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Chapter I 

INTRODUCTION 

 

Clinical Features of Age-Related Macular Degeneration 

Age-related macular degeneration (AMD) is a debilitating disorder that is 

responsible for progressive loss of central vision. As the name implies, AMD affects the 

central portion of the retina, known as the macula. The macula is topologically located 3 

mm temporal to the optic disc and has a diameter of roughly 6mm. The macular region is 

responsible for having the highest visual acuity. AMD is a phenotypically heterogeneous 

disorder and involves disruption of many aspects of normal retinal anatomy and 

physiology.  These disruptions can be characterized into non-neovascular AMD and 

choroidal-neovascular AMD. An example of severe AMD as experienced by subjects with 

the disorder is depicted in Figure 1.1. The known cellular components and layers that play 

a significant functional role in AMD are the retinal pigment epithelial (RPE) layer, the 

Bruch’s membrane, and the choriocapillaris (Figure 1.2). The RPE layer plays a critical 

supportive role in normal retinal physiology. The RPE is responsible for regeneration of 

visual pigments and maintenance of the Bruch’s membrane and the overlying rods and 

cones through transportation of fluids and waste between the choriocapillaris and 

photoreceptor layer. The Bruch’s membrane is an intracellular matrix that acts as a 

scaffold for the RPE and choriocapillaris, working to regulate cell survival within these two 

layers1. The choriocapillaris, which is a layer of the choroid, is a network of capillaries that 

acts as the vascular system for the outer retina. 

1 



Figure 1.1: Symptoms of AMD Associated Vision Loss 
In the left hand image is an example of a person normal eyesight. The right hand image represents an individual with 
severe AMD associated vision loss. This is a common symptom of late stage wet-AMD 
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Figure 1.2: Major Anatomical Structures of the Eye 
A) Diagram of a transverse section of the eye taken through the optic nerve. B) Highlights the major retinal cellular structures that 
undergo AMD associated physiological changes. Figure is adapted from Campagne et al. 20142. 
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Early stages of Dry AMD 

Of the factors that present with AMD, drusen is one the major clinical hallmarks 

and AMD is rarely diagnosed in their absence3. Drusen are extracellular deposits that 

form between the retinal pigment epithelial (RPE) layer and the Bruch’s membrane. 

Drusen show high variation in morphology and number across individuals and eyes.   

Drusen morphology can be characterized into hard and soft4. Hard drusen are typically 

less than 63 um in diameter and are observed as small yellow nodules with discrete 

borders. Soft drusen are commonly greater than 125um in size and take on a pale 

yellow to greyish appearance and unlike hard drusen, soft drusen tend to have indistinct 

borders.  Subjects may present with small to intermediate drusen throughout their lives 

and not progress past this stage, while others may form complexes of hard and soft 

drusen that continually expand over time. It is also important to make the distinction that 

individuals may present with small drusen and not be considered AMD case subjects. 

The biochemical composition of drusen is complex and host a range of 

polysaccharides, glycosaminoglycans, and lipid components. A major proportion of 

drusen composition is esterified and non-esterified cholesterol. Protein profiling has 

estimated 129 different proteins present within hard and soft drusen with some of the 

common proteins shared between AMD and non-AMD donor eyes being apolipoprotein 

B and E (APOE), vitronectin, complement factor H, TIMP3,and complement components 

C3,C5,C8, and C94-6. Gene expression analysis of drusen associated mRNA has shown 

enrichment for ApoE, vitronectin, TIMP3, and complement components C3, C5, and C93, 

6.  

The understanding of drusen formation is ongoing, with many theories existing 

on how drusen biogenesis may occur. One of the major theories is that drusen formation 

is a result of inflammation response activation of the complement cascade through 

immune related signals from the RPE as many of the proteins identified within drusen 
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are upregulated during immune response3. It has also been suggested that drusen 

formation may be a result of an oxidative stress response3, 7, 8. Oxidative modification of 

extracellular waste produced by the RPE may lead to anchoring of protein components 

to the Bruch’s membrane causing an expansion of drusen over time3.   

 

Late Stages of AMD 

Severe dry AMD is characterized by the presence of geographic atrophy (GA). 

GA is the result of RPE layer atrophy or cell death and is typically progressive in 

manner. Due to the supportive nature of the RPE cells, death of this layer is a large 

factor in secondary loss of photoreceptors and the choriocapillaris leading to 

deterioration of visual acuity. GA can be uni-focal or multi focal in nature. In unifocal GA, 

atrophy is localized to a single feature that then spreads outward overtime. As GA 

progresses it tends to take on a horseshoe appearance, typically surrounding the fovea 

and eventually this pattern forms a ring later in progression. In multi-focal GA several 

areas of atrophy present themselves within the macular and spread over time (Figure 

1.3 B). In some instances, these multiple areas of atrophy may coalesce into a single 

atrophic area. Both types of atrophy can later spread to include the foveal region leading 

to central vision loss9, 10. GA progression in this manner may take up to years to develop.   

Different rates of geographic atrophy progression have been reported, with Holz et. al. 

showing a median geographic atrophy progression rate of 1.52mm2/year and Sunnes et. 

al. reporting 2.2 mm2/year11, 12. Although dry AMD makes up to 20% of all AMD patients 

that have visual acuity less than 20/200, most of these patients do not have severe 

vision loss10.  

The more common form of severe vision loss is wet AMD. Wet AMD is thought to 

arise through a multifactorial process. As part of this process it is hypothesized that an 

immune response resulting from damage or stress may cause the production of pro-
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angiogenic factors such as vascular endothelial growth factor (VEGFA) by the RPE, 

leading to choroidal neovascularization. These new blood vessels stemming from the 

choriocapillaris which are thin and weak, break through a compromised Bruch’s 

membrane and begin to leak blood and fluid into the space separating the Bruch’s 

membrane and the RPE layer13-15. This buildup of fluid can cause a blurring of vision at 

first, and potentially RPE layer detachment. Unlike geographic atrophy, onset of vision 

loss is a rapid process and can result in blindness of the affected eye within months of 

first signs and symptoms1.  Figure 1.3 depicts examples of the clinical hallmarks of AMD 

as described above. 

It is important to note that although AMD may be characterized into different 

stages and distinct phenotypes, they are all thought to be part of one disease process. 

Central to this, we find that both wet and dry AMD may co-occur in the same eye, and 

the underlying risk factors and tissue types affected appear to overlap. This is 

highlighted by the degenerative changes occurring in the Bruch’s membrane and RPE 

layer during the early to intermediate stages of the disease that then may lead to GA or 

choroidal neovascularization. The observation that drusen are a risk factor for both 

severe dry and wet AMD provides further evidence of the interplay between these 2 

phenotypes. Research into the potential pathophysiological drivers for the different AMD 

phenotypes is ongoing. 
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Figure 1.3 A-D: Examples of AMD Severity 
A) Intermediate AMD depicted with soft drusen centered on the fovea and 
surrounded by small hard drusen. B) Multifocal GA observed as multiple distinct 
areas of atrophy C) Unifocal GA observed as a flower pattern spreading outwards 
from the fovea. D) Wet AMD observed as pooling of fluid and blood within the retina. 
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Epidemiological Studies of AMD 

 

Prevalence estimates for AMD have been carried out for different racial/ethnic 

populations and varying geographic regions throughout the world. A common finding 

throughout AMD epidemiological studies is that this disease is relatively rare in 

individuals under the age of 55, but that prevalence increases dramatically with 

increasing age groups.  Recent reports indicate that there are currently over 1.5 million 

individuals with AMD in the United States16. In a meta-analysis carried out by “The Eye 

Disease Prevalence Research Group”, it was determined that the combined prevalence 

estimates for both wet and dry AMD in the United States are 1.52% and 16.39% for ages 

70-74 and 80, respectively16.  

Variation in prevalence of AMD has been identified between populations of 

different ancestral backgrounds16-18. In a study examining the prevalence of AMD in the 

Multi-ethnic Study of Atherosclerosis (MESA), Klein et al. observed individuals of 

European ancestry as having the highest overall prevalence of AMD in the United States 

when compared to individuals of African American, Chinese, and Hispanic descent 

(Table 1.1; p <0.001)16. When AMD was subdivided into wet AMD and dry AMD, the 

authors observed a significant increase in frequency of wet AMD in subjects of Chinese 

descent versus European descent (Table 1.1)16. The authors also observed a lower 

prevalence of wet AMD in African-American versus Caucasian populations, although the 

presence of large soft drusen along with retinal pigmentary changes seem to occur at 

similar time points in both racial groups16. 

8 



Table 1.1: Population Specific Prevalence of AMD 
For each racial/ethinc group used from the MESA cohort, prevalence estimates of the different AMD subtypes 
were calculated per separate age and gender groups. Taken from (Klein et al. 2006)16. 
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Environmental and Clinical Risk Factors Associated with AMD 

Age is currently the biggest risk factor for developing AMD. The disease is the 

least common in individuals under the age of 55 and the most common in individuals 

over the age of 758,9,19-22. Studies examining the risk associated with gender have 

identified conflicting evidence of gender associated risk of AMD16, 22, 23. Some studies 

have shown a significantly higher prevalence of AMD among females in Caucasian 

populations, especially in older ages groups (age at exam > 60)16, 22, 23. When examining 

subjects aged between 55-84, Smith et al. showed a significant increase in risk for 

females (OR = 1.15)24.  The second major environmental risk factor that has been 

associated with AMD consistently is smoking, with a relative risk between 2-4 for 

individuals that smoke compared to those that have never smoked25-30. Cross sectional 

and longitudinal studies carried out by the Blue Mountain Study group with respect to 

cardiovascular risk factors for AMD have shown that high-density lipoprotein and 

cholesterol may be inversely related to AMD risk, and that presence of cardiovascular 

disease such as stroke, myocardial infarction, and angina may be a risk factor31. The 

effects of hypertension on a person’s risk for developing AMD have been contradictory, 

but BMI has been identified as a risk factor for AMD32, 33. Other studies examining the 

role of sunlight/UV exposure in AMD risk have not yielded conclusive results34-36.  

 

Treating AMD 

 

To examine the role that vitamin supplementation may play in slowing AMD 

progression, a clinical trial carried out by the Age Related Eye Disease Study (AREDS) 

research group looked specifically at the effect of high doses of anti-oxidants and zinc on 

10 



AMD progression and visual acuity37. The results showed that subjects who were put on 

a high-antioxidant plus zinc nutritional supplementation plan had a significantly reduced 

risk of progressing to advanced AMD versus the placebo group (OR = 0.72), but had 

little effect on progressing from early to intermediate stage AMD37. AREDS 2, examined 

the potential protective impact of lutein + zeaxanthin, omega-3 long-chain 

polyunsaturated fatty acids (DHA) and eicosapentanoic acid (EPA) on AMD 

progression38. The results of this study have recently been completed and showed that 

changes to the  current AREDS formulation significantly altered AMD progression 

compared to placebo38.  Results of the AREDS2 trial suggested replacing beta-carotene 

with lutein and zeaxanthin while the addition of fatty acids had no significant effect38. 

Although the use of vitamins and anti-oxidants has shown some promise in 

slowing AMD progression, the major tool used in the treatment of AMD has been the use 

of anti-Vascular Endothelial Growth Factor (anti-VEGF antibodies) wet AMD. Two of the 

major anti-VEGF treatments currently being used in the clinical setting are ranibizumab 

(Lucentis) and bevacizumab (Avastin) as an off-label drug. Lucentis is a humanized 

monoclonal antibody fragment that binds to and blocks all forms of VEGF-A. In one of 

the pivotal  clinical trials, 95% of individuals receiving intravitreal injections of 

ranibizumab had lost less than three lines on the standard visual acuity chart for the 

treated eye after 1 year compared to only 62% of those receiving placebo injections39 . 

Avastin, which is also a humanized monoclonal antibody, was originally Food and Drug 

Administration (FDA) approved for the treatment of colon cancer, but was found to slow 

progression of wet AMD in subjects receiving this drug. In the “Comparison of Age-

related Macular Degeneration Trial” (CATT), which examined the efficacy of both Avastin 

and Lucentis, both drugs had similar impacts on AMD treatment41. One of the newer 

treatment regimes that has recently been approved by the FDA is aflibercept (EYLEA). 

11 



This molecule is a VEGF trap, preventing VEGF from binding to its receptors. EYLEA 

has the benefit of increased time between injections compared to Avastin and Lucentis, 

with dosages occurring once a month in the first 3 months of treatment followed by 

bimonthly injections thereafter.  

 

Genetic Epidemiology of AMD 

 

Although AMD is a complex, phenotypically heterogeneous disorder, the 

presence of a genetic role for AMD has been well documented through twin studies and 

familial aggregation studies. In a familial aggregation study carried out by Seddon et al., 

first-degree relatives of those affected with late AMD were at an increased odds of risk 

(OR = 2.4) when compared to families that did not have members with AMD31. A twin 

study carried out by Seddon et. al. in 840 twins estimated the heritability of intermediate 

AMD to be 0.67 and advanced AMD to be 0.7142. The group also reported an overall 

AMD heritability estimate of 0.4642. Similar findings were reported by Hammond et. al. 

when their study examined 406 twin pairs that produced heritability estimates between 

0.45 to 0.81, depending on the severity of the disease43.  

Early Genetic Studies of AMD 

One of the first major tools used to dissect the genetic architecture of AMD were 

genome-wide linkage studies. Genome-wide linkage analysis is carried about by 

examining the segregation of genetic markers spaced throughout the genome with a 

given trait or disease within families. Generally, a log-of-the-odds (LOD) score greater 

than three is considered significant evidence for linkage.   One of the earliest linkage 

screens carried out for AMD was in a single 21 family member pedigree by Klein et al. 44. 
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Linkage analysis in this family identified a maximum multi-point LOD score of 3.0 in the 

1q25-q31 region that segregated in a dominant fashion. Following the work by Klein et 

al., several other linkage screens were carried out proposing regions 9q31, 10q26, 

12q23, 15q21, 16p12, 17q25, and 22q13 as showing evidence of linkage45-49. A meta-

analysis carried out by Fisher et al. to examine previous linkage peeks that were only 

moderately associated with the AMD phenotype, identified strong linkage on 

chromosome 1q and 10q26, and significant evidence of linkage on chromosomes 

2p,3p,4q,12q, and 16q50.  

With the combination of success found in linkage screens for AMD and its highly 

heritable nature for a complex common disease, AMD provided a strong candidate for 

genome-wide association studies (GWAS). GWAS arose out of the completion of the 

Human Genome Project in 2000 and the estimation of linkage disequilibrium across the 

genome by the International HapMap Consortium in 200251, 52. Through these efforts, 

panels made up of single marker polymorphisms (SNPs) ranging from 100,000 to over 

1,000,000 markers were created to interrogate the genome. GWAS allowed for 

hypothesis-free association testing of genetic markers with disease across the entire 

genome, and thus provided a powerful statistical approach for identifying the contribution 

of unknown common genetic variation to disease.   

The application of GWAS and fine mapping of SNPs to AMD proved successful 

with several studies publishing association results simultaneously in 200550, 53-57. These 

studies implicated a non-synonymous variant in a previously reported linkage peak that 

causes a serine to histidine amino acid change (Y402H) in Complement Factor H 

(CFH)53-56. Several variants within the10q26 locus were also shown to be strongly 

associated with AMD and implicated the region containing age-related maculopathy 

susceptibility locus 2 (ARMS2) / Serine Protease Inhibitor 1 (HTRA1) as the genes of 

13 



interest50, 57. Most of the success of GWAS in AMD can be attributed to the large 

magnitude of effect that these variants exhibit, and the frequency of the risk alleles in the 

population, a property that is relatively rare in complex common diseases. The CFH risk 

allele was proposed to have an estimated OR of over 2.5 per allele and a risk allele 

frequency of approximately 0.54 in cases and 0.36 in controls53-56. The variants harbored 

in ARMS2/HTRA1 had an estimated allelic OR of 2.7 and a risk allele frequency of 0.42 

in cases and 0.20 in controls50, 57. 

Genome-wide linkage and association analyses have implicated a multitude of 

variants across the entire genome as risk factors for AMD. An integrative phenotype-

genotype search of known association results returned 331 SNPs in or around 225 

different genes across all 22 autosomes and the X chromosome, highlighting the 

potential extent of genetic signals contributing to AMD risk (Figure 1.4).  

14 



 

  

Figure 1.4: Genetically Associated AMD Loci 
Ideogram showing variants genetically associated with AMD. Arrows point to specific genes. * 

 

 

*http://www.ncbi.nlm.nih.gov/gap/phegeni#GenomeView; accessed January, 2015 

 

15 



 

Complement Factor H 

CFH is located on chromosome 1 within a cluster of genes that encode the 

regulatory components for the activation of C3 and has been one of the most 

significantly replicated genes to be associated with AMD to date. CFH is a glycoprotein 

that plays an inhibitory role within the complement pathway. CFH selectively binds and 

inactivates complement component C3b thereby preventing the continuation of the 

complement cascade.  

The Y402H variant rs1061170 in CFH was one of the first SNPs found to be 

associated with AMD 45-49. The magnitude of the effect of this variant on AMD risk is 

considered substantial, with Haines et al. reporting odds ratios between 2.45 and 5.57 

for having one or two copies of the risk allele respectively55.  Klein et al. and Edwards et 

al. also presented similar finding with reported odds ratios around 2.7 per risk allele53, 56, 

58. 

Further work carried out at the CFH locus suggests that there may be other 

disease-associated variants present throughout the gene. In a study carried out by Li et 

al. examining 84 polymorphisms in and around the CFH locus, 20 polymorphisms 

showed stronger association with AMD than the Y402H variant 43. They also observed 

that no single polymorphism could explain the role of CFH in AMD risk, but instead that 

there was the presence of four common haplotypes along with multiple rare haplotypes 

with two of the common haplotypes being associated with AMD risk and two being 

protective. The pathophysiological role that CFH plays in AMD may be explained in part 

due to the observation of complement proteins including CFH within drusen, as it is 

thought that local inflammation and activation of the complement pathway may in some 

part be responsible for AMD pathogenesis. In work by Clark et al., CFH was found to be 
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the major regulator of the complement cascade at the Bruch’s membrane51. Further work 

showed the highly associated Y402H variant resulted in reduced binding of CFH to the 

Bruch’s membrane, thus potentially leading to increased activation of the complement 

cascade and damage to this layer59, 60. 

 

Other Complement Pathway Associated Genes 

CFH has not been the only complement pathway gene identified as a contributor 

to AMD risk. In a case-control study that interrogated single nucleotide polymorphisms 

across the Complement component 3 (C3) and Complement component 5 (C5) loci, 

Yates et al. showed that a polymorphism in C3 to be significantly associated with AMD 

with an odds ratio of 2.6 for individuals that were homozygous for the risk allele61. This 

polymorphism has been confirmed by an independent study carried out by Maller et al. 

in two independent Caucasian populations62. Like CFH, C3 localizes to drusen. 

Complement component B (CFB) and Complement component C 2 (C2), located in the 

major histocompatibility complex III region, are two other genes that have been 

implicated in AMD. The minor allele of in C2/CFB has been found to be associated with 

reduced risk (OR = 0.57) 63. In a case-control haplotype analysis carried out by Gold et 

al., one common risk haplotype (OR = 1.32) and two protective haplotypes (OR = 0.45 

for H7 and 0.36 for H10) were identified at the CFB/C2 locus63. Real-time PCR 

performed by this group also showed the presence of CFB and C2 in ocular drusen and 

within the Bruch’s membrane63. The protective role of one of the CFB/C2 haplotypes 

may be linked to reduced hemolytic activity within the complement cascade, and as such 

a reduction in inflammation response. In addition to the CFH protective haplotypes, copy 

number variation analysis identified a complement factor related (CFHR1/CFHR3) 

deletion that confers protection against AMD64. Functional analysis of the CFHR3 
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deletion identified this locus as an inhibitor of C3 convertase activity, thus playing a role 

in the complement pathway65. 

 

Age-Related Maculopathy Susceptibility 2 and Serine Protease Inhibitor 1 

  ARMS2 and HTRA1 located on chromosome 10 is another major locus 

implicated in AMD pathogenesis. There has been much debate as to the causal locus 

inferring AMD risk, as the 2 associated variants, rs11200638 in HTRA1’s promoter and 

rs10490924 in ARMS2 (A69S)  are located only 6.6 kb away from another, and LD 

between these variants is high (D’=0.97,r2 = 0.93)66, 67. As such, these genes are 

commonly referred to as a single locus (ARMS2/HTRA1). In an in-depth case-control 

analysis of the 10q26 locus, Yang et al. reported ORs as high as 6.5 for the homozygous 

genotype at SNP rs1120063868. At the time, the authors estimated that this SNP 

contributes a population-attributable risk close to 50% for AMD, and when taken in 

conjunction with the CFH variant Y402H, population attributable risk may reach as high 

as 71%68.  

Functional analysis of the HTRA1 gene suggests that it may be involved in the 

regulation of extracellular matrix proteoglycan degradation. Overexpression of HTRA1 

may lead to a reduction in the integrity of the Bruch’s membrane allowing for the 

invasion of choriocapillaris across the extracellular matrix, a feature that is present in the 

wet form of AMD. This potential physiological role is supported statistically by genetic 

association analyses that have shown differences in the magnitude of effect when 

adjusting late AMD subjects for the presence of GA or wet AMD69, 70. In these analyses, 

the authors observed that CFH attributed higher risk to subjects with bilateral GA 

compared to subjects with bilateral wet AMD. The authors described variants in 

ARMS2/HTRA1 as conferring higher risk to bilateral wet AMD. Although these 
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magnitude of effect differences exist, risk variants in these genes still show high 

statistical significance with both phenotypes69, 70. Expression analysis of the HTRA1 

gene in the presence of the rs11200638 variant has led to conflicting results, with some 

studies suggesting an association with increased mRNA expression levels while other 

studies have not been able to replicate these results71-74, 74, 75.  

Little is known about the biological role of ARMS2. Evolutionarily it is thought to 

have arisen recently within the primate specific lineage76. Fritsche et al. identified an 

insertion-deletion (indel) polymorphism within ARMS2 conferring risk in the presence of 

at least one copy of the deletion (OR = 2.9)76. It was shown that harboring two copies of 

the deletion resulted in undetectable levels of ARMS2 in subject donor eyes. Fritsche et. 

al. also observed that ARMS2 localized to the mitochondria and that ARMS2 may act 

through mitochondrial mediated pathways76. Contradictory to this study, Wang et al. 

reported that ARMS2 localized to the cytosol and not the mitochondria of ARPE-19 and 

COS7 cells. In a separate study by Wang et al., the A69S SNP was observed to be in 

high LD with the indel and did not correlate with ARMS2 mRNA expression77. 

 

Contribution of Rare Variants to AMD 

The application of high-throughput sequencing has allowed investigators the 

opportunity to shift from common variant to rare-variant analyses for the study of AMD to 

identify the missing contributors of AMD genetic risk78, 79. Recent studies have identified 

a number of rare variants in known AMD associated genes that confer risk for AMD. Ven 

et al. identified a highly penetrant rare mutation in complement factor I (CFI) that 

associated with AMD risk with an OR of 22 in a European-based sample80. Functional 

analysis showed reduced expression of CFI and less efficient degradation of C3b in 

carriers of this variant. In a whole-genome sequencing study examining 2,200 Icelandic 

subjects, a rare non-synonymous C3 variant was identified conferring an OR of 3.45 and 
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follow up functional analysis showed reduced binding of C3b to CFH81. The authors were 

able to replicate this statistical association in an independent European sample where 

an even larger magnitude of effect was observed (OR = 4.22).  

In a recent analysis in which the authors sequenced all genes that harbor 

common variants reported to be associated with AMD in over 1,600 cases and 750 

controls, the authors identified a significant enrichment of variants in cases compared to 

controls based on gene burden tests82. Interrogation of individual variants within these 

genes showed significant associations with rare-variants in CFI, C3, and C982. In a 

functional analysis of the rare C3 variant, the authors showed reduced inactivation of C3 

by CFH and CFI82. 

 

Common Variants of Low Effect 

 Although the bulk of common variants of modest to large affect have been 

identified, a recent meta-analysis was completed to identify the remaining common 

genetic contributors to AMD through a large meta-analysis69. As one of the most 

significant meta-analysis to date in terms of subject sample size, the authors replicated 

12 previously identified AMD loci and reported 7 new loci of minor to modest effect in 

over 17,000 cases and 60,000 controls69. The authors predicted that these 19 common 

variants contribute 15% to 65% of the total genetic variation attributed to AMD risk based 

on prevalence estimates of 1% to 30%. The seven new loci by themselves only predict 

to contribute 1% of the genetic variation explained for AMD69. The effect sizes of the 

replicated and novel loci are shown in Table 1.2.  Examination of these 19 loci in a 

cumulative genetic risk score analysis showed that these 19 loci can modestly predict 

AMD disease status with an area under the curve (AUC) of 0.74.
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Table 1.2: List of Common Variants Reaching Genome-Wide Significance in an AMD Meta-Analysis 
Figure taken from Fritsche et. al, 201369 
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Studying Genetically and Environmentally Isolated Populations 

 

The study of a complex disease such as AMD introduces a number of genetic, 

phenotypic, and environmental variables that must be dissected to find contributing risk 

factors to disease. A majority of studies that examine genetics of AMD take large, 

population based approached to identify attributable genetic risk loci. One measure of 

reducing this heterogeneity is through the study of environmentally and genetically 

isolated founder populations. With these types of populations, we observe a more 

homogenous environmental and genetic background, potentially increasing our power to 

detect genetic associations within complex diseases. The Amish communities of Indiana 

and Ohio are one example of an isolated study population that we study extensively. 

The Amish represent a genetically isolated founder population that emigrated 

from Western Europe in two waves beginning in the early 1700’s. During the first wave, 

members of the Swiss Anabaptist Community immigrated to Pennsylvania. In a second 

wave of immigration occurring in the early 1800’s, members of the Pennsylvania Amish 

community moved to Holmes County in Ohio. In addition to the local establishment of 

this new community in middle Ohio, another group of immigrants arriving from Western 

Europe established communities in Elkhart LaGrange and Adams County in Indiana83, 

84.These immigration patterns created population bottlenecks, causing a reduction in 

genetic variation within these new communities. The Amish live a strict religious and 

cultural lifestyle, typically marrying within the faith and generating large families. This 

characteristic, in addition to relatively recent founder event that created this community, 

creates a more genetically and environmentally homogenous group as compared to the 

general population.  
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Another advantage of using the Amish population for genetic studies is their 

extensive genealogical record keeping.  Records on members of the Amish community 

are continuously updated in the Anabaptist Geological Database (AGDB) and the Swiss 

Anabaptist Genealogical Association (SAGA)85, 86. This record keeping allows all 

members of the community to be connected into a single pedigree. This extensive 

pedigree information proves valuable for measuring degrees of relationship and querying 

extended families.  

The use of this Midwestern Amish population has already proved successful in 

elucidating genetic loci in complex disease as applied to studies of late-onset 

Alzheimer’s disease (LOAD) and Parkinson Disease (PD)87-89. Through linkage and 

association analysis, Cummings et. al. identified CTNNA2 as a potential risk locus for 

LOAD and additionally identified 3 other loci with log odds (LOD) score over 389. It was 

also shown that the major risk allele in APOE was significant in this population, showing 

that this population can be informative for application to other European ancestry based 

populations89. 

Conclusion 

 

AMD is a complex and debilitating disorder with many environmental and genetic 

components contributing to the overall risk of developing the disease. As a disease of 

aging, we can expect that the number of new cases to appear in the coming years to 

increase at an alarming rate as a result of technological advances in medicine increasing 

average life expectancy. Continued understanding of the implications that both known 

and unknown genetics risk factors play in AMD is necessary. Even with the success that 

genetic and epidemiological studies have brought to understanding AMD risk, the 
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functional roles of these variants have proven difficult to discern and generally are 

conflicting. Much of this complexity may be explained by the seemingly high overlap 

between the AMD phenotypes and physiological pathways that are involved in the 

manifestation of disease. To dissect this interplay, it is necessary to perform phenotype 

specific analyses of AMD. With drusen playing such a pivotal role in AMD diagnosis and 

risk for disease progression, we explore the potential impact of known genetic variation 

on this phenotype (Chapter II & III).  

Most, if not all, the common variants that contribute at least modest effects to 

AMD have been identified.  It is now also of importance to away at the unknown genetic 

component of AMD through rare variant analysis.  In chapter IV, we explore the impact 

of rare genetic variation on AMD using an isolated founder population that has shown 

reduced cumulative genetic risk when put in context of the major known AMD genetic 

risk loci.   

 Although there has been some success in the development of new treatments 

for AMD, most if not, all are targeted towards the advanced stages. Understanding the 

contribution of known genetic variation to the pathological changes observed in AMD 

and identifying the missing genetic component are paramount. The elucidation of these 

processes will allow us to continue the development and the refining of how AMD risk is 

assessed and screened, especially in the early diagnosis of this disease.  
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Chapter II 

DESCRIPTION OF STUDY POPULATIONS AND QUALITY CONTROL 
PROCEDURES 

 

Introduction 

 

Fundus photographs used in our analyses were selected from two separate 

datasets: one coming from the Age-related Eye Disease Study (AREDS) and a second 

one from the combined dataset from Case Western Reserve University (CWRU) and the 

Hussman Institute for Human Genomics (HIHG). The AREDS dataset was used in our 

study as it was available within the “Database of Genotypes and Phenotypes” (dbGAP). 

Through the contribution of AREDS to dbGAP, a wealth of deep phenotype data across 

thousands of individuals is publicly available. In total, 650 variables ranging from 

demographic data such as race, sex, and age, to clinical measures such as blood 

pressure, cholesterol and history of current prescription drug use, as well as history of 

other eye or non-eye related disorders were made available. Ascertainment of the 

CWRU/HIHG dataset has been ongoing for over the past 10 years and is continually 

expanding. Subjects were recruited from Durham North, Carolina; Nashville, Tennesee; 

and Naples and Palm Beach, Florida. CWRU/HIHG is a clinic based sample and was 

originally focused on collecting multiplex families for the study of AMD. Shifting study 

designs has led to the collection of subjects for case-control and longitudinal treatment 

and progression studies. A further description of the CWRU/HIHG dataset can be found 

in chapter III. The AREDS dataset will be discussed in further detail concerning sample 

collection, grading criteria, and inclusion/exclusion criteria below. 
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AREDS Study Design 

AREDS was designed to identify the impact of high doses of antioxidants and 

zinc on cataracts and AMD.  AREDS was divided into three separate phases and 

spanned a total of 16 years. The major goal of phase one was to design the study and 

enroll and screen subjects for eligibility and took place from March 1990 to October of 

1992.   

Phase two was the clinical trial portion of the study, which aimed to define the 

role of antioxidants and zinc on AMD and cataract progression. Phase two took place 

from November 1992 through September 2001 in which time subjects deemed eligible in 

phase one, were observed for up to seven years. During phase two, study participants 

were assigned to a treatment regimen consisting of either antioxidants, zinc, a 

combination of antioxidants and zinc, or a placebo. Subjects that had a diagnosis of less 

than intermediate AMD were not assigned to the zinc group due to the risks associated 

with zinc intake. Description of the AREDS grading scale will be discussed further in the 

grading classification section of this chapter. As part of the phase two study design, 

subjects were followed-up every six months with a clinical exam. Macular photographs 

were taken at the enrollment and randomization visit, which was set as the baseline, 

then two years from baseline. Following the two-year visit, photographs were taken 

annually. If visual acuity dropped by more than 10 letters during the time from the 

baseline visit to any of the follow-up visits, a non-annual photograph was required. In 

total, subjects’ median follow-up time for phase two was 6.5 years. The major outcome 

variables that were measured during phase two were the morphological changes 

associated with drusen, geographic atrophy, and choroidal neovascularization, along 

with changes in visual acuity and function. 
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The objective of phase three was to understand the natural history of AMD 

progression by extending the clinical trial for another five years.  By increasing the 

observation time of subjects, the AREDS investigators’ hypothesis was that more 

subjects would progress from the control group to cases, and controls that did not 

progress would make a valuable control cohort due to their non-progressing to slowly 

progressing nature. Another major objective of the phase three trial was to generate new 

grading scales to better predict disease progression. As an extension of phase two, 

subjects continued to be seen annually for ophthalmic examination although subjects 

were not required to continue their previous treatment regimen. 

Ascertainment and clinical exams of subjects for AREDS took place at 11 

different clinical centers throughout the U.S. These centers included the Eye Center at 

Memorial in New York, Associated Retinal Consultants in Pennsylvania and Michigan, 

Devers Eye Institute in Oregon, Emory University in Georgia, Massachusetts Eye and 

Ear Infirmary, National Eye Institute Clinical Center in Maryland, University of Pittsburgh 

Eye and Ear Institute in Pennsylvania, Ingalls Memorial Hospital in Illinois, Johns 

Hopkins in Maryland, Elman Retina Group in Pennsylvania and Maryland, and the 

University of Wisconsin. Although routine clinical follow-up and fundus photography was 

carried out at these 11 institutions, grading of fundus photographs was completed at a 

centralized reading center at the University of Wisconsin. 

 

Use of Color Fundus Photography for Traditional Grading in AMD 

 

Use of color fundus photography has been the standard and most effective 

imaging tool employed by retinal specialists in the diagnosis and manual grading of 
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intermediate AMD to date90. Many grading systems have been presented that use 

fundus photography for diagnosis, but one of the most common, and the one employed 

by the AREDS study, is the Wisconsin Age-related Maculopathy Grading System91. In 

this system, a grid consisting of three circles measuring 500um, 1500um, and 3000um in 

radius, and four radial lines that are concentric with the center of the macula, is placed 

on a plastic sheet and superimposed on the fundus image (Figure 2.1). In addition to the 

placement of this grid on the center of the macula, the retinal specialist uses a reference 

set of open circles corresponding to different sized area measurements. A trained grader 

or retinal specialist uses these circles to sum the total surface area covered by the 

feature to then assign a grade (Figure 2.1). 

On the Wisconsin Scale, drusen are measured and categorized into small, 

intermediate, and large. Small drusen are those that have a diameter less than 63um, 

medium sized drusen have a diameter in the range of 63um to 125um, and large drusen 

are those that are larger than 125um.  Intermediate AMD is characterized by the 

presence of a substantial number of medium sized drusen or by the presence of one 

large druse located within 3000um of the center of the macular region (Figure 2.2 A-D).  
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Figure 2.1: Age-related Maculopathy grading grid with reference circles. 
Within the grid the three circles with 4 radial lines originating from the center represent radii of 500 um, 1500um, 
and 3000um. On the right are the typical set of open circles of varying sizes for estimating the size of AMD related 
abnormalities including GA and drusen. Circle C-0 represents 63um in diameter, C-1 equals 125um in diameter, 
c-2 equals 250 um, I-1 equals 175um, I-2 equals 350um, O-1 equals 332 um, and O-2 equals 644 um. Adopted 
from Klein et. al91. 
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Figure 2.2: A-D: Drusen of Varying Severity and Type 
In this figure we observe varying sizes and number of drusen that present themselves within 
the retina. The images are to highlight the tedious and difficult process that is required to 
accurately quantify drusen.  Figure A. We observe an abundance of small to intermediate 
hard druse. Figure B-C. We observe small, intermediate, and large hard and soft drusen. 
Figure D. We observe large soft confluent drusen.  
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Cohort Grade Classification and Eligibility Requirements 

 

AREDS 

Categorization of AREDS subjects into AMD severity groups for the clinical trial 

was based upon a one through four-grade classification scheme. A grade of one 

corresponded to both eyes of a subject having at most small non-extensive drusen and 

no pigment abnormalities. Subjects in this grade must also have had a corrected visual 

acuity score greater than 74 letters. A grade of two corresponded to at least one of the 

subject’s eye having either extensive small drusen, multiple intermediate drusen, or 

pigment abnormalities that have been known to be associated with AMD. These subjects 

must not have had large drusen or advanced AMD in either eye or a visual acuity score 

less than 73 letters. 

Subjects with a grade of three are broken down into two (A and B) subcategories. 

Subjects with a grade of 3A have at least one eye with one or more of the following; one 

or more large drusen, intermediate drusen covering at least that of circle I-2 in the 

presence of soft drusen, intermediate drusen covering the area at least of circle O-2 if 

soft indistinct drusen are not present. These subjects also may have had geographic 

atrophy if it was not observed within the center of the macula. In addition, subjects with a 

grade of three must not have had advanced AMD in either eye or a visual acuity score of 

73 or less letters if associated with AMD. Subjects in subcategory 3B met the 

requirements for 3A in one eye and the fellow eye has a visual acuity score less than 73 

letters that is not associated with AMD.  

Subjects with a grade of four could be broken down into two subcategories, 4A 

and 4B. Subjects with a grade of 4A are those that showed the presence of advanced 
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AMD in one eye but not the other, and a visual acuity score that was or was not less 

than 73 letters or less. Subjects with a grade of 4B were those that had a visual acuity 

score less than 74 letters and no presence of advanced AMD. The fellow eye for this 

subject must also have had a visual acuity score greater than 74 and no advanced AMD. 

A brief summary of the AREDS classification scheme is given in Table 2.1. 

To be eligible for the phase two clinical trial, the following visual acuity 

requirements must have been met per subject. Subjects given a grade of one or two 

must have had a visual acuity greater than 74 letters in each eye, subjects assigned a 

AMD grade of three must have had a visual acuity of 74 or more in at least one eye with 

large drusen or geographic atrophy not included in the central macula region. Subjects 

given a grade of four in one eye must have had a visual acuity score greater than 74 

letters in the fellow eye if advanced AMD was not present. Subjects given a grade of four 

in both eyes must have had a visual acuity of 74 or more in one eye and 73 or less in the 

other eye. 
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Table 2.1: AREDS AMD Classification Scheme. 
Table taken from The Age-related Eye Disease Study Group et. al 199992 
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The age requirements for subjects to be included in phase two were that subjects 

with an AMD category of one or two needed to be of age 60 through 80 at the time of 

qualifying visit, and subjects with a grade of three or four needed to range from 55 

through 80 at the qualifying visit. Subjects that were over the age of 78 at the time of 

registration for phase one were age eligible for the phase two qualifying visit regardless 

of AMD severity grade. 

In addition to the age and visual acuity requirements, subjects were also 

screened for the presence of a history of retinal abnormalities other than AMD. 

Abnormalities warranting exclusion included central serous choroidopathy, optic atrophy, 

surface wrinkling retinopathy, retinal pigmentary changes that are not specific to AMD, 

macular hole, retinal vein occlusion, or general ocular diseases that could potentially 

impact the assessment of AMD or cataracts. In addition, subjects that showed the 

presence of diabetic retinopathy were excluded. To reduce the enrichment of subject 

eyes with glaucoma, subjects that had an intraocular pressure of greater than 26mm Hg 

or a medical history eluding to the potential presence of glaucoma were given a visual 

field exam to look for the presence of glaucomatous visual field defects. Subject eyes 

presenting with any of these glaucoma related abnormalities were excluded. 

Surgical based exclusions included subjects with a history of laser 

photocoagulation for peripapillary CNV or for AMD in the eye receiving treatment. 

Subjects who received cataract surgery within 6 months of the phase 2 qualifying visit 

were also excluded for that eye.  

CWRU/HIHG 

Information about the inclusion criteria and ascertainment for the CRWU/ HIHG 

cohort can be found in chapter III. The exclusion criterion for this cohort included any 
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case that has had a history of retinal surgery, laser photocoagulation, glaucoma, diabetic 

retinopathy, or any other eye-related disease. 

The grading scale used by the CWRU and HIHG for the diagnosis of AMD is a 

derivation of the classification scheme used by AREDS and is described in Table 2.2. 

The major modification of the AREDS scale is the addition of a fifth category to 

differentiate advanced AMD into geographic atrophy (grade four) and choroidal 

neovascularization (grade five). As this is a step scale, subjects that present with both 

geographic atrophy and neovascularization are categorized as grade five.  

Table 2.2: CWRU and HIHG Grading Scale 
Table taken from Spencer et. al 200793 

 

Selection of Samples for Drusen Analysis 

 Information about the selection criteria of subjects from both the AREDS and 

CWRU cohorts can be found in chapter III. 
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Image Quality Control 

 

 To accurately quantify drusen load, it is necessary to have images of sufficient 

quality to detect drusen of varying size (small, medium, large) and type (hard and soft). 

As such, prior to analysis of drusen progression, we employed both computational 

assessed quality score measures and subjective quality score measures to both the 

AREDS and CWRU/HIHG datasets. It is important to note that capturing of fundus 

photos by the AREDS clinical centers was completed in a non-digital format. The 

cameras employed at these centers were the Zeiss FF series of cameras, which took 

analogue fundus photographs using transparency type film. Clinical centers were 

approved to use either Kodachrome or Ektachrome film with this camera type.  

To reduce variability in images over time, centers were required to only use one 

film type over the course of the entire study, although each center was free to choose 

which of these films to use. Within the variables given by AREDS, there is no note on 

which film type was selected at each reading center and thus cannot be assessed as a 

potential bias in drusen quantification.  Subjective information about photographic quality 

was completed as part of AREDS; this information was not made available to the public 

on a per image basis. It must also be noted that quality assessment by the AREDS 

grading center was completed on the native non-digital images and not the digitized 

images. Thus, although digitization of fundus photographs on a whole may not lead to 

major artifactual differences between native image and the digitized images, we are 

aware that we are analyzing copies that are further processed into JPGs by AREDS.  

 In contrast to the AREDS fundus photographs captured using transparency film, 

fundus photographs captured as part of the CWRU and HIHG dataset were taken 
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digitally using either a Zeiss 450 (Carl Zeiss, Jena, Germany) camera at the Vanderbilt 

Eye Institute, or a Topcon TRC 50IX camera (Topcon 50IA, Tokyo, Japan) at the 

Bascom Palmer Eye Institute.  

As part of the quality control process, we performed a first pass removal of poor 

quality images based on manual image inspection. Major criteria for image removal 

included blurriness to a point where small drusen could not be delineated, improper 

distance of camera from the eye, lateral misalignment of the camera, presence of the 

grading grid on the image, major variation in contrast across the photograph, images 

missing the full macular field,  and absence of the optic nerve as this is used in 

alignment of the grading grid. Examples of these major quality issues are presented in 

Figure 2.3 A-H. Images from the CRWRU/HIHG dataset were screened prior to the 

onset of this study and were not confounded by these artifacts.  
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Figure 2.3 A-H: Example of Major Artifacts Present in AREDS Photographs 
Figure A. Large color variation across fundus field. Figure B. Lateral misalignment of camera.  
Figure C. Optic nerve absent from image. Figure D. Grading grid left on image 
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Figure 2.3 A-H: Example of Major Artifacts Present in AREDS Photographs 
Figure E. Image too blurry to delineate drusen. Figure F. Camera too close to eye Figure G. Camera too 
far from eye. Figure H. Cutoff image 
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After removal of images based on gross artifacts, we performed a computational 

assessment of image quality using a retinal workstation package developed at Radboud 

University Medical Center94.  Quality assessment with this package is calculated as a 

continuous measure from zero, being very poor, to a score of one being very good. 

Metrics involved in calculating the quality score include the level of blurriness, contrast in 

the image, level of brightness, and ability to delineate anatomical features such as the 

optic nerve and blood vessels surrounding the macula. Results from the quality 

assessment differed greatly between the CWRU/HIHG dataset and the AREDS dataset. 

When we examined the distribution of quality scores in the Case/Western HIHG dataset, 

we see a bimodal distribution with most images being of high quality according to the 

quality assessment algorithm (Figure 2.4 A). When we examine the quality distribution of 

the AREDS data we again see a bimodal distribution, although in these data most 

images fall into the low quality range (Figure 2.4 B). 

 Visual inspection of images given a low quality score by the algorithm did not 

generalize well to manual image inspection as we observed many cases of images 

being given a low quality score in the AREDS dataset but being of good quality when 

visualized manually. When we group quality scores into categories of less than 0.25 and 

greater than 0.75, as this is where most of the images fall in the quality distribution, we 

do not observe a significant difference in quality score versus drusen area based upon a 

Wilcoxon Rank Sum test (p-value = 0.06;Figure 2.5). This led us to conclude that quality 

score data given by the retina workstation package was not having an effect on drusen 

area quantification. Based on these qualitative and quantitative results the quality score 

did not appear to have value and was not used or investigated further. 
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Figure 2.4 A-B: Quality Distribution of CWRU/HIHG and AREDS Images 
Figure A. CWRU/HIHG Quality Distribution.

 

Figure 2.4 A-B: Quality Distribution of CWRU/HIHG and AREDS Images 
Figure B. AREDS quality distribution.  
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Figure 2.5: Effect of Quality Score on Drusen Calls  
Boxplot examining differences in drusen area when stratifying images by low quality ( < 

0.25) and high quality (> 0.75). 

 

 

Macular Grading Grid Placement and Sizing 

As part of the quantification algorithm, a macular grading grid is automatically 

placed on color fundus photographs to set the region of interest for quantification. Similar 

to manual grading, the digital grading grid is placed on the center of the fovea and the 

outermost grid circle is lined up with the edge of the optic disc. The algorithm 

standardizes the radial distance as 3,000um to translate the pixels of the digital image 

into the metric scale. This relative scaling information was important to our quantitative 

analysis as both the CWRU/HIHG photographs and the AREDS photographs were taken 

using different magnification thresholds. As is presented, AREDS photographs were 30-

degree photos and the CWRU/HIHG photos were 50-degree photos (Figure 2.6 A-B). 

Both types of photographs were centered on the macula. Although different 
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magnifications were employed by the different centers, analysis of drusen is limited to 

areas contained within the grading grid where the fovea is the central reference point. 

The degree of the photo refers to the magnification scale used in the image. 30-degree 

photo is magnified 2.5X larger than life while 50-degree photos translate to 1.5X 

magnification.  

 

Figure 2.6 A-B: Magnification Differences Between 30 and 50 Degree photographs 
Figure A. 30 degree fundus photograph as used by AREDS. B. 50 degree fundus 
photograph as used by CWRU/HIHG 
 

 

 

As discussed in chapter III, all images were resized to 650 pixels regardless of 

photographic magnification. To adjust for these magnification differences within the 

drusen quantification step, a consensus pixel estimate was determined through 

anatomical measurements of the distance between the center of the fovea and the edge 

of the optic disc. A consensus grid radius of 210 pixels was concluded for the AREDS 

30-degree photos, and a 150-pixel radius was concluded for the CWRU/HIHG 50-degree 

photographs. Through visual examination of the digital grading grid placed on 
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photographs with physical grading grids left attached to AREDS photos, it was 

determined that our consensus 210 pixel radius was exceedingly concordant. Radial 

sizing of the CWRU/HIHG macula grading grid was confirmed by a retinal specialist for 

proper anatomical sizing (M.A.B. at the VEI). 

Drusen Identification Threshold 

 Although the quantification algorithm is an automated process, the user has an 

option of specifying a sensitivity/specificity threshold to determine at what level a drusen 

call should be considered a true call. Drusen that are detected by the algorithm are 

assigned a probability indicating the likelihood that the region contains a true druse. This 

threshold is a sliding scale running from zero, which is high sensitivity, to one, indicating  

high specificity . For our analysis, we chose 0.5 as the threshold based on empirical 

testing by the Diagnostic Imaging and Analysis Group at Radboud University, Nigmegen. 

This threshold was set to include only drusen that were detected with a high probability. 

Examination of CWRU/HIHG Fundus Photograph Replicates 

 Using the parameters discussed in the previous sections, we set out to examine 

the impact of varying image contrast and positioning on drusen quantification. As part of 

the collection of fundus photographs in the CWRU/HIHG dataset, multiple fundus 

photographs were taken of a subject’s eye per visit. Although these images are 

capturing similar amounts of information, we observe differences in image quality 

throughout these replicates. Variation included changes in contrast and brightness, 

slightly different angle of the image with relation to the macula, and subtle variation in 

image focus. In these data, we examined 156 replicates that fit the criteria mentioned 

above. Within these replicates we observe very high replicate correlation, with the major 
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source of variation being due to large changes in focal point and blurriness (Spearman’s 

correlation = 0.97; Figure 2.7) 

Assessing Categorical Versus Quantitative Measures of Drusen Area 

 Following removal of poor quality images and after selection of subjects as 

described in chapter III, we are left with 973 images across 276 subjects in the AREDS 

dataset. Introduced, as tabulated data within AREDS, was a categorized drusen area 

variable (dbGAP variable accession number: phv00054045.v1.p1). As part of this 

variable, drusen area was measured by a retinal specialist and graded on a scale from 

0-7 at each photographed visit. Assignment of drusen area was completed using the 

methods described in the “Use of Color Fundus Photography for Traditional Grading of 

AMD” section. Matching the quantification results with the retinal specialist grades, we 

observe a steady increase when comparing continuous results versus graded results 

(Figure 2.8). 
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Figure 2.7: Results of CWRU/HIHG Replication Analysis. 
In this figure, we examine the effect of image variation on quantification results. Major sources of variation included image 
blurriness, focal point, contrast and brightness.  
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Figure 2.8: Quantified Versus Categorized Drusen Area 
Examination of quality controlled image quantification results versus manual assigned area grades.  
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Discussion 

 

Grading of drusen is a long tedious process and the ability to accurately quantify 

this feature manually is difficult due to the complexity in size, shape, and type of drusen 

that present themselves within the macula (Figure 2.2 A-D). Application of manual 

grading to large scale studies can be a daunting task and require a great number of 

resources in the form of human hours devoted by a trained retinal specialist. Inter-grader 

variability also poses an issue due to the sometimes-subjective nature of drusen 

boundaries especially in the face of retinal pigmentary abnormalities and numerous 

small and intermediate drusen. High-throughput automated quantification of drusen 

provide the ability to overcome the issues present with manual grading and to apply 

novel methods to an imaging modality that has been use to collect data for decades. 

Although refinement of these methods is ongoing, we chose to use a previously 

developed algorithm that fully automates the drusen quantification process95. The 

algorithm from which we present our results takes advantage of color fundus 

photographs to extract drusenoid features and calculate total surface area covered by 

drusen within the age-related eye disease study maculopathy grading grid.  

The necessity of having high quality images for quantification is paramount for 

any automated method as this can greatly increase the power of detecting and calling 

true drusen within fundus photographs. Although the AREDS images are described as 

needing to be of sufficient quality to assess the drusen severity spectrum from small to 

large drusen, it quickly became apparent that major quality issues arose upon visual 

inspection of these images.  After removal of fundus photographs with gross artifacts, we 

are left with 973 images in the AREDS dataset that are of a subjectively sufficient quality 

for drusen calling. We computationally assessed image quality with a software package 
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on the retinal workstation, although the accuracy of the results were not indicative of true 

image quality and did not reflect inaccuracy in drusen calling.  

Analysis of the replicate data shows strong concordance between images within 

the CWRU/HIHG dataset and it appears that the algorithm can perform well in the 

presence of image quality variation. This is a necessity reflective of the repeated 

measure data that we present in the next chapter. 

 Upon examination of the quantitative results compared with the drusen area 

classification scheme developed by AREDS, we observed a steady increase in median 

drusen area when matched to their respective stepwise area classifiers. We do observe 

increasing variation as the drusen area category increases. This may be due in part to 

subjectivity in assignment of area grades by the AREDS retinal specialist since 

assessment is based on a mental calculation of area coverage using a set of referent 

circles of fixed size. 
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Chapter III 

GENETIC ASSOCIATION ANALYSIS OF DRUSEN LOAD  

 

Introduction  

 

Age-related macular degeneration (AMD) is the leading cause of blindness in the 

aging population in the developed world. Current prevalence estimates for AMD in the 

United States are 1.52% and 16.39% for ages 70-74 and 8023. By 2020 more than 80 

million people will have some form of AMD96. These prevalence estimates in the elderly 

population will continue to rise drastically as advancements in health care continue to 

increase average life expectancy.  

AMD is a disease that results specifically in central vision loss as it affects the 

macula. Vision loss due to AMD is divided into “wet” and “dry” AMD97. “Wet” 

(neovascular) AMD is the result of new blood vessels arising behind the macula, which 

then begin to leak fluid into the space between the Bruch’s membrane and the RPE 

layer.  Dry AMD is characterized by the presence of a broad range of abnormalities in 

the retinal pigment epithelial layer (RPE) and is considered more common in the overall 

number of AMD cases98. Abnormalities include the presence of drusen, 

hyperpigmentation or hypopigmentation of the RPE, and in the later stages of dry AMD 

progression, geographic atrophy. Although the role that drusen play in the pathogenesis 

of AMD is not currently known, manifestation of these yellow deposits between the RPE 

layer and the Bruch’s membrane is one of the hallmark clinical signs of AMD 

development4. Drusen can be characterized as hard or soft91. Hard drusen are typically 

less than 63 µm in diameter and have discrete borders. Soft drusen are commonly 

greater than 125 µm in diameter and typically have the property of fuzzy indistinct 

50 



 

borders. Many environmental factors have been attributed to AMD risk such as age, 

race, smoking, and cardiovascular risk factors such as obesity and hypertension16, 20, 98-

105. In addition to the factors listed above, genetic studies have successfully identified 

common genetic variation in genes such as CFH, HTRA1/ARMS2, C2/CFB as well as 15 

other loci in sample populations of European ancestry50, 53-57, 61-63, 68, 106-110. 

Of recent interest is the application of these environmental and genetic risk 

factors to create prognostic models of AMD risk111-121. Utilizing models that can predict 

AMD in the clinic may allow for an advantageous contribution to the field of precision 

medicine with respect to AMD treatment. One practical application of identifying the 

underlying risk factors for AMD is building models of disease progression.  These 

models have focused on grouping samples broadly into progressors or non-progressors 

using a dichotomous endpoint, typically defined by measures of visual acuity. This 

approach does not take into account the importance of the rate of progression and uses 

a broad grading system rather than a quantitative measure of disease. By understanding 

how the environmental and genetic components of AMD contribute to the rate of 

progression, we have the potential to understand how to better tailor and administer 

treatment regimens and recommend more appropriate eye evaluation intervals. 

Although significant contributions have been made in the treatment of wet AMD 

with the advent of anti-VEGF injections, there are currently few treatments available for 

dry AMD. Therefore, it is of substantial importance to develop models of AMD 

progression that emphasize characteristics common to dry AMD such as changes in 

drusen load over time. Here we examine the impact of a cumulative genetic risk score 

using 19 common AMD risk variants on drusen progression using data made available 

through the Age-related Eye Disease Study (AREDS), and a combined dataset from 

Case Western Reserve University (CWRU) and the University of Miami Hussman 

Institute for Human Genomics.  
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Materials and Methods 

 

AREDS Dataset 

AREDS was a major clinical trial that examined risk factors for AMD and 

cataracts, as well as prognostic factors and clinical course of disease. The impact of zinc 

and antioxidants on incidence and progression of AMD was also assessed.  Phenotype 

data tables made available through the database of phenotypes and genotypes (dbGAP) 

on subjects who participated in the AREDS were examined for intermediate AMD 

without the presence of central geographic atrophy or neovascular AMD.  Evaluation of 

the phenotype data was restricted to the 595 subjects that had longitudinal color fundus 

photographs deposited within dbGAP.  Imaging data was available on subjects at 2 year 

intervals with a maximum of 12 years of follow-up. We selected subject eyes and that 

received consecutive diagnoses of intermediate AMD over a course of more than 2 

years based on the AREDS dbGAP phenotype tables. This is represented by individual 

subject eyes receiving an AMD category of 3. An AMD category of 3 is represented by 

the presence of one of the following; one or more large drusen, greater than 20 

averaged size drusen in the presence of soft drusen, 65 average-sized drusen in the 

absence of soft indistinct drusen, or non-central geographic atrophy. Imaging data was 

included up to the progression of intermediate AMD to a severe grade of central 

geographic atrophy or neovascular AMD, and selection of eyes for pulling out imaging 

data was carried out independently per subject eye. Extensive details about the AREDS 

grade categorization, study design, and subject information can be found in AREDS 

report 192. Within dbGAP, 30-degree color fundus photos are available on 3 separate 

fields of the retina. Field 1M is centered on the temporal margin of the optic disc. Field 

2M is centered on the macula, and Field 3M is centered temporal to the macula. For the 
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relevance of this study, JPG images were downloaded from dbGAP related to field 2M. 

Images were manually and computationally inspected for quality and poor images were 

removed from the dataset. The major features used in determining quality of the images 

Included in this the observation of images with poor focus, images that had the early 

treatment diabetic retinopathy study (ETDRS) grid still attached to the photo, no optic 

nerve-present within the photo, incorrect alignment of the camera leading to images 

containing differential color hues around the periphery of the fundus image, and also 

uneven illumination across the image.   

HIHG Dataset and CWRU dataset 

All cases were ascertained through the retinal clinics at the Vanderbilt Eye 

Institute (VEI) or the Bascom Palmer Eye Institute (BPEI) as part of a longitudinal study 

examining progression and response to treatment of severe AMD. 50-degree color 

fundus photos were taken at these visits using either a Zeiss 450 (Carl Zeiss, Jena, 

Germany) camera at the VEI, or a Topcon TRC 50IX camera (Topcon 50IA, Tokyo, 

Japan) at BPEI. Participants were graded by a retinal specialist on a 1-5 scale modified 

from AREDS at each visit with visit intervals ranging from 1, 4, 6,8,10, and 12 months122, 

123 . A grade of 1 or 2 was assigned to controls, grade 3 represented early/intermediate 

AMD, and grades 4 and 5 represented late AMD (geographic atrophy and choroidal 

neovascularization, respectively). Subjects were retrospectively examined for visits with 

color fundus photos graded as a 3 on the modified AREDS grading scale. Subjects that 

presented with continuous intermediate AMD for 1 year or more in the absence of 

geographic atrophy or neovascular-AMD had their imaging data examined.  A minimum 

interval of 6 months between images was used in the CWRU/HIHG dataset92, 122, 123. In 

the situation that image intervals were less than 6 months apart, the higher quality image 

was selected from the range while still maintaining a 6 month separation between visits. 
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Drusen Quantification  

Drusen quantification was completed using a previously developed automated 

drusen detection algorithm. Details about the detection algorithm are defined elsewhere 

but briefly described here95. Images are resized to a radius of 650 pixels for the non-

black region of the image to obtain a standard resolution across all images. Anatomical 

structures are detected including the optic disc, fovea, vessels and image quality 

assessment for calculation of features for drusen detection. Drusen candidate pixels are 

extracted using a pixel classification algorithm. Drusen candidate regions are segmented 

using dynamic programming and drusen candidates are classified as being true druse 

using a large set of features including contrast and intensity changes within the image. 

Quantification is completed based on a threshold drusen probability map which is used 

to generate a binary drusen map to calculate drusen area. An ETDRS grid normalized 

as a 3000 µm radius from the fovea to the edge of the optic disc for each image is 

automatically placed. Although this is a fully automated process, each image was 

manually reviewed for proper placement of the ETDRS grid. We found that our digital 

ROI matched precisely with ETDRS grids left on digitized AREDS photos. Drusen 

surface area was quantified in each image’s ROI as millimeters2 and used for 

downstream analyses. 

Genotyping 

Genotyping data for both the CWRU/HIHG and AREDS datasets were made 

available through the International AMD Genomics Consortium (IAMDGC) (Fritsche et. 

al.  2015, In Review) and through permission of Dr. Emily Chew at the National Eye 

Institute (NEI). Details about the quality control procedures carried out by the IAMDGC 

can be found elsewhere (Fritsche et. al.  2015, In Review). Nineteen common variants 

previously associated with AMD were selected either through direct genotyping on the 
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IAMDGC exome chip array or through surrogate SNPs found to be in high LD (r2>0.8) 

with these variants if not directly genotyped.   

Drusen Progression Rate Estimation 

 Since our data are represented by multiple visits per subject and drusen 

measurements in either one or two eyes, we employed a linear mixed effects model 

(LMEM) to estimate changes in drusen area over time using a similar modelling scheme 

to what has been presented for estimating GA progression rates112. Modeling of drusen 

progression rates was carried out using the R software package (R version 3.02) and the 

R-library “Linear mixed-effects models using Eigen and S4” (lme4, version 1.1-7). In 

brief, LMEM allows for an estimation of a population mean regression line known as a 

fixed-effect and deviations from that mean slope and intercept through estimation of 

random-effects. This multi-level modeling also allows for incorporation of information on 

both eyes for a subject if available, giving us a single measure of drusen growth. P-

values were generated with the R-package “Tests in Linear Effects Models” 

(LmerTest,version 2.0-20) using Satterhwaite’s approximations. 

Analysis of Drusen Progression against Demographic, Endpoint Severity, and 

Treatment category 

To examine the role of sex, smoking, AREDS treatment category, and age, the 

following statistical analysis plan was carried out. We first examined the impact of 

smoking, age, and treatment category independently within the mixed model of drusen 

progression to see the necessity of including these factors as covariates for the genetic 

analysis. Age was examined as a measure of correlation with drusen progression by 

way of a Pearson’s correlation coefficient. Sex and smoking were examined as 

interaction terms within independent mixed-models. To understand the potential role of 

drusen growth on the progression of AMD from intermediate to neovascular AMD or 

geographic atrophy, study subject’s endpoint severity was categorized into either 
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“drusen only”, “geographic atrophy”, or “neovascular AMD”. These severity categories 

were determined by using AREDS severity score information made available through the 

AREDS dbGAP data tables. Subjects were categorized based upon first instance of 

severe progression. In the case that subjects did not progress to geographic or 

neovascular AMD by the end of the full AREDS clinical trial and natural history study, 

subjects were categorized as having “drusen only”. Endpoint severity categories were 

coded as dummy variables and the “drusen only” category was set as referent within the 

model. 

Cumulative Genetic Risk Score Analysis and Independent SNP Tests 

 For our primary analysis, the 19 variants or their respective surrogate SNPs 

were incorporated into a cumulative genetic risk score representing the major common 

variation contributing to AMD genetic risk124. Each variant was weighted by the effect 

size given by the AMD Gene consortium and multiplied by the number of risk alleles 

present at that locus. More details about the weighting scheme and application of this 

risk score can be found elsewhere122, 124, 125. To examine the effect of the genetic risk 

score on drusen progression, a Pearson’s correlation coefficient was calculated using 

each subject’s progression slope versus their cumulative genetic risk score. Examination 

of each of the common variants role in drusen progression was carried out 

independently by the inclusion of the number of risk alleles at each loci coded in an 

additive manner, and included as an interaction term within the mixed models.   

Pathway Analysis 

To examine the role of drusen progression in a pathway based analysis, a 

quantitative genome-wide association analysis was carried out in Plink using drusen 

progression rates as an outcome variable for the 274 AREDS subjects against the 
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genome-wide SNP data present on the exome-chip array126. A minor-allele frequency 

cutoff of 0.05 based on the 274 AREDS subject sample was used. Pathway analysis 

was performed on the results of the single variant tests using the Pathway Analysis by 

Randomization Incorporating Structure (PARIS) algorithm, and restricted to the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway database, which contains 199 

defined pathways127. 

 

Results 

 

Demographics 

Within the AREDS dataset, 246 of the 595 subjects available through dbGAP had 

either a baseline grade of intermediate drusen or progressed to intermediate drusen and 

had continuous visits of intermediate AMD for at least 2 years during the measured 

follow up (Table 3.1). In the CWRU/HIHG dataset, 75 subjects of the 500 subjects 

examined met the selection criteria as the independent dataset (Table 3.1). Analysis in 

the AREDS and CWRU/HIHHG datasets was restricted to the first 6.5 years of follow up 

and represents the median duration of the AREDS clinical trial. Although imaging data 

was available for the natural history portion of the AREDS study, a large proportion of 

the samples we selected for the study had progressed to severe AMD after the 6.5 year 

time point and thus did not have usable longitudinal data at that stage. The median 

number of visits with quantifiable images including baseline was 3.4 with a total of 973 

images being used in the AREDS analysis and 75 subjects with a total of 272 images 

and a median number of visits of 3 for the CWRU/HIHG dataset.  Of the 246 subjects 

AREDS subjects selected, 88 subjects had imaging data that fit our criteria in both eyes, 
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and 158 subjects had imaging data available for one eye. In the CWRU/HIHG dataset 

we observed 24 subjects with bilateral intermediate AMD. We observed high correlation 

in drusen area  

Table 3.1: Study Population Demographics 
“AREDS Study” represents the entire sample set available in dbGAP with and without 
longitudinal imaging data. “AREDS Sampled” represents the 246 samples that had 
longitudinal data and met our filtering criteria. “CWRU / Miami” represents subjects with 
longitudinal imaging and genetic data available in this study population 

Variable AREDS Study 
(N = 4757) 

AREDS Sampled 
(N = 246) 

CWRU / HIHG 
(N=75)  

Age at Exam (Years)       
Median 69.4 69.3 73.5 

Gender, n (%)       
Male 2098 (44.1) 101 (41.1) 50 (66.7) 

Female 2659 (55.9) 145 (58.9) 25 (33.3) 
Ever Smoked, n (%)       

Yes 2650 (55.7) 151 ( 61.4) 26 (60.4) 
No 2107 (44.3) 95 (38.6) 17 (39.6) 

 

between eyes of subjects at baseline (rho = 0.857, p-value <2.20*10^-6; Figure 3.1) in 

bilateral intermediate AMD subjects. Correlation of bilateral progression was also 

significant (rho = 0.300, p-value = 0.004; Figure 3.2) within these 88 subjects. We 

observed significantly higher drusen area in subjects with both eyes present in the study 

versus subjects that had just one eye in our study (p-value = 0.024). We do not observe 

a significant association of drusen progression with sex, age at first exam, smoking 

status or treatment category. 
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Figure 3.1: Correlation at Baseline between Eyes  
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Figure 3.2: Correlation in Progression between Eyes 
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Genetic Data 

We observe correlation with drusen baseline area and the cumulative genetic risk 

score (rho = 0.175, p-value = 0.006; Figure 3.3). We do not observe significant 

correlation between the 19 variant cumulative genetic risk score and drusen progression 

(rho = 0.039; p-value = 0.543; Figure 3.4). We do not observe a significant association 

with the top four highly associated variants reported by the IAMDGC and drusen 

progression (Figure 3.5 and Table 3.2).  In single marker tests of the SNPs that make up 

the risk score, we observe a nominally significant association with rs943080 in VEGFA 

(p-value = 0.0281; Appendix A), this does not pass multiple testing correction. Pathway 

analysis was performed using the results of the quantitative GWAS based on the 

IAMDGC exome-chip array. In total, p-values were generated for 252,376 variants that 

met the minor allele-frequency cutoff of 0.05 and a genotyping efficiency of 95% 

(Appendix B). Of the 199 pathways that were interrogated as part of the KEGG 

database, the most highly associated pathway that passed Bonferonni correction was 

the cell adhesion molecules pathway (corrected p-value 0.02; Appendix  C). 
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Figure 3.3: Correlation of Drusen Area at Baseline and Risk Score 
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Figure 3.4: Correlation of Drusen Progression and Risk Score 
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Table 3.2: Results of Single-Variant Association Analysis with Progression 
 

  AREDS CWRU / HIHG 
Variant Estimate SE P-value Estimate SE P-value 

rs3812111_T_COL10A1 -0.01 0.007 0.193 -0.001 0.02 0.954 
rs6795735_T_ADAMTS9.MIR548A2 0.003 0.008 0.681 -0.006 0.021 0.778 

rs4698775_G_CFI 0.008 0.007 0.293 -0.019 0.018 0.308 
rs9542236_C_B3GALTL -0.012 0.007 0.099 0.023 0.023 0.314 

rs920915_C_LIPC -0.001 0.007 0.932 0.025 0.023 0.283 
rs8017304_A_RAD51B -0.015 0.008 0.06 0.024 0.02 0.246 

rs943080_T_VEGFA 0.016 0.007 0.028 0.01 0.018 0.581 
rs8135665_T_SLC16A8 -0.008 0.009 0.383 0.023 0.024 0.347 
rs334353_T_TGFBR1 -0.013 0.009 0.126 0.031 0.023 0.198 

rs79037040_T_tnfrsf10b_surrogate 0.009 0.007 0.216 0.021 0.024 0.375 
rs115515129_G_ddr_surrogate -0.0001 0.009 0.988 0.04 0.025 0.111 
rs13081855_T_COL8A1.FILIP1L -0.009 0.012 0.453 -0.015 0.043 0.736 

rs1864163_G_CETP 0.006 0.009 0.46 -0.009 0.026 0.731 
rs4420638_A_APOE -0.006 0.01 0.579 -0.047 0.033 0.155 

rs2230199_G_C3 0.003 0.008 0.728 -0.03 0.02 0.143 
rs5754227_T_timp_surrogate 0.018 0.011 0.106 0.026 0.03 0.4 

rs116503776_G_c2_cfb_surrogate -0.005 0.014 0.712 -0.026 0.043 0.553 
rs10737680_A_CFH 0.013 0.009 0.156 -0.015 0.026 0.556 

rs10490924_T_ARMS2 -0.002 0.008 0.781 0.005 0.019 0.809 
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Figure 3.5 A-E: Drusen Area Progression by Genotype 
Figure A. ARMS2 Risk Alleles in the AREDS dataset 
 

 

Figure 3.5 A-E: Drusen Area Progression by Genotype 
Figure B. CFH Risk Alleles in the AREDS dataset 
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Figure 3.5 A-E: Drusen Area Progression by Genotype 
Figure C. C2/CFB Risk Alleles in the AREDS dataset 

 

Figure 3.5 A-E: Drusen Area Progression by Genotype 
Figure D. C3 Risk Alleles in the AREDS dataset 
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Figure 3.5 A-E: Drusen Area Progression by Genotype 
Figure E. CFH Risk Alleles in the CWRU/HIHG Dataset 
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Discussion 

 

AMD is a complex disease containing phenotypic heterogeneity with respect to 

the combinatorial presence of drusen, geographic atrophy, and neovascular AMD. In this 

analysis we examined the potential role of the 19 major genetic risk loci to drusen growth 

during the intermediate stages of the disease in the absence of neovascular AMD and 

geographic atrophy. Since the bulk of studies examining drusen have treated this 

phenotype as a binary response, we wanted to potentially refine the precision of 

examining this phenotype by treating it as a quantitative variable through a previously 

established drusen quantification algorithm that takes advantage of color fundus 

photos95.  

In a recent study performed by the AREDS study research group it was found 

that increasing drusen severity at baseline was a significant predictor for progressing to 

geographic atrophy and neovascular AMD92. We observed similar findings when 

examining drusen at baseline as a continuous variable and the 10 year endpoint severity 

outcome of study participants that met our inclusion criteria. Study eyes that maintained 

intermediate AMD throughout the course of the AREDS study had significantly lower 

average total drusen area compared to subjects that had baseline intermediate and 

progressed to geographic atrophy and neovascular AMD. This observation is present in 

the CWRU/HIHG dataset as well. We did not observe significant differences in rate of 

drusen progression within the first 6.5 years of follow up and the 10 year outcome of 

severity.  

Although smoking and age are major risk factors for AMD they do not appear to 

have a major effect on drusen within our dataset. It is important to note that we do not 

differentiate subjects based on whether they were current smokers during the time of the 
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AREDS study or by pack years of smoking exposure. Age was limited to those aged 55 

years or older at baseline and subjects that already have presence of intermediate AMD. 

We observe a highly significant correlation of drusen area within subjects that present 

with bilateral intermediate AMD (rho = 0.847, p-value < 0.0001). This observation may 

be inflated as we are not including subject eyes that have either severe AMD in the 

fellow eye, or not enough medium to large drusen to be classified as intermediate AMD. 

These correlation findings have also been observed by other groups looking at bilateral 

drusen using optical coherence tomography and thus our results are consistent with 

these previous findings128. When examining correlation in bilateral drusen progression 

within these same subjects, we see significant although reduced correlation (rho = 

0.300, p-value = 0.004). 

Genotype data were chosen based on previous work carried out by the 

AMDGENE consortium that identified 19 major common AMD risk variants that may 

explain up to 65% of the variation seen in AMD124. For our primary genetic analysis, 

these 19 variants were aggregated into a cumulative genetic score to examine its impact 

on drusen at baseline and progression. The risk score analysis revealed significant 

correlation with drusen area at baseline (rho = 0.17, p-value = 0.005) and no correlation 

with drusen progression (rho = 0.039; p-value = 0.543). It is important to note that SNP 

weights assigned to the variants used in the risk score are based on the AMDGENE 

consortium analysis that performed a cross-sectional analysis of risk and as such these 

weights may not be representative of their role in progression.  In a secondary analysis 

we attempted to dissect the role of these variants to drusen progression but did not find 

any single variant that substantially contributes to drusen progression. 

As we are presenting a case-only analysis in 2 smaller datasets, power is a 

significant concern.  Post-hoc power calculations show that we had had 80% power to 

detect an effect size of 0.0196mm2/year when correcting for the 4 major loci. We had 
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56% power to detect a significant association in the cumulative genetic risk score 

progression analysis based on the estimated effect size and sample size in the AREDS 

dataset. Power in the independent association analysis for the big four variants within 

CFH, ARMS2/HTRA1, C2/CFB, and C3 was also severely limited at under 10% after 

multiple test correction.  Variant rs943080, which is near VEGFA, was the only variant 

nominally associated with drusen progression out of 19 loci that make up the cumulative 

genetic risk score. Power to detect an association in this variant was 37% based on 19 

test corrections.  This variant did not replicate within our Miami / CRWU dataset although 

the sample size and power of this dataset was even further limited. 

A second exploratory approach is to aggregate potential effects not using a 

genetic risk score, but on functional relatedness. We performed a pathway based 

analysis to see whether any functional pathways within the KEGG database were 

enriched for drusen progression. The top pathway that was enriched was the cell 

adhesion molecule pathway (KEGG database id: hsa04514; Appendix C). We identified 

three genes driving the signal. These genes were neurofascin (NFASC) on chromosome 

1 (p-value = 0.0004), CD226 molecule (CD226) on chromosome 18 (p < 0.0002), and 

neurexin 1 (NRXN1) on chromosome 2 (p-value = 0.0006). The statistical significance of 

these genes was confirmed using the gene enrichment program “Versatile Gene-based 

Association Study” (VEGAS). Results from the VEGAS analysis can be found in 

appendix D. Molecules in this pathway play a role in a wide array of functions including 

inflammation and immune response. Previous work has shown that inflammation 

between the RPE layer and the Bruch’s membrane may play a role in AMD associated 

drusen formation mainly through cellular debris trapped between these layers3, 129.  In 

another study examining the impact of cell adhesion molecules on AMD, it was shown 

that soluble vascular cell adhesion molecule 1 associates with increased incidence of 

early AMD130. These findings highlight that although the major 19 risk loci may not 
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contribute significantly to drusen progression within our study, there may be other 

variants of functional importance directly or indirectly impacting drusen growth during the 

intermediate stage of disease. 

One of the major limitations that we found during the course of this study was the 

quality of images available from the AREDS dbGAP dataset. AREDS images made 

available in dbGAP are not original images, but digitized copies of slide transparency 

film. Photographs taken at the VEI and BPEI were native digital images. All images from 

both the native digital images obtained in the CWRU/HIHG dataset and the digitized 

photos from AREDS were assessed for quality using an automated algorithm that 

assigns a quantitative quality score to the image based on a number of metrics including 

blurriness, contrast in the image, and ability to delineate blood vessels surrounding the 

macular. A major proportion of the AREDS images were considered poor by this 

algorithm, which did not necessarily reflect the qualitative assessment of the images by 

a retinal specialist. Assessing the quality of the directly digitized images from the 

Miami/Case Western data we observed most images falling into the high quality range 

both quantitatively and qualitatively. It may be that the process of taking the fundus 

slides from transparent film in the AREDS dataset to digital copies affects the ability for 

accurate automatic quality assessment of the images. We must also be aware that the 

overall low quality of the AREDS images when examined in a longitudinal format may be 

introducing too much variation across time-points to accurately measure drusen 

progression. This may be somewhat reflected between differences in correlation 

between intra-subject drusen at baseline and bilateral drusen progression, where we see 

a highly correlated baseline measurement, but reduced bilateral progression correlation. 

Thus if the effect sizes of the major common risk loci are more modest for drusen growth 

, we may not be able to overcome the signal to noise ratio introduced by image quality. 

Although the CWRU/HIHG images were of superior quality, the size of the dataset 
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limited our power to detect a true association with drusen at baseline or drusen 

progression. Although we were able to retrospectively collect previous retinal visits on 

subjects within the progression and treatment study, the major ascertainment criteria for 

these participants was severe AMD, thus longitudinal data was sparse prior to the 

presence of reduction in visual acuity.  

It is important to note that no study to date has been published that details the 

role of the major AMD risk loci in quantitative drusen progression, and thus is an 

important step in understanding the role of drusen etiology in AMD genetics.  
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Chapter IV 

 

RARE COMPLEMENT FACTOR H VARIANT ASSOCIATED WITH AGE-RELATED 
MACULAR DEGENERATION IN THE AMISH1 

 

Introduction 

 

Age-related macular degeneration (AMD) is the leading cause of blindness in 

individuals over the age of 65 in the developed world23, 131. AMD is a progressive 

neurodegenerative disease that results in central vision loss. Vision loss caused by AMD 

is generally divided into two categories. Non-neovascular or “dry” AMD is characterized 

by the presence of a broad range of abnormalities in the retinal pigment epithelial layer 

(RPE). Clinical characteristics include the presence of drusen, hyperpigmentation or 

hypopigmentation of the RPE, and, in later stages, geographic atrophy, which results 

from retinal pigment epithelial (RPE) layer cell death132. Neovascular or “wet” AMD 

occurs when new blood vessels form behind the macula, leaking fluid into the space 

separating the Bruch’s membrane and the RPE layer132.  

AMD risk has been attributed to many lifestyle influences such as age, race, 

smoking, and cardiovascular risk factors including obesity and hypertension20, 98, 103, 107, 

133. Genetic studies have identified common variants with strong associations in CFH 

and ARMS2/HTRA1, as well as multiple loci of smaller effect, in populations of European 

1 Adapted from: Joshua D. Hoffman, Jessica N. Cooke Bailey, Laura D’Aoust, William Cade, Juan Ayala-Haedo, Denise 
Fuzzell, Renee Laux, Larry D. Adams, Lori Reinhart-Mercer, Laura Caywood, Patrice Whitehead-Gay, Anita Agarwal, 
Gaofeng Wang,  William K. Scott, Margaret A. Pericak-Vance, Jonathan L. Haines. Investigative Ophthalmology & Visual 
Science. 2014 June 6; 55(7):4455-60.  
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descent46, 50, 55, 57, 62, 134. A recent meta-analysis completed by the AMDGene Consortium 

showed that the most strongly associated variants in CFH and ARMS2/HTRA1, in 

combination with 17 other loci that reached genome-wide significance, account for less 

than 65% of the total genetic contribution to AMD135. While this shows success in 

common variant analysis, there is still a gap in the total genetic variation yet to be 

explained by this complex disease. Some of this missing heritability is thought to lie 

within rare variants of large effect81, 136-138. To address the deficit in knowledge of rare 

variants influencing AMD, we exome sequenced individual members of a nuclear family 

who represent a subset of the Ohio-Indiana Amish population. 

The Amish are a genetically and culturally isolated founder population descended 

from Swiss and German Anabaptists who emigrated from Western Europe to North 

America in the 1700s and 1800s139. Individuals of the Amish community typically marry 

within the faith and observe a strict lifestyle, resulting in a community that is more 

genetically and environmentally homogeneous than the surrounding population. Due to 

the intermarriage within the community and relatively recent founder event, this 

population may also be enriched for some rare variations. These factors, in addition to 

an extensive family record available through the Anabaptist Genealogy Database 

(AGDB), make the Amish a unique and valued population for genetic studies85, 140, 141.   
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Materials and Methods 

 

Subjects:  

Amish subjects were selected from the Collaborative Aging and Memory Project 

(CAMP), an ongoing sample collection of Amish individuals living in the United States in 

Ohio and Indiana, described elsewhere87, 142. Construction and maintenance of the 

Anabaptist Genealogy Database (AGDB) is covered under an IRB-approved protocol at 

the National Institutes of Health (Dr. Leslie Biesecker, Principal Investigator). AMD 

affection status was assigned based on self-report questionnaire response where 

subjects were asked if they had ever been diagnosed with AMD by a physician. A subset 

of 73 participants (42 cases, 31 controls) received a follow up clinical exam by a retinal 

specialist. The self-report dataset included 128 individuals with AMD, 728 individuals 

without AMD, and 294 with no self-report information, and all individuals were connected 

into a single 13-generation pedigree based on an “all common paths” query of the AGDB 

using PedHunter 2.0 software and shown in figure 4.1143.  

Non-Amish subjects were ascertained from the Duke University Eye Center 

(DUEC), the Vanderbilt Eye Institute (VEI), and the Bascom Palmer Eye Institute (BPEI) 

at the University of Miami Miller School Of Medicine. Participants were examined by a 

retinal specialist and graded on a severity scale derived from the Age-Related Eye 

Disease Study (AREDS), described elsewhere40, 122. Grades were given on a scale of 1-

5 where grades 1 and 2 were assigned to controls, grade 3 represented early AMD, and 

grades 4 and 5 represented late AMD (geographic atrophy and choroidal 

neovascularization, respectively). Amish participants who received a clinical diagnosis 

were graded using the same criteria. The final non-Amish dataset contained 1,732 
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cases, 943 controls, and 310 unknown samples. Demographic information for both the 

Amish and non-Amish datasets is depicted in table 4.1. 

 

Table 4.1:Demographics for Amish and Non-Amish Datasets 

 

As part of ongoing AMD family studies, a single nuclear Amish family (family 1) 

with multiple individuals affected with AMD (three of eight siblings affected) was noted. 

Affected members lacked risk alleles at the Y402H locus in CFH and at the A69S locus 

in ARMS2. The three affected siblings (a-78, a-79, a-80) (Figure 4.2) were clinically 

evaluated to confirm disease status. The other siblings were not available for clinical 

examination at the time of exome sequencing, although a self-report diagnosis was 

completed.  Subject a-78 was diagnosed with bilateral choroidal neovascularization 

(Grade 5); subjects a-79 and a-80 were diagnosed with large drusen in both eyes 

(Grade 3). Details of clinical grades and age at time of diagnosis for the ascertained 

nuclear family are included in figure 4.2. All procedures followed the tenets of the 

Declaration of Helsinki and were approved by the institutional review boards of the 

University of Miami Miller School of Medicine and Vanderbilt University. Informed 

consent was obtained from all research subjects involved in this study.   
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Cumulative Genetic Risk Score Analysis:  

Genetic risk scores were calculated using the 19 variants and their effect sizes 

reported by the AMDGene consortium’s meta-analysis15. Genotyping was performed 

using the Sequenom MassARRAY genotyping platform (Sequenom, San Diego, USA). 

Subjects that presented with missing genotypes at any of the 19 loci were excluded from 

the analysis. Each variant was weighted and multiplied by the number of risk alleles 

present at each locus, where the SNP weight (w) is equal to the individual SNP beta-

estimate divided by the sum of the beta-estimates across all 19 loci (formula 1). Risk 

scores from each of the 19 loci were summed to give the cumulative genetic risk score 

per person.  
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Figure 4.1: Diagram of the entire 13 generation all connecting pedigree of the Amish of Indiana and Ohio. 
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Figure 4.2: Pedigree of nuclear family chosen for exome sequencing.  
*Clinical diagnoses were available for a-78, a-79, and a-80 at time of exome sequencing. Grading was carried out according to the 
modified AREDS scale. 
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Two-sided t-tests assuming unequal variance were calculated in the Amish case-control 

group and Non-Amish versus Amish case group. 

(1) Cumulative genetic risk score = w1 Genotype1 + w2 Genotype2 + … + w19 Genotype19 

Exome Sequencing:  

DNA for all samples was extracted from whole blood by the Vanderbilt University 

DNA Resources core and the John P. Hussman Institute of Human Genomics (HIHG) at 

the University Of Miami Miller School Of Medicine using PureGene DNA extraction 

methods (Gentra Systems, Minneapolis, MN). The three clinically examined members of 

family 1 were selected for exome sequencing. Exome capture was performed using the 

Agilent SureSelect All Exon kit V. Exon enriched libraries were sequenced on the 

Illumina HiSeq 2000. Sequence capture and high-throughput sequencing were 

completed at the HIHG.  Paired end reads were generated and mapped to the human 

reference genome (version hg19 from UCSC) using Burrows-Wheeler Aligner144.  

Duplicate reads were marked using Picard tools and local realignment around insertions 

and deletions was performed using the Genome Analysis Toolkit (GATK)145. 

Realignment was performed using the base quality score recalibration walker followed 

by variant calling. Variant quality score recalibration was completed using an additional 

172 sets of exomes from Amish individuals who were not members of nuclear family 1. 

Annotation of nucleotide variants was performed using the SeattleSeq Annotation 

server133. Variant filtration was completed as follows: variants found in the 1000 

Genomes project database, NHLBI exome sequencing project exome variation server 

(EVS) database, or dbSNP137 database were excluded. In addition, single nucleotide 

variants that were not missense, nonsense, splice junction, or frame shift causing 

mutations found within exon boundaries were excluded. Genes not known to be 

associated with AMD were also excluded. Variants found to be either homozygous or 

heterozygous and shared by all three affected siblings were retained. Variant 
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confirmation was performed using standard forward and reverse Sanger sequencing 

practices on the ABI 3730xl. 

Targeted Genotyping:  

Genotyping was performed using the Sequenom MassARRAY genotyping 

platform (Sequenom, San Diego, USA). Independent Sequenom pools were genotyped 

and evaluated for the rare-variant data, and the 19 loci used to calculate the cumulative 

genetic risk score. A genotyping efficiency threshold of 95% was used in both datasets 

to determine a valid Sequenom assay. See table 4.2 for final sample sizes used in each 

step of the analysis.  

Association and Linkage Analysis:  

Variants identified in the nuclear family were evaluated for association with AMD 

in the full Amish dataset  using the Modified Quasi Likelihood Score statistic (MQLS)146. 

MQLS is comparable to the chi-square test with the exception that it estimates the 

variance on point estimates of the allele frequencies in cases and controls while taking 

into account the correlation between related individuals in a pedigree. This effectively 

allows all degrees of relationships to be included in the association analysis. Kinship and 

inbreeding coefficients for all possible relationships in the 13-generation pedigree were 

calculated using the MQLS recommended program KinInbcoef. MQLS analysis was 

performed using option 1, which allows for individuals with genotype, but no phenotype 

data to contribute to the analysis. An assumed disease prevalence of 10% was selected 

from published estimates of the prevalence of AMD in individuals over age 60 in 

population samples23, 131, 147. The nuclear family was genotyped as part of the full Amish 

dataset and was not excluded from the analysis. A sub-analysis was performed in which 

only those cases with a clinical exam completed by a retinal specialist were analyzed. 

Parametric linkage analysis was performed using the entire data set genotyped 

on the Affymetrix Human SNP Array 6.0. The pedigree was divided into smaller, more  
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Table 4.2: Genotyped Samples Utilized per Analysis Step 

 

computationally feasible pedigrees using PedCut with a bit size threshold of 24148. 

Parametric heterogeneity log-of-odds (HLOD) scores were calculated under affecteds-

only dominant and recessive models assuming incomplete penetrance in MERLIN149. 

Under the dominant model, we specified penetrance values of 0 for no copies of the 

disease allele and 0.0001 for one or two copies of the disease allele. Under the 

recessive model, we specified penetrances of 0 for zero or one copy of the disease 

allele and 0.0001 for 2 copies of the disease allele. The disease allele frequency was set 

to 10% and marker allele frequencies corrected for relatedness were estimated from all 

genotyped Amish individuals. Multipoint linkage analysis was performed on a 7 

megabase region surrounding CFH. LD pruning for multipoint was performed using the 

HAPMAP CEPH samples with a pairwise r2 cutoff of < 0.16. In addition to standard 

multipoint linkage analysis, sub-analyses specifying liability classes modeled on the 

effect sizes of the rare and common CFH alleles were examined.  These included using 

the common SNP data derived from the Affymetrix 6.0 GWAS chip; assuming only CFH 

Y402H as a risk allele; assuming only CFH P503A as a risk allele, and assuming both 

CFH Y402H and P503A as risk alleles.   Detailed methods for quality control and linkage 

analysis procedures can be found elsewhere150. 

82 



 

To examine linkage disequilibrium (LD) between the novel variant and the 

common Y402H variant, we extracted the most distantly related Amish subjects 

genotyped in the pedigree. For this analysis, we used a maximum pair-wise relationship 

cut-off between 2nd and 3rd cousins, resulting 168 individuals available for an LD 

calculation. LD was measured using the software package PLINK126. 

 

Results 

 

Clinical vs. Self-Report of AMD: 

Comparing clinical diagnoses to self-report of AMD status in individuals for whom 

both were available, we observed positive and negative predictive values of 89% and  

90%, respectively (Table 4.3), indicating that self-report of AMD status is a good proxy 

for AMD diagnosis in this population sample.  

Cumulative Risk Score Analysis: In our cumulative genetic risk score analysis we 

observe a mean risk score of 1.12 (95% CI [1.10, 1.13]) in the Amish controls and 1.18 

(95% CI [1.13, 1.22]) in the Amish cases (p=0.0042; Figure 4.3). We also observe a 

mean risk score  

Table 4.3: AMD Self-report Pilot Study 
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Figure 4.3: Cumulative Genetic Risk Score Analysis Across Amish and non-Amish Samples 
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of 1.14 (95% CI [1.13, 1.16]) in 841 non-Amish Caucasian controls and 1.31(95% CI 

[1.30, 1.32] in 1,573 non-Amish Caucasian cases. When comparing the Amish cases 

with the non-Amish cases we see a significant decrease in genetic risk score 

(p<0.00001; Figure 4.3).   

Exome Sequencing and Linkage Analysis: 

Exome sequencing was performed on the three individuals in family 1.  We 

generated on average 4.6 million reads per sample. 75% of reads were on target with a 

depth of coverage of 10X or higher.  We examined these data for rare variants in known 

AMD genes that might explain AMD in this family. After variant filtration procedures, we 

identified a single non-synonymous mutation in CFH that predicts a proline to alanine 

amino acid change at position 503 (P503A; Figure 4.4).  

Case-control analysis using self-reported affection status in the Amish sample 

population identified a significant association of AMD with P503A (p=9.27 x10-13). 

Results were consistent in the sub analysis of subjects with clinically confirmed AMD 

(p=5.21 x10-7). Out of the Amish samples that were not part of the original nuclear family 

and that were genotyped for the P503A variant, we observed 15 additional carriers of the 

P503A variant with 8 subjects affected, 5 unaffected, and 2 subjects of unknown case-

control status. When evaluating the variant in our non-Amish Caucasian dataset, we did 

not observe the risk allele in either the 791 controls or the 1,456 cases.  Multipoint 

linkage analysis carried out on chromosome 1 identified an HLOD peak of 5.12 on 

chromosome 1 spanning the CFH gene. After Incorporating a liability class for carriers of 

the CFH P503A rare variant we observe a maximum LOD score of 4.53 in this region; by 

including the common Y402H variant we observe a maximum LOD score of 3.72, when 

we include liability classes for carriers of both the common and rare CFH variants into 
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the model, we observe a maximum HLOD score of 3.28 (Figure 4.5 A-D). Upon 

examination of LD between the Y402H variant and the P503A variant we observe an r2 

value of 0.002.  

 

Figure 4.4: Variant filtration procedures 
Fiftration steps used and the resultant number of variants after each stage. Variants 
passing quality control procedures are used as the initial filtration starting point. ESP 
refers to the NHLBI grand opportunity exome sequencing project. 
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Discussion 

 

We determined that the genetic burden of known AMD loci is substantially lower 

in the Amish than in the general European ancestry populations. Given that AMD is at 

least as frequent in the Amish as in other European ancestry populations (Dwight 

Stambolian, personal communication) and that the Amish generally do not smoke (the 

strongest known AMD environmental risk factor outside of age), our data support the 

hypothesis that other genetic loci are segregating in the Amish. 

We identified a densely affected nuclear Amish family in which affected siblings 

a-78, a79 and a-80 do not carry the Y402H or A69S risk variants in CFH and ARMS2 

respectively, loci that account for the majority of the genetic risk of AMD in Caucasian 

populations107. The absence of these risk alleles in affected members lead us to 

hypothesize that other rare variants of large effect may be contributing to AMD in this 

family. Using exome sequencing data, we identified a novel missense mutation that is 

shared among the affected siblings and located in the CFH gene. This mutation is a 

cytosine to guanine transversion resulting in the substitution of an alanine for a proline at 

amino acid position 503 (P503A).  The P503A locus has a Genomic Evolutionary Rate 

Profiling (GERP) score of 3.64, indicating strong conservation across mammalian 

species. PolyPhen2, which predicts the possible impact of amino acid substitutions on 

the structure and function of human proteins, indicates that this variant is probably 

damaging. 
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Figure 4.5 A-D: Multipoint linkage Results on Chromsome 1 
Figure A. Native multipoint linkage results in region harboring CFH 

 

Figure 4.5 A-D: Multipoint linkage Results on Chromsome 1 
Figure B. Incorporation of the P503A variant as a covariate in the linkage analysis shows a 
reduction in the Maximum LOD score from 5.12 to 4.53. 
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Figure 4.5 A-D: Multipoint linkage Results on Chromsome 1 
Figure C. Incorporation of the P503A variant as a covariate shows a reduction in the Maximum 
LOD score from 5.12 to 3.72. 
 

 
 
Figure 4.5 A-D: Multipoint linkage Results on Chromsome 1 
Figure D. Incorporation of both the common and rare variants as covariates shows a reduction in 
the Maximum LOD score from 5.12 to 3.28.  
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CFH is a regulator of the alternative complement cascade and associations to 

variation in CFH have consistently been replicated in AMD linkage and association 

analyses46, 50, 55, 57, 134, 135. CFH inhibits activation of complement component 3 (C3) to 

C3a and C3b, and in addition direct inactivation of C3b. Previous work has shown 

binding sites for C3b in short consensus repeat (SCR) domains1-4, 6-10, and 16-20 of 

complement factor H151, 152. The P503A variant is located within SCR domain 8, and thus 

may affect C3b binding affinity. Expanding the analysis of this variant to the full Amish 

dataset, we observe a total of 19 carriers including the four carriers in the nuclear Amish 

family, 11 reported as having AMD, 6 reported not having AMD, and 2 with an unknown 

affection status. Of the 19 self-reported carriers, 6 had their diagnosis confirmed by a 

retinal specialist. 

Multipoint linkage analysis carried out across chromosome 1 shows an HLOD 

score above 5 within the region harboring the CFH rare and common Y402H variants. 

When including liability classes to account for these variants, we see a minimal reduction 

in the HLOD score, indicating that these variants may be only partially contributing to the 

observed linkage signal. Subsequent to the exome sequencing, 3 more members of the 

original nuclear family used to identify the P503A variant received a clinical diagnosis. Of 

these 3 subjects that originally self-reported as not having AMD, one individual, a-81, 

was seen by a retinal specialist and was reclassified as a case.  The self-report age of 

exam (AOE) of this individual was 66 and the clinical AOE was 74, suggesting that this 

individual may have progressed to a non-severe case during the eight year time-span 

between the self-report and clinical exam. Genotyping results of a-81 showed that this 

person was a non-carrier of the P503A variant, but did carry one copy of the Y402H risk 

allele (Figure 4.2). AOE is a concern with diagnosing AMD due to the variable age of 

onset, where no control can definitively be classified without some chance of 
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progression to AMD. Our Amish study sample, although mainly classified through self-

report status, is well represented with late age controls matched to cases, an important 

factor in phenotype assignment for AMD (Table 4.2). Of the other two unaffected 

siblings, a-83 was a carrier of both the P503A variant and A69S, and presented with 

small drusen at the time of exam. This reaffirms the need for further molecular 

characterization of this variant and its role in the AMD pathway. 

Using the extensive genealogical data available in the AGDB, we observe that 

the carriers of this variant can be traced back four generations to a shared common 

ancestor and 15 of the 19 CFH rare variant carriers reside within Holmes County in Ohio 

(Figure 4.6).  We fail to observe the CFH P503A variant in 2,247 non-Amish individuals 

(1,456 non-Amish cases and 791 non-Amish controls) or in publicly available databases.  
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Figure 4.6: Identification of the least common ancestor 
Identifying the least common ancestor that is a carrier of the P503A variant illustrated by the subject highlighted in yellow.  
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This suggests that this CFH variant may have become enriched in the Ohio-Indiana 

Amish populations due to a recent founder event.  
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Chapter V  

CONCLUSIONS AND FUTURE DIRECTIONS 

 
 

Age-related macular degeneration (AMD) is a debilitating, progressive disorder 

that has a large socioeconomic burden in the developed world with huge implications for 

current and future generations. As medical technology and healthcare standards 

continue to improve in both developed and developing countries, average life 

expectancy will increase. This growth will drive the incidence and prevalence of the 

disease to ever-increasing proportions. The increasing prevalence of AMD may be 

mitigated in the developed countries due to reduced rates of smoking, although this 

same trend is not currently seen in developing countries and it may become a growing 

factor for these countries. Understanding the genetic etiology of AMD and its relation to 

the multiple AMD phenotypes will have great implications for diagnosing and treating the 

disorder early enough in the disease process to preserve visual acuity. 

As explained in chapter I, AMD shows substantial phenotypic heterogeneity 

throughout all stages of disease. Individuals affected with AMD may present with as little 

as intermediate drusen throughout their lives and not progress pass this stage, while 

other individuals present with combinations of geographic atrophy (GA), wet-AMD and 

drusen. Subjects with AMD also show heterogeneity with their rate of disease 

progression for both GA and neovascular AMD. Interestingly, for a complex disease, the 

genetic contribution to AMD is estimated to be very high, and in some cases as high as 

70%69. This underlying genetic causality has led to great advances in the genetic study 

of AMD with linkage and association studies identifying replicable common variants that 

contribute upwards of 65% of the total genetic variation due to AMD.  
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We have also learned that genetic risk, when assessed in AMD is difficult to 

dissect with respect to the phenotypes, as the major genetic risk factors such as CFH 

and ARMS2/HTRA1 trend in magnitude of effect depending on which of these 

phenotypes is being examined153. As an attempt to tease apart the phenotypic 

heterogeneity, we hypothesized that the major risk loci previously identified in genetic 

association analysis of AMD may in part explain drusen progression when treating 

drusen as a quantitative measure. To test this hypothesis it was necessary to take an 

imaging genetics approach using the major diagnostic measure, color fundus 

photographs, to extract drusen as a quantitative feature.  

In chapter II we introduce the Age-related Eye Disease Study dataset due to its 

tremendous scientific value and heavy use in chapter 3, and discuss the image quality 

control procedures we employed for our quantitative analysis. The value of the AREDS 

data is significant as subjects were followed in a structured clinical trial for over 12 years 

with fundus photographic images taken bi-annually, making it an ideal dataset for a 

longitudinal study of drusen progression. The necessity of high quality fundus photos is 

of great importance  to accurately quantify drusen load, mainly due to the phenotypic 

complexity of drusen in nature. Drusen can present as either soft or hard, leading to 

differences in size, number, color, border.  As such, we examined the effects of image 

quality extensively in both the dbGAP based AREDS dataset and the CWRU/HIHG 

dataset.  Based on manual review of digitized AREDS images, it was found that major 

quality issues were present and not well documented by dbGAP or AREDS.  

We found that the distribution of high quality images is significantly different 

between the AREDS and the CWRU/HIHG data even after manual review. We believe 

that these auto generated quality score differences may be in part an artifact of the 

digitization process that took place with the AREDS data. Image quality after manual 

review did not have statistically significant impact on drusen calling and therefore we did 
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not take any additional steps with the quality information.  Although this conversion 

process was a concern for our study, previous work examining the potential impact of 

the image digitization process has shown that major differences are not present when 

comparing parameters such as color, contrast of the original images to the digitized 

images154. Although this may be the case, we observed a significant quality drop within 

the AREDS data, and due to these quality issues we dropped roughly 30% of images as 

deemed unfit for analysis. After extensive quality control, we identified 973 images of 

sufficient quality to put forward for automated drusen quantification.  

In chapter III we used the quality-controlled images to perform a quantitative 

genetic association analysis on drusen load. Under the assumption that the 19 common 

variants associated with AMD in the AMDGENE consortium study make up a bulk of the 

genetic variation contributing to AMD, we performed a hypothesis driven analysis 

examining these marker’s contribution to drusen progression. We structured our analysis 

to include only the period under which subjects presented with drusen only, in attempt to 

isolate the role that these 19 loci contribute to drusen progression.  To reduce 

heterogeneity in the dataset with respect to mean progression rates, we restricted our 

analysis to the first 6.5 years of follow-up data. Dropout of subjects due to advanced 

AMD progression led to an uneven representation of subjects at the end of the original 

12.5-year study, driving the mean progression rate to reflect only subjects that finished 

the study with drusen only. As this was the case, we found that 6.5 years was the 

optimal follow-up time for a representative distribution of endpoint severity of drusen 

only, GA, and wet AMD. 

We initially examined known non-genetic risk factors for their association with 

drusen progression. We did not observe sex, age, or smoking as contributing to drusen 

progression or baseline.  It could be argued that age and smoking should show some 

contribution to drusen progression or baseline, as they are strong risk factors for AMD.  
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The absence of these associations in our results may be explained by the use of a case 

only approach in our analysis whereas these risk factors are typically enriched in case-

control analyses.  

Our primary genetic analysis was oriented toward using a genetic risk score to 

measure the cumulative effect of drusen load on baseline and progression. This allowed 

us to test a single hypothesis that cumulative genetic load contributes to drusen 

progression. Our results from the cumulative genetic risk score analysis showed a small 

contribution to baseline drusen load, but no association with drusen progression. It is 

important to note that the effect sizes used in the cumulative genetic risk score analysis 

were based on the results of the AMDGENE consortium which was assessing risk of 

disease, not progression of disease. In their analysis, the authors treated AMD 

phenotype status based on the presence or absence of disease, lumping intermediate 

AMD, geographic atrophy and wet AMD into one category. It is possible that these effect 

sizes do not effectively translate to just the intermediate phenotype of drusen only.  

To test this, we also examined the 19 loci that make up the genetic risk score 

individually.  Of these variants, the variant located at the VEGFA locus showed a 

nominal association with drusen progression in the AREDS dataset, although we were 

not able to replicate these results in the CWRU/HIHG dataset. VEGFA mRNA and 

protein are both enriched in drusen and are a factor in angiogenesis and inflammation. 

Again, this highlights the complicated interplay between the three phenotypic 

manifestations of AMD, with inflammation potentially relating to drusen biogenesis and 

angiogenesis relating to wet AMD. The major risk variant in CFH and ARMS2 were not 

significantly associated with drusen progression or baseline. Interestingly, when we 

examine the intercepts for the CFH risk variant we see an apparent dominant pattern of 

effect in the AREDS data. This observation is also present in the CWRU/HIHG dataset, 

although the coefficients are not significant in either analysis. Under a dominant model, 
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we observe an allelic association with CFH when performing a Wilcoxon rank-sum test 

on drusen area at baseline in the AREDS sample (p=0.028). Again, we need to be 

critical of these results as this is not multiple test corrected. 

The potential dominant effect of the CFH risk variant may be alluded to based on 

prior linkage analyses carried out by Klein et al. and Weeks et. al, which showed the 

CFH locus segregating in a dominant fashion with AMD44, 155. In the characterization of 

the AMD phenotype, the authors used soft drusen, GA, and neovascular AMD as their 

definitions of AMD. With the presence of multiple phenotypes for a case-control based 

diagnosis, it may be that the mode of inheritance is phenotype dependent.  To further 

this analysis it would be ideal to test this in a larger sample. AREDS has recently made 

fundus photo data available on all subjects within the clinical trial on a single time point. 

This would give us the power to both see the possible dominant effect observed in our 

smaller datasets, and to see whether CFH truly contributes an allelic effect to baseline 

drusen. 

To explore the role of unknown genetic variation to drusen progression, we used 

the data from the exome-chip based quantitative GWAS to perform a pathway analysis 

with the software package PARIS, using genes from the KEGG database. Our most 

highly significant pathway in the AREDS dataset was the cell-adhesion molecule 

pathway which is associated with inflammation (CAM; p-value < 0.0001). Through 

interrogation of the 127 genes that make up this pathway, we identify three genes driving 

the signal. These genes are neurofascin (NFASC) on chromosome 1, CD226 molecule 

(CD226) on chromosome 18, and neurexin 1 (NRXN1) on chromosome 2. CD226, which 

is the strongest associated driver gene in this analysis has been linked to regulation of 

proinflammatory responses and CD antigens have been reported as a drusen 

component3, 156. The statistical significance of these genes was confirmed using the 

98 



 

gene enrichment program “Versatile Gene-based Association Study” (VEGAS; Appendix 

D). 

Future studies examining drusen progression are still needed. A critical 

observation that we made during the course of the study was the high level of intra-

subject variation in the repeated measure data, and the inter-subject variation of 

subject’s baseline and progression rates. With drusen presenting with such complicated 

manifestations in color fundus photos, accurate quantification leaves room for 

improvement. It may be possible to reduce some of this variation by taking advantage of 

newer imaging technologies. One technology that is now being used for the clinical 

diagnosis of AMD is optical-coherence tomography (OCT). OCT allows the user to 

generate a 3-dimensional image of the RPE layer, allowing quantitative information to be 

collected on both drusen area and volume. The collection of this quantitative information 

may allow for better representation of the role of genetic variants in the natural history of 

drusen development. Current studies examining the correlation of OCT and fundus 

photography show reduced variation in OCT, although the identification of smaller 

drusen is stronger in color fundus photographs157.  This observation may complicate 

matters even more as it again highlights the complexities of drusen analysis.  We may 

find that it is necessary to integrate major imaging modalities such as OCT and color 

fundus photography together to accurately capture this AMD phenotype. 

A natural observation in examining changes in drusen area over time are 

instances of spontaneous drusen regression. Drusen regression typically has been 

shown to precede the manifestation of GA and wet AMD. Although not significant in our 

analysis, we do observe a reduced slope in subjects that exit the study with wet AMD as 

compared to subjects that exit the study with GA or drusen only. Our AREDS data, 

although extensive, is limited by the time between visits that fundus photographs were 

taken and thus we do not have the resolution to characterize this phenomenon in our 
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samples. Although we had available more frequent visit data in the CWRU/HIHG set, the 

number of samples with this outcome data was limited.  

Understanding the implications of drusen regression and its potential as an 

indicator for advancement to GA and wet AMD could benefit from quantitative drusen 

analysis. Some work has alluded to the role of drusen location and its potential effect on 

risk for AMD advancement158. These data were presented in the context of whether 

drusen found in the inner or outer rings of the grading grid play a role in progressing to 

advanced AMD158.  By examining this spatial and temporal relationship between drusen 

and the advanced stages of disease, we may be able to better understand the 

mechanisms involved in drusen associated disease advancement at the site of insult. 

To understand the genetic contribution of rare-variants to AMD, we examined the 

Amish populations of Ohio and Indiana in Chapter IV.  Through exome sequencing of a 

highly penetrant nuclear Amish family we were able to identify a rare non-synonymous 

CFH variant (P503A) that is predicted to be damaging. We observed a significant 

genetic association of P503A when we expanded our analysis to include all subjects in 

our Amish sample. This association signal is complemented by a linkage scan across 

the CFH locus, which shows that the P503A variant has some contribution to the overall 

linkage peak. This variant was not observed in a cohort of 1,400 non-Amish subjects. 

We recently genotyped 700 subjects from the Pennsylvania Amish community and do 

not observe the P503A variant in this population either, leading us to surmise that this is 

a founder mutation specific to the Ohio and Indiana Amish. We must note we do not 

have phenotype data on the 700 Pennsylvania Amish subjects and thus this distribution 

of cases and controls is unknown. 

Important to the future study of our Amish cohort for AMD is better 

characterization of the phenotype data. Our current dataset relies on self-report 

diagnostic information to describe AMD case status. The results of our self-report study 
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were promising in that this measure may serve a purpose, as a surrogate for the 

assignment of case-control status for our AMD related studies, but true diagnoses by a 

retinal specialist is a necessity considering the phenotypic complexities of the disease. 

Also of importance to the Amish AMD studies is discovering the missing genetic 

contribution to AMD. Our risk score analysis showed reduced genetic risk based on the 

known 19 common variants, and the rare CFH variant only appears to explain some of 

that unknown genetic risk.  Understanding the unknown common and rare genetic 

burden of disease will need to be further explored.  

In conclusion, AMD continues to be a valuable complex disease for genetic 

studies due to its high heritability and its socioeconomic impact. Although a large 

proportion of the genetic variation explained by AMD has been identified, its contribution 

is largely put in the context of disease risk. Many of the current studies examining 

progression are focused on binary outcomes trying to understand the impact of 

progressing from early to late AMD with little effort put towards understanding rate of 

progression.  Elucidation of potential rare and common genetic contributors for AMD rate 

of progression may lead to better understanding of the mechanisms involved in AMD 

pathogenesis and strides in AMD clinical management. 
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APPENDIX 

 

Appendix A:  Progression Slopes for 15 Additional Contributors to the Cumulative 
Genetic Risk Score: Represented by the AREDS dataset 

 

 

102 



 

 

 

 

 

 

103 



 

 

 

 

 

 

104 



 

 

 

 

 

 

105 



 

 

 

 

 

 

106 



 

 

 

 

 

 

107 



 

 

 

 

 

 

108 



 

 

 

 

  

109 



 

Appendix B: Tabulated Results of Top Progression Quantitative GWAS Hits 

CHR SNP BP BETA AREDS P-value AREDS P-value CWRU / Miami 

1 rs2069084 234984988 -0.02518 1.52E-06 0.2582 

2 exm279714 238668783 -0.03331 6.16E-06 0.5632 

7 rs10226466 96357756 0.02789 1.27E-05 0.269 

17 rs8077882 72145172 0.01507 1.37E-05 0.8151 

6 rs6568924 116596247 -0.01717 1.66E-05 0.6334 

2 rs10203272 86033879 -0.02126 1.71E-05 0.9214 

6 rs6911639 32978178 0.0181 2.33E-05 0.2415 

5 rs425203 57917792 -0.0154 2.39E-05 0.9321 

5 rs4304068 158976183 -0.01736 2.42E-05 0.2061 

7 rs395158 9216593 0.0179 4.01E-05 0.4838 

8 rs1546745 90545792 0.01459 4.44E-05 0.3766 

17 rs7214008 72148066 -0.01503 4.77E-05 0.8671 

8 rs7846085 90528845 0.01457 4.80E-05 0.3766 

8 rs11786321 90409007 0.01424 4.83E-05 0.2956 

8 rs12544520 90407910 -0.01721 4.91E-05 0.26 

1 rs12737855 204912843 -0.01653 4.93E-05 0.1352 

4 rs2011590 38944101 0.01425 5.20E-05 0.1997 

1 rs2796160 234966277 -0.02238 6.60E-05 0.2933 

8 rs10956094 90478557 0.0141 6.77E-05 0.3588 

5 rs1428609 66680616 0.01369 6.89E-05 0.3383 

8 rs1386648 90539951 0.01428 7.25E-05 0.299 

6 exm573430 116575116 0.02026 8.51E-05 0.9273 

20 rs6127826 55307132 0.02811 8.60E-05 0.7405 

8 rs1510465 90576635 0.01449 8.72E-05 0.3571 

13 rs9582867 105099441 0.01696 0.0001048 0.04434 

14 rs2236135 23595721 -0.01813 0.0001204 0.9356 

13 rs111689935 31787926 0.02324 0.0001213 0.499 

8 rs9297680 90597465 -0.01393 0.0001257 0.4882 

16 rs11861081 8321930 0.01555 0.0001276 0.6308 

13 rs9552533 22454710 -0.02904 0.0001465 0.1968 

7 exm2270701 137089307 -0.01356 0.0001477 0.01182 

18 rs7228563 71408712 0.01327 0.0001595 0.004997 

6 rs62414126 116460264 0.02534 0.0001631 0.6724 

7 rs3919487 144955976 -0.01428 0.0001867 0.2857 

6 rs62414146 116561087 0.02476 0.0001993 0.6724 

22 rs9606708 30646126 0.01401 0.0001996 N/A 

1 rs11590192 231922845 -0.01296 0.0002128 0.688 

13 rs4641600 110500338 -0.01506 0.0002156 0.06816 

2 rs3943477 5224268 0.0159 0.0002196 0.1723 
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18 rs12956584 72348611 0.01772 0.0002245 0.9689 

3 kgp11084897 128562396 0.02877 0.0002341 0.5946 

3 rs234044 172313268 -0.0132 0.0002419 0.5018 

6 rs850577 97365239 0.01467 0.0002424 0.09543 

15 rs7178749 62053897 -0.01326 0.0002528 0.1125 

12 rs427244 124605287 0.01663 0.0002583 0.1506 

17 rs11652016 49570481 -0.01308 0.0002601 0.1479 

1 rs17014713 111763153 0.02159 0.0002635 0.6172 

8 rs6981722 138769527 0.01362 0.0002641 0.3081 

2 rs9288260 197127830 0.02196 0.0002642 0.8317 

14 rs10138170 22279576 0.01438 0.0002658 0.9963 

1 rs10923507 118731761 -0.01418 0.0002667 0.6933 

2 rs6729441 217048565 0.02185 0.0002672 0.8764 

2 rs7583902 217057937 0.02185 0.0002672 0.8764 

2 rs1051685 217070376 0.02185 0.0002672 0.8764 

10 rs2590289 60059641 -0.01952 0.000269 0.7631 

21 rs9978712 17820112 0.01364 0.0002711 0.4424 

19 rs17216041 19366643 -0.01549 0.0002855 0.579 

2 rs13407838 113745428 -0.01763 0.0002875 0.4538 

1 rs17257729 118678953 -0.01311 0.0002905 0.9516 

18 rs1942467 70517206 -0.0249 0.0002906 0.684 

10 rs7895100 87683328 0.01725 0.0002926 0.7544 

13 rs11620257 31776738 0.02208 0.0002965 0.1885 

4 rs13115030 87296065 -0.01634 0.0002975 0.1542 

6 rs12527153 116491302 0.02386 0.0002988 0.7087 

4 rs16891600 15210390 -0.02538 0.0003037 0.6155 

5 rs6450023 68526063 0.01457 0.0003099 0.378 

15 rs7162855 58811252 -0.02107 0.00031 0.9917 

18 rs1474128 24992045 0.0126 0.0003168 0.9928 

20 rs6060989 30429763 -0.01568 0.0003181 0.5371 

4 rs17751557 87834607 0.01626 0.0003228 0.8545 

12 rs7138639 98538264 0.01271 0.0003228 0.2455 

1 rs4411121 118757034 -0.01393 0.0003266 0.892 

4 rs11097109 87269343 -0.01617 0.000327 0.1861 

9 rs11142863 74135468 -0.01849 0.0003278 0.6431 

4 rs10050311 87754419 0.01756 0.0003336 0.295 

13 rs9513993 102861383 -0.02876 0.0003357 0.8503 

1 rs4325188 105700935 -0.01396 0.0003359 0.1898 

1 rs6427122 168274691 0.01333 0.0003403 0.03495 

8 rs11780016 90601100 0.015 0.000343 0.7974 

3 rs9860340 87783976 0.0158 0.0003449 0.1326 
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10 rs946516 80609135 -0.01367 0.0003454 0.6136 

19 rs1064395 19361735 -0.01523 0.0003464 0.579 

11 rs10837204 39671205 0.01472 0.0003519 0.9432 

5 rs11134701 170972663 0.01995 0.0003526 0.6288 

18 rs1144081 50087903 0.01435 0.0003638 0.002056 

17 rs4792394 13684917 -0.01253 0.0003666 0.5361 

10 rs6482124 18298132 -0.01602 0.0003768 0.1063 

8 rs13282836 26678206 -0.01568 0.0003821 0.3995 

2 rs1453780 5226989 0.01575 0.0003853 0.1755 

6 rs883273 154630541 -0.0133 0.0003996 0.9036 

5 rs7717348 95407894 0.01402 0.0004097 0.7824 

11 rs518119 124181158 0.01855 0.0004125 0.5714 

10 rs7073090 59943234 -0.01982 0.0004196 0.6953 

6 rs6912724 144814016 -0.01395 0.0004217 0.01083 

18 rs1144076 50079024 0.0147 0.000425 0.002048 

8 rs7825497 714648 0.01757 0.0004391 0.3271 

4 rs6849805 84626069 -0.0159 0.0004406 0.3539 

7 rs7776689 96162825 0.01485 0.0004504 0.904 

2 rs4674761 224071098 -0.01586 0.0004671 0.7444 

11 rs12788923 37083616 -0.01303 0.0004681 0.9554 

7 rs6963647 96170054 0.01537 0.0004707 0.9852 

11 rs1503932 11206934 0.01251 0.0004772 0.8493 

9 rs12375980 11178672 -0.01255 0.00049 0.7574 

10 rs7900951 133657703 -0.0135 0.0004932 0.1942 

4 rs6819155 87976178 0.01537 0.0004941 0.9198 

5 rs10475598 173648438 -0.01317 0.0004976 0.6329 
 

 

 

 

 

 

 

112 



 

Appendix C: Tabulated Results of Top Pathways from Paris 
Pathway results are based on AREDS quantitative GWAS. 
 

Pathway 
ID 

Pathway 
Name 

Total SNP 
Count Description 

P-value 
AREDS 

197335 hsa04514 2277 Cell adhesion molecules (CAMs) 0.0001 

197353 hsa04670 1686 Leukocyte transendothelial migration 0.00055 

197306 hsa03450 127 Non-homologous end-joining 0.0008 

197277 hsa00780 37 Biotin metabolism 0.0011 

197268 hsa00640 392 Propanoate metabolism 0.0016 

197361 hsa04810 2502 Regulation of actin cytoskeleton 0.005 

197333 hsa04510 2848 Focal adhesion 0.00655 

197343 hsa04621 484 NOD-like receptor signaling pathway 0.00685 

197379 hsa05210 1034 Colorectal cancer 0.0078 

197292 hsa02010 649 ABC transporters 0.00875 

197381 hsa05212 782 Pancreatic cancer 0.00885 

197378 hsa05200 4423 Pathways in cancer 0.0094 

197314 hsa04110 1009 Cell cycle 0.0138 

197209 hsa00052 321 Galactose metabolism 0.0161 

197283 hsa00903 143 Limonene and pinene degradation 0.01805 

197391 hsa05222 1272 Small cell lung cancer 0.0194 

197389 hsa05220 837 Chronic myeloid leukemia 0.02695 

197279 hsa00790 105 Folate biosynthesis 0.0278 

197336 hsa04520 1446 Adherens junction 0.0285 

197269 hsa00650 347 Butanoate metabolism 0.02895 

197350 hsa04662 943 B cell receptor signaling pathway 0.03055 

197380 hsa05211 773 Renal cell carcinoma 0.0325 

197227 hsa00280 485 Valine, leucine and isoleucine degradation 0.0335 

197265 hsa00604 260 Glycosphingolipid biosynthesis - ganglio series 0.0379 

197344 hsa04622 459 RIG-I-like receptor signaling pathway 0.0385 

197331 hsa04360 2345 Axon guidance 0.04635 

197346 hsa04630 1224 Jak-STAT signaling pathway 0.0466 
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Appendix D: Tabulated Results of Gene Enrichment Analysis (VEGAS)  
Table is based on AREDS quantitative GWAS results. 
 

CHR Gene # SNPs Start Stop P-value 

6 BRD2 16 33044414 33057260 2.00E-04 

20 DUSP15 9 29912530 29922140 0.000363 

6 HLA-DOA 20 33079937 33085367 0.000449 

22 NAGA 1 40784283 40796792 0.000524 

22 FAM109B 3 40800200 40805388 0.000674 

22 C22orf32 3 40805644 40810234 0.000677 

22 NDUFA6 3 40811475 40816834 0.000681 

20 C20orf3 7 24891579 24921425 0.000725 

19 TM6SF2 7 19236173 19245074 0.000742 

20 C20orf3 7 24891579 24921425 0.000744 

19 HAPLN4 7 19227470 19234560 0.000761 

20 TPX2 5 29790564 29853264 0.000773 

17 TBC1D3E-1 1 33358341 33369482 0.000817 

17 TBC1D3-1 1 33358400 33369299 0.000834 

17 TBC1D3E-1 1 33358341 33369482 0.000844 

17 TBC1D3F-1 1 33358341 33369482 0.000867 

19 NCAN 11 19183781 19224061 0.000874 

22 CYP2D6 6 40852444 40856827 0.001008 

20 CST7 7 24877865 24888562 0.001022 

16 SHCBP1 1 45171968 45212812 0.001034 

1 SPAG17 12 118297810 118529357 0.001073 

16 VPS35 3 45251089 45280645 0.001095 

19 SF4 8 19248321 19292307 0.001159 

7 SHFM1 7 96156014 96177139 0.00116 

20 FOXS1 8 29895763 29897081 0.001162 

22 C1QTNF6 18 35906151 35914276 0.00146 

22 TCF20 8 40885962 40941389 0.001509 

10 IPMK 5 59625619 59697700 0.00155 

21 SIM2 13 36993860 37044380 0.001567 

18 CD226 8 65681172 65775212 0.001568 

20 MYLK2 7 29870838 29886161 0.001591 

1 F11R 12 159231624 159257757 0.001726 

7 FLJ43692 2 143514609 143523669 0.001824 

11 METT5D1 6 28086373 28311630 0.00185 

22 WBP2NL 6 40724737 40754423 0.00209 

1 CTNNBIP1 3 9830920 9892903 0.00214 

7 CTAGE4-1 2 143511480 143514106 0.00219 

11 KIF18A 5 27998738 28086322 0.002272 
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20 BCL2L1 6 29715921 29774317 0.00232 

6 TSPYL4 14 116677823 116681954 0.00237 

22 GSTT1 2 22706138 22714284 0.002373 

4 PTPN13 9 87734908 87955326 0.00241 

6 TSPYL1 14 116704438 116707973 0.002444 

21 KRTAP20-2 5 30929453 30929651 0.00245 

11 OR8G1 7 123625632 123640966 0.00248 

6 DSE 26 116707975 116866135 0.00253 

20 TTLL9 12 29922165 29994519 0.00254 

14 SIX4 2 60246008 60260545 0.002559 

11 OR8G5 7 123639932 123640973 0.00259 

1 RBBP5 11 203322601 203357754 0.00262 

4 C4orf36 9 88016381 88032599 0.00263 

18 WDR7 32 52469613 52848034 0.00264 

21 KRTAP20-1 5 30910644 30910815 0.00264 

1 ITLN2 11 159181439 159191213 0.0027 

7 RARRES2 9 149666350 149669639 0.00282 

12 NEDD1 8 95825374 95870172 0.00287 

7 C7orf29 9 149657870 149660743 0.00288 

7 LRRC61 10 149651537 149666172 0.00288 

22 LOC652968 6 29011106 29015616 0.00313 

4 ATOH1 12 94969100 94970165 0.00314 

7 REPIN1 10 149696811 149702066 0.003148 

10 REEP3 10 64951128 65051978 0.003183 

14 SGPP1 1 63220687 63264509 0.00319 

22 TBC1D10A 8 29017978 29052894 0.003259 

21 KRTAP20-3 4 30937053 30937326 0.003387 

22 OSM 6 28988818 28992840 0.0034 

8 FAM164A 6 79740884 79792490 0.003615 

19 GATAD2A 5 19357641 19480741 0.00383 

19 RASGRP4 5 43591537 43608785 0.00387 

22 C22orf26 5 44825002 44828688 0.00389 

14 MNAT1 6 60271222 60505151 0.00391 

6 C6orf154 3 43582684 43586402 0.00392 

12 KRT78 16 51519012 51529045 0.00395 

12 KRT8 14 51577237 51585127 0.00397 

5 C5orf39 5 43074938 43076098 0.00398 

1 PLA2G4A 20 185064654 185224736 0.00412 

11 OR8D2 10 123694367 123695303 0.00423 

22 LIF 7 28966442 28972748 0.00424 
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