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Chapter 1

INTRODUCTION

1.1 Overview

This doctoral research explored strategies for the design and statistical development of

probability-based nursing decision support tools within the clinical context of in-hospital

cardiopulmonary arrest (IHCPA). IHCPA remains a harmful and costly event, and recent

attempts to assist with early recognition via probability-based clinical decision support (PB-

CDS) tools have fallen short of improving patient outcomes. These shortcomings are due, in

part, to the complex nature of PB-CDS tools with inadequate attention paid to important

design elements during the early stages of the tools’ construction.1 Failure to improve patient

outcomes may also be a condition of the PB-CDS tools’ underlying statistical assumptions.

Thus, this paucity of evidence provided an opportunity to examine aspects of PB-CDS tools

that influence clinician’s decision making which in turn could impact patient outcomes.

1.2 Significance

With widespread implementation of electronic health records (EHR) in the last decade,2 the

emergence of extremely large datasets and the accompanying growth in statistical processing

capabilities (referred to as big data) have provided researchers and clinicians the ability to

answer new questions.3 Predictive analytics are one application gaining popularity for ad-

dressing patient care challenges.4 The purpose of predictive analytics is to collect and analyze

big data in real-time while providing end-users with a probability of a particular outcome

(e.g., hospital readmission, acute decompensation, or adverse drug events).4 Although statis-

tical outputs of these predictive analytic models can be highly accurate, nurses’ perceptions

and information display preferences of this new information are relatively unknown.
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Using predictive analytics to influence clinical decision-making is a relatively new phe-

nomenon; therefore, an initial step was to study a clinical event where a predicted likelihood

is provided to the clinician at a point in time when prompt action would be warranted. In

addition to facilitating real-time feedback to the clinician, using an outcome where the antic-

ipated and actual events occur close together minimizes the potential influence of additional

variables (e.g., other clinicians’ actions or non-hospital factors) on explaining the connection

between the probability and actual occurrence of events. Therefore, using currently available

data to predict events likely to occur within 24-48 hours is ideal for the in-hospital nurse.

The risk of in-hospital cardiopulmonary arrests (IHCPA) meets this criterion and served as

the outcome for these studies. With 209,000 patients experiencing an IHCPA every year in

the U.S.5 and approximately one-third having clinically significant disability (10% with se-

vere disability) following the event,6 this is a clinically significant outcome that, if improved,

could have an impact on thousands of lives.

1.2.1 Significance of Predictive Analytics

1.2.1.1 History of Predictive Analytics

Clinicians have always used current and historical patient data to predict future events.

As technology advanced, applying objective methods to diagnostic and prognostic activities

via the use of laboratory studies7 became possible. The results of these studies, along

with patient interviewing and physical assessments, have been used to identify diseases and

disorders as well as potential treatment options and prognoses. Many believe the use of

predictive analytics is the next step in expanding the clinician’s toolkit because it provides

a new dimension of information that can easily be analyzed from available data.8,4,9 Most

healthcare prediction model strategies have leveraged classification approaches where the

outcome is a binary event,10 but the optimal statistical approaches to embed within decision

support tools and assist clinicians with recognition are still being identified11 and need further
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exploration.

1.2.1.2 Benefits of Predictive Analytics

A benefit of predictive analytics (also referred to as clinical prediction models) is the abil-

ity to aggregate several cues into one cue for the clinician to assess.12 Instead of clinicians

exposed to dozens or even hundreds of relevant variables, the computer can aggregate this

information into clinically relevant information for clinicians. This has the potential to

impact prioritization of care, allocation of organizational resources, and education of less

experienced clinicians. Recently graduated clinicians, in particular, do not frequently have

sufficient experiences to develop what many call an intuition or gut feeling.13 Pattern recog-

nition is a decision-making style used by many experts.14 Predictive analytics performs the

pattern matching for the user and has the potential to identify patterns of which clinicians

are not yet aware.

1.2.1.3 Shortcomings of Predictive Analytics

The addition of another technological tool to inform clinicians’ decision making may not

improve patient outcomes. The increasing complexity of the healthcare environment, paired

with the rapid collection and availability of information, has made decision-making in today’s

clinical environment more challenging than it was previously. The increasing frequency of

new technology incorporated into the clinical setting is one factor that has contributed to

this complexity.15,16 Although many technologies are developed to aid clinicians in identifying

important changes in patient conditions (i.e., enhance the signal), the wide variety of user

interfaces and poor interoperability may impede clinicians’ ability to cognitively process and

appropriately use the data in caring for patients (i.e., too much noise).17

Furthermore, relatively few nursing-focused decision support studies have been published,18,19,1

and some evidence suggests nurses and physicians require distinct informatics interventions

3



to support their unique decision-making styles.20 This warrants further exploration within

the field of nursing decision support, including whether different nursing roles (e.g., bedside

nurses, charge nurses) use different decision-making styles and need separate decision support

tools. How technology influences clinical decision making (part of a field known

as cognitive informatics21) and the potential impact of incorporating predictive

modeling into the clinical environment needs to be explored.

1.2.2 Significance of In-Hospital Cardiopulmonary Arrest

According to a national United States database (Get With the Guidelines-Resuscitation),

approximately 209,000 people are treated for in-hospital cardiac arrest every year.5 Data in

2011 revealed survival rates for in-hospital arrests was 23% for adults and 37% for children.22

The cost of surviving an IHCPA is estimated to be at least $63,000 (excluding long-term

care facility needs),23 which given a roughly 30% survival rate,22 has crude cost estimates of

$4 billion per year in the U.S.

In-hospital cardiopulmonary arrests occurring outside of the intensive care unit (ICU) are

of particular interest because these in-hospital events might be preventable.24 The use of

telemetry monitoring has been shown to be beneficial in survival of patients having out-of-

ICU arrests,25 and registry information available in 2012 revealed that approximately 87% of

adults and 90% of children were being monitored before an IHCPA occurred.22 Therefore, it is

logical that use of already-available monitoring equipment could promote early identification

of patients at risk for IHCPA. Given that being in an ICU during the onset of the IHCPA

increases likelihood of survival,26,27 a reduction in mortality might be possible if high-risk,

non-ICU patients could be both identified and transferred before the IHCPA occurs. If real-

time telemetry data were combined with additional data in the EHR (e.g., laboratory values

and physical assessments), the use of predictive analytics could provide information about

the likelihood of this important patient outcome.
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1.3 Related Work

While the number of publications discussing predictive analytics continues to increase, most

are focused on development of the statistical models, the variables included in the models,

and their statistical performance.28,10,29,30,31 These factors are necessary but insufficient to

influence patient outcomes because a change in clinician behavior is also required for patient

care to be impacted. In healthcare, risk scores comprised primarily of less than a dozen

variables for outcomes such as pressure ulcers,32 cardiopulmonary arrests,33 and falls34 have

been developed and widely used. Although many published reports describe the statisti-

cal performance of healthcare predictive analytic models,28,10 including those that predict

CPAs,35,36,37,38,39,40 these models have not significantly impacted patient outcomes other than

a modest improvement in length of stay.41

Several studies have been limited by their lack of measuring whether clinicians decide to

take action once the prediction model identifies a likely IHCPA42,1 (i.e., treatment fidelity),

and most studies progress directly from model development to implementation in the clinical

environment without adequate preliminary testing. It has also been recognized that begin-

ning with user-centered, iterative design changes in a controlled environment is safer than

exposing patients and clinicians to potentially high-risk interventions.8

This dissertation work took a "small ball" approach43 to developing an information resource

and explored the user interface in a simulated environment. This approach permits assess-

ment of clinician preferences as well as minor modifications of predictive analytics tools to

be made before significant resources have been spent on tool implementation. Big data

applications for healthcare are continuously emerging;4,3 however, the analysts capable of

developing big data models and outputs might not have the necessary expertise in clinical

decision-making or human-computer interaction essential for integrating this information into

clinicians’ workflows.44,45 The integration of big data outputs and clinician decision-making

processes has not yet been fully addressed; thus, this dissertation work (a) explored nurses’
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information gathering processes and problem-solving strategies that may be augmented by

a predictive analytics tool, (b) compared four analytical strategies for development and val-

idation of a predictive analytics tool, and (c) explored information preferences among key

nurse roles (bedside nurse, charge nurse, and rapid response team nurse) in the design of a

predictive analytics tool.

1.4 Specific Aims

This dissertation research was conducted as three smaller studies: (1) qualitative interviews

to explore nurses’ information gathering, problem-solving strategies, and perceptions of risk,

(2) quantitative development of IHCPA prediction models, and (3) participatory design

sessions to identify and compare nurses’ information preferences in the design of PB-CDS

tools.

The specific aims were to:

1. Explore hospital nurses’ information gathering processes, problem-solving

strategies, and perceptions of risk.

(a) Explore bedside nurses’ recognition processes that precede either: (i) activation

of a rapid response [medical emergency] team or (ii) IHCPA of a patient.

(b) Explore charge nurses’ information gathering processes and problem-solving strate-

gies for assigning nurses to patients (particularly, those at risk for rapid deterio-

ration).

(c) Describe bedside nurses’ and charge nurses’ perceptions of, and ability to express,

the following concepts pertaining to rapid deterioration: (i) risk, (ii) uncertainty,

and (iii) probability.

2. Compare the performance of logistic regression, survival analysis, random

6



forest, and random survival forest in the development and validation of a

dynamic predictive model for in-hospital cardiopulmonary arrest based on

patient characteristics.

3. Describe the similarities/differences of information preferences among bed-

side nurses, charge nurses, and rapid response team nurses during the design

of an IHCPA decision support tool.

1.4.1 Aim 1: Nurses’ Information Gathering Processes, Problem-Solving Strategies, and

Perceptions of Risk

To understand how nurses gather information, individual interviews with bedside nurses were

conducted to explore events preceding the decision to escalate care (e.g., rapid response team

[RRT] activation) for a patient deemed at risk for IHCPA. Although barriers to initiation

of a RRT are well identified in the literature,46 little is known about individual facilitators

and activities that promote its early activation. A specific aim (1a) was to explore bedside

nurses’ recognition processes that precede either: (a) activation of a rapid response [medical

emergency] team or (b) IHCPA of a patient.

While the benefit of accurately predicting an IHCPA might assist bedside nurses in deter-

mining if/when to escalate individual patient care, other factors could also influence this

decision, notably the number of patients to whom the nurse is assigned and the acuity of

those patients. Although bedside nurses spend the most amount of time with patients, they

have relatively little influence on the allocation of staff that could influence the disposition of

high-risk patients. Therefore, charge nurses were also included in this study. Charge nurses

are responsible for reviewing patient census, available staff, and assigning patients to nurses

based on the match of nurses’ experience with patient acuity. Thus, a specific aim (1b) was

to explore charge nurses’ information gathering processes and problem-solving strategies for

assigning nurses to patients (particularly, those at risk for rapid deterioration).
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Because nurses typically have little or no experience with predictive analytics for adverse

patient events, they could not directly be asked about this topic. Therefore, perceptions of

the concepts of risk, uncertainty, and probability were explored along with how participants

expressed these concepts to others in both oral or written forms. This provided a proxy for

understanding the potential implications of integrating predictive analytics into patient care

processes. The final specific aim (1c) was to describe bedside nurses’ and charge nurses’ per-

ceptions of, and ability to express, the following concepts pertaining to rapid deterioration:

(a) risk, (b) uncertainty, and (c) probability.

1.4.2 Aim 2: Comparison of Modeling Strategies for Development and Validation of IHCPA

Prediction Models

The optimal statistical approaches to embed within decision support tools and assist clin-

icians with recognition are still being identified.11 Most statistical approaches are simply

classification models that attempt to identify how likely it is an event will occur.10 Re-

searchers studying this phenomenon have focused on increasingly accurate models, but ac-

curacy is not the only important feature of a statistical method’s performance. Prediction

model interpretability (e.g., single probability versus probability trends over time) is an im-

portant feature in which additional research might produce a better understanding of how

to successfully implement models into the clinical environment. For hospital-based nurses,

identifying when an event is likely to occur (or at least monitoring trends over time) might

be equally important to the simple prediction of whether an event will occur at all. Four

different prediction model strategies comprising classification and time-to-event outcomes

along with traditional statistical approaches and machine learning methods were compared.

The models’ accuracy and discrimination were examined for statistical comparison. The

models’ alert frequency and numeric output were examined for clinical impact and inter-

pretability, respectively. This aim was to compare the performance of logistic regression,
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survival analysis, random forest, and random survival forest in the development and valida-

tion of a dynamic predictive model for in-hospital cardiopulmonary arrest based on patient

characteristics.

1.4.3 Aim 3: Nurses’ Information Preferences for the Design of an IHCPA Decision Support

Tool

Input from clinician users during the design phase of decision support tool user interfaces has

been reported to increase the likelihood of tool adoption.47 Co-creation of a decision support

tool via participatory design can be beneficial because the active involvement of participants

helps identify important design concepts that groups of participants (i.e., researchers and

end-users) might not identify in isolation. Many researchers have developed decision support

tools for nurses that are probability-based and/or cardiopulmonary arrest focused, but to

our knowledge, the participatory design method has never been published for this use.

Just as the information needs of nurses differ from physicians,20 it was hypothesized that

the needs of various specialties of nurses might differ, given their different settings and

work. C. M. Johnson and J. P. Turley20 demonstrated that nurses tend to benefit from

information displays focused on trends and the recall of relevant patient information while

physicians benefit from displays that promote inference for decision-making. This study

was designed to explore whether similar findings might hold true when exploring preferences

among bedside nurses, charge nurses, and rapid response team nurses during the design of

an IHCPA decision support tool.

1.5 Conceptual Framework

Works from human factors engineering (Carayon),48 clinical decision support system rule

development (Brokel),49 and information technology acceptance theories (Venkatesh)50 were
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used to develop a conceptual model (see Figure 1.1) for guiding the studies. The primary

variables include a focus on the Technology Characteristics (e.g., user interface) and

Scientific Evidence (e.g., predictor variable selection) of a Clinical Decision Support

System (specifically, the processing and output of data) and its resulting impact on Clini-

cian Behaviors, which mediate Patient Outcomes. It is also recognized that Organizational

Characteristics (e.g., culture, capital resources) influence the Clinical Decision Support Sys-

tem and Clinician Behaviors, while Clinician Characteristics (e.g., role, experience level,

education) influence both a Clinical Decision Support System’s Data Input (i.e., documen-

tation) as well as Clinician Behaviors. Environmental Characteristics (e.g., noise level, light-

ing) and Patient Characteristics (e.g., acuity, non-modifiable risk factors) can also influence

data input, clinician behaviors, and patient outcomes.

Figure 1.1: Conceptual framework.
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1.6 Dissertation Chapters

Consistent with the Specific Aims, the following three chapters of the dissertation describe:

(1) the exploration of nurses’ perceived information gathering behaviors related to IHCPA,

(2) a comparison of statistical modeling strategies for IHCPA, and (3) the identification of

design elements important for PB-CDS tools. The final chapter is a summary of my research

trajectory given the results of the dissertation research.
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Chapter 2

A QUALITATIVE EXPLORATION OF BIG DATA APPLICATIONS FOR NURSING

DECISION SUPPORT TOOLS

This chapter describes work done to describe nurses’ perceptions of risk-related terms and

identify current information gathering behaviors related to recognition of IHCPA. The results

were used as preliminary work for the qualitative study reported in Chapter 4.

2.1 Background and Significance

With the last decade of widespread implementation of electronic health records (EHR),

the rapid analysis of large datasets from a variety of sources using complex computational

methods has opened the door to exploration of many new research and clinical questions.

Although determining the most important questions to ask of this big data is a frequent

topic of discussion,51,3 predicting outcomes, such as high-cost patients, readmissions, triage,

acute decompensation, adverse events, and treatment optimization, through the application

of predictive analytics has been gaining popularity.4

The statistical outputs of these predictive models can be highly accurate, but little is known

about how nurses perceive this type of information and how they might act upon it. Nurses

are experienced using information about a patient’s history and current condition (e.g.,

physical assessments, laboratory values), but information predicting a future outcome for a

specific patient is a novel addition to his/her toolkit. Assuming we can leverage the big data

at our disposal, the simple addition of another technological tool may or may not improve

care delivery. While many technologies are developed to aid nurses in identifying important

changes in patient conditions (i.e., enhance the signal), the wide variety of simultaneously

available user interfaces and poor interoperability impedes nurses’ ability to cognitively pro-
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cess and appropriately use the data in caring for patients (i.e., too much noise).17 In contrast

to the study of physicians and their workflows incorporating decision support, little attention

has been placed on the nursing population.

Because the potential impact of predictive analytics on nurses’ clinical decision-making is a

newer concept to consider, it is proposed that the initial step in investigating the usefulness

of those analytics would include the study of a clinical event in which ideally a probability

score could be presented close to the time when the actual event might occur. This approach

facilitates real-time feedback and minimizes the influence of additional variables (e.g., other

clinicians’ actions or non-hospital factors) on the connection between the probability of

events and the actual occurrence of events. Using available data to predict events likely

to occur within the subsequent 24-48 hours would be ideal for the in-hospital nurse. The

risk of cardiopulmonary arrest (CPA) meets these criteria and served as the context for

this study. With over 200,000 people treated for in-hospital cardiac arrest every year5 and

survival rates ranging from 23 to 37%,22 this is a clinically important adverse event that

might be preventable.24

2.2 Objectives

This study began the work of incorporating predictive analytics into clinical workflows by

exploring nurses’ current activities involved in problem recognition, information gathering,

and problem solving. Given the novelty of producing risk data for nurses, it was important

to not only understand their use of probability-based information but also their perceptions

and use of the terms probability, risk, and uncertainty. The aim of this study was to identify

key concepts in those three areas to determine where probability-based tools might fit within

the "orienting frames" nurses use for organization and conduct of their work.52 Beginning

with a qualitative approach was thought to provide the most suitable insight into how we

can successfully deploy big data applications such as predictive analytics into the clinical
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environment.

2.3 Methods

2.3.1 Design

We used a qualitative description approach53,54 for data collection and analysis to understand

participants’ information gathering behaviors and term perceptions. Naturalistic inquiry

incorporating design research concepts yielded rich description of participants’ experiences

gathering information and interacting with probability-based data. The naturalistic inquiry

paradigm influenced our attempts to understand participants’ experiences while minimizing

speculation, and describing the context and nature of nurses’ work is consistent with design

research. Design Research methods47,55 can answer questions such as: (a) What non-patient

data are available within the healthcare system? (b) How/when do nurses think and act

on the topic of interest? (c) What do different nursing roles need? and (d) How do we

incorporate our results into the workflow?

2.3.2 Setting and Participants

The study took place at a single academic medical center in an urban city in the mid-South

region of the U.S. Participant recruitment involved e-mail and printed flyers along with face-

to-face discussions with nurse leaders. Inclusion criteria comprised: (a) bedside nurses who

cared for a patient requiring activation of a rapid response team or CPA resuscitation efforts

within the last 6 months for a duration of at least 2 hours before the event, and (b) charge

nurses who assigned nurses to patients at least twice per week over the last 6 months. Our

purposive sample consisted of 18 nurses. One-on-one interviews were conducted with ten

direct care bedside nurses and five charge nurses. Bedside (i.e., direct care) nurses were in-

cluded because they are the clinicians who spend the most time with patients and thus were
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appropriate to evaluate predicted versus actual CPAs. Charge nurses, who are responsible

for determining nurse-patient assignments, were included because decision-making with pre-

dictive analytics might also serve organizational leaders who manage resources. One focus

group of three charge nurses (rather than individual interviews) was also conducted because

we assumed task recall for the complex activity of assignment making would be easier by

hearing cues from others performing similar work.

2.3.3 Data Collection Procedures

2.3.3.1 Variables of Interest

Data collection focused on three major areas of interest: (1) information gathering behaviors

of participants related to deteriorating patients, (2) potential benefit of clinical prediction

models for deteriorating patients, and (3) definitions of risk, uncertainty, and probability.

These focus areas guided the development of a semi-structured interview guide, which was

pilot-tested with practicing nurses and graduate nursing students before using.

Regarding information gathering behaviors, we used questions focused on the materials ac-

cessed (e.g., electronic health record), activities performed (e.g., obtaining vital signs, per-

forming physical assessments), and people contacted (e.g., other clinicians) during partici-

pants’ efforts to gather information about a deteriorating patient. To prevent speculative

findings, participants need to have experienced the phenomenon of interest. If the study

setting does not allow participants to be observed experiencing the phenomenon, their input

in interviews must be based on an actual experience. Therefore, to determine how predic-

tion models might be perceived within clinical environments, we used weather scenarios as a

proxy. Given that participants had prior exposure to probability-based weather information

(but not clinical prediction tools), weather scenarios served as a surrogate to understand how

they might use and interpret probability-based decision support tools. Scenarios and images

were designed to elicit responses from participants that were similar to those we expected
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nurses might use when inferring a patient’s likelihood of experiencing clinical deterioration

from a predictive tool. Scenarios included weather forecasting examples of daily summaries,

hourly trends, images, numbers, and one scenario of a discrepancy in predictions between

two different forecasting websites for the same geographic location (see Figure 2.1 and Figure

2.2). To obtain perceptions of the terms probability, risk, and uncertainty, we simply asked

participants to provide us with a definition and example.

Figure 2.1: First example of weather scenario provided to participants. This scenario depicts the chance of
precipitation for the next 30 hours from a general overview and hourly probabilities.56
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Figure 2.2: Second example of weather scenario provided to participants. This depicts a scenario where two
different weather sources forecast discrepant precipitation probabilities for the same location.57,56

2.3.3.2 Interview and Focus Group Methods

The Institutional Review Board approved the study, and participants provided informed

consent. We asked charge nurse participants to write responses to guided questions on a

worksheet before attending the interviews as a memory aid to minimize recall bias58 for the

complex task of assignment-making. These questions were intended to elicit thoughts while

making assignments on a clinical shift, and we discussed these written responses during the

interviews and focus group.

Following researcher introductions, we used the pilot-tested, semi-structured interview guide

for data collection with all study participants. Individual interviews lasted approximately

60 minutes, and the focus group lasted 120 minutes concluding when participants had no

further information to add in response to questions and probes. All participant discussions

were audio recorded and occurred in a private room at the medical center where participants

were employed. Bedside nurses received a $30 gift card for participation, and charge nurses,

because of the pre-interview worksheet activity requirement, received a $50 gift card for

participation. Researchers collected field notes during the discussions with participants and

during debriefing discussions with each other.
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2.3.3.3 Moderators

The principal investigator (AJ), a male registered nurse and doctoral candidate with some

qualitative research experience, was present for all interviews and the focus group. A co-

investigator (LN), a female doctoral-prepared organizational anthropologist with expertise

in qualitative research methodology, was present for three individual interviews and the

focus group. LN’s presence for individual interviews focused on evaluating AJ’s moderating

skills and immersing herself in a sample of the data while her presence in the focus group

permitted the two-moderator approach. Consistent with a two-moderator approach to focus

groups, the principal investigator (AJ) was able to be the subject matter expert while the

co-investigator (LN) served as the focus group conduct specialist.59 The moderators had no

supervisory relationship with the participants.

2.3.4 Data Analysis

Thematic data analysis involved coding all transcribed discussions and written statements

by two coders (AJ and LN). To develop the codebook, coders jointly applied codes to two

interviews, discussing differences until consensus was reached on the set of codes and their

definitions. The online qualitative analysis software Dedoose60 was used to apply codes,

group themes, look for patterns, and compare findings with existing literature. A Key

Concepts analytic framework guided identification of factors most important to the study’s

objectives.59 Methodologists have recommended that this surface-level interpretation results

in findings "closer to the data as given" (p. 78).61

2.4 Results

Eighteen participants (see Table 2.1) from 15 interviews and 1 focus group produced 14.5

hours of recorded audio, 525 pages of transcripts, and many hand-written notes. Findings
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are presented in alignment with the three areas of interest: Information Gathering Behaviors,

Potential Benefit of Clinical Prediction Models, and Perceptions of Probability, Risk, and

Uncertainty.

Table 2.1: Descriptive Statistics of Participants (n=18).

Demographic Variable n

Education∗ Associate 2

Bachelor 10

Master 3

Age Under 25 4

26-35 8

36-45 2

46-55 3

56-65 1

Nursing Experience (Years) <2 3

5-Feb 4

10-Jun 5

15-Nov 2

>15 4

Patient Population Adult 9

Pediatric/Neonatal 9

Care Setting Emergency Department 4

Intensive Care Unit 7

Ward/Floor 7
∗ Education variable not available for focus group participants

2.4.1 Information Gathering Behaviors

Participants reported collecting information from many sources when evaluating whether a

patient was at risk for CPA. We categorize these sources as: Patient (e.g., physical assess-
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ment, past medical history), Other People (e.g., family members, physicians), and Technol-

ogy (e.g., electronic health record, vital sign monitor). The process by which they gathered

information differed by role (i.e., bedside nurse or charge nurse).

2.4.1.1 Bedside Nurses

Bedside nurses working in the emergency department reported gathering initial information

from the patient while nurses in the inpatient setting gathered initial information from the

previous shift’s nurse. Initial patient information quickly resulted in mental classification

of the patient’s clinical status such as "previously healthy" versus "multiple comorbidities",

"high-risk" versus "low-risk" surgery, or "stable" versus "unstable" during previous shift. One

participant noted:

I call it a drive-by assessment. It’s when you like, if you were to come in the ER

and if you walk in. . . , that gives me a few minutes to go in there and see, because

you’re probably stable because you’re walking into the room.

The initial mental classifications appeared to result in a baseline assessment against which

future information was integrated. A different participant commented on this phenomenon

by stating:

When you have a patient, either whether it’s multiple days or there are multiple

admissions. . . it’s always beneficial to the nurse, I believe, because you kind of see

them through their, at their baseline, you see what’s going on with them from a

day to day basis and you can evaluate kind of what’s going on with that patient

based on what you’ve seen previously.

After compiling the initial information, bedside-nurse participants communicated with the

patient (and/or family or caregivers), conducted physical assessments, obtained vital signs,

and reviewed the patient’s history, all in no particular or consistent order. When partici-

pants discovered discrepancies among information sources, for example a physical assessment
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finding inconsistent with the patient’s history, they sought additional information or com-

municated those inconsistencies with others, such as the charge nurse, physician, or rapid

response team. Bedside nurses provided insight on what, where, and when nurses were chart-

ing in the EHR. For example, most participants noted that if the change in patient status

was capable of harming the patient, documentation of the nurses’ findings did not occur

in real-time but rather after the decisions and actions to safely manage the patients were

finished. One participant noted:

. . . when he was probably decompensated I probably didn’t chart as often because

I was doing. . . procedures with the patient I guess. . . if there’s a procedure at the

bedside, we actually like paper chart.

In addition to identifying which elements were not charted in real-time, participants were

helpful in identifying additional variables for prediction model development versus those that

are not beneficial for real-time decision support algorithms. For example:

I usually document any notifications, any provider notifications, and . . . who we

spoke with, what the concern was, and what the result of the notification was. . . I’m

sure early on I had documented some of my concerns [in real time], but then

probably not in real time after that.

2.4.1.2 Charge Nurses

When working with individual patients, charge nurses (who had previously worked as, or

were currently working in the capacity of, a bedside nurse) expressed the same information

gathering behaviors as bedside nurses. However, in their role of making the patient care

assignments for the unit, charge nurses gathered information differently. Charge nurses

reported needing less individual patient detail than bedside nurses because they had many

patients’ needs to consider, balanced with available nursing personnel. Themes surrounding

the number of available clinicians (including nurses, nursing assistants, and physicians, both
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on their own unit and on other units) surfaced frequently. Charge nurses tended to gather

information from the bedside nurse more frequently than any other source, even though

charge nurses did report talking to physicians during patient changes and reviewing the

patient’s medical record upon admission. Charge nurses in the focus group summarized by

stating:

Participant #1: I go a lot with the intuition of the bedside staff. Most of the time,

the attending physician, I don’t trust most of the residents, but our attending

physicians, our fellows, and the experienced nurses, especially the ones that I’ve

personally worked with for a long time and trust, I would trump a nurse’s intuition

over every other kind of objective data.

Participant #2: I agree with that totally.

Charge nurses also strongly considered individual staff members’ experience, expertise, and

preferences along with individual patients’ needs and their relationship with nurses.

I knew that I needed, and this is our expression, I needed a strong nurse for this

assignment because it could either end up in. . . , withdrawal, you know bereave-

ment or escalating care. . . , even more so than what we already had.

2.4.2 Potential Benefit of Clinical Prediction Models

Three major themes and four minor themes emerged in participant responses to the weather

scenarios (see Table 2.2). Major themes included attempts to find information from addi-

tional sources during uncertainty (i.e., triangulation), always being prepared for the worst-

case scenario regardless of predictions, and the desire to review more detailed projections

(e.g., viewing hourly predicted values rather than a daily summary and knowing the source of

the information). Regarding this latter theme, participants also noted that consistency (i.e.,

hour-to-hour stability) and extreme values (i.e., 0% or 100%) provide a sense of confidence
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or certainty in the outcome. In contrast, certainty appeared to diminish with temporally

distal predictions such as those more than 24 hours from the current time. Minor themes

that surfaced among some participants included: compromising when faced with discrepant

values, a deference to personal preference to simplify decision-making, building a story to

accompany the empirical data, and the ability of prior beliefs to supersede new evidence.
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Table 2.2: Major and Minor Themes Resulting from Weather Scenarios.

Major Themes Description

#1: Triangulation When faced with uncertainty, participants sought information from

different sources (e.g., reviewing a weather map in addition to prob-

abilities), facilitating discovery of a "true" state.

#2: Always be Prepared Some participants never trusted the predictions because they have

found them to be wrong too many times. Others seemed slightly risk

averse. In both cases, they preferred to bring an umbrella or raincoat

in the event of an undesirable outcome.

#3: Desire for Detail Almost all participants preferred an hourly forecast view. This level

of detail provided insight into which activities can be performed by

the participant and provided a trend by which one can make more-

informed predictions.

#3a: Consistency and Extreme

Values

Consistency and extreme values (e.g., repeated hours of 0% proba-

bility) promoted comfort, certainty, and confidence.

#3b: The only certainty is un-

certainty.

Predicting soon is, at best, uncertain — predicting the far future, one

might as well not look, that is unknown.

Minor Themes

#1 Compromising When faced with the discrepant values, participants assumed the true

value was somewhere in the middle.

#2 Deference to Preference Similar to the cognitive heuristic of simplifying decision making, par-

ticipants noted that when faced with discrepancies, they would defer

either to the outcome they prefer (i.e., no rain) or to the outcome

suggested by their most trusted source.

#3 Story Building Giving a story or personality to the data (i.e., devising a rationale

for why something might be displayed as it is).

#4 Prior beliefs can supersede

new evidence.

Belief that context (e.g., geographic location) was so important that

no new evidence would make someone come up with a different con-

clusion.
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Of note, there were a few divergent views among our participants. With respect to Major

Theme #3 regarding a desire for detail, two participants noted that too much detail (i.e.,

hour-by-hour predictions) showed the model was "too confident" and therefore could not be

trusted. One of those participants noted:

You’ve got to apply it across the whole day because you can’t say that the wind is

not gonna pick up at that moment and bring this 55% worth of showers into my

next hour.

This opinion was in contrast to that of another participant who felt some hourly variation

increased her belief in the model. One of the focus group participants noted that abrupt

changes made him disbelieve a prediction.

With the respect to Minor Theme #4 regarding prior beliefs, one participant expressed that

context (e.g., geographic location) was so important that no new evidence would make her

come up with a different conclusion.

Interviewer [I]: . . .What would something like this [see Figure 2.1] mean to you if

you were planning something, this is today, this is tomorrow, if you were planning

something tomorrow outside, would you feel comfortable?

Participant [P]: Nashville, Florida or the tropics, give me a location.

I: Why does location matter?

P: Because if you’re in the tropics it’s going to rain whether you think it’s going

to or not. . .And if it’s Florida or California it’ll probably rain for 2 hours in the

afternoon and you’ll be good for the rest of the day. And if it’s Jamaica and the

Dominican it always says it’s probably gonna rain and it never does ’cause it’s

gorgeous, so it really just depends on where we are. . .

I: So there’s a lot of context or prior knowledge that . . .
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P: Yeah. Yeah. I need more information.

Another participant made a similar comment that because she grew up in the area, her

opinions on weather patterns were more trustworthy than the meteorologist’s predictions.

Similarly, one participant stated she would not look for more information from different

sources and did not care about the reputation of a source - only which sources appear more

accurate based on her past experience.

As it related to the clinical intent of these questions, some participants expressed reservations

about the ability of a prediction model to accurately predict cardiopulmonary arrest. One

participant noted:

An arrest is so multifactorial and I think that, I don’t know. I would have a hard

time seeing; could be if any, something that could pre-, predict it with the kind

of accuracy beyond just this is a higher-risk patient because they’ve had a more

complex surgery.

Another participant stated:

How. . . are you collecting your data? How are you presenting it? Pretty and

green doesn’t make a difference if you’re wrong, if you’re guessing, but neither

does basic and blue, so it depends. At some point in time I just need a yes or no.

[laughs]

2.4.3 Perceptions of Probability, Risk, and Uncertainty

Regarding perceptions of the words probability, risk, and uncertainty, participants were in-

consistent in their use of these words and frequently used the words interchangeably. Those

words did not appear to have a consistent, intrinsic meaning between or within participants

(see Table 2.3). For example, one participant noted:
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I mean, I guess you could group them all kind of under the same classification

if you’re like, there’s a probability of risk and then you can have a probability of

uncertainty. And I think risk and uncertainty are pretty similar because when

you’re uncertain there’s always a risk.

Another participant noted, ". . . the risk of going to the unit is 100%, the probability of going

to the intensive care is 100%, and the, I mean, you hear what I’m saying?"

Table 2.3: Themes Related to Perceptions of Risk, Uncertainty, and Probability.

Theme Description

#1: Probability = "probably" Participants used "probability" to imply that an event/outcome will

"probably" occur (i.e., more like to occur than not to occur).

#2: Risk is related to a patient’s

history and might assist with pri-

oritizing.

Participants were able to mention some types or classifications of

patients that could automatically be labeled as "high risk," which

implied greater attention should be focused on that patient.

#3 Risk is related to harm. Risk was the term most related to the concept of patient harm.

#4 Uncertainty = "unexpected,

unpredictable, unknown."

Participants noted that one can never fully expect or predict what

will happen with a hospitalized patient.

2.4.3.1 Probability

Several participants related the term "probability" to mathematics; however, participants’

examples did not adhere to traditional rules of mathematics. The majority held a view

summarized by a participant who stated:

I really don’t think in terms of like probability that something bad is going to

happen. . . Probability is a more statistical term that I tend to stay away from.

27



2.4.3.2 Risk

Participants related risk to a patient’s medical history and associated it strongly with harm.

For example, one participant noted:

The risk of hypotension in a heart failure patient is high because. . . we give them

very strong diuretics.

Other participants indicated that risk stratification helped them prioritize the needs of their

patients, both for the purpose of care planning and interpersonal communication with other

clinicians.

2.4.3.3 Uncertainty

Regarding uncertainty, a few participants implied that clinicians can never fully expect or

predict what will happen with a hospitalized patient. One participant described uncertainty

as ". . . an over-looming thing with everybody." Another participant commented on the nurses’

role in managing the tension between statistical data and the lived experience of patients

and families, noting:

as far as statistics, there’s some legitimacy to them, but they’re never, they should

never dictate your care that you provide or the information you give a family.

You can talk statistics with them, but you know what, allow them to keep their

hope and say, "Look statistically speaking these are the things that happen." You

could have them mentally prepare themselves for those things, but also let them

know, you know what? Things can get better too . . . things can be better than what

statistically speaking and you know, you can have your hope and you can continue

to push.

Finally, a few participants noted that uncertainty was present when one does not know why

something is occurring (e.g., a deteriorating patient with no rationale for that state). One
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participant described uncertainty as "insecurity" or a lack of confidence in the sense that a

novice nurse might not know if she should share concerns with a physician.

2.5 Discussion

We have described nurses’ perceived workflows for gathering information related to clinical

deterioration and nurses’ beliefs related to probability-based information. An initial qual-

itative approach provided a rich foundation for understanding behavior change (i.e. work

processes) in response to predictive analytics to support design and evaluation. Although

the content of information gathered by nurses was similar, a consistent temporal pattern

in their information gathering was lacking. The lack of a predictable temporal pattern for

information gathering has important implications for the design of decision support tools,

similar to the non-linear workflows described in bar code medication administration.62 Given

that nurses gather a significant amount of information outside of the electronic health record

(EHR) and that EHR documentation of clinical deterioration tends to occur after problem

recognition and management, a predictive tool for this outcome likely belongs outside the

EHR. Furthermore, brief and informal patient assessments (referred to by the participants as

a "drive-by") are not routinely considered important enough to document in the EHR, even

though they contain information that influences a nurse’s anticipated trajectory of patient

status.

Our finding that information gathering behaviors appeared to differ between bedside nurses

and charge nurses suggests recommendations concerning information provision and decision

support may not be transferable to all nurses but rather might require unique designs based

on roles. To our knowledge, no studies have explored clinical decision support tool specifica-

tions that differ by nursing role. Our findings suggest that charge nurses might be key players

in effectively incorporating decision support systems predicting negative patient outcomes

because of their expressed preference for high-level overviews of patient status. Probability-
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based decisions support tools provide numerical outputs that aggregate information from

multiple sources. Therefore, if summarized probability information could be provided for a

charge nurse’s patients in one medium (e.g., ranked in order), such a display could provide

assistance to charge nurses’ decisions in patient care assignments.

Discrepancies, whether in patient assessments or weather scenarios, were important in ini-

tiating the process of gathering additional information. This finding aligns with decision

theory principles that one option for responding to uncertainty is the gathering of additional

information in an effort to reduce uncertainty.63 Participants expressed concerns surround-

ing a prediction model displaying results contradicting their clinical gestalt, but our findings

suggest those discrepancies might simply result in seeking additional information.

Few studies have evaluated the direct impact of predictive analytics on the decisions nurses

make,1 yet several researchers have explored nurses’ cognitive work in the context of the

recognition and response to a deteriorating patient. For example, J. S. Braaten64 conducted

a cognitive work analysis with 12 nurses and reported, similar to us, that nurses gather infor-

mation from a variety of sources and that they preferred the collection of objective clinical

criteria to justify rapid response team activation. Additionally as part of the systematic

review of deterioration detection among ward patients conducted by M. Odell, et al.,65 the

roles of intuition via pattern recognition, patients and families expressing concerns, and de-

tecting abnormalities during routine care were identified as information gathering behaviors.

Finally, similar findings by J. Cioffi66 suggested that baseline mental stratification of patients

and prior beliefs superseded new evidence.

Clinical prediction models provide outputs in the form of statistical probabilities that re-

quire analytical decision-making skills for interpretation. C. G. Parker67 found that nurses

who use analytical decision-making skills call rapid response teams more frequently than

nurses who primarily use intuitive decision-making. However, if nurses tend to use intuitive

decision-making skills frequently,68 the design and implementation of probability-based CDS
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tools should appreciate nurses’ propensity for intuitive decision-making while facilitating the

analytical counterpart when prompting action. Given that several of our participants did not

prefer statistical probabilities for decision-making, providing predictive model information

will be an important consideration in future work.

The weak agreement of definitions for risk, uncertainty, and probability likely resulted from

scarce decision theory knowledge among participants. This topic is not routinely covered

in nursing curricula. Furthermore, many possible actions exist for nurses during a changing

patient condition in which risk or uncertainty are present. The unique arrangements of

actions and goals chosen by individual nurses might result in unique definitions. A few

participants’ association of these terms with statistical probabilities and their statements

regarding infrequent use is consistent with Kahneman’s69 view that humans do not think

probabilistically.

Several participants mentioned the role of context as influential in the extent to which nurses

would accept the validity of a prediction model. This can have important implications for

CDS tools (see Table 2.4) because the use of predictive analytics without an awareness

and appreciation for the context of its application could lead to both: (a) identification

of correlation without an understanding of causation that could thwart future work and

(b) unsuccessful implementation of clinical tools developed from analytical methods. We

propose that engaging nurses in the design of analytics solutions is one of the best solutions

for these challenges. Specifically, Design Research methods can be both a starting point and

an implementation aid for big data applications. Strengths of our study included the variety

of both nurses and settings, as well as the use of a proxy situation to elicit responses that

were more likely to represent actual behaviors and decrease speculation. Limitations of our

study included the single research site, small focus group size, and dependence on participant

recall and perceptions. There is a need in future studies for documentation of what actually

occurs rather than asking participants to recall what they did, similar to a recent report of
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critical care information gathering behaviors.70 Additional nursing roles, such as advanced

practice nurses, also need exploring, similar to the work of S. Weber.71 We plan to examine

nurses’ use of prediction models in simulated and real-world settings in the near future, and

findings from our study will guide the design and implementation of big data applications

into the clinical arena. Prior to embarking on large-scale experimental studies however,

further qualitative investigations of technology’s influence on clinical decision-making and

predictive modeling’s impact on information technologies are needed.

Table 2.4: Implications of Findings for Probability-Based Decision Support Tools.

Finding Implication for Decision Support Tools

Desire for detail Provide trends. Identify sources of data.

Discrepancies promote

information-gathering

Even if the tool does not align with clinical gestalt, it might still be helpful

in determining if a patient has a problem.

Deference to trusted

source

If decision support tools provide discrepant findings, they are less likely to

prompt behavior because participants noted they are more likely to go to

their trusted source when faced with uncertainty.

2.6 Conclusions

An increased understanding of nurses’ perceived work practices and perceptions of risk will

enhance the development of effective probability-based clinical decision support tools. Un-

derstanding nurses’ cognitive work contributes to improved design and implementation of

predictive tools in the clinical setting and informs important expansions of nursing edu-

cational curricula. While these recommendations may seem intuitive to clinicians, these

processes are not as well known to informaticians creating decision support systems in-

tended for the clinical arena. Documentation of clinicians’ work practices will enable more

opportunities for implementing decision support systems into their cognitive and physical

workflows.
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Chapter 3

ACCURACY AND INTERPRETABILITY OF IN-HOSPITAL CLINICAL

DETERIORATION PREDICTION MODELS

This chapter describes a quantitative study comparing the performance of several modeling

strategies in the development of a clinical prediction model for IHCPA. The results will lead

to future studies examining differences in nurses’ abilities to interpret the outputs of the

differing statistical strategies.

3.1 Introduction

Widespread implementation of rapid response teams and early warning scoring systems

throughout hospitals has resulted in debatable improvements in clinical deterioration out-

comes.72,73 Even if one believes these early warning systems and rapid response teams im-

prove patient outcomes, the incidence of in-hospital clinical deterioration remains high and

continues to be associated with low survival rates.74,22,5 Given that the prevention of adverse

outcomes will depend on early recognition followed by appropriate management, tools to

aid these processes are needed. Clinical prediction models, especially those incorporated

into decision support tools that automatically retrieve data from electronic health records,

are becoming increasingly popular and might be able to assist in the early identification of

clinical deterioration.72,35,36,37,38,39,75,76,77,40,78

Optimal statistical approaches to embed within decision support tools and assist clinicians

with recognition are still being identified. Most statistical approaches are simply classifica-

tion models that attempt to identify how likely it is an event will occur. Researchers studying

this phenomenon have focused on increasingly accurate models, but accuracy is not the only

important feature of a statistical method’s performance. For example, a model resulting in
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a single probability as opposed to probability trends over time might yield weaker models

for implementation into the clinical environment. For nurses, especially those in a hospital,

identifying when an event is likely to occur (or at least monitoring trends over time) might

be equally important to the classification outcome of whether an event will occur at any

point.

We compared two traditional statistical modeling strategies (logistic regression and Cox pro-

portional hazards regression) and two related machine learning strategies (random forest

and random survival forest) for in-hospital cardiopulmonary arrest (CPA). The focus was

on both their statistical performance and clinical interpretability. We selected these four

strategies based on their common occurrence in the scientific literature and because two of

the strategies (logistic regression and random forest) predict a binary outcome while the

other two strategies (Cox proportional hazards regression and random survival forest) pre-

dict a time-to-event outcome (see Table 3.1). The traditional statistical strategies leverage

regression methods for classification and survival analyses while the machine learning strate-

gies average the results of many decision trees that have been created by splitting a random

selection of predictor variables in each tree.79 Each of the four approaches was evaluated for

model accuracy and discrimination, for expected number of alarms at select thresholds, and

for differences in model outputs with respect to what was being predicted.

Table 3.1: Comparison of Analytical Approaches to Predicting In-Hospital Cardiopulmonary Arrest.

Approach
Purpose Statistical Machine Learning
Classification

Predicts whether an event
will occur

Logistic Regression Random Forest

Survival/Time-to-Event

Predicts how likely an event is
at each time point

Cox Proportional
Hazards Regression Random Survival Forest

Note: Our chosen statistical approaches leverage regression methods. Our chosen machine
learning approaches average the results of many decision trees that have been created by
splitting a random selection of predictor variables in each tree.
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3.2 Methods

3.2.1 Design & Setting

For this retrospective cohort study, we collected data from a de-identified copy of the elec-

tronic health records from adults (aged greater than 18 years old) at a large, urban academic

medical center from 2006 to 2015. A start date of 2006 accounted for organizational policy

changes related to rapid response team changes, which could have influenced the outcome

of interest. The Vanderbilt University Institutional Review Board approved the study.

3.2.2 Variables

We defined the outcome of interest (dependent variable) using CPT code 92950 (i.e., Car-

diopulmonary Resuscitation), and a review of the literature guided our selection of candidate

predictor variables, which comprised demographics, vital signs, laboratory values, and ICD-9

codes upon hospital admission. To identify time-to-event outcomes (i.e., event day for cases

and length of stay for controls) for the survival analysis approaches, CPT codes were used in

this data source as the most accurate method for identifying an exact date of care provided.

To identify a hospitalization day, we required a patient to meet one of the following criteria:

(a) one of approximately 50 hospitalization CPT codes, (b) a Braden assessment, or (c) a

complete blood count or basic metabolic profile specimen collection CPT code. The length

of a hospitalization course was then constructed by combining all sequential dates in which

one of the aforementioned criteria was met. For patients with an emergency department

visit CPT code on the day before a hospitalization course, the emergency department visit

date served as the first hospitalization day.
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3.2.3 Sample

Patients were excluded if they received cardiopulmonary resuscitation on the same day as

an emergency department visit or on the first day of their hospitalization (see Figure 3.1).

Among eligible patients with multiple cardiopulmonary resuscitation events, we retained

the encounter with the earliest event. Control patients who did not experience a cardiopul-

monary arrest were selected from all hospitalized patients who never had a documented CPT

Code 92950. For control patients with multiple hospitalizations during the study period, we

retained the encounter with the least amount of missing data.

Figure 3.1: Selection of patients who experienced cardiopulmonary resuscitation (CPR).

3.2.4 Data Analysis: Pre-Processing

We began pre-processing by exploring extreme values, patterns of missingness, and collinear

associations. Physiologically-implausible values (e.g., serum sodium < 100 mEq/L, pulse rate

> 240 beats per minute) were re-coded as missing. We began with 60 candidate predictor

variables and then removed 10 variables because they: (a) were missing in more than 80%
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of patients [e.g., blood gas values], (b) were highly collinear with another variable [based on

Spearman’s rho > 0.4 or if values could be predicted by other values in a regression model

with > 90% of the variance explained], or (c) had indeterminate time stamps where the

first value could not be distinguished from latter values [e.g., blood pressure]. A full list

of candidate predictor variables and rationale for exclusion is provided in Appendix A (see

Table 3.4). Characteristics of patients for all the final predictor variables are found in Table

3.2.
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Table 3.2: Descriptive statistics comparing patients who did and did not receive cardiopulmonary arrest.
a b c represent the lower quartile a, the median b, and the upper quartile c for continuous variables.
x± s represents X̄ ± 1 SD. Numbers after proportions are frequencies. Tests used: 1Wilcoxon test; 2Pearson
test. Proc = procedural code. Dx = diagnostic code.

Controls Cases

N = 168177 N = 980

Age 39 55 69 (54 ±19) 48 61 71 (59 ±17) <1e-041

Gender <1e-042

female 50% (84148) 40% ( 393)

male 50% (83626) 60% ( 586)

Respirations 16.0 18.0 20.0 (18.6 ± 4.2) 16.0 18.0 22.0 (20.2 ± 6.2) <1e-041

Pulse 77 90 104 ( 92 ± 21) 80 96 113 ( 97 ± 22) <1e-041

BMI 23.7 27.7 32.9 (29.2 ± 8.6) 23.4 27.4 33.4 (29.6 ± 9.1) 0.921

Calcium 8.40 8.90 9.30 (8.83 ±0.81) 8.10 8.70 9.20 (8.62 ±0.96) <1e-041

Anion Gap 7.0 9.0 11.0 ( 9.1 ± 3.5) 8.0 10.0 13.0 (10.5 ± 4.4) <1e-041

Glucose 95 111 139 (129 ± 69) 102 123 166 (148 ± 87) <1e-041

Creatinine 0.75 0.92 1.20 (1.25 ±1.36) 0.89 1.23 1.94 (1.96 ±2.15) <1e-041

Serum CO2 22.0 25.0 27.0 (24.4 ± 3.9) 21.0 24.0 27.0 (23.8 ± 5.2) <1e-041

Sodium 136.0 138.0 140.0 (137.8 ± 4.0) 134.0 137.0 140.0 (136.9 ± 5.6) <1e-041

Potassium 3.60 3.90 4.30 (3.96 ±0.62) 3.60 4.10 4.60 (4.15 ±0.81) <1e-041

Platelets 172 223 283 (235 ±107) 149 211 275 (226 ±131) <1e-041

WBC 6.9 9.3 12.9 (10.7 ± 8.4) 7.6 11.0 16.2 (13.7 ±15.8) <1e-041

RDW 13.1 13.8 15.1 (14.4 ± 2.1) 13.9 15.2 16.9 (15.7 ± 2.5) <1e-041

Hemoglobin 10.6 12.4 14.0 (12.3 ± 2.4) 9.7 11.4 13.3 (11.5 ± 2.6) <1e-041

Proc: Urinary System 0.00 0.00 0.00 (0.01 ±0.12) 0.00 0.00 0.00 (0.02 ±0.23) 0.0131

Proc: Integumentary System 0.00 0.00 0.00 (0.03 ±0.18) 0.00 0.00 0.00 (0.09 ±0.67) 0.0781

Proc: Respiratory System 0.00 0.00 0.00 (0.02 ±0.18) 0.00 0.00 0.00 (0.12 ±0.52) <1e-041

Proc: Nose, Mouth, and Pharynx 0.00 0.00 0.00 (0.04 ±0.23) 0.00 0.00 0.00 (0.10 ±0.55) <1e-041

Proc: Nervous System 0.00 0.00 0.00 (0.06 ±0.35) 0.00 0.00 0.00 (0.18 ±0.73) <1e-041

Proc: Musculoskeletal System 0.00 0.00 0.00 (0.23 ±0.55) 0.00 0.00 1.00 (0.37 ±0.75) <1e-041

Proc: Male Genital System 0.00 0.00 0.00 (0.00 ±0.04) 0.00 0.00 0.00 (0.00 ±0.00) 0.361

Proc: Hemic and Lymphatic System 0.00 0.00 0.00 (0.00 ±0.07) 0.00 0.00 0.00 (0.03 ±0.25) <1e-041

Proc: Female Genital System 0.00 0.00 0.00 (0.01 ±0.09) 0.00 0.00 0.00 (0.00 ±0.10) 0.411

Proc: Eye 0.00 0.00 0.00 (0.00 ±0.09) 0.00 0.00 0.00 (0.01 ±0.12) 0.681

Proc: Endocrine System 0.00 0.00 0.00 (0.00 ±0.05) 0.00 0.00 0.00 (0.00 ±0.07) 0.861

Proc: Ear 0.00 0.00 0.00 (0.00 ±0.04) 0.00 0.00 0.00 (0.00 ±0.00) 0.311

Proc: Digestive System 0.00 0.00 0.00 (0.04 ±0.30) 0.00 0.00 0.00 (0.12 ±0.75) 0.0011

Proc: Diagnostic and Therapeutic 0.00 0.00 0.00 (0.21 ±0.63) 0.00 0.00 2.00 (1.04 ±1.84) <1e-041

Proc: Cardiovascular System 0.00 0.00 0.00 (0.12 ±0.51) 0.00 0.00 0.00 (0.61 ±1.42) <1e-041

Dx: Blood and Blood-Forming Organs 0.00 0.00 0.00 (0.29 ±0.81) 0.00 0.00 2.00 (1.12 ±1.68) <1e-041
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Table 3.2: (continued)

Controls Cases

N = 168177 N = 980

Dx: Circulatory System 0.0 1.0 2.0 (1.8 ±3.1) 0.0 4.0 9.0 (5.7 ±6.2) <1e-041

Dx: Congenitall Anomalies 0.00 0.00 0.00 (0.04 ±0.34) 0.00 0.00 0.00 (0.11 ±0.68) <1e-041

Dx: Digestive System 0.00 0.00 0.00 (0.49 ±1.36) 0.00 0.00 2.00 (1.12 ±2.14) <1e-041

Dx: Endocrine, Nutritional,

Metabolic, Immunity 0.00 0.00 1.00 (0.83 ±1.54) 0.00 2.00 5.00 (2.69 ±2.83) <1e-041

Dx: Genitourinary System 0.00 0.00 0.00 (0.37 ±1.04) 0.00 1.00 3.00 (1.55 ±2.01) <1e-041

Dx: Infectious and Parasitic Diseases 0.00 0.00 0.00 (0.16 ±0.59) 0.00 0.00 1.00 (0.84 ±1.46) <1e-041

Dx: Injury and Poisoning 0.0 0.0 1.0 (1.5 ±4.4) 0.0 1.0 3.0 (3.7 ±8.2) <1e-041

Dx: Mental Disorders 0.00 0.00 0.00 (0.53 ±1.46) 0.00 0.00 1.00 (0.53 ±1.15) 0.0411

Dx: Musculoskeletal System

and Connective Tissue 0.00 0.00 0.00 (0.35 ±0.98) 0.00 0.00 0.00 (0.54 ±1.43) 0.0021

Dx: Neoplasms 0.00 0.00 0.00 (0.29 ±1.41) 0.00 0.00 0.00 (0.68 ±1.94) <1e-041

Dx: Nervous System and Sense Organs 0.00 0.00 0.00 (0.36 ±0.95) 0.00 0.00 1.00 (0.78 ±1.62) <1e-041

Dx: Nonspecific Abnormal Findings 0.00 0.00 0.00 (0.15 ±0.47) 0.00 0.00 0.00 (0.27 ±0.65) <1e-041

Dx: Pregnancy, Childbirth,

and the Puerperium 0.00 0.00 0.00 (0.22 ±1.42) 0.00 0.00 0.00 (0.03 ±0.54) <1e-041

Dx: Respiratory System 0.00 0.00 1.00 (0.61 ±1.32) 0.00 2.00 6.00 (3.54 ±3.57) <1e-041

Dx: Skin and Subcutaneous Tissue 0.00 0.00 0.00 (0.12 ±0.61) 0.00 0.00 0.00 (0.29 ±1.02) <1e-041

Dx: Symptoms 0.0 1.0 2.0 (1.5 ±2.1) 1.0 3.0 5.0 (3.3 ±3.2) <1e-041

Dx: Ill-Defined-Unknown Causes

Morbidity-Mortality 0.00 0.00 0.00 (0.05 ±0.25) 0.00 0.00 0.00 (0.19 ±0.55) <1e-041

Dx: Supplemental V-Codes 0.0 1.0 2.0 (1.4 ±2.0) 1.0 2.0 5.0 (3.3 ±3.2) <1e-041
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Due to the high amount of unexplainable missing data (approximately 40% for lab values

and 60% for vital signs) and lack of definitive guidelines on how to handle that magnitude

of missing data,12 we separately performed a statistical simulation study using 10,000,000

patients. We replicated distributions and associations from the empirical data to create a

population, imposed several causes of missing data (i.e., completely at random, at random,

and not at random), and then tested three imputation approaches to identify which method

was most accurate under the missing data assumptions. Imputation approaches included

missing-assumed-normal (similar to a median imputation), multiple imputation without the

outcome, and multiple imputation with the outcome. The best approach to handle the high

amount of missing data under the majority of assumptions was multiple imputation with

the outcome using chained equations with predicted mean matching; therefore, we used that

approach for our study.

3.2.5 Data Analysis: Model Development

The first available measure of each of the predictor variables on the first day of hospitalization

was included in each of the four methods: logistic regression, Cox regression, random forest,

and random survival forest. Logistic regression is frequently used in biomedical studies as a

multivariate regression model with a binary outcome. Cox proportional hazards regression is

another commonly used multivariate regression model, but the outcome is time-to-event and

allows for censoring.79 Machine learning approaches for both binary classification and time-

to-event include random forests and random survival forests, respectively.79,80 Both random

forest approaches build classification (and time-to-event, in our case) trees each comprising

a random sample of predictor variables. Trees are split into branches based on cut points

that optimize differences between the two new branches. After multiple trees are built, the

predictions are averaged to develop a forest.

Logistic and Cox regression models were fit flexibly using restricted cubic splines and no
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interaction effects between variables. Consistent with multiple imputation, we fit these

models to multiple imputed datasets and pooled coefficients and performance metrics across

model fits. We performed post-hoc analyses of residuals and influential observations and

found that reducing the number of knots in the restricted cubic splines from 5 to 3 helped the

models meet assumptions. We assessed calibration and performed internal validation using

the bootstrap of the last imputed dataset from the multiple imputation process. Random

forest and random survival forest methods were trained using 50% of the data from last

imputed dataset from the multiple imputation process. We reserved another 25% of the

data for testing and the final 25% of the data for validation.

Statistical model performance comparisons were conducted via area-under-the-curve scores

and F1 scores, along with receiver operating characteristic curves and precision-recall curves,

respectively. Clinical impact and interpretability comparisons were conducted via positive

prediction rate (number of patients triggering an alarm), recall (true positive rate), and

graphical representations of model predictions from pooled and individual patients. The

validation data set held out during the machine learning approaches (25% of the original

data) served as the data for direct comparison of the models’ expected future performance.

Rather than using imputed values from the multiple imputation process, we performed me-

dian imputation for missing values to create a dataset with greater similarity to the clinical

environment where multiple imputation is not easily feasible. Appendix A contains a visual

representation of data used for imputation, development, and validation (see Figure 3.6).

All analyses were performed using R, version 3.3.1.81 The specific R packages used along

with the mathematical formulas used to compare the models are available in Appendix A.
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3.3 Findings

3.3.1 Statistical Performance

From a statistical perspective, all models performed similarly based on area under the receiver

operating characteristic curve (AUC) but differed with respect to harmonic mean of recall and

precision (F1 score). AUC values of the 4 models ranged from 0.847 to 0.861 suggesting good,

consistent performance, yet F1 scores ranged from 0.170 to 0.325 suggesting poor and variable

performance (see Table 3.3 and Figure 3.2). The order of most important variables changed

with each model, but ICD codes associated with the Respiratory, Circulatory, Genitourinary,

Endocrine, and Symptom-based diagnoses along with Diagnostic and Therapeutic procedures

were within top ten most important variables in all four of the models. Variable importance

rankings were similar between logistic regression and the random forest; however, between

the survival approaches, the ICD codes were more influential in the Cox regression model

while the clinical variables were more influential in the random survival forest. Additional

details of the variable importance differences between models can be found in Appendix A

(see Figure 3.7).

Table 3.3: Performance of Statistical Modeling Approaches.

Strategy AUC F1 Score
Logistic Regression 0.851 0.273
Cox Proportional Hazards 0.854 0.284
Random Forest 0.861 0.325
Random Survival Forest 0.847 0.170

Note: AUC = area under the (receiver operating characteristic) curve; F1 score = harmonic
mean of recall and precision
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Figure 3.2: ROC curves (left) and Recall-Precision curves (right) for logistic regression, Cox proportional
hazards regression, random forest, and random survival forest approaches. Note: Evaluation of survival
approaches is provided at Time = Day 2 because that was the median time point.

3.3.2 Clinical Impact Performance

From a clinical impact perspective, the random forest and random survival forest identified

more patients than logistic and Cox regression models at the same thresholds for CPA

event probabilities ranging from 0.006 (actual event rate) to twenty times the event rate at

0.12 (see Figure 3.3). Similarly, the random forest and random survival forest had higher

sensitivity rates at these same thresholds. With respect to the display of predictions that

can be provided to clinicians, logistic regression and random forest models can provide a

point estimate probability while the Cox regression and random survival forest models can

provide probabilities that change at future time points. Figure 3.4 illustrates the estimated

probability of a CPA event produced by all four models for two different patients – the

average patient obtained by median values for all variables and an "ill" patient with several

abnormal values. The random survival forest curve for the "ill" patient illustrates the most

drastic change in predicted probability.
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Figure 3.3: Comparison of positive prediction rate and sensitivity among all models at thresholds comprising
the event rate in this dataset (0.006) and several of its multiples.
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Figure 3.4: Comparison of estimated CPA event probability from 2 fictitious patients. Top: average patient
defined as all model variables’ values set at the median value. Bottom: ill patient characterized by several
abnormal values (i.e., creatinine = 2, glucose = 300, potassium = 5, sodium = 150, hemoglobin = 7, red cell
distribution width = 20, respiratory rate = 24, pulse = 115, and age = 80). Note: The average patient (top
figure) has a different y-axis scale than the ill patient (bottom figure).
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Because the random survival forest predictions showed the largest variability across time

points for the ill patient, we explored whether the random survival forest demonstrated

a similar degree of variability in predicted probabilities among all patients in our available

data. We averaged the random survival forest prediction curves for all individuals in the data

and compared these against the average Cox regression model predictions for the same indi-

viduals. Figure 3.5 shows the day-to-day changes in predicted probabilities for the random

survival forest curves as much larger between CPA-positive versus CPA-negative patients

when compared to the same two groups with the Cox regression model.

Figure 3.5: Summary curves for all predicted patients, stratified by those with CPA versus those without
CPA. (- - - Dashed lines indicate 1st and 3rd quartiles of the random survival forest)
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3.4 Discussion

Using a large dataset, we directly compared regression modeling and machine learning tech-

niques for predicting in-hospital CPA. The approaches produced similar AUC values ranging

0.85-0.86, which are comparable to the findings of other researchers. A recent systematic

review of early warning system scores for in-hospital clinical deterioration found most AUCs

in the range of 0.74-0.86 for CPA.73 These moderately large AUCs should not be surprising

given the low event rate of CPA. Others’ efforts to directly compare classification modeling

strategies for CPA (i.e., logistic regression versus machine learning methods) have recently

been published,11 and their findings differed slightly from our findings in that the random

forest approach outperformed logistic regression with respect to AUC (0.801 versus 0.770).

Their study also found respiratory rate, heart rate, and age were the 3 most important pre-

dictor variables while we found several laboratory values to be the most important clinical

variables in our models. Of note, they used a composite outcome of non-intensive-care unit

CPA, unexpected intensive care unit transfer, and death rather than a single endpoint of

CPA.

Conversely, the statistical performance of all modeling approaches was more dissimilar for

recall and precision with F1 scores of 0.17-0.33. The two regression models (i.e., Cox propor-

tional hazards for time-to-event outcomes and logistic for classification outcomes) performed

similarly with F1 scores of 0.28 and 0.27, respectively. In contrast, the time-to-event ma-

chine learning approach (i.e., random survival forest) performed worse than the classification

machine learning approach (i.e., random forest) with F1 scores of 0.17 and 0.33, respectively.

Unfortunately, we were not able to compare our F1 scores with others’ work because these

metrics are not frequently reported in CPA prediction literature. With rare events, com-

paring precision (i.e., positive predictive value) is preferable to specificity due to precision’s

insensitivity to event rate.

The potential clinical influence of the models with respect to number of alarms varied as
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well. At all thresholds, machine learning approaches produced more clinical alarms than

regression approaches (see Figure 3.3). This finding was accompanied by the benefit of

increased sensitivity but could contribute to clinicians’ alert fatigue if too many alarms are

generated. Increased thresholds decrease the positive prediction rate and recall (sensitivity)

while increasing precision (positive predictive value). In our study, increases in precision

were noted at increasingly higher thresholds but eventually returned to zero in 3 of the 4

approaches (see Figure 3.2). The random forest model did not exhibit the same behavior,

and in fact, precision reaches 1 at the most extreme threshold before returning to values

comparable with other approaches. For clinical environments where precision is valued more

than recall (i.e., where certainty in a positive prediction is more important than a false

negative), the random forest approach could be more appropriate.

In terms of clinical interpretability, the prediction trends of time-to-event models might be

more likely to influence clinicians’ decisions. Time-to-event models produce trajectory curves

that align more closely with the underlying deterioration phenomenon than a single proba-

bility that is expressed as a straight line on a graph (see Figure 3.4). The display of graphical

probability trends offers a potential solution to alarm fatigue that might result from simple

numerical cutoffs. While there does not appear to be a single superior approach at this time,

given that the random forest machine learning methods have several advantages (i.e., fewer

assumptions and increased variability in prediction trends) over the traditional statistical re-

gression models and the time-to-event models allow prediction trends, the random survival

forest might provide the best option for further model development work for in-hospital

CPA. Future research looking at what is most likely to influence clinicians’ decisions would

be helpful.

48



3.4.1 Strengths & Limitations

We leveraged robust prediction model methods, including flexible regression models and

newer machine learning methods. Random forests have the benefit of fewer predictor variable

assumptions than traditional modeling strategies (e.g., linearity, interaction effects) and

minimal overfitting compared to simple classification-and-regression trees. Use of the survival

models is accompanied by the benefit of knowing when an event is going to occur. In contrast

to non-critical events, such as 30-day readmission rates or pressure ulcers, greater precision

of probability estimates for CPAs is of more value to in-hospital nurses.

We used a single outcome of CPA, but there is some evidence that using a composite measure

(e.g., CPA, intensive care unit transfer, and mortality) increases statistical power.82 We only

included data available upon admission even though we expect that adding more values as

they become available will increase the predictive accuracy of the model. Several additional

approaches exist for repeated-measures data (e.g., mixed-effects regression, time-vary covari-

ate survival models, and discrete-time survival models). These repeated-measures methods

should continue to be explored despite our finding that a single-time model performed similar

to multi-time models with respect to AUC.

The amount of missing data limits the trustworthiness and clinical applicability of the mod-

els. We found no evidence that patient characteristics influenced missing data patterns, and

thus, we assumed data were missing completely at random. The cause of missing data likely

resulted from data manipulation during transfer from electronic health records to the re-

search database. The use of multiple imputation with chained equations and predicted mean

matching, especially in such a large sample, produced results that were very similar to pop-

ulation/true values in our statistical simulations. Although having more non-missing values

would have been preferred, missing data within clinical records is a commonly-encountered

problem, and we cannot simply ignore data that are present by discarding variables with

excessive missingness.
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3.4.2 Future Directions

Future work should focus on obtaining datasets with less missing data and including addi-

tional variables that might predict CPA (e.g., mental status scales83). The field of predictive

analytics for in-hospital CPA continues to expand, as noted by people publishing prospec-

tive protocols84 and testing additional statistical methods.85,86,87 We excluded patients who

experienced a CPA on their first day of care because we anticipate different statistical strate-

gies and model variables would be necessary to represent the phenomenon occurring earlier

in a patient’s hospitalization (e.g., using only emergency room triage data). Although we

reported the heuristic advantage of noting trend line displays, we should compare whether

trends or point estimates are more likely to influence nurses’ behavior (within the larger

context of usability studies).88 We provided information on variable importance; however,

these findings could be due to the amount of missing data, and the importance ordering

should be re-visited in future studies.

3.5 Conclusion

As we embark on the continued development of probability-based clinical decision support

tools for recognizing clinical deterioration, we must use the most appropriate statistical

methods to model the underlying phenomenon. Improvements in accuracy are only one

aspect of building decision support tools that are beneficial to clinicians; potential clinical

impact (e.g., prediction format or number of alarms) is also an important consideration as

we consider usefulness for bedside nurses. If we expect clinicians to incorporate these tools

into their clinical workflows, we must be cognizant of both of these issues. Finally, given the

potential impact of decision support interventions on workflow, nurses’ roles, and patient

outcomes, we advocate for increased collaboration between nurse scientists and biomedical

informatics researchers to develop decision support tools that influence nursing work.
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3.6 Appendix A

This supplementary information is intended to provide additional detail on the data pre-

processing and data analysis as a way of increasing transparency and facilitating repro-

ducibility.
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Table 3.4: List of Candidate Predictor Variables (n=60) Initially Considered and Rationale for Exclusion of
Variables (n=10) Not in Final Models. *Blood Gas Panel comprised pH, pCO2, base excess, pO2, lactic acid,
and methemoglobin. Note: Temperature and pulse oximetry (variables frequently collected for hospitalized
patients) were not available in the data set used for this study. All laboratory values were obtained from
serum collections. Raw ICD-9 codes were collapsed into 19 diagnostic categories and 16 procedural categories.

Variable Included in Final

Models?

Reason for Exclusion

Age Yes

Gender Yes

Race No Small sample in some categories resulted in a singular matrix

during model fits

Ethnicity No Small sample in some categories resulted in a singular matrix

during model fits

Body Mass Index Yes

Heart Rate Yes

Respiratory Rate Yes

Blood Pressure No Data source listed all timestamps at 00:00, so we were unable

to determine first value

Sodium Yes

Potassium Yes

Chloride No Could be predicted by other variables in a regression model

with R2 >0.9

Glucose Yes

Blood Urea Nitrogen No Collinear with Creatinine (Spearman’s rho ∼ 0.4)

Creatinine Yes

Anion Gap Yes

Calcium Yes

Carbon Dioxide Yes

White Blood Cell Count Yes

Red Blood Cell Count No Collinear with Hemoglobin (Spearman’s rho ∼ 0.8)

Hemoglobin Yes

Platelet Count Yes

Red Cell Distribution Width Yes

Blood Gas Panel* No Missing in >80% of patients

Braden Score No Missing in >80% of patients

ICD-9 Codes Most The Obstetrical procedure category was removed because it

resulted in a singular matrix during model fits

CPT Codes No Only used for outcome variables
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Figure 3.6: Datasets used for model training development and validation.
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Figure 3.7: Comparison of variable importance rankings among modeling strategies.
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Data Analysis Software

R packages used for analysis include:

rms89

Hmisc90

ggplot291

data.table92

dplyr93

tidyr94

knitr95

ROCR96

directlabels97

pROC98

randomForest99

randomForestSRC100

caret101

ggRandomForests102
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Formulas

In all modeling approaches, the predicted cardiopulmonary arrest event E is said to occur

if the probability estimate Ŷ meets or exceeds the threshold c, set at the event rate (0.006)

and several of its multiples.

E =


1, if Ŷ ≥ c ∈ {0.006, 0.012, 0.018, 0.06, 0.12}

0, otherwise

This formulation creates a binary classification for direct comparison of predicted events E

with actual events A in a sample of n patients with the following metrics:103,104

Sensitivity (Recall, True Positive Rate) =
∑(E = 1|A = 1)∑

A
(3.1)

Positive Prediction Rate =
∑
E

n
(3.2)

Positive Predictive Value (Precision) =
∑(E = 1|A = 1)∑

E
(3.3)

False Positive Rate =
∑(E = 1|A = 0)∑

n− A
(3.4)

F1 Score = 2 ∗ Precision ∗Recall
Precision+Recall

(3.5)

The area under the receiver operating characteristic curve metric AUC was calculated with

a trapezoidal approximation using a plot comparing the false positive rate FPR to the true

positive rate TPR at each unique predicted probability i in {Ŷ }.

AUC =
∑

i∈{2,3,...|Ŷ |}

1
2(FPRi − FPRi−1)(TPRi + TPRi−1) (3.6)
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Logistic Regression

Probability estimates for logistic regression models given a vector of coefficients β and new

data X are calculated by:105

Ŷ = 1
1 + exp−Xβ (3.7)

Cox Proportional Hazards Regression

Probability estimates for Cox proportional hazards regression models require a specification

of the time t to which a survival probability at that time point Ŝt is calculated. Along with

the vector of coefficients β and the new data X, the formulation is:105

Ŷt = 1− Ŝt

= 1− S0(t)exp(Xβ) (3.8)

In this study, t = 2 was used for comparisons because that was the median time to both the

event and censoring.

Random Forests

For each of the R trees Tr and new data X, the event probability Ŷ becomes:79

Ŷ = 1
R

R∑
r=1

Tr(x) (3.9)
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Random Survival Forests

Similar to the Cox proportional hazards regression model, we must specify a time t at which

to calculate a survival probability Ŝt. For each of the R trees Tr and new data X, the event

probability Ŷ becomes:79

Ŷt = 1− Ŝt

= 1− 1
R

R∑
r=1

Tr,t(x) (3.10)

Once again, t = 2 was used, as it was the median time.
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Chapter 4

PARTICIPATORY DESIGN OF PROBABILITY-BASED DECISION SUPPORT TOOLS

FOR IN-HOSPITAL NURSES

This chapter describes a qualitative study using a participatory design method in a simulation

laboratory to identify the important design elements of probability-based clinical decision

support tools. The results of this study will lead to future prototype refinement for the

design and development of probability-based clinical decision-support tools.

4.1 Introduction

Sound clinical decision-making depends on one’s ability to access, process, and use the array

of information at one’s disposal. Growing complexity in healthcare has made decision-

making in today’s clinical environment more challenging than ever. Increased introduction

of information-providing technology into the clinical setting has added to this complexity

and influences the decision-making of clinicians.17 Clinical decision support (CDS) tools

are intended to assist decision-making, but the rapidity of technological advancements has

outpaced our knowledge of tool use, design display, and decision-making influence in the

clinical environment.21

Probability-based clinical decision support (PB-CDS) tools (referred to by some as predictive

analytics) are relatively new phenomena for influencing clinical decision-making. To facilitate

the study of these tools’ benefits, an initial approach would be to study a clinical situation

where clinicians’ prompt decision and actions are warranted. Additionally, the prototypic

situation would include an outcome where the anticipated and actual events occur close

together in order to minimize the potential influence of additional variables (e.g., other

clinicians’ actions or non-hospital factors) on weakening the temporal connection between
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the probability and actual occurrence of events. Therefore, using currently available data to

predict events likely to occur within 24-48 hours would be ideal. The risk of cardiopulmonary

arrest meets this criterion and served as the clinical situation for this study. Cardiopulmonary

arrests are an exemplar by which to study PB-CDS phenomena because they are common

(approximately 209,000 hospitalized patients in the United States every year5) and have

substantial associated mortality (survival rates are only 23-37%22). Cardiopulmonary arrests

occurring outside of the intensive care unit (ICU) are of particular interest because these

in-hospital events might be preventable, or at least survivable with early intervention.22,25,24

Published reports demonstrating the accuracy of predictive analytic models in healthcare ex-

ist,28,10 and many of these have been developed to predict cardiopulmonary arrests.35,36,37,38,39,40

Most of these reports, however, are focused on how the statistical models were developed, the

variables included in the models, and how accurate the models are.28,10,29,30,31 These factors

are necessary but insufficient to influence patient outcomes because a change in clinician

behavior is also required for patient care to be impacted. Some studies have simply provided

clinicians with information from the predictive model42 while others have attempted to au-

tomatically initiate an intervention such as a rapid response team.41 Even though studies

examining the impact of predictive models on identification and management of patients

preceding cardiopulmonary arrest have demonstrated high accuracy,42 especially when com-

pared to traditional scoring systems,39 the CDS tools lack demonstrable benefit on patient

outcomes outside of modest improvements in length of stay.42,41 One reason for this inefficacy

could be that most studies progress directly from model development to implementation in

the clinical environment without adequate preliminary testing.88,106

Our study took what Friedman calls a "small ball" approach43 to developing an information

resource and challenges previous research approaches by exploring the user interface in a

simulated environment before introducing the tool in clinical practice. This approach per-

mits assessment of clinician preferences as well as modifications of the PB-CDS tool before
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significant resources have been spent. The overall objective of this study was to perform lab-

oratory development and testing of a PB-CDS tool for cardiopulmonary arrest identification.

In this paper we report our findings on the similarities/differences among information pref-

erences of bedside nurses, charge nurses, and rapid response team nurses during the design

phase.

4.2 Methods

4.2.1 Design

Three participatory designs were used in this study. This type of design is a qualitative

method that engages participants as co-investigators in the design process; it is used widely

in technology and engineering fields but only recently applied in healthcare informatics re-

search.55,107,108 Three phases of activities comprise a participatory design study: Priming,

Designing, and Debriefing. The Priming activity helps participants understand the intended

tasks and context surrounding the study purpose while preparing them to become active par-

ticipants in the next phase. The Designing activity is the more active portion of the study

where all participants (i.e., researchers, designers, intended end-users) co-create design ele-

ments of the tool. The Debriefing activity allows participants to describe their experience of

creating and reflect on the words and actions of others. The final product is a report, possibly

with prototypes.109,55 Our study was reviewed and approved by the Vanderbilt University

Institutional Review Board.

4.2.2 Participants and Setting

The participants in this study were nurses working in an adult teaching hospital, a pediatric

teaching hospital, and an adult federal hospital. Inclusion criteria comprised bedside nurses

and charge nurses working in non-critical care, inpatient departments (e.g., medical wards,
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surgical wards) with either adults or children from an academic medical center and a federal

hospital in a large urban city in the mid-South region of the U.S. We also included nurses

working in intensive care units who responded to rapid response team calls. Participants

received a $75 gift card for their participation. Data collection occurred in the Vanderbilt

University School of Nursing Simulation Center, which houses high and low fidelity simula-

tion manikins, specially trained personnel for operating the manikins, several patient rooms

that mimic a hospital unit, and a large, open space for small group work. High-fidelity

manikins were capable of connecting to continuous telemetry monitoring, receiving general

physical assessments (e.g., chest rise and palpable pulses), and communicating with partici-

pants.

4.2.3 Participatory Design Sessions

Three participatory design sessions were conducted. Each 2-hour session comprised 5-10 end-

users currently working as either bedside nurses, charge nurses, or rapid response team nurses.

Facilitated by at least two of the researchers, each session contained a Priming activity

(approximately 20 minutes in length), a Designing activity (approximately 60 minutes), and

a Debriefing activity (approximately 30 minutes).

4.2.3.1 Priming Activity

Each session began with a Priming activity. During this time, we gathered all participants

into a conference room and watched an 8-minute video vignette in which a patient experi-

enced clinical deterioration warranting activation of a rapid response team. The vignette

scenario was modified from a video created by the Agency for Healthcare Research and Qual-

ity,110 was validated for content by researchers (n=5) and subject matter experts (n=7), and

is available from the author upon request. During the Priming activity, we instructed the

nurses to take notes on what they observed/remembered from the vignette along with ad-
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ditional information they would have requested in a real scenario. Following the video, we

collected those notes to include in data analysis.

4.2.3.2 Designing Activity

The Designing activity engaged the nurses in the hands-on creation of a physical represen-

tation of an electronic CDS tool using paper, colored pencils, scissors, rulers, and adhesive

note paper. Bedside nurses were physically located near patient manikins in the simula-

tion laboratory, charge nurses were located farther from the manikins but within eyesight

of bedside nurses, and rapid response team nurses remained in the nearby conference room

where the Priming activity occurred. The simulation laboratory included three low-fidelity

manikins and one high-fidelity manikin, the latter representing the patient described in the

Priming activity vignette and operated by a laboratory staff member. A brief narrative of

each patient’s history and physical assessment along with vital signs, laboratory values, and

the numerical result of a fictitious PB-CDS tool (e.g., 1.3%, 56.8%) were available at each

bedside. We provided an abbreviated overview of all patients (including the results of a

fictitious CDS tool) to charge nurses. We gave no patient information to the rapid response

team. Researchers interacted with all nurse end-user participants throughout the Design-

ing activity, and examples of previously published cardiopulmonary arrest CDS tools were

available to assist with brainstorming.

Approximately halfway through the Designing activity, the high-fidelity manikin experienced

a deteriorating condition, and researchers encouraged the group of bedside nurses to ask for

help from the group of charge nurses and rapid response team nurses. The first participatory

design session did not produce the degree of CDS tool-focused design data we expected, so

during the second and third sessions, we attempted to induce cognitive dissonance with one

of the fictitious results by providing a very high numerical result to a patient whose history

and physical assessment suggested a very low probability of cardiopulmonary arrest.
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4.2.3.3 Debriefing Activity

After the Designing activity, all participants returned to an adjacent conference room for the

Debriefing activity. During the Debriefing activity, researchers used semi-structured, open-

ended questions to ask nurse end-users to share their designs and provide rationale for each

of the chosen design elements. We audio-recorded the debriefing conversations, took notes of

the discussion, and captured photos of physical artifacts. In all participatory design sessions

following the first, we shared concepts and photos from previous sessions with participants,

offering the opportunity for convergence of designs.

4.2.4 Analysis

Consistent with usability testing principles, the research team leveraged theme-based con-

tent analysis, ongoing aggregation of results, as well as discussion and deliberation of nurse

end-user comments and artifacts.111 We used a computer-based qualitative data analysis

software program (Dedoose60) to facilitate deliberation among researchers. After a prelimi-

nary analysis was conducted, we collaborated with human-computer interaction and design

experts to provide heuristic insights into design elements. We synthesized all recommen-

dations, developed a low-fidelity prototype, and shared the prototype with 14 of the nurse

end-users who participated in the workshops. We used this final step as a form of "member

checking"112 to ensure participants felt their preferences were appropriately converted into

the prototype design.

4.3 Results

Five bedside nurses, nine charge nurses, and six rapid response team nurses (n=20) attended

the sessions from 14 unique units. In addition to several minor themes identified in the

Priming activity notes, three major themes and several considerations for design elements of
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a PB-CDS tool surfaced.

4.3.1 Themes

End-user notes taken during the Priming activity described a need for communication, bed-

side nurse autonomy, attention to the patient’s physical assessment, review of historical vital

signs and laboratory values, timing of treatments, and standardization of actions. Three ma-

jor themes emerged from the Designing and Debriefing activities and represent participants’

goals for the CDS tool.

4.3.1.1 Goal #1: Communication of Patient Status

First, participants reported they wanted a CDS tool that "paints a picture" or "tells the story"

of the patient condition over time. They requested the ability for individual users to select

which variables become visible and layer those variables’ trends for hypothesis generation

and succinct communication. For example, the electronic health record could provide a

visual depiction of heart rate values layered over the probability-based cardiopulmonary

arrest summary value. One participant noted:

I like the idea that you could see the trending vital signs during that rapid response

call, like we started here and this is where we’re going, so you can easily see at

a glance. Have things go up or down. We mentioned seeing the interventions,

like a little tab, where you just tap - "Look, IV fluids given and who did an EKG"

. . .Timing, to go with it, so you can see where it goes and all that’s trending. That

way anybody that walks into the room, they can easily see what’s going without

asking a bunch of questions, repeating the story every time. . .
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4.3.1.2 Goal #2: Promotion of Autonomy

The concepts of empowerment and autonomy surfaced in the second goal. If a CDS tool

is designed well, the tool could empower nurses and promote their autonomy in advocating

for the patient and contributing to treatment decisions. As an objective assessment of the

patient’s condition, the CDS tool has the potential to provide participants with a structured

method by which nurses’ can garner support for their recommendations.

4.3.1.3 Goal #3: Consistency with Context

In the third goal, nurses were in agreement that the model had to make sense, and the

general perception was that probability-based models are more helpful for confirming what

one already thinks rather than identifying unrecognized patient conditions. If the CDS tool

provides results that are discrepant with what one thinks or does not appear to consider a

patient’s "context" or "baseline," the CDS tool prompts many questions, which has potential

for both benefit and harm. To paraphrase several of the participants, one of the researchers

noted in a post-workshop discussion:

. . . changes in the number need interpretation. Why or what contributed to a

rapid change? . . . a slow steady trend also needs interpretation. . .Don’t let a tool

overtake critical thinking. It’s all about the trends and the baseline.

4.3.2 Design Elements

A list of design elements requested by nurse end-users accompanied by heuristic recommen-

dations are provided in Table 4.1. Participants frequently expressed a desire for the abil-

ity to visualize the temporal trend of the predicted probability of the outcome along with

user-selected overlapping depictions of vital signs, laboratory values, and outcome-related

treatments and interventions. Charge nurses and rapid response team nurses had a strong
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request for only viewing a ranked order of the highest risk patients. Less notable but fairly

commonly-heard requests included alerts only for values exceeding an absolute threshold or

high degree of change, a green/yellow/red color scheme, and the ability to view the tool on

both a mobile device as well as a dashboard.
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Table 4.1: Design Element Considerations for PB-CDS Tools

Elements Participant Preferences Heuristic Evaluation

Trends Desire current value in addition to historical
trends • Want to know when previous values
where acquired • Trends should be linear (not
circular) • Moving 12-hour window

Consider combinations of
color-coding and ranking.

Layers/Filters Ability to select which variables to include • Vi-
tal sign values most preferred (laboratory values
mentioned far less than vital signs) • Defaults
can be unit-specific or the variables that con-
tribute "most" to a change or high probability
• Ability to see any variables that contribute to
the model as well as anything abnormal (even if
it doesn’t contribute to the statistical model)

Treatments &
Interventions

Want to see what’s been done to mitigate event
risk • Selected treatments should relate to prob-
lem being viewed (e.g., antibiotics for sepsis but
not falls)

Might need to be unit-
specific.

Ranking Rank patients in descending order of probabil-
ity • Might not work without a consideration of
"context/baseline" • Would need different view
for charge nurse vs. bedside nurse vs. RRT
(prefer to see only those in one’s care)

Alert Notifica-
tion

See/read why the prediction score changed (i.e.,
what individual value[s] changed) • Accompany
alerts with a recommended action • Review tool
at beginning of shift (e.g., during shift change) &
then be notified of changes • Alerts for exceeding
an absolute value threshold as well as percent
change • Should be specific to unit/department

Consider building statis-
tics for 12-24 hours early
so that nurses are "help-
ing the next shift out" as
opposed to "depending on
a statistical model to tell
them how to do their job"

Color Scheme Red/Yellow/Green acceptable if also including
the actual number • Several requested flash-
ing/blinking

Consider color-blind per-
sons • Font size to repre-
sent magnitude • Flashing
not recommended

Medium Dashboard displays, especially for low-risk pa-
tients • Mobile-friendly option (e.g., cell phone)
• Prefer information available at the bedside
for RRT arrival (possibly something where RRT
could obtain information while en route) • Abil-
ity to click elements or "zoom in" to see details

Communication Capturing data in real time from EHR • Abil-
ity to send screenshots to EHR/chart, RRT,
provider, and/or charge nurse

Notes: EHR = electronic health records; RRT = rapid response team
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Although not always focused solely on our CDS tools, participants gave additional recom-

mendations for future technology development and identified potential barriers (see Table

4.2). The most prominent findings include ensuring the tool is readily available to all health-

care team members, balancing ease of information access with patient privacy, and being

concerned about discrepancies in objective probabilities and subjective perceptions. Regard-

ing this latter point, some participants expressed concern of the potential for over-reliance

on CDS tools with a loss in critical thinking as these tools become more common.

Table 4.2: Recommendations for Future Technology Development & Potential Barriers

Participant Request Heuristic Perspective

Other Desired
Features

Voice-activation • Providing risk scores for mul-
tiple outcomes - could treat these as filters with
selection of what one wants to see. • All clin-
icians should have opportunity to view • Live
video stream once RRT activated • Creation of
a summary paragraph of the problem (similar to
a History & Physical Note) • Show how reliable
prediction score is (e.g., confidence intervals) •
A few participants mentioned wanting to know
who was involved in the patient’s support sys-
tem (i.e., family) • "Start" button for when ac-
tivating RRT- could more thoroughly record all
that happens as well as provide recent history

Training will be important
for clinicians to success-
fully access & use tool.
Family involvement will
be challenging to incorpo-
rate, but pediatric nurses
consider this factor in
decision-making.

Barriers Ability to select which variables to include • Vi-
tal sign values most preferred (laboratory values
mentioned far less than vital signs) • Defaults
can be unit-specific or the variables that con-
tribute "most" to a change or high probability
• Ability to see any variables that contribute to
the model as well as anything abnormal (even if
it doesn’t contribute to the statistical model)

Notes: RRT = rapid response team

4.3.3 Prototype Development

Figures 4.1, 4.2, and 4.3 illustrate screenshot examples of a prototype to represent the most

salient preferences from participants. Consistent with requests for ranking, Figure 4.1 pro-
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vides a prototype of what a charge nurse might use to review a list of all patients on that

unit, ranked in descending order of risk to promote easy recognition of high-risk patients. In

order to illustrate individual patient trends and accompanying "baseline," Figure 4.2 displays

how all types of nurse end-users preferred to see an individual patient’s risk. Combining the

most salient themes of trend lines, filters, layers, and treatments, Figure 4.3 exemplifies sev-

eral screenshots: (a) vital signs and laboratory values layered over a predicted probability

of cardiopulmonary arrest, (b) additional detail of one vital sign selected, and (c) cardiopul-

monary arrest-related interventions layered over the time period in which they occurred.

Participatory design session end-users who reviewed the prototype did not recommend any

changes for the current design; however, they did provide additional suggestions for future

implementation including a desire for automaticity of data exchange with the electronic

health record and individual configuration of all filters and layers.

Figure 4.1: Prototype of charge nurse view of all patients on a unit, ranked in descending order of those
most at risk for a cardiopulmonary arrest.
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Figure 4.2: Prototype of individual patient view containing basic patient information accompanied by a
72-hour trend of predicted probability of cardiopulmonary arrest.

Figure 4.3: Prototype of applying filters and layers to predicted probability of cardiopulmonary arrest. Left:
User-selected vital signs and laboratory values displayed. Center : Additional detail of one variable among
user-selected vital signs and laboratory values. Right: Cardiopulmonary arrest-related preventive treatment
displayed on the clinical shift in which they occurred.
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4.4 Discussion

We used the participatory design method to identify important design elements and create

a prototype for a PB-CDS tool that predicts cardiopulmonary arrests. Co-creation of the

CDS tool via participatory design was beneficial because the active involvement of multiple

stakeholders facilitated the identification of novel, integrative design concepts that groups of

participants (i.e., researchers and end-users) might not have identified separately. The goals

and associated recommended design elements can be used and extended by designers and

developers to create PB-CDS tools for in-hospital nurses in the future.

Similar to how the information needs of nurses differ from physicians due to their different

practice and diagnostic models,113,20 we had hypothesized the needs of various specialties

of participants would differ, given their different settings and work. Work performed by

others has demonstrated that nurses benefit from information displays focused on trends

and the recall of relevant patient information while physicians benefit from displays that

promote inference for decision-making.20 We did not find such distinct differences among

our participants, even though we anticipated charge nurses and rapid response team nurses

would prefer more inference-focused displays for their discrete decision-making activities.

We found the desire for inference-support and hypothesis-generation assistance to be present

across all participant roles. When considering this desire paired with participants’ request for

exploring a patient’s "baseline" and "context," our findings appear consistent with the view

that nurses’ diagnostic reasoning skills are context-dependent in the social and humanistic

domains.113 Finally, a recent simulation study of nurses’ acceptance of CDS suggestions

found the primary reason to accept a suggestion resulted from the belief that it was "good

for the patient,"114 and we believe this supports our theme of "consistency with context" as

a CDS tool goal.
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4.4.1 Strengths and Limitations

Strengths of the study include placing participants in an environment that mimics real

workflows, recruiting three unique roles of in-hospital nurses, and iterative design testing

in collaboration with end-users, researchers, and human-computer interaction experts. We

condensed preferred design elements into a mobile-phone based prototype due to partici-

pant’s requests for a mobile-friendly tool; this will hopefully ease the transition to computer

monitor-sized displays (in contrast to the removal of key elements during screen size reduc-

tion). When reviewing the Priming activity notes provided by end-user participants at the

beginning of the sessions, we treated these as a type of needs assessment, and we believe

our recommended design elements and prototype would contribute to meeting these needs.

Limitations of the study include a convenience sample from only three hospitals located in

two health care systems and the inability to determine if CDS tool-based information is

capable of changing behavior.

4.4.2 Future Directions

Bedside nurses and charge nurses from the intensive care unit and emergency department

were excluded because the workflows of these nurses are different from those of non-critical

care, inpatient nurses. Future studies should include these settings for possible identification

of unique design elements of CDS tools in these environments. The terms baseline, context,

and sick surfaced frequently and are likely specific to healthcare clinicians and perhaps even

nurses or practice specialties. Future studies should explore their meanings across settings

and how information technology can provide information within this mental framework. Fi-

nally, formal usability testing is needed with more robust prototypes developed from our

recommended design elements. Usability testing will be especially important when compar-

ing some design elements head-to-head. As the designs become more robust and prepare for

integration into a clinical setting, we plan to crosswalk our recommendations with the re-
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cently released international standards for nursing-process-focused CDS tools, which contain

additional criteria necessary for optimal integration into workflows that support practice and

advance the science.115

4.5 Conclusion

The information we gained about the preferred design elements of predictive analytics tools

that support, rather than interrupt, nurses’ cognitive workflows can benefit future studies

in this field as well as nurses’ practice. As these themes and elements undergo additional

testing and refinement, we anticipate they can eventually serve as standards for developing

PB-CDS tools that are more likely to influence clinician behavior and ultimately patient

outcomes.
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Chapter 5

CONCLUSION

The goal of this initial inquiry was to identify strategies for designing and developing

probability-based clinical decision support (PB-CDS) tools for nurses. Recognition of in-

hospital cardiopulmonary arrest (IHCPA) served as the clinical context for the studies. Given

the paucity of literature regarding optimal design and development strategies of these tools

that could influence patient outcomes, these dissertation findings add to the corpus of knowl-

edge and create a foundation for future research in this field. As more PB-CDS tools become

available with the growth in predictive analytics, nurses (and other clinicians) are in need of

tools that integrate well with their physical and cognitive workflows if they are to make the

best use of these tools. If PB-CDS tools are simply inserted into the clinical environment

without a consideration of key elements for success (e.g., real-time data entry practices, cur-

rent information-gathering behaviors, perceptions and use of probability-based results), they

might not be able to produce the desired change in clinician behaviors. It stands to reason

that without these behavioral changes, it becomes challenging to improve patient outcomes.

In this work’s qualitative interviews, nurses’ current information-gathering behaviors were

identified, and their perception and use of probability-based information was explored. The

statistical prediction study compared classification and time-to-event approaches to devel-

oping prediction models for IHCPA, which will inform future evaluation studies of PB-CDS

tool interpretability. The participatory design sessions captured key design elements for PB-

CDS tools that could continue to be explored in development and evaluation of more robust

tools. Given the findings and limitations of these studies, several research gaps have surfaced

to be explored in the future.
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5.1 Gaps to Address

5.1.1 Design of PB-CDS Tools

The qualitative study of information-gathering behaviors was limited by the inherent chal-

lenge of participant recall, and the qualitative study that leveraged participatory design was

limited by the sterility of its simulated environment. Both of these limitations were expected

and acceptable given that design research tends to be formative, rather than summative, in

nature.116 These approaches were beneficial given the novel nature of this work (i.e., existing

tools were not already available for study). Once PB-CDS tools are developed, summative

methods (e.g., direct observation of actual use and usability surveys) will be more helpful

in evaluation. Future work will focus on evaluating nurses’ routine work in simulated envi-

ronments where they are provided with varying PB-CDS tool designs. Examining responses

to those various designs would permit a comparison of which design elements contribute to

improved usability and are more likely to alter their practice behaviors. This incremental

build on tool design affords the opportunity of making iterative changes before significant

resources are spent on a final product.

Following any iterative changes, usability in real-world scenarios will be conducted. In clin-

ical environments (as in simulated environments), formal usability can be conducted with

methods such as usability surveys, direct observation, "think aloud" activities, and cogni-

tive walkthroughs. Non-simulated environments are accompanied by additional confounders

but provide the best context for evaluating whether a design will perform as expected in

its intended environment. As evidence accumulates for optimal designs of PB-CDS tools,

synthesizing results and publishing recommendations will be helpful in guiding designers and

programmers during future tool development.
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5.1.2 Development of PB-CDS Statistical Models

The statistical study compared classification and time-to-events models for building predic-

tion models for IHCPA, but a clinically useful model could not be developed due to the

large amount of missing data. A more robust dataset with less missing data is essential for

developing a clinical prediction model that has potential for use in a clinical environment.

Once a more robust dataset is obtained and the statistical performance of the varying ap-

proaches compared again, a formal evaluation of clinicians’ abilities to, and preferences for,

interpretation will be conducted. A balance between high statistical performance and ease of

interpretability will likely be needed for developing PB-CDS tools with the greatest potential

for influencing clinicians’ practice behaviors.

5.1.3 Implementation of PB-CDS Tools

This dissertation work has focused on tools that support decision-making in the sense of

recognition, rather than action. Although recognition of a problem must precede its man-

agement, PB-CDS tools that do not provide clinicians with recommended actions will be

of little value in the clinical environment. A simple solution is the incorporation of recom-

mended actions identified by key stakeholders and subject matter experts. However, the

clinical decision support field would benefit from the application of decision science meth-

ods to construct models providing individualized patient information on the benefit of each

possible treatment. The conceptually and computationally complex problem of identifying

the optimal treatments for individual patients is one of the next steps in the field of big

data. Given that researchers can already create prediction models assigning baseline risk,

future efforts should focus on assigning projected risks following diverse treatment options.

If those projected risks could be reviewed along with each possible outcome’s utility, this may

enhance the opportunity for shared decision-making between clinicians and patients/families.

Another challenge of implementation efforts is an appreciation of the context into which

77



new interventions are placed. Decision support interventions that comprise context-specific

features and accommodate clinicians’ competing priorities are more likely to be successful

in today’s complex and resource-constrained clinical environments. New interventions ne-

cessitate work environment and/or process changes, thus examining a number of covariates,

including interpersonal communication, organizational culture, and limited resources, will

increase the likelihood of PB-CDS tool adoption. Indeed, many informaticians and health

services researchers have formally recognized these challenges within sociotechnical frame-

works, and quality improvement groups are attempting to address these concerns.88,117 A

remaining research gap, however, is the synthesis of best practices for successful implemen-

tation of novel tools in varying contexts (an area where implementation science could be

particularly helpful). For example, developing context-specific and context-agnostic imple-

mentation recommendations via the exploration of successful and unsuccessful implementa-

tion efforts across multiple settings would be invaluable.

5.1.4 Evaluation of Patient Outcomes

Several methodological challenges for evaluating PB-CDS tools’ influence on patient out-

comes exist1 and need to be addressed. First, the multilevel nature of information resource

interventions will require cluster-randomized trials (as opposed to the more common patient-

level randomization) to examine patient outcomes. Stepped wedge designs are particularly

appealing for those interventions because they include a cluster design while permitting itera-

tive changes in the intervention (and its implementation) during spread. Second, treatment

fidelity has not been consistently reported in the literature, and novel methods might be

needed to measure the degree to which PB-CDS tools are used by clinicians in the exper-

imental arms of trials. Finally, in order to influence patient outcomes, interventions will

require not only a helpful tool for problem recognition but also an effective treatment to

implement. This synergy of timely recognition and appropriate management will create the
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best opportunity for improving patient outcomes.

5.2 Contributions to Science and Nursing

Strategies for designing, developing, and implementing PB-CDS tools for nurses have not

been thoroughly explored or understood. Rigorous evaluation at each of these stages, and

especially related to patient outcomes, is needed. This dissertation work has filled some

of these gaps by surveying the current state of perceived information-gathering behaviors

and preferred design elements for PB-CDS tools. The work also set the foundation for

formal assessment of probability-based information interpretability in the context of clinical

nursing work. Ultimately, this work contributes to assisting clinicians in obtaining the right

information at the right time to help them make the best decisions with patients and their

families.
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