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INTRODUCTION 

 

 

Technological revolution has transformed the field of disease gene discovery -- for better 

or worse – into a process of data collection, analysis, and interpretation of enormous proportions.  

Millions of genetic variations can be assessed in large samples, providing new analytical 

challenges and opportunities.  Such advances were made to provide genetic insight into the 

development and progression of common diseases and conditions – phenotypes that, after 

decades of study, are described as complex.   

There is a myriad of genetic, clinical, environmental, and biochemical components that 

interplay to influence common disease risk.  In this work, I investigate the role that epistasis 

contributes to the complexity of a common human disease, multiple sclerosis.  This disease was 

studied with a newly established tool in human genetics – genome-wide association – and I 

investigate the complex properties of these data and this disease by leveraging the vast amounts 

of biological knowledge now stored by the scientific community in elaborate database systems.    

An exploration of the conceptual, analytical, and technological hurdles posed by the 

study of complex disease is presented in Chapter I.  Definitions and examples of epistasis, 

complex disease, and genome-wide association studies are highlighted.  The challenges of 

analytical complexity and the difficulties of processing and interpreting large-scale genetic data 

are also discussed.   

Large-scale data is often stored using a database management system, and processing 

data within that system can provide great advantages.  In Chapter II, a database procedure for 

mapping single genetic variations to larger genomic regions and genes is presented.  This 

technique, called LD-Spline, is evaluated using a simulation study, and the results of applying 

this method to commonly used genome-wide association products are shown. 
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Once genomic regions and genes represented in a genome-wide association study are 

known, more sophisticated gene-centric analysis techniques can be applied.  In Chapter III, a 

systematic method for incorporating knowledge about biological interactions among genes and 

gene products is discussed.  This method, called Biofilter, provides a collection of structured 

knowledge-bases that can be used to synthesize biology-inspired genetic models.  These models 

can then be tested in large-scale data.  In this Chapter, I outline the theoretical basis for including 

biological knowledge into epistasis analysis, and I illustrate the utility of incorporating 

knowledge into the analysis of the genome-wide association study of multiple sclerosis. 

In Chapter IV, the results of the multiple sclerosis interaction analysis are presented.  The 

current state of multiple sclerosis genetics is discussed, along with examples and potential 

mechanisms for epistasis in this disease.  This analysis serves as the functional application of the 

methods developed in Chapters II and III, and presents new findings and a potential role of a 

new biological mechanism in disease development and progression.   

Finally, in Chapter V, the research conducted in this dissertation is concluded, providing 

perspective and a discussion of the benefits and difficulties of the approaches presented.  The 

future directions of this work will be discussed, along with thoughts on systems biology and the 

ever-advancing pace of technology.   
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CHAPTER I 

 

EPISTASIS IN GENOME-WIDE ASSOCIATION STUDIES OF COMPLEX 
DISEASE 

 

Introduction 

 

What is complex disease? 

The central dogma of biology describes a hierarchical structure that governs all biological 

systems:  DNA is transcribed to RNA, which is translated to amino acid sequences that fold into 

functional proteins.  This dogma has developed and matured over many years to account for 

noted exceptions, such as functional RNA sequences, and the general hierarchy could be 

extended to describe higher level biological structure.  Proteins work in concert to form the 

fundamental structural and chemical building blocks of the cell, providing channels, pores, 

receptors, and other molecular transport systems, and complex metabolic and regulatory 

pathways, eventually creating specialized organelles within the cell.  The functional structure and 

output of cells delineate cell types.  Aggregations of multiple cell types form tissues, and multiple 

tissues combine to form organs, organ systems, and ultimately an entire organism that interacts 

with the environment.  In short, organisms are complex hierarchical systems with layers of 

interwoven components.  A central goal of human genetics is to define relationships between 

DNA sequence variations and consequential changes in some level of this hierarchical system.  

Changes in the hierarchy that negatively impact how humans interact with the environment are 

generally called disease.       

The earliest disease mechanisms identified by human genetic studies are now commonly 

called Mendelian Disease.  The functional changes associated with these conditions in retrospect 

were easily detectable, as the disease trait is strongly and directly influenced by alterations of a 
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single gene that follow Mendelian inheritance.  The loci associated with Mendelian disease 

phenotypes were identified by collecting affected families, genotyping a panel of genetic 

markers, and tracking the co-segregation of the genetic markers and the disease through 

pedigrees using linkage analysis.  In the case of Mendelian disease, the strong negative impact of 

malfunctions in a single gene is so overwhelming that the complexity of the hierarchical system 

can be largely ignored when considering the condition. 

Classic examples of Mendelian disease include cystic fibrosis (CF) and sickle cell anemia 

(Kerem et al., 1989; Pauling & Itano, 1949).  CF is the most common lethal autosomal recessive 

disorder in the United States, affecting 30,000 individuals (Merlo & Boyle, 2003).  Cystic fibrosis 

was linked to a 230 kb region on chromosome 7q31.3, identifying the CF transmembrane 

conductance regulator gene (CFTR). This protein is expressed in the apical membrane of exocrine 

epithelial cells lining the lungs, sinuses, pancreas, intestines, sweat ducts, and vas deferens.  The 

CF phenotype is characterized by progressive bronchiectatic lung disease, pancreatic exocrine 

insufficiency, chronic sinusitis, and male infertility (Merlo & Boyle, 2003; Zielenski, 2000).  The 

most common mutation in the CFTR gene is ∆F508, found in 70% of all CF chromosomes 

worldwide, and more than 50% of these are homozygous for the mutation.  ∆F508 is a 3 bp 

deletion that results in the loss of a phenylalanine, affecting the ability of the protein to conduct 

chloride across the membrane, and while this mutation is by far the most common, the CF 

Genetic Analysis Consortium has reported more than 850 different mutant alleles.   

Sickle cell anemia (SCA) is the first monogenic disease ever described (Nagel, 2001; 

Pauling & Itano, 1949).  SCA is primarily due to an amino acid change in deoxyhemoglobin S 

(Ingram, 1957), causing alterations in polymerization leading to sickle shaped red blood cells 

with reduced capacity to carry oxygen (Eaton & Hofrichter, 1987).  Lack of adequate oxygen flow 

induces periodic recurrant episodes of vasocclusive crisis causing progressively worsening injury 

to multiple organs.  Much like CF, multiple distinct mutations can lead to the SCA phenotype, 

with differing severity of symptoms (Stuart & Nagel, 2004).   
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Table 1.  Unresolved complexity of classic Mendelian genetic disorders. 

Mendelian 
Phenotype 

Primary Gene 
Mutation 

Phenotypic Variation 
Explained by Mutation 

Phenotypic Variation Presumably 
Influenced by Modifiers 

Cystic 
Fibrosis 

CFTR Pancreatic exocrine 
insufficiency 

Bronchiectatic lung disease severity 

Meconium ileuis (intestinal obstruction) 

Lung infection susceptibility 

 

Sickle Cell 
Anemia 

HBB Dismorphic erythrocytes 
and reduced oxygen flow 

Erythrocyte life span and density 

Erythrocyte adhesion to blood vessels 

Altered urine concentration 

Altered anion transport in erythrocyte 
cell membranes 

 

While Mendelian disease typically has strong single gene effects, many instances are 

more complex than previously thought, with more subtle phenotypic aspects modulated by other 

genetic factors (Nagel, 2005; Zielenski, 2000), and commonly cited examples are shown in table 1.  

For example, variation in the CF lung phenotype cannot be explained by mutations in the CFTR 

gene alone.  While the CFTR mutation class is predictive of pancreatic exocrine insufficiency 

(Merlo & Boyle, 2003), there is a full range of lung-disease severity among CFTR mutation classes 

I, II, and III which account for nearly 90% of CF in the US.  The natural assumption is that 

environmental factors comprise the residual variance in respiratory severity, but studies of 

mucoid infection, tobacco use, and socioeconomic status suggest that these factors do not have a 

relatively significant effect.  Furthermore, CFTR knockout mice are characterized by an intestinal 

obstruction that develops shortly after birth, similar to meconium ileus present in 20% of CF 

newborns.  Genes in both humans (chromosome 19q13.2) and mice (chromosome 7) were found 

to modify the development and lethality of this condition, but severity of lung phenotype is 

significantly more difficult to study in model organisms.  There are several genes affecting the CF 

lung phenotype independent of CFTR mutation (Collaco & Cutting, 2008), such as TGFβ1 and 

MBL2.  While none have been found to directly modulate CF, there is compelling evidence that 

alleles of these genes may contribute in combination to the lung phenotype. 
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In sickle cell anemia, several known epistatic modifiers alter severity and progression of 

the disease.  α-thalassaemia mutations, the 158C->T mutation upstream of the β-globin-γ gene, 

and yet unknown genes in females all reduce disease severity (Stuart & Nagel, 2004).  After 

accounting for the primary mutation, other remaining phenotypic variation includes the life span 

and density of red blood cells, sickle cell adhesion to blood vessel interiors, changes in urine 

concentration, and altered activity of anion transport proteins in red blood cell membranes 

(Nagel, 2001).  These examples of unexplained variation present in Mendelian disease indicates 

that while the most pronounced trait follows a simple pattern of inheritance, the collection of all 

traits -- clinically defined as the disease phenotype -- is actually more complex in nature, 

involving subtle changes to multiple layers of the dogmatic hierarchal system.        

In contrast to the comparatively rare Mendelian disease, more common conditions 

typically do not exhibit strong, highly penetrant effects from a single gene, and consequently do 

not follow consistent simple inheritance patterns.  So-called common complex diseases, however, are 

generally still overrepresented in affected families indicating there is a genetic component and 

may be caused by genetic variants that are indistinguishable from normal human variation 

(Thomas & Kejariwal, 2004).  The National Center for Health Statistics reports the top three 

leading causes of death in the U.S. for 2005 were heart disease, cancer, and stroke (National 

Center for Health and Statistics, 2008).  Each of these broad disease conditions are thought to 

have genetic components that predispose or otherwise alter risk in the population.  More highly 

penetrant familial forms of some common diseases exist, and have been studied to isolate 

important genes.  In breast cancer, for example, variations in two tumor suppressor genes, Breast 

Cancer 1 early onset (BRCA1) and Breast Cancer 2 early onset (BRCA2) account for 30-40% of 

familial breast cancer, but explain only 2-3% of overall breast cancer prevalence (Wooster & 

Weber, 2003). 

In the general case however, common complex diseases are characterized by the 

confounding influence of multiple genetic, environmental, and clinical factors.  Type II diabetes 
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(T2D), for instance, has an increasing prevalence in the US population (Frayling et al., 2007), and 

has many well documented risk sources, including obesity, diet and exercise regimen, and 

genetic factors such as polymorphisms in the PPAR-γ gene (Deeb et al., 1998).  Some population-

specific genetic architectures incur a differential risk in response to similar environmental 

exposures, indicating a stronger role of gene-environment interaction.  The Pima Indians, for 

example, have dramatically increased risk for T2D compared to Caucasian populations (Knowler 

et al., 1978), and this risk difference is thought to be attributed in part to major changes in diet 

and lifestyle over the last 100 years.  The Pima Indians, and some Polynesian populations, have 

seen explosions in T2D prevalence as those communities shift from traditional diets to a 

“Western” diet (Steyn et al., 2004).  Because other populations adapt to dietary changes without 

the subsequent increase in T2D risk, the Pima Indians must have a genetic architecture that 

interacts with dietary factors to influence T2D.  In addition, obesity has also been a confounding 

factor for several genetic studies of T2D.  The fat mass and obesity associated gene (FTO) is 

significantly associated to T2D, but the effect is due to increased body mass index (BMI), which 

subsequently increases T2D risk (Frayling, 2007).  While these findings are still scientifically 

relevant for the etiology and understanding of obesity, they do not answer the larger question of 

why some obese individuals develop T2D while others do not.     

As highlighted by the Pima Indians example, ethnicity is often a contributing risk factor 

for complex diseases.  For example, multiple sclerosis is far more prevalent in the Caucasian 

population than in Asian or African populations (Lowis, 1990).  Conversely, prostate cancer has 

much higher prevalence and mortality in African-American versus other populations (Powell, 

1998).  In most cases of complex disease where there is differential risk among ethnicities, 

carefully controlled studies have eliminated shared environment or shared cultural aspects as the 

source of this effect.  To investigate population-specific genetic architectures, the International 

HapMap Project has documented differences in allele frequency and linkage disequilibrium 

across multiple human ethnic subpopulations by genotyping over four million single nucleotide 
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polymorphisms (SNPS) (Frazer et al., 2007; International HapMap Consortium, 2005).  Caucasian, 

Yoruba, Han Chinese and Japanese populations were sampled initially, and in the most recent 

phase of the project, Toscans from Italy, Luhya and Maasai from Kenya, and US individuals with 

African and Mexican ancestry have been included.  Data from Caucasian, Yoruba, Chinese, and 

Japanese populations have been analyzed by many groups to quantify population-specific 

differences (Nielsen et al., 2005; Weir et al., 2005) and to highlight differential regions of potential 

evolutionary selection (Sabeti et al., 2007; Voight et al., 2006).  These ethnicity-specific differences 

in genetic architecture -- multiple sequence variations scattered throughout the human genome -- 

are likely related to the differences in disease risk.         

In addition to confounding factors, intricate effects operating among multiple genetic 

variants are thought to be hallmarks of complex disease (Thornton-Wells, Moore, & Haines, 

2004).  Among these are various forms of heterogeneity that presumably complicate genetic 

studies.  Allelic heterogeneity occurs when multiple different alleles at the same locus increase risk 

of disease, such as the numerous rare mutations of the CFTR gene that give rise to cystic fibrosis.  

Two or more distinct genetic loci can independently increase risk of disease in the case of locus 

heterogeneity, as in the case of tuberous sclerosis, where both TSC1 and TSC2 have been identified 

in families with the disorder (Povey et al., 1994; Young & Povey, 1998).  Phenotypic heterogeneity 

occurs with an imprecise definition of the disease phenotype.  Conditions that were previously 

called autism are now thought to be part of a larger complex mix of disease phenotypes called 

autism spectrum disorders (Collaborative Linkage Study of Autism, 2001; Shao et al., 2002), and 

using a more defined phenotypic subset may improve future genetic studies.   

 

What is epistasis? 

In addition to multiple forms of heterogeneity, there is also epistasis or gene-gene 

interaction at play in complex disease.  Epistasis was first described by William Bateson as the 

effect of one gene masking (or literally standing upon) the effect of another (Bateson, 1909).  The 
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Bateson view of epistasis has also been described as biological epistasis (Moore & Williams, 

2005), similar to a biochemist’s observation that variation in the physical interaction of 

biomolecules affects a phenotype (Moore, 2003).  From a statistical perspective, epistasis was also 

observed as multi-allelic segregation patterns by R.A. Fisher who mathematically described the 

phenomenon as deviation from additivity in a linear model of genotypes (Fisher, 1918).  The 

Fisher definition is more flexible, as it can describe how multiple variations can in concert 

influence a phenotype without the direct physical interaction of gene products.  In the broader 

sense, statistical epistasis and biological epistasis should eventually converge as scientific 

understanding progresses and high level functional relationships between genes and gene 

products are elucidated.        

Given the complexities of known biological pathways that involve numerous intra-

molecular interactions, epistasis is presumed to be ubiquitous both statistically and biologically 

(Moore, 2003).  This belief is driven largely by the notion that large networks of gene regulation 

and protein-protein interaction have a functional endpoint that may be influenced by the 

simultaneous presence of multiple variants in those genes (Moore, 2003; Moore & Williams, 

2005).  Functional epistasis has been well documented in model organisms, and was discovered 

early in the field of genetics.  Lancefield described a two-locus inheritance pattern for the forked 

bristle phenotype in Drosophila (Lancefield, 1918).  A few years later, Bridges discovered 

statistical epistasis in Drosophila eye color, where collections of several different alleles Mendelize 

with various eye color phenotypes (Bridges, 1919).  These alleles influence a common set of 

biochemical pathways controlling eye pigmentation that was described many years later (Lloyd, 

Ramaswami, & Kramer, 1998).  More recently, studies of mouse and rat chromosome substitution 

strains revealed substantial epistasis in over 140 quantitative trait loci (Shao, 2008).      

Epistasis has been “rediscovered” by genetic epidemiologists in recent years.  Candidate 

gene association studies, which attempt to implicate a single common variation as influencing 

disease, produced initial results that often fail to replicate in successive studies (Hirschhorn et al., 
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2002).  Epistasis was proposed as a potential reason for this non-replication of single-SNP effects.  

Suppose the effect of one allele is conditional on the presence of a second unknown allele not 

assayed in a study population or sample.  If this second allele is of high frequency in the 

population or sample, the effect of allele one will be seen as a single main effect.  In a new, 

replication sample, the second allele may be at a lower frequency, and the effect of the first allele 

will not be seen.  This would be viewed as a failure to replicate, even if the joint effect of the two 

alleles is consistent across all samples and populations.  Epistasis was also proposed as a reason 

for the more general failure of complex disease studies.  Because complex diseases likely involve 

small effects from multiple genes that may interact, linkage and candidate gene studies may have 

failed to account for the full genetic architecture that is influencing risk.   

As previously mentioned, epistatic modifiers of disease severity have been found for CF 

and SCA (Kerem et al., 1989; Pauling & Itano, 1949).  In addition to the modulation of Mendelian 

disease, epistasis has been functionally demonstrated to play a role in common complex disease.  

Most notably, Hirschsprung’s disease was found to be influenced by polymorphisms in RET and 

the ERDB2 receptor in the Old Order Amish and was confirmed in a mouse model (Carrasquillo 

et al., 2002).  Having both variants simultaneously increases risk of disease far beyond the 

combined risk of each independent variant.   

 

What are genome-wide association studies? 

In the face of the statistical and biological complications related to complex disease, 

traditional methods of study design and analysis have not fared well.  Linkage analysis has 

produced few compelling findings in complex disease studies (Altmuller et al., 2001), especially 

in diseases with high sibling risk ratios.  Autism and multiple sclerosis are both ostensibly great 

candidates for linkage analysis, but multiple studies of both phenotypes have yielded no new 

consistent genetic risk factors.  Where linkage analysis was successful for complex disease, it was 

applied to rare familial forms of the phenotype, such as familial breast cancer (Wooster & Weber, 
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2003).  Likewise, candidate gene studies produced an abundance of statistical associations, but 

only a scant few replicate (Hirschhorn et al., 2002).  Over the last five years, cost-effective, high-

throughput genotyping technologies have expanded our ability to explore the human genome.  

These advances have opened the door to a new study design paradigm -- the genome-wide 

association (GWA) study.  In these studies, individuals are surveyed for 500,000 to over 1 million 

single nucleotide polymorphisms, capturing much of the common genetic variation across the 

genome  (approximately 85%, depending on the platform) (Barrett & Cardon, 2006; Hirschhorn & 

Daly, 2005).  The underlying principle of the GWA study is that blocks of linkage disequilibrium 

– contiguous regions of genomic sequence that flow through populations – can be marked or 

tagged by SNP markers.  A disease-related variant that lies in one of these tagged genomic 

regions will be detectable as an association between the tagging SNP and the phenotype.  This 

approach relies on the common disease, common variant hypothesis -- the idea that risk for common 

diseases is influenced primarily by common variations in the human genome (alleles in > 5% of 

the population) (Reich & Lander, 2001).    

The first major “success” in GWA studies was the identification of complement factor H 

(CFH) as a causal factor for age-related macular degeneration (Klein et al., 2005).  This study used 

a panel of just over 100,000 SNPs in a modest sample size (96 cases and 50 controls).  While the 

CFH finding was discovered using the GWA approach, two concurrently published studies also 

identified the gene using traditional study designs -- Haines et al. using a family-based linkage 

approach (Haines et al., 2005), and Edwards et al. using a candidate SNP approach (Edwards et 

al., 2005).  The CFH association has since been replicated in several other studies (Hageman et al., 

2005; Thakkinstian et al., 2006; Zareparsi et al., 2005), and while this finding did not validate 

GWA studies as a successful alternative to linkage analysis or candidate gene studies, it does 

illustrate its generally utility.   

The popularity of the GWA study design has increased dramatically, and over the past 

few years a tsunami of new genetic associations has been published.  As of May 2008,  202 GWA 
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studies were published, reporting 436 novel SNP associations (Hindorff, Junkins, & Manolio, 

2008).  A summary of these results is shown in figure 1, reproduced from (Manolio, Brooks, & 

Collins, 2008).   

For most of these studies, the influential genetic variants associated to the phenotype 

explain a very small proportion of the estimated overall disease heritability.  This indicates that, 

while successful, these studies have only scratched the surface of common complex disease 

genetics.  Many other heritable factors could be at play, such as methylation patterns or other 

epigenetic phenomenon, structural variations such as copy number polymorphisms, insertions, 

deletions, and inversions, or environmental-driven alterations in gene expression.  Another 

possibility is that a large portion of the disease heritability is explained by epistasis, where the 

interaction of multiple alleles increases risk above and beyond the independent alleles.  

Epigenetics, structural variation, and gene-environment interactions all require additional data 

sets and new study designs to properly evaluate, but in general, epistasis can be evaluated with 

existing genotype data.  It is therefore notable that to the author’s knowledge, none of the 202 

published GWA studies include a search for interactions.    
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Figure 1.  Significant SNP-trait associations detected in GWA studies to date. 
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Strategies for Epistasis Analysis 

 

Analytical approaches 

Searching for and characterizing epistasis even in small scale data is a challenge.  In 

recent years, a number of computational and statistical techniques have been developed for or 

applied to the identification of epistasis in case/control data.  An overview of these methods is 

shown in table 2.  Automated Detection of Informative Combined Effects (DICE) (Tahri-Daizadeh 

et al., 2003) is a regression-based approach that systematically explores available variables and 

models based on a variation of the Akaike information criterion (AIC), similar to a step-wise 

regression approach.  Regression models of increasing complexity are fitted to the data and the 

change in AIC is assessed to determine if adding a variable increases the model fit.  DICE is 

computationally limited to three-locus models or less.   

Classification and Regression Trees (CART) (Breiman et al., 1984) is a commonly used 

approach that partitions a dataset into subsets using the value of variables in the data, finding the 

data splitting procedure that best classifies categorical outcomes (or provides the best regression 

fit for continuous outcomes).  For a categorical outcome, CART begins by selecting the variable 

that best classifies the examples in the dataset, typically using a measure of information gain such 

as the Gini index.  The Gini index measures node “impurity” or the degree of classification error 

within each partitioned category.  For each subset produced by the split based on this variable, 

the procedure is repeated, producing a second-level subset.  This procedure continues recursively 

until the optimal partitioning of the data is produced.  Numerous procedures have been 

developed to prune the tree and reduce model over-fitting, and various splitting measures have 

been applied to CART also.   

One limitation of CART is that subsets are defined using values of a single variable.  If 

the outcome is determined by a non-linear combination of variable values – such as a multi-locus 

genotype (Moore & Ritchie, 2004) – CART does not perform well (Ritchie et al., 2007).  Patterning 
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and Recursive Partitioning (PRP) (Bastone et al., 2004) is an extension of CART that attempts to 

resolve this shortcoming by essentially pre-processing the input variables to generate a “dummy-

encoded” set of multivariate states that can be used by the CART-like recursive partitioning 

procedure (RP).  For example, if variable 1 has genotypes AA, Aa, and aa, and variable 2 has 

genotypes BB, Bb, and bb, the patterning procedure would produce nine new variables 

corresponding to the nine multi-locus genotypes (AABB, AABb, AAbb, AaBB, etc).  RP could 

then split the data using non-linear combinations of multi-locus genotypes.   



14 
 

Table 2.  Analytical approaches for epistasis analysis. 

Acronym Method References Description 

DICE Automated Detection 
of Informative 
Combined Effects 

(Tahri-Daizadeh et al., 
2003) 

Step-wise search of regression model 
space using Akaike information 
criterion 

CART Classification and 
Regression Trees 

(Breiman et al., 1984) Iterative procedure to systematically 
split data into subsets that improve 
outcome classification 

RF Random Forests (Breiman, 2001) Induction of multiple classification or 
regression trees on bootstrap 
samples, which are averaged or 
voted on to generate a final model 

PRP Patterning and 
Recursive Partitioning 

(Bastone et al., 2004) Extension of CART to encode 
multivariate states based on original 
input variables 

PLR Penalized Logistic 
Regression 

(Park & Hastie, 2008) Step-wise regression modeling 
procedure with penalty functions 
that provide more stable coefficient 
estimates and reduce overfitting 

 Logic Regression (Kooperberg et al., 2001) Regression modeling that induces 
combinations of attributes using 
logical operators 

MARS Multi-Adaptive 
Regression Splines 

(Cook, Zee, & Ridker, 
2004) 

Recursive partitioning approach that 
uses regression splines to produce 
subset classifications 

MDR Multifactor 
Dimensionality 
Reduction 

(Ritchie et al., 2001) Partitioning approach that builds 
high and low risk multi-locus 
genotype combinations 

MDR-PDT Multifactor 
Dimensionality 
Reduction Pedigree 
Disequilibrium Test 

(Martin et al., 2006) MDR procedure looking for over-
transmission of multi-locus genotype 
combinations in extended pedigrees 

GMDR Generalized 
Multifactor 
Dimensionality 
Reduction 

(Lou et al., 2008) Generalized linear modeling 
procedure using multi-locus 
genotype combinations to compare 
case/control frequencies or familial 
transmissions 

 AMBIENCE (Chanda et al., 2008) Information theory-based evaluation 
of multivariate combinations 
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Random Forests (RF) (Breiman, 2001) are another extension of CART, where multiple 

classification (or regression) trees are induced, each on a bootstrap sample of the data.  A final 

classification is derived by “voting” over all trees in the forest.  Much like CART, many 

developments and modifications to RF have been made, including multiple measures of variable 

importance, and multiple voting systems or averaging over the trees in the forest (Chipman, 

George, & McCulloch, 1998; Chipman, George, & McCulloch, 2002).   

Several regression-based approaches have been applied to multi-locus analysis.  

Penalized logistic regression (Park & Hastie, 2008) adds a penalty function to the traditional 

logistic regression likelihood equation to allow more stable estimates of regression coefficients.  

Logic regression (Kooperberg et al., 2001) uses logical operators (AND, OR, NOT, etc) to create 

complex variable patterns with an associated regression coefficient.  Multi-Adaptive Regression 

Splines (MARS) (Cook, Zee, & Ridker, 2004) uses a recursive partitioning strategy like CART, but 

uses a basis function (typically a spline) for modeling, allowing more complex, non-linear 

relationships to be fitted. 

Multifactor Dimensionality Reduction (MDR) (Ritchie et al., 2001) is a brute-force 

machine learning approach that exhaustively builds and classifies multi-locus combinations into 

high-risk or low-risk categories based on the ratio of cases to controls with each multi-locus 

genotype.  The two-state risk variable derived for each set of genetic variables is compared to the 

case/control status to produce a classification error for that model.  Models are then ranked by 

classification error to select the best multivariate combination.  This procedure is implemented 

with cross-validation to estimate a prediction error and prevent over-fitting of data, and a Monte 

Carlo permutation test is applied to assess statistical significance. 

More recently, several methods have been extended or developed to explore family-

based data.  Multifactor Dimensionality Reduction Pedigree Disequilibrium Test (MDR-PDT) 

was developed by Martin et al. to examine multi-locus models in extended pedigree data (Martin 

et al., 2006).  MDR-PDT applies the MDR procedure to the transmission of multiple loci to 
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affected offspring in pedigrees.  Similarly, Generalized Multifactor Dimensionality Reduction 

(GMDR) is a model-based approach that uses MDR-based multi-locus genotype combinations to 

compare cases and controls or transmitted versus non-transmitted alleles in family data (Lou et 

al., 2008).  Finally, AMBIENCE is a relatively new computational approach that applies common 

information theory measures to genotype data.  Information entropy – a variance-like value for 

categorical data – is used to determine the degree of information (or certainty) about case/control 

status that a multivariate combination captures.  These statistics are used to identify and model 

gene-gene and gene-environment interactions in both case/control and family data (Chanda et 

al., 2008).   

 

Translating approaches for large-scale analysis 

Adapting these approaches for genome-wide association studies has noted 

computational challenges (Moore & Ritchie, 2004).  There are roughly 125 billion possible two-

SNP models in a set of 500,000 SNPs, and the number of higher order models increases 

exponentially.  Exhaustively analyzing all of these possible combinations with even the most 

basic of statistical tests is computationally costly and in some cases intractable.  Applying the 

more elegant and powerful approaches outlined above only increases the computational 

complexity of the problem. 

Some statistical methods are amenable to algorithm optimization and adaptation to 

multi-processor computing clusters.  The MDR algorithm was retooled and parallelized (pMDR) 

(Bush, Dudek, & Ritchie, 2006), which reduced computation time roughly linearly with the 

number of processors used.  Optimized forms of CART (Breiman et al., 1984), Brute (Segal, 1998), 

and other decision tree approaches have been used for several years as large-scale datamining 

tools, and may be useful for GWA analysis.  In this spirit, a tree-based rule-mining approach 

called Apriori was applied to simulated data containing complex combinations of epistasis and 

genetic heterogeneity (Bush, Thornton-Wells, & Ritchie, 2007).  This study found that 
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computationally efficient association rule mining has the same ability as MDR to identify two-

locus and three-locus interaction effects, but loses power for higher order models.  Association 

rules also had a modest ability to capture heterogeneity effects.  Furthermore, many traditional 

statistical approaches such as logistic regression are available in highly optimized forms and 

could allow high-throughput analysis of genotype data (Marchini, Donnelly, & Cardon, 2005; 

Rouhani-Kalleh, 2007), and many non-traditional machine learning methods rely on permutation 

testing or bootstrapping to assess statistical significance, and those procedures are ideal for 

parallelization.  As such, increases in computing power and volume, coupled with new algorithm 

development can make many established methods possible for GWA analysis. 

In addition to brute-force datamining search procedures, evolutionary computing has 

been used to search for high-dimensional models in genetic association data.  Techniques like 

genetic programming neural networks (GPNN) (Ritchie et al., 2007), grammatical evolution 

neural networks (GENN) (Motsinger-Reif & Ritchie, 2008), and symbolic discriminant analysis 

(SDA) (Moore et al., 2002; Moore et al., 2007) discover complex mathematical relationships 

between SNPs and a phenotype using principles of evolution and natural selection.  With these 

approaches, a population of complex mathematical functions is initialized.  Each function accepts 

genetic variables as input and classifies cases and controls as output.  Each individual in this 

population of mathematical functions is potentially an optimal classifier, with an associated 

fitness value (generally a classification error).  Solutions are mated, recombined, and mutated to 

produce a new population of solutions with presumably increased fitness.  After a user-defined 

number of generations, the procedure is ended and the best solution is reported.  While these 

search procedures cannot guarantee to find all relationships in the data, they routinely find 

functional signals in simulated genetic studies (Motsinger et al., 2006; Motsinger-Reif et al., 2008). 

While algorithm optimization can decrease computation time for large-scale interaction 

analysis, the exponential trend of the problem and the ever increasing number of SNPs captured 

by modern genotyping technologies limits this solution.  Search strategies provide an alternative 
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to exhaustive evaluation, but have many user-specified parameters that alter the speed and scope 

of the analysis.  Even when such strategies are applicable, the biological interpretation of results 

from these procedures can be difficult.  As such, new approaches for finding epistasis in GWA 

studies are needed.   

 

New Approaches for Large-Scale Epistasis Analysis 

 

Analytical filtering 

One analysis strategy is to reduce or filter the set of genotyped SNPs, eliminating 

redundant or ostensibly useless information.  A simple and common way to filter SNPs is to 

select a set of results from a single-SNP analysis based on an arbitrary significance threshold and 

exhaustively evaluate interactions in that subset.  This can be perilous, however, as the most 

significant results from a single-SNP analysis aren’t always the most likely to replicate (Zaykin & 

Zhivotovsky, 2005).  Also, selecting SNPs to analyze based on main effects will prevent certain 

multi-locus models from being detected – so called “purely epistatic” models with vanishingly 

small, statistically undetectable marginal effects (Frankel & Schork, 1996; Moore et al., 2004).   

With these models, a large component of the heritability is concentrated in the interaction rather 

than in the main effects.  In other words, a specific combination of markers (and only the 

combination of markers) incurs a significant change in disease risk.  The benefits of this analysis 

are that it performs an unbiased analysis for interactions within the selected set of SNPs.  It is also 

far more computationally and statistically tractable than analyzing all possible combinations of 

markers.   

Analytical filters also can be applied to identify unknown structures within the data.  

Clustering (Falush, Stephens, & Pritchard, 2003) and principle components analysis (Price et al., 

2006) are commonly used to identify and correct for population substructure in case/control 
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data.  Similarly, various forms of cluster analysis have been applied to genotype data to identify 

more genetically homogenous sub-groups (Thornton-Wells, Moore, & Haines, 2006).  These sub-

groups are then analyzed separately to discover susceptibility variants within each unique 

genetic architecture.  Moore et al. has conducted several studies using Relief-F and tuned Relief-

F, statistics that perform clustering in genotype space to estimate the propensity of non-linear 

variable interactions (Moore & White, 2007).  Relief-F has been proposed as a preprocessing step 

prior to the more computationally intensive MDR analysis (Pattin et al., 2008).   There are also 

continued developments in machine learning, with hybrid learner-classifier systems used to 

capture multiple types of genetic models and effects in large-scale data (McKinney et al., 2007).     

Analytical filtering can have disadvantages.  Some analytical approaches use case/control status 

in the filtering process, and this likely impacts the false-positive rate of the overall statistical 

analysis in ways that are difficult to control for or adjust.  Likewise, clustering and principle 

components analysis both produce subsets of the data which may under some circumstances 

reduce statistical power, so the effectiveness of these techniques are data and model dependent.   

 

Knowledge-based filtering 

Another approach to reducing the number of interaction tests is to generate multi-SNP 

models based on prior biological knowledge, for example testing for interactions only between 

SNPs that occur in the same biochemical pathway (Carlson et al., 2004).  This approach attempts 

to take into account information about the known structure of biological systems to reduce the set 

of interactions that are analyzed (see Chapter III).  There are many known biological mechanisms 

that may spawn the development of epistasis, such as gene regulatory networks, protein-protein 

interactions, and regulatory pathways.  Providing a biology-based mechanism for why two SNPs 

might interact aids the interpretation of a multi-SNP statistical model, in that a functional 

relationship between the two genes in the model is already established.    



20 
 

As more and more GWA data becomes available, efficient and effective techniques for 

incorporating prior knowledge into multivariate analysis are needed.  Borecki and Province have 

proposed a novel Bayesian modeling approach that incorporates pathway information (Province 

& Borecki, 2008), and can perform on a genome-wide scale.  Work by David Conti uses expert 

knowledge ontologies to build hierarchical Bayesian models to analyze GWA data (Lewinger et 

al., 2007).  Rather than performing filtering, these techniques leverage prior information when 

building genetic models while allowing all available SNPs to be included.   

The disadvantage of knowledge-based filtering or analysis is that these strategies could 

suffer from the incomplete state of our knowledge of complex biological systems.  Experimental 

science has dramatically advanced our understanding of many metabolic and regulatory 

pathways, but due to changes in funding or emphasis, certain processes are certainly better 

understood than others.  Cell cycle pathways have been heavily emphasized in cancer research 

over the last 30 years, for example.  There are also still many mechanisms and processes about 

which we understand very little, and if any of these were involved in complex disease etiology, 

knowledge-based approaches would certainly not fare well.  It is quite possible, however, that 

there are subtle genetic effects embedded in many processes which we do understand, but have 

never investigated in the context of a particular disease, in which case, knowledge-based 

approaches would discover novel relationships between mechanism and disease.  In short, the 

success of these techniques relies on the quality of information provided to them – something 

that is currently unknown. 
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General Issues with Epistasis in GWA Studies 

 

Interpretation of results 

Interpreting the wealth of statistical results that emerges from a GWA study is a 

challenge, even for a basic single-locus analysis (Pearson & Manolio, 2008).  Even a small scale 

GWA study produces hundreds of thousands of statistical results that likely contain many false 

positive associations.  Even if false positives could be eliminated, the remaining results may not 

have a clear biological meaning, such as an association to a SNP in a gene desert.  In addition, 

some analysis approaches may pose a large computational burden when considering large-scale 

data.  On top of the sheer number of results, a bevy of factors can influence statistical association, 

including clinical definition of the phenotype  (Amos, 2007), assessment of population 

stratification (Falush, Stephens, & Pritchard, 2003), genotyping quality control, accounting for 

known clinical and environmental confounders, and appropriate replication (Chanock et al., 

2007).  All of these factors are amplified when conducting an epistasis analysis, along with a host 

of new issues that arise. 

When assessing a significant multi-SNP model, a primary question is “What is the nature of the 

SNP-SNP interaction?”  A significant multi-SNP model does not always imply a true statistical 

interaction of alleles or genotypes – this could simply imply the coupling of two strong 

independent effects, or a locus heterogeneity effect.  Likelihood ratio tests using logistic 

regression are often employed to ask this specific question.  If a true interactive effect is 

confirmed, the biological basis of the interaction should be explored.  While statistical 

interactions do not imply biological interaction of molecules, those with a biological meaning are 

perhaps more compelling.  If the two SNPs lie on a common haplotype background, the two-SNP 

model likely represents one signal resulting from the simultaneous over-transmission of the two 

SNPs together.  In population-based studies, haplotype sizes are relatively small (approximately 

35 KB), but in family-based studies, haplotypes can extend over several mega-base regions.  
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There may also be a biological relationship that implicates an interaction between two SNPs, such 

as the co-occurrence of two genes in a common biochemical pathway.  To assess this possibility, 

the genomic context of each SNP should be investigated to determine if it lies within or near a 

gene.  The location of SNPs within the genic region could also suggest a mechanism for 

interaction, as the two genes may have shared regulatory elements or binding sites.   

Annotating results with biological information often reveals enrichment of significant 

associations within a pathway (Subramanian et al., 2007; Subramanian et al., 2005).  This can 

potentially illuminate a new biological mechanism for disease pathology – a new functional 

association. This biological mechanism can serve as a platform for generating new testable 

statistical or biological hypotheses.  These factors, among many others, should be considered 

when selecting multi-SNP models for follow-up in a replication set.   

 

Challenges in replication 

The NHGRI working group established criteria for bona fide replication of GWA study 

results (Chanock et al., 2007).  Basic conditions for a positive replication include a sufficient 

sample size to replicate the detected effect, an independent replication set, the same outcome 

phenotype for both data sets, a similar study population, similar magnitude and direction of 

effect from the same SNP or a SNP in near perfect LD, a consistent genetic model, and adequate 

reporting of replication study design and analysis.  In addition to all these criteria, replication of a 

multi-locus model presents new challenges.  As with a single-SNP association, the direction of all 

effects in the model should be consistent across the screening and replication stages, and ideally 

both the model fit and the interaction component should be statistically significant by a 

likelihood ratio test. 

The notion of a pathway effect or other higher-level functional association is problematic 

in terms of replication.  How to effectively test for pathway enrichment in a second data set is an 
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open question in the field of human genetics.  Should the same set of pathway SNPs be associated 

in a replication, or can a different set of genes be represented?  Should interactions among all 

genes in the pathway be considered?  If not, could inconsistent direction of effects be attributable 

to interactions and heterogeneity within the pathway?  Even if there is a consensus on how to 

reproduce a pathway-enrichment effect, it may be of limited usefulness without a concise set of 

risk factors to assess.  Functional exploration of the numerous single SNP associations made to 

date will likely take years to complete, and experimentally studying the functional implications 

of multiple variants within a biological system is a combinatorial challenge of its own (Jansen, 

2003).  So, ideally statistical evidence of gene-gene interaction should be concise and compelling.   

 

Conclusions 

The initial wave of genome-wide association study findings represents a dramatic first 

step toward our understanding of common human diseases.  However, the monumental task of 

adequately exploring the collected data has just begun, and new high-throughput methods of 

assessing genetic variation are on the horizon.  As data quality improves, data quantity increases, 

and new types of data become available, it will become even more important to place that data in 

the context of current biological knowledge and explore all the ways that genetic, environmental, 

and clinical factors can combine to influence disease risk.  The complex networks that constitute 

metabolic and regulatory function are so intricate and interwoven -- even at our current level of 

scientific understanding -- that there are a myriad of theoretical mechanisms by which epistatic 

segregation patterns can alter a phenotype.  While the computational challenge of exploring 

epistasis in GWA studies is great, nature (along with 150 years of scientific endeavor) has 

provided a framework for beginning this exploration – a dogmatic hierarchical system of 

biological organization common to all known forms of life.   
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CHAPTER II 
 

LD-SPLINE: MAPPING SNPS ON GENOTYPING PLATFORMS TO 
GENOMIC REGIONS AND GENES USING PATTERNS OF LINKAGE 

DISEQUILIBRIUM 
 
 

Introduction 

 

What is linkage disequilibrium? 

Recent advances in high-throughput genotyping technology have ushered in the era of 

genome-wide association (GWA) studies (Morton, 2008).  The GWA approach has seen much 

success over the last few years, identifying many novel genetic effects for a multitude of human 

disease phenotypes (Manolio, Brooks, & Collins, 2008).  The underlying philosophy of this 

research approach is that a dense panel of single nucleotide polymorphisms (SNPs) can mark 

broader genomic regions by exploiting patterns of linkage disequilibrium.   

Linkage disequilibrium (LD) is a term first coined by Lewontin and Kojima in the field of 

population genetics (Lewontin & Kojima, 2001), and simply describes the non-random 

association of alleles at multiple loci.  LD arises when a mutation occurs near a marker on a 

common haplotype background (Borecki & Province, 2008).  If in subsequent generations there is 

no recombination between the marker and the mutation, the pair is passed together to offspring 

in the next generation.  When assayed, the mutation and the marker always appear together in 

the population, and over time the haplotype carrying the mutation can become common.  

Eventually, through multiple generations and recombination events, in some individuals the 

marker and the mutation are separated by a recombination event.  As this occurs more and more 

in the population over generations, the LD decays, or approaches linkage equilibrium, where the 

marker and the mutation appear independent in the population.  The decay of LD is similar in 

concept to radioactive decay, and is directly related to the genetic distance between the two 

markers (the frequency of recombination events expected between the two).   
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Numerous phenomenon in population genetics and evolutionary biology can impact LD 

structure (Slatkin, 2008).  Patterns of mating, geographic subdivision, natural selection, and 

mutation can all change LD.  Genetic drift, for example, can create LD between nearby markers 

simply by oversampling a multi-marker haplotype.  Similarly, population bottlenecks or 

subdivisions effectively resample an LD structure from the larger population, producing chance 

haplotype effects, thereby increasing LD (Schmegner et al., 2005; Zhang et al., 2004).  Along these 

lines, various attributes of LD have been exploited to identify regions of positive selection (Sabeti 

et al., 2007).   

LD has recently become of great interest to genetic epidemiologists, as patterns of LD 

proved useful for fine mapping of disease genes, and later for large-scale surveys of much of the 

human genome. These patterns manifest in SNP data as correlations between genotypes of 

nearby SNPs in the panel, and is generally caused as these SNPs on a common genomic 

background are transmitted through human subpopulations.  In gene mapping studies, there are 

indirect and direct associations (Carlson et al., 2004).  An indirect association can be found if an 

influential polymorphism is located on the larger genomic region surveyed by genotyping other 

SNPs that mark the region.  Any genotyped SNPs on the same genomic background as the 

influential polymorphism would appear associated to the disease in the study.  If the influential 

variant itself is genotyped in the study, it would have a direct association to the phenotype.  

Generally when a SNP is associated and sufficiently replicated, the genomic region surrounding 

this SNP is re-sequenced to identify the true influential variation.     

 

Measures of linkage disequilibrium 

Many measures of LD have been proposed (Devlin & Risch, 1995), but all are ultimately 

related to the frequency difference between a two-marker haplotype and the frequency expected 

under the assumption that the two markers are independent.  The two commonly used measures 

of linkage disequilibrium are D’ and r2  (Devlin & Risch, 1995; International HapMap Consortium, 
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2005) shown in equations 1 and 2.  In these equations, ̟12 is the frequency of the ab haplotype, ̟1· 

is the frequency of the a allele, and ̟2· is the frequency of the b allele.   
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D’ is a population genetics measure that is related to recombination events between 

markers, and is scaled between 0 and 1.  A D’ value of 0 indicates complete linkage equilibrium, 

implying frequent recombination between the two markers, and statistical independence under 

principles of Hardy-Weinberg equilibrium.  A D’ of 1 indicates complete linkage disequilibrium, 

implying no recombination between the two markers.  Alternatively, r2 is the square of the 

correlation coefficient, and is a more statistical measure of shared information between two 

markers.  The r2 measure is commonly used to determine how well one SNP can act as a 

surrogate for another.  There are dependencies between these two statistics -- r2 is sensitive to the 

allele frequencies of the two markers, and can only be high in regions of high D’. 

One often forgotten issue associated with LD measures is that they are based (at some 

level) on a two-marker haplotype frequency.  Current technology does not allow direct 

measurement of these frequencies from a sample – each SNP is genotyped independently, and 

the phase, or chromosome of origin for each allele, is unknown.  Many well developed and 

documented methods for inferring haplotype phase and estimating the subsequent two-marker 

haplotype frequencies exist (Weir, 1979), and generally lead to reasonable results (Fallin & 

Schork, 2000).    

The International HapMap Project cataloged distinct patterns of LD in four human sub-

populations: Yoruba, Caucasian, Han Chinese, and Japanese (International HapMap Consortium, 
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2005).  Phase I of this project examined 2.5 million SNPs across the human genome, and 

computed pair-wise D’ and r2 statistics in 500KB windows.  These values were made publicly 

available as flat-file downloads from the HapMap project, release 21.  Phase III of the Hapmap 

project expands the available populations to include Toscans from Italy, Luhya and Maasai from 

Kenya, and US individuals with African and Mexican ancestry.   

 

Existing methods for SNP to gene mapping 

Enrichment analysis of GWA single marker results is a common procedure to examine 

the functional relationships between genes in the significant marker set.  In addition to single 

marker association methods, many new bioinformatics and statistical techniques take a gene-

centric approach to analysis.  Aubert et al. proposed a gene-based local false discovery rate (FDR) 

procedure (Aubert et al., 2004).   Li et al. proposed prioritizing SNPs within candidate genes in 

genome-wide scans to improve power, using an FDR analysis on result subsets (Li et al., 2008).  

Lewinger et al. and Province and Borecki proposed elegant pathway-based Bayesian approaches 

to GWA analysis, incorporating gene information into SNP analysis (Lewinger et al., 2007; 

Province & Borecki, 2008).  All these techniques require relating SNPs on a genotyping platform 

to genes in the genome.  A gene-centric approach to GWA epistasis analysis is described in 

Chapter III.  As such, a systematic and user-controlled method for mapping SNPs to the broader 

genomic regions they mark – and ultimately to genes – is needed.   

The simplest approach for generating SNP-gene relationships is to determine if a SNP 

lies within the exonic or intronic region outlined by a genomic build.  Some approaches pad the 

gene boundaries with a user-defined region upstream and downstream to account for possible 

linkage disequilibrium (see methods of (Torkamani, Topol, & Schork, 2008)).  There are also 

several approaches for generating LD statistics that can then be used to partition genomic regions 

captured by genotyping platforms.  The popular PLINK software has two options for generating 

LD information (Purcell,; Purcell et al., 2007).  r2 descriptive statistics can be computed quickly by 
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simply computing correlations between genotypes.  Inferential statistics, population estimates of 

D’ and r2 can also be computed by PLINK but this procedure is much more computationally 

costly as it requires phasing haplotypes.  Another approach is LdCompare, which can rapidly 

compute pair-wise r2 values from genotype data, and can also generate multi-marker correlations 

when given phased data (Hao, Di, & Cawley, 2007).  While these approaches provide valuable 

information about the redundancy of information captured by a genotyping platform, they do 

not readily relate a single SNP to a genomic region – that must be accomplished by a post-

processing step to call haplotype blocks.     

Currently, haplotype blocks are generally identified using two approaches, the Gabriel et 

al. method and the four gamete rule.  These two approaches are implemented in Haploview 

software, and produce a global haplotype block partition for a given set of SNP genotypes.  Both 

procedures are sequential, beginning with the first SNP in the dataset and defining non-

overlapping blocks upstream.  While these approaches provide the general haplotype structure 

of a given genomic region, they are global rather than SNP-centric procedures.  These approaches 

could misrepresent the genomic region a particular SNP marks based on the global sequential 

nature of the partitioning strategy.   

To the author’s knowledge, there are no automated SNP-based procedures for 

systematically relating SNPs to genes or genomic regions using LD.  In this work, we present an 

algorithm to accomplish this task by processing pair-wise LD statistics to identify the genomic 

region that a particular SNP putatively represents.  This algorithm is implemented as a MySQL 

aggregate function and performs genomic region and gene assignments for collections of SNPs, 

such as GWA SNP marker lists, using locally stored LD information from the International 

HapMap Project.   
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Figure 2.  Overview of the LD-Spline Algorithm.  A matrix of all HapMap-based pair-wise LD values (D’ or r2) is retrieved from the database.  Using this matrix, 
the lower bound is incrementally extended to downstream SNPs while the pair-wise LD value between the downstream SNP and the input SNP is greater than the 
user-defined threshold (in this case r2 > 0.8).  The process is repeated for the upper bound to define the marked genomic bounds for the input SNP.     
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Methods 

 

LD-Spline algorithm 

To execute the LD-Spline function, a user specifies the following: the LD statistic to be 

used (D’ or r2), an LD statistic threshold value (ranging between 0 and 1), and a reference 

sequence (RS) SNP identifier.  The RS ID is used to query the specified LD statistic for all pair-

wise values that exist in the Hapmap data that include the specified SNP.  The procedure is 

illustrated in figure 2 and outlined in algorithm 1, and can be applied to LD values corresponding 

to any population.   

 
 

Algorithm 1 

Input: RS number of the SNP to map (rs_id), table or matrix of pair-wise LD values 

1. Initialize the upper and lower bounds of the marked genomic region with the position of 
the input SNP. 

2. Retrieve the value of the selected LD measure corresponding to the input SNP and the 
next downstream SNP, SNP X. 

3. If the LD value is greater than the threshold value, change the lower bound of the 
marked genomic region to the position of SNP X. 

4. Repeat 3 and 4 to extend the lower bound until the retrieved LD value is less than the 
threshold value.   

5. Repeat 2 – 4 to define the upper bound.  

 

The LD-Spline algorithm was implemented in C++ as an aggregate function for the 

MySQL database management system.  The aggregate function, ldspline is executed twice ;  once 

to define the upper bound and once to define the lower bound.  These results are joined to 

produce the full mapped genomic region for a SNP or set of SNPs.  The ldspline function accepts 

four arguments: a SNP index, LD measure (either dprime (D’) or rsquared (r2), a threshold value 

(between 0 and 1), and a flag value to indicate an upper bound (0) or lower bound (1) search.  Let 
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us define a table ‘CEU’ that contains pair-wise D’ and r2 statistics downloaded, inserted, and 

indexed by a composite key – a pair of indices that reference the two SNPs for which the LD 

values apply.  Let us also define a table ‘index_2_rs’ that relates a SNP index to an RS number, 

and a single value, ‘PlatformSNP’ as the RS number of a SNP on a genotyping platform that we 

wish to relate to a genomic region.  The SQL statement to map this SNP using an r2 threshold of 

0.8 would be: 

SELECT lower_bound, position, upper_bound FROM 

(SELECT ldspline(A.pos2, A.rsquared, 0.8, 0, A.pos1) as upper_bound, A.pos1 AS position FROM  

(SELECT * FROM CEU inner join 

(select pos from index_2_rs on rs_id = PlatformSNP) as f  

where CEU.pos1 = f.pos 

) AS A GROUP BY position) AS C 

NATURAL JOIN 

(SELECT ldspline(B.pos1, B.rsquared, 0.8, 1, B.pos2) as lower_bound, B.pos2 AS position FROM 

 (SELECT * FROM LD.CEU inner join 

(select pos from index_2_rs on rs_id = PlatformSNP) as g  

where LD.CEU.pos2 = g.pos 

) AS B GROUP BY position) AS D ;  

 

Instead of mapping a single SNP, we could instead choose to map the entire platform of 

SNPs with one statement.  In this case, let us define a table ‘Genotyping_Platform’ that contains 

an indexed set of RS IDs.  The SQL statement to map the entire table of SNPs using a D’ threshold 

of 0.9 would be: 

SELECT lower_bound, position, upper_bound FROM 

(SELECT ldspline(A.pos2, A.rsquared, 0.8, 0, A.pos1) as upper_bound, A.pos1 AS position FROM  

(SELECT * FROM CEU inner join 

(select pos from Genotyping_Platform a inner join LD.index_2_rs b on a.rs_id = b.rs_id) as f  

where CEU.pos1 = f.pos 

) AS A GROUP BY position) AS C 

NATURAL JOIN 
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(SELECT ldspline(B.pos1, B.rsquared, 0.8, 1, B.pos2) as lower_bound, B.pos2 AS position FROM 

 (SELECT * FROM LD.CEU inner join 

(select pos from Genotyping_Platform a inner join LD.index_2_rs b on a.rs_id = b.rs_id) as g  

where LD.CEU.pos2 = g.pos 

) AS B GROUP BY position) AS D ;  

 

Processing a table of approximately 600,000 SNPs using the user-defined aggregate 

function has a runtime of approximately 36 hours on a dual Xeon 3.06 GHz machine with 2 GB of 

RAM.   

For ease of evaluation, we also produced a command-line version of this algorithm using 

the Perl scripting language.  This version is functionally equivalent to the MySQL aggregate 

function, but rather than accessing a database table of pair-wise LD values, it reads LD values 

from a flat file.   

 

Data simulations 

We simulated realistic patterns of linkage disequilibrium to mimic two human CEU 

chromosomal regions using genomeSIMLA (genomeSIM version 2.0.4 software, functionally 

equivalent to genomeSIMLA 1.0 for LD generation) (Edwards et al., 2008).  genomeSIMLA is a 

forward-time population simulator that uses random mating, genetic drift, recombination, and 

population growth to produce SNP genotype data with linkage disequilibrium.  The general 

procedure for generational advancement is shown in figure 3.   
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Figure 3.  Overview of the genomeSIMLA process.  Chromosomes are randomly initialized in the first 

generation, and then randomly sampled with replacement and crossed to produce the next generation.  This 

process continues until the population has the desired LD patterns.  Individuals are then sampled from this 

population for datasets. 
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Synthetic chromosomes were initialized using random allele frequencies.  1367 SNPs 

from chromosome 1 were selected from 792,429 bp to 9,965,572 bp, and 1146 SNPs from 

chromosome 18 were selected from 23,719,514 bp to 24,217,521 bp.  All simulated SNPs were 

included in the HapMap CEU dataset, and HapMap build 35 positional information for each SNP 

was used.  Recombinant gametes are created by sampling chromosomes with replacement from 

the population and crossing over based on intermarker recombination probabilities are 

determined by the Kosambi function map distance based on a 1 centimorgan per 1 million bases 

of physical distance.  The number of recombination events per gamete is drawn from a Poisson 

distribution.  Two gametes are combined to form a new individual for the next generation.  This 

mating and recombination process continues for a user-specified number of generations, the size 

of each generation is determined by a logistic growth model.     

The initial population size was 750, and was advanced over 454 generations using the 

Richard’s growth curve (A = 750, B = 0.02, C = 1,200,000, M = 500, T = 0.01, Var = 0.03) to produce 

a final population size of 100,000 chromosomes.  These parameters are a slight variation on an 

optimal set described in (Edwards et al., 2008).  Once this population was generated, we 

produced 100 datasets consisting of 2,000 controls (a null genetic model was used).  The random 

seed for these simulations was 2,225.  For this simulated population, we manually selected 10 

haplotype blocks and recorded their upper and lower bounding SNPs.  genomeSIMLA tracks 

recombination events through generational advancement of a population, so the exact haplotype 

blocks are reported by the simulation.  genomeSIMLA also reports exact D’ and r2 statistics 

computed for the entire population. 

 

Block definition algorithms 

In addition to the LD-Spline approach, we evaluated two block calling algorithms 

implemented in the popular Haploview software (Barrett et al., 2005): the Gabriel et. al approach 

(Gabriel et al., 2002) and the four-gamete rule (Barrett et al., 2005).  Gabriel et. al used the 95% 
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confidence intervals of D’ estimates to establish stretches of “strong LD” (Gabriel et al., 2002).  D’ 

estimates are unstable when sample size is small or allele frequency is low, so the confidence 

intervals of the statistic are used.  If the D’ 95% confidence upper bound is > 0.98 and the lower 

bound is > 0.7, there is little statistical evidence of a historical recombination event between the 

two markers, and thus they form a haplotype block.  Alternatively, the four-gamete rule is based 

on an algorithm described by Wang et al. where the frequency of the four possible two-marker 

haplotypes are computed for each pair of SNPs (Wang et al., 2002).  Rather than estimating D’ 

confidence intervals, the four-gamete rule is similar to estimating a confidence interval on the 

two-marker haplotype frequencies.  If all four haplotypes are observed with at least a frequency 

of 0.01, a recombination event between the two markers likely occurred.  These two algorithms 

were applied to simulated unphased datasets, and the resulting haplotype block partitioning was 

recorded.   

Block partitions were defined by these two algorithms, and compared to three 

parameterizations of the LD-Spline algorithm: D’ threshold of 0.6, D’ threshold of 0.8, and D’ 

threshold of 1.  For each data simulation, a SNP that lies within each of the 10 selected haplotype 

blocks was randomly chosen.  The LD-Spline approach used these SNPs as input for the 

algorithm, and haplotype blocks were defined around these SNPs.  The Haploview-based 

algorithms were used to produce a full list of haplotype blocks for each dataset.  This list was 

parsed to identify haplotype blocks that contain the randomly selected SNPs, and the bounds for 

those blocks were recorded.   

 

Algorithm comparisons  

The upper and lower bound SNP indices were compared to the true block boundaries for 

each block partitioning algorithm using weighted Kappa statistics to assess inter-rater 

(algorithm) agreement (Wickens, 1989).  Weights for the Kappa statistic were calculated using a 
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standard weighting strategy shown in equation 3, incurring an increased penalty as the number 

of SNPs from the correct boundary edges increase.   

Eq. 3  
1

1
−
−
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In equation 3, i is a row index and j is a column index of the boundaries specified by the 

two algorithms, and k is the maximum number of possible boundaries the algorithm could call.   

The full weighted Kappa statistic is shown in equation 4 (Cohen, 1968).  Agreement was 

evaluated within each of the 10 simulated haplotype blocks and for the overall block partitioning 

over 100 datasets.  Kappa statistics were calculated using STATA 10.   
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Results 

 

Simulated data 

An overview of the linkage disequilibrium present in our simulated population is shown 

in figure 4.  The parameters used in this simulation recapitulate reasonable patterns of linkage 

disequilibrium, similar to those seen in Hapmap data (Edwards et al., 2008).  A more detailed 

view of two simulated haplotype blocks on chromosome 1 is shown in figure 5.  The blocks 

selected for evaluation ranged in SNP density from 5 SNPs to 2 SNPs.   
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Figure 4.  Linkage disequilibrium (D’) of chromosome 1 (top) and chromosome 18 (bottom) simulated using genomeSIMLA.  Haploview-style correlation plots illustrate the LD 

structure (in D’).  Each black line above the correlation plot indicates a haplotype block generated by the simulation, and the height of the bar above the horizontal line indicates SNP 

density.   
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Figure 5.  Regional haplotype structure for simulated block 7 (top) and 5 (bottom) on chromosome 1.  The 

physical location and minor allele frequency of each simulated SNP is shown on the tracks along the top of 

the figure, and LD structure in D’ is shown in a Haploview-style correlation plot at the bottom.  True 

haplotype blocks in the population are marked with dark lines in the correlation plot.   



40 
 

Algorithm agreement 

Haplotype block partitioning of 100 datasets from the simulated region of chromosome 1 

are shown in figures 6-10 and chromosome 18 in figures 11-15.  Each horizontal line on these 

figures represents a called haplotype block, with the x-axis representing the index position of the 

SNP and the y-axis denoting the dataset for which the block partition was called.  The ten gray 

vertical lines represent the true haplotype blocks simulated in the data (indexed across the top of 

the figure).   

For chromosome 1, note the differences for blocks 3 and 4.  The four gamete rule (figure 

6) and Gabriel et al. (figure 7) call these two blocks as one larger block, and the four gamete rule 

seems more prone to produce a truncated block that does not include both the simulated blocks.  

LD-Spine (figure 8) does a better job of separating these two blocks, but is more likely to combine 

blocks 5 and 6 than Gabriel et al. and the four gamete rule.  For chromosome 18, the general block 

calling from the four gamete rule (figure 11) and Gabriel et al. (figure 12) is sparse across datasets, 

indicating that for this particular simulated chromosome, sampling variability between datasets 

reduces the ability to find blocks consistently. 

Weighted Kappa statistics for inter-rater agreement were calculated pair-wise to compare 

all algorithms to each other and to the true simulated block bounds.  Results for chromosome 1 

and chromosome 18 are shown in table 3.  All algorithms had statistically significant agreement 

with each other and with true bounds by z-test (Cohen, 1968).  The four-gamete rule performed 

best, with a weighted kappa near 0.95 for both simulations.  The Gabriel et al. approach 

performed nearly as well.  Of the three D’ thresholds evaluated in this simulation (1, 0.8, and 0.6), 

using a threshold of 1 best matched the two established algorithms and the true block bounds in 

both simulated chromosomes (figures 8-10 and figure 13-15).  While the LD-Spline approach does 

not outperform either of the established algorithms, it performs nearly as well, and still shows 

excellent agreement with true block bounds.  
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Table 3.  Weighted kappa statistics for algorithm agreement. 

Chromosome 1 
 

Four Gamete Rule Gabriel et al. LD-Spline 0.6 LD-Spline 0.8 LD-Spline 1 

True Bounds 0.9512 0.9514 0.9092 0.9089 0.9383 

Four Gamete Rule 
 

0.9762 0.9123 0.9163 0.9498 

Gabriel et al. 
  

0.8931 0.9054 0.9412 

LD-Spline 0.6 
   

0.9681 0.9335 

LD-Spline 0.8 
    

0.9479 

 
Chromosome 18 
 

Four Gamete Rule Gabriel et al. LD-Spline 0.6 LD-Spline 0.8 LD-Spline 1 

True Bounds 0.9566 0.9271 0.9377 0.9153 0.9374 

Four Gamete Rule 
 

0.9740 0.9400 0.9379 0.9495 

Gabriel et al. 
  

0.9226 0.9208 0.9292 

LD-Spline 0.6 
   

0.9864 0.9635 

LD-Spline 0.8 
    

0.9671 

 

 

Mapped block size distributions and captured genes 

The LD-Spline algorithm using a D’ threshold of 1 was found to best recapitulate true 

haplotype block boundaries and best matches established algorithm block calls.  We used these 

parameters and executed the LD-Spline procedure on two common GWA genotyping platforms, 

the Affymetrix Genome-Wide SNP Array 6.0 and the Illumina Human1M-Duo BeadChip.  Block 

boundaries were mapped to NCBI genome build 36 using the Ensembl database (Hubbard et al., 

2007).  Frequency histograms of haplotype block sizes marked by each genotyping platform are 

shown in figure 16.   

In each histogram, there is a notable increase in density near the 500 KB size.  This is a 

procedural artifact due to computation restrictions used by the Hapmap during evaluation of LD 

statistics.  Pair-wise LD is only calculated within a 500 KB window, and across the genome there 

are rare occurrences where LD extends beyond 500 KB – so the theoretical density of block sizes 

across the genome asymptotically approaches zero as block size increases.  Therefore, density 

corresponding to block sizes larger than 500 KB is shifted into the 500 KB bin of the histogram.   
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The average block size captured by the Affymetrix 6.0 is 43 KB, and the average block 

size captured by the Illumina Human1M-Due is 38 KB.  To quantify the number of genes 

captured by each platform, we used the Ensembl database to identify gene regions (defined as 

the start of the 5’ UTR to the end of the 3’ UTR), and to determine if SNPs lie within this region.  

Using this process, 17,418 genes were captured by the Affymetrix 6.0 platform, and 21,024 genes 

were captured by the Illumina Human 1M platform.  Using the marked genomic regions 

generated by LD-Spline (using a D’ threshold of 1), we declare a gene “captured” if the marked 

region starts, ends or lies completely within the genic region, or alternatively, if the marked 

region completely encompasses the gene region.  Using LD-Spline, the Affymetrix 6.0 captures 

29,421 genes and the Illumina Human 1M captures 29,611 genes.   
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Figure 6.  Four gamete rule haplotype block partitioning for simulated chromosome 1.  Ten haplotype blocks were 

selected from the simulation for algorithm assessment.  Blocks are identified by an integer ID shown across the top of the 

figure, indicating the position within the 1000 SNPs simulated.  The true bounds for each block are shown as gray vertical 

lines, with the thickness of the line indicating the block size.  Each horizontal line represents a haplotype block called by 

the four gamete rule, with the length of the line representing the number of SNPs included in the haplotype block call.  

The x-axis illustrates the upper and lower SNP index in the dataset for each block, and the y-axis indicates the dataset for 

which each block is called.     
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Figure 7.  Gabriel et al. haplotype block partitioning for simulated chromosome 1.  Ten haplotype blocks were selected 

from the simulation for algorithm assessment.  Blocks are identified by an integer ID shown across the top of the figure, 

indicating the position within the 1000 SNPs simulated.  The true bounds for each block are shown as gray vertical lines, 

with the thickness of the line indicating the block size.  Each horizontal line represents a haplotype block called by the 

Gabriel et al. approach, with the length of the line representing the number of SNPs included in the haplotype block call.  

The x-axis illustrates the upper and lower SNP index in the dataset for each block, and the y-axis indicates the dataset for 

which each block is called.     
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Figure 8.  LD-Spline haplotype block partitioning for simulated chromosome 1.  Ten haplotype blocks were selected 

from the simulation for algorithm assessment.  Blocks are identified by an integer ID shown across the top of the figure, 

indicating the position within the 1000 SNPs simulated.  The true bounds for each block are shown as gray vertical lines, 

with the thickness of the line indicating the block size.  Each horizontal line represents a haplotype block called by the 

LD-Spline algorithm using a D’ statistic of 1.0, with the length of the line representing the number of SNPs included in the 

haplotype block call.  The x-axis illustrates the upper and lower SNP index in the dataset for each block, and the y-axis 

indicates the dataset for which each block is called.     
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Figure 9.  LD-Spline haplotype block partitioning for simulated chromosome 1.  Ten haplotype blocks were selected 

from the simulation for algorithm assessment.  Blocks are identified by an integer ID shown across the top of the figure, 

indicating the position within the 1000 SNPs simulated.  The true bounds for each block are shown as gray vertical lines, 

with the thickness of the line indicating the block size.  Each horizontal line represents a haplotype block called by the 

LD-Spline algorithm using a D’ statistic of 0.8, with the length of the line representing the number of SNPs included in the 

haplotype block call.  The x-axis illustrates the upper and lower SNP index in the dataset for each block, and the y-axis 

indicates the dataset for which each block is called.     
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Figure 10.  LD-Spline haplotype block partitioning for simulated chromosome 1.  Ten haplotype blocks were selected 

from the simulation for algorithm assessment.  Blocks are identified by an integer ID shown across the top of the figure, 

indicating the position within the 1000 SNPs simulated.  The true bounds for each block are shown as gray vertical lines, 

with the thickness of the line indicating the block size.  Each horizontal line represents a haplotype block called by the 

LD-Spline algorithm using a D’ statistic of 0.6, with the length of the line representing the number of SNPs included in the 

haplotype block call.  The x-axis illustrates the upper and lower SNP index in the dataset for each block, and the y-axis 

indicates the dataset for which each block is called.     
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Figure 11.  Four gamete rule haplotype block partitioning for simulated chromosome 18.  Ten haplotype blocks were 

selected from the simulation for algorithm assessment.  Blocks are identified by an integer ID shown across the top of the 

figure, indicating the position within the 1000 SNPs simulated.  The true bounds for each block are shown as gray vertical 

lines, with the thickness of the line indicating the block size.  Each horizontal line represents a haplotype block called by 

the four gamete rule with the length of the line representing the number of SNPs included in the haplotype block call.  

The x-axis illustrates the upper and lower SNP index in the dataset for each block, and the y-axis indicates the dataset for 

which each block is called.     
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Figure 12.  Gabriel et al. haplotype block partitioning for simulated chromosome 18.  Ten haplotype blocks were 

selected from the simulation for algorithm assessment.  Blocks are identified by an integer ID shown across the top of the 

figure, indicating the position within the 1000 SNPs simulated.  The true bounds for each block are shown as gray vertical 

lines, with the thickness of the line indicating the block size.  Each horizontal line represents a haplotype block called by 

the Gabriel et al. approach with the length of the line representing the number of SNPs included in the haplotype block 

call.  The x-axis illustrates the upper and lower SNP index in the dataset for each block, and the y-axis indicates the 

dataset for which each block is called.     
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Figure 13.  LD-Spline haplotype block partitioning for simulated chromosome 18.  Ten haplotype blocks were selected 

from the simulation for algorithm assessment.  Blocks are identified by an integer ID shown across the top of the figure, 

indicating the position within the 1000 SNPs simulated.  The true bounds for each block are shown as gray vertical lines, 

with the thickness of the line indicating the block size.  Each horizontal line represents a haplotype block called by the 

LD-Spline algorithm using a D’ statistic of 1.0, with the length of the line representing the number of SNPs included in the 

haplotype block call.  The x-axis illustrates the upper and lower SNP index in the dataset for each block, and the y-axis 

indicates the dataset for which each block is called.     
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Figure 14.  LD-Spline haplotype block partitioning for simulated chromosome 18.  Ten haplotype blocks were selected 

from the simulation for algorithm assessment.  Blocks are identified by an integer ID shown across the top of the figure, 

indicating the position within the 1000 SNPs simulated.  The true bounds for each block are shown as gray vertical lines, 

with the thickness of the line indicating the block size.  Each horizontal line represents a haplotype block called by the 

LD-Spline algorithm using a D’ statistic of 0.8, with the length of the line representing the number of SNPs included in the 

haplotype block call.  The x-axis illustrates the upper and lower SNP index in the dataset for each block, and the y-axis 

indicates the dataset for which each block is called.     
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Figure 15.  LD-Spline haplotype block partitioning for simulated chromosome 18.  Ten haplotype blocks were selected 

from the simulation for algorithm assessment.  Blocks are identified by an integer ID shown across the top of the figure, 

indicating the position within the 1000 SNPs simulated.  The true bounds for each block are shown as gray vertical lines, 

with the thickness of the line indicating the block size.  Each horizontal line represents a haplotype block called by the 

LD-Spline algorithm using a D’ statistic of 1.0, with the length of the line representing the number of SNPs included in the 

haplotype block call.  The x-axis illustrates the upper and lower SNP index in the dataset for each block, and the y-axis 

indicates the dataset for which each block is called.     
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Figure 16.  Frequency histogram of LD-Spline called haplotype block sizes.  The Affymetrix Genome-wide SNP Array 6.0 (top) 

and the Illumina Human 1M -Duo (bottom) genotyping platforms are shown.     
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Conclusions 

In this work, we introduce LD-Spline, an efficient database procedure for establishing genomic 

regions that a SNP potentially represents by mining linkage disequilibrium statistics available from the 

International Hapmap Project.  The two established block-calling algorithms (Gabriel et al. and four 

gamete rule) function by producing a global haplotype block partitioning, starting at the first SNP and 

sequentially defining blocks upstream.  The LD-Spline approach is SNP-centric, in that it uses LD 

statistics between a user-provided SNP (such as one from a genotyping platform) and surrounding SNPs 

in the genome to define the region the specified SNP marks.  This SNP-centric approach also has a 

computational advantage, since only relevant haplotype blocks (the region surrounding SNPs of interest) 

are called by the algorithm.  Gabriel et al. and the four gamete rule would require processing and 

partitioning the entire human genome to determine the regions marked by a genotyping platform.  LD-

Spline also has the great advantage of running as a fast and efficient self-contained procedure within the 

database management system, allowing seamless integration with existing database queries and 

operations 

We compared the LD-Spline algorithm to the Gabriel et al. and four gamete rule methods, and 

compared all methods to the true simulated haplotype block boundaries.  Weighted kappa agreement 

statistics between LD-Spline, traditional block calling algorithms, and the true block partition in 

simulated data were rather good (> 0.90 in most cases).  While none of the block partitioning algorithms 

perfectly identify true block boundaries, the LD-Spline approach using a D’ threshold of 1 appears to 

work as well as other established algorithms. 

As a SNP-centric approach, LD-Spline has the added advantage of consistently marking a 

genomic region for each SNP.  The sequential partitioning achieved by the Gabriel et al. and four gamete 

rule approaches do not consistently identify a haplotype block for each dataset.  For example with 

chromosome 18, the four gamete rule and Gabriel et al. did not define haplotypes for simulated blocks 0, 

2, 5, or 6.  For the specific application of determining what genomic region a typed SNP likely represents, 

a SNP-centric approach is advantageous, as the long-range LD patterns specifically related to the typed 
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SNP are exploited.  Sequential partitioning approaches generally use a two-SNP sliding window to define 

haplotype blocks, and as such are not robust to situations where short-range LD is weaker than long-

range LD.  It is important to note that the weighted Kappa statistics for algorithm agreement do not take 

into account the number of uncalled haplotype blocks, but do indicate that the boundaries for the called 

haplotype blocks are similar.  With this in mind, LD-Spline provides superior performance when 

assigning genomic regions to typed SNPs because of its SNP-centric nature.      

Another explanation for the lack of block identification for chromosome 18 and the general small 

degree of disagreement with the true block boundaries is sampling variability.  In our data simulations, 

we empirically track recombination events to produce exact LD statistics and LD block boundaries on the 

population level.  Each simulated dataset was drawn from that population, and sampling variability 

could lead to biased LD estimates and subsequent block partitions.  Also, to more closely mimic real data 

collection in the Hapmap project, datasets were produced as unphased genotype data.  We then used 

Haploview software to estimate two-marker haplotypes using the EM algorithm to calculate D’ and r2 LD 

statistics.  This procedure could also introduce bias and error into the haplotype block calling procedures.   

When applied to GWA genotyping platforms, block sizes follow the pattern expected based on 

previous estimates of block size by the Hapmap project (International HapMap Consortium, 2005).  The 

average block size differs slightly between platforms.  This could be because of bias in SNP selection by 

the genotyping platform manufacturers, particularly Illumina (Eberle et al., 2007).  If SNPs are specifically 

selected that tag larger genomic regions, and avoided SNPs in regions of sparse LD, this could inflate the 

average block size.  Also, if SNPs in genic regions are overrepresented by genotyping platforms, this 

could also cause inflation, as r2 measures of LD have been found to be higher in genic versus inter-genic 

regions (Eberle et al., 2006).   

Overall, we have illustrated the performance of the LD-Spline routine, and the utility of applying 

this database-centric procedure to GWA platforms.  One key advantage of the database-centric nature of 

the LD-Spline user-defined function is that it can easily be incorporated into more sophisticated queries 
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for information retrieval.  Once established, the database routine can seamlessly extend the range of data 

queries to include statistics based on a broader genomic region, rather than a single base-pair location.   
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 CHAPTER III  
 
 

INTEGRATING BIOLOGICAL KNOWLEDGE INTO DATA ANALYSIS FOR 
GENOME-WIDE ASSOCIATION STUDIES1  

 

 

Introduction  

 

Genome-wide association (GWA) studies  

Over the last five years, genome-wide association (GWA) has become a very popular study 

design for identifying genetic variants that incur disease risk in human populations.  As described in 

Chapter I, the overall strategy of the GWA approach is inherently high-throughput, allowing 

investigators to blanket the genome with hundreds of thousands of single nucleotide polymorphisms 

(SNPs) in many individuals with the general goal of elucidating genetic causes of common human 

phenotypes – complex diseases in particular.  The development of methods to effectively analyze the 

wealth of information produced from these studies has not kept pace with the technological advances 

that produce the data.  Using mostly basic analysis techniques, GWA studies have produced many novel 

genetic associations to multiple phenotypes, but in general these findings explain only a small portion of 

the overall genetic risk for those phenotypes.  Because the common diseases studied with the GWA 

approach presumably involve multiple interacting genetic and environmental factors, basic single-SNP 

analyses have certainly missed important genetic effects.  More complex analysis techniques are 

challenging to apply to GWA data (see Chapter I), and incorporating prior biological knowledge into the 

analysis is one approach to reduce the subsequent computational and statistical burden.  Also, placing 

SNPs and their related genes into their larger genomic and functional context will be key in fully 

understanding and interpreting GWA findings.   

                                                      
1 Adapted from Bush W.S., Dudek S.M., Ritchie M.D.  Biofilter: a knowledge-integration system for the multi-locus 
analysis of genome-wide association studies.  Proceedings of the 2009 Pacific Symposium on Biocomputing.  
Accepted September 2008. 
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The utility of prior knowledge 

The last 15 years of biological science have been aided dramatically by the advent and 

introduction of internet-based technologies (such as genome browsers) and the databases of information 

that drive them.  Rather than relying solely on the publication system, investigators and publishers began 

to deposit scientific findings about protein structure, biochemical systems, and gene regulatory networks 

(among many others) into a collection of highly structured and cross-referenced database systems.  These 

interoperable and highly accessible systems allow easy search and comparison of many biologically 

relevant information types, and the information contained in these databases is just now beginning to be 

exploited for interpreting and processing GWA results.  As discussed in Chapter I, epistasis is likely to 

play a role in the complex diseases studied with the GWA approach.  The statistical and biological 

interaction of alleles and genotypes has been observed in several biochemical systems and pathways, and 

is presumed to be a ubiquitous component of variability for a broad range of phenotypes (Moore, 2003).  

As such, a logical application of established biological knowledge in GWA analysis is in the search for 

epistatic interactions.   

Many types of structured biological knowledge could prove useful for identifying epistasis.  For 

example, protein-protein interaction is suggestive of potential gene-gene interaction.  In tuberous 

sclerosis, both TSC1 and TSC2 bind to form a protein complex that functions in a tumor suppression 

pathway (Huang & Manning, 2008).  Mutations in both TSC1 and TSC2 can disrupt this binding, 

abolishing the function of the complex, ultimately leading to the scattered and widespread formation of 

tumerous nodules.  While in this case the two mutations have strong independent effects, it is logical to 

assume that subtle changes in TSC1 or TSC2 expression or structure could alter binding or other 

functional properties to modestly modulate risk for some cancer phenotypes.  Similarly, pathway 

information can have great utility for identifying epistasis and elucidating functional causes of disease.  

Nephrogenic diabetes insipidus (NDI) can be caused by numerous mutations throughout the vasopressin 

type 2 receptor activated, calcium-signaled insertion of the aquaporin-2 channel into the apical membrane 
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of the collecting ducts of the kidneys, and results in the inability to concentrate urine (Spanakis, Milord, & 

Gragnoli, 2008).  Again, strong mutations in this pathway abolish function, but more subtle variations 

could alter function, increasing risk for conditions related to blood-fluid homeostasis, such as essential 

hypertension.  Protein structural and sequence information could also be used to identify common 

functional domains that may in concert be relevant to a disease process.  For example, many downstream 

pathways are triggered from the cellular surface via G-protein-coupled receptors (GPCRs).  These 

receptors are often tissue-specific and can have some degree of redundancy, where multiple different 

receptors that bind the same ligand trigger the same physiological process (Amisten et al., 2008).  GPCRs 

also account for more than 30% of all pharmacological targets (Wise, Gearing, & Rees, 2002), and are thus 

likely candidates for pharmacogenomic phenotypes.  It is therefore plausible that variants in multiple 

similar GPCR genes could aggregate to dramatically influence risk beyond the additive effects of any 

single variation.  High resolution structural information of this important class of proteins will help 

elucidate ways that GPCR functional variation can impact downstream signaling (Tian et al., 2005) and 

other disease phenotypes may be related to subtle changes in protein structure (Myers, Beihoffer, & 

Sanders, 2005).  Ultimately, protein structural and sequence information will be incorporated with 

pathway information to build sophisticated kinetic models predicting functional consequences of amino 

acid sequence substitutions and/or gene expression changes on a systems biology level (Beltrao, Kiel, & 

Serrano, 2007).  This modest set of examples only begins to illustrate the innumerable data sources that 

can be applied to multivariate genetic analysis of disease phenotypes.  

Several new tools have recently been developed to incorporate biological information with 

analytical approaches for GWA data.  Prioritizer is a Bayesian approach to synthesize multiple sources of 

gene interrelationships into a global “functional gene network”.  This network can be used to prioritize 

significant single-SNP results by gene function (Franke et al., 2006).  For a sequence-oriented approach, 

PROSPECTR is a machine learning method that prioritizes genes in candidate regions based on sequence 

features, such as transmembrane regions, GC content, number of exons, and homology to other 

organisms, and could be applied to GWA data as well (Adie et al., 2005).   
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Some methods use structured knowledge as a way to guide (but not restrict) variable selection for 

regression-based modeling.  Province and Borecki propose a Bayesian re-sampling approach to select 

collections of SNPs that may have very small independent effects but function in aggregate to explain a 

more substantial portion of trait variance (Province & Borecki, 2008).  Lewinger et al. proposes a 

hierarchical modeling approach that uses an expert knowledge ontology to search for and test complex 

multi-SNP models.  This Bayesian modeling process is flexible, allowing SNPs outside the knowledge-

base to also be used in models (Lewinger et al., 2007).   

Additionally, some approaches annotate or weight single-SNP results. Gene Set Enrichment 

Analysis (GSEA) has been used extensively for gene expression data, and has been modified to 

investigate enrichment of gene categories in significant GWA SNP associations (Wang, Li, & Bucan, 2007).  

Curtis et al. describe a method for weighting SNP p-values based on prior candidate information, such as 

previous associations or linkage peaks (Curtis, Vine, & Knight, 2007), and similarly Li et al. illustrates 

power improvement when assessing false discovery rate (FDR) separately for prioritized candidate SNPs 

versus non-candidate SNPs (Li et al., 2008).  Finally, Pan proposes weighting the p-values of multi-locus 

models based on putative protein-protein interactions between genes included in the model (Pan, 2008).   

We propose a strategy that steps beyond the annotation, grouping, and weighting of independent 

SNP effects, but does not attempt to jointly model large numbers of SNPs simultaneously.  Also, we 

believe that ultimately data from multiple sources will better facilitate a comprehensive analysis, 

providing a biological foundation for testing specific multi-SNP association models in GWA data.  In this 

work, we present the Biofilter, a tool for knowledge-driven multi-SNP analysis of large scale SNP data.  

The Biofilter fundamentally differs from other methods in the way knowledge is incorporated into the 

analysis pipeline.  The Biofilter uses biological information about gene-gene relationships and gene-

disease relationships to construct multi-SNP models before conducting any statistical analysis.  Rather 

than annotating the independent effect of each SNP in a GWA dataset, the Biofilter allows the explicit 

detection and modeling of interactions between a set of SNPs.  In this manner, the Biofilter process 

provides a tool to discover significant multi-SNP models (regardless of main effects) that have established 
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biological plausibility.  This approach has the added benefit of reducing both the computational and 

statistical burden of exhaustively evaluating all possible multi-SNP models.   

 

 

Figure 17.  Overview of the Biofilter process.  GWA platform SNPs are mapped to Ensembl gene IDs and related to 

disease-independent sources (left) and to disease-dependent sources (right).  Multi-marker models are generated 

from SNPs within knowledge-related genes.  Derived models are overlaid to assess overall model implication. 
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Methods 

 

Overview 

An overview of the Biofilter method is show in figure 17.  The Biofilter model generation process 

is gene-centric, and as such, SNPs from GWA genotyping platforms must first be assigned to genes.  

SNPs can be evaluated to determine if they fall directly within gene boundaries using a genomic resource 

like Ensembl, or a mapping routine like the LD-Spline approach described in Chapter II can be applied to 

use linkage disequilibrium to better define SNP-gene representation.  Relationships between the genes 

represented by a genotyping platform can then be translated to multi-SNP models.  Structured biological 

knowledge relevant to GWA interaction analysis can come from various sources.  We have partitioned 

relevant knowledge into two basic types: disease-dependent and disease-independent.  Disease-dependent 

knowledge is information that relates a gene to the disease phenotype being studied, such as a previously 

associated SNP or a gene that is over-expressed in cases.  Disease-independent knowledge is information 

that relates genes to one another, or defines collections of genes, such as a metabolic pathway or a 

common structural motif.  These two types of information can be combined to form different classes of 

multi-SNP models and provide a measure of how strongly implicated a given model is based on the 

current available knowledge.   

 

Database integration 

GWA studies use a large collection of SNP probes to capture genetic variation in the study 

population.  Often, vendors of GWA genotyping platforms provide some annotation of the probes used 

in their products, including SNP identifier, genomic position, and nearby genes.  Documentation on how 

this annotation was generated, particularly what genomic build or version, is often sparse or incomplete, 

and so a consistent and updatable system for annotating GWA platforms was needed.  We used Ensembl 

as our source of gene and SNP positional information.  
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Ensembl is a well-established, open database system providing extensive annotation of the 

human genome, from raw genomic sequence to cross-references for protein structure and functional 

biochemical systems (Hubbard et al., 2007).   In addition to its extensive information store, Ensembl is 

easy to access and reconstitute, and its contents follow a clearly defined and documented database 

schema.  The components of the Ensembl core database and the Ensembl variation database (Release 49) 

were established on a local machine.  Using this local copy, RS numbers for SNPs used on genotyping 

platforms are matched to records within the Ensembl variation database to retrieve position information 

in the current genomic build.  To establish SNP-to-gene relationships for each platform, we used the 

Ensembl database to identify gene regions (defined as the start of the 5’ UTR to the end of the 3’ UTR), 

and assigned SNPs from each genotyping platform to a gene if the SNP lies within a genic region in 

Ensembl.  Using this process, 17,418 genes were captured by the Affymetrix 6.0 platform, and 21,024 

genes were captured by the Illumina Human 1M platform.  X and Y chromosomes were excluded from 

this analysis.  With SNP-gene relationships established, we can now apply gene-gene information to 

build multi-SNP models. 

Disease-dependent knowledge sources link individual genes to a disease phenotype.  The goal of 

using disease-dependent knowledge is to identify genes that have some prior evidence of putative 

influence on the phenotype.  One systematic source of disease-dependent knowledge is the Genetic 

Association Database (GAD).  GAD is an archive of human genetic association studies of complex 

diseases and disorders established in 2004 by the National Institutes of Health (Becker et al., 2004).  GAD 

has a hierarchical arrangement of disease phenotypes, with a top level “disease class”, such as immune or 

psychiatric, and more narrow phenotype identifiers, such as asthma or schizophrenia.  Each GAD entry is 

a polymorphism-phenotype association, annotated with the gene, p-value, chromosomal band, and 

author list and Pubmed ID of the reporting study.    GAD is easily searchable to find prior associated 

genes for a given phenotype, and sets of these genes could be tested jointly in GWA data.   

Other types of disease-dependent knowledge may require manual selection from literature.  

Published genome-wide linkage screens often report chromosomal bands which could be collected to 
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identify genes in regions of linkage.  Likewise, gene expression studies can highlight groups of genes that 

are differentially regulated or active between cases and controls or discordant siblings.  This collection of 

genes could highlight potential disease mechanisms, and could be evaluated in GWA data.  Disease 

review articles often postulate hypothetical disease etiologies and may provide candidate gene lists that 

could be incorporated.   

Disease-dependent knowledge leverages information collected by prior studies of the phenotype, 

and since inconsistent replication of previously associated or linked genes could be an indicator of multi-

locus interactions, these sources have utility in constructing epistasis models in GWA data.  Disease-

dependent sources are susceptible to publication bias however, and applying these sources exclusively 

would bias the GWA analysis toward replicating known potential effects rather than exploring novel 

disease mechanisms.   

Disease-independent sources link two or more genes together, irrespective of the phenotype.  The 

goal of using disease-independent knowledge is to identify gene sets with some prior evidence of 

putative epistasis.  The Gene Ontology project (GO, accessed on 3/16/08) is a collaborative effort to 

characterize and describe gene products in a collection of three hierarchical ontologies: cellular 

component, biological process, and molecular function.  Cellular component categories describe the 

location of gene product activity within the cell, such as “ribosome” or “nuclear pore”.  Biological process 

categories describe a chemical or mechanical process, such as “flagellar cell motility” or “nucleic acid 

biosynthesis”.  Finally molecular function categories describe a molecule-specific activity, such as “DNA 

binding”.  Because of its hierarchical structure, some broad ontology categories contain many hundreds 

of genes.  For this analysis, smaller, more precisely defined gene categories (< 30 genes) were used as 

these presumably contain stronger, more precise gene relationships.  The working hypothesis when using 

Gene Ontology groups is that genes participating in a common function, common cellular component, or 

with a common molecular feature are more likely to contain epistatic alleles.   

The Database of Interacting Proteins (DIP, 1/14/08 update) documents experimentally 

determined protein-protein interactions from more than 80 organisms (Xenarios et al., 2002).  These data 
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were collected primarily from yeast-two-hybrid experiments, where the co-localization of tagged gene-

products triggers a fluorescent molecule (Suter, Kittanakom, & Stagljar, 2008), and two proteins seen in 

close cellular proximity are said to “interact”.  The genes for the corresponding interacting proteins are 

then mapped to other organisms, including humans, using sequence homology.  We used the pair-wise 

human protein-protein interaction set contained in DIP to produce gene-gene pairs, since cellular co-

localization likely increases the probability of epistasis. 

The Protein Families Database (PFAM, Release 22) uses multiple sequence alignments and 

hidden Markov models to identify common protein domains and families based on structural and 

functional sequence patterns (Finn et al., 2008).  Generating pairs of genes using these data relies on the 

hypothesis that genetic variants in proteins with similar structural elements are more likely to interact 

(biologically or statistically) to influence disease risk.  As such, we generated gene-gene pairs within 

proteins having the same domain, the same protein family, the same structural motif, or the same 

sequence repeat.   

The Kyoto Encyclopedia of Genes and Genomes (KEGG, 3/6/08 update) pathway set is a 

collection of manually drawn maps for a variety of metabolic and signaling pathways (Kanehisa et al., 

2008).  These pathways are well established in the literature, and contain links to original publications 

proposing the pathway structure.  KEGG loosely defines a pathway as a simple collection of genes, with 

no electronically stored information about metabolic or physical relationships between genes.  Reactome 

(Version 24) is also a pathway database, containing curated core pathways and reactions in human 

biology (Vastrik et al., 2007).  A fundamental difference between Reactome and KEGG is that Reactome 

electronically stores the direct inter-relationships between genes in the pathway, rather than storing a 

simple gene set.  Netpath is a relatively new source of curated immune signaling and cancer pathways 

provided by the Pandey Lab at Johns Hopkins University and the Institute of Bioinformatics (Pandey & 

Institute of Bioinformatics, 2008).  This is a simple set of gene groups based on literature and 

experimental-based pathway information, but with exclusive emphasis on immune and cancer pathways. 
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Supporting gene expression and co-regulation data are also provided.  With these pathway collections, all 

possible gene-gene pairs were generated within each pathway-based gene group. 

Relational data sources were downloaded and reconstituted in their original form within a 

MySQL database using Perl scripts.  Using the schema for each data source, proteins and/or genes were 

translated to Ensembl gene IDs, and derivative tables containing gene groupings (such as protein 

families) were generated within the Biofilter database.  Non-structured data sources, such as gene lists 

from publications, were manually imported.  These gene lists were then translated to Ensembl gene IDs 

and used to establish gene groupings. 

 

Model types and generation 

Using both disease-dependent and disease-independent data sources, there are four types of two-

SNP models possible: disease-independent, disease-dependent, hybrid with one disease-dependent gene, 

and hybrid with two disease-dependent genes.  Figure 18 illustrates each of these model types.  Disease-

dependent information is based on a set of genes that are related to disease, visualized in the figure as a 

collection of dashed boxes, or unconnected nodes of a graph.  Disease-dependent models are generated 

by exhaustively pairing all possible combinations of disease-related genes.  Disease-independent 

information is based on relationships between sets of genes, visualized in the figure as a set of lines, or 

edges in a graph.  To build disease-independent models, we generate pair-wise combinations of SNPs 

located in genes that are related, illustrated as edges in figure 18.  Hybrid models blend disease-

dependent and disease-independent information, and can contain either one or two disease-related 

genes.  In the figure, one-gene hybrids must be connected by an edge (disease-independent connection) 

and contain at least one dashed square (disease-dependent gene).  Two-gene hybrids must contain two 

dashed squares connected by an edge, meaning that there is evidence for biological interaction of two 

disease-related genes.   

An illustration of two-SNP model generation for the Urea Cycle Gene Ontology category is 

shown in figure 19.  For each pair-wise combination of genes, all possible two-SNP models across the two 
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genes are built.   In the urea cycle category of the Gene Ontology, there are two SNPs (rs160648 and 

rs313830) in the ASL gene and three SNPs (rs3770684, rs16844641, and rs6714124) in the CPS1 gene.  Six 

models are generated by pairing SNPs across genes, with each SNP from ASL paired with each SNP from 

CPS1.   

 

 

 

Figure 18.  Biofilter two-gene model types.  Each box represents a gene, and each line a connection between genes.  

Boxes that are dashed have been previously linked to disease by at least one data source.       
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Figure 19.  Biofilter two-SNP model generation process.  A gene grouping (urea cycle) is selected from a data source 
(Gene Ontology), and SNPs from a genotyping platform mapped to those genes are retrieved.  SNPs are paired into 
models across genes (one SNP from one gene paired with one SNP from another).   
 
 

Model implication 

Each constructed model has a set of Biofilter data sources that support it.  If a combination of 

genes is supported by multiple data sources, it is likely more accepted by the scientific community and 

therefore may be more biologically plausible.  We quantify the degree of knowledge-based support for a 

model with an implication index.  The implication index is a crude measure of the strength of gene-gene 

interaction or gene-disease relationship, and is calculated simply by summing the number of data sources 

supporting each of the two genes and the connection between them.  An example is shown in figure 20.  

One disease-dependent gene (ASL) is supported by two data sources, and is connected to another 

disease-dependent gene (CPS1) that is supported by one source.  The connection between these two genes 

is supported by three data disease independent sources, so the implication index of the model is six.  In 

this manner, the implication index provides an ordinal value representing the degree of evidence 

supporting the biological plausibility of a multi-SNP model. 
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Figure 20.  Implication index calculation.  A two-gene model has two disease dependent sources that support gene 
1, one disease dependent source that supports gene 2, and three disease independent sources that support the 
connection of gene 1 and gene 2.  Thus, the implication index for the model is six.   

 

 

 

Table 4.  General GWA platform statistics 

 Illm1M Affy60 

Total SNPs (with RS IDs) 1,055,373 924,689 

SNPs within genes 493,854 353,913 

Genes directly represented 21,024 17,418 

Common SNPs 267,900 

Common SNPs within genes 118,355 

Common genes represented 16,908 

 

 

Results 

 

GWA platform representation 

Two commonly used large-scale genotyping platforms were assessed in this study: the Illumina 

Human1M-Duo BeadChip (Ilmn1M) and the Affymetrix Genome-Wide Human SNP Array 6.0 (Affy60).  

For the purposes of our assessment, only probes with vendor-specified Reference Sequence (RS) numbers 

were used to assure continuity of genomic position.  General statistics for these two platforms are shown 

in Table 4.  The Affymetrix and Illumina platforms are largely comparable, with more genes directly 
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represented on the Illumina Human1M.  A core set of nearly 17,000 genes are well-represented by both 

platforms.   

As described in the methods section, genes can belong to disease-dependent and disease-

independent models.  Because disease-independent models can be used in an analysis of any phenotype, 

we focused on how genes from those models are represented in different data sources.  Table 5 shows the 

number of gene pairs represented from each platform in each disease-independent data source.  PFAM 

has the highest number of gene pairs for both platforms, and DIP has the lowest number – this is directly 

related to the difficulty in collecting data for each of these respective sources.  PFAM generates data by 

sequence analysis – a purely computational procedure.  DIP on the other hand is based entirely on 

experimental data and so has far fewer gene pairs than other sources.  GO is the oldest and consequently 

has the highest gene-pair representation of the remaining data sources.  Because the Illumina platform 

captures more genes than the Affymetrix platform, Illm1M has a consistently higher number of gene 

pairs across all data sources. 

Table 6 shows the pair-wise overlap across the six selected public databases.  In this table, the 

amount of redundant gene representation is shown, with PFAM containing more than 90% of genes 

included in all other data sources.  GO contains more than half the genes represented in each of the 

pathway data sources, but the three pathway sources appear to contain mostly independent gene sets (< 

50% overlap).   

 

 

Generalized disease independent models 

Disease-independent models are universally applicable to any phenotype, so we generated all 

derived gene-gene pairs, and platform specific two-SNP models for the Illm1M and Affy60.  Counts of 

these two-SNP models by implication index are shown in table 7.  The Illm1M platform covers over a 

million more gene pairs and over a billion more two-SNP models than the Affy60.  As such, the Illm1M 

platform has far superior coverage of the interaction models generated using these data sources.   
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Table 5.  Gene pairs produced from Biofilter data sources by platform. 

Data Source Illm1M Affy60 

PFAM 14911 12837 
DIP 747 638 
GO 6129 5359 

KEGG 4058 3543 
Reactome 1799 1610 

Netpath 3704 3246 

 

 

Table 6.  Pair-wise overlap of all genes in disease-independent Biofilter data sources.  The data source listed on 

each row contains genes that overlap the data source listed on each column.  Cell values indicate the proportion of 

the genes in the column source that are represented in the row source. 

 PFAM DIP GO KEGG Reactome Netpath 

PFAM 1.00 0.95 0.92 0.95 0.95 0.92 
DIP 0.05 1.00 0.09 0.08 0.15 0.12 
GO 0.37 0.73 1.00 0.63 0.64 0.56 

KEGG 0.01 0.02 0.01 1.00 0.02 0.02 
Reactome 0.12 0.36 0.19 0.25 1.00 0.21 
Netpath 0.22 0.6 0.34 0.41 0.41 1.00 

         

 

Performing an exhaustive analysis of all possible two-SNP models within genes represented by 

these two platforms would result in 1.22e11 models for the Illumina 1M and 6.26e10 models for the 

Affymetrix 1M.  By reducing the interaction search space to only models with established biological 

plausibility via the disease-independent data sources, only 2.23e9 (Illm1M) and 1.2e9 (Affy60) model 

evaluations are required.  Applying a Bonferroni correction to the exhaustive approach would require a 

model fit p-value of 4.10e-13 (Illm1M) and 7.98e-13 (Affy60) to be statistically significant.  In contrast, 

using the knowledge-based approach, a Bonferroni correction of 2.25e-11 (Illm1M) or 4.16e-11 (Affy60) is 

required.  In this manner, reducing the search space not only improves computation time, but also 

reduces the statistical burden of conducting biologically non-relevant statistical tests.  Further model 

restriction (such as using models with an implication index > 1) would further reduce the Bonferroni 

adjusted significance threshold.   
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Table 7.  Disease-independent gene pairs and model counts by implication index. 

Implication 
Index 

Illm1M Gene 
Pairs 

Illm1M Two- 
SNP Models 

Affy60 Gene 
Pairs 

Affy60 Two-SNP 
Models 

1 4,679,363 2,174,328,700 3,505,773 1,162,090,222 

2 87,163 44,960,600 67,341 36,825,703 

3 8,065 6,425,788 6,094 4,102,173 

4 715 397,966 546 171,075 

5 45 11,033 40 4,122 

6 1 569 1 757 

Total 4,775,352 2,226,124,656 3,579,795 1,203,194,052 

  

 

Implication index in a GWA study of multiple sclerosis 

To investigate the benefits of the Biofilter method, we applied it to a genome-wide association 

study of multiple sclerosis (see Chapter IV for full details and results).  In addition to the six disease-

independent data sources outlined previously, we included disease-dependent sources – linkage regions, 

prior association studies, candidate pathways, and gene expression studies (see Chapter IV).  Genotype 

data were collected on 931 MS affected trios using an Affymetrix Mapping 500K SNP Chip, with 334,923 

SNPs passing quality control thresholds (see Chapter IV).  Roughly twenty million two-SNP models were 

constructed from 334,923 SNPs, and evaluated using conditional logistic regression in 931 case/pseudo-

control pairs generated from the transmitted and untransmitted alleles for each trio.  The model 

contained a term for the SNP from gene 1, a term for the SNP from gene 2, and an interaction term (SNP 1 

X SNP 2).   

Two statistics were computed for each model evaluated in the data: a model fit p-value and an 

interaction term p-value.  The model fit p-value describes how well the statistical model fits or explains 

the case/pseudo-control data, and the interaction term p-value describes the decline in model fit when 

the interaction term is removed from the model.  Because each of the twenty million models has a 

corresponding implication index, we examined the relationship between the number of data sources 

supporting a model and the model statistics.  



73 
 

Figure 21 shows the proportion of models with significant model fit statistics (p < 0.05) by 

relative implication index, displayed by model type.  Relative implication index only implies that there is a 

baseline number of data sources required for some model types, for example a hybrid two gene model 

has a minimum of three supporting data sources and thus an implication index of three.   

 

 

 

Figure 21.  Proportion of significant model fit statistics by relative implication index.  The x-axis indicates the 
relative number of knowledge sources supporting the statistical model, and the y-axis indicates the proportion of 
two-SNP models significant (p < 0.05) for each model type. 
 
 

For disease-independent and hybrid model types, the proportion of significant model fit statistics 

is, in general, greater for when more knowledge sources support a given model.  Disease-dependent 

models do not show this trend, indicating that using disease-gene relationships alone is not as beneficial 

for discovering multi-SNP models. 
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Figure 22 illustrates a similar effect for interaction term significance.  The hybrid model types in 

general show increased interaction term significance with more supporting knowledge sources.  This 

effect is not nearly as pronounced in the disease-dependent or disease-independent models. 

To formalize this concept, we conducted a logistic regression analysis to assess the relationship 

between the relative implication index and the significance of model statistics.  The outcome of the 

regression model was a binary significance indicator (0 if p > 0.05, 1 if p <= 0.05) and the relative 

implication index was used as the dependent variable.  Results from the regression analysis are shown in 

table 8.  The regression results demonstrate significant relationships (p < 0.05) between the relative 

implication index and the significance of model fit and interaction term statistics for all model types.  

Odds ratios were calculated to determine the direction of the effect -- and odds ratio greater than 1 

indicates that increasing the number of supporting knowledge sources also increases the probability of a 

statistic being significant, while an odds ratio less than 1 indicates a decreasing probability.  The only 

consistent effect is from the disease-independent models, where a higher implication index increases the 

odds of a significant model fit, a significant interaction term, and both significant model fit and 

interaction terms.  The odds of model significance by implication index and model type are shown in 

table 9.  These regression results are descriptive statistics for this dataset only, and may not generalize to 

other datasets or phenotypes.  In this GWA study, however, they indicate that disease-dependent 

knowledge is not as useful as disease-independent knowledge for finding significant interactions. 
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Figure 22.  Proportion of significant interaction term statistics by relative implication index.  The x-axis indicates 
the relative number of knowledge sources supporting the statistical model, and the y-axis indicates the proportion of 
two-SNP models with significant interaction terms by likelihood ratio test (p < 0.05) for each model type. 
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Table 8.  Logistic regression of implication index on model statistics. 

 
Interaction Term  Model Fit  Both 

 
p-value OR  p-value OR  p-value OR  

Disease Dependent 0.008  0.986  0 0.962  0  0.9227 

Disease Independent 0.003  1.018  0 1.039  0.027  1.014  

Hybrid One 0 1.032  0 0.887  0.137  1.016  

Hybrid Two 0 1.012  0 1.024  0.098  0.995  
 

 

Table 9.  Odds of significance by implication index.  Blue shaded cells indicate an extrapolated value.  

Implication 

Disease 

Dependent 

Disease 

Independent Hybrid One Hybrid Two 

Odds of Model Fit Significant (p < 0.05) 

1 0.96 1.04 0.89 1.02 

2 0.93 1.08 0.79 1.05 

3 0.89 1.12 0.70 1.07 

4 0.86 1.17 0.62 1.10 

5 0.82 1.21 0.55 1.13 

6 0.79 1.26 0.49 1.15 

7 0.76 1.31 0.43 1.18 

8 0.73 1.36 0.38 1.21 

9 0.71 1.41 0.34 1.24 

10 0.68 1.47 0.30 1.27 

Odds of Interaction Term Significant (p < 0.05) 

1 0.99 1.02 1.03 1.01 

2 0.97 1.04 1.07 1.02 

3 0.96 1.05 1.10 1.04 

4 0.95 1.07 1.13 1.05 

5 0.93 1.09 1.17 1.06 

6 0.92 1.11 1.21 1.07 

7 0.91 1.13 1.25 1.09 

8 0.89 1.15 1.29 1.10 

9 0.88 1.17 1.33 1.11 

10 0.87 1.20 1.37 1.13 

Odds of Model Fit and Interaction Term Significant (p < 0.05) 

1 0.92 1.01 1.02 1.00 

2 0.85 1.03 1.03 0.99 

3 0.79 1.04 1.05 0.99 

4 0.72 1.06 1.07 0.98 

5 0.67 1.07 1.08 0.98 

6 0.62 1.09 1.10 0.97 

7 0.57 1.10 1.12 0.97 

8 0.53 1.12 1.14 0.96 

9 0.48 1.13 1.15 0.96 

10 0.45 1.15 1.17 0.95 
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Conclusions 

When examining epistasis in genome-wide association studies, there are several variable 

selection strategies.  Exhaustive evaluation of all multi-SNP models is generally computationally 

impractical.  Exploring epistasis within a set of SNPs with detectable main effects may prevent the 

discovery of complex genetic models where trait variance is explained largely by the interaction of SNPs.  

Using biological knowledge to perform SNP selection provides two key benefits simultaneously: it 

reduces the multi-SNP model search space, and it provides a biologically plausible foundation for the 

models to be evaluated.  Also, in common practice biological information is applied post-analysis to 

identify biologically compelling or relevant findings, and these results may even be exclusively selected 

for follow-up.  Applying this knowledge pre-analysis prevents the excess computation and statistical 

interpretation of results that are not immediately relevant.  As such, we developed the Biofilter to 

systematically reduce model search space based on multiple sources of structured biological knowledge.   

We mapped the disease-independent models generated by the Biofilter to two GWA genotyping 

platforms, the Affymetrix 1M and the Illumina 1M.  The final evaluated model search space was 0.241% 

of the exhaustive model space for Affy60 and 0.40% of the exhaustive model space for Illm1M when 

requiring at least one source of structured biological knowledge connecting the two genes in a two-SNP 

model, with further reductions possible by adjusting the number of required knowledge sources 

implicating the model.        

The Biofilter method of variable selection can be implemented with a variety of analysis 

techniques, including logistic regression, classification and regression trees, and basic categorical 

statistics, among many others.  To this end, the Biofilter is being developed as a knowledge-based filter 

for the PLATO analysis framework (PLATO REF?).  Using PLATO, the collection of multi-SNP models 

generated by the Biofilter can be passed seamlessly to several other filters, including quality control 

checks for genotyping, analysis filters, and other knowledge-based processing and annotation tools.  

Results or other properties of each multi-SNP model are then stored, allowing retrieval of results with 

complete annotation of the SNPs, genes, gene grouping information, and in some cases, PubMed 
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references to the original articles implicating the model.  The end result of a Biofilter style PLATO 

analysis is a set of biologically plausible, statistically relevant multi-SNP genetic models.  Other modular 

whole-genome analysis platforms have been proposed as well (Galaxy ref - 16169926, Bioconductor ref -- 

Bioinformatics and Computational Biology Solutions Using R and Bioconductor -- Series: Statistics for 

Biology and Health -- Gentleman, R. ;  Carey, V. ;  Huber, W. ;  Irizarry, R. ;  Dudoit, S. (Eds.) -- 2005, XIX, 

473 p. 128 illus. in color., Hardcover)      

Some approaches may be adapted to incorporate the implication index into the analysis plan.  

Prioritized subset analysis, for example, partitions statistical results based on prior biological knowledge.  

The false discovery rate (FDR) for the “prioritized subset” is estimated separately, improving power 

when the prior knowledge is accurate (Li et al., 2008).  Applying this strategy to subsets defined by the 

implication index could improve statistical power via p-value correction.  Ranking models based on the 

number of supporting data sources may introduce unknown literature-based biases.  Some data sources 

may have inter-dependencies, where one source was referenced in the creation of another.  The 

breakdown of gene overlap for the 6 disease-independent data sources shows the diversity of gene-pairs 

represented, though notably PFAM contains nearly all of the gene-pairs established by the other sources.  

This is likely because PFAM contains the largest number of genes.  When using disease-dependent data 

sources, there are certainly many factors that influence the inclusion and promotion of specific genes in 

relation to a phenotype, such as reporting bias.     

Overall, the Biofilter provides a systematic way to assess the level of knowledge-based support 

for a given genetic model, provide a ranked list of all possible knowledge-based models, and to 

statistically test each of these hypotheses in genome-wide association data.   
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CHAPTER IV 
 

A KNOWLEDGE-DRIVEN GENOME-WIDE MULTI-LOCUS ANALYSIS REVEALS 
A POTENTIAL ROLE FOR INOSITOL-BASED SIGNALING IN MULTIPLE 

SCLEROSIS 

 

Introduction 

 

Genetic epidemiology of multiple sclerosis 

Multiple sclerosis (MS) is a complex, presumably autoimmune disorder characterized by 

demyelination and neurodegeneration within the central nervous system.   Demyelination within 

multiple regions of the brain and spinal cord results in the formation of hardened scar tissues, which over 

time leads to neurodegeneration as the sclerosis impairs salutatory conduction of signals along axons 

causing reduced nerve function.  MS has several characteristics in common with the larger class of 

demyelinating diseases, including relative high frequency, tendency to strike young adults, and diversity 

of disease manifestations (Oksenberg & Barcellos, 2005).  The prevalence of MS is approximately 1 in 1000  

in the US population (Anderson et al., 1992), and while the life expectancy of MS patients is not greatly 

decreased, the reduced quality of life and associated health care costs incur enormous personal burdens.   

The etiology of MS is not well understood, but the role of both genetic and environmental factors 

has been established by multiple studies.  Twin studies show concordance rates of 25-30% among 

monozygotic twins compared to 2-5% in dizygotic twins with MS (Sadovnick & Ebers, 1995).  

Furthermore, familial aggregation studies have estimated an increased relative risk (λ) of 20-40 for full 

siblings, 7-13 for half-siblings, and 5.5 for the offspring of an MS affected parent (Kenealy, Pericak-Vance, 

& Haines, 2003; Mumford et al., 1994; Robertson et al., 1996; Sadovnick & Ebers, 1995).  Together, these 

studies suggest a complex genetic component to the disease.   

The largest known genetic risk factor for MS is the HLA-DRB1*1501 allele in the MHC region of 

chromosome 6.  Individuals with this allele have twice the risk of developing MS versus the general 

population, and while this variant explains a significant proportion of genetic risk, it accounts for less 
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than 50% of the total genetic basis of MS (Haines et al., 1998).  Linkage to the MHC region was identified 

and confirmed in several family studies (Chataway et al., 1998; Ebers, 1996; Oksenberg et al., 2001; Oturai 

et al., 1999), but other regions of increased linkage have failed to consistently replicate across studies.   

In addition to HLA-DRB1, a single nucleotide polymorphism (SNP) in the interleukin-7 receptor 

α chain (IL-7R) was associated with MS in four independent datasets (Gregory et al., 2007; Lundmark et 

al., 2007; The International Multiple Sclerosis Genetics Consortium, 2007).  The SNP, rs6897932, was 

shown to functionally influence the ratio of soluble and membrane-bound isoforms of the IL-7R protein, 

likely due to altered splicing (Gregory et al., 2007).     

Concurrently, the International Multiple Sclerosis Genetics Consortium (IMSGC) conducted a 

genome-wide association study using 931 affected family trios (The International Multiple Sclerosis 

Genetics Consortium, 2007).  This study confirmed the IL-7R association, and also identified the 

interleukin-2 receptor α chain (IL-2R) as associated with MS.  These findings were confirmed in a large 

replication set.  The IL-7R and IL-2R findings have very small effect sizes, with odds ratios of 1.18 for IL-

7R and 1.25 for IL-2R.  Together, the IL-7R and IL-2R SNPs explain less than 0.2% of the variance in MS 

risk (The International Multiple Sclerosis Genetics Consortium, 2007), and including the HLA-DRB1 

allele, roughly half of the genetic component at play in MS susceptibility remains undiscovered.   

There are several ways to account for the remaining genetic effect that is unexplained.  One 

possibility is that there are many small independent effects that influence MS risk -- small effects that are 

difficult to detect without very large sample sizes.  Another possibility is that there are heritable factors 

that are not detected using the linkage or association studies that have been applied to MS to date.  These 

factors could be copy number variants (CNVs) or other structural variations, methylation patterns, or 

other epigenetic components.  Environmental factors may combine with genetic factors to influence risk, 

with a particular genetic architecture inducing an autoimmune response after a common infection or 

other external stimulus.  As discussed in Chapter I, another possibility is epistasis, where combinations of 

genetic factors influence disease risk beyond their independent additive effects.  In this case, the genetic 
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effect would remain largely hidden unless combinations of markers are examined together.  Of these 

possibilities, we can examine epistasis using available data.   

 

Epistasis in multiple sclerosis 

Epistasis may play an important role in MS.  Both IL-7R and IL-2R mediate downstream immune 

response pathways.  These pathways constitute complex systems with interdependencies that provide 

the evolutionary opportunity for unlinked alleles to co-segregate in a population.  Several examples of 

epistasis in complex disease can be found in Chapter I, but notably, epistasis has been functionally 

demonstrated in multiple sclerosis as an interaction among alleles of the MHC region (Gregersen et al., 

2006).  These alleles fall on a common haplotype background, and functionally interact to alter T-cell 

response, reducing the severity of the disease.  It is proposed that these alleles remain in linkage 

disequilibrium due to positive selection.   

Evidence suggesting epistasis was also presented in two studies using Multifactor 

Dimensionality Reduction on a set of inflammatory candidate genes.  In a collection of 442 African-

American MS cases and 293 controls, significant interactions were found between interleukin receptors 4 

and 5 (IL4-R, IL5-RA) and CD14, indicating a potential role for dendritic cell antigen presentation in MS 

etiology (Brassat et al., 2006).  Also, in a study of multiple family-based and case-control data sets, several 

epistatic models are proposed, including adrenergic beta-2 receptor (ADRB2), nitric oxide synthase 2A 

(NOS2A), nuclear factor kappa-B (NFΚB), CD14, complement component 5 (C5), and uterglobulin (UGB) 

(Motsinger et al., 2007).     

Examining epistasis in genome-wide association studies has noted challenges (Moore & Ritchie, 

2004).  There are roughly 125 billion possible two-SNP models in a set of 500,000 SNPs.  Exhaustively 

analyzing all of these possible combinations is computationally costly, and dramatically amplifies the 

problem of multiple testing.  One approach to reducing the number of interaction tests is to select a set of 

most significant results from a single-SNP analysis and exhaustively evaluate interactions in that set.   
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Another approach to reducing the number of interaction tests is to generate multi-SNP models 

based on prior biological knowledge, for example testing for interactions only between SNPs that occur in 

the same biochemical pathway (Carlson et al., 2004).  The drawback of this approach is that it is 

dependent on the current, incomplete state of biological knowledge, and thus will not discover novel 

interactions between SNPs that may influence disease risk.  However, the benefits of this approach are 

that it takes into account the vast information known about the structure of biological systems, effectively 

reducing the set of interactions that are analyzed to those relating to a common functional endpoint (see 

Chapter III).   Using biological knowledge also provides a mechanistic rationale for why two SNPs might 

interact, or perhaps how they are related to the disease being studied.  This approach is a biased search, 

in that it would not discover the novel interaction of genes, but instead would discover novel 

relationships between the phenotype and functional components containing those interacting genes.  As 

such, this knowledge-based analysis examines the influence that a known set of system-level components 

might have on disease risk.     

Here we present a knowledge-driven multi-locus analysis of MS susceptibility using the 931 

affected trios from the 2007 IMSGC genome-wide association study (The International Multiple Sclerosis 

Genetics Consortium, 2007).  Each individual in the study was genotyped using the Affymetrix Mapping 

500K SNP chip.  334,923 SNPs passed quality control procedures outlined in (The International Multiple 

Sclerosis Genetics Consortium, 2007).  These 334,923 SNPs from the study were assigned to 13,425 genes 

using patterns of linkage disequilibrium from the International Hapmap Project (International HapMap 

Consortium, 2005) by applying the LD-Spline approach outlined in Chapter II (142,814 SNPs were used in 

the mapping).  Using a collection of data sources that suggest putative gene-gene interaction or prior 

disease gene implication, we generated a set of multi-SNP models and evaluated them using conditional 

logistic regression.  Sources of evidence for potential gene-gene interaction are KEGG (Kanehisa et al., 

2006; Kanehisa et al., 2008; Kanehisa & Goto, 2000), Reactome (Vastrik et al., 2007), DIP (Xenarios et al., 

2002; Xenarios et al., 2000; Xenarios et al., 2001), PFAM (Finn et al., 2006; Finn et al., 2008), GO (Ashburner 

et al., 2000), and Netpath (Pandey & Institute of Bioinformatics, 2008).  Sources of evidence for prior 
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disease gene implication are GAD(Becker et al., 2004), previous linkage screens by the IMSGC (Sawcer et 

al., 2005) and Genetic Analysis of Multiple sclerosis in EuropeanS (GAMES & Transatlantic Multiple 

Sclerosis Genetics Cooperative, 2003), three studies of MS gene expression (Bomprezzi et al., 2003; 

Comabella & Martin, 2007; Sarkijarvi et al., 2006), a hand-curated set of IL-7 pathway genes (Rebecca 

Zuvich, personal communication), and other literature-based candidates (Frohman et al., 2005; Lock et al., 

2002; Saarela et al., 2006; Sinclair et al., 2007; Swanberg et al., 2005).  By incorporating these sources of 

prior information into our analysis, we have identified two replicating multi-locus associations to MS 

within biological pathways.   

 

Materials and Methods 

 

Samples 

The data used for the screening analysis was a collection of 931 family trios, consisting of an 

affected child and both parents (IMSGC). There were 478 samples ascertained from the US (356 female, 

122 male, 2.92:1) and 453 from the UK (339 female, 114 male, 2.97:1).  US and UK based samples were 

homogenous with respect to age at analysis (US mean 39.0, range 17-57 ;  UK mean 38.2, range 19-59), and 

age at disease onset (US mean 29.0, range 11-51 ;  UK mean 26.5, range 10-48).   

After review of clinical data, the diagnosis of MS was made according to the McDonald criteria 

(McDonald et al., 2001; Polman et al., 2005).  Some clinical heterogeneity was present between US and UK 

samples with respect to disease course, with differences in frequency of relapsing remitting (US 374, 

78.2% ;  UK 269, 59.4%) and secondary progressive (US 77, 16.1% ;  UK 152, 33.6%) clinical subtypes.  The 

small number of primary progressive cases had similar frequencies (US 25, 5.2% ;  UK 32, 7.2%).   

A set of population-based controls from the 1958 UK birth cohort (1485 individuals) and the UK 

blood service (1465 individuals) were generously provided by the Wellcome Trust Case Control 

Consortium (WTCCC).  Female to male ratio was roughly 1:1 (1503 female, 1447 male), and age was 

reported by range, with over 50% of controls between 40-49.     
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The replication sample was a collection of 808 cases and 1720 controls ascertained at Brigham and 

Women’s Hospital, Boston (BWH).  Female to male ratio was similar to the screening sample (595 female, 

213 male, 2.8:1).  Mean age at disease onset was also comparable (mean 33, range 8-59).   

IMSGC and WTCCC samples were genotyped using the Affymetrix GeneChip Human Mapping 

500K Array Set, and BWH samples were genotyped using the Affymetrix Genome-Wide Human SNP 

Array 6.0.  Extensive quality control procedures were applied to IMSGC and BWH samples to assess 

genotyping efficiency, monomorphic SNPs, multi-hit SNPs, Mendelian errors (for trios), sex assignment 

discrepancies, Hardy-Weinberg Equilibrium, population stratification, low minor allele frequency, and 

plate effects.  In the IMSGC sample, genotyping was validated using Sequenom iPLEX™ and iPLEX 

Gold™ MassARRAY®11 genotyping platform.  For the IMSGC analysis, 334,923 SNP markers were used.  

From the BWH genome-wide panel, 453 SNPs were used for analysis.  Futher details of IMSGC sample 

and SNP quality assessment is available in supplemental data of (The International Multiple Sclerosis 

Genetics Consortium, 2007).   

 

Linkage Disequilibrium Mapping of Markers to Genes 

Pair-wise linkage disequilibrium (LD) statistics computed for over two million SNPs by the 

International HapMap Project (Frazer et al., 2007; International HapMap Consortium, 2005) (posted June, 

2006) were used to establish the Caucasian-specific haplotype block boundary for each of the 334,923 

SNPs in the IMSGC data set.  Using the LD-Spline procedure described in Chapter II, we defined the 

boundaries of the haplotype block represented by each IMSGC SNP.  Because the IMSGC SNPs are a 

subset of all known genomic variants, using HapMap LD statistics in this way provides the larger 

genomic region (which may harbor susceptibility variants) represented by each IMSGC SNP.   5,137 

markers in the IMSGC data set were not represented in the HapMap LD data, and the nearest HapMap 

marker was used as a surrogate to assess haplotype block boundaries.  Marker-gene mappings were 

generated if a haplotype block that overlaps with any portion of a gene as described by the Ensembl 
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database (Flicek et al., 2008).  IMSGC markers capture 14,236 genes using LD, compared to 13,425 using 

the markers without accounting for LD.   

 

Incorporating Biological Knowledge Sources 

We used two types of biological knowledge sources for this analysis: sources that contain 

putative gene relationships to disease (disease dependent sources), and sources that contain putative 

gene-gene relationships (disease independent sources).   

Linkage studies, prior association studies, candidate pathways, and differential gene expression 

studies all serve to implicate sets of genes as being important for multiple sclerosis susceptibility.  The 

multi-point LOD scores for 5,282 markers used in a study of 730 multiplex families (Sawcer et al., 2005) 

were used to identify genes under linkage peaks of 1.8 or greater (139 genes) and between 1.5 and 1.8 (502 

genes).  Three candidate regions (17q21, 19q13, and 22q13) identified by multiple linkage studies were 

also included (2021 genes) (GAMES & Transatlantic Multiple Sclerosis Genetics Cooperative, 2003; 

Pericak-Vance et al., 2001).  The Genetic Association Database (GAD) was used to identify genes 

previously associated to multiple sclerosis (183 genes), and to the larger class of immune diseases (776 

genes) (Becker et al., 2004).  Three studies highlighting differences in gene expression between cases and 

controls (50 genes) (Bomprezzi et al., 2003), and between discordant monozygotic twins (35 genes) 

(Sarkijarvi et al., 2006) were used, along with common expression differences in MS tissues and 

experimental allergic encephalomyelitis (EAE) mouse models (47 genes) (Comabella & Martin, 2007).   

We also included a list of 73 candidate genes based on the IL-7 pathway (Rebecca Zuvich, personal 

communication) and 19 genes implicated by population-based and functional studies (Frohman et al., 

2005; Lock et al., 2002; Saarela et al., 2006; Sinclair et al., 2007; Swanberg et al., 2005).   

Biochemical and regulatory pathways, protein families and ontologies, and protein interaction 

networks are all sources of putative gene-gene relationships, as described in Chapter III.  For this 

application, we used the Kyoto Encyclopedia of Genes and Genomes (KEGG) (4238 genes) (Kanehisa et 

al., 2006; Kanehisa et al., 2008; Kanehisa & Goto, 2000), Reactome (1931 genes) (Joshi-Tope et al., 2005; 
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Vastrik et al., 2007), and Netpath (3855 genes) (Pandey & Institute of Bioinformatics, 2008) as sources of 

pathway information.  The Database of Interacting Proteins (DIP) (791 genes) (Xenarios et al., 2002; 

Xenarios et al., 2000; Xenarios et al., 2001) was used as a source of protein interactions.  The Protein 

Families Database (PFAM) (15969 genes) (Finn et al., 2006; Finn et al., 2008) was used to group genes by 

protein sequence and functional similarity.  The Gene Ontology (GO) (6391 genes) (Ashburner et al., 

2000) was used to group genes by ontological categories related to cellular components, biological 

processes, and molecular functions.   

Each data source contained a form of gene or protein identifier (i.e. Entrezgene ID, Unigene ID, 

Uniprot ID, etc) that was translated to an Ensembl gene ID using the Ensembl database.  Using both 

putative gene-disease and putative gene-gene relationship sources, we used the procedure described in 

Chapter III to generate disease-independent, disease-dependent, hybrid one disease-dependent gene, and 

hybrid two disease-dependent gene models.  Overlap between each model type is removed, such that 

there are no two gene hybrid models in the disease-independent set.   

 

Statistical Analysis     

Multi-SNP models are evaluated using case/pseudo-control pairs in a conditional logistic 

regression analysis as described in (Cordell, Barratt, & Clayton, 2004; Siegmund et al., 2000).  The 

conditional regression algorithm was adapted from a Fortran routine (Krailo & Pike, 1984), implemented 

in C++, and integrated into the PLATO computational framework.  Implemented code was validated 

using routines available in SAS 9.1.3.  Each multi-SNP model contains main effect terms for the two SNPs 

and an interaction term for the joint effect of the two SNPs.  SNP genotypes were encoded in an additive 

manner, assuming a multiplicative interaction model as in (Marchini, Donnelly, & Cardon, 2005).  Model 

significance was assigned by a likelihood ratio test of the fitted model to a null model (Hosmer & 

Lemeshow, 2000).  Significance of the interaction term was assessed by a likelihood ratio test of the fitted 

model with an interaction term to the fitted model with no interaction term (main effect terms of the two 

SNPs only).   
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Figure 23.  Analysis Plan Overview 
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Results 

 

Screening analysis of genome-wide association data 

Figure 23 shows an outline of the analysis.  To identify statistically interacting genetic factors that 

influence multiple sclerosis susceptibility, we evaluated 334,923 quality control positive genotypes from 

931 affected MS trios collected by the International Multiple Sclerosis Genetics Consortium (IMSGC).  

Using this panel of genotypes, we constructed 20,796,485 two-SNP models using prior biological 

information.  These models were analyzed using conditional logistic regression on case/pseudo-control 

pairs generated from the transmitted and non-transmitted alleles of the original affected trios (Cordell, 

Barratt, & Clayton, 2004; Siegmund et al., 2000).  The conditional logistic regression model contained 

three terms ;  a term capturing the additive main effect of each of the two SNPs included in the model, 

and a multiplicative interaction term.  This conditional analysis does not include an intercept term -- each 

model is assessed within a case/pseudo-control stratum and a stratum specific intercept term 

(representing the baseline risk of MS within the trio) is generated but conditioned out of the analysis.  

The initial screening phase revealed 5,463 significant models (5,965 SNPs) from the conditional 

logistic regression analysis of biologically derived two-SNP models using case/pseudo-control pairs (p < 

0.001 for model fit and interaction significance using likelihood ratio tests), indicating an effect from 

simultaneous over-transmission of two alleles to affected offspring.  These models were selected for 

inclusion in the second-stage analysis.  Figure 24 (IMSGC) shows these significant results  This plot is an 

interpolated surface with –log10 p-values of two-SNP model fits on the z-axis, plotted with the physical 

genomic position of SNP 1 on the x-axis and the physical genomic position of SNP 2 on the y-axis.  Peaks 

on this surface are also color coded, with each color shade indicating an additional decreasing order of 

magnitude of the p-value.   

As the MHC region is a strong genetic component of MS, we examined the contribution of the 

MHC to these significant models.  Fifty-eight significant models contained two SNPs from chromosome 

6, and of these there were 24 models where both markers were in the MHC region, and 5 models where 
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only one marker was in the MHC region.   420 models contained one SNP from chromosome 6, and of 

these, 141 models contained a SNP in the MHC region and 117 models with only one SNP in the MHC 

region.    236 models have significant model fits and inconsistent directions across studies.  In short, a 

small number of models contained SNPs in the MHC region, indicating that with respect to this analysis, 

the MHC is a largely independent effect. 

To maximize information from the screening phase, we compared the probands from the 931 

family trios with control data from 2950 individuals from the Wellcome Trust Case Control Consortium 

(WTCCC).  A drawback of the case/pseudocontrol multi-locus analysis is that two SNPs on the same 

chromosome may be joinly over-transmitted to affected offspring due to chromosomal linkage rather 

than the joint effect of those SNPs on the phenotype.  As a result, the false positive rate of the interaction 

statistic from this analysis may be inflated.  A comparison between the probands and unrelated controls 

using logistic regression will reduce false positives due to this over-transmission in the family-based 

analysis.  Using the proband/control analysis, we reduced the 5463 models to 326 models (p < 0.001 for 

model fit and interaction significance) containing 469 SNPs.  An interpolated surface of –log10 p-values 

for the model fit statistics of these models is shown in figure 24 (WTCCC).   

 

Replication analysis 

For a separate study, the Affymetrix 6.0 platform was used to genotype 808 MS cases and 1720 

controls ascertained at Brigham and Women’s Hospital (BWH).  From this panel, we selected the 453 

QC+ SNPs included in the 326 significant models from the genome-wide analysis.  Twenty models were 

not evaluated due to one or more SNPs failing the QC procedures in the BWH sample.   

The results of the replication analysis are shown in figure 24 (BWH) as an interpolated surface of 

–log10 p-values, and the annotated results of both the screening and replication analyses are shown in 

table 10.  Twenty multi-locus models had significant models fits (p < 0.05) in the screen and replication 

sets.  Of these, two are particularly notable, as they have both a significant model fit and a significant 

interaction component (p < 0.05 for both).   
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Figure 24.  Overview of Knowledge-based Genome-wide Interaction Analysis.   

Model fit p-values are shown for screening (conditional logistic regression of 931 MS family trios (IMSGC), logistic 

regression of 931 MS affecteds and 2950 unaffecteds (WTCCC)), and replication (logistic regression of 808 MS 

affecteds and 1720 unaffecteds (BWH)) phases.   –log10 values for 5463 significant IMSGC models (top panel) and 306 

significant WTCCC models (bottom panel) were processed to create genomic interaction surfaces, where each point 

on the grid represents the interaction of two loci across the genome.   
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SNP rs528011 in the muscarinic cholinergic receptor 3 (CHRM3) gene located on chromosome 1 

interacts with SNP rs4677905 in the myosin-light-chain kinase (MYLK, EC:2.7.11.8)  gene located on 

chromosome 3 (replication model fit p = 0.0235, replication interaction test p = 0.0026).  This model was 

generated based on prior associations of each gene to an immune disease (via the GAD), and because the 

genes are related by functioning in the calcium signaling pathway (via KEGG).  CHRM3 has been 

previously associated to asthma and atopy (Donfack et al., 2003).  MYLK has also been previously 

associated to asthma(Flores et al., 2007; Gao et al., 2007).  CHRM3 and MYLK both function in the calcium 

signaling pathway(Berridge, Bootman, & Roderick, 2003) (KEGG pathway: ko04020) and the regulation of 

actin cytoskeleton pathway (KEGG pathway: ko04810). 

SNP rs4816129 in the phospholipase C beta 4 (PLCβ4) gene located on chromosome 20 interacts 

with SNP rs6516415 in the phospholipase C beta 1 (PLCβ1) gene located on chromosome 20 (replication 

model fit p = 0.0475, replication interaction test p = 0.0095).  PLCβ4 and PLCβ1 function in multiple KEGG 

pathways, including the calcium signaling pathway shown in figure 25 (KEGG pathway:ko04020), Wnt 

signaling (KEGG: ko04310), and inositol phosphate metabolism (KEGG:ko00562).  Also, PLCβ4 and PLCβ1 

are both members of the phosphatidylinositol-specific phospolipase C family, and contain the PI-PLC-X 

and PI-PLC-Y domains, via PFAM (Meldrum, Parker, & Carozzi, 1991). 

Seven other models had significant model fit in the replication sample (p < 0.05) but a non-

significant interaction component by likelihood ratio test.  Notably, two of these models contain genes 

that also function in the actin cytoskeletal regulation, shown in figure 26.  ACTN1 located on chromosome 

14 and MYH9 located on chromosome 22 (replication model fit p=0.0087, replication interaction 

significance p=0.1066) functions in the formation of actin stress fibers and cytoskeletal contraction (via 

KEGG).  CYFIP1 located on chromosome 15 and SCIN located on chromosome 7 (replication model fit 

p=0.0041, replication interaction test p = 0.3235) function in lamellepodia formation (via KEGG). 
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Figure 25. The calcium signaling pathway (adapted from KEGG).  Genes represented by two-SNP models with significant model fit and interaction term 

statistics are outlined in red (CHRM3 is a GPCR).  Previously implicated gene PRKCA is outlined in yellow.   
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Figure 26. The regulation of actin cytoskeleton pathway (adapted from KEGG).   Genes represented by two-SNP models with significant model fit statistics only 

are outlined in red.  (CYFIP1 is represented as PIR121, and SCIN is represented as GSN)
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Also of note, the thyroid stimulating hormone receptor (TSHR) on chromosome 14 and the andronergic 

receptor A1A (ADRA1A) on chromosome 8 (replication model fit p=0.270, replication interaction test 

p=0.9820) are both G-protein coupled receptors with interesting functional implications.  ADRA1A is one 

of several receptors that can activate the calcium signaling pathway by binding epinephrine.  TSHR is a 

hormone receptor that functions in immune signaling pathways, and may have common gene regulatory 

factors with the major histocompatibility complex(Ohmori et al., 1996).  Polymorphisms in TSHR have 

been previously associated to Grave’s disease(Hiratani et al., 2005) and autoimmune thyroid 

disease(Akamizu et al., 2000).   

Another notable model contains estrogen receptor 1 (ESR1) on chromosome 6 and the 

interleukin-2 receptor alpha chain (ILR2A) on chromosome 7 (replication model fit p=0.0041, interaction 

model fit p=0.2148).  These two genes have been previously implicated in multiple sclerosis (via GAD).  

One study indicates ESR1 has significant associations in the Japanese population(Niino et al., 2000), and a 

second study finds the effect of ESR1 is modulated by HLA status(Mattila et al., 2001).   

 

 

Pathway enrichment 

Two-hundred and twenty-two distinct gene pairs were evaluated in the replication set (using 306 

two-SNP models).  Of these, there were 9 gene pairs associated with cytoskeletal regulation (via KEGG), 

11 gene pairs associated to calcium signaling (via KEGG), and 19 gene pairs associated with the union of 

these pathways.  Three of the 9 cytoskeletal regulation gene pairs were statistically significant, 2 of the 11 

calcium signaling gene pairs were statistically significant, and 4 of the union pathway gene pairs were 

statistically significant at p < 0.05.  As such, the “regulation of actin cytoskeleton” pathway was 

significantly enriched (p = 0.005, exact test), and the union of the calcium signaling and regulation of actin 

cytoskeleton pathways was significantly enriched (p = 0.006).  The calcium signaling pathway itself was 

marginally enriched (p = 0.081, exact test).   
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Table 10.  Summary of results from the GWA study and replication studies 

 

Locus 1 

 

Locus 2 

 

IMSGC Proband/Pseudo-

Control 

IMSGC Proband/WTCCC 

Control 

BWH Case/BWH 

Control 

Number Chr Gene Source SNP  Chr Gene Source SNP Pair source Model Fit Interaction Model Fit Interaction Model Fit Interaction 

1 1 TNFRSF1B E,M,I rs235219 22 APOBEC3G L rs8177832 N 1.36E-05 1.23E-04 1.43E-04 3.55E-04 0.0031 0.5273 

1 15 CYFIP1 

 

rs8025779 7 SCIN 

 

rs2240571 G,K 3.75E-04 1.51E-04 1.50E-04 8.13E-05 0.0041 0.3235 

2 6 ESR1 M,I,C rs9340817 10 IL2RA/PFKB3 I rs12722489 N 6.81E-05 8.45E-04 3.11E-06 8.87E-04 0.0046 0.2148 

2 14 ACTN1 

 

rs17106421 22 MYH9 

 

rs1009150 K,N 8.93E-04 6.38E-05 9.54E-05 6.90E-06 0.0087 0.1066 

2 10 PTPRE 

 

rs10829321 19 PTPRS 

 

rs7259497 P,G 1.07E-04 6.83E-04 4.85E-04 7.25E-05 0.0189 0.4735 

1 1 CHRM3 I rs528011 3 MYLK I rs4677905 K 5.57E-04 3.74E-05 4.75E-04 1.22E-04 0.0235 0.0026 

1 14 TSHR 

 

rs179250 8 ADRA1A 

 

rs4732652 P,K 8.26E-04 4.35E-04 2.04E-04 1.35E-04 0.0270 0.9820 

8 19 CARD8 I,L rs2910400 11 ZFP91-CNTF M,I,C rs11229555  6.42E-06 2.53E-07 1.71E-04 1.13E-05 0.0289 0.8937 

2 20 PLCB4 L rs4816129 20 PLCB1 L rs6516415 P,K 9.23E-04 8.50E-05 7.73E-04 8.91E-04 0.0475 0.0095 

4 19 SULT2A1 I,L rs2932766 11 ZFP91-CNTF M,I,C rs11229555  8.26E-05 4.19E-06 5.45E-04 4.49E-05 0.0756 0.8741 

2 10 COL17A1 I rs805693 11 ETS1 I rs7117768 N 2.10E-05 1.60E-06 5.60E-04 5.27E-05 0.0929 1.0000 

6 10 PRKG1 

 

rs1903996 3 PRKAR2A/DALRD3 

 

rs6446205 P,N 6.87E-04 7.96E-04 6.27E-04 1.70E-04 0.1135 0.0442 

9 1 GALNT2 

 

rs1967707 2 GALNT13 

 

rs11677858 P,K 1.90E-04 2.30E-04 6.54E-05 4.90E-04 0.1465 0.3837 

2 18 MBP M,I rs509620 20 CD40 M,I rs1569723  8.31E-04 2.72E-04 2.93E-06 2.02E-04 0.1583 0.2141 

2 5 C7 M rs1551090 5 PIK3R1 I rs2302976 N 6.22E-04 2.58E-04 1.67E-04 2.88E-05 0.2099 0.0398 

4 6 HA25_HUMAN M,I rs9272219 6 C6orf10/BTNL2 M,I rs12528797  1.77E-06 2.11E-05 7.59E-06 1.43E-04 0.2105 0.2499 

22 19 SYNGR4/GRIN2D L rs190672 22 CSF2RB I rs4821560 N 1.22E-04 7.06E-04 1.73E-05 4.16E-04 0.2143 0.2673 

2 12 FGD4 

 

rs11052069 21 TIAM1 

 

rs845960 P,R 8.83E-04 1.74E-04 1.67E-04 6.10E-04 0.2234 0.9938 

1 17 PRKCA M,L,C rs3803821 20 PAK7 L rs6118717 P,K 7.68E-04 4.02E-04 2.45E-04 4.06E-04 0.2290 0.6483 

4 1 PTPN7 

 

rs12735966 11 PAK1 

 

rs3015993 K,N 3.01E-04 3.98E-05 8.33E-04 3.41E-04 0.2638 0.5845 

4 1 LGR6 

 

rs12735966 11 PAK1 

 

rs3015993 K,N 3.01E-04 3.98E-05 8.33E-04 3.41E-04 0.2638 0.5845 

2 2 PLA2R1 

 

rs2667012 2 IL1RN E,M,I,C rs4251961 N 1.48E-04 7.56E-05 6.58E-04 8.37E-05 0.2742 0.0537 

2 5 GRIA1 L rs12515563 3 ITPR1 L rs6774037 K 9.29E-04 3.54E-04 3.27E-05 2.81E-04 0.3013 0.3101 

6 2 ALK 

 

rs6715185 9 ROR2/SPTLC1 

 

rs1569141 P,G 1.60E-04 9.87E-06 6.49E-04 4.82E-05 0.3013 0.8468 

1 2 NRXN1 

 

rs1895132 17 PECAM1 M,I,L rs1122800 K 9.19E-04 1.41E-04 4.44E-04 3.73E-05 0.3147 0.5164 

2 6 ESR1 M,I,C rs2207396 5 HBEGF L rs2237077 N 7.56E-04 5.39E-05 3.42E-04 1.02E-04 0.3299 0.1786 

1 19 PRKD2 

 

rs314662 2 ACVR1 

 

rs7595478 P,N 4.55E-04 3.97E-04 1.31E-04 1.80E-04 0.3615 0.1070 

1 22 IL2RB I,L rs3218295 12 NOS1 M,I rs6490121  5.78E-04 8.22E-04 9.85E-04 4.51E-04 0.3669 0.2129 

9 2 PDE1A 

 

rs1430154 14 OSGEP/NP/APEX1 

 

rs999692 K,N 2.11E-04 1.41E-05 6.99E-04 4.93E-05 0.3758 0.1891 

1 3 RARB 

 

rs1153589 20 HNF4A 

 

rs6031579 P,N 1.42E-04 4.78E-04 3.25E-04 3.91E-04 0.4626 0.5184 

2 5 MCC/TSSK1B 

 

rs10043783 17 PRKCA M,L,C rs9896549 P 1.18E-04 9.64E-05 3.10E-05 1.23E-06 0.4790 0.1656 

The GWA study was performed in 931 affected trios with multiple sclerosis diagnosed using the McDonald criteria and 2950 control individuals from the Wellcome Trust Case Control Consortium.  
The replication study was performed in 808 cases with multiple sclerosis and 1720 controls ascertained from Brigham and Women’s Hospital.  The selected 31 two-locus models had significant model 
fit and interaction likelihood ratio tests and had consistent direction of effects across both screening and replication phases.  They are ranked by replication model fit p-value (only BWH model fit p-
value < 0.5 shown).  Rows shaded gray indicate significant model fit in both screening phases (p < 0.001) and in the replication phase (at p < 0.05).  Models in boldface have significant model fit and 
interaction likelihood ratio tests in both screening phases (p < 0.001) and in the replication phase (at p < 0.05).  Number indicates the number of two-SNP models supporting the interaction of these two 
loci.  Gene data sources are coded: E, differential expression ;  M, prior MS association ;  I, prior immune-related disease association ;  L, linkage ;  C, selected candidate genes.  Gene pairing data 
sources are coded: P, PFAM ;  N, Netpath ;  K, KEGG ;  R, Reactome ;  G, GO.    
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Discussion 

We report on a knowledge-based two-locus analysis of a genome-wide association study 

of multiple sclerosis that examined biologically plausible combinations of variants in genes across 

the genome.  Using this analysis strategy, we identified several consistent and replicating two-

locus models that influence MS susceptibility.  Many of these models are functionally related to 

actin cytoskeletal regulation and the calcium signaling of multiple downstream events, both of 

which are mediated by inositol-based signaling molecules IP2 and IP3.   

The muscarinic acetylcholine receptor M3 (CHRM3) is a G-protein coupled receptor 

which binds its cognate ligand acetylcholine to activate phospholipase C (PLC), generating 

inositol 1,45-tripohsphate (IP3).  IP3 binds to the IP3-receptor to release Ca2+ ions from intracellular 

stores (Furuichi & Mikoshiba, 1995).  Calcium signaling triggers a wide variety of downstream 

events, but notably intracellular calcium levels have been experimentally shown to induce IL-2 

production (Mills et al., 1985).  CHRM3 statistically interacts with myosin light-chain kinase 

(MYLK), which is activated downstream of intra-cellular calcium release.  MYLK mediates 

myosin II motor activity responsible for actin cytoskelelon contraction, which plays an important 

role in many cellular functions, including cell spreading, motility, cell division, and focal 

adhesion.  Intracellular calcium levels may contribute to traumatically induced axonal injury by 

altering cytoskeletal structure and alignment, an subsequently axonal transport(Fitzpatrick, 

Maxwell, & Graham, 1998).  It is plausible, therefore, that the coinheritance of variations in 

CHRM3 and MYLK alter an acetylcholine-based response to neuronal injury, reducing the 

capacity to correct structural changes to the cell via cyctoskeleton regulation.   

PLCβ1 and PLCβ4 are two isozymes in the larger phospholipase-C family (Suh et al., 

2008).  PLC-beta hydrolyses phosphatidylinositol 4,5-bisphosphate (PIP2) to produce IP3 and 

diacylglycerol (DAG).  Notably, DAG activates various protein kinase C (PRC) isoforms, and 

specifically, alleles of the PRKCA gene were found to confer increased MS risk in Finnish and 

Canadian populations by fine-mapping after linkage analysis (Saarela et al., 2006).  This locus 
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may explain the recurrent linkage to 17q20-24 by multiple studies, and corroborates a potential 

role of this signaling pathway in MS etiology (GAMES & Transatlantic Multiple Sclerosis 

Genetics Cooperative, 2003; Sawcer et al., 2005).  PLCβ isoforms show tissue specific expression, 

and both PLCβ1 and PLCβ4 are expressed in the central nervous system, with PLCβ1 highly 

expressed in the cerebral cortex and hippocampus (Homma et al., 1989), and PLCβ4 expressed in 

the cerebellum and retina(Adamski, Timms, & Shieh, 1999).  Model systems also illustrate a role 

for both isoforms in proper conduction of nerve signals.  PLCβ1 null mice have recurrent seizure 

attacks that ultimately lead to death near three weeks of growth, indicating an essential role of 

PLCβ1 in inhibitory neuronal circuitry (Kim et al., 1997).  PLCβ4 null mice showed smaller 

cerebellum growth and motor defects likely due to impaired PLC-linked signal transduction 

(Kim et al., 1997).  It is certainly plausible that altered expression or function of these genes could 

increase the impact of MS lesions on nervous signal conduction or weaken essential repair 

mechanisms for cells of the central nervous system.   

Four genes in the replicating models directly impact PIP2 concentrations.  PLCβ1 and 

PLCβ4 phosphorylate PIP2 to produce IP3.  ACTN1 and SCIN are both regulated by PIP2.  This 

could indicate a role of intracellular PIP2 or IP3 concentrations in neuronal damage repair, signal 

transduction, or some other mechanism of MS disease etiology.   

 

Conclusions 

Our findings illustrate the utility of applying a knowledge-based approach to GWAS 

analysis and highlight the potential role of calcium signaled cytoskeletal response in the etiology 

of multiple sclerosis.  While these new findings have small effect sizes and likely explain little of 

the total genetic-based MS risk, there may be multiple distinct genetic architectures exhibiting 

both epistasis and genetic heterogeneity that give rise to the same disease phenotype or delineate 

clinical subtype and disease course.  Given this potential complexity, further examination of these 
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pathways in other clinical populations may reveal multiple combinations of alleles in these 

functionally related genes that modulate MS risk.   
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CHAPTER V 
 

CONCLUSION 

 

 
The last thirty years of human genetics research has shaped our view of the generic 

etiology of common disease from a single mechanism driven by a highly influential sequence 

variant to a complex web of interacting genetic variants and environmental exposures, each 

contributing a small degree of disease risk.  As such, there has also been a renewed interest in 

epistasis or gene-gene interaction, coupled with a technological push towards study designs that 

capture nearly all common variation within the human genome.  Simultaneously through this 

period, legions of scientists began to develop and curate databases of genomic and pathway data.  

The work described in this dissertation attempts to take advantage of the multiple advances in 

knowledge and technology to both illustrate the principle that incorporating structured biological 

knowledge into an analysis can be fruitful and to elucidate new mechanisms involved in the 

development and progression of multiple sclerosis.   

Numerous examples of pathway-based mechanisms have been discovered in model 

organisms and for Mendelian diseases (see Chapter III).  In many cases, these mechanisms were 

discovered by traditional linkage mapping, or by observing segregation patterns when crossing 

strains.  Once the gene or genes responsible for the phenotype were found, the biological details 

explaining what the gene product is and how it influences the larger biological system to cause 

the phenotype were uncovered through experimentation, generally with model organisms or cell 

lines.  A knowledge-based approach would not have discovered Mendelian effects, generally 

because genetic analysis of a Mendelian trait formed the foundation for discovering the biological system.  

In contract, complex disease is likely caused by the combined effect of numerous genetic variants 

with small independent or epistatic effects.  Some of these genetic variants certainly occur in 

biological systems that are already well characterized experimentally.  As such, it is logical to use 
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the biological systems that we do understand as a framework for discovering the combined effects of 

common human variation.  In this manner, human genetic studies can both provide a springboard 

for experimental discovery of biological systems, and can also use biological systems to aid 

genetic discovery in human populations.   

The genome-wide association studies described in Chapter I have established new risk 

factors for several complex disorders and phenotypes.  In many cases, however, the small genetic 

effects found by these studies only scratch the surface of the true genetic picture.  The methods 

outlined and described in Chapters II and III attempt to synthesize multiple knowledge sources 

to intelligently explore the multitude of potential gene-gene interactions that may be influencing 

common disease.   

We have illustrated through a simulation study that patterns of linkage disequilibrium 

from modest samples can be used to reliably mark the broader genomic region a particular 

polymorphism represents using LD-Spline, the method described in Chapter II.  The LD-Spline 

method is also a technological advance, in that these regions can be quickly and seamlessly 

identified within a contained database system.  When applied to two popular large-scale 

genotyping platforms, the LD-Spline approach dramatically increased the number of genes 

mapped versus more simplistic approaches.  In future studies, LD-Spline could be modified, 

processing HapMap-based statistics to provide a SNP-centric version of the Gabriel et al. 

approach, which may produce results with a more sound population genetics interpretation.   

We have also illustrated the benefit of incorporating gene-gene relationship information 

into data analysis by real-world application (see Chapter III).  Two-SNP models were generated 

using the Biofilter method, and were overlaid to calculate an implication index, denoting the 

number of knowledge-bases that support a given model.  By applying the Biofilter to a genome-

wide association study of multiple sclerosis, we illustrate that models supported by more 

knowledge sources are more likely to have significant model fit and interaction term statistics.  In 

future work, we hope to apply the Biofilter approach to other phenotypes and determine if the 
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relationship between the implication index and significant model statistics is a generalizable 

phenomenon.  We also hope to include gene regulatory networks and evolutionary conservation 

as data sources for the Biofilter method.  Also, one of the great potential uses of the Biofilter 

system is to pose specific hypotheses to test using genome-wide association data.  The Biofilter 

could easily allow quick evaluations of overlapping gene groups (such as genes of the same 

pathway under significant linkage peaks), which could prove to be an incredibly powerful tool. 

Finally, a thorough knowledge-driven analysis of the multiple sclerosis data was 

conducted (see Chapter IV).  In this analysis, we discover two consistent epistasis models that 

replicate in an independent dataset.  A collection of sixteen other models had significant model fit 

statistics in the replication set, but lacked a significant interaction term.  When viewed as a whole, 

many of these results fall into a collection of three inter-related pathways, and several genes 

involved in these pathways are regulated by or help metabolize inositol-based signaling 

molecules.  This could suggest a potential new mechanism for multiple sclerosis etiology, and 

nicely illustrates the benefit of knowledge-based analysis.  In the near future, we hope to acquire 

additional replication sets to further evaluate these interacting models. 

The work outlined here has established a process for discovering what patterns and 

processes might cause epistasis, produced a collection of tools that transform a popular agnostic 

genetic study design into a more precise, knowledge-based study, and illustrated the utility of 

that analysis for a complex disease.  Much more, however, could be done to systematically 

integrate established biological knowledge into genome-wide association analysis. 

While thoughtfully executed, each of the bioinformatic steps in the Biofilter procedure 

has distinct challenges in interpretation and definition.  For example, the Ensembl database 

defines a gene as the 3’ to 5’ region that is transcribed and spliced into an mRNA.  Gene 

regulatory regions (promoters, transcription factors, etc.) likely contain variants that alter gene 

expression, potentially with functional consequences, and those regions are not represented in 

the Ensembl gene definition.  Databases that identify known regulatory elements or points of 
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multi-species conservation could provide additional information about sequence regions 

surrounding the Ensembl gene definition that should be represented in our analysis pipeline.  

Expanding the definition of a “gene” will likely enhance the ability to detect genetic effects in 

complex disease, since influential variants probably have minor effects on the function of a gene 

product, such as altering functional quantity or an altered splice pattern.    

In addition to improving informatics, new genetic data types are on the research horizon.  

Whole-genome sequence will likely be cost-effective for large sample sizes in the near future, 

which will collect data on an unprecedented scale.  Storage and analysis of sequence data will 

require large online collaborative database systems.  Also, whole genome sequencing is generally 

conducted with an alternative hypothetical disease model:  common diseases are caused (in part) 

by multiple rare variants in the population.  Under this disease model, convincing evidence of a 

statistical association will require either enormous sample sizes, or some type of procedure to 

“bin” multiple different sequence variants into a common category that can be associated to 

disease.  The most logical approach to binning these rare variants is to assess functional relevance 

using biological knowledge.  Also, these rare variants may be dispersed across multiple genes of 

a common pathway that all ultimately share the same functional consequence.  In this case, 

pathway-based analyses, followed by careful molecular studies, will be critical to elucidating the 

true nature of rare variant disease effects.     

In addition to sequencing, methods for assaying structural variation and methylation 

patterns in the human genome are becoming more high-throughput.  As these genetic 

mechanisms may be less stable than simple sequence variations in the population (i.e. de novo 

copy number variations, fetal environment-based methylation, etc), building convincing evidence 

of an association requires methods for addressing heterogeneity of effect, similar to the problems 

with rare variants mentioned above.   

Similar technological advances are occurring in structural biology, pharmacology, and 

even environmental data collection for epidemiological studies, among many other fields and 
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disciplines, providing enormous rich datasets for the study of human disease.  Because high-

throughput data is inherently more structured that single experiments, database systems that can 

incorporate and cross-reference multiple data types will exponentially expand the set of 

experimental questions an investigator can ask with a collection of data.     

High-throughput technologies like these temporarily shift the paradigm of science away 

from explicit hypothesis testing and toward establishing and refining models of biological systems.  

If complex disease processes are truly driven by multiple interacting genetic and environmental 

components, then synthesizing masses of collected data into a model of the system will be the 

best way to fully utilize all of the available information.  System models will provide a context for 

interpreting and analyzing new data, and will provide investigators with a renewed framework 

to test explicit hypotheses.  Despite changes in funding mechanisms, technology, and a shift 

toward large collaborative projects, human genetics will remain firmly rooted in the same rigors 

of basic science and the scientific method.  Large-scale high-throughput science is simply 

accelerating the pace at which we provide a systemic context to experimental questions.   
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