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CHAPTER I 

 

INTRODUCTION 

 

As modern warfare changes through the decades, many improvements in 

technology are developed.   In recent years, these improvements have involved robotic 

controls and alternative energy.  An airplane that not only runs on nuclear power but is 

also remotely controlled combines both of these improvements.  This type of airplane is 

discussed in thorough detail from the economics to the history to a design. 

 

What is an Unmanned Aerial Vehicle 

 An Unmanned Aerial Vehicle (UAV) is an object which not only takes off, 

maintains flight, and lands, but is also controlled by a remote or a programmed flight plan 

as opposed to a human crew.  A UAV must be able to sustain flight and be reused on 

further missions.  A remote-control airplane is considered a UAV while a missile 

(although it may be guided by remote or satellite) is not.  Most UAV‟s are small planes or 

drones which can stay airborne for a given time.  Many UAV‟s are used for 

reconnaissance, but some fly armed combat missions for the military. 
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History of the Unmanned Aerial Vehicle 

 The history of UAV‟s dates back to the Civil War during the 1860‟s.  The concept 

was to use a balloon filled with explosives that could land on the opponent‟s ammo 

depot.  A similar concept was also used by the Japanese during World War 2, but neither 

idea succeeded.  Successful designs started during the 1960‟s with drones flying over 

China and Vietnam (LIST Lab, 2003).  The use of UAV‟s slowly increased until the Gulf 

War when it was determined that UAV‟s were valuable for missions over rough terrain.  

In recent years, commercial companies have started to develop UAV‟s for many uses 

such as crop monitoring, air traffic control, and news broadcasting. 

 

Benefits of using an Unmanned Aerial Vehicle 

 There are many benefits to using a UAV as opposed to an airplane with a human 

crew.  The most important issue is that UAV‟s can fly in dangerous environments where 

human lives would be put at risk.  In the military, many combat missions require visual 

aid for the soldiers on the ground.  However, flying a plane in a combat zone is extremely 

dangerous for a human crew.  In addition to military applications, a UAV can follow a 

high-speed police chase or fly into the eye of a hurricane where a manned airplane could 

not fly for an extended period of time.  Figure 1 shows a UAV taking pictures and video 

of a tropical storm over the Pacific Ocean.  Typically, UAV‟s have a lower cost than a 

manned airplane because one does not need to design for humans.  UAV‟s can be 

deployed very quickly compared to a manned airplane.  UAV‟s can take high resolution 

images as well as real-time video of a situation. 
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Figure 1: Picture of Tropical Storm Frank from a Global Hawk taking data for NASA in 2010 

(Black and Gutro, 2010). 

 

Drawbacks to Unmanned Aerial Vehicles 

 There are some major drawbacks to using a UAV.  Many UAV‟s could be 

confused with manned airplanes and interfere with FAA guidelines or highways.  It is 

nearly impossible to replace the mind and instincts of a pilot with a robot controller.  

Although some UAV‟s are controlled by humans on the ground, it is difficult to fix a 

problem from the ground that a human crew can do while the aircraft is airborne.  It is 

also hard to communicate between an autonomous UAV, the ground, and the FAA at the 

same time.  Also, communications can fail between the UAV and the ground crew which 

can cause the airplane to crash.  Another concern is liability because it is difficult to find 

the owner if a UAV crashes into the ground and causes damage. 

 

 

 

http://www.nasa.gov/images/content/479058main_FRANK-GRIP.jpg
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Using Nuclear Energy 

 Many universities, industries, and government agencies are trying to use energy 

from nuclear sources for heat and electricity.  The main idea behind using nuclear energy 

is to capture the heat generated from a nuclear reaction and use it in a useful form.  

Nuclear reactions can generate much more energy than conventional fuels.  For example, 

one kilogram of a nuclear fuel used in a reactor can generate over one billion times more 

energy than the combustion of one kilogram of gasoline.  The nuclear reaction can be 

sustained using moderators and control rods so that the device does not reach a 

supercritical state.  Once the energy is generated, the heat can be used to generate 

electricity, increase the temperature of a system, or implemented in other useful ways.  

Using nuclear energy requires many precautions and constant observation.  Some of the 

fuels require complex processes to make into a form which can be used in a reactor. 
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CHAPTER II 

 

SURVEY OF THE LITERATURE 

 

 Chapter II describes four different types of propulsion systems that can be used on 

UAV‟s: Gas Turbine, Internal Combustion, Solar Electric, and Nuclear Thermal.  This 

chapter also details some design parameters of a UAV which differ from a piloted 

aircraft. 

 

Gas Turbine Engines 

 Many UAV‟s are currently being operated with a turbojet engine which is a type 

of gas turbine engine.  These engines are used on many aircraft today other than UAV‟s.  

A turbojet engine, depicted in Figure 2, is either attached to the wing or placed at the rear 

of the aircraft to generate thrust from the combustion with the incoming air.  In general, a 

turbojet engine operates by sucking in the air using a fan, compressing this incoming air 

anywhere from 10 to 20 times the freestream density, heating the incoming air through 

combustion of the fuel, and expanding the combustion products through a turbine.  In 

order to maximize thrust, the gases exit through a nozzle to increase its velocity.  One of 

the main reasons for use of gas turbine engines on aircraft is the high thrust-to-weight 

ratio of the engine itself.  These engines are more efficient in colder environments and 

high altitudes because the freestream density and temperature of the air are lower.  

Turbojet engines are usually inefficient when compared to other types of engines, but 

they have fewer moving parts.   
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Because propulsion systems for UAV‟s aim for efficiency over performance, 

many UAV‟s use a turbofan engine as opposed to a turbojet engine.  The main difference 

is that most of the air in a turbofan engine does not pass through the main compressor, 

combustion chamber, and turbine.  This air which surrounds the turbojet portion at the 

center goes through a light compression and a light expansion without passing through 

the combustion chamber.  Because there is no combustion through the turbofan portion of 

the engine, the overall efficiency is higher because less fuel is used to propel the aircraft 

(although the performance suffers slightly). 

 

 

 
Figure 2: Picture of a typical turbofan engine.  The turbofan portion of the engine surrounds the 

turbojet portion.  The duct fan, compressor blades, and turbine blades are all attached to the 

central shaft (Cislunar Aerospace, Inc, 1998). 

 

 Theoretically, gas turbine engines operate under the Brayton cycle where the 

compression and expansion of the air is isentropic and the combustion is isobaric.  

However, there are some losses between the compression and the expansion.  The 
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compression occurs through a series of blades attached to the central shaft.  The cross-

sectional area also decreases beyond each row of blades or stators (stationary rows of 

blades) in order to increase the density of the incoming air.  As the air passes through 

each row of blades, there are frictional losses that occur between the air and the blades 

themselves.  The turbine works similarly to the compressor except the air is expanded as 

opposed to compressed.  In the combustion chamber, the fuel (a hydrocarbon) reacts with 

the oxygen in the air to produce heat which results in an increase in both temperature and 

velocity.  The pressure does change slightly because the process is inefficient.  Jet fuel 

has a typical heating value of 42.8 MJ/kg, or 127,000 BTU/gallon (Ibsen, 2001).  

Because the combustion process is not 100 percent efficient, not all of this fuel is 

converted into heat. 

 

 

 
Figure 3: Brayton cycle diagram on an enthalpy-entropy diagram.  The “p” states show the actual 

Brayton cycle as opposed to the theoretical (Lis, 2006). 

 

 Another engine considered for a UAV is a ramjet.  This ramjet may be thought of 

as a turbojet without a compressor or turbine.  A ramjet ignites the fuel in the combustion 

http://upload.wikimedia.org/wikipedia/commons/f/f4/Obieg_Braytona-Joulea.svg
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chamber to add heat to the air and increase the velocity.  Because the compressor and 

turbine become less effective as the aircraft reaches supersonic speeds, the ramjet can be 

more than twice as efficient at high mach numbers (Oates, 1997).  One of the problems 

with a ramjet is that it is difficult to start at low speeds especially at take-off.  Because the 

ramjet is simply a heater, there is no air flow through the engine while the aircraft is 

sitting on the ground.  However, if a UAV with a ramjet could be attached to another 

aircraft or have a Rocket-Assisted Takeoff to bring it a high speed, the thrust would be 

high enough to maintain flight. 

 

Internal Combustion Engine 

 Some UAV‟s use internal combustion engines to drive a propeller and produce 

thrust.  A four-stroke internal combustion engine works through a series of pistons to 

drive a crankshaft connected to the propeller.  Depending on the type of engine, there 

could be any number of pistons to drive the crankshaft.  In each cylinder as depicted by 

Figure 4, the piston takes in some air at the intake stroke.  In a conventional gasoline 

engine, the fuel and air are mixed before the intake stroke, but a diesel engine does not 

mix the air and fuel.  The piston compresses the air after the intake stroke.  In a gasoline 

engine, a spark plug ignites the fuel, but in a diesel engine, the heat from the compressed 

air ignites the fuel.  Once the fuel combustion is complete, the piston drives back up to 

push the exhaust out of the cylinder.  Internal combustion engines are not usually 

implemented on large aircraft because a gas turbine engine of similar mass can produce 

more thrust than its internal combustion counterpart. 
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Figure 4: Diagram of a piston in an internal combustion engine (Britannica, 2007). 

 

Solar Electric Propulsion 

 Although solar electric propulsion is mainly used on spacecraft, some UAV‟s 

have recently employed this technology in the propulsion system.  Solar electric 

propulsion works by absorbing solar energy through solar panels and generating 

electricity to run a motor attached to the UAV.  The motor runs off solar power during 

the day and battery power at night.  Barring any calamities such as sudden changes in 

wind speed or accidents, a plane could fly indefinitely off of this type of power (Dighera, 

2005).  There are two main reasons why solar energy is used by spacecraft and not 

aircraft.  First, the solar energy available in Earth orbit is 1370 W/m
2
 while the available 

energy on the surface of the Earth is only 164 W/m
2
based on the ionosphere, clouds, and 

other impedances (Basics in Solar Energy, 2009).  This also does not include the low 

efficiencies of the solar panels themselves which are less than thirty percent.  Second, 

spacecraft in Earth orbit do not have to overcome the similar force of gravity that an 

airplane does.  However, an airplane does not have to carry extra fuel to perform orbital 



10 
 

maneuvers or attitude control like a spacecraft would.  A UAV employing a solar electric 

propulsion system must carry solar panels, electrodes, and a battery as opposed to fuel.  

Only a few UAV‟s, such as the one shown in Figure 5, have used this solar electric 

propulsion system, and the solar panels themselves span the entire wing.  Not only is this 

system inefficient, the thrust of this system is minimal compared to a turbojet engine. 

 

 

 
Figure 5: An example of a UAV powered by solar energy.  The solar energy drives motors which 

are connected to propellers in order to generate thrust (La Franchi, 2007). 

 

Nuclear Radioisotope Thermoelectric Generators (RTG) 

 Radioisotope Thermoelectric Generators (RTG) are used to generate electricity 

from nuclear reactions.  The reaction generates heat which can be used in many ways.  

For most applications, an RTG is used to generate electricity from this heat source 

through the Seebeck effect.  This type of RTG is typically used on spacecraft (mostly in 

deep space) which must carry its own power source.  RTG‟s have been used in space 

power systems since 1961 with SNAP-3B on a satellite.  The core of the RTG is usually a 

General Purpose Heat Source (GPHS) shown in Figure 6 which is used only as the heat 
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source to generate electricity.  In designing a UAV, the heat generated from a series of 

GPHS‟s could replace the combustion of jet fuel.  One benefit of using a GPHS is the 

decrease in weight required from carrying the jet fuel itself.  One drawback is the cost of 

the radioactive isotope.  There are a few design criteria for choosing a GPHS on any 

scale: the power density and half life of the radioactive isotope, the availability of fuel 

and cost, radiation, and accident prevention (Angelo and Buden, 1985).  The GPHS used 

on the Cassini spacecraft is shown in Figure 6 and is still producing power even though 

Cassini was launched in 1997.  In a nuclear UAV application, one reactor could take the 

place of a series of GPHS‟s for a heat source to replace the jet fuel. 

 

 

 

Figure 6: Diagram of a General Purpose Heat Source (GPHS) RTG.  A GPHS uses the heat for a 

temperature increase only as opposed to electricity generation.  This particular RTG is the design 

used for the Cassini spacecraft (Averro, 2007). 
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Design of a UAV 

 There are many different criteria to consider when designing a UAV.  Before the 

design is completed, one must determine the purpose of the UAV.  For example, if the 

UAV is designed for attack missions for the military, performance is the driving factor.  

For this particular study, the most important criterion is time of flight because endurance 

is the main factor.  The propulsion system almost always determines how long a UAV 

can remain airborne.  Another consideration is the material used on the aircraft.  Because 

endurance is important in this study, light materials which sacrifice mechanical properties 

for weight are normally considered for longer flights.  The weight of the fuel is also 

important because it determines the payload capacity and thrust capabilities.  The 

geometry of the UAV (i.e. the wingspan, length, and wing dimensions) affects the lift and 

drag of the aircraft itself.  Lastly, cost is always a driving factor in designing a UAV. 

 

  



13 
 

CHAPTER III 

 

STATE-OF-THE-ART TECHNOLOGY 

 

 This chapter discusses the best available technology for all of the propulsion 

systems from the previous chapter.  These types of designs include UAV‟s for the United 

States Military and a 30 lb remote-control airplane. 

 

State-of-the-Art Gas Turbine 

 Many of the state-of-the-art technologies for UAV‟s implementing a gas turbine 

engine are designed for the military.  The most advanced UAV using a gas turbine engine 

is the RQ-4 Global Hawk which is shown in Figure 7.  The Global Hawk is used on 

surveillance missions for the military in order to give aid to ground troops.  The Global 

Hawk has an array of sensors which can detect different situations or movement on the 

ground.  This UAV provides surveillance for ground troops in various weather situations 

or night time activity.  The propulsion system on this UAV is a Rolls-Royce AE 3007H 

turbofan engine which can produce 7600 pounds of thrust.  The longest flight time for a 

Global Hawk is over 100 hours.  There are three members of the ground crew: two pilots 

(one for take-off and one for everything else) and a sensor operator (USAF, 2009).  The 

Global Hawk uses optical and infrared cameras to survey the ground from over 60,000 

feet. 
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Figure 7: Picture of the RQ-4 Global Hawk (USAF, 2009). 

 

State-of-the-Art Internal Combustion Engine 

 The best technology available for a UAV using an internal combustion 

engine is the MQ-1 Predator used by the US military.  Unlike its Global Hawk counter-

part, the Predator may be used for combat.  This particular model is equipped with two 

laser-guided missiles.  Because the Predator is used for armed reconnaissance, it does not 

have the same ceiling that the Global Hawk does.  Shown in Figure 8, the Predator is 

much lighter than the Global Hawk even though it carries a series of weapons.  The 

Predator is a small aircraft which can also take real-time video for surveillance.  The 

Predator has three members for its ground crew: a pilot, a sensor operator, and a mission 

intelligence coordinator (USAF, 2009).  The Predator has smaller range than 

reconnaissance UAV‟s and may be refueled and reloaded after using its missiles.  The 

engine on the Predator is a Rotax 914F four cylinder engine which generates 115 

horsepower. 

  

 

http://www.af.mil/information/factsheets/factsheet_media.asp?fsID=13225
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State-of-the-Art Solar Electric 

 Because solar electric propulsion systems are still under development, there are 

very few successful attempts to fly these types of UAV‟s.  However, one design claims to 

have kept the UAV flying for over 48 hours.  This particular aircraft, SoLong, could have 

kept flying if the pilot on the ground did not get tired.  SoLong flew over the Colorado 

Desert for 48 hours and 16 minutes, flying on solar power during the day and battery 

power at night (Dighera, 2005).  Multiple controllers are needed to fly the Global Hawk 

and the Predator because of the instruments or weapons on each UAV.  However, 

because there were no instruments on SoLong, only the pilot was needed to fly the 

aircraft.  The batteries were Lithium Ion cells which could be charged with over 1200 

Watt-hours of energy. This battery system was almost half the weight of the entire 

aircraft, but it was necessary for continuous flight.  This particular UAV was built with 

efficiency as the most important figure of merit.  The electric power drives a motor which 

turns the variable-pitch propeller.   

 

 

 
Figure 8: Picture of an MQ-1 Predator (USAF, 2009) 

http://www.af.mil/information/factsheets/factsheet_media.asp?fsID=122
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Table 1: Comparison of the RQ-4 Global Hawk, MQ-1 Predator, and SoLong (USAF, 2009 and 

Dighera, 2005). 

Name RQ-4 Global Hawk MQ-1 Predator SoLong 

Type of Propulsion Gas Turbine Internal Combustion 

Engine 

Solar Electric 

Primary Function Visual Aid Armed 

Reconnaissance and 

Target Acquisition 

Research 

Contractor Northrop Grumman, 

Raytheon, L3 

Comm 

General Atomics 

Aeronautical Systems, 

Inc 

None 

ThrustCapability 7600 lbf 115 horsepower 

available 

800 Watts 

available 

Wingspan (feet) 116 27 15.6 

Length (feet) 44 6.9  

Weight (lbm) 11,350 1,130 27.8 

Fuel Capacity (lbm) 15,400 665 None Required 

Payload (lbm) 2,000 450 None 

Maximum Speed 

(mph) 

391 135 50 

Range (miles) 10,930 454 5 

Ceiling (feet) 60,000 25,000 50,000 

Crew (remote) 3 3 1 

Weapons None Two laser-guided 

AGM-114 Hellfire 

missiles 

None 

Cost (million $) 37.6 20  

 

 

State-of-the-Art Nuclear GPHS 

 Because there aren‟t any UAV‟s currently using nuclear GPHS technology, this 

section describes the current state-of-the-art GPHS which could be used in a UAV.  In 

one design, an RTG could be used to replace a motor as long as the generated power is 

the same.  In the case of the Solar Electric propulsion system, specifically the SoLong 

UAV, a GPHS could be used to generate the same amount of power as the solar panels 

without the worry of cloud cover or night.  On a larger scale, multiple GPHS‟s can be put 
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together such that more power can be created from a combination of isotopes.  In other 

designs, the nuclear fuel could be used as a heat source instead of the combustion of fuel.  

A GPHS can be placed inside the combustion chamber to generate a large amount of 

heat.  Depending on the design criteria, different isotopes can be used as the heat source.  

For example, if performance is the most important figure of merit, an isotope with a high 

specific power (like Thorium-228 with a specific power of 161    ) should be used.  

However, if endurance is more important than performance, than an isotope with a long 

half-life (like Cs-137 with a half-life of 30 years) could be used.  With all nuclear 

isotopes, cost and availability should be two of the most important figures of merit. 
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CHAPTER IV 

 

SYSTEM COMPARISONS 

 

 In order to compare each of the propulsion systems, one specific UAV design is 

used with all of the different systems.  For this study, the Global Hawk is the system used 

to compare the propulsion systems.  Because the Global Hawk currently implements a 

gas turbine engine, models of the other propulsion systems must be designed for similar 

conditions.  The gas turbine engine from the Global Hawk is compared to a nuclear 

turbine engine using a reactor with Uranium-235 as the fuel.  Uranium-235 is used 

because of its energy per unit mass and its availability.  Based on the mass and maximum 

speed of the Global Hawk, either a solar electric or internal combustion system must be 

able to produce 1600kW of power in order to match the thrust produced from the gas 

turbine engine.  All of the state-of-the-art systems are considered as options to replace the 

current gas turbine engine on the Global Hawk.  Throughout this chapter, the other three 

designs (outside of the current engine on the Global Hawk) are based mostly on theory 

and not on proven results. 

 The nuclear turbine engine can use a reactor with enriched Uranium-235 as the 

isotope.  The reactor would attach inside the engine so that the passing air can heat 

through convection as opposed to combustion.   The nuclear turbine engine would be 

almost identical in size and weight to the turbofan engine that the Global Hawk currently 

implements.  Because the half life of Uranium is much longer than the one-year flight 

time, there must be enough fuel to sustain the reaction for the entire flight. 
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 The solar electric propulsion system can use Gallium-Arsenide solar cells to 

absorb the solar energy especially at high altitudes.  Gallium-Arsenide cells are the state-

of-the-art solar panels available today and have efficiencies as high as 29 percent (SNL, 

2002).  Although the solar energy that reaches the ground is approximately 170 W/m
2
, 

the solar panels are irradiated with more energy as the altitude increases (especially at the 

Global Hawk‟s ceiling of 60,000 feet).  Lithium-ion batteries can be used to absorb the 

extra energy from the solar panels and power the UAV during the night.  Therefore, 

based on the amount of power required for sustainable flight, the efficiency of the 

batteries and solar panels, and the solar energy available, the required surface area of 

solar cells needed is approximately 100 m
2
 at sea level.  This area would almost cover the 

entire top surface of the Global Hawk, eliminating some room for extra sensors or 

scanners. 

 The internal combustion engine required for sustainable flight needs a power of 

1600kW.  Although a gasoline engine is lighter, a diesel engine is more reliable and 

requires less maintenance.  This diesel engine (possibly a 2-stroke) turns the propellers 

and powers the rest of the subsystems.  The United States Military currently uses JP-8 on 

most of their engines (whether gas turbine or internal combustion), so the amount of fuel 

needed for the internal combustion depends on the overall efficiency as opposed to a 

difference in heating values. 

 The four propulsion systems considered on the Global Hawk are the gas turbine 

(currently being implemented), nuclear turbine, internal combustion, and solar electric. 
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Trade-off Analysis 

 There many ways to compare the different propulsion systems considered for the 

Global Hawk.  There are eight categories described in this section of Trade-Off Analysis: 

Size & Weight, Efficiency, Safety, Reliability, Lifetime, Fuels, Cost & Availability, and 

Public Acceptance.  Table 2 at the end of the section compares all four propulsion 

systems with a figure of merit indicating which system excels in a particular category. 

Size and Weight 

 For the propulsion system itself (not including the fuel), the gas turbine and the 

nuclear turbine systems have an advantage over the solar electric and the internal 

combustion.  The current gas turbine engine on the Global Hawk weighs approximately 

1600 pounds.  The nuclear turbine engine would weigh the same amount as the gas 

turbine engine because there are no significant changes in the engine itself besides the 

fuel.  The solar electric has an advantage over the internal combustion because solar 

panels weigh much less in comparison to an internal combustion engine.  An electric 

motor required for the solar electric also weighs less than an internal combustion engine.  

Because there are propellers required for the internal combustion and solar electric 

systems, the two turbine engines weighs less than the combined total of the motor and the 

propellers for the solar electric but not the internal combustion. 

 For the fuel, the nuclear turbine has a slight advantage over the solar electric, but 

both have a significant advantage over the internal combustion and gas turbine.  Neither 

the nuclear turbine nor the solar electric systems require a fuel tank which can take up a 

significant portion on the weight of the Global Hawk.  The mass of the reactor and the 

fuel required to sustain the nuclear reaction for one year is negligible when compared 
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with the mass of the Global Hawk.  Lithium ion batteries have a gravity density of over 

200     
   .   Therefore, assuming that the propellers operate at the highest efficiency 

throughout the night and taking into account the gravity density, the required weight of 

batteries can exceed 8000 pounds.  These batteries must also be placed throughout the 

Global Hawk which takes up a large amount of space.  Although this weight may seem 

high, it is still smaller than the amount of jet fuel that the Global Hawk uses for a 100 

hour flight.   

It is nearly impossible to carry enough fuel for the gas turbine or internal 

combustion to sustain flight for over a year.  Assuming that the maximum fuel capacity is 

the amount of fuel used by the Global Hawk‟s current gas turbine engine for a 100 hour 

flight, it would take over 3.7 million pounds of jet fuel.  This does not consider the 

increase in size of the fuel tank or the overall weight of the Global Hawk.  To put this 

into perspective, the external tank for the space shuttle contains about 1.6 million pounds 

of fuel.  Therefore, using jet fuel requires the Global Hawk to land, refuel, and take-off or 

aerial refueling.  

 Overall, the nuclear engine has a clear advantage in size and weight, followed by 

solar electric, then gas turbine and internal combustion. 

Efficiency 

 In terms of overall efficiency of the systems considered, internal combustion and 

gas turbine engines have the highest efficiencies, followed by solar electric and nuclear 

turbine.  Gas turbine and internal combustion engines have similar efficiencies, but the 

internal combustion has the higher efficiency.  The internal combustion engines, 

especially diesel engines, have efficiencies close to forty percent.  Gas turbine engines, 
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even with high bypass ratios, have efficiencies slightly higher than thirty percent.  Solar 

electric systems have the next lowest efficiency.  Based solely on the efficiency and not 

the available power, the solar cells have less than 30 percent efficiency which does not 

include the inefficiencies of the batteries.  The nuclear turbine engine has the lowest 

efficiency.  Its efficiency would be defined as the ratio of heat transferred to the air and 

total heat generated from the nuclear reaction.  When factoring in the maximum 

temperature of the reactor, the velocity of the air, and temperature of the air, the 

percentage of heat transferred to the air is low.  Losses would occur through heat transfer 

to other parts of the engine and the cooling of the nuclear reactor. 

Safety 

 The safety of each propulsion system is compared using the worst possible 

accident.  None of the systems are considered safe, but the safest would be the internal 

combustion engine followed closely by the gas turbine.  Failures can happen inside the 

internal combustion engine; however, the engine itself does not explode or harm 

components on the Global Hawk.  The UAV can coast down to the nearest landing 

surface especially from 60,000 feet in the air.  Because the gas turbine engine is located 

outside the fuselage at the aft of the aircraft, an accidental explosion inside the gas 

turbine has a small chance of harming the components of the aircraft.  An engine fire or 

failure of the components can cause the engine to shut down.  When this happens, the 

controller can land the UAV in a similar fashion as an accident with the internal 

combustion engine.  However, an explosion to the UAV for either one of these engines is 

still safer than the solar electric or the nuclear turbine engine.  The solar electric is 

slightly safer than the nuclear turbine engine.  If there is a failure in a solar electric 
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system and the UAV crashes on the ground, battery fluid can leak from inside the 

aircraft.  Because Lithium is one of the most reactive elements, a leak in battery fluid 

from 8000 pounds of batteries can cause some serious damage. 

The most dangerous system is the nuclear turbine.  The nuclear turbine engine 

itself is not dangerous, but collecting the nuclear energy is extremely dangerous.  Not 

only is air traveling at 400 mph hitting the nuclear reactor attached to the inside of the 

combustion chamber, but controlling the amount of heat generated by the nuclear fuel is 

difficult.  If the coolant inside the reactor fails or leaks, the engine could melt.  The fuel 

itself would be safe because it can be encased in stainless steel containers or fuel rods.  

Another safety issue is the nuclear material ending up in the wrong place if the UAV 

crashes to the ground and a terrorist gets control of the reactor.  However, because the 

nuclear fuel is not weapons grade, more procedures would be needed to make a bomb. 

 The gas turbine is the safest propulsion system examined, followed by the internal 

combustion, then solar electric and nuclear turbine. 

Reliability 

 Reliability is a combination of how long a particular propulsion system has been 

in commercial use, how much research has been conducted, and the number of failures 

per use.  The internal combustion engine is the most reliable of the four propulsion 

systems.  Diesel engines are some of the most reliable engines especially because they 

have been used since Rudolf Diesel was granted the patent in 1898.  Gas turbine engines 

follow the internal combustion engines in reliability.  Many of the failures in aircraft do 

not involve the engine itself.  One of the most common failures with gas turbine engines 

(and also nuclear turbine) involves birds that get sucked through the engine.  When a bird 
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flies into the engine, the compressor blades may fail which may causes an engine fire.  

Internal combustion engines and gas turbine systems need maintenance which could keep 

them from being airborne for a year.  Solar electric propulsion systems are more reliable 

than the nuclear turbine because there are no nuclear turbine engines in existence today.  

There are a few examples of solar electric UAV‟s (like SoLong) that have flown 

successfully.  One problem with solar electric UAV‟s is the amount of electrical 

connections throughout the aircraft.  With the amount of electrical connections in a 

Global Hawk powered by a solar electric propulsion system, the probability that one of 

these connections fails over the course of one year is high.  Because there are no nuclear 

turbines being used on UAV‟s, they have the lowest reliability. 

Lifetime 

 The Lifetime compares how long each system would last before its components 

begin to fail (assuming no accidents and unlimited fuel).  Theoretically, a nuclear turbine 

engine has the longest lifetime because of the fewest number of supporting components 

to the fuel.  Assuming the compressor and turbine blades do not fail, the engine could last 

as long as the reactor continues to produce heat.  The Voyager spacecraft is still 

producing data 33 years after launch using an RTG as its power source.  Although this 

RTG does not have any moving parts like a turbine, it shows that nuclear reactions can 

last for a long time without maintenance.  The solar electric propulsion system has the 

next highest lifetime.  Although the solar cells can last for over 20 years, the batteries fail 

from the constant recharging and discharging.  The batteries could last long enough to 

keep the Global Hawk airborne for over a year, but they will not last much longer than 

the year.  Internal combustion engines have the next longest lifetime followed by gas 
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turbine engines.  These engines follow the nuclear turbine and solar electric systems 

because there are many parts such as fuel lines that fail before one year of continuous 

ignition. 

Fuels 

 The fuel for each of the propulsion systems is unique and only works with its own 

particular system.  The nuclear reaction in this particular reactor involves Uranium-235 

and neutrons.  To start the reaction, the Uranium-235 absorbs the neutron and releases 

fission fragments, gamma radiation, heat, and more neutrons.  These neutrons are then 

absorbed by other Uranium-235 particles which undergo the exact same process.  Once 

the chain reaction begins, the control rods absorb excess neutrons to keep the reaction 

from going supercritical.  To keep the Global Hawk airborne for the one year time frame, 

there needs to be enough Uranium-235 to maintain the reaction for one year.   

Jet fuel and diesel fuel are hydrocarbons which burn in air.  This combustion 

converts the fuel and oxygen from the air into carbon dioxide and water vapor.  The 

difference between the two fuels is the chemical composition which changes the 

combustion temperature and other physical properties.  Because both gas turbine and 

internal combustion engines would both run on the same fuel, this figure of merit is the 

same for both.  However, neither comes close to the amount of energy per unit mass of a 

nuclear isotope.  Uranium-235 in a reactor can produce over 10,000 times more energy 

per unit mass than jet fuel or diesel fuel (Patzek, 2003).  Finally, the solar electric 

propulsion system does not require any fuel because it uses the energy from the sun to 

drive the motor and the propellers.  Therefore, solar electric gets the highest rank for this 

figure of merit. 
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Cost & Availability 

 In terms of both cost and availability, the internal combustion engine is the clear 

winner.  Diesel engines are readily available in many automobiles today and for many 

aircraft.  In addition, many buildings have diesel generators as a back-up power source.  

Jet engines are also readily available from companies such as General Electric and Pratt 

& Whitney.  The best estimate for the cost of the Rolls Royce turbofan engine on the 

Global Hawk exceeds one million dollars.  Because the cost of a high-quality, light-

weight diesel engine does not exceed one million dollars, the internal combustion has a 

lower cost than the turbofan engine counterpart. 

Solar electric follows the gas turbine engine based on the cost of the solar panels 

and the batteries.  Gallium Arsenide solar panels are difficult to purchase especially in 

bulk because they are still under development.  However, one estimate shows that one 

square meter of Gallium Arsenide costs 10,000 dollars (SNL, 2002).  Based on the need 

for solar panels, the total cost for the cells alone is one million dollars.  An optimistic cost 

per kWh for Lithium ion batteries is 250 dollars per kWhr (Peterson, 2009).  Based on the 

energy required to power the UAV at night, the cost of the batteries alone (not including 

the electrical connections or the engineering necessary to connect the batteries and the 

solar panels) is approximately two hundred thousand dollars. 

Although the availability of Uranium-235 is reasonable, the nuclear turbine 

propulsion system has the highest cost.  There are millions of pounds of Uranium 

available for purchase.  The market value for uranium back in 2003 was $10.75 per 

pound, and in early 2007 the price rose to $100 per pound (ANL, 2011).  After including 

the cost of the same turbofan engine as the current Global Hawk (without the fuel lines or 
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spark plugs) and adding in the cost of the reactor, the nuclear turbine engine is clearly the 

most expensive engine.  The nuclear turbine engine is also the least available because it 

has never been developed. 

Public Acceptance 

 Of the four designs under consideration, the solar electric propulsion system 

would have the best public acceptance because there is no fuel required.  Because green 

processes are generally more accepted by the public, the solar electric propulsion system 

would have a higher public acceptance then either of the combustion engines.  There are 

no emissions from the solar electric propulsion system as opposed to the gas turbine or 

internal combustion engines.  Both the internal combustion and gas turbine engines are 

generally accepted by the public because they have been used commercially for a long 

time.  However, the diesel engine gets the edge over gas turbine because renewable 

energy (biodiesel) can be used in a diesel engine.  Although biodiesel would not be used 

with either engine because of the US military‟s requirement to use JP-8 fuel, the public 

acceptance would still be higher for the diesel engine.   

The nuclear turbine engine has the worst public acceptance because of the nuclear 

energy.  Generally, the public does not accept the use of nuclear energy in any form even 

though it has the highest specific power of any resource or method for energy production.  

The radiation from nuclear energy is not as harmful as the public generally accepts.  The 

public looks at accidents such as Chernobyl or Three Mile Island as reasons why nuclear 

energy should not be used.  The public may not be aware that 20 percent of the energy 

production for the United States comes from nuclear power (World Nuclear Association, 

2011). 
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Table 2: Comparison of the four  propulsion systems on the Global Hawk.  A 4 indicates the best 

of the systems for that particular category, followed by 3, 2, and 1.  Both the gas turbine and 

internal combustion engines require refueling before the one year time frame is completed. 

Type Nuclear 

Turbine 

Gas Turbine Internal 

Combustion 

Solar Electric 

Size & Weight 4 2 1 3 

Efficiency 1 3 4 2 

Safety 1 3 4 2 

Reliability 1 3 4 2 

Lifetime 4 1 2 3 

Fuels 3 1.5 1.5 4 

Cost & 

Availability 

1 3 4 2 

Public 

Acceptance 

1 2 3 4 

 

 

Choice of Engine 

 After careful review of all four types of engines, the choice for the design in this 

particular scenario is the nuclear turbine engine.  Because the gas turbine and internal 

combustion engines both require refueling before the one year time frame, they are not 

the best options in the future.  The main disparity between the nuclear turbine and solar 

electric options is practicality.  In order to produce the amount of power required to keep 

the Global Hawk airborne, the entire body of the aircraft must be covered with solar 

panels.  In addition, the mass and volume of the batteries required would not fit into the 

current design.  Some of the payload would have to be removed in order to support the 

space that the batteries require.  Therefore, the nuclear turbine engine is the best option 

going forward with a new superior design. 
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CHAPTER V 

 

HISTORY OF THE NUCLEAR AIRPLANE 

 

Since the use of the atomic bombs which ended World War 2, countries 

throughout the world have been researching the use of nuclear energy for many 

applications.  Many scientists and engineers have been excited about the potential of 

nuclear energy whether in a power plant or the field of medicine.   During the 1940‟s, 

many thought that nuclear power could replace all other means of creating energy.  

Power production from nuclear energy has been used across the world and has replaced 

more conventional methods of energy production.  In some countries, nuclear power is 

responsible for over 75 percent of power production.  One particular area of research 

which has never achieved an operational level is propulsion from nuclear energy.  Since 

the atomic bomb was dropped, there have been multiple attempts by many countries to 

fly an airplane on nuclear power; however, no one has successfully flown an airplane on 

nuclear fuels.  Beginning in 1946, many US government agencies began conducting 

studies about the cost and time frame of building an airplane operating on nuclear fuels.  

Funding for the nuclear propulsion of aircraft lasted until 1961, and funding for missiles 

ended in 1964.  Since that date, no one has invested significant funding in these types of 

projects. 
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Beginning of the Research 

Although the purpose of the Manhattan Project was to create an atomic bomb, the 

first research on a nuclear airplane began prior to the atomic bombs.  In 1942, Enrico 

Fermi brought the idea to propel an aircraft using the same nuclear energy from the bomb 

(Colon, 2007).  At first glance, the biggest obstacle of the design was how the radiation 

would affect the crew flying the aircraft.  Prior to 1946, most of the research involved 

discussions on possible designs and uses of a nuclear airplane.  The general consensus 

was that using nuclear power to propel a bomber could complete unlimited missions to 

Russia or other countries without landing.  Funding for the nuclear airplane project 

officially began on May 26, 1946 when the Air Force gave a contract to Fairchild Engine 

and Airplane Corporation (Stoffel, 2000).  The project was awarded 1.3 million dollars in 

FY 1946 (York, 1970).  In addition, the Nuclear Energy for Propulsion of Aircraft 

(NEPA) agency was born after the contract was awarded to Fairchild.  The two major 

goals of NEPA were determining the feasibility of creating an airplane running on 

nuclear fuel and educating the aircraft industry about the uses of nuclear energy in 

propulsion (Stoffel, 2000).  This included moderator materials, nuclear fuel, and radiation 

shielding. 

The funding required for building a nuclear airplane was enormous even back in 

the 1940‟s.  Fermi built the world‟s first nuclear reactor (shown in Figure 9) at the 

University of Chicago in December 1942.  After Fermi pulled the control rods out, the U-

235 in the reactor attained criticality.  Until 1949, the Air Force was the only acting 

government agency working with NEPA.  Fairchild Corporation was also the only private 

contractor working on the project until 1948.  At this time, a group of MIT scientists and 
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engineers, known as the “Lexington Project,” conducted a study on the feasibility, cost, 

and time table for constructing a nuclear airplane (Stoffel, 2000).  The conclusion of the 

Lexington Project was that a nuclear flight was a strong possibility with the timetable of 

15 years and funding in excess of 1 billion dollars.  In terms of science, the largest hurdle 

to overcome was not the intense radiation coming from the nuclear fuel but the 

propulsion system itself, whether it was a ramjet or a rocket engine. 

 

 

 
Figure 9: Some of the materials used by Enrico Fermi to build the first nuclear reactor 

(ThinkQuest, 1999). 

 

 

Regardless, the Atomic Energy Commission (AEC), NACA (the predecessor to 

NASA which was formed in 1958), and the Navy joined in the effort with the Air Force 

to build a nuclear airplane.  Government facilities were organized primarily at Oak Ridge 

National Laboratory and Lawrence Livermore National Laboratory.  At Oak Ridge 

National Laboratory, a large portion of the work was supporting other projects and 

organizations throughout the remainder of the nuclear aircraft research (Jordan et al, 

1957).  Finally, in 1951, NEPA had completed its primary goals of determining whether a 
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nuclear airplane could be built and therefore was renamed to Aircraft Nuclear Propulsion 

Program (ANP). 

 

General Electric’s First Attempt 

 Initially, the Air Force wanted a flight test of and experience using a nuclear 

engine regardless of application or performance characteristics.  The first contract for a 

nuclear engine, as part of the ANP, was awarded to General Electric in March 1951.  

General Electric was also awarded a contract from the AEC to develop a nuclear reactor 

for other purposes besides aircraft propulsion.  General Electric‟s proposed architecture, 

named P-1, was a direct-cycle nuclear turbojet engine designed for a supersonic jet.  The 

P-1 project used an R-1 reactor (shown in Figure 10) to heat the air in the combustion 

chamber.  This particular design uses the heat from nuclear fuel to power four separate 

turbojet engines.  General Electric‟s first timeline suggested a ground test of the engine in 

1954 and a flight test in 1957 (Stoffel, 2000).  However, in March 1953 a committee 

composed of members from the Air Force Scientific Advisory Board suggested rolling 

back on some of the funding for the nuclear airplane.  The P-1 project got cancelled in 

May 1953 because the Air Force decided that there were no military applications for this 

particular research.  At the time of cancellation, the engine and the reactor were both in 

the final development stages. 
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Figure 10: Diagram of the R-1 nuclear reactor used in the P-1 engine design by General Electric 

(Stoffel, 2000). 

 

General Electric’s Research Role 

 After the cancellation of the P-1 engine, General Electric took a research role 

towards fabricating a nuclear airplane.  Instead of using the nuclear power plant for 

aircraft propulsion, General Electric began a series of Heat Transfer Reactor Experiments 

(HTRE) to assist the construction of a nuclear airplane.  The majority of the research and 

development of General Electric‟s assistance to ANP occurred in Cincinnati, Ohio, while 

most of the testing was completed at Idaho National Laboratory.  Throughout the 

remainder of the ANP program, General Electric tried to work on the direct cycle nuclear 

turbojet engine through these HTRE experiments.  In 1951, Pratt & Whitney was 

awarded a contract to study an indirect-cycle nuclear engine where the heat from the 

nuclear reactor is added to the air through a heat exchanger (Matej, 2005).  Figure 11 
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shows an example of an indirect-cycle nuclear engine where liquid metal is heated by the 

reactor which passes through a heat exchanger in the combustion chamber of the turbojet 

engine.  Before the end of ANP, General Electric conducted three of the HTRE 

experiments. 

 

 

Figure 11: Example of an indirect-cycle nuclear turbojet engine (Colon, 2007). 

 

 The first HTRE reactor used was very similar to the R-1 used in the P-1 Program.  

HTRE-1, as shown in Figure 12, used the same control rods, actuators, and coolant 

(water) as the R-1 reactor.  The same Uranium Oxide fuel was used in the HTRE-1; 

however, it was manufactured in a different way.  The enriched Uranium Oxide was 
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mixed with Nickel-Chromium for higher reliability and strength.  Niobium was added to 

the Nickel-Chromium for improved oxidation resistance.   Beryllium was used as a 

neutron reflector on the outside of the fuel.  The test facility, as shown in Figure 13, for 

all of the HTRE testing occurred on top of a train car with turbojet engines surrounded by 

radiation shielding.  In terms of performance characteristics, the air inside the engine was 

heated to 1350 degrees F (1010 K).  Some important observation through the HTRE-1 

test included the lack of contamination of the surroundings and the continuation of the 

reaction after the fuel was damaged (Gantz, 1960).   

 

 

Figure 12: Picture of the HTRE-1 Reactor (Stoffel, 2000). 

 



36 
 

Testing for the HTRE-1 was very successful and led to the development of 

HTRE-2.  Initially, a few of the fuel elements failed on the first test; however, the test 

continued after the elements were replaced, and the reactor ran for over 140 hours (past 

the 100 hours goal) with a maximum power of approximately 20 MW (Stoffel, 2000).  In 

short, HTRE-1 met all objectives when powering one of the X-39 engines in addition to 

improving safety and maintenance operations.  However, the results of this experiment 

were not promising enough to consider using HTRE-1 on an operational aircraft.  The 

major conclusion from the HTRE-1 experiments was that flying an aircraft on nuclear 

power was a very viable option.  The HTRE-2 design was essentially the same as the 

HTRE-1 design except for an opening through the reactor down the center.  This void in 

the center of the reactor was used for test articles.  Some of the reactor fuel elements were 

removed, and to compensate for the lost fuel, four inches of Beryllium were added to 

improve the neutron reflector (Stoffel, 2000).  After four tests, the results had improved 

over those from the HTRE-1.  The temperature of the core reached over 4400 degrees F 

(2700 K), and some of the fuel elements operated for almost 1000 hours. 

 

 

Figure 13: Picture of HTRE-1 at the test facility (Colon, 2007). 
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 After many improvements from HTRE-1 to HTRE-2 through extensive testing, 

the HTRE-2 reactor was advanced to the HTRE-3 reactor.  The purpose of the HTRE-3 

design was to construct a system that could be placed on an aircraft as opposed to the 

other two which were used for feasibility studies.  The HTRE-3 reactor was significantly 

different than the previous two in terms of the moderator, overall design, and test 

experiments.  Instead of liquid water, the moderator was a solid Hydrided Zirconium, 

which allowed the air to cool the moderator.  In addition to having more fuel elements 

than its predecessors, the HTRE-3 reactor was able to power two X-211 engines as 

opposed to a single X-39 engine.  Figure 14 shows the HTRE-3 reactor connected to two 

of the X-211 engines.  Most importantly, the size and shape of HTRE-3 allowed it to fit 

into an aircraft to be used on a future mission.  By the end of 1958, HTRE-3 operated for 

over five straight days, powered two turbojet engines, and had little damage to any of the 

fuel elements.  The starting mechanism for HTRE-3 used only nuclear power as opposed 

to prior tests which had to be started using chemical power through the turbine before 

switching to nuclear power. 
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Figure 14: HTRE-3 connected to two X-211 engines without any of the support structure  

(Colon, 2007). 

 

Development of a Bomber using Nuclear Propulsion 

 Due to the apparent success of the early HTRE tests, the Department of Defense, 

along with the approval of the AEC, decided to authorize funds for development of the 

nuclear propulsion system to be used on a bomber aircraft.  Convair won a contract in 

1952 to perform radiation testing on a B-36 peacekeeper.  In 1955, during the 

development of the HTRE reactors, the AEC detailed some of the results from the 

research and recommended more funding.  This new project, now unclassified, continued 

the original contract with a new purpose of propelling the B-36 bomber with nuclear 

engines.  This particular bomber would have a ceiling of almost 40,000 feet and weigh 

over 400,000 pounds, but its most important aspect was that it had the space to 

accommodate a nuclear engine.  Coming into service in 1948, the purpose of a B-36 

Peacekeeper was the evasion of fighter jets at 40,000 feet and the ability to drop atomic 
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bombs over a 10,000 mile range (Ford, 1996).  The particular bomber used for the test 

bed was a model, shown in Figure 15, whose fuselage and cockpit were damaged by a 

tornado at Carswell Air Force Base in Fort Worth, Texas.  This was significant because 

the cockpit for the test bed (later named NB-36 Crusader) had to be replaced anyways 

because of the radiation shielding required for the crew. 

 

 

Figure 15: Picture of the B-36 Bomber and the initial proposed propulsion system (Colon, 2007). 

 

 With a clear military goal and the necessary funding, the research for the nuclear 

engine could continue with a specific goal for the first time in the history of the ANP.  

The original goal was a nuclear ground test in 1959 with a flight test shortly after.  The 

plane flew 47 separate times during the mid-1950‟s with the reactor on board (USAF, 

2010).  The reactor was operational during a handful of flights, but the airplane never 

went to complete nuclear power.  Some generals in the army were very optimistic about 

the progress during the summer of 1956.  However, more budget cuts shortly followed 

the apparent lack of feasibility for this concept, and the project was delayed.  Conflicting 
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opinions over the progress delayed significant funding: one committee wanted to see a 

plane fly as soon as possible while another wanted to focus on a suitable reactor and 

propulsion system (this happened prior to the development of HTRE-3).  Improved 

funding came back in July 1957 after more discussions between top members of the Air 

Force and the Department of Defense.  Fluctuating funding continued until the project‟s 

cancellation in 1959. 

 

Project PLUTO 

 One other project that tried to implement nuclear propulsion was Project PLUTO, 

a missile incorporating a nuclear ramjet.  A nuclear ramjet is a simple design where the 

air enters the engine through the inlet nozzle, heated by the nuclear reactor, then 

accelerated through an exit nozzle.  Project PLUTO was born in January 1957 with its 

main laboratory at Lawrence Livermore National Lab (LLNL) in Berkeley, California.  

Project PLUTO was independent of ANP and other research related to nuclear airplanes.  

The test site for its components was at a remote facility in Nevada across the desert in a 

LLNL site.   

The main goal of Project PLUTO was creating a missile which could be launched 

from the United States and reach almost anywhere in Russia.  This missile, known as the 

SLAM (Supersonic Low-Altitude Missile), would implement this nuclear ramjet design.  

However, the nuclear ramjet engine would not be able to reach supersonic flight by itself.  

Instead, a group of chemical rockets would help launch the SLAM missile to supersonic 

speed where the nuclear ramjet would take over and be able to take the missile to 

anywhere in Russia at speeds greater than Mach 4.  Figure 16 details the payload on this 
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particular missile which included a set of nuclear warheads in addition to the nuclear 

reactor.  The mission of this missile included dropping the warheads and flying over 

Russia emitting radiation from the nuclear reactor.   

Throughout its testing period, the testing for these engines was very successful.  

The Tory-IIA and Tory-IIC ramjet engines were tested on railcars in Nevada, with the 

Tory-IIC engine producing over 170 kN of thrust from over 465,000 fuel elements 

(Parsch).  The Tory-IIC engine was ready for flight testing at the time of cancellation.  

The biggest hurdle that the Project PLUTO team could not overcome was the testing.  It 

was difficult to test such a missile because of the radiation coming from the reactor.  

Therefore, testing over the United States was not an option.  Some proposed testing over 

the Pacific Ocean, but one could not test the effectiveness of the warheads dropped from 

the missile.  In July 1964, after over 250 million dollars of funding, the project was 

cancelled.  The two main reasons for cancellation were the lack of testing ability and the 

development of ICBMs.  ICBM‟s were cheaper and could reach inner parts of Russia 

without being shot down. 
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Figure 16: A Diagram of the SLAM missile (Platform389, 2004). 

 

Influence of the USSR 

 There were a couple of events during the later part of the 1950‟s which helped 

influence greater funding towards the nuclear engine research.  Because of the constant 

conflict between United States and the USSR, many United States citizens felt the need 

to beat the Russians in all aspects of life.  When the USSR launched the first satellite, 

Sputnik, into orbit on October 4, 1957, many people thought that they would launch a 

nuclear propelled aircraft soon after.  This launch also affected the mindset of those 

involved in other high-technology projects such as ANP.  Some thought that if the 

Russians could launch a satellite into orbit then a nuclear aircraft would soon follow.  

Second, there were inaccurate claims made during the late 1950‟s.  Although the USSR 

had a young nuclear aircraft program, some congressional sources claimed that Russia 

had developed and flight-tested a nuclear airplane, which was not true.  This is an 
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example of such statements coming from an article from the December 1, 1958 issue of 

Aviation Week: 

On page 28 of this issue we are publishing the first account of Soviet nuclear 

powered bomber prototype along with engineering sketches in as much detail as 

available data permits. Appearance of this nuclear powered military prototype 

comes as a sickening shock to the many dedicated U. S. Air Force and Naval 

aviation officers, Atomic Energy Commission technicians, and industry engineers 

who have been working doggedly on our own nuclear aircraft propulsion 

program despite financial starvations, scientific scoffing and top level 

indifference, for once again the Soviets have beaten us needlessly to a significant 

technical punch. 

 

Page 28: A nuclear powered bomber is being flight tested in the Soviet Union. 

Completed about six months ago, this aircraft has been observed both in flight 

and on the ground by a wide variety of foreign observers from communist and 

non-communist countries…As long as a year ago there were brief but specific 

mentions in the Soviet technical press of successful ground testing of atomic 

aircraft power plants. Recent speculative stories in the Soviet popular press 

suggest conditioning the Russian people to an announcement of a spectacular 

achievement by an atomic powered airplane in the near future, probably a non-

stop non- fueled flight around the world (York, 1970). 

It turns out that this story was false, but the public saw this and began to fear.  This article 

was not the only source of false evidence, but it was difficult to discern the truth from so 

much information feeding the public. 

 

Cancellation of all Funding 

 During the early 1960‟s, the United States was focused on the space race with the 

USSR.  In 1961, President Kennedy cancelled funding for ANP and all nuclear airplane 

projects, stating that 15 years of work and over one billion dollars were invested with no 

clear results.  This funding, as stated by President Kennedy in September 1962, was 
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moved towards the Nuclear Engine for Rocket Vehicle Assembly (NERVA) program.  

The NERVA program was a continuation of both the ANP and the ROVER program 

which started in 1956 towards developing missiles with nuclear propulsion systems.  The 

research, which was originally geared towards flying a nuclear airplane and development 

of nuclear ICBM‟s, was now directed towards space exploration.  The NERVA project 

was funded by the Air Force and the AEC for several years until 1973.  Between 1962 

and 1973, the NERVA program spent (as shown in Figure 17) over 1.4 billion dollars 

from NASA, the Air Force, and the AEC.  The nuclear research continued with over 20 

reactors built and tested during the NERVA program.  However, like the ANP, the 

NERVA program did not produce an operational propulsion system.  The NERVA 

program was cancelled in 1973 because of lack of results, loss of public acceptance, and 

the elimination of the Apollo program. 
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Figure 17: Funding levels for the ROVER program from 1956 through 1961 and the NERVA 

program which started in 1961 (Dewar, 2004). 

 

 

 

Lessons Learned from Nuclear Engine History 

 Throughout the years that followed the first uses of the atomic bomb, there are 

many lessons that can be learned from the failed attempts to create a nuclear engine for 

aircraft.  The first problem was the fluctuating funding throughout the entire ANP and 

NEPA programs.  Because of the change in funding levels, many programs were 

cancelled and restarted.  For example, the P-1 system would have been flight tested by 

1957 if the funding was not cancelled.  However, many of the generals and politicians 

involved in making the big decisions did not approve of the progress.  The important fact 

was that the science was making significant strides towards nuclear flight before funding 

levels changed.  Most programs were moving towards the required deadline of nuclear 

flight before funding was cut. 

Many of the decision makers did not understand that nuclear energy was not well 

understood prior to the beginning of NEPA, so a successful nuclear flight was going to 
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take lots of time and money.  As early as 1947, the Air Force thought nuclear flight was 

possible in five years and continued the theme “Fly Early” even if the scientists knew that 

goal was not feasible (Stacy, 2011).  This showed the detachment of the generals from 

the science and engineering.  In addition, both Pratt & Whitney and General Electric got 

funding to complete two separate engines for the same goal.  If the scientists of 1950 

understood nuclear energy as well as those in the present day, most of the funding would 

have gone towards one specific project instead of dealing it out to multiple companies.  

The Lexington project predicted that a nuclear flight was probable after fifteen years and 

one billion dollars back in 1946.  In 1961, the project spent fifteen years and 

approximately one billion dollars before all funding was cut without a successful nuclear 

flight.   

Another key lesson learned from the ANP program was that there was no clear 

reason for sustaining a nuclear flight other than to just do it.  At the beginning of NEPA, 

the Air Force wanted to develop a nuclear airplane as quickly as possible after 

determining its feasibility.  However, with funding from the Department of Defense, 

there needed to be a clear objective for sustaining nuclear flight.  By the time a military 

objective was determined in 1955, too much funding was used on other projects with 

little in common.   

Finally, the last lesson learned from the history of the nuclear airplane research is 

the influence of the public.  Given that most of this work was classified until the late 

1950‟s, the public did not know about the research on nuclear airplanes.  However, once 

the public discovered the research through the politicians and news articles, many wanted 

to see a nuclear airplane fly because of the psychology of beating the Russians.  The 
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influence of the public allowed certain aspects of the ANP program to continue even if 

they were not going to succeed.  At this point in time, the public was just starting to learn 

about nuclear energy, but they did not know about any side effects such as radiation. 

The main point from the history of the nuclear airplane is that the science and 

engineering developed during the ANP program made a nuclear flight attainable, but 

there were too many hurdles and bumps along the way to make it possible. 
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CHAPTER VI 

 

PROPOSED SYSTEM 

 

 From the trade-off analysis, the choice of propulsion system for the Global Hawk 

depends on many different situations.  For a private company where reliability and cost 

are the driving factors, either the internal combustion or the gas turbine systems would be 

the best option.  If a politician is trying to support a design where public acceptance is 

important, the solar electric system may be the best choice.  If the military is proposing a 

design where performance is more important than cost, the nuclear turbine engine would 

be the optimum choice. 

 

Chosen Design 

 The chosen design using nuclear fuel is a nuclear turbine engine.  There are two 

major changes to the current propulsion system on the RQ-4A Global Hawk.  The first is 

the elimination of jet fuel in the combustion chamber of the turbofan engine to be 

replaced by a nuclear reactor attached to the central shaft using a set of bearings.  The 

bearings allow the central shaft to rotate but not the reactor itself.  The second change is 

the expansion of the compressor and turbine so that the bypass ratio decreases from 5 to 

2.5. 

Fuel 

 In deciding which fuel to use, there are two possible designs for the nuclear 

turbine engine: reactor and General Purpose Heat Source (GPHS).  The reactor design 
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would use one reactor attached to the central shaft.  The General Purpose Heat Source 

design uses a series of GPHS modules attached to the central shaft. 

 For the reactor design, the most available fuel is Uranium-235.  Uranium-235 has 

a specific energy of 88 MJ/kg, meaning that, theoretically, 88 MJ of heat are released for 

every one kilogram of U-235 reacted.  In the reactor itself, the Uranium is in the form of 

UO2 in a Tungsten matrix.  The ratio of tungsten to fuel is 60-40, and graphite is the 

moderator.  The fuel must be enriched Uranium-235 because the size and weight of the 

reactor is less than that of natural-Uranium reactor.  For the design, the fuel matrices are 

placed in a circle around a Beryllium core which acts as a reflector for the neutrons.  In 

order to cool the reactor, cooling tubes are placed inside the reactor.  During the NERVA 

program in the 1960‟s, the reactors were cooled through the use of cooling tubes which 

were adjacent to the fuel rods themselves.  However, the incoming air will also cool the 

reactor, so a powerful coolant system is not necessary.  Power can be extracted from both 

a nuclear reactor and a GPHS. 

 For the GPHS design, the best fuel available for use is Pu-238.  Pu-238 GPHS‟s 

have been used in space on Cassini and other space-probes as a power source.  Unlike a 

reactor, the radioactive decay from Pu-238 produces enough heat to generate electricity.  

GPHS units are reliable and can produce both power and heat.  These heater units can 

help produce up to 900 Watts of electrical energy even at low efficiencies.  Some future 

space missions have planned on using over 100 of these heater units for electricity and 

heat.  Plutonium fuel production is one of the most important areas of research for the 

Department of Energy and NASA.  The United Kingdom has a large stockpile of PuO2 

which could be used to make Pu-238 (Beach et al, 2009). 
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Possible Designs 

 There are many possible designs for using a nuclear fuel in a power or propulsion 

system for a UAV.  The nuclear fuel must replace the heat from the jet fuel.  One clear 

advantage of using a nuclear fuel is the elimination of fuel lines and tanks for the jet fuel.  

This eliminates not only the valves and injectors but also decreases the overall weight of 

the aircraft.  Therefore, performance characteristics such as range and lift can increase 

based solely on the decrease in weight of the aircraft.  To use nuclear fuel, either a reactor 

or a series of GPHS modules must be implemented inside the gas turbine engine.  In a 

smaller aircraft, a series of GPHS modules can be used because the amount of heat 

required is smaller.  GPHS modules have been proven to be more reliable than a reactor. 

 For a smaller UAV such as a Predator, a series of GPHS modules could be used 

inside the combustion chamber.  Currently, the Predator uses an internal combustion 

engine to drive the propellers.  The MQ-1 Predator carries about 700 pounds of fuel at 

take-off in addition to the weight of the tank which holds the fuel (USAF, 2009).  In 

order to implement a nuclear propulsion system, the internal combustion engine could be 

replaced with a gas turbine engine and a series of GPHS modules.  One study claims that 

a GPHS module can produce maximum temperatures of 2400K (El-Genk and Tournier, 

2004).  A GPHS module can produce heat only instead of heat and electricity (although 

most are designed to produce both as part of an RTG unit).  Therefore, the GPHS 

modules could produce not only the heat required to produce thrust through the engine 

but also assist in generating the electrical power required to operate all of the equipment 

onboard the aircraft.  The GPHS modules could be arranged inside the combustion 

chamber to optimize the heat transfer between the air and the GPHS module.   
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For the MQ-1 Predator in particular, a nuclear fuel may not be the best option 

because this UAV is designed for combat purposes in addition to reconnaissance.  As a 

result, this UAV needs to land after it fires missiles and drops bombs so that it can reload.  

Unless this Predator can carry one year worth of weapons, it is not practical to use a 

nuclear fuel on this aircraft.  However, a UAV of similar size could benefit if its main 

purpose is reconnaissance only. 

 For a larger UAV such as the Global Hawk, a nuclear reactor could be used as the 

heat source.  As a replacement for the jet fuel, a nuclear reactor produces more heat for a 

longer period of time than jet fuel.  The difference in weight between the jet fuel and the 

nuclear reactor is more relevant in larger aircraft.  The Global Hawk stores over fifteen 

thousand pounds of jet fuel at take off (USAF, 2009).  Based on the current time of flight 

and weight of the fuel, a nuclear reactor saves over one million pounds of jet fuel.  The 

nuclear reactor also produces enough power to operate the necessary electronics on the 

aircraft.  Nuclear reactors also eliminate the fuel tank and any fuel lines or valves 

necessary to transport fuel to the combustion chamber.   

The chosen design involves a nuclear reactor instead of a series of GPHS modules 

for a variety of reasons.  The heat required to substitute jet fuel for nuclear fuel is too 

high to incorporate a series of GPHS modules.  The reactor design is safer because one 

large reactor is less likely to get dislodged by the incoming air than a series of smaller 

GPHS modules.  The reactor design is also more efficient because there air will not 

stagnate behind the large reactor as opposed to the series of GPHS modules.  Therefore, 

the modified engine used in the design of the nuclear propulsion system for the Global 

Hawk involves a reactor instead of a series of GPHS units. 
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Incorporating the nuclear reactor in the gas turbine engine can be challenging.  

One way to consider using the reactor is by placing it inside the combustion chamber.  

The reactor can have the shape of a cylinder and can be attached inside the combustion 

chamber.  This option is very similar to using a series of GPHS modules.  In a typical gas 

turbine engine (a turbofan engine), some of the air enters the turbojet section and passes 

through the combustion chamber while most of the air travels through the turbofan 

section around the combustion chamber on the outside.  In this scenario, the air entering 

the combustion chamber flows over the nuclear reactor.  This not only helps to cool the 

reactor but also heats the air in the same way as the combustion of jet fuel.   

The geometry of the reactor is important in order to create the highest efficiency 

of heat transfer between the air and the fuel.  Another option is changing the shape of the 

reactor into an annular cylinder (a cylinder with a hole through the center).  By using this 

type of design, the combustion chamber can be taken out completely.  Therefore, the 

reactor can be placed in the middle between the compressor and the turbine.  The air that 

used to travel through the combustion chamber now traverses through the middle of the 

reactor.  The turbofan section of the engine is not altered by the changes to the turbojet 

section.  The amount of heat transferred to the air increases significantly, and the 

efficiency of the new reactor (when compared to the combustion chamber) increases.  

The increased surface area visible to the air flow also helps to cool the reactor. 

Current Engine Used 

 The current gas turbine engine used on the RQ-4A Global Hawk is the 3007A 

turbofan engine placed on top of the fuselage.  Shown in Figure 18 and Figure 19, this 

particular engine has a diameter of 0.98 meters and a length is 2.92 meters.  This engine 
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produces over 7600 pounds of thrust.  These engines, like most engines for the US 

military, operate on JP-8 which has a heating value of approximately 44 MJ/kg.  For the 

RQ-4A Global Hawk, the mass of the fuel at take-off is over 50 percent of the weight of 

the aircraft (USAF, 2009).  This engine has a bypass ratio of 5 which means that five 

parts of air enter the turbofan portion of the engine for every one part of air that enters the 

turbojet portion.  This particular design allows for a higher specific thrust (thrust per 

mass flow rate of air entering the engine) than if every part of air enters the turbojet 

section.  The pressure ratio across the compressor is 23 using a series of compressor 

blades, and the total mass is 1644 lbs (Rolls-Royce, 2006).  The most important aspect of 

these engines is reliability.  Over 2,600 engines have been assembled and used across the 

military as well as civilian transport. 

 

 

 
Figure 18: Picture of the Rolls-Royce AE 3007 turbofan engine used in the RQ-4A Global Hawk 

(Rolls-Royce, 2006). 
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Figure 19: Inside of the AE 3007 (Aerospace.org, 2010). 

 

Modified Design 

 Because a completely new design is not only impractical but extremely expensive, 

modifications are made to the current design.  In order to replace the jet fuel with a 

nuclear reactor in the reactor chamber (formally known as the combustion chamber), the 

dimensions of the engine must be modified.  In order to increase the heat transfer to the 

incoming air, the bypass ratio decreases from 5 to 2.5, which means more air enters the 

reactor chamber of the engine.  Because the specific fuel consumption (using a nuclear 

fuel) does not depend on the volume of the heat exchanger, an expansion of the reactor 

chamber does not necessarily lower the efficiency.  However, an expanded volume 

allows for a larger reactor and more heat transfer between reactor and air.  The original 

cross-sectional inlet area of the compressor was 0.125 m
2
.  In the modified design, this 

area is increased to 0.215 m
2
.  Beyond the increased volume of the heat exchanger 

portion, the advantages of this include more available thrust and possible increases in 

pressure ratio (assuming this leads to a more efficient use of the reactor).  Some 

disadvantages include integrating larger fan blades into the compressor and turbine 



55 
 

(which leads to an increase in total weight of the engine) as well as increase in cost to 

design such a system.   

Modifications to the combustion chamber are also necessary in order to 

implement a new fuel.  It is difficult to obtain data on the actual size of the combustion 

chamber from the current design.  However, in the new design, the length of the heat 

exchanger portion is 1 meter (longer than the original design) which allows for use of a 

larger reactor in the reactor chamber.  Although the volume available to place the reactor 

is increased, the pressure ratios across both the compressor and turbine may decrease 

because of the shortened axial length of each section.  The shape of the reactor is an 

annular cylinder.  Using a set of bearings, this reactor is attached to the central shaft 

which runs axially through the entire engine.  Therefore, the reactor does not rotate with 

the central shaft to allow for greater heat transfer and improved safety. 

 Testing is required to determine the correct amount of heat produced by the 

reactor.  Based on the average heating value of jet fuel (42 MJ/kg), the maximum amount 

of thrust produced by the engine (7600 lbs of thrust), and an estimation of the Thrust 

Specific Fuel Consumption (TSFC at 1       
           ), the required amount of heat for 

the reactor should be approximately 50 MW thermal.  However, this first estimate does 

not take inefficiencies in the combustion of the fuel or the estimation of the TSFC.  In 

addition, a 50 MW thermal reactor is too large to fit into the heat exchanger portion of the 

modified engine.  On the contrary, the elimination of the fuel tank saves over 15,000 lbs 

of mass on the engine.  Therefore, the thrust required to keep the same performance 

decreases substantially.  The amount of heat necessary to maintain the current 

performance is also less than 50 MW thermal. 
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Diagrams of the Design 

 The remaining figures in this chapter illustrate the concept of using a nuclear 

reactor as the heat source instead of jet fuel.  Figure 20 shows the major parts of the 

engine which include the central shaft, nuclear reactor, compressor-turbine sleeve and 

engine sleeve.  The central shaft is gray, the nuclear reactor is blue, the compressor-

turbine sleeve is yellow, and the engine sleeve is black.  Figure 21 shows the nuclear 

reactor attached to the central shaft.  For this particular design, the inside diameter of the 

reactor is 0.1 meters while the outside diameter of the reactor is 0.3 meters.  The length of 

the heat exchanger portion is 1 meter while the length of the reactor is 0.8 meters.  

Therefore, air can travel through the center of the reactor or around the outside.  The 

outside diameter of the heat exchanger portion is 0.45 meters.  There would be some 

apparatus attached to the reactor to funnel the air inside or divert the air outside of the 

reactor so that a blunt surface does not impede the incoming air flow.   

 

 

 
Figure 20: All 5 parts of the engine (Photo by Doug Carlock, Vanderbilt University). 
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Figure 21: Reactor attached to the central shaft (Photo by Doug Carlock, Vanderbilt University). 

 

 

Figures 22-24 show the sleeves attached to the engine.  In Figure 22, the 

compressor-turbine sleeve surrounds the reactor and is attached to the central shaft from 

Figure 21.  One row of the compressor blades is shown in this diagram.  The inlet and 

outlet diameters are both 0.6 meters.  Figure 23 shows the inlet of the entire assembled 

engine.  There is also an inlet fan which covers the entire inlet area that is not shown in 

the diagram.  The bypass ratio of 2.5 is more clearly shown in this figure.  The length and 

inlet diameter of the nuclear engine are the same as the current engine.  Figure 24 shows 

the outlet of the entire engine.  The diameter of the engine sleeve for the current engine 

stays the same throughout the entire length.  The diameter of the new engine sleeve at the 

outlet shrinks to 0.5 meters in order to decrease the outlet area and produce more thrust.  

However, the current engine expands the turbine outlet area to cover most of the engine 

outlet area instead of decreasing the diameter of the engine skirt. 
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Figure 22: Compressor-turbine sleeve surrounding the reactor (Photo by Doug Carlock, 

Vanderbilt University). 

 

 

 

 

 

 

Figure 23: Inlet of the nuclear engine without the inlet fan (Photo by Doug Carlock, Vanderbilt 

University). 
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Figure 24: Outlet of the nuclear engine (Photo by Doug Carlock, Vanderbilt University). 

 

Wing Design 

 The wing for the Global Hawk is a single-wing design which is manufactured by 

Vought Aircraft Industries.  The design for the RQ-4A is 116 feet long while the wing for 

the RQ-4B is 130.9 feet.  The wing for the RQ-4B weighs over 4,000 pounds (Defense 

Talk, 2005).  Although data for the RQ-4A is unavailable, the weight of the wing is 

similar to the one used on the RQ-4B because both aircraft are have a similar structure.  

Using the nuclear engine instead of the gas turbine engine, the wing design does not need 

significant changes because the lifting force required to keep the same performance 

characteristics is smaller.  In addition, there are no increases in forces or stresses on the 

wing due to the engine change.  However, the center of mass of the aircraft would 

definitely change, so the placement of the wing on the UAV may change.  Because the 

amount of lift required is smaller with the new engine implemented, the wing may not 

need to be 116 feet long. 
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Changes in Materials 

 There are some materials on the current engine that may not work with the new 

nuclear engine.  The central shaft in the nuclear engine is exposed to more heat than the 

current engine because the reactor is attached to the central shaft.  Due to the geometry of 

the nuclear reactor inside the reactor chamber, the central shaft is less than 25 cm away 

from the inside shell of the reactor.  In the current design, because the fuel lines are 

placed on the inside of the wall between the combustion chamber and turbofan portion, 

the combustion process occurs further away from the central shaft.  In addition, the peak 

temperature inside the combustion chamber of the current engine is lower than the peak 

temperature next to the reactor.  Alloys, thermal coatings, and heat treatments may not be 

enough to keep the central shaft from failing.  Increased insulation is necessary to keep 

the reactor attached to the central shaft.  The turbine blades should not have to change 

because the properties of the air in the turbine of the current engine are similar to those in 

the new nuclear engine. 

 There are a few consequences to changing the bypass ratio from 5 to 2.5.  The 

overall mass of the engine increases slightly because of the larger inlet area to the 

compressor.  In addition to attaching a nuclear reactor to the central shaft inside the 

reactor chamber, the larger compressor and turbine blades add more mass to the nuclear 

engine.  The stresses caused by the increase in mass can influence other parts of the 

nuclear engine.  The design of the compressor and turbine blades has to change in order 

to accommodate the larger inlet area.  Because of the new designs, the compressor and 

turbine pressure ratios could change.  It is important to keep these ratios similar to those 

from the current design in order to maintain or increase the performance of the engine. 
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Public Acceptance 

 There has never been general public acceptance of using nuclear fuels for power 

production or propulsion.  The rewards of using a nuclear system come with much 

greater risks which the general public feels is not worth it.  In general, many feel that 

nuclear power is not a mature technology and there are too many unknown risks 

involved.  In addition, there are concerns about the hazardous waste created from using 

nuclear power or the radiation associated with fuel.  However, many recent polls show 

that the popularity for using nuclear power is increasing based on the amount of 

greenhouse gases emitted from other power sources, the foreign dependency on oil and 

other power sources, and the growing demand of power production. 

The technology of the nuclear reactor itself has been proven during the NERVA 

program throughout the 1960‟s and 1970‟s.  During this time period, nuclear reactors 

designed for space propulsion were built and tested with high Technology Readiness 

Levels.  Some nuclear reactors produced over 4,000 MW of thermal energy.  For this 

particular project, the Air Force is using the nuclear fuel for defense purposes, so the 

public acceptance may be different than building and operating nuclear power plants.  In 

the end, it is difficult to accurately judge the views of the public on the issue of using 

nuclear fuels for power or propulsion. 

Safety 

Safety is a major concern for the nuclear engine especially because this 

technology is relatively new and untested.  Because this vehicle does not have a crew on 

board to pilot the craft, the radiation from the reactor should not be a factor.  Reactors 

used for space propulsion have an excellent track record in terms of safety.  However, in 



62 
 

terms of safety, nuclear space propulsion is different from nuclear air-breathing 

propulsion.  No nuclear reactor that left Earth‟s atmosphere has re-entered and caused 

damage (Kulcinski, 2004).  If the UAV crashed, the reactor still would emit radiation into 

the atmosphere.  Therefore, radiation shielding around the reactor has to be a top priority.  

Even so, there is only one engine on the Global Hawk (unlike many similar vehicles 

which have two or more).  If the engine fails, the Global Hawk could have trouble 

landing; however, at 60,000 feet of elevation, the controller has enough time to safely 

land the Global Hawk.  These are issues that have to be resolved (in addition to the 

design problems of the current engine). 

Availability of Fuels 

One of the reasons for using a reactor instead of a GHPS is the availability of 

Uranium and the lack of available Plutonium.  Nuclear subs, aircraft carriers, and civilian 

reactors currently use U-235, so availability would not be a problem.  The Department of 

Energy has been interested in starting up Pu-238 production; however, the Plutonium 

production is intended for space missions only.  There is enough enriched U-235 for 

research, testing, and implementation of a nuclear turbine engine. 

Economics 

 Among other factors, the major cost of production (over and above the cost of the 

current engine) for the nuclear engine is the fuel.  The technology of the reactor itself has 

already been proven.  The fuels for these reactors are not expensive, and the United 

States has a stockpile of Uranium.  The main cost is producing the enriched Uranium 

from the stockpile of natural Uranium.  Although the cost of jet fuel for a year exceeds 

one million dollars, the amount of Uranium needed to test and fuel the nuclear engine 
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may cost more than the jet fuel.  By eliminating the jet fuel, all of the fuel lines and the 

fuel tank are eliminated, thus cutting some costs.  The change to the bypass ratio also 

provides extra costs of research, materials, and vehicle integration.  The new turbine and 

compressor blades as well as the larger compressor-turbine sleeve add weight to the 

nuclear engine and additional costs to research and manufacture.  The nuclear engine was 

designed to have the same outside dimensions to keep the costs at a minimum.  Other 

costs of manufacturing could include radiation effects on the electronics and the finite 

element analysis throughout the reactor chamber to determine the performance 

characteristics and the proper amount of fuel.  One must also consider the next best 

alternative to keeping constant surveillance on a region.  Using the current engine, it is 

possible to build multiple Global Hawks so that when one runs out of fuel, another is 

waiting to take over the surveillance. 

Probability of Production 

 The chance that a private company or a government entity builds this nuclear 

engine is extremely low because of the risks involved, lack of profitability, and politics.  

A private company would never build the nuclear engine because the costs are too high.  

Only a UAV could implement this new engine, and only the Department of Defense 

could afford the cost and risk to manufacture such a vehicle.  In addition, the Department 

of Defense would look back at history and decide that there is too little reward for such a 

risk.  The risks for a private company are too high based on the research needed to 

integrate the nuclear reactor with the rest of the engine.  Building a brand new engine as 

opposed to a proven technology is also extremely costly.   The reward for building such 

an engine is too low for the risks (in terms of safety and economics).  Because funding 
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for this project would hate to come from the Department of Defense, the purpose of 

implementing nuclear fuels must exceed the public‟s view.  Assuming that someone 

builds this engine, all of the components and systems outside of the propulsion system 

must be able to operate for a year without maintenance.  This means that more money 

and research must go into other components and systems throughout the Global Hawk. 

 

Critical Assessment 

 There are many benefits in using nuclear power over chemical fuels or solar 

energy.  No other fuel available can produce the amount of energy per unit mass as 

nuclear energy.  The amount of power available makes nuclear power a better choice for 

fuel than any other option.  RTG‟s are very reliable sources for power and have been 

proven in many different situations such as space travel.  When compared to chemical 

fuels, a nuclear turbine engine can stay airborne for a much longer time.  The best aspect 

of using nuclear fuel is the amount of energy available per unit mass.  In aerospace 

applications, the propulsion system is normally the driving factor for designing all other 

systems related to the vehicle.  Because of the higher energy per unit mass of nuclear 

energy, RTG‟s and radioactive nuclear isotopes are attractive in propulsion research and 

design.  When comparing the mass of fuel required for the Global Hawk to remain 

airborne for a year, a nuclear engine requires far less than the 3.7 million pounds of 

chemical fuel. 

 There are some serious drawbacks to the nuclear turbine engine because the 

technology is still under development.  One problem is attaching the nuclear reactor to 

the central shaft.  The reactor itself has a maximum temperature of 2500K, and this 
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reactor must attach to the central shaft through the support of bearings.  The materials 

needed to keep the nuclear reactor attached must have a very high melting temperature.  

In addition, the high pressure and velocity of the air moving through the reactor chamber 

could dislodge the reactor from the central shaft.  The control for different amounts of 

heat transfer is also difficult.  The amount of heat transfer through the engine is different 

for take-off, cruising altitude, and landing.  The reliability of this design is also low 

because there are no nuclear turbine engines used on the scale of the Global Hawk.  The 

design seems like the best performance in theory, but the system must be used in a real 

world situation in order to be considered reliable.   

One other problem is maintenance for the equipment on the Global Hawk.  If the 

UAV needs to land before its mission is completed, the reactor is still operating and 

continuing to produce heat.  The radiation levels would subside after a given period of 

time, but repairing an engine while the reactor is still 2000K would be very difficult.  It is 

impractical to start and stop the reactor every time it lands.  During the B-36 missions, 

some suggestions for ground support included remotely operated manipulators, 

surrounding the reactor with extra shielding on the ground, or removing the reactor 

(Gantz, 1960). 

The economic risks of the nuclear turbine engine are almost too great for 

production.  The cost of the materials required for the nuclear turbine is extremely high.   

When considering the estimated cost of the Global Hawk is already 37.6 million dollars, 

the amount of funding required to engineer a nuclear turbine engine could purchase 

multiple Global Hawks (USAF, 2009).  Many of the materials inside the reactor chamber 

would also need special heat treatments to prevent thermal damage from the intense heat.  
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It would also be difficult to design a nuclear UAV in the US military because of such a 

low public acceptance for nuclear power.  One of the most important drawbacks is the 

safety of the nuclear fuel itself.  The nuclear fuel could get in the wrong hands or stolen.  

If the Global Hawk crashes or is shot down, the damage to the reactor could cause 

radiation damage.  Luckily, if the enemy could capture the reactor, the fuel itself is 

designed such that a bomb could not be made. 
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CHAPTER VII 

 

CFD MODELS OF THE ENGINE 

 

 In order to measure the performance without building a prototype, the nuclear 

turbine engine can be modeled using a computer program.  In this chapter, details and 

performance values of the engine are modeled using ANSYS Gambit and ANSYS Fluent.  

Once the engine is modeled in Gambit, the fluid dynamics are evaluated in Fluent 

through a series of simulations. 

 

Constructing the Model 

 The model itself is built to the same specifications as the engine described in the 

previous chapter.  However, the compressor section is left out of the model because the 

details of the compressor itself are proprietary information.  The performance of the 

compressor is available, and these conditions are used in the inlet of the reactor chamber.  

Figures 25-28 show the details of the engine modeled in Gambit.  The model starts with 

the turbofan section surrounding the turbojet section.  The inner radius of the turbofan 

section gradually decreases after the air enters turbine portion.  The turbojet section 

begins with the reactor itself which occupies most of the reactor chamber.  There is a 

semi-toroid attached to the front of the reactor to funnel the air towards the inside of the 

reactor.  After the reactor chamber, the outer radius of the turbojet section begins to 

increase as the air enters the turbine portion.  There is an end-cap at the aft of the engine 
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to decrease the cross sectional area and increase the velocity.  The Rolls-Royce engine 

has a similar item on the back of its engine. 

 The mesh for the model was created using less than one million volume-mesh 

units, the limit for the computer.  Although it encompasses three times more volume than 

the turbojet section, the turbofan section only has 73,500 volume elements compared to 

the 795,000 of the turbojet section because the flow is not as complicated.  A more 

refined mesh for the turbofan section would not affect the results because the flow does 

not change as drastically as the turbojet section.  For most of the simulations, the turbofan 

and turbojet sections run separately in different simulations.  The size of the volume 

elements close to the central shaft and the reactor are much smaller in order to get a more 

precise flow field. 

 

 

 
Figure 25: Entire engine modeled in Gambit. 
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Figure 26: Turbofan section of the engine.  The inside wall is the barrier between the turbofan and 

turbojet sections. 

 

 

 

 

 

 
Figure 27: The turbojet section of the engine. 
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Figure 28: The reactor modeled in Gambit.  The central shaft runs down the center of the reactor. 

 

 

The Simulation Set-Up 

 Simulations for ground conditions as well as altitudes of 20,000, 40,000, and 

60,000 ft are run in ANSYS Fluent under 3-dimensional double-precision set-ups.  The 

solver used is a Pressure-Based Implicit solver using steady conditions with a superficial 

velocity.  The model includes the Energy Equation and Viscous Heating to measure the 

temperature and the k-epsilon model for turbulence.  In terms of the material properties 

of the air, the density is measured as an ideal gas while the Cp, thermal conductivity, and 

viscosity are held at constant values.  The operating pressure is the atmospheric pressure 

at the altitude of the simulation conditions.  The discretization scheme is First Order 

Upwind for density and turbulence while Second Order Upwind is used for momentum 

and temperature.  The under-relaxation factors are all reduced from initial values because 

of the complexity of the mesh. 
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 Each boundary has a unique purpose throughout the simulation.  The wall 

between the turbojet and turbofan sections and the exterior boundary of the engine are 

arbitrary walls.  The central shaft is defined as a rotating wall at 1675       which is the 

equivalent angular velocity of the current Rolls-Royce engine.  The reactor does not 

rotate at the same angular velocity as the central shaft because of the support of the 

bearings.  In addition, the reactor temperature is set to 2500K.  The reactor chamber inlet 

and the turbofan inlet are both mass-flow inlets.  The mass flow rates entering each 

section of the engine are determined by knowing the cross-sectional area, velocity of the 

air determined by the speed of the UAV (since the top flight speed is proprietary 

information, each simulation runs at Mach 0.6), and the density determined by the 

pressure increase across the compressor and the temperature of the atmospheric 

conditions.  The turbofan outlet and the turbine outlet are both exhaust fan outlets with a 

target mass flow rate equal to the inlet conditions.  All inlets and outlets use the 

turbulence intensity and length scale of 8% intensity on a 1 meter length scale. 

 

Take-Off Conditions 

 

 The first simulation occurs at ground conditions.  The air is at room temperature 

conditions of 300K and pressure of 1 atm.  However, these conditions can vary because 

the Global Hawk may take off from the dry desert of Edwards Air Force Base in 

Southern California.  Temperatures can reach as high as 315K in very dry conditions.  

For the take-off scenario, both the turbofan and turbojet sections of the engine are 

modeled together.  The turbofan section has a small compressor which doubles the 

pressure while the turbojet section has a compressor which can multiply the pressure by a 
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factor of 23, the actual pressure ratio in the current engine.  At the inlet of the engine, the 

air has just left the compressor to enter the reactor chamber.  At ground conditions, the 

mass flow rate of the turbojet section is 90 
  

   while the turbofan section has a mass flow 

rate of 225     . 

 Figures 29-31 show conditions of static temperature, static pressure, and velocity 

throughout a cross-section of the engine at ground conditions.  The temperature of the air 

is highest when it is close to the reactor which is indicated by the red and yellow border.  

The air immediately beyond the reactor chamber reaches temperatures of 1500K before 

exiting the engine at a static temperature of 500K.  The temperature in the turbofan 

section does not vary more than 100K from entrance to exit.  The pressure for both 

turbofan and turbojet sections starts high towards the front of the engine before dropping 

to atmospheric at the exit.  The velocity of the turbofan section increases at almost a 

constant rate between entrance and exit because of the decrease in pressure and cross-

sectional area.  The velocity of the turbojet section is highest beyond the center of the 

reactor.  There is some rotation in the flow along the central shaft between the back of the 

reactor and the entrance to the turbine portion.  In addition, the flow slows down 

considerably along the central shaft throughout the turbine portion.  The velocity is 

highest in the turbojet portion at a larger radial distance from the central shaft. 
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Figure 29: Static temperature contours at ground conditions. 

 

 
Figure 30: Static Pressure contours at ground conditions. 
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Figure 31: Velocity vectors at ground level. 

 

Simulations at Various Altitudes 

 Since the Global Hawk has a maximum altitude of 60,000 ft, simulations are run 

with conditions at 20, 40, and 60 thousand feet.  Table 3 shows the atmospheric 

conditions used in the different simulations.  In these particular simulations, the turbojet 

and turbofan sections are run separately to view the diagrams more effectively.  In all of 

these simulations, the inlet pressure is still increased by a factor of 23 for the turbojet and 

2 for the turbofan while the inlet temperature drops according to Table 3.  The change in 

density due to change in altitude alters the inlet mass flow rate in all simulations; 

however, the inlet velocity and area do not change.  Figures 32-51 show temperature, 

pressure, and velocity throughout the engine at various altitudes. 
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Table 3: Atmospheric conditions at various altitudes. 

Altitude (ft * 1000) Pressure (kPa) Density (kg/m
3
) Temperature (K) 

0 (ground) 101.3 1.18 300 

20 46.61 0.652 249 

40 18.82 0.302 217 

60 7.24 0.116 217 

 

 

 

 

 

 

 

 

 

 
Figure 32: Static pressure in the turbofan section at 20,000 ft. 
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Figure 33: Static pressure in the turbojet section at 20,000 ft. 

 

 
Figure 34: Static temperature in the turbofan section at 20,000 ft. 
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Figure 35: Static temperature in the turbojet section at 20,000 ft. 

 

 

 
Figure 36: Velocity vectors in the turbofan section at 20,000 ft. 
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Figure 37: Velocity vectors in the turbojet section at 20,000 ft. 

 

 
Figure 38: Velocity vectors immediately beyond the reactor in the turbojet section at 20,000 ft. 
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Figure 39: Velocity vectors entering the turbine portion of the turbojet section at 20,000 ft. 

 

 
Figure 40: Static pressure in the turbofan section at 40,000 ft. 
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Figure 41: Static pressure in the turbojet section at 40,000 ft. 

 

 

 
Figure 42: Static temperature in the turbofan section at 40,000 ft. 
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Figure 43: Static temperature in the turbojet section at 40,000 ft. 

 

 
Figure 44: Velocity vectors in the turbofan section at 40,000 ft. 
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Figure 45: Velocity vectors in the turbojet section at 40,000 ft. 

 

 
Figure 46: Static pressure in the turbofan section at 60,000 ft. 
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Figure 47: Static pressure in the turbojet section at 60,000 ft. 

 

 

 
Figure 48: Static temperature in the turbofan section at 60,000 ft. 
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Figure 49: Static temperature in the turbojet section at 60,000 ft. 

 

 
Figure 50: Velocity vectors in the turbofan section at 60,000 ft. 
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Figure 51: Velocity vectors in the turbojet at 60,000 ft. 

 

 Table 4 shows the data from all of the simulations completed at the various 

altitudes.  The maximum temperature values show the need for heat-treated materials 

used inside the reactor chamber.  The mass flow rates are inputs based on the density, 

velocity, and cross-sectional area of the engine.  These flow rates also take into account 

the inlet fan in front of the engine.  The thrust values are listed in Table 4 to compare 

with the thrust capability of the current engine.  Given that the thrust of the current 

engine is 42 kN, the new engine compares quite well considering that approximately half 

of the mass from the jet fuel is eliminated.  Although the maximum thrust capability of 

the new engine does not reach 42 kN, the new max thrust of 23.4 kN creates a larger 

thrust-to-weight ratio (0.463) than the current engine (0.355).  Therefore, the new engine 
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would work just as well as the current engine given that half of the take-off mass is 

eliminated. 

 

 

Table 4: Data from all of the simulations. 

Altitude 

(ft*1000) 
  turbojet (kg/s)   turbofan (kg/s) Maximum Temperature 

of air (K) 

Thrust 

(kN) 

Ground (0 ft) 90 225 1520 23.4 

20 80 200 867 22.6 

40 50 125 897 15.9 

60 30 75 830 10.0 
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CHAPTER VIII 

 

CONCLUSION 

 

 Based on the results from the comparisons of similar propulsion systems, CFD 

models, and history of nuclear research, it is shown that a nuclear turbine engine is a 

viable option to replace the gas turbine engine.  More than half of the current Global 

Hawk‟s wet mass is fuel, and this amount of fuel lasts about 100 hours.  Fossil fuels can 

only produce a small amount of power compared to nuclear energy.  A nuclear turbine 

engine can outperform the gas turbine, internal combustion, and solar electric propulsion 

systems.  From the previous history of nuclear airplane research, the Global Hawk can 

successfully implement a nuclear turbine engine if the funding is adequate.  Although 

radiation can affect the materials and systems on the Global Hawk, there are no emissions 

from the fuel itself.  The CFD models show that the nuclear turbine engine has a higher 

thrust to weight ratio than the current Rolls-Royce engine.  Nuclear fuels are the future 

for power production, and a military UAV would be a great start towards future research.  

The big decision is whether the cost of keeping constant surveillance on a region for a 

year or more is economically viable, and this determination falls on the US Congress and 

the military. 
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Future Work 

 Most of the current research in airplane propulsion systems is aimed at improving 

the efficiency of the current systems as opposed to designing replacements.  There is also 

research in improving fuel injection to improve thermal efficiency.  Although the Carnot 

efficiency of gas turbine engines is around 60 percent, the thermal efficiency from the 

fuel is between 30 and 35 percent.  Material science is also a main object of research for 

gas turbine and internal combustion engines.  Improving thermal coatings for materials in 

the combustion chamber can increase the maximum operating temperature.  This can 

increase the efficiency or performance of the engine by increasing the maximum 

temperature in the combustion chamber.  For nuclear engines, a large amount of research 

is still needed before it can be implemented.  It is possible to use the nuclear reactor in a 

ramjet engine so that the compressor and turbine can be completely eliminated.  

Alternative materials also need to be researched in order to make a nuclear turbine engine 

successful because a 2500K reactor needs to be attached to the central shaft through the 

support of bearings. 

 In light of the need for stronger materials, some futuristic designs have been 

suggested.  One of these futuristic designs is the exo-skeletal engine from NASA.  The 

exo-skeletal engine is a bit different from a conventional gas turbine engine in that the 

central shaft does not rotate.  The compressor and turbine blades are attached to the 

engine skirt on the outside, and every other row of consecutive blades is stationary.  This 

particular engine still has a bypass where most of the air entering the inlet does not pass 

through the combustion chamber.  The benefit of using this type of design is the ability to 

use lighter materials with lower tensile strength.  Ceramics have never been used in gas 
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turbine engines because of their poor toughness and tensile strength.  However, it is 

theorized that an exo-skeletal engine could use ceramics because the forces are in 

compression instead of tension.  Some problems with such a design include the bearings 

between the engine skirt and the rotating compressor and turbine blades as well as the 

maintenance.  Most futuristic engine designs like the exo-skeletal engine are still in early 

design stages and need years of research before implementation. 
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