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CHAPTER I 

 

 

BACKGROUND AND RESEARCH OBJECTIVES 

 

The Human Immunodeficiency Virus (HIV) has created a large impact on the 

global population.  In 2007, the World Health Organization (WHO) reported an 

estimated 33 million people to be infected worldwide.  The impact of a pandemic 

this size extends past the issue of mortality and has dire financial and cultural 

implications as well.  Prevention and treatment of HIV infection are critical for 

resolving this pandemic.  Understanding the mechanisms of HIV infection and 

subsequent host immune responses will allow new options for treatment and 

prevention of HIV. 

 

Human Immunodeficiency Virus 

HIV is an enveloped lentivirus (1, 2) containing a characteristic conical core 

structure composed of multiple subunits of capsid protein (p24) (Figure 1-1).  

This viral genome, consisting of two positive single strands of RNA (2), is held 

within the conical core.  There are four main proteins that provide the general 

means for HIV replication; Gag, Pol, Env, Nef, and several accessory proteins 

that play a role in HIV infectivity (2). HIV primarily targets activated CD4+ T cells 

(2).  The viral receptors for HIV attachment to the host target cell are gp120 and 

gp41 (Figure 1-1) (2).  These viral receptors bind CD4 in combination with either 
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CCR5 or CXCR4 chemokine receptors on the cell surface of CD4+ T cells.  Host 

CD4 is the main receptor for HIV binding and fusion (1, 2).  Upon HIV binding 

and fusion with the host target cell (Figure 1-1, Step 1), the conical core is 

released into the host cell cytosol (Figure 1-1, Step 2), and uncoating occurs, 

depositing the viral genome (1, 2).  Maintenance of the conical core structure is 

critical for HIV infectivity (3-6).  Concordantly, many amino acids within the p24 

capsid protein are highly conserved despite high rates of viral mutation in HIV (7-

10).  The viral genome, which is RNA, must first be reverse transcribed into DNA, 

using viral proteins (Figure 1-1, Step 3).  These reverse transcripts, which are 

then DNA, are integrated into the host genome (Figure 1-1, Step 4), where the 

virus takes advantage of host machinery to complete the life cycle (Figure 1-1, 

Steps 5-8) (2).  HIV-specific mRNA transcribed from the integrated HIV DNA in 

the host genome, is translated into viral proteins which gather at the host cell 

membrane to form new virions (2).  CD4+ T cells are key helper cells in the 

formation of an adaptive cellular immune response.  Loss of these cells disables 

coordination of the immune system, thus impeding a proper and rapid response 

to an invading pathogen (11).  By infecting and subsequently killing these CD4+ T 

cell targets, HIV disables a critical arm of the host immune response, leaving the 

host with increased susceptibility to opportunistic infections (1, 11, 12).  There 

are two main types of HIV, HIV type 1 (HIV-1) and HIV type 2 (HIV-2).  HIV-1 is 

prominent worldwide, whereas HIV-2 has spread more slowly beyond western 

Africa (13).  HIV-1 and HIV-2 are highly related, but HIV-2 is reported to be less 

virulent and the mechanism behind these findings is not clear (13).  Because of 
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the significantly increased prevalence of HIV-1, our studies and findings will 

focus on examining HIV-1 infection.  

In the past 25 years since HIV was first identified, significant advances have 

been made in understanding the mechanisms by which HIV infects and affects 

the human host.  These data have led to several candidates for vaccines, 

microbicides and medications that could possibly prevent or delay HIV infection.  

Thus far, several modalities of HIV suppression and prevention have shown 

promising results, but none has been proven to be a complete cure for HIV 

infection.  The resolution of the HIV pandemic is long from over, maintaining the 

importance in efforts for advancements in HIV treatment to continue a broad 

scope of HIV research.  By understanding the mechanisms by which the host 

immune response thrives and fails in the control of HIV-1 viremia we may provide 

critical insight into future design and assessment of HIV vaccines. 

 

CD8+ T cells 

The purpose of the immune system is to distinguish self from non-self.  The 

immune system has both an early, less specific response (innate), and a later 

response with greater specificity that includes immunologic memory (adaptive).  

Both the innate and adaptive immune responses work together to detect, control 

and clear viral infections.  During a viral infection, cells of the innate immune 

response first detect the viral pathogen breech and conduct an initial attack, 

while simultaneously alerting the immune cells of the more specific adaptive 

immune response (1, 14, 15)



 

4 

 

 
 
 
 
Figure 1-1.  Human Immunodeficiency Virus (HIV-1) structure and life 
cycle.  Basic structure of HIV-1 virion diagrammed top left.  9 main steps 
of HIV-1 life cycle are illustrated here.  
 
Image and figure adapted from Simon V, and Ho D.  Nature Rev. Micro.  
2003.  1:181-190 (2).
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 There are two main branches of the adaptive immune response; humoral and 

cellular.  The humoral response to viral infection is primarily focused on 

opsonizing the virus by detection of viral surface proteins via antibodies, and 

clearing circulating virus by phagocytosis (11).  The cellular response to viral 

infection consists of effector lymphocytes that include CD8+ T (11).  CD8+ T cells 

are selected in the thymus, derived from double positive (CD4+CD8+) T 

lymphocytes, and enter the lymphatic system as Tnaïve (TN) cells (Figure 1-2) (11, 

15).  A naïve cell is a cell that has not yet been presented antigen in the 

presence of  costimulation.  CD8+ T cells can be distinguished by the expression 

of CD8 as well as other physiologic and structural features.  CD8 is most often a 

hetero-dimer consisting of an alpha and beta subunit (Figure 1-2) (16).  The 

subunits have a similar structure, with a long trans-membrane tail and a globular 

head.  CD8 is a co-receptor that synergizes with the TCR in CD8+ T cell 

activation and subsequent signaling after antigen-specific interactions (16).  This 

activation results in further development of the CD8+ T cell, in which the CD8+ T 

cell progresses from a TN cell to one that is defined to be a TEffector (TE) cell 

(Figure 1-2) (15).  CD8+ TE cells have been presented antigen and produce the 

appropriate immune response.  These effector cells continue to expand and 

mount an immune response until the pathogen begins to be cleared.  As the 

pathogen clears, lower levels of antigen are presented.  As the levels of antigen 

presentation decreases, the numbers of effector CD8+ T cells decrease.  At this 

stage there is a significant amount of cell death, and the immune response only 

maintains a small number of these effector CD8+ T cells as a memory pool of 
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effector CD8+ T cells.  In this pool, these cells are now primed for a secondary 

infection of the same pathogen, which is defined as immunologic memory (Figure 

1-2) (1, 15).  Several markers are associated with this differentiation process and 

identify the different stages of T cell activation and differentiation (Figure 1-2).  

During HIV infection, as well as other chronic viral infections, as the pathogen 

persists, levels of antigen presentation do not diminish, leading to chronic 

activation of CD8+ T cells as well as dysfunctional CD8+ T cell memory 

differentiation (Figure 1-2) (14, 15, 17). 

CD8+ T cells are specifically designed to clear viral infections.  These cells have 

the specific ability to lyse infected targets (17, 18).  Once a CD8+ T cell 

recognizes a virally infected target cell via the T cell receptor (TCR), an 

immediate release of cytotoxic granules from the cell is triggered (18-20).  CD8+ 

T cells contain many of these granules, which are located proximal to each TCR 

and are pre-formed and poised directly underneath the cell membrane, ready for 

rapid release (Figure 1-2) (18).  These granules contain the cytotoxic proteins 

perforin and granzyme B.  Perforin disrupts the target cell plasma membrane and 

allows for excess water to enter the cell causing lysis.  Granzyme B is a serine 

protease that is highly effective in activating caspase-signaling pathways, which 

are involved in cell apoptosis (18-20).   CD8+ T cells also express Fas Ligand, 

which when bound to Fas on an infected cell, triggers apoptosis of the infected 

target.  In HIV immunopathogenesis, Fas has been shown to be upregulated on 

CD4+ T cells, and the FasL-Fas pathway is thought to be a prominent 

mechanism of CD4-depletion (21-23). 
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CD8+ T cells have the ability to bind to several infected targets at once, releasing 

cytotoxic granules simultaneously at each immunologic synapse (19, 20).   This 

ability for multiple binding allows CD8+ T cells to be effective at low  E:T 

(effector:target) ratios.  With this massive release of lytic and toxic proteins from 

granule stores, CD8+ T cells could also be at risk for cytotoxicity and apoptosis, 

however, CD8+ T cell granules also contain Cathepsin B, a lysosomal protease 

that locates to the membrane immediately following granule release and is able 

to inactivate perforin (18, 24). 

In addition to cytolytic function of CD8+ T cells, these effector cells also produce 

and secrete anti-viral cytokines including IFNγ and TNFα.  Cytokine secretion by 

CD8+ T cells is initiated upon recognition of antigen presented by infected target 

cells.  The TNFα cytokine induces apoptosis, cell death, of viral-infected target 

cells, and both IFNγ and TNFα specifically interfere with viral replication within 

infected targets while simultaneously activating and recruiting a robust immune 

response (25). 
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Figure 1-2.  CD8+ T cell differentiation.  CD8+ TN cells begin differentiating 
upon antigen presentation and co-stimulation signaling.  Distinct immunologic 
marker expression is associated with differed states of CD8+ T cell differentiation.  
Teffector (TE) cells are activated, producing anti-viral response. Teffector memory (TEM) 
cells are activated in the presence of diminishing levels of antigen.  Terminally 
differentiated T cells (Tterm differentiation) have proliferated extensively, and although 
proliferative capacity may be diminished, effector functions that include cytokine 
production and direct cell lysis remain in tact. The linear differentiation of CD8+ T 
cells progresses through the clearance of a pathogen, as the levels of antigen 
presentation diminish, reaching a final state of terminal differentiation.  However, 
during chronic viral infections such as HIV-1, the level of antigen presentation 
does not diminish, and blocks in full terminal differentiation in HIV+ subjects are 
observed.   
 
Figure adapted from Wherry J.  Nature Rev. Immunol.  2002.  2: 251-262. 
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HIV-1 disease progression 
 
Generally in viral infections, once activated, CD8+ T cells identify infected targets 

and function successfully in the suppression of viral replication. The anti-viral 

immune response, in which CD8+ T cells play a major role, eventually gains 

control, clearing the viral infection and developing a memory response for future 

attacks (11).  However, due to the chronic nature of HIV-1 infection, normal 

immune function and development are altered. 

As in most viral infections, HIV-1 begins with an acute phase, but the infection is 

not cleared, leaving HIV-1 to develop into a chronic state of infection. There are 

three phases of HIV-1 disease progression; Acute, Chronic, and Advanced HIV-1 

disease which will progress to what is clinically defined as AIDS (Figure 1-3) (1).  

During acute infection, dramatically high viral loads are present in plasma, at 

levels of several million viral copies per milliliter (copies/mL) (1) .   These high 

viral loads correspond with an initial CD8+ T cell expansion and response (Figure 

1-3).  The end of the acute phase of infection is marked by a decrease in viral 

replication, and leads to the establishment of the viral set point in plasma(Figure 

1-3).  The viral set point is defined as the level of viral replication that plateaus to 

a consistent level of viral replication following acute phase of HIV infection and 

marks the chronic phase of infection (Figure 1-3) (1). Several studies have 

indicated that the viral set point is directly related to the rate of HIV-1 

immunodeficiency (i.e. a lower the viral set point is associated with longer AIDS-

free survival) (1).  During the chronic phase of HIV-1 infection, the viral load 

remains relatively constant, with correspondingly maintained elevation of CD8+ T 
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cell activity.  The duration of the chronic phase in HIV+ subjects that remain off 

anti-retroviral therapy (ART), or therapy naïve, is what defines HIV+ subjects into 

categories of HIV -1 progression.  Rapid progressors are subjects that have very 

short phases of clinical latency, on average 1-3 years, before CD4+ T cell counts 

decrease to less than 200 cells/mm3 and viral loads begin to increase, signifying 

advanced HIV-1 disease (Figure 1-3) (1).  On average, most subjects have a 

clinical latency period of 8-10 years before CD4+ T cell counts begin to drop and 

viral loads begin to increase.  Subjects with longer phases of clinical latency, 

greater than 10 years, are categorized as slow progressors.  Several 

subcategories of these slow progressor subjects have been defined over the 

years, to help differentiate these groups even further.  Long Term Non 

Progressors, maintain clinical latency with a HIV-1 viral load below 500 viral 

copies/mL for greater than 10 years (1).  Elite controllers are those that maintain 

a viral load below the current conventional detection limit of 50 copies/mL (26).  

This indicates a markedly lower degree of ongoing HIV replication, but does not 

mean that replication has stopped. 
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Figure 1-3.  HIV-1 Disease Progression.  Characteristics of the three phases of 
HIV-1 disease progression.  The three phases are defined by; CD8+ T cell 
responses (gray), HIV viral load (dashed line) and CD4+ T cell counts (blue line).  
HIV-1 disease progression categories in therapy naïve subjects are defined by 
length of chronic, or clinical latency, phase of HIV-1 infection; (red) rapid 
progression 1-3 years, (black) average length of progression 8-10 years, (blue) 
slow progression greater than 10 years.
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CD8+ T cells are critical for long-term control of HIV-1 viremia 
 
The host CD8+ T cell immune response has been implicated as a critical 

component in the establishment of the viral set point, and the subsequent pace of 

progression of HIV-1 disease (27-30).  Several studies in both HIV+ subjects as 

well as SIV non-human primates have shown the critical need for CD8+ T cells.  

Observational studies of HIV+ subjects during acute infection revealed a direct 

correlation between the expansion of CD8+ T cells and the decrease in HIV-1 

viremia during acute phase of HIV-1 disease (27, 28).  CD8+ T cells were 

observed to retain increased cytotoxic activity past the establishment of the viral 

set point (31, 32). These observational studies in HIV+ subjects correspond with 

data from the SIV non-human primate model (27, 28).  

A more direct role of CD8+ T cells for control of viremia was confirmed in studies 

of SIV-infected Rhesus Macaques, where CD8+ T cell depletion resulted in 

dramatic increases in SIV viremia (33).  Further evidence for the importance of 

CD8+ T cells was illustrated by reconstitution of CD8+ T cells in the study animals 

resulting in decreased SIV viremia (33).  Although in neither the SIV nor HIV 

studies, were CD8+ T cells capable of complete clearance of viremia, these 

studies suggest that the cellular arm of the adaptive immune response is playing 

some critical role in any possible suppression of both SIV and HIV infection.  A 

small group of individual antibodies have been identified to recognize HIV with 

high affinity, however, humoral responses in HIV+ subjects are rarely detected 

until after the establishment of the HIV-1 viral set point (28).  Currently, there is 
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no convincing evidence for a direct relationship between humoral response 

expansion and HIV-1 viremia suppression.   

Although the presence of CD8+ T cells has been shown to be critical for 

suppression of HIV-1 viremia, even to undetectable levels, the virus is not 

cleared by the host.  Despite advancements in HIV-1 treatment, two specific 

characteristics of HIV-1 infection may make successful clearance of the virus 

impossible.  The first barrier is the rapid nature of HIV genetic mutation.  HIV has 

been shown to have a mutation rate of approximately 10-4 base pairs  (1 

mutation/ 10,000 base pairs) (2).  The total genome of HIV is 9700 base pairs, 

making the rate of mutation approximately 1 mutation for every round of HIV 

replication.  Coinciding with HIV accumulation of mutations, the environment that 

surrounds HIV during infection, including the use of ART and the host immune 

response, applies pressures on the virus.  This environment of rapid viral 

mutation and external environmental pressures is conducive for rapid adaptation 

of the virus and eventual viral evasion of both medications and immune 

responses (2, 34-37).  The second barrier in clearance of HIV-1 infection is the 

aspect of ‘latent’ infection.  HIV integrates its genome into the host genome 

(provirus), and remains a permanent fixture of the CD4+ T cell target that has 

cycled back to rest (1) (Figure 1-1).  Several studies have shown drastic 

decreases in viral loads in subjects on ART (1, 2).  However, HIV-1 remains in 

these ‘reservoirs’ of infected but resting target cells, and if these cells proliferate, 

the viral replication can reactivate from these reservoirs, making HIV-1 seemingly 

impossible to clear from the host (1, 2).   
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 These barriers of overcoming HIV infection have altered the focus of HIV 

vaccine design.  Traditionally, a preventative vaccine would be designed to 

protect an HIV seronegative population from HIV infection upon exposure (Figure 

1-4.  However, with the high mutation rate of HIV and the virus’ ability to establish 

latent reservoirs of infection, traditional vaccine designs have failed.  CD8+ T cell-

mediated vaccine research is now predominantly focused on a therapeutic 

approach (Figure 1-4).  The basic goal of a therapeutic vaccine would be to boost 

the immune responses of HIV+ people in a way that would directly improve host 

immune ability to suppress HIV replication.  This would alleviate the damage 

done to the host immune response and delay HIV-1 disease progression, as well 

as decrease the incidence of new HIV infections by HIV+ people having 

unprotected contact with HIV- people (Figure 1-4).  

Failure to control HIV-1 infection begins with the inability of the host immune 

response to clear the infection during the acute phase of HIV-1 disease, and 

continues into the chronic phase of HIV-1 disease.  Understanding mechanisms 

that moderate control of HIV-1 viremia, will contribute to better control and 

possibly clearance. 
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Figure 1-4.  Strategy for HIV treatment targets the design of a therapeutic 
vaccine.  Traditional preventative vaccine designs have failed due to high 
mutation rates of HIV-1, HIV-specific immune escape and failure for HIV-specific 
antibodies to recognize and bind highly glycosylated HIV envelope.  Therapeutic 
designs will include the boost of the HIV-specific CD8+ T cell response and 
benefit both HIV+ people by decreasing viral loads and minimizing immune 
damage a well as HIV- people by decreasing probability of infection.
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The CD8+ T cell receptor 
The TCR of CD8+ T cells is critical for CD8+ T cell anti-viral functions, as it is at 

the crux of CD8+ T viral recognition and subsequent anti-viral activity.  The TCR 

is a heterodimer consisting of a beta chain and an alpha chain, each consisting 

of a variable region (V), and a constant region encoded by germ line segments 

(Figure 1-4) (38, 39).  The beta chain is encoded by V, diversity (D) and a joining 

region (J) whereas the alpha chain is encoded by V and J segments only (Figure 

1-5) (38, 39).  The variable region contains three complementarity determining 

regions (CDR) that come in to contact with the peptide-MHC complex (39).  

CDR1 and CDR2 are encoded within the variable region (Figure 1-5), whereas 

CDR3 region is composed of the junction between the variable region and joining 

regions (Figure 1-5) (and for TCR beta this includes the D segment) (38, 39).  

CDR3 diversity is determined by recombination and TdT nucleotide insertions, 

and it is the nucleotide sequence of the CDR3 that defines individual TCR 

clonotypes (39).  Several factors shape the development of an epitope-specific 

TCR repertoire, among them being the initial development of the naïve TCR 

repertoire.  The structure of the peptide MHC, antigen processing and 

presentation, and the influence of TRBV usage and clonotype expansion within 

an epitope-specific repertoire (39). 
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Figure 1-5.  T cell receptor formation and diversity.  All TCR  
structures are composed of an alpha and beta subunit.  CDR3 is the most 
variable CDR due to junctional diversity. 
 
Figure adapted from Janeway Immunobiology. 5th Edition.  
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The formation of a T Cell Receptor repertoire 
 
A significant factor in the formation of a CD8+ TCR repertoire is antigen 

presentation by MHC class I (39, 40).  MHC is the most polymorphic gene locus 

in the human genome.  The MHC genes in humans are also referred to as 

Human Leukocyte Antigen (HLA) and are co-dominantly expressed, meaning 

both alleles for each gene are expressed simultaneously, leading to further 

breadth of individual diversity (39).  MHC class I is involved in two significant 

roles of CD8+ T cell selection.  First, MHC play a role in early thymic selection of 

naïve CD8+ T cells, negatively selecting CD8+ T cells that bind too tightly to the 

MHC class I: self peptide complex, and positively selecting CD8+ T cells that bind 

sufficiently for activation by the MHC class I: self peptide complex, allowing for 

the propagation of CD8+ T cells (39).  Second, MHC I present processed 

peptides on the surface of an APC during a viral infection.  This peptide-MHC I 

complex is recognized by CD8+ TN cells, with the appropriate TCR, and during 

viral infections, this recognition interaction triggers CD8+ T cell anti-viral activity 

via the TCR (39).   

An over-representation of certain HLA B alleles was noted in HIV+ subjects with 

increased duration of chronic HIV-1 disease progression and consistently lower 

levels viremia.  The two strongest associating HLA B alleles with decreased viral 

loads are HLA B*57 and HLA B*27 (41-44).  In the general population these 

alleles are rare, with a prevalence of approximately 10%, whereas in populations 

of slow progressors, the prevalence of these HLA B alleles has been found to be 

as high as 60% (42, 43).  Numerous studies have confirmed this over-
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representation, but the mechanism behind why this genetic factor is found to be 

associated with improved control of HIV viremia is unclear.  It has been proposed 

that HLA allele expression influences both TCR structural selection, and 

subsequent formation of the TCR repertoire (39).  Because the MHC class I will 

select both what naïve TCR will be in circulation as well as epitope-specific TCR 

repertoires, more scientific study is needed to investigate the potential 

connection between HLA, TCR diversity, and subsequent observed control of 

HIV-1 viremia. 

In Chapter II of this dissertation, I demonstrate a common TCR structure within a 

dominant HIV epitope-specific CD8+ T cell population amongst HIV+ subjects that 

share a common MHC class I.  Although this common TCR did not have stronger 

structural avidity or improved cross-reactivity to HIV variants, I did observe loss 

of recognition of an autologous HIV variant on the clonotype level.  These studies 

demonstrate that TCR repertoire diversity can provide recognition of autologous 

HIV variants, which would be important during continuous control of HIV, a viral 

infection with rapid mutation and variation, by CD8+ T cells in vivo. 

 

 

The role of TCR diversity in the control of viral infection 

Viral immune escape from CD8+ T cell responses is common over the course of 

HIV-1 infection, and is likely to be an important factor for HIV-1 disease 

progression (34, 36, 45-49).  The technology for evaluating epitope-specific 

responses has evolved to sorting epitope-specific CD8+ T cells directly ex vivo, 
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reducing sequencing bias and providing a more comprehensive analyses of TCR 

usage to dominant recognized epitopes. Since the early identification of viral 

epitopes recognized by HIV-specific CD8+ T cells, there has been speculation 

that the circulating TCR repertoire is critical to the recognition of potential HIV-1 

variants. The immune TCR repertoire directed against a peptide-MHC complex is 

the sum of individually rearranged TCRs.  The impact of CD8+ T cell TCR 

diversity on the recognition and control of viral infections, including HIV-1, is not 

completely understood.  

Many pathogens evolve and adapt to immune recognition, altering structures and 

functions to evade immune recognition.  Because of this evolution, the immune 

system generates diversity of TCR structure in naïve cells of the adaptive 

immune response in order to control these evolving pathogens.  Although naïve 

T cell receptor repertoires are generated to be broad, a significant amount of 

narrowing in repertoire occurs during the development of an epitope-specific 

TCR repertoire.  

Several models of chronic viral infection have been explored to determine the 

role of TCR diversity in the control of viral replication.  The mouse LCMV model 

can be manipulated to demonstrate viral clearance or chronic infection (50, 51).  

Early studies demonstrated heterogeneous TCR usage at the clonal level for 

CD8+ T cells able to recognize the same epitope, and the hypothesis was put 

forth that diverse TCR usage could play a role in the recognition of potential 

immune escape variants (52, 53).  In the LCMV model, it has recently been 

shown that narrowed epitope-specific TCR usage leads to immune escape (54).   
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Chronic viral infections with extensive variation, such as Hepatitis C (HCV) and 

HIV-1, pose a far greater challenge for cellular immune responses, as well as for 

the interpretation of the role of TCR diversity for immune recognition.  In these 

infections, both the magnitude and quality of the host response, in this case 

defined by TCR repertoire diversity, may be critical to the control of viral 

replication.  In the HCV chimpanzee model, our laboratory found that narrow 

TCR diversity during the early phase of infection was associated with subsequent 

immune escape and the establishment of chronic viral infection, whereas broader 

epitope-specific TCR diversity was associated with a lack of escape or resolution 

of infection (55).   

In the SIV model, CD8+ T cells are critical for the control of viremia (33).  

Viral escape during early infection has been associated with mutations in several 

MHC class I-restricted epitopes and accelerated disease progression (56-66).  

Early studies found the TCR repertoire of the dominantly recognized Gag epitope 

CM9 to be clonally diverse and able to recognize potential escape variants (67, 

68).  Tat (transactivator) is a regulatory gene that is involved in the acceleration 

of HIV replication (2).  When comparing this dominant gag-specific TCR 

repertoire with that of a tat-specific repertoire, a drastic difference in TCR 

repertoire diversity was measured.  The epitope-specific TCR repertoire of one 

dominant epitope remained much more diverse than that of the other co-

dominant epitope specific TCR repertoire.  In the narrower epitope-specific TCR 

repertoire, specific TCR clones that recognized this epitope lost the ability to 

recognize and respond to HIV viral epitope variants (64, 69-71).  These studies 
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emphasize that a limited clonotype repertoire may be quite effective at 

suppressing viral replication, but given the extensive variation and high-level viral 

replication in vivo, immune escape is a likely possibility, especially if such a 

variant is without a fitness cost to the virus. 

HIV-1 is known to modulate the TCR repertoire.  Using the technique of CDR3 

length ‘spectratyping’, earlier studies demonstrated skewing of the TCR 

repertoire during acute HIV-1 infection (72-74).  In a study of chronic HIV-1 

infected subjects, ART afforded some correction of this repertoire skewing (75).  

Whereas these studies showed some degree of perturbation of the TCR 

repertoire as a consequence of HIV infection, they did not address the direct 

contribution of the virus-specific TCR repertoire to the recognition of circulating 

virus. 

The role of HIV-specific TCR repertoire diversity in the control of HIV-1 viremia 

remains unclear.  Our laboratory longitudinally followed several individuals with 

dominant recognition of the same epitope located within HIV nef; HLA B*8 

restricted FL8 (FLKEKGGL).  We documented diverse TCR usage in these 

subjects that had been taken off ART, as TCR usage fluctuated over time (76).  

This was consistent with a previous study that found fluctuations in TCR 

clonotype frequency within an HLA A2 restricted HIV Gag epitope-specific 

response (77).  Furthermore, in our studies, individual clonotypes demonstrated 

differential ability to recognize and respond to their cognate epitope, suggesting 

the importance of the clonotypic repertoire in the recognition of circulating 
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epitope variants (76).  These studies suggest that heterogeneous TCR usage 

can benefit the host.   

Several epitopes restricted by the HLA B57 allele have been identified, and some 

dominantly recognized epitopes show little evidence of epitope variation (10, 78). 

A more recent study found highly conserved TCR usage within the B57-restricted 

KF11-specific response.  Three subjects out of five studied were found to use 

one structurally similar TCR.  In which, two subjects this particular TCR clonotype 

was dominantly represented in the total KF11-specific CD8+ T cell populations 

within these individuals (79).  An additional study indicated narrowed TCR 

repertoires associated with decreased epitope diversity in HLA B57 HIV+ subjects 

compared to HLA B57 HIV+ subjects with increased diversity of the same HIV-

specific HLA B57 restricted epitope (80).  

These observations suggest that structural components of the CD8+ TCR 

repertoire may have profound effects on the dynamics of viral replication.  The 

ability to generate and maintain a diverse TCR repertoire can allow the 

recognition of epitope variants.  In the setting of less variable epitopes, the 

generation of a limited repertoire of TCRs able to control viremia quickly may limit 

subsequent virus variability.  Regardless of whether TCR repertoire diversity is 

required for complete control of viral infections, the structure of the TCR is critical 

for recognizing the peptide MHC complex and subsequent CD8+ T cell anti-viral 

activity.  Further studies will allow us to determine whether TCR repertoire 

analyses will provide an additional measure of the ‘quality’ of immune responses 

coincident with CD8+ T cell functions associated with the control of HIV viremia. 



 

24 

CD8+ T cell function and suppression of HIV-1 replication 

Despite numerous studies indicating the importance of CD8+ T cells in the control 

of HIV-1 viremia, CD8+ T cells are not sufficient for the successful suppression of 

HIV-1 infection (27, 29).  HIV+ subjects are observed to have significant 

expansions of CD8+ T cells (CD4:CD8 is 1:2 rather than 2:1) (81), but these cells 

fail to mount an appropriate and effective response that would suppress HIV-1 

infection.  In corroboration with these findings, it has also been observed that 

large CD8+ T cell expansions are documented in both high and low viremic HIV+ 

subjects (43, 81).  Early in the epidemic, investigators found that these CD8+ T 

cell expansions contained a large fraction of HIV-specific CD8+ T cells with lytic 

function (82).  Later studies using superior assays able to measure the frequency 

of cytokine-producing cells similarly found very high frequencies of circulating 

IFNγ producing cells in HIV infected subjects.  However, the magnitude of IFNγ 

producing cells does not correlate with control of viremia (83-85).  This leads one 

to the conclusion that the effectiveness of CD8+ T cell suppression of HIV-1 

viremia seems to lie in the quality rather than that quantity of the immune 

response.     

Observational studies in HIV+ slow progressors have provided evidence for the 

critical role of several functions of CD8+ T cells that correspond with control of 

HIV-1 viremia.  Diversity of anti-viral cytokine production has been shown to 

increase in HIV-1 controllers (86-88).  CD8+ T cells that produce a variety of 

cytokines are categorized as ‘poly-functional’ effector T cells.  In addition to a 

poly-functional response, several viral infection models have provided evidence 
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for the importance of maintaining a response to a broad range of viral variants.  

In a response to a highly mutagenic virus such as HIV, effective cytokine 

secretion in response to viral variants could be an important factor.  

In animal models of chronic viral infection, the proliferative capacity of virus-

specific T cells represents the best correlate of control of viremia (15, 89, 90).  

Proliferative capacity is defined as the ability of a cell to proliferate, or duplicate, 

several times, expanding identical sister cells from, in this example, a single 

epitope-specific CD8+ T cell.  The advantage of proliferation is considered to be 

the ability to rapidly expand populations of dominant effector cells, increasing E:T 

ratios, and thus effector efficiency in suppressing HIV replication. As T cells 

expand in response to antigenic stimulation, they mature to TE, and become 

more efficient at suppressing HIV replication (1, 15, 74, 91-95).  IL-2 is an auto-

regulatory cytokine that is produced as well as bound by the IL-2 receptor of an 

individual cell.  This interaction causes cellular signaling that promotes 

proliferation of the cell (96).  Early studies assessed the ability to boost the 

proliferative capacity of the overall immune response by administering 

recombinant IL-2 therapy to recently infected HIV+ subjects (97).  No increase in 

HIV-specific CD8+ T cell responses was observed, thus suggesting that any 

benefit of increased proliferation may require a more refined HIV-specific 

stimulation. 

A recent study has reported observations of increased proliferation (in vitro) to 

optimal HIV-specific peptides in HIV-1 controllers (viral loads less than 2000 

copies/mL) as compared to HIV-1 non-controllers (viral loads greater than 2000 
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copies/mL) (89).  The increase in specific proliferation to cognate peptide was 

also associated with increased production and release of perforin, the lytic 

protein that is secreted through CD8+ T cell granules.  These data indicating the 

association of high HIV-specific proliferation with lower levels of viremia have led 

to the hypothesis that the proliferative capacity of dominant HIV-specific CD8+ T 

cells influences their overall ability to suppress HIV replication.  Recent studies 

have associated the expression of cellular markers such as CD38 and HLA-DR, 

which are markers that indicate a heightened proliferative state, directly with 

CD8+ T cell ability to suppress HIV-1 replication in vitro (98).  However, further 

studies are required to directly assess defined proliferative cell markers with 

CD8+ T cell proliferative capacity and suppression of HIV-1 replication.   

Since proliferative potential appears to be important for control of viremia, 

surface markers that are able to predict proliferative capacity might be useful in 

the identification and assessment of cells that are qualitatively better at 

suppressing viral replication.  Characteristic of chronic infection and constant 

antigen presentation, HIV-1 causes characteristics of cellular aging (such as 

decreased telomere length) and dysfunction of the immune response (1, 99, 

100).  Functional exhaustion was first observed in the murine LCMV chronic 

model of viral infection (51), in which virus-specific CD8+ T cells that were 

present during LCMV infection were unable to produce effector cytokines during 

in vitro antigen stimulation (51).  Additional studies in the LCMV model revealed 

that this state of functional exhaustion further impacted several anti-viral 

properties of CD8+ T cells including IL-2 production and proliferation, cytolyses, 
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and eventual loss of anti-viral cytokine production (101).  The Programmed 

Death-1 (PD-1) receptor was first identified in the chronic LCMV model as a 

marker for this state of functional exhaustion (102, 103), as studies indicated 

increased expression of PD-1 on functionally exhausted CD8+ T cells.   

Studies were extended to find similar observations of increased PD-1 expression 

on functionally exhausted HCV and HIV-specific CD8+ T cells (100, 104-107).  In 

addition, increased expression levels were higher on HIV-specific CD8+ T cells in 

HIV-1 progressors as compared to HIV-1 long-term non-progressors.  The 

mechanism of how PD-1 signaling directly influences CD8+ T cell suppression of 

HIV replication is unknown, as PD-1 expression is associated with varying 

degrees of CD8+ T cell proliferative capacity, cytokine secretion and direct 

cytotoxicity.  Examining the role of proliferative capacity in suppression of HIV 

replication requires a more definitive marker for assessing the proliferative 

potential of a CD8+ T cell. 

CD57 has been identified as a marker for immunologic senescence and is 

increased in chronic infection as well as a consequence of general host aging 

(99).  Several studies have demonstrated that CD57+ cells have significant 

decreases in proliferative capacity in response to αTCR and cognate peptide 

stimulation (98, 99, 108).  Despite their decreased proliferation, CD8+CD57+ T 

cells maintain strong effector functions of direct cytotoxicity and anti-viral cytokine 

production (98, 99, 108).  Furthermore, analysis revealed that CD8+CD57+ T cells 

have increased upregulation of genes involved in all effector functions as 

compared to their CD57- counterparts (108).  Although CD57 expression on 



 

28 

CD8+ T cells is increased in HIV+ individuals, these microarray analyses indicated 

that transcriptional profiles of CD8+CD57+ T cells in both HIV+ and HIV- subjects 

did not vary (108), suggesting that HIV influence on the immune response is 

specifically in the differentiation to this state of deficient proliferative capacity, and 

not the remaining effector functions of these CD8+CD57+ T cells.  Distinguishing 

CD8+ T cells by the expression of CD57 allows for a unique opportunity to assess 

the role of proliferative capacity in an environment of maintained effector 

functions that remain despite a lack in proliferative capacity.  By distinguishing 

CD8+ T cells based on the expression of CD57, the role of proliferative capacity 

in the suppression of HIV replication can be solely examined. 

In Chapter III of this dissertation, I developed an in vitro assay that allowed for 

the simultaneous assessment of proliferative capacity and CD8+ T cell-mediated 

suppression of HIV replication.  I differentiated CD8+ T cells, which were derived 

directly ex vivo, by the ability to proliferate based on CD57 expression.  By using 

this assay I was able to demonstrate that proliferative capacity did not play a 

direct role in CD8+ T cell-mediated suppression of HIV replication in vitro.   

HIV provides a unique environment in which to study the effects of immune 

system breakdown and exhaustion.  By elucidating the mechanisms by which 

CD8+ T cells sustain and function in successful suppression of viral replication 

despite the hurdles HIV places in front of the immune response, improved 

understanding and development of preventative and therapeutic vaccines can be 

attained for not only HIV, but perhaps other chronic viral infections with increased 

viral variation.   
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Research Objectives 

 

The main objectives of my research were: (1) to investigate the role of TCR 

repertoire diversity in the recognition of dominant HIV epitopes (2) to define 

autologous HIV variants in vivo and evaluate the ability of recognition of these 

variants in vitro on a clonotype level, and (3) to directly assess the role of CD8+ T 

cell proliferative capacity in the suppression of HIV replication in vitro.  In Chapter 

II, I demonstrate that although TCR repertoire development to a highly conserved 

epitope consists of biased gene usage, maintenance of a diverse TCR repertoire 

plays a role in the recognition of HIV-1 variants.  In Chapter III, my studies 

indicate that proliferative capacity does not play a direct role in CD8+ T cell 

suppression of HIV-1 replication in vitro.   I further demonstrate that remaining 

CD8+ T cell effecter functions such as cytokine secretion and cytolytic properties 

are what determine CD8+ T cell abilities of HIV suppression. 

 Collectively my research provides the scientific community with a thorough 

examination of the relationship between HIV-1 epitope-specific TCR diversity and 

CD8+ T cell recognition of HIV variants as well as gives insight into the role of 

proliferative capacity in CD8+ T cell suppression of HIV-1 replication.  These 

findings have important implications for assessing vaccine-induced immune 

responses and the role of immune exhaustion in the ability to control chronic viral 

infections. 

 

 



 

30 

CHAPTER II 

 

TCR DIVERSITY CAN PROVIDE RECOGNITION OF CIRCULATING EPITOPE 

VARIANTS 

 

Abstract 

The role of epitope-specific T cell receptor (TCR) repertoire diversity in the 

control of HIV-1 viremia is unknown. In collaboration with Dr. Dirk Meyer-Olson, I 

performed in depth analyses of T cell clonotypes directed against a dominantly 

recognized HLA B57-restricted epitope (KAFSPEVIPMF; KF11) and identified 

common usage of the TCR beta chain TRBV7 in 8 of 9 HLA B57 subjects 

examined, regardless of HLA B57 subtype.  Despite this convergent TCR gene 

usage, structural and functional assays demonstrated no substantial difference in 

functional or structural avidity between TRBV7 and non-TRBV7 clonotypes and 

this epitopic peptide. In a subject where TRBV7-usage did not confer cross-

reactivity against the dominant autologous sequence variant, another circulating 

TCR clonotype was able to preferentially recognize the variant peptide. These 

data demonstrate that despite selective recruitment of TCR for a conserved 

epitope over the course of chronic HIV-1 infection, TCR repertoire diversity may 

benefit the host through the ability to recognize circulating epitope variants. 
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Introduction 

Chronic viral infections with extensive variation, such as Hepatitis C and HIV, 

pose a great challenge for the cellular immune response (37, 109-111).  Several 

studies have attempted to link the quantity, typically measured by the frequency 

of virus-specific cytokine-producing cells, and quality of host responses, 

assessed by either the ability to secrete a diverse array of cytokines or by the 

proliferative capacity of virus-specific T cells, to the level of control of viremia (88, 

89, 112, 113).  The Kalams laboratory has recently demonstrated that the level of 

epitope-specific TCR repertoire diversity during acute HCV infection may be 

critical for limiting immune escape and for subsequent control of viral replication 

(55). These findings have been replicated in the SIV acute infection model (55, 

58, 114).  However, the level of TCR diversity in subjects with long-term control 

of HIV-1 viremia, and its potential role in the control of viremia has not been 

completely defined. 

Efforts to understand TCR repertoire diversity have focused on epitopes 

frequently recognized by subjects with a particular HLA allele. HLA B57 has 

shown the strongest association with control of viremia, and subjects with this 

allele typically have robust HLA B57-restricted CD8+ T cell responses (10, 42, 

115, 116).   Furthermore, several HLA B57 epitopes have been fine-mapped, 

including a dominantly recognized, highly conserved epitope located in p24 Gag, 

KF11 (10, 36).  Patterns of TCR usage directed against this epitope may shed 

light on how TCR recruitment over the course of infection mediates control of 

viremia. 
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The TCR gene usage of KF11-specific immune responses has been assessed 

for shared motifs.  In previous work Gillespie et al. found conserved TRBV usage 

(TRBV19) and highly conserved CDR3 region motifs among isolated CD8+ T 

CELLS clones from 3 out of 5 subjects recognizing the KF11 epitope (79).  Yu et 

al. more recently studied TCR usage of KF11-specific T cells and found that HLA 

B*5701 subjects had striking usage of TRBV19 with shared CDR3 motifs, very 

little variation of the circulating KF11 epitope, and these TCRs displayed cross 

reactivity to published KF11 variants (80).  In contrast, HLA B*5703-restricted 

responses had more diverse TCR usage and more in vivo variation of the KF11 

epitope, yet were unable to recognize in-vivo HIV variants.  These researchers 

concluded that a 2 amino acid difference between the HLA B*5701 and B*5703 

alleles was likely responsible for the HIV epitope variation seen in HLA B*5703 

subjects, and consequently these subjects had more diverse TCR repertoires 

(80). While it remains unclear whether TCR diversity is a prerequisite for control 

of HIV-1 viremia, the structure of the TCR repertoire is the driving force behind 

the immune system’s ability to recognize and respond to virus variants.  

Therefore, understanding how the selection of TCR repertoires influences the 

host’s ability to contend with HIV variation is important for understanding the 

correlates of control of viremia. 

With assistance from Dr. Dirk Meyer-Olson, I evaluated the TCR repertoires of 

HLA B*57-KF11 specific CD8+ T cells in subjects with either the HLA B*5701 or 

the HLA B*5703 allele.  My goal was to determine whether the diversity of the 

TCR repertoire specific for this immunodominant epitope was directly related to 
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control of HIV-1 viremia. In addition to a detailed TCR repertoire analyses of 

directly sorted T cells, I sequenced autologous virus, performed detailed tetramer 

off-rate analyses, and functional avidity assays by ELISpot.  I identified common 

usage of the TCR beta chain TRBV7 (IMGT) within the KF11-specific repertoires 

of 8 of the 9 HLA B*57 subjects examined, regardless of whether these subjects 

possessed the HLA B*5701 or HLA B*5703 allele.  I found a wide range in the 

number of epitope-specific TCR clonotypes within each subject, and no apparent 

structural or functional advantage to this TRBV7 usage.  However, analyses of 

the functional avidity for a KF11 variant I observed in our cohort, K162R, 

revealed a potential role for clonotype diversity in the recognition of viral variants 

during chronic infection.  These data suggest some degree of selective 

recruitment of TCR for a conserved epitope and highlight convergent TCR usage 

in subjects with a favorable disease course. 

 

Materials and Methods  

Study subjects   

The Vanderbilt-Meharry CFAR Cohort was comprised of subjects recruited 

through the Comprehensive Care Center (Nashville, TN) and all subjects were 

HLA class I typed (4 digit resolution) (DCI, Nashville, TN).  Based on HLA typing 

results, 17 HLA B57 subjects were selected for further study.  All subjects were 

antiretroviral therapy naïve at the time of study with a range of CD4+T cell 

numbers from 144 to 1260/mm3 and log viral load measurements from 1.7 to 
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4.25 copies/ml.  This study was approved by the Vanderbilt University Medical 

Institutional Review Board, and all subjects provided informed consent.   

 

Sequencing of autologous virus  

Autologous virus was population sequenced from plasma RNA.  Viral RNA was 

isolated from plasma and reverse transcribed as described (76).  Gag DNA was 

amplified by PCR with the following primers: 5gag7-28 5’-GCG AGA GCG TCA 

GTA TTA AGC G – 3’ and 3gag1668-1693 5’ TCT GAG GGA AGC TAA AGG 

ATA CAG TT – 3’.   PCR fragments were then gel purified and sequenced bi-

directionally on an ABI 3100 PRISM automated sequencer. Sequencher (Gene 

Codes Corp., Ann Arbor, MI) was used to edit and align sequences.   

 

Sorting of tetramer-positive CD8+ T cell populations 

Fresh or cryopreserved PBMC samples were first CD8+ T cell enriched by 

magnetic separation (Robosep, Stem Cell Technologies, Vancouver, British 

Columbia, Canada), and then stained with phycoerythrin-labeled B*5701/KF11 

tetramer, which has been previously shown to bind equally to B5701- and B5703-

restricted KF11-specific CD8+ T cells (117).  Tetramer-positive CD8+ T cells, as 

well as an equal number of tetramer-negative CD8+ T cells (as a negative 

control) were sorted by a FACS Aria instrument (BD Biosciences) under BSL3 

conditions direCD8+ T cells into STAT 60.  Electronic compensation was 

performed with PBMC from the same subject stained separately with individual 
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antibodies used in the test samples.  The purity of sorted cell populations was 

consistently greater than 95%. 

 

cDNA synthesis and TRBV sequencing 

RNA was extracted from purified T cells using STAT-60 (Tel-Test B, 

Friendswood, TX).  A modified anchored RT-PCR was performed with 

Powerscript Reverse transcriptase (Clontech, Palo Alto, CA) from total RNA as 

previously described (55) using a gene-specific primer for the beta constant 

region with a modified cDNA anchor primer (Clontech, Palo Alto, CA).  Negative 

controls were included at all amplification steps.  Amplification of cDNA by PCR 

was performed using TCR constant region based primers and an anchor-specific 

primer 5’ – AAT CCT TTC TCT TGA CCA TG-3’.  PCR products of 600 to 700 

base pairs were gel purified and cloned using the TOPO TA cloning kit 

(Invitrogen, Carlsbad, CA).  Selected colonies were sequenced using Taq 

DyeDeoxy Terminator cycle sequencing Kit (PE Applied Biosystems, Norwalk, 

CT) and capillary electrophoresis on an ABI 3700 PRISM automated sequencer 

(PE Applied Biosystems, Norwalk, CT).  Sequences were edited and aligned 

using Sequencher (Gene Codes Corp., Ann Arbor, MI) and compared to the 

human TRBV genes database (http://imgt.cines.fr). To accommodate for different 

CDR3 regions length, an alignment using clustalW was performed.  Positions 

with >50% gaps were excluded from analyses to prevent any substantial bias 

introduced by minor populations.  The TRBV classification system is that of the 

international ImMunoGeneTics database.   
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Statistical Analyses 

Amino acid variability in TCR CDR3 regions was determined using the Shannon 

entropy (H) calculation for protein sites as described previously (76)  by the 

formula H = -∑pi log2 pi where pi is the fraction of residues at a site that is amino 

acid type i.  For the 20 amino acids, H can range from 0 (site contains only one 

amino acid in all sequences) to 4.32 (all amino acids are represented equally at 

this site).  Positions that contained >50% gaps were excluded from analyses.  In 

the comparative analyses of TRBV population off rates, the Mann-Whitney 

unpaired T test was used to calculate the difference in means and the Fligner-

Kileen test was used to compare the difference in variance between the TRBV 

populations off rates.     

 

Tetramer off-rate 

Cryopreserved PBMC were thawed and resuspended at a concentration of 

107/mL in R10 medium and stained with PE-KF11 Tetramer (Beckman Coulter) 

at a concentration of 1:100 in FACS buffer + Sodium Azide (1%).  Remaining 

surface antibodies, including the appropriate Vß antibody, were added 10 

minutes after the initial tetramer stain. Vß antibody (Beckman Coulter, USA) 

selection was determined by sequencing data obtained for KF11-specific CD8+ T 

cells (Figure 2-5, Figure 2-7).  An individual well was set up for each Vß 

population in order to determine Vß off rates.  In order to determine the TRBV7 

off rate, all antibodies corresponding to the identified Vß populations by 

sequencing were including in one condition, and the ‘non- Vß’ population was 
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gated in order to measure loss of fluorescence (Table 2-1).  Preliminary 

experiments performed to assess the effects of Vß staining on tetramer off-rate 

kinetics indicated no effect on tetramer off-rate values.  Due to feasibility every 

Vß and tetramer combination were not tested.  PBMC were then washed and 

resuspended in 100 µl of a 1:4 concentration of APC KF11 Tetramer (Beckman 

Coulter) in FACS buffer (PBS/2% FCS/0.1% Sodium Azide).  PBMC were then 

incubated at 37◦C and at each time point (0, 10, 20, 40, 80 minutes) 20 µl of the 

mixture was removed and placed into 180 µl of 1% Para formaldehyde.  Samples 

were analyzed on a FACS Aria using FACS Diva software. CD8+/tetramer+/Vß+ 

cells were gated and this gate extended over the entire range of PE expression 

levels.  The geometric mean of PE fluorescence was measured over time and 

normalized to time 0.  Tetramer off-rates were calculated with Graph Prism 

software, 1st rate kinetics equations.  Individual data sets were normalized to 

compare off rates amongst subjects and individual cell populations.   

 

Functional Avidity ELISpot 

96-well MultiScreen filtration plates (MILLIPORE) were coated with 0.1ug/mL of 

an anti-human gamma interferon (IFNγ) monoclonal antibody (Mabtech, 

Stockholm, Sweden).   CD8+-depleted PBMC were added at a concentration  
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Table 2-1.  Corresponding Vβ antibodies to TRBV sequences.  KF11-specific 
TCR Vβ sequences listed in IMGT nomenclature and corresponding 
commercially available antibodies for surface staining in the Arden nomenclature. 
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of 100,000 cells per well in a volume of 100  µl of RPMI 1640 medium 

supplemented with fetal calf serum (10%), HEPES Buffer (10mM), L-glutamine 

(2mM) and penicillin-streptomycin (50U/mL) (R10 medium).  Cryopreserved 

PBMC were CD8+ enriched (Stem Cell, Vancouver CA) by magnetic separation, 

sorted on a FACSAria to >98% purity by Vβ specificity (Figure 2-1), and added 

back to the ELISpot plate in the appropriate wells. Vβ specificity and selection 

were based on the individual Vβ populations identified by sequencing of the 

KF11- tetramer specific populations (Table 2-1).  In order to insure a positive and 

interpretable response, the number of selected CD8+ T cells added back was 

individually calculated based on tetramer percentage as well as clonotype 

frequency within that tetramer population.  A positive response was defined as a 

minimum of 50 SFC/106 cells at all concentrations and 3 times above 

background.  Peptides were serially diluted in R10 medium and added to each 

well in a volume of 10 µl.  Plates were incubated over night at 37oC in 5% CO2 

and developed the following day (118).  Wells containing PBMC and medium 

with SEB or without any peptide were used as positive and negative controls 

respectively, and run in duplicate on each plate.  Peptide-stimulated, CD8 -

depleted PBMC were also included as a negative control.  To calculate the 

number of specific T cells, the number of spots in the negative control wells was 

subtracted from the counted number of spots in each well.  All negative controls 

were less than 30 SFC/106 cells. 
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Figure 2-1.  Schematic of Vβ sorting from enriched CD8+ T cells.  Numbers 
indicate log scale of magnitude of fluorescence. 
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Results 

KF11-specific CD8+ T cell responses remain stably dominant over time  

In order to examine the KF11 specific response, Shelly Lorey identified 17 

subjects with expression of the HLA B*57 allele from a cohort of 146 therapy-

naïve subjects and I evaluated their response to HIV-1 HLA class I-restricted 

epitopes. I assessed these subjects’ abilities to recognize HIV-1 peptides by IFNγ 

ELISpot, and compared the sum of all HLA B*57 restricted responses to the total 

IFNγ response directed against all HLA restricted peptides.  The total B*57-

restricted responses typically made up the majority of the overall HLA-restricted 

responses (average 74%) (Figure 2-2).  This confirms recent findings describing 

the immunodominance of HLA B*57-restricted responses (116).  I was able to 

longitudinally follow 8 of these subjects.  In 7 of the 8 subjects, this HLA B*57 

dominance remained stable over a 10-21 month follow-up period (Figure 2-3).  At 

the epitope level, these subjects had dominant recognition of the HLA B*57-

restricted KF11 peptide.  Fourteen of the 17 subjects tested recognized this 

epitope, and in 10 of these subjects, it was the highest magnitude response. Of 

the 8 longitudinally followed subjects, 6 subjects that recognized KF11 

maintained dominant KF11 responses over time (Figure 2-4).  
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Figure 2-2.  HLA B*57-restricted responses are dominant.  Black bars 
represent the B*57 restricted response as a percentage of total HLA-restricted 
responses. 
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Figure 2-3.  HLA B*57-restricted responses remain dominant over time.  
Black squares represent total HLA B*57-restricted responses at each time point.
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Figure 2-4.  KF11-specific CD8+ T cell responses remain dominant over 
time.  Black boxes represent magnitude of KF11-specific response at each time 
point. 
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Analyses of epitope-specific TCR repertoire diversity 

Having identified subjects with robust recognition of the KF11 epitope, I next 

evaluated the diversity of these immune responses at the clonotype level.  With 

assistance from Louise Barnett in the Center For AIDS Research 

Immunopathogenesis Flow Cytometry core, I directly sorted KF11-specific T cells 

from 9 chronically infected HIV+ B57 subjects (Table 2-2 and Figure 2-5).  In 

parallel, an equivalent number of KF11 tetramer-depleted CD8+ T cells were 

sorted and also subjected to TCR sequence analyses.  At least 45 sequences 

from each sorted population of cells were analyzed for each individual subject.  

Sequences were assessed for diversity by calculating the entropy of aligned Vβ 

CDR3 sequences and categorized as individual clonotypes by identification of 

CDR3 nucleotide sequences.  The mean (and median) number of TCR 

clonotypes utilized was 5, with a range of 1 (subject 10067) to 10 clonotypes 

(10070 and 20018) within each KF11-specific repertoire (Figure 2-6).  Despite a 

previous report suggesting differences in TRBV usage between the KF11 specific 

TCR repertoires of B*5701 and B*5703 subjects (80), I found no such differences 

in our subject cohort. In 8 of the 9 subjects, regardless of the level of clonotype 

diversity as defined by distinct CDR3 gene usage, clonotypes tended to use the 

TRBV7 gene. Only one individual, subject 10027 did not use TRBV7 for this 

response. We could not identify common motifs within the CDR3 regions of the 

KF11 specific TCR repertoires in our subject group (Figure 2-6).  However, when 

compared to the B*5703 subject group published by Yu et al (80) I found four 

CDR3 motif similarities, and shared TRBJ usage amongst our subjects, and the 

majority of the clonotypes utilized TRBV7.
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Table 2-2.  Therapy naïve HIV+ cohort.  (*) Virus could not be sequences from 

plasma nor from proviral DNA.  CD4 and CD8 T cell data reflects the number of 

cells per cubic millimeter of blood. 
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Figure 2-5.  Frequency of KF11-specific CD8+ T cells.  Numbers along axes 
reflect the log scale for the magnitude of fluorescence. 
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Figure 2-6.  KF11-specific clonotypes.  TRBV7 usage highlighted in gray; 
subjects are listed from low to high viral load beginning with the top left. 
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 Only subjects 20018 and 10070 shared some of the following CDR3 motifs with 

the previously published B*5703 cohort (80): TRBV7-6 -ASSSW-X-G-X-D-X-Q-X 

(TRBJ 2-1): TRBV7-9 -ASS-XX-GGYT (TRBJ 1.2): TRBV24-1 - ATSDL-XXX-QF 

(TRBJ 2.1): TRBV7-9 - ASE-X-GNTIY (TRBJ 1.3) (80).  Despite this occasional 

presence of shared motifs, these clonotypes did not make up the majority of 

sequences within each KF11-specific population. 

Of subjects with TRBV7 clonotypes within KF11 specific repertoires, the 

frequency of TRBV7 usage amongst TCR sequences ranged from 25% (subject 

10071) to 100% (subject 10067).   I found no relationship between the diversity of 

KF11-specific TRBV7-clonotypes or the percentage of TRBV7-using tetramer+ 

cells and markers of HIV-1 disease progression such as concurrent CD4+ T cell 

number or viral load (Table 2-2).  In order to determine whether the high 

frequency of TRBV7 within KF11 specific repertoires was a true usage bias, 12 

other MHC class I-restricted epitope specific repertoires were analyzed (3 non 

KF11-specific HLA B57-restricted responses, and 9 non HLA B57-restricted 

responses). The TCR sequences derived from these responses demonstrated 

TRBV7 usage in only 2 cases compared to 8 of the 9 KF11 specific repertoires (p 

= 0.001 Fishers Exact, data not shown), suggesting that TRBV7 usage bias is a 

feature of the KF11-specific immune response regardless of the HLA B57 

subtype.  

I next evaluated the entropy of TCR sequences specific for KF11. Prior studies 

from our laboratory and others (55, 71, 77) suggested diverse TCR usage during 

acute infection could limit epitope escape and potentially contribute to control of 
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viremia, but there are limited data evaluating TCR repertoires during HIV-1 

chronic infection (79, 119, 120).  The range in mean entropy of KF11 specific 

sequences from the 9 subjects was 0 to 1.04 (Figure 2-7) and there was a strong 

correlation (p = 0.0150) between the entropy values and the number of 

clonotypes within each individual repertoire (Figure 2-8).  KF11 specific TCR 

entropy values were substantially lower than those of equivalent numbers of 

tetramer-depleted CD8+ T cells (p < 0.001 Mann-Whitney) derived from the same 

sort, and ruled against PCR bias (Figure 2-9).   

In order to determine the definition of narrow and broad repertoires defined by 

mean entropy calculations, I compared the entropies of KF11 specific repertoires 

to the entropies of 12 other epitope specific TCR repertoires (3 HLA B57-

restricted and 9 non-HLA B57-restricted responses), as well as to entropies I 

calculated based on recently published results by Yu et al (80).  The range in 

entropy was similar between the two B57 cohorts (Yu et al 0.00-1.37).  I found no 

difference in mean entropy values between the KF11 specific repertoires and the 

other epitope specific repertoires (p = 0.28 Mann-Whitney), indicating that KF11 

specific TCR repertoires have similar diversity to that of other epitope-specific 

repertoires.  I also found no relationship between the degree of KF11-specific 

TCR repertoire diversity and markers for disease progression such as CD4 count 

or viral load in the 9 subjects.  Although the level of KF11 specific CDR3 diversity 

was not distinct from other epitope specific sequences, our observation of 

TRBV7 usage bias prompted a more detailed structural and functional analyses 

of KF11-specific cells at the clonotype level.    
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Figure 2-7. Vβ CDR3 region entropy of KF11-specific CD8+ TCR repertoires.  
Amino acids of the Vβ CDR3 region are depicted along the x-axis while the range 
in calculated entropy (0-4.3) is depicted on the y-axis.
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Figure 2-8.  Association between the number of clonotypes and mean 
entropy values within KF11-specfic responses.  Mean entropies are 
represented on the x-axis.  The number of clonotypes within each of the nine 
KF11-specific repertoires is represented on the y-axis. 
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Figure 2-9. VβCDR3 region entropy values of KF11 tetramer-depleted CD8+ 
T cells.  The amino acid position of the CDR3 region is on the x-axis and entropy 
values (0-4.3) are on the y-axis.
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Structural avidity of KF11 specific TCR repertoires 

To determine whether shared TRBV7 usage corresponds to distinct structural or 

functional characteristics of subpopulations of tetramer positive cells, in 

collaboration with Dr. Scott VanCompernolle, I conducted tetramer off-rate 

experiments that included TCR Vβ staining and analyses by flow cytometry.  

Although antibodies to TRBV7 are not currently available, in each case TRBV 

antibodies were available for the corresponding non-TRBV7 TCR sequence 

derived from directly sorted tetramer+ cells (Table 2-1).  Briefly, our gating 

scheme encompassed the entire breadth of PE fluorescence of tetramer+ Vß+ 

populations (Figure 2-10C), and the geometric mean fluorescence was used as a 

raw measurement of tetramer decay.  Raw measurements were normalized to 

time 0 and off rates were calculated using 1st rate kinetics (GraphPrizm – 

GraphPad Software). 

In general, the tetramer off-rates of KF11-specific CD8+ T cells with TRBV7 

usage were faster than non-TRBV-using cells (TRBV7 half life: 20 minutes vs. 

nonTRBV7 half life: 35 minutes, p = 0.17 Mann-Whitney) (Figure 2-10A and B).  

Therefore, although this observation only trended towards significance, TRBV7 

clonotypes appeared to have lower structural avidity for the HLA B57: KF11 

complex.  In addition, the variance of off-rates amongst TRBV7-using KF11-

specific populations was low as compared to the non-TRBV7 populations (p = 

0.015 Fligner-Killeen test of homogeneity of variances), indicating structural 

similarity amongst TRBV7 clonotypes.  I found no relationship between TRBV7 

structural avidity (half-life) and HIV viral load.  
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Figure 2-10.  Tetramer off-rate analyses of KF11-specific clonotypes.  (A) 
TRBV7 clonotype off rates (right) and non-TRBV7 clonotype rates (left).  (B) 
Mean half lives compared between TRBV7 clonotypes and non-TRBV7 
clonotypes.  Each symbol represents a separate subject.  (C) Gating scheme for 
measuring individual geometric mean values of each population.  Numbers on 
axes reflect the scale of magnitude of fluorescence. 
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Clonotypic recognition of circulating epitope variants 

With the assistance of Rita Smith, I next assessed whether T cell clonotype 

structural avidity was related to functional avidity, which was assessed by IFNγ 

ELISpot.  HIV Gag was sequenced from the plasma from 6 of the 9 study 

subjects.  We were unable to obtain Gag sequences from subjects with the 

lowest viral loads in our study cohort (10004, 10071 and 10067); despite efforts 

that included large volume plasma concentration and nested PCR specific for 

proviral gag DNA.  KF11 has been described as a highly conserved epitope, and 

we found the majority of subjects harbored the consensus HIV clade B 

sequence.  However, 2 subjects (subjects 10024 and 10076) harbored a K162R 

mutation (Table 2-2).  Due to the detailed nature of the sorting experiments, and 

the relatively large cell requirements, I focused my subsequent experiments on 

these two peptide sequences. 

My initial studies included whole PBMC IFNγ ELISpot with both the consensus 

KF11 (KAFSPEVIPMF) and the K162R variant (RAFSPEVIPMF).  Results from 

whole PBMC IFNγ ELISpot indicated universal recognition of both the consensus 

KF11 and the K162R variant in all subjects.  The magnitude of the responses to 

KF11 consensus peptide in subjects tended to be equal or higher than that of 

responses directed against the K162R variant (Figure 2-11).  Of the 2 subjects 

with a dominant circulating K162R variant, subject 10024 had a higher magnitude 

of response to R162K (maximal response 1,450 SFC/106 PBMC) as compared to 

KF11 consensus peptide (maximal response 495 SFC/106 PBMC), but the 

functional avidity of the consensus KF11 peptide (SD50 20 ng/mL) was higher 
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than that of the R162K variant (SD50 2500 ng/mL).  Conversely, subject 10076 

exhibited preferential recognition of the consensus KF11 peptide (Figure 2-11), 

with a higher magnitude of response (maximal response 7750 SFC/106 PBMC), 

however functional avidity (SD50 4 ng/mL) was similar when compared to R162K 

recognition (maximal response 2500 SFC/106 PBMC, SD50 5 ng/mL).  With such 

a high incidence of cross-recognition of K162R, I wanted to determine whether 

cross-reactivity to this variant was mediated by the TCR using the dominant 

TRBV7 gene. 

To evaluate differences in peptide recognition by T cell clonotypes, with the help 

of Louise Barnett, I performed a series of flow sorting experiments in which CD8+ 

T cells were separated and evaluated based on their TCR Vβ expression.  Once I 

determined the TCR gene usage of the tetramer+ cell populations in each 

individual, I used this information to either positively select or deplete CD8+ T 

cells of the corresponding TRBV populations.  For this series of experiments I did 

not simultaneously stain with the KF11 tetramer since tetramer binding led to 

activation and interferon gamma secretion from the tetramer positive cells (data 

not shown). Since a commercial TRBV7 (Vβ6) antibody is not available, for each 

subject I depleted CD8+ T cells of the entire TRBV population corresponding to 

the “non-TRBV7” population of tetramer positive cells.  For example, total CD8+ T 

cells from subject 10071 were depleted of all TRBV5-1 using T cells, thereby 

leaving behind all KF11-specific TRBV7 expressing cells.  Negative controls were 

set up to insure that responses were only elicited from KF11 specific CD8+ T  
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Figure 2-11.  Dominant recognition of KF11 consensus compared with 

variant peptide.  KF11 responses (black) and K162R responses (gray).  SD50 

values: KF11 (solid) and K162R (dotted).  Subject data are listed from low to high 

frequency of TRBV7 clonotypes.
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cells (described in methods).  These two populations of CD8+ T cells (in this case 

the TRBV5-1 CD8+ sorted population as well as the CD8+ TRBV5-1 depleted 

population) were added back to CD8-depleted PBMC pulsed with serially diluted 

peptides, and evaluated by IFNγ ELISpot assay. 

The consensus KF11 peptide was recognized by all identified KF11-specific 

clonotypes.  In subject 10071, both TRBV5-1 and TRBV7-utilizing CD8+ T cells 

recognized the KF11 peptide with similar functional avidities with SD50 values of 

3 ng/mL (TRBV5-1 clonotype) and 6 ng/mL (TRBV7 clonotype) (Figure 2-12A).  

In contrast, the circulating clonotypes in subjects10024 (Figure 2-12B) and 10076 

(Figure 2-12C) had different SD50 values.  In subject 10024 the TRBV7 

clonotype exhibited higher avidity (SD50 0.6 ng/mL) than TRBV3 (SD50 7.9 

ng/mL).  In subject 10076, the TRBV7 clonotype exhibited lower avidity (SD50 50 

ng/mL) than TRBV2 (SD50 5 ng/mL).  Since a prior study suggested that 

dominant TRBV usage may imply cross-reactivity against epitope variants (121), 

I next evaluated recognition of the only epitope variant present in our study 

subject population, K162R. 

Although all clonotypes were able to recognize the KF11 consensus peptide, not 

all were able to recognize epitope variants.  In subject 10071, both clonotypes 

were able to recognize the K162R variant peptide.  The TRBV5-1 clonotype 

maintained higher functional avidity (SD50 0.6ng/mL) than the TRBV7 clonotype 

(SD50 8 ng/mL) (Figure 2-12A).  Analyses of subject 10024 demonstrated 
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Figure 2-12.  Functional avidity varies on the clonotype level.  Responses 
were normalized to the maximum response (SFC/106 cells).  (A) Subject 10071 
(B) Subject 10024 (C) Subject 10076. 
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that the TRBV7 clonotype had a higher K162R avidity, with a SD50 of 1.25 

ng/mL, as compared to the TRBV3 clonotype with a SD50 of 251 ng/mL (Figure 

2-12B).  Results from subject 10076 indicated that only the TRBV2 clonotype 

recognized the variant with an SD50 of 8 ng/mL (Figure 2-12C).  The TRBV7 

population was unable to recognize the variant, even at the highest concentration 

despite recognition of the consensus KF11 peptide (Figure 2-12C).  This series 

of experiments demonstrates that functional avidity and cross-reactivity of an 

epitope-specific response can vary at the clonotype level. 

 

Discussion 

Epitope-specific TCR diversity has been shown to influence the course of chronic 

viral infections. In the HCV chimpanzee model, our laboratory found that narrow 

TCR diversity during the early phase of infection was associated with subsequent 

immune escape and the establishment of chronic viral infection, whereas broader 

epitope-specific TCR diversity was associated with a lack of escape or resolution 

of infection (55).  In the SIV model, the level of epitope-specific TCR diversity 

during early infection is linked to mutations within dominant MHC class I-

restricted epitopes (64, 69, 114).  The TCR repertoires of two dominantly 

recognized Mamu A*01-restricted epitopes CM9 (Gag) and TL8 (Tat) differ in 

their level of TCR diversity, as the CM9 specific repertoire is diverse in 

comparison to the TL8 specific repertoire (114).  In-vitro studies suggested that 

TL8-specific CD8+ T cells were more effective suppressing viral replication; 

however, the TL8 epitope mutation is known to occur very early in the course of 
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SIV infection, providing escape with little fitness cost to the virus (64).  This 

emphasizes that a limited TCR repertoire may be quite effective at suppressing 

viral replication, but in the environment of extensive variation and high-level viral 

replication in vivo, the limited repertoire is more susceptible to immune escape. It 

is unknown whether broad TCR repertoires directed against conserved epitopes 

are maintained throughout the course of chronic infection in this model.  

The HLA B*57-restricted epitope KF11 is both dominantly recognized and highly 

conserved (10). Here I demonstrate a wide range of clonotypic diversity among 

subjects able to recognize this epitope.  However, despite this clonotypic 

diversity, I found dominant TRBV7 usage among KF11-specific clonotypes. HLA 

B*57- restricted responses, and responses to the KF11 epitope in particular, are 

dominant in HIV-1+ individuals with chronic infection (116).  Migueles et al 

observed conservation of HLA B*5701-restricted epitopes and the responses 

directed against these epitopes during chronic infection in both HLA B*5701 long 

term non progressors and progressors, suggesting that B*5701 epitope variation 

does not contribute to disease progression in these subjects (10).  Even in the 

case of dominant circulating epitope variants, immune responses against a 

consensus peptide can remain dominant during chronic infection, as Koibuchi et  

al demonstrated in 2 non HLA B*57 subjects followed longitudinally over 6 years 

(122).   I likewise observed stably dominant KF11 responses in all 6 subjects that 

recognized this epitope, despite mutations within KF11 in the circulating plasma 

viral populations of 2 of these subjects (Table 2-2).   
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I found no difference in TRBV usage between HLA B*5701 and HLA B*5703 

subtypes. This observation is in contrast to recent findings suggesting the 

dominant usage of TRBV19 (79, 80) and structural differences in TCR repertoires 

among HLA B*5701 controllers when compared to subjects with the B*5703 

allele (80).  I only found TRBV19 usage in one HLA B*5701 subject, and in this 

case it made up a very small proportion of the KF11-specific TCR repertoire (2 

out of 50 TCR sequences in subject 10004).  Instead, I found dominant TRBV7 

usage in our subjects regardless of HLA B*57 subtype, results which are similar 

to the TCR usage previously described in B*5703 subjects (80).  The reason for 

these discordant results is not clear, but may be due to the shorter duration of 

infection, or early initiation of anti-retroviral therapy during acute HIV infection in 

some cohorts (80, 123-125), which may influence the development of the HIV 

specific CD8+ TCR repertoire (126, 127). Our subjects were completely anti-

retroviral therapy naïve, and were infected a mean of 13 years (range 3-24).  In 

this regard the natural infection history of our study subjects may more closely 

resemble the B*5703 African subjects examined by Yu et al (80).  It is therefore 

possible that the duration of chronic infection in the absence of early anti-

retroviral therapy has a greater influence on the make-up of the TCR repertoire 

than HLA subtype or the clade of HIV infection. 

Common TRBV19 usage among KF11 specific T cell clones was demonstrated 

by Gillespie et al (79).  In that study TRBV usage was first analyzed by Vβ 

staining.  Based on the Vβ staining results, appropriate TRBV specific primers 

were subsequently used for TRBV sequencing (79).  There is currently no 
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commercially available TRBV7 (Vβ6) antibody, and the current panels of TRBV 

antibodies only cover approximately 70% of expressed TRBV chains.  Thus, 

antibody screening would overlook TRBV7 usage. Until more antibodies are 

available, direct sorting of epitope-specific cells is more reliable for TCR 

repertoire analyses. 

The duration of HIV infection prior to study initiation may also determine the level 

of TCR diversity.  I found no difference in TCR CDR3 variability (entropy 

analyses) between responses in subjects with HLA B*5701 and B*5703 

subtypes.  I performed a similar analyses on the data published by Yu et al and 

likewise found no difference in entropies between responses restricted by the 

different HLA subtypes (p = 0.28 Mann-Whitney).  Yu et al also demonstrated 

that 6 of 10 HLA B*5703 subjects used the TRBV7 genes without evidence of 

CDR3 motifs for this response.  The non-TRBV7 sequences showed a wide 

variety of TRBV genes, likewise without evidence of CDR3 motifs, which is 

concordant with our results.  However, when I compared cohorts we found 

several shared CDR3 motifs as well as corresponding TRBJ regions amongst 3 

TRBV7 clonotypes and 1 TRBV24-1 clonotype between subjects 10070 (B*5703) 

and 20018 (B*5701) from my study and subjects within the cohort published by 

Yu et al, despite differences in B*57 subtypes.  This provides evidence for 

convergent TCR usage beyond the TRBV portion of the epitope-specific TCR.   

In my study, I found KF11 specific TCR diversity not to correspond with viral load, 

CD4 count, or duration of infection. Yet, since the HIV specific TCR repertoire 

shapes and directs the HIV-specific CD8+ T cell immune response, I extended 
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my analyses to the structural and functional aspects of the KF11-specific TCR 

repertoire at the clonotype level.  TRBV7 structural avidity was assessed by a 

tetramer off-rate assay similar to recently published methods (128).  Recent 

findings have indicated high structural avidity as a beneficial characteristic of HIV 

specific CD8+ T cells (88, 128-131), as well as convergent evolution of epitope-

specific responses in murine models and human influenza studies (132-134).  

These data suggest a beneficial role of common TRBV usage against conserved 

epitopes, perhaps as a result of greater functional capacity. However, I found 

TRBV7 clonotypes generally had a lower structural avidity than other KF11-

specific TRBV clonotypes.  The variance in tetramer off-rates among TRBV7 

clonotypes was significantly narrower than those of the non-TRBV7 clonotypes (p 

= 0.015 Fligner-Kileen) indicating a direct influence of TRBV structure on TCR 

avidity.  This does not necessarily mean that strong structural avidity is not 

important for a particular immune response, but raises the possibility that an 

avidity threshold for optimal TCR activation exists, as has been described (135).  

One caveat of our off rate experiments was the potential for Vß antibodies to 

influence the binding of the KF11 tetramer, and subsequently the possible 

change in off rate kinetics.   Previous experiments in our lab in a subject that 

recognized a B*1501 tetramer indicated no effect on tetramer off rates of Vß 

populations with our without the presence of a Vß antibody (data not shown).  

However, to truly account for any influence of the Vß antibodies on tetramer off 

rate kinetics, one would need to analyze all Vß antibodies used.  With only 70% 

of Vß commercially available antibodies it would be difficult to conduct a thorough 
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examination, especially in the case of TRBV7, and thus, this remains a limitation 

of our tetramer off rate findings.  HIV-1 infection has been associated with 

immune exhaustion, as measured by the expression of surface markers such as 

CD57 and PD-1 (99, 100, 136).  When antigen is persistently present it is 

possible that high structural avidity is disadvantageous, leading to constant 

activation and eventual exhaustion of the high avidity clonotypes (128).  

Despite the frequent TRBV7 usage of KF11-specific CD8+ T cells in our study 

cohort, TRBV7 usage does not necessarily correspond to recognition of epitope-

variants.  Prior studies have described narrow KF11-specific TCR repertoires in 

some individuals (80), as well as the ability of KF11-specific CD8+ T cells to 

recognize in vivo epitope variants (79, 80).  It has therefore been suggested that 

the degree of epitope variant cross recognition is more important than the overall 

diversity of the KF11-specific TCR repertoire for control of viral replication. To 

further explore the epitope recognition of TRBV7 clonotypes, I assessed 

functional avidity of sorted subpopulations of tetramer+ cells to the epitope 

variants identified in our subject cohort. In the overall PBMC peptide titrations all 

subjects recognized the KF11 consensus peptide as well as the K162R variant 

peptide, although KF11 recognition was generally higher than K162R in 

magnitude at maximal response (Figure 2-11).  However, at the clonotype level, 

differential recognition and functional avidity was observed.  Subject 10071 

recognized both KF11 and K162R, and both KF11-specific clonotypes (TRBV7 

and TRBV5-1) demonstrated cross-recognition of the K162R variant.  Results for 

subject 10024 were similar.  In contrast, although both KF11-specific clonotypes 
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from subject 10076 recognized the consensus KF11 peptide, the TRBV7 

clonotype did not recognize the R162K variant even at the highest tested 

concentration.  Both subjects 10076 and 10024 were identified to possess the 

K162R variant in circulating viral populations and subject 10076 has the highest 

viral load in our subject group (Table 2-2).  Due to sample availability and the 

extensive sorts that require large numbers of PBMC, I was only able to focus on 

the consensus KF11 and one KF11 variant we were able to identify in our cohort, 

thus our findings are limited to the two peptides analyzed.  These data 

demonstrate that dominant clonotypes do not necessarily cross-react with 

epitope variants, which we have previously described at the clonal level (137), 

and suggest a potentially beneficial role for maintenance of TCR diversity even in 

the setting of restricted TRBV usage.   

While I could not find a relationship between TRBV7 usage within the KF11 

specific repertoire and overall disease outcome it appears to be a reproducible 

feature among chronically infected HLA B57 subjects (80).  My finding that 

TRBV7 clonotype avidity tended to be lower than that of the other KF11 specific 

clonotypes is consistent with the early deletion of high avidity T cell clonotypes 

after acute infection (128). Dominant TRBV7 usage may therefore represent 

convergent evolution toward populations of epitope-specific T cells with sufficient 

avidity to mediate control of viremia during chronic infection.    

These studies highlight the importance of continuing analyses of the HIV-specific 

immune response at the clonotype level, which will help define how the 

development and maintenance of epitope-specific TCR repertoires influences 
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HIV disease progression.  However, the true mechanism by which TCR 

repertoire diversity plays a mechanistic role in the control of HIV-1 replication will 

need to be elucidated by directly measuring CD8+ T cell-mediated suppression 

on an epitope-specific and clonotype level.  As new assays are developed for the 

evaluation of vaccine-induced immune responses it will be important to maintain 

incorporation of clonotype analyses as a bridge between structure, phenotype, 

and the ability to control HIV-1 replication. 
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CHAPTER III 

 

PROLIFERATIVE CAPACITY PLAYS A MINIMAL ROLE IN DIRECT CD8+ T-
MEDIATED SUPPRESSION OF HIV REPLICATION IN VITRO 

 

 

Abstract 

Proliferative capacity of HIV-specific CD8+ T cells has been associated with 

control of HIV viremia in vivo.  It has been hypothesized that high proliferative 

capacity provides continuous supply of antiviral effector cells, which then mediate 

immediate antiviral effector functions. Here, we describe significant differences in 

proliferative capacity between sorted CD8+CD57- and CD8+CD57+ T cell subsets 

from HIV-positive subjects in response to HIV super-infection in vitro.  Although 

CD57 proved a reliable marker to gauge proliferative capacity, superior 

expansion potential did not translate to dramatic increases in virus suppression 

by CD8+CD57- T cells.  Further analyses revealed CD8+CD57+ T cells to have 

increased suppression on a gag-specific per-cell basis, and with a trend toward 

increased frequencies of HIV-specific IFNγ+TNFα+ CD8+ T cells.  These data 

highlight the superior ability of differentiated CD8+ effector cells with minimal 

proliferative capacity to suppress HIV replication. 

 

 

 
 
 
 



 

70 

Introduction 
 
CD8+ T cells are a critical component of the immune response to viral infections, 

with capabilities of direct cell lysis and secretion of anti-viral cytokines and 

chemokines (86, 113, 138), and have been indicated as an important 

immunological determinant in the progression of HIV-1 disease (27, 33). HIV-

specific CD8+ T cells have been shown both in observational human studies as 

well as direct CD8-depletion experiments in non-human primate models to be 

critical for maximum control of HIV-1 and SIV replication respectively (27, 33, 69, 

73, 139).  To further understand the effectiveness of CD8+ T cell-mediated 

immune responses, we need improved methods to assess the ability of defined 

CD8+ T cell subpopulations to suppress HIV replication. 

In animal studies of chronic viral infection, the expansion potential of T cells after 

adoptive transfer mediates control of viremia (140).  Several studies have shown 

a strong relationship between the ability of CD4+ (124) and CD8+ T cells (30, 89, 

90, 138, 141, 142) to proliferate in response to cognate antigens and control of 

HIV-1 viremia. The expansion of HIV-specific CD8+ cells in-vitro is also 

associated with increased effector function (30, 89, 99, 100, 124, 138, 143).  

These observations suggest that while the exact effector functions that mediate 

suppression of viral replication are unknown, the ability of cells to expand in 

response to cognate antigen and acquire these functions may be the most 

important predictor of a successful response. It is unknown whether proliferating 

CD8+ T cells provide immediate antiviral effector functions themselves or, 
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alternatively, provide a constant supply of short-lived effector cells with strong 

antiviral properties.  

Despite extensive data correlating CD8+ T cell function and overall control of 

HIV-1 viremia, the mechanisms by which these effector functions execute 

suppression of HIV replication are not completely understood.  Recent studies 

have employed assays to directly measure CD8+ T cell ability to suppress HIV 

replication in vitro (70, 90, 98, 144, 145).  Saez-Cirion et. al. evaluated the ability 

of directly isolated CD8+ T cells to suppress HIV replication in target cells.  They 

found enhanced ability of CD8+ T cells from HIV controllers to suppress viral 

replication, and this ability was associated with an enrichment of a particular 

cellular phenotype with low levels of CD38 and high levels of HLA-DR (98).  In a 

more recent study, Migueles et al demonstrated the ability of in-vitro expanded 

CD8+ T cells to acquire cytotoxic function and suppress HIV replication (90).  

Although these data provide insight into the relationship between CD8+ T cell 

phenotype, proliferative potential and suppression of viral replication, a more 

direct assessment of CD8+ T cells derived directly ex vivo and sorted by 

phenotype offers a more precise way to determine mechanisms of viral 

suppression in vivo.       

In this study I evaluated the ability of CD8+ T cells with high and low proliferative 

capacity to suppress HIV super-infection in vitro.  CD57 is an immunological 

marker that identifies CD8+ T cells that are senescent (99, 108).  CD57, also 

known as HNK-1 (Human Natural Killer-1), is expressed on several different 

types of cells, including Natural Killer (NK) cells and T lymphocytes (146). 
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Several studies indicate CD8+CD57+ T cells have limited ability to proliferate to 

cognate peptide, have decreased telomere length, and are more prone to AICD 

(98, 99, 108).  However, CD8+ T cells expressing CD57 are capable of producing 

IFNγ and TNFα (99, 108), and have been shown to have extensive effector 

cytotoxic capabilities (108).  Thus, the ability to isolate T cells based on CD57 

expression allowed me to perform a focused analysis of the role of proliferation in 

the control of viral replication. 

I simultaneously assessed CD8+ T cell proliferation and CD8+ T cell suppression 

of viral replication in vitro.  CD8+ T cells derived ex vivo from HIV+ subjects were 

able to suppress viral replication in vitro in a dose-dependent manner, but not 

those from HIV- subjects.  I observed dramatic differences in proliferative 

capacity between sorted CD8+CD57+ and CD8+CD57- T cells in the presence of 

in vitro HIV-1 super infection.  Despite the superior ability of CD8+CD57- T cells to 

proliferate in vitro, this ability did not correlate with suppression of HIV-1 

replication.  When I analyzed the ability of Gag-specific CD8+ T cells to suppress 

viral replication on a per-cell basis, CD8+CD57+ T cells had higher suppressive 

ability.  These data demonstrate a minimal ability of CD57 expression (as a 

surrogate for a lack of proliferative capacity) to predict suppression of HIV in vitro 

and perhaps suggest a higher degree of significance for CD8+CD57+ T cell 

effector functions such as cytolysis and anti-viral cytokine production. 

 

Materials and Methods 

Study Subjects 
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The Vanderbilt-Meharry CFAR Cohort is comprised of subjects recruited through 

the Comprehensive Care Center (Nashville, TN) and all subjects were HLA class 

I typed (4 digit resolution) (DCI, Nashville, TN).  Based on accessibility to 

aphaeresis samples, 12 subjects were selected for further study.  All subjects 

were antiretroviral therapy naïve at the time of study with a range of CD4+T cell 

numbers from 144 to 1374/mm3 and log viral load measurements from 1.7 to 

5.33 log viral load (copies/mL).  This study was approved by the Vanderbilt 

University Medical Institutional Review Board, and all subjects provided informed 

consent.   

In vitro CD8 Depletion-Add Back-Infection Assay 

Fresh or Frozen PBMC were CD8-depleted by magnetic separation (Robosep, 

Stem cell Technologies, Vancouver, Canada) to a minimum of 95% purity.  Total 

CD8-depleted PBMC, as well as complete PBMC, were then incubated at 5x106 

cells/mL for approximately 18 hours at 37oC in 5% CO2, in RPMI 1640 medium 

supplemented with fetal calf serum (10%), HEPES Buffer (10mM), L-glutamine 

(2mM) and penicillin-streptomycin (50U/mL) (R10 medium) and Phytoglutinin A 

(PHA) (5µg/mL).  Following the 18 hour incubation, both the PBMC and CD8-

depleted PBMC cultures were spun down and washed twice with PBS 

supplemented with 1% fetal calf serum and resuspended in R10 medium 

supplemented with 100 units of IL-2 (R10-100 medium).  CD8- PBMC were 

resuspended at 106/mL, and PBMC were resuspended to a concentration 

adjusted to 106 CD4+ T cells/mL.  Once resuspended, (CD8- ) PBMC and PBMC 

cultures were placed in a 96 well plate, 100µl/well, and then infected, 4 hours 



 

74 

prior to the add back of CD8+ T cells, or CD8+ T cell subsets, at an MOI of 2. 

During the 4-hour infection, more PBMC from the same subject were CD8+ T cell 

enriched by magnetic separation (Robosep, Stem Cell Technologies) at a 

minimum 95% purity.  For general CD8+ T cell add back experiments, purified 

CD8+ T cells from the magnetic separation were resuspended in R10-100 

medium and added back to the (CD8- ) PBMC cultures in a 50µl volume, 4 hours 

post infection, at the appropriate effecter to target (E:T) ratio.   

Magnetic bead-enriched CD8+ T cells were stained with anti -CD3, -CD8, -CD57, 

a dump channel that included anti –CD14, CD16, and –CD56 (BD Bioscience, 

California) and a viability dye (BD Bioscience, California).  Purity yields were a 

minimum of 95%.  Each CD8 population was first CFSE stained as described 

previously (147). Briefly, cells were resuspended in PBS alone at 20x106 

cells/mL.  CFSE was first diluted 1:6000 in PBS, and then added 1:1 to 

resuspended effector cells.  Cells were then incubated in a 37oC water bath for 3 

minutes in the dark.  The CFSE stain was quenched by adding 50% fetal calf 

serum at 1:1 and incubated at room temperature for 5 minutes.  Samples were 

then spun down and washed once more with 50% fetal calf serum, and then 

washed twice with R10 medium.  Effector cells were re-suspended at a 

concentration of 4x106 cells/mL in R10-100 and added back at several E: T 

ratios, 4 hours post infection.  After the addition of effector cells, cultures were 

briefly spun down for 1 minute at 1800 rpm and then incubated at 37oC in 5% 

CO2 for 3-7 days depending on experimental conditions. 24 hours post infection, 

all cultures were spun down, washed twice with PBS supplemented with 1% fetal 
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calf serum, and resuspended in 100µl/well of R10-100 medium.  Experiments 

were set up in triplicate, for each condition. 

Flow Cytometry Analyses of Infection 

For the measurement of p24 antigen, 25ul of supernatant was spun down for 5 

minutes at 1700 rpm and then transferred to a 96 well plate with 10µl of PBS 

supplemented with .05% Triton-X 100 and 10% fetal calf serum (p24 sample 

diluent), samples were stored at -80oC for later use in the p24 ELISA assay.  

Staining of cell cultures included antibodies for CD3, CD4, CD8 (BD Biosciences, 

California), and if necessary, Human anti-Mouse CD24 (hsa) (BD Biosciences, 

California).  Samples were run either on a LSR II, high throughput system (BD 

Biosciences, California), or a FACS ARIA (BD Biosciences, California).  

CD3+CD4+ T cells were gated on GFP, and GFP expression was interpreted as a 

positive infection.  Additional p24 ELISA assays were used to corroborate the 

flow cytometry data.   

p24 ELISA 

Collected supernatants from each experiment were tested for viral production of 

p24 by ELISA, using methods previously described (5).  Briefly, 96 well flat 

bottom plates were coated with Coating Antibody-183 in PBS, and incubated 

overnight at 37oC.  Plates were washed and then blocked with PBS 

supplemented with 10% fetal calf serum.  After blocking, plates were washed and 

samples were serially diluted in p24 sample diluent and added to the plate in a 

total volume of 100ul.  A p24 standard was included (NIH HIV repository) and 
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was serially diluted for a standard curve.  In addition, a blank consisting of only 

p24 ELISA Diluent was added as a negative control.   

 Viral Constructs  

HIVR5_GFP  was generated and purified as described previously (148).  Briefly, 

replication competent CCR5-tropic HIV (R5.HIV) was prepared by transfecting 

293T cells with HIV that encodes R5-tropic (BAL) envelop and eGFP (Clontech) 

in place of the nef gene.  Viral titers were determined by serial dilution on HUT 78 

cell lines (NIH AIDS Research and Reference Reagent Program); viral titer was 

measured 3 days post infection by GFP expression on a FACSAria (BD 

Biosciences). 

Viral Concentration 

In order to infect culture at a MOI of 2, while maintaining small volumes, all 

viruses were concentrated by centrifugation.  Samples were first filtered (45µm, 

Nalgene) and then placed in a Centrifugal Filter Device (Amicon Ultra, Millipore, 

Ireland) and spun for 15 minutes at 2000 rpm.  Viral samples were then aliquoted 

and stored at -80oC.  Typically final viral titers ranged from 7-12x106 ifu/mL. 

Intracellular Cytokine Assay (ICS) 

The ICS assay was preformed as described previously (76).  Briefly, PBMC were 

suspended at 107/mL in R10 medium containing soluble anti-CD28 (1µg/mL, BD 

Biosciences) and anti-CD49d (1µg/mL, BD Biosciences), and then aliquoted at 

2x10^6/well in a 96 well round bottom plate.  PBMC were stimulated individually 

with the following; SEB (2.5 µg/mL), Gag-pool of 18mer peptides (NIH) (20 
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µg/mL), Nef-pool of 18mer peptides (NIH) (20 µg/mL), and optimal MHC Class I-

restricted peptides (200 µg/mL), for 1.5 hours at 37°C in a total volume of 100ul.  

Then, to prevent protein transport from the Golgi apparatus, 1 µg/mL of Brefeldin 

A (Beckman Coulter) was added to the wells after initial 1.5 h incubation in a 100 

µl volume, final volume within each well was 200 µl.  PBMC were then incubated 

for an additional 5 hours at 37°C.  Cells were washed and stained for surface 

expression of CD3, CD8 and CD57 (BD Biosciences), then fixed and 

permeabilized (BD Biosciences, Cyto FixPerm) at 4°C.  Cells were then stained 

for IFNγ and TNFα (BD Biosciences) and resuspended in FACS buffer (BD 

Biosciences).  Events were collected on a FACSAria flow cytometer (BD 

Biosciences) and analyzed with FACSDiva software (BD Biosciences).  All 

background, determined by the negative control (Media only), was subtracted 

from the data.   

Statistics 

Paired analyses were compared using the non-parametric Wilcoxon paired t test, 

and unpaired analyses were compared using the non-parametric Mann-Whitney 

unpaired t test.  Correlation values were calculated using the non-parametric 

Spearman correlation calculation.  Statistical assistance was given by Cathy 

Jenkins from the Department of Biostatistics (Vanderbilt University). 

 

 

RESULTS 
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HIV therapy naïve subjects from the Vanderbilt-Meharry CFAR Cohort were 

recruited with a wide range of viral loads from less than 50 copies/mL (Log 1.7) 

to 213,500 copies/mL (Log 5.33). The median duration of infection was 12 years 

(range 5 – 26 years).  Although HLA type was not used as a selection criterion, 

the majority of subjects with low viral loads had the HLA B57 allele, in 

accordance with prior studies (34, 42, 43, 116, 149) (Table 3-1).   

CD8+ T cells derived from HIV + subjects are able to suppress viral replication in 
vitro  

I developed an in vitro assay that allows for the direct simultaneous assessment 

of ex vivo derived CD8+ T cell proliferation and suppression of HIV-1 replication 

in autologous CD4+ T cell targets.  I first assessed the overall effect of CD8+ 

lymphocyte presence in culture on viral replication at day-three post infection.  

Subject PBMC were depleted of total CD8+ lymphocytes and infected with 

HIVR5_GFP at an MOI of 2.  Infection was assessed by GFP expression within 

CD4+ T cells and confirmed by p24 ELISA.  In HIV sero-positive donors, the 

presence of CD8+ lymphocytes was critical for maximum suppression of HIV-1 

replication (p = .005, Wilcoxon paired t test) (Figure 3-1A).  Although CD8+ 

lymphocytes provided some degree of viral suppression in HIV- donors (p = .008, 

Mann-Whitney unpaired t test) (Figure 1A), infection percentages within CD8-

depleted PBMC cultures were significantly higher in these HIV sero-negative 

donors (average 26%) when compared to that of the HIV sero-positive (average 

6%) donors (p = 0.0047, Mann-Whitney).   
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Table 3-1.  Therapy naïve chronic HIV+ cohort. 
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I designed my experiments to isolate the suppressive effect of CD8+ T cells. 

Previous studies have indicated the important role that Natural Killer (NK) 

lymphocytes, which include CD8+ subpopulations, may play in HIV infection (150-

152).  By using magnetic CD8 depletion, all CD8+ lymphocytes are removed from 

the PBMC cultures in these experiments, including a substantial fraction of NK 

cells.  Although the presence of total CD8+ lymphocytes had a measurable 

suppressive ability in both HIV sero-positive and sero-negative donors, I 

hypothesized CD8+ T cells were actively suppressing super infection in only the 

HIV+ donors.  In order to differentiate CD8+ T cell suppression of HIV-1 replication 

from that of NK cells, we examined the effect of adding sorted CD8+ T cells back 

into CD8-depleted PBMC cultures at 1:10 (CD8:CD4) Effector-to-Target (E:T) 

ratios, in both HIV+ and HIV- donors.  Infection was normalized to the maximum 

infection obtained in the experiment.  The highest rate of infection was observed 

in the CD8-depleted PBMC cultures for each individual subject.  In HIV+ subjects, 

autologous CD8+ T lymphocytes were found to have a dose-dependent effect on 

the suppression of HIV replication as shown in Figure 3-1B, whereas CD8+ T 

cells from HIV- donors were not (Figure 3-1B).   

To compare the degree of CD8+ T cell suppression amongst a variable subject 

cohort, data was normalized to the maximum infection for each individual subject 

(Figure 3-1C).  HIV+ donors had significantly higher suppression (mean 50.61% 

+/− 24.68%)by the addition of autologous CD8+ T cells at day 3 post infection, as 

compared to HIV- donors (mean 14.83% +/− 12.38%) at equivalent 1:10 E:T ratios 

(Figure 3-1D, p = .005 Mann Whitney).  Although I observed suppression by HIV- 
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donor CD8+ T cells as high as 32%, suppression in the 1:10 E:T condition (Figure 

3-1D), suppression by HIV- donors did not improve three days post-infection at 

increased E:T ratios of 4:1 and a decreased MOI of 0.3 (data not shown).  

Although overall CD8+ T cell suppression of in vitro HIV-1 super infection was 

observed in HIV+ donors, a range in suppression was evident (Figure 3-1D), 

suggesting differences in effectiveness among individual CD8+ T cell populations. 
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Figure 3-1A and B.  The presence of CD8+ T lymphocytes is critical for 
maximum suppression of HIV replication in vitro. PBMC targets were CD8-
depleted and both PBMC and CD8-depleted PBMC were infected prior to 
addition of CD8+ T cells.  (A) CD8+ lymphocyte depletion in HIV+ (p = .005, 
Wilcoxon paired t-test) and HIV- (p = .008, Wilcoxon paired t-test) donors results 
in increase in total CD4 infection.  (B). Representative plot of total CD8+ T 
lymphocyte addition to infected cultures.  HIV+ donor shows titratable effect of 
CD8+ T cell addition, whereas HIV- donor does not. 
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Figure 3-1C and D.  Presence of CD8+ T cells is critical for maximum 
suppression of HIV replication in vitro. (C). Representative plots for 
calculation of suppression (subject 10002).  Suppression percentage underlined 
values (D).  HIV+ donors have greater suppression by the addition of CD8+ T 
lymphocytes 1:10 E: T (p = .01, Mann-Whitney). 
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CD8+CD57+ T cells demonstrate diminished proliferative capacity 

The proliferative capacity of CD8+ T cells has been correlated with control of HIV-

1 viremia (89, 153). Previous studies have shown CD57+ CD8+ T cells to have 

decreased proliferation in response to in vitro TCR and cognate peptide 

stimulation (98, 99, 108), establishing CD57 as a marker for immunologic 

senescence. To examine CD8+ T cell proliferation simultaneously with CD8+ T 

cell suppression of viral replication, CD8+ T cells were sorted into CD57+ and 

CD57- populations at purities of 95% or greater (Figure 3-2A, subject 10076).  

CD8+CD57- and CD8+CD57+ lymphocytes were CFSE-stained post-sort and co 

incubated with super-infected CD8-depleted PBMC cultures at equivalent 1:1 E:T 

ratios, with the exception of two subjects, 10031 and 10070, where due to cell 

limitation, effectors were co incubated at 1:3 E:T ratios .  The percentage of 

CFSElo was a direct measurement of the total percentage of CD8+ T cells that 

divided in culture (Figure 3-2B). 

There were significant differences in the extent of proliferation between the 

CD8+CD57+ and CD8+CD57- T cell populations (Figure 3-2C).  The median of 

individual CFSElo percentages within CD8+CD57+ T cell populations was 20.9% 

whereas in the CD8+CD57- populations, the median CFSElo percentage was 

61.9% (p = .002, Wilcoxon paired t-test). These data are consistent with 

previously published data contrasting the proliferative phenotype between these 

two populations in the context of in vitro cognate peptide and general TCR 

stimulation (99, 108).  Subjects 10117 and 20018 had to be excluded from the 

data set due to overwhelming HIV-1 infection in culture, and complete cell death  



 

85 

 

Figure 3-2.  Impairment of proliferative capacity in CD57+CD8+ T 
lymphocytes.  (A). Gating scheme for CD57-specific CD8+ T cell sorts.  Sorts 
were performed at a minimum of 95% purity.  (B). Representative plot of 
proliferation measurement. The percentage of CFSElo was used as the 
measurement for proliferation.  (C). Proliferation was significantly increased 
inCD8+CD57- T cell populations (p = 0.002, Wilcoxon paired t test).
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of the CD8+ T cells that were in culture, making assessment of proliferation not 
possible.  

Proliferative potential of CD8+CD57- T cells plays a minimal role in suppression 
of viral replication in vitro 

I next compared the ability of sorted CD8+CD57+ and CD8+CD57- T cells to 

suppress viral replication at the 1:1 E: T ratio.  Over the course of each assay, I 

evaluated the ability of CD8+ T cells to proliferate simultaneously with the 

percentage of GFP+ CD4+ T cell population as a measurement of infection. 

CD8+CD57- T cell populations demonstrated a subtle increase in suppression as 

compared to corresponding CD8+CD57+ T cell subsets (median fold difference 

1.29) at equivalent E:T ratios within each subject (Figure 3-3A, p = .0273, 

Wilcoxon paired t-test).  Subject 10076 was the one outlier in this fold difference, 

as CD8+CD57- T cells suppressed 22-fold higher than the corresponding 

CD8+CD57+ T cell population, however, maximum suppression was only 22% by 

the CD8+CD57- T cells of that subject. Three subjects produced greater than 50% 

suppression in both CD8+ T cell CD57 subsets (10031, 20011, 10067), and a 

total of 5 subjects exhibited at least 50% suppression within CD8+CD57- T cell 

populations (10031, 10065, 10067, 10070, 20011) (Figure 3-3A).  

Although the expression of CD57 was a reliable predictor of proliferative capacity 

there was considerable variation in the proliferation among study subjects. These 

large differences in proliferation between CD57+ (black) and CD57- (red) subsets 

did not translate directly to differences in the ability to suppress HIV-1 replication 

(p = 0.17, Spearman Rank) (Figure 3B), and even some low proliferating 

populations had over 40% suppression (subjects 10071 and 20018, Figure 3-3B). 
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Figure 3-3. Proliferative potential plays a minor role in CD8+ T cell 
suppression of HIV-1 replication.  (A) CD8+CD57- T cells exhibit higher levels 
of suppression (p = 0.0273, Wilcoxon paired t test) (B) Overall suppression did 
not directly correspond with proliferative capacity of individual CD8+CD57+ 
(black) and CD8+CD57-(grey) T cell subsets (p = 0.4, Spearman rank). 
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We next determined whether the failure of direct translation between increased 

proliferation and suppression of viral replication was due to differences in 

frequency of HIV-specific CD8+ T cells within CD8+CD57+ and CD8+CD57- cell 

populations, and the preservation of effector functions in CD8+CD57+ T cells. 

Evaluating frequencies of HIV-specific T cells in CD8+CD57+ and CD8+CD57- 
subsets. 

Previous studies have indicated that despite loss of proliferation by CD8+CD57+ T 

cells, remaining CD8+ T cell effector functions, such as polyfunctional cytokine 

production and cell lysis remain intact (98, 99, 108).  With the assistance of 

Shelly Lorey, I first assessed the distribution of known immunodominant and 

subdominant HIV-specific responses (43) within CD8+CD57- and CD8+CD57+ T 

cell populations by tetramer staining.  Gating schemes were based on those 

established during the live cell sorting for each individual subject (representative 

plot, subject 10071, Figure 3-4A).  

The frequency of tetramer+ CD8+ T cells within each CD57+ population (median 

0.7%, 0.1-8.5) was consistently lower than the frequencies in corresponding 

CD57- populations (median 3.4%, 0.1-13.3) (p = .0238, Wilcoxon paired t test) 

(Figure 3-4B) suggesting that a greater number of immunodominant and 

subdominant epitope-specific CD8+ T cells were present in CD8+CD57- T cells at 

the time of co-incubation with autologous infected targets.  Because CD8+ T cell 

identification by tetramer only measures the frequency of individual epitopes, a 

much broader assessment was needed to accurately measure the total 

frequency of HIV-specific CD8+ T cells in each cell population. 
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Figure 3-4. Skewing of CD8+CD57- T cells within tetramer+CD8+ T cells.  (A). 
Representative plot for dominant epitope tetramer analyses (subject 10071).  
Numbers reflect the percentage of tetramer+ CD8+ T cells within each CD57 
population.  (B). Frequency of tetramer+ CD8+ T cells is increased in CD8+CD57- 
T cells (p = .0238, Wilcoxon paired t-test).   
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I next examined the frequency of Gag-specific cells within CD8+CD57+ and 

CD8+CD57- T cell populations by gag peptide pool stimulation and intracellular 

cytokine secretion (ICS) assays.  Several studies have shown Gag-specific 

epitopes to be preferentially targeted by l HIV-specific CD8+ T cells, as well as a 

positive association between Gag-specific immune responses and control of HIV-

1 viremia (10, 43, 116, 144, 154, 155).  In a recent study by Chen et al, Gag-

specific CD8+ T cells demonstrated superior ability to suppress viral replication in 

vitro as compared to Env-specific CD8+ T cells (156).  I measured the frequency 

of IFNγ+ and TNFα+ cells individually, as well as the frequency of dual positive 

cells within CD8+CD57+ or CD8+CD57- T cell populations (Figure 3-5A, subject 

20011).   

In concordance with our measurement of tetramer frequencies (Figure 4B), I 

found higher frequencies of Gag-specific IFNγ+CD8+ T cells in CD8+CD57- T cell 

populations (p = .03, Wilcoxon paired t test) (Figure 3-5B) with a median 2.21 fold 

higher frequency than CD8+CD57+ T cell subsets.  The frequencies of TNFα+ 

cells were equally distributed between CD8+CD57+ and CD8+CD57- subjects, but 

there was a trend toward a higher frequency of dual CD8+IFNγ+TNFα+ cells 

within CD57+ subsets (Figure 3-5B, p=.08).  In these studies, subject 10031 did 

not have an IFNγ+TNFα+ response in either of the CD8+ T cell CD57 subsets, 

despite both cellular subsets exhibiting suppression greater than 50%.   
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Figure 3-5.  Skewing of CD8+CD57- T cells within tetramer+CD8+ T cells.  (A). 
Representative plot for dominant epitope tetramer analyses (subject 10071).  
Numbers reflect the percentage of tetramer+ CD8+ T cells within each CD57 
population.  (B). Frequency of tetramer+ CD8+ T cells is increased in CD8+CD57- 
T cells (p = .0238, Wilcoxon paired t-test).  (C).  Suppression on an epitope-
specific CD8+ T per-cell basis shows no role for proliferative capacity in 
tetramer+CD8+ T cell suppression of HIV-1 replication in vitro. 
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CD8+CD57+ T cells demonstrate greater suppression of HIV replication in vitro on 
an overall Gag-specific per-cell basis. 

To determine whether suppression of HIV replication in vitro on a gag-specific 

per-cell basis varied based on CD57 expression, I adjusted the degree of 

suppression (Figure 3a) for the total number of gag-specific CD8+ T cells that 

were present during the co-incubation of effector cells with super-infected 

autologous targets in each culture.  In this examination, I excluded subject data 

that exhibited suppression less than 32% suppression by both CD57 cellular 

subsets, as this was the maximum level of non-specific CD8+ T cell suppression 

from HIV- donor samples I observed (Figure 1D).  In this analysis, Gag-specific 

CD8+CD57+ T cells demonstrated increased suppression on a per-cell basis than 

their CD8+CD57- T cell counterparts (Figure 6, p = 0.039 Wilcoxon paired t test). 
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Figure 3-6. Increased suppression of CD8+CD57+ T cells on a per Gag-
specific cell basis.  Suppression normalized to Gag-specific CD8+ T cells (p = 
0.039, Wilcoxon paired t test).
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DISCUSSION 
 
The ability to identify subpopulations of antigen-specific CD8+ T cell 

subpopulations able to suppress HIV-1 replication is essential for our 

understanding of viral pathogenesis. We have developed a method to assess 

both CD8+ T cell proliferation and CD8+ T cell suppression of viral replication 

simultaneously in vitro.  Significant differences in proliferative capacity between 

CD57+CD8+ and CD57-CD8+ T cells were observed in the context of in vitro HIV-

1 super infection.  Despite significant differences in proliferation, suppression of 

viral replication on a HIV-specific per cell basis was in fact higher in CD8+CD57+ 

T cell subsets.  This study suggests that while proliferative ability may be 

important for control of viremia, direct effector function mediated by cells with 

limited ability to divide may also play an important role in suppression of HIV 

replication.   

We have corroborated previous studies by demonstrating the importance of the 

presence of CD8+ T cells in the suppression of HIV replication in vitro (90, 98, 

138, 156).  The high degree of infection of HIV- donor target cells highlights 

cellular differences that may lead to drastic differences in infection rates.  To 

address this issue, normalization of data was necessary to adjust for the large 

range in variation of infection amongst subjects.  By using a nef-deleted virus 

(HIVR5_GFP), we acknowledge that the potency of the virus is somewhat 

diminished without the nef-mediated downregulation of MHC Class I.  However, 

preliminary experiments in our lab also included an X4-tropic HIV strain with 

murine heat shock protein (CD24, BD Biosciences) inserted into vpr (HIVX4_HSA).    
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Although we observed higher infectivity by the HIVX4_HSA, normalization of our 

experimental data produced similar results of suppression (data not shown), and 

these data are now supported by the recent studies by Chen et al (156). 

Although total depletion of CD8+ lymphocytes resulted in increases in viral 

replication in both HIV+ and HIV- donors, CD8+ T lymphocytes were able to 

significantly suppress viral replication in only HIV+ donors at the 1;10 E:T ratio.  

Natural Killer (NK) lymphocytes, which also express CD8, have been shown to 

play a role in the innate immune response to HIV-1 (150-152).  Since the 

presence of CD8+ lymphocytes was found to be critical for suppression in both 

HIV- and HIV+ donors, this may reflect the role NK lymphocytes play in the innate 

HIV-1 specific response. 

Previous studies have described in vitro assays to assess the ability of CD8+ T 

cells to suppress either HIV-1 or SIV replication (70, 90, 98, 144, 145, 156-159).  

Several of these studies examined CD8+ T cells expanded in vitro by TCR or 

peptide stimulation when cell numbers were limiting (64, 90, 144, 156).  In 

contrast, studies by Saez-Cirion et al utilized ex-vivo derived CD8+ T cells (98) 

and further correlated the frequency of the CD38lo HLA-DRhi CD8+ T cell 

phenotype, which has substantial proliferative ability, with superior ability to 

suppress HIV-1 super infection in vitro.  We have expanded this assay to include 

direct assessment of CD8+ T cell proliferation in the context of in vitro HIV-1 

super-infection.   

In this study we confirmed distinct differences in proliferation between CD8+ T cell 

populations expressing CD57.  Prior studies measured proliferative potential of 
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CD8+ T cell CD57 subsets in the context of in vitro cognate peptide stimulation or 

in vitro TCR stimulation (98, 99).  In addition to demonstrating differences in 

proliferative potential between CD8+ CD57+ and CD8+CD57- T cells, these 

studies also indicated the failure to rescue CD8+CD57+ T cells from a senescent 

state in the presence of soluble IL-2 or IL-15 (98, 99).  We also demonstrate that 

despite the presence of PHA-blast target cells and IL-2 in culture, CD8+CD57+ T 

cells had limited ability to proliferate.  Although we observed a deficiency in 

proliferation in CD8+CD57+ T cells, we did not see consistent survival defects in 

these cells over the culture period, with the exception of subjects 10117 and 

20018, where CD8+CD57+ cells declined to undetectable levels after 5 days.  

These data are consistent with a recent study suggesting that CD8+CD57+ T cells 

derived directly ex vivo are not as sensitive to Activation-Induced Cell Death 

(AICD) as CD8+CD57+ T cells that are stimulated in vitro by α-CD3 or cognate 

peptide (108) . 

We hypothesized that the differences in proliferation we measured between 

CD57+ and CD57- CD8+ T cells, would translate to significant differences in 

suppression between the two CD8+ T cell populations (90, 98).  However, we 

observed only a subtle difference in suppression between the two cellular 

subsets, as CD57-CD8+ T cells had a median 1.29 fold higher percentages of 

suppression (Figure 3-3B) (p = .0238, Wilcoxon paired t test). This was despite 

significantly higher frequencies of tetramer positive CD8+ T cells (Figure 3 4) and 

interferon-g producing T cells were higher within CD8+CD57- T cell subsets 

(Figure 3-5). ICS after stimulation with overlapping Gag peptide pools confirmed 
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the maintenance of CD8+CD57+ T cell effector functions, despite loss of 

proliferative capacity to cognate peptide (99, 108).  When adjusted for the 

number of antigen-specific cells within each population, CD57+ cells had superior 

ability to inhibit HIV replication. While our results may appear to be in contrast to 

a recent study describing the association between increased proliferation, 

cytotoxicity, and increased elimination of HIV super-infected autologous targets 

(90), Migueles et. al. required prior expansion of T cells in vitro prior to measuring 

their suppressive ability. Studies that rely on prior in-vitro expansion of T cells 

provide an excellent platform for understanding the mechanism by which effector 

functions may be enhanced; however, direct ex-vivo examination of CD8+ T cells 

requires less manipulation, and may better reflect cellular function in vivo. 

Although proliferative capacity in our studies played a minimal role in the overall 

ability to suppress HIV super-infection, studies have shown that despite 

deficiencies in proliferation, effector functions of CD8+CD57+ T cells remain intact 

(99, 108).  Polyfunctional HIV-specific CD8+ T cells have been correlated with 

control of HIV-1 viremia (77, 86, 88, 160) and although only trending toward 

significance, we observed a higher frequency of dual IFNγ+ TNFα+ cells within 

the CD8+CD57+ subsets. This was despite overall higher frequencies of Gag-

specific cells when only interferon-g production was measured.   

One aspect of CD8+ T cell effector function that remains unexplored is effector 

migration.  Several studies involving either primary CD8+ T cells or CD8+ T cell 

lines have shown the critical role that cell contact plays in overall CD8+ T cell 

cytotoxicity (90, 98, 130, 137, 145).  Le Priol et al indicated differences in homing 
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marker expression between CD8+CD57+ and CD8+CD57- T cells as CD8+CD57+ 

T cells were found to have higher expression of CX3CR1 and a deficiency in 

CD62 levels, a critical marker for lymphoid homing.  Clinical observations of 

diffuse infiltrative CD8 lymphocytosis syndrome in HIV+ subjects, characterized 

by very high levels of CD8+CD57+CX3CR1+ T cells, supports this idea of 

misdirection of otherwise potent and effective CD8+ T cells (108, 161). This 

suggests the lack of correlation between cytokine activity of CD8+CD57+ T cells 

and control of viremia could be due to misdirection of these cells to non-lymphoid 

tissues rather than to the site of infection.  This block is eliminated in our in vitro 

assay, and perhaps suggests that if these cells migrate properly to the site of 

HIV-1 infection, despite impairment in proliferative capacity, they would 

effectively suppress HIV-1 replication.   

PD-1 has also been shown to be a marker of immune exhaustion. T cells with 

high PD-1 expression also demonstrate diminished replicative capacity as well as 

decreased cytokine production (100, 103, 105, 106, 162-164).  We chose CD57 

as a marker since it afforded us the ability to focus on the role of proliferative 

capacity alone. However future studies with this system will allow us to evaluate 

the role of PD-1 expression, or combinations of surface markers that potentially 

predict HIV-suppressive ability. 

Using CD57 as a marker for CD8+ T cell proliferative capacity, we have assessed 

the role of proliferation in CD8+ T cell ability to suppress HIV-1 replication in vitro. 

Despite the fact that proliferative capacity is likely to be important to replenish 

effector cells, our study demonstrates that CD57+CD8+ T cells are capable of 
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efficiently suppressing HIV-1 replication.  We believe ongoing studies with 

directly isolated ex vivo CD8+ T cells, which would include super-infection 

challenges in vitro with autologous virus (165, 166) as well as the examination of 

anti-viral effector functions such as cytolysis and cytokine secretion, will enable 

further examination of individual effector functions that contribute to suppression 

of HIV-1 replication in vivo. 
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CHAPTER IV 

 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

 

Vaccines have an established history of efficacy in the prevention of viral 

infections.  By eliciting immunological memory from the adaptive immune 

response, vaccines can provide protection as well as therapeutic boosts of the 

immune response to the host.  Cellular immune responses during HIV-1 infection 

have been shown to be critical in any hope of control of HIV-1 viremia (27, 28, 

30).  The ability to manipulate CD8+ T cell anti-viral functions as well as 

accurately assess HIV vaccine-elicited immune responses may provide novel 

therapeutics as well as more transparency between clinical trials and effective 

HIV vaccines.  Therefore it is essential to understand the relationships and 

mechanisms that mediate CD8+ T cell suppression of HIV-1 replication. 

 

TCR repertoire diversity is required during chronic HIV infection 

Chronic viral infections with extensive variation, such as HCV and HIV, pose a 

great challenge for the cellular immune response.  The Kalams laboratory 

recently demonstrated that the level of epitope-specific TCR repertoire diversity 

during acute HCV infection may be critical for limited immune escape and 

subsequent control of viral replication (37, 109, 110).  In addition, similar findings 
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have been replicated in the SIV acute infection model (55, 58, 114).  During 

acute infection, cellular responses that would be able to suppress viral replication 

quickly would also be able to block the development and production of viral 

variants that have the potential to escape the cellular immune response.  In this 

model, TCR diversity would perhaps not be as essential, if a strong narrow TCR-

mediated response would be able to suppress infection quickly and successfully 

and then maintain suppression in the host.  However, during HIV infection, 

several studies have indicated the deletion of highly active CD8+ T cells during 

acute HIV infection, as the virus leaves a permanent impression on the overall 

CD8+ T cell response (11, 167).  The resolution of HIV infection proves difficult 

for the host, and after the original damage during acute infection, the immune 

response that is left to be active during chronic HIV infection is damaged.  

However, there are groups of subjects who maintain a long duration of low viral 

loads and delayed HIV disease progression.   

Although there are several possible factors that may delay disease progression, 

HLA B allele expression has been shown to strongly correlate with the control of 

HIV-1 viremia.  The HLA B allele B*57 is found in higher frequencies in HIV+ 

subjects with control of viremia (42), and HLA B*57-restricted CD8+ T cell 

responses have been indicated to dominate total HIV-specific CD8+ T cell 

responses (43, 116).  Antigen presentation by MHC class I is a strong factor in 

the determination of TCR selection and the development of epitope-specific TCR 

repertoires (40).  Patterns of TCR usage directed against this strong epitope may 
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shed light on how TCR recruitment over the course of infection mediates control 

of viremia.   

Several HLA B*57 epitopes have been fine-mapped, including dominantly 

recognized, highly conserved epitope located in p24 Gag, KF11 

(KAFSPEVIPMF) (10, 36).  The TCR gene usage of KF11-specific immune 

responses has been assessed for shared motifs.  Previous studies implicated a 

model in which HIV+ controllers exhibited strong usage bias within individual 

KF11-specific TCR repertoires, and subsequently narrower repertoires if the 

KF11 epitope was conserved, thus concluding that TCR diversity is not a 

prerequisite for control of HIV viremia.  While it remains unclear whether TCR 

diversity is the driving force of CD8+ T cell control of HIV, the structure of a TCR 

repertoire is the driving force behind the immune system’s ability to recognize 

and respond to viral variants.  Therefore, in order to understand how the 

selection of TCR repertoires influenced the host’s ability to contend with HIV 

variation, I examined KF11-specific TCR clonotype ability to recognize 

autologous viral variants.   

Based on previous data from the Kalams laboratory that indicated TCR diversity 

to be an immunologic factor in clearance of a chronic viral infection with 

extensive variation (in this case, HCV), I originally hypothesized HIV+ controllers, 

whom were therapy naïve would indicate broader KF11-specific TCR repertoire 

diversity.  The model behind this hypothesis indicates a broad TCR repertoire 

was maintaining recognition of dominant HIV epitopes, including variant epitopes 

derived from circulating HIV variation in vivo (Figure 4-1). 
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Figure 4-1.  Model of the hypothesis that a broad T Cell Receptor (TCR) 
repertoires provides for recognition of viral variation in vivo.  TCR repertoire 
breadth represented on top (red), viral variation in vivo represented on bottom 
(blue).  The model indicates a narrow TCR repertoire is unable to recognize viral 
variants, and therefore loses the ability to control HIV replication. 
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Results indicated that KF11-specific diversity did not correspond with any clinical 

marker of HIV disease progression.  I also found that KF11-specific TCR 

repertoire diversity was within the same range of entropy as other epitope-

specific TCR repertoires, but much lower than total CD8+ TCR repertoire 

diversity.  I observed a dominant usage of TRBV7 among KF11-specific 

clonotypes.  Previous studies indicated clonal hierarchy by TCR avidity and 

dominance.  I believed these results suggested an immune preference for 

TRBV7 in KF11-specific CD8+ T cells and hypothesized that TRBV7 clonotypes 

would have greater structural avidity and greater ability to recognize viral 

variants. 

Structural avidity of TRBV7 clonotypes, assessed by tetramer off rate assays, 

was found to be collectively lower than the remaining KF11-specific clonotypes.  

The variance in tetramer off-rates among TRBV7 clonotypes was significantly 

lower than those of the non-TRBV7 clonotypes, suggesting a direct influence of 

TRBV structure on TCR avidity.  I believe these data provide evidence for the 

model where high avidity clones are deleted during acute HIV infection, as well 

as suggest a threshold for optimal TCR activation exists, as has been described 

(135).  HIV infection has been associated with immune exhaustion, as measured 

by the expression of surface markers such as CD57 and PD-1 (98-100, 104-

106).  I believe that in the model of chronic infection, in which antigen is 

persistently presented, it is possible that high structural avidity is 

disadvantageous, and would perhaps lead to constant activation and eventual 

exhaustion of the high avidity clonotypes (88).   
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I hypothesized that if lower structural avidity was advantageous in the context of 

KF11-specific TRBV7 usage, that the TRBV7 clonotypes would exhibit increased 

ability to recognize viral variants.  Despite the frequent TRBV7 usage of KF11-

specific CD8+ T cells in our study cohort, TRBV7 usage did not necessarily 

correspond to recognition of epitope-variants.  Earlier studies had described 

narrow KF11-specific TCR repertoires in HIV+ HLA B*57 individuals (79, 80), and 

continual recognition of epitope variants (79, 80).  It was therefore suggested that 

the degree of epitope variant cross recognition is more important than the overall 

diversity of the KF11-specific TCR repertoire of control of viral replication.   

I next wanted to assess the ability of TRBV7 clonotypes to recognize autologous 

HIV variants on an individual basis.  I hypothesized that if TRBV7 clonotypes 

were able to recognize all viral variants presented, perhaps the data would 

correspond to the model in which cross recognition rather than TCR diversity 

determined overall HIV-specific CD8+ T cell responses to recognize HIV and its 

variants.  However, at the clonotype level, differential recognition and functional 

avidity was observed amongst TRBV7 clonotypes.  In one of the HIV+ controller 

subjects, TRBV7 lost all ability to recognize autologous KF11 variant, K162R.  

These data demonstrate that dominant clonotypes do not necessarily cross-react 

with epitope variants, which studies from the Kalams lab previously describe at 

the clonal level, and suggest a potentially beneficial role for maintenance of TCR 

diversity even in the setting of restricted TRBV usage. 

These data collectively suggest convergent evolution toward populations of 

epitope-specific T cells with sufficient avidity to mediate control of viremia during 
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chronic HIV infection, despite my observation of clonotypic diversity amongst 

subjects, and no observed ‘public’ clonotype.  Based on these findings, I am able 

to conclude that TCR repertoire diversity specific for a dominant epitope is not a 

pre-requisite for control of HIV-1 viremia, and revise my model of the relationship 

between TCR repertoire diversity and recognition of viral variants (Figure 4-2).  

My revised model indicates that TCR repertoire diversity is not required for 

control of HIV-1, however, it can provide recognition of HIV-1 variants and 

perhaps improve the HIV-specific host immune response in the event of a 

circulating HIV-1 viral variant in vivo (Figure 4-2).  Although TCR repertoire 

diversity is seemingly not a correlate of control of HIV-1 viremia, the structural 

recognition and subsequent downstream signaling that is dependent on the 

structure of the TCR is critical for CD8+ T cell function and suppression of HIV-1.    

 Therefore, these data highlight the importance of continuing analyses of the HIV-

specific immune responses at the clonotype level, which will help define how the 

development and maintenance of epitope-specific TCR repertoires influences 

HIV disease progression.  As new assays are developed for the evaluation of 

vaccine-induced responses, it will be important to maintain incorporation of 

clonotype analyses as a bridge between structure, phenotype, and the ability to 

control HIV replication. More extensive TCR repertoire studies that include other 

HLA-restricted epitopes are required to fully understand the extent of the role of 

TCR diversity in the control of HIV-1 viremia. 
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Figure 4-2.  Although TCR repertoire diversity is not a pre-requisite for control of 
HIV-1 viremia, increased breadth of an epitope-specific TCR repertoire can 
provide auxiliary capability to recognize circulating viral variants. 
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Future studies will focus on the assessment of CD8+ T cell suppression of HIV 

replication in vitro on the clonotype level.  Although my structural and functional 

avidity studies did not provide evidence for the usage of TRBV7 to provide 

improved binding and recognition of peptide-MHC Class I complexes, we 

hypothesize that perhaps these data suggest an optional threshold for successful 

CD8+ T cell responses and subsequent suppression of HIV replication.  CD8+ T 

cells will be sorted based on the expression of tetramer specificity and TRBV 

expression.  As discussed before, the difficulty of these studies is that no 

commercial antibody for TRBV7 currently exists.  My studies are designed to 

circumvent this caveat, by surface staining CD8+ T cells with tetramer and all 

TRBV present in these tetramer-specific CD8+ T cell populations, then gating 

TRBV7 by exclusion.  These clonotype subsets of CD8+ T cells will then be 

added to cultures of HIV super-infected CD4+ target cells at appropriate E:T 

ratios.  Cultures will be assessed for infection by viral expression of GFP in CD4+ 

target cells, as well as the levels of p24 antigen in the culture supernatants.  

Future analysis will begin with the KF11-specific TCR repertoire subject group I 

previously described (43).  Using these analyses, the Kalams lab will be able to 

assess differential abilities to suppress HIV replication in vitro on the clonotype 

level and begin to link components of an epitope-specific TCR repertoire with 

populations of CD8+ T cells that are superior in the suppression of HIV 

replication.   

If biased usage of TRBV genes is beneficial I anticipate that the KF11-specific 

TRBV7 clonotype CD8+ T cell populations will exhibit improved suppression on a 
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per-cell basis as compared to their KF11-specific counterparts.  Further studies 

building upon these experiments will also include incorporating autologous virus 

into these infection assays.  Subject autologous HIV Pol-gag sequences will be 

cloned into the HIVR5_GFP viral construct, producing an improved representation of 

what each subject is being presented in vivo, in our in vitro infection model.  I 

have observed hierarchy of avidity on the clonotype level, and I hypothesize that 

dominantly represented clonotypes defined by TCR sequencing will have 

improved recognition and suppression of HIV super-infection as compared to 

corresponding sub-dominant clonotypes.  These experiments can provide insight 

into the role of dominant and sub-dominant clonotypes, and begin to answer the 

question of whether or not HIV vaccines need to focus on eliciting broad TCR 

recognizing responses.  Understanding the importance of these attributes of 

CD8+ T cell-mediated suppression of HIV-1 infection is critical in accurate and 

translational interpretation of HIV vaccine-elicited immune responses. 

Overall my analysis provides an in depth examination of how TCR diversity can 

influence host control of HIV-1 infection.  As my data indicates, TCR diversity 

may not be required for the maintained recognition of a dominant epitope during 

chronic HIV-1 disease, and these narrowed TCR repertoires provide delayed 

HIV-1 disease progression.  However, at this point in time, the majority of HIV+ 

subjects, even those with delayed disease progression, are susceptible to HIV 

immune evasion. .  As my data further suggests, by maintaining some degree of 

TCR diversity, eventual epitope-variants that are produced can still be 

recognized. The decision of whether or not a HIV vaccine needs to be designed 
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to elicit a broad or narrow response may be dependent on the timing of 

administering the vaccine during the course of HIV-1 disease progression.  

Perhaps a vaccine that elicits a narrow TCR-founded response would be highly 

effective during acute infection, suppressing effectively while viral variation has 

not been allowed as much time to expand.  Whereas, a broad TCR-founded 

response, elicited by a HIV vaccine, may be better utilized by the host during 

chronic infection as a broad response could effectively suppress HIV replication 

and maintain and monitor for increasingly probable HIV variation in vivo.  Further 

studies are required in order to determine how we may interpret TCR usage in 

the overall prognosis of HIV disease progression.  These understandings can 

provide improved understanding not only of vaccine design but also vaccine 

assessment that accurately reflects elicited immune responses in vivo.   

 

CD8+ T cell effector functions important in the control of HIV viremia 

Although shown to be critical for maximum possible control of HIV-1 viremia, 

CD8+ T cell responses eventually fail to control HIV-1 infection.  The mechanisms 

by which the host immune system fails to control HIV-1 infection is not clearly 

understood, but nature provides a small group of HIV-1 infected individuals 

whose immune systems do exhibit active participation in the control of HIV-1 

infection.  By examining these subjects, great insight has been gained into what 

constitutes a successful immune response in the control of HIV replication (42, 

89, 90, 100).   
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Clear understanding of not only what CD8+ T cell functions are successful in 

suppressing HIV replication, but also the mechanism and timing by which these 

functions are triggered can further refine vaccine design.  Further parameters are 

needed to make stronger connections between the immune responses elicited 

and overall benefits of a vaccine. 

In my studies I investigated the role of CD8+ T cell proliferative capacity in CD8+ 

T cell ability to suppress HIV replication in an in vitro model of HIV super-

infection.  In animal studies of chronic viral infection, the expansion potential of T 

cells after adoptive transfer mediated control of viremia (15, 140).  Observational 

studies in HIV infected individuals demonstrated that CD8+ T cells derived from 

HIV controllers had increased proliferation in vitro to either anti-TCR antibody or 

HIV cognate peptide stimulation (89, 99).  Although extensive studies indicated 

the correlation between CD8+ T cell proliferation in vitro and control of HIV-1 

viremia, the mechanism by which this effector function relates to suppression of 

HIV replication is not clearly defined.    

Recent developments have provided the ability to examine CD8+ T cell 

suppression of HIV replication in vitro (69, 90, 98, 144, 168).  By using these 

newly developed assays, previous studies correlating CD8+ T cell function in vitro 

with control of HIV-1 viremia have been extended, demonstrating a direct 

relationship between proliferative capacity, cytotoxic function and CD8+ T 

suppression of HIV replication in vitro (90).  Although these data provide a 

platform for the direct relationships between CD8+ T cell function and CD8+ T cell 

suppression, it is critical to maintain assessment of CD8+ T cells that are derived 
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directly ex vivo.  By examining CD8+ T cells that are not pre-stimulated, a true 

reflection of the CD8+ T cell state in vivo is represented in the assessment over 

overall ability to suppress HIV replication.  Saez-Cirion et al demonstrated that 

CD8+ T cells derived directly ex vivo from HIV+ controllers had increased capacity 

to suppress viral replication in an in vitro HIV super-infection model as compared 

to viremic HIV+ subjects (98).  Furthermore, these studies indicated a direct 

relationship between CD8+ T cell ability to suppress HIV replication in vitro and 

overall control of HIV viremia.  This increased ability to suppress was connected 

to the expression of CD38 and HLA-DR, in a relationship that demonstrated 

increased proliferative capacity in HIV controllers (98).  These studies are critical 

in the further assessment of CD8+ T cell function in vivo.  However, the extent by 

which proliferative capacity plays a role in suppression of viral replication was not 

defined in that work.  It was unknown whether proliferation provides continual 

supply of an effectively suppressive CD8+ T cell population, or if proliferation is 

directly involved in CD8+ T cell-mediated suppression of HIV-1. 

My studies were designed to assess this role of proliferative capacity in the 

control of HIV replication in vitro by evaluating the ability of CD8+ T cells, directly 

derived ex vivo, with high proliferative capacity to suppress HIV super-infection in 

vitro relative to cells with lower proliferative capacity.  To divide CD8+ T cells 

based on the ability to proliferate I used the immunologic marker for senescence, 

CD57.  Studies have shown CD8+CD57+ T cells exhibit limited proliferative 

capacity to cognate peptide, decreased telomere length and increased sensitivity 

to AICD (98, 99, 108).  Despite impairment in proliferative capacity, CD8+CD57+ 
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T cells are capable of producing IFNγ and TNFα (98, 99, 108) and have 

extensive effector cytotoxic capabilities (108).  By dividing CD8+ T cells into 

CD57+ and CD57- subsets, I created an assay that allowed us to focus on the 

role of proliferation in the control of HIV replication.  I hypothesized that given 

proliferative capacity is the strongest correlate of control of HIV-1 viremia it 

played a direct role in CD8+ T cell capabilities of suppression of HIV replication 

(Figure 4-3).
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Figure 4-3.  Model of proliferation playing a direct role in the suppression of 
HIV-1 replcation in vitro.  CD57 is an immunologic marker for impaired 
proliferative capacity.  However, CD57+ cells still exhibit strong abilities of anti-
viral cytokine production and direct cell lysis, two central functions of overall 
CD8+ T cell-mediated suppression of viral infection.  Utilizing CD57 as a marker 
to distinguish CD8+ T cells that are derived directly ex vivo by proliferative 
capacity allows for assessing whether proliferative capacity plays a direct role in 
CD8+ T cell suppressive capabilities ex vivo.  The original hypothesis here 
projects proliferation to be directly involved in CD8+ T cell-mediated suppression 
of HIV-1 replication in vitro. 
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I initially examined the requirement of CD8+ lymphocyte presence in culture for 

maximum suppression of HIV replication in vitro.  The removal of total CD8+ 

lymphocytes in culture resulted in increased HIV replication in both HIV+ and HIV- 

donors, thus indicating the presence of CD8+ lymphocytes to be necessary for 

maximum suppression of HIV replication in vitro.  I hypothesized the role of CD8+ 

T cells in the control of HIV replication to be pertinent in only HIV+ donors, as 

HIV+ donors possess HIV-specific CD8+ T cells and HIV- donors have not 

developed an adaptive cellular response to a pathogen they have not been 

exposed to.  HIV+ donors presented direct correlations between the total number 

of CD8+ T cells present in the culture and the overall level of HIV replication in 

vitro.  In contrast, CD8+ T cells from HIV- donors were unable to suppress HIV 

replication in autologous targets regardless of the E:T ratios.  This examination 

also allowed me to gauge the sensitivity of my assay for assessing CD8+ T cell-

mediated suppression of HIV replication in vitro.   

After determining the presence of CD8+ T lymphocytes to be critical for maximum 

suppression of HIV replication, I next wanted to examine the ability of CD8+ T 

cells to suppress HIV replication based on the level of proliferative capacity.  

Previous data supported the relationship between increased proliferative capacity 

and increased control of HIV-1 viremia only.  Therefore I hypothesized there 

would be an increased ability to suppress HIV replication in vitro by the 

CD8+CD57- T cell subsets relative to CD8+CD57+ T cell counterparts within 

individual subjects.   



 

116 

I observed significantly increased proliferative capacity in CD8+CD57- T cells 

when compared to individual CD8+CD57+ T cell counterparts.  In addition to 

demonstrating differences in proliferative capacity, these studies also indicated 

the failure to rescue CD8+CD57+ T cells from a senescent state despite 

incubation with soluble IL-2 and PHA-blast target cells.  However, although CD57 

expression was a reliable predictor of decreased proliferative capacity, I did not 

observe corresponding significant differences in suppression between the 

CD8+CD57+ and CD8+CD57- subsets.  These data contrast with recent findings 

reported by Migueles et al in which increased proliferation directly corresponded 

with increased effector function as well as suppression of HIV replication in vitro 

(90).   I believe these discrepancies are due to my contrasting methods in CD8+ 

T cell preparation and hypothesized that my observation of subtle differences in 

suppression were due to skewed frequencies of HIV-specific CD8+ T cells in 

these two cellular subsets as well as remaining in tact effector functions in these 

CD8+ T cells. 

Epitope-specific CD8+ T cells were first examined within CD8+ CD57 subsets and 

in fact indicated increased frequency of HIV dominant epitope-specific CD8+ T 

cells within CD8+CD57- T cell subsets.  Based on these data, CD8+CD57+ T cell 

populations showed increased suppression on a per epitope-specific cell basis.  

A broader assessment of all gag-specific CD8+ T cells was required to truly 

assess suppression on a HIV-specific per-cell basis.  ICS data revealed overall 

increased frequency of gag-specific CD8+ T cells in CD8+CD57- T cell 

populations.  These data translated to increased suppression on a per gag-
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specific cell basis within CD8+CD57+ T cell subsets.   Previous studies had 

indicated increased effector functions in CD8+CD57+ T cells such as dual 

production of IFNγ and TNFα (86, 112).  My results from gag-specific ICS 

stimulation indicated a trend towards increased frequencies of gag-specific 

IFNγ+TNFα+ T cells in the CD8+CD57+ T cell subsets, but these frequencies did 

not correspond with overall control of HIV-1 viremia.   My observation of 

increased dual cytokine producing cells in the CD8+CD57+ subset not only 

corresponds with previous findings, but also offers an explanation for the lack of 

correlation between suppression and proliferative capacity.  My revised model 

reconciles previous findings of proliferative capacity being a strong correlate of 

control of HIV-1 viremia in vivo and my lack of finding evidence that tied 

proliferative capacity directly to the mechanism of CD8+ T cell-mediated 

suppression of HIV-1 in vitro (Figure 4-4).  Together, my data sheds light onto the 

role of proliferative capacity in control of HIV-1 viremia as perhaps a means to 

continue and maintain a population of highly effective CD8+ T cells that are 

proficient in cytokine production and direct cell lysis, rather than directly 

influencing effective CD8+ T cell anti-viral functions (Figure 4-4).    
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Figure 4-4.  Revised model indicates that proliferative capacity does not 
play a direct role in CD8+ T cell-mediated suppression of HIV-1 replication.  
Although proliferative capacity remains a strong correlate of control of HIV-1 
viremia in vivo, it does not play a direct role in CD8+ T cell-mediated suppression 
of HIV-1 replication in vitro.  Other effector functions, such as anti-viral cytokine 
production and direct lysis of infected targets, are capable of directly mediated 
CD8+ T cell suppression of HIV-1 replication. 
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There are still questions regarding the effector function of CD8+CD57+ T cells in 

vivo.  Understanding the answers to these questions is critical in providing 

accurate interpretation from the assessments of HIV vaccine-elicited immune 

responses, which currently include measuring CD57 expression.  One aspect of 

CD8+ T cell effector function that remains unexamined is cell migration.  Several 

studies examining primary or CD8+ T cell lines have indicated the critical 

importance of direct cell contact in CD8+ T cell effector abilities (90, 145, 168).  

Le Priol et.al examined differences between CD8+ CD57+ and CD8+CD57- T cells 

on a transcriptional and translational level (108).  These data indicated a 

significant deficiency in CD62 expression on the surface of CD8+CD57+ T cells.  

Expression of CD62 is vital for lymphoid homing, a critical step in CD8+ T cell 

ability to recognize and suppress viral infections.  These studies also indicated 

increased expression levels of CX3CR1, a chemokine receptor, associated with 

non-lymphoid tissue homing.   

These data suggest possible impairment of HIV suppression in vivo by 

CD8+CD57+ T cells due to misdirection of these cells to non-lymphoid tissues 

rather than the site of infection.  Clinical observations corroborate these findings.  

There are clinical reports of increased observations of diffuse infiltrative CD8 

lymphocytosis syndrome in HIV+ subjects, which is characterized by high levels 

of CD8+CD57+CX3CR1+ T cells (161).  Although our my collectively suggests 

that proliferative capacity is not critical for direct CD8+ T cell-mediated 

suppression of HIV replication, the necessity for proliferative capacity may still 

exist in vivo during HIV infection in the context of CD8+ T cells that are actually 
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present at the site of HIV replication and immune presentation.  The role of 

acquiring CD57 expression and the migration of CD8+ T cell and their ability to 

suppress is still unknown.  Preliminary data from our lab suggests that over the 

course of the in vitro co incubation of CD8+CD57- T cells and HIV super-infected 

autologous CD4+ T cell targets expression of CD57 increases on these cells.  

Post-sort purities from original CD57 subset sorts on enriched CD8+ T cells 

indicate greater than 98% purity of the CD8+CD57- T cells.   However, by 5 days 

post infection, these percentages can decrease to levels as low as 30%, as 

CD57 expression increases in these CD8+ T cell subsets (Simons; unpublished 

data).  Future findings in the mechanism behind acquiring CD57 and migration of 

TE cells may need to be elucidated before continued investigation behind CD57 

expression and anti-viral T cell functions. 

Despite the caveat of neglecting analysis of cell migration in my assay, my data 

was still able to indicate proliferative capacity to play a minimal role in direct 

CD8+ T cell-mediated suppression of HIV replication and shed light on the 

immunologic value of CD57 expression of directly derived ex vivo immune 

responses.  Currently, there is no hypothesis-driven assessment for CD57 

expression of HIV vaccine-elicited immune responses.  My data indicates that 

perhaps despite association with immunologic senescence, increased CD57 

expression may not reflect a negative feature of vaccine-elicited immune 

responses, allowing for clearer understanding of vaccine assessment outcomes. 

Future directions will focus on continuing assessment of identified CD8+ T cell 

functions as well as features that correlate strongly with control of HIV-1 
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replication.  Anti-viral cytokine production can be assessed simultaneous with 

suppression of HIV-1 replication in vitro by measuring the magnitude of cytokine 

production in the supernatants of the co-incubation cultures described previously.  

With the inclusion of negative controls that would reflect the degree of 

background, or non-specific, cytokine production, a wide array of anti-viral 

cytokines and chemokines may be assessed.  This will be incorporated into the 

present CD57 findings to perhaps shed light on other differences in cytokine 

production beyond IFNγ and TNFα, but can also be incorporated into other 

markers of CD8+ T cell loss of function, or functional exhaustion.  To further 

understand the extent of which anti-viral cytokines play a role in CD8+ T cell-

mediated suppression of HIV-1 transwell experiments will also be utilized to 

examine whether anti-viral cytokine production physically blocks viral replication, 

or if anti-viral cytokine production is a reflection of an activated CD8+ T cell-

mediated response, such as direct cell lysis, responsible for suppression of HIV-1 

replication.  The immediate goals of the Kalams laboratory would be to continue 

from my preliminary data of improved poly-functional cytokine correspondence 

with increased suppression of HIV-1 replication, but future directions may move 

to other CD8+ T cell functions such as direct cell lysis of infected targets.  

Currently, the Kalams laboratory is pursuing further understanding of the 

mechanisms behind the expression of PD-1 and associated cellular signaling in 

CD8+ T cell-mediated suppression of HIV-1 (Conrad; unpublished), in which my 

assay can possibly be incorporated into. 
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HIV vaccines are currently administered to HIV- study subject groups.  These 

study groups are either high-risk groups with increased probable incidence of 

HIV infection, or non high-risk groups.  The examination of vaccine-elicited 

immune responses in HIV- subjects and possible protection offered by these 

vaccines in high-risk groups has proven difficult to draw distinct lines of 

connection between vaccines administered and subsequent elicited immune 

responses that can actually correlate with protection from HIV-1 infection and 

suppression of HIV-1 viremia.  Investigating natural examples of HIV-1 control 

may prove to be a more straightforward approach to understanding immune 

responses that directly correspond with control of HIV-1 viremia.  Using this 

resource in identifying precise immune functions that directly participate in 

immune control of HIV-1 replication will provide for an improved translation of 

vaccine-elicited immune responses to control of HIV-1 replication in vivo. 

My designed in vitro assay allows for this assessment of directly derived ex vivo 

CD8+ T cells on a small cell number basis.  My assay also required little 

manipulation and inexpensive stimulation of target cells.  Collectively, these 

features make my assay widely accessible to the scientific community as well as 

allow for assessment of CD8+ T cell populations that are smaller in frequency. 

 

In summary, my research demonstrates structural bias in the development of 

dominant epitope-specific TCR repertoires in chronic HIV infection.  Despite no 

functional benefit perceived from these current data, our research suggests 

evidence for an optional threshold of avidity in the state of chronic infection and 
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antigen presentation.  These results lend novel insight into the nature of the 

structural development of epitope-specific TCR repertoires in the context of 

chronic HIV infection and highlight the importance of maintaining immune 

analyses on the clonotype level in future HIV research endeavors.  In addition, 

we contributed to a focused understanding of the role of proliferative capacity in 

the suppression of HIV replication.  Importantly, this work has implications in 

further understanding effective assessment on a structural and functional level of 

elicited HIV vaccine responses and extended investigations into correlates of 

control of HIV-1 viremia. 
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