 
R_helium=cp_helium-cv_helium; %gas constant (in uJ/kg/K) 
gamma_helium=cp_helium/cv_helium; %ratio of specific heats (no dim) 

  
%% working gas constants (krypton) 
% data: 
% cp=0.248 J/g/K 
% cv=12.5 J/mol/K 
% molecular weight = 83.798 g/mol 
% cv=0.1492 J/g/K 
R_univ=8.3145*1e6;                   %Average gas constant (in uJ/mol/K) 
cp_krypton=248*1e6;                  %constant pressure specific heat (in 

uJ/kg/K) 
cv_krypton=149.2*1e6;                %constant volume specific heat (in 

uJ/kg/K) 
R_krypton=cp_krypton-cv_krypton;     %gas constant (in uJ/kg/K) 
gamma_krypton=cp_krypton/cv_krypton; %ratio of specific heats (no dim) 

  

  
%%  

  
cp_engine=cp_helium;  % constant pressure specific heat (in uJ/kg/K) 
cv_engine=cv_helium; % constant volume specific heat (in uJ/kg/K) 
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R_engine=R_helium; %gas constant (in uJ/kg/K) 
gamma_engine=gamma_helium; %ratio of specific heats (no dim) 

  

  
%% Engine Constants 

  
d_rod_LM= 6.31;                            % diameter of rod (LM) in mm   
m_rod=0.0430;                              % mass of rod in kg  
m_displacer=0.06;                          % mass of displacer in kg  
m_rod_displacer=m_rod+m_displacer; % mass of rod and displacer in kg  

  
t_cyl=1.2446;                 % thickness of Inconel cylinder (mm) 
d_bore=50.8-2*t_cyl; %(mm) 
d_piston=d_bore-0.8; %(mm) 

  
l_stroke=l_stroke; %(mm) 
l_bottom_stroke=0.5;% % remaining cylinder at cold side (mm) 
l_top_stroke=0.5; % remaining cylinder at hot side (mm) 
l_piston=2.97*d_bore; % mm  
l_cyl=l_piston+l_stroke+l_bottom_stroke+l_top_stroke; %Length of quartz 

cylinder with gasket (mm) 
l_return=100; % (mm) length of return chamber   

  
%%  Area Calculations 

  
A_cyl=pi*(d_bore/2)^2; 
A_piston=pi*(d_piston/2)^2; 
A_rod=pi*(d_rod_LM/2)^2; 

             
 %% calculates the surface area for heat transfer on heater head  

   
N_h=7;                         % number of inside fins on heater head  
H_fin_h=16.5;                  % height of fins on hot side (mm) 
r_h_1=d_bore/2;                % inside radius of inside fins on heater head 

(mm) 
r_h_2=r_h_1+3;                 % outside radius of inside fins on heater head 

(mm) 
t_h=1.5;                       % thickness of each fin on inside fins of 

heater head (mm) 
h_h_below=8.5;                 % hight below last fin to end of heater head 

(mm) 
A_h=pi*(d_bore/2)^2+pi*d_bore*h_h_below+(2*pi*r_h_1)*(H_fin_h-

N_h*t_h)+(2*pi*r_h_2)*N_h*t_h... 
    +2*N_h*pi*(r_h_2^2-r_h_1^2);                       % Area available for 

heat transfer on cold side  (mm^2) 
V_dead_fin_h=N_h*pi*(r_h_2^2-r_h_1^2)*t_h;             % dead volume caused 

by inside fins on heater head  

  
%% calculates the surface area for heat transfer on outside fins for cooler 

head  

  
N_k_out=22;                           % number of inside fins on cooler head  
H_fin_k=l_cyl/2;                      % height of fins on cold side (mm) 
r_k_out_0=d_bore/2+t_cyl;             % inside diameter of base of fin (mm) 
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r_k_out_1=d_bore/2+7;                 % inside radius of inside fins on 

cooler head (mm) 
r_k_out_2=45;                         % outside radius of inside fins on 

cooler head (mm) 
t_k_out=2;                            % thickness of each fin on inside fins 

of cooler head (mm) 
A_al=(2*pi*r_k_out_1)*(H_fin_k-N_k_out*t_k_out)+(pi/4)*(d_bore^2-

d_rod_LM^2)... 
            +(2*pi*r_k_out_2)*N_k_out*t_k_out+2*N_k_out*pi*(r_k_out_2^2-

r_k_out_1^2); % Area available for heat transfer on cold side (housing, lead 

screw, etc.) (mm^2) 

  
%% fin efficiency  

  
T_amb=T_amb; 
T_b=333;       % Temperature on base of fins (between fins and Inconel 

cylinder) 
k_Al=215000;                         % thermal conductivity of Aluminium 

(uW/mm/K) 
k_inconel=10.1e3;                    % thermal conductivity of Inconel 

(uW/mm/K) 
h_air=50;                            % W/m^2/K or uW/mm^2/K 
r_k_out_2c=r_k_out_2+(t_k_out/2);    % corrected outside fin radius (mm) 
L=r_k_out_2-r_k_out_1;     
L_c=L+(t_k_out/2);                   % corrected length  
A_f=2*pi*(r_k_out_2c^2-r_k_out_1^2); % from heat transfer book p.171 
A_t=N_k_out*A_f+2*pi*r_k_out_1*(H_fin_k-N_k_out*t_k_out);  % from heat 

transfer book p.171 
A_p=L_c*t_k_out; 
(L_c)^1.5*sqrt(h_air/(k_Al*A_p));    % look up efficiency of annular fin of 

rectancular profile  
n_f=0.95; 

  
run('Z:\Anna\Research\MATLAB\other MATLAB files\calculation_h') 

  
R_He_cyl=(1/(h*2*pi*(d_bore/2)*(H_fin_k))); 
R_inconel=(log(r_k_out_0/(d_bore/2))/(2*pi*k_inconel*H_fin_k)); 
R_fin_base=(log(r_k_out_1/r_k_out_0))/(2*pi*k_Al*H_fin_k); 
R_fin=1/(h_air*A_t*(1-((N_k_out*A_f)/A_t)*(1-n_f))); 

  
q_t=(1/(R_He_cyl+R_inconel+R_fin_base+R_fin))*(T_amb-T_b); 

  
%% Heat transfer 

  
hA_h= h*A_h; 

  
%% Calculate Volumes 
V_cyl=A_cyl*l_cyl; 

  
V_piston=l_piston*A_piston; % Volume taken up by piston 

  
V_dead_piston=l_piston*(A_cyl-A_piston); %Dead volume surrounding piston 
V_h_dead=V_dead_piston/2+l_top_stroke*A_cyl+V_dead_fin_h; 
V_h_max=V_h_dead+l_stroke*A_cyl; % Max volume of air on hot side (m^3) 
V_h_min=V_h_dead; % Min volume of air on hot side (m^3) 
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V_k_dead=l_bottom_stroke*A_cyl+V_dead_piston/2; 
V_k_max=V_k_dead+l_stroke*A_cyl; % Max volume of air on cold side (m^3) 
V_k_min=V_k_dead; % Min volume of gas on cold side (m^3) 

  
%% initial conditions engine hot side  

  
T_h_0=T_hot; 
P_h_0=P_k_min; 
V_h_0=V_h_dead; 
m_h_0=P_h_0*V_h_0/(R_engine*T_h_0); 

  
%% initial conditions engine cold side  
T_k_0=T_k; 
P_k_0=P_k_min; 
V_k_0=V_k_dead + l_stroke*A_cyl;  
m_k_0=P_k_0*V_k_0/(R_engine*T_k_0); 

  
%% regneration effect  

  
k_he=211.4;   % thermal conductivity of helium (uW/mm/K) at 500K 
k_ss=17e3;    % thermal conductivity of stainless steel (uW/mm/K) 
alpha_ss=4.2; % thermal diffusivity of stainless steel (mm^2/s)  
k_inconel=k_inconel;                                                      

%thermal conductivity of Inconel (uW/mm/K) 
annular_gap=(d_bore/2)-(d_piston/2); % annular gap (mm) 
omega=2*pi*f_Hz; 
C=(k_ss/k_he)*annular_gap*sqrt(omega/(2*alpha_ss)); 
BET=(2*C^2-C)/(2*C^2-1); 
Q_shuttle=(pi/8)*k_he*l_stroke*(T_hot-

T_k)*(d_bore/annular_gap)*(l_stroke/l_piston)*BET; 

  
%%  constants needed to calculate m_dot 

  
r_bore=d_bore/2; 
r_piston=d_piston/2; 

  
constant1_mdot=((r_bore)^4-(r_piston)^4-(((r_bore)^2-

(r_piston)^2)^2/log(r_bore/r_piston))); 
constant2_mdot=0.5*(r_bore^2*log(r_bore)-r_piston^2*log(r_piston))-

0.25*(r_bore^2-r_piston^2); 
constant3_mdot=0.5*r_bore^2-0.5*r_piston^2; 

  
A_hole_displacer=(pi/4)*0.1^2; 
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Code to calculate the heat transfer coefficient h 

 
% calculation of convection coefficient h 

  
A_gap=(pi/4)*(d_bore^2-d_piston^2); 
V_cyl=A_cyl*l_cyl;                      % Volume of cylinder     
V_piston=A_piston*l_piston;             % Volume of piston  

    
V_dead_piston=l_piston*(A_gap);         %Dead volume surrounding piston 
V_h_dead=V_dead_piston/2+l_top_stroke*A_cyl; 
V_k_dead=l_bottom_stroke*A_cyl+V_dead_piston/2; 
V_dead=V_k_dead+V_h_dead; 

  
V_max=V_cyl-V_piston-V_dead;         % max. Volume thats moved by displacer 

per stroke 

  
t=1/(f_Hz*2);                        % time displacer moves V_max (sec)  

  

  
V_dot=V_max/t;                       % in mm^3/sec 
velocity=V_dot/A_gap/1000;           % in m/sec 

  
C=d_bore-d_piston;                    % characteristic length of a duct in mm  
charac_length=(C)/1000;               % characteristic length of a duct in m 
R_He=2.077;                           % kJ/kg/K 
% T_avg=600;                          % avg. Temperature in K 
% P_avg=2000;                         % avg. Pressure in kPa 
density_He=P_avg/(R_He*T_avg);        % from ideal gas law in kg/m^3 
viscosity_He=19e-6*((273+79.4)/(T_avg+79.4))*(T_avg/273)^1.5;      % in Pa*s 
kinem_viscosity_He=viscosity_He/density_He ;                       % in m^2/s 

  

  
density_air=0.588;                 % from ideal gas law in kg/m^3 
viscosity_air=3.017e-5;            % in Pa*s 
kinem_viscosity_air=viscosity_air/density_air ;     % in m^2/s 
k_air=0.0485; 
Re_He=velocity*charac_length/kinem_viscosity_He; 
Re_air=velocity*charac_length/kinem_viscosity_air; 
a=0.023; 
Pr=0.7; 
m=0.8; 
n=0.3; 
k=0.14789*(T_avg/273)^0.6958; 

  
h=a*Re_He^m*Pr^n*k/charac_length 
h_air=a*Re_air^m*Pr^n*k_air/charac_length 
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C. TECHNICAL DRAWINGS FOR PROTOTYPE 

Figure C-1: Engine weld assembly 
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Figure C-2: Heater head 
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Figure C-3: Inconel cylinder 
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Figure C-4: Cooling fins 
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Figure C-5: Cooler head 
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Figure C-6: Hugger1 of return chamber 
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Figure C-7: Top part of hugger1 
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Figure C-8: Shaft part of hugger1 
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Figure C-9: Return part of hugger1 
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Figure C-10: Hugger2 of return chamber  
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Figure C-11: Top part of hugger2 
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Figure C-12: Shaft part of hugger2 



70 
 

Figure C-13: Displacer weld assembly 
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Figure C-14: Top part of displacer piston 
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Figure C-15: Displacer cylinder 
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Figure C-16: Bottom of displacer 
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Figure C-17: Extension rod 
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Figure C-18: Clamp assembly 
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Figure C-19: Part 1 of clamp assembly 
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Figure C-20: Part 2 of clamp assembly 
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Figure C-21: Connection between coupling and linear motor 


