A DEFECT-CENTRIC OPEN-SOURCE LIFE-CYCLE MODEL

By

Brandon Nuttall

Thesis
Submitted to the Faculty of the
Graduate School of Vanderbilt University
in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE
n

Computer Science

May, 2006

Nashville, Tennessee

Approved
Professor Stephen R. Schach

Professor Douglas H. Fisher

For Dad

i

TABLE OF CONTENTS

Page

DEDICATION......cttitieiieie ettt sttt st et e e st e e estesseessesstesseensaessesseensesnsenseensens ii

LIST OF TABLESottt sttt et st e ennes \%

LIST OF FIGURES. ..ottt ettt et et esae e sesneenneennens vi
Chapter

I INTRODUCTION......ccutitieieeieteie ettt sttt sttt sae e seenaesseenseeneas 1

II. RELATED WORKooiiiitiieeeeeee ettt s 3

Classical MOAEIS.......ccccviiiiiiieciiie e et e e e 3

Origins of the Open-Source Software Development Process.............ccceeeneenee. 5

Describing Open-Source Software Development............cccceeeeveeeviieenieecnneenee, 6

LANUS'S LW ...ttt ettt st 7

Open-Source Development Group Organization.............cecceeveeeiveenieeieeneennnen. 9

III. MODELING OPEN-SOURCE SOFTWARE DEVELOPMENT.............c......... 10

Building BIOCKS......coouiiiiiiiieeeee s 10

Development As MaiNteNance.co.eevueeuerieniierienienieeie e 11

Contributions, Actors, and ACHIVITIES.......cc.eeeruireeriieeeiieeeiieeereeesveeesveeeeree e 11

DevelopmEnt PrOCESSES. ...c.uieiieriieiiieiieeieeite ettt e ebeesaeebeeseneenreens 14

DTS ettt e et e e e e e bae e nareaenas 14

Deconstructing the Producer..............cocvevieriieiieniieieeieceeeeeeee 15

Deconstructing the CONSUMET..........c.ccevvvieieiiieeriieeeiee e 16

Bringing It TOZEther.........ccveviiiiiiiiieieceeeee e 18

Enhancements.........c..coouiiiiiiiiiiiiecicccee e 18

AdAPLATIONS. ...eiiieiiieiieiie ettt ebe et et e e enbeeneas 20

Applying Contribution MEtriCS.........covuieiiieiiieiiierieeiieee e 21

Characterization and Trace Paths...........ccccoooeiiiiiniiniiineee 22

Graphing Trace Paths...........coooiiiiiiiii e, 23

“Debugging is Parallelizable™.............cccoooieiiiniiiinieeiieeeeee e 24

IV. A MOZILLA CASE STUDY ...ootiitiiet ettt ettt sneens 26

Applicability of the OSSDM.......cccoeeiiiiiiiiieiiecie e 26

The Mozilla Bugzilla Database............ccccceeviiieiiieeiiiecieceee e 26

The Mozilla Bonsai Database...........cccceeveririenienieieiieneeieceeeeeeee 28

THE PTOAQUCET......coouviieiiiecee et 28

The CONSUMET......c..oiiiiieiieieeiiete ettt s 31

Trace Paths, Characterization, and Duplicates in Mozilla...............ccccounee..e. 35

il

Understanding Mozilla Duplicates...........ccccuveevieeevieeeiieeeiie e 37

Trace Paths in MOZilla..........cocooiiiiiiiiniiieeee e 38
Trace Paths and Duplicate Resolution.............ccceeeeviievciieenciee e, 39
V. DISCUSSION AND CONCLUSIONS. ..ottt 41
VI. FUTURE WORKoioiitieeieeeetee ettt 43
The Failure of Open-Source Projects........c.cccvveeeiieiieriieniieiieeieeeie e 43
Duplicate Tagging Behavior...........cccoeiiiiiiiiiiiiieieeeeee e 44
Optimizing Release CYCIes.....c.uiviiiiiiiiieiieeiieiie ettt 44

Appendix
A. MOZILLA VERSIONS. ...ttt 46
B. SOURCE CODE.......ccuiiiieiesiee ettt nae e s neas 49
BUgzZillaTO0lS. PY..veeeiieiieeie ettt e 49
AOANALY SIS PY . eveeeniiieeiiie ettt ettt ee et e st e e et e e e e e e staeeebaeesaseeessseeenaseeennns 52
N1 NS b (10 1§) OSSPSR 55
(1011173 o) 2RSSR 60
BIBLIOGRAPHY ...ttt ettt sttt st 62

v

LIST OF TABLES

Table Page
1. Detail of Figure 13 -- Cumulative Distribution of Contributions (Defect

Reports and Comments) to Mozilla Bugzilla. (Number of Versions = 63).......... 27
2. MoZilla Vital STAtIStICS.eeieiieiieiieeiiesiie ettt ettt 46

Figure
1.

2.

10.
11.
12.

13.

14.
15.

16.

17.

18.

LIST OF FIGURES

Page
A Skeleton of the Defect Workflow..........cccooiiiiiiiiiiiiiiieeeeceeee e 13
The Producer Component of the Defect Workflow..........c.cccceeviieiieiciienienieennn, 14
A Skeleton of the Consumer Workflow............coooeiiiiiiiiniiiieieeee e 14
Sorting Defect Reports into Faults and Failures............ccccoovveeeiieniiniiiinieiiiee, 15
Resolving a Fault Report........c.ooouiiiiiiiiiiiiieeeee e 15
Characterizing Failure REPOITS.........ccveeiieiiieiieiieeieeee et 16
Packaging the Product............coouiiiiiiiiiie e 16
The Defect WOrKfloOW.......coouiiiiiiiiiiieieceeee e 17
The Integration of an Enhancement...............ccoooiiiiiiiiiiiiiiineeceeee e 18
The Lifetime of an Enhancement..............coccoviiviiiiiiininiineeeeceeeeee 18
A STMPLE SCONATIO....c.uviieeeiiieeiieeciee ettt eeteeeeteeesteeestaeeetaeeetaeesseeesseeesseeesseeenns 22
A More CompleX SCENATIO......ccuieiuierieeiieriieeiiente et eriteereeteeereesseeeaeeseessseennees 22
Cumulative Distribution of Contributions (Defect Reports and Comments)
to Mozilla Bugzilla. (Number of Versions = 63).........cccceeevveriieciienieenieenieeneenens 27
A Duplicate Bug in MOzZilla..........ccoooeiiiieiiiiiiie e 29
Duplicate COMMENTATY........ccccvieriieeieeriieeieeieeeteeiee e et e ereeseesaeesseessaeesaessneenns 29
Mozilla Bugzilla Comment Participation of Top 2% and the Top 10% of
Contributors. (Number of Versions = 603)........ccccccvverienireriieniieiienieeieeeve e 30
Contributors with CVS Access as a Fraction of All Contributors.(Number
OF VEISIONS = 35)..iiiiiiiiie ettt et et e aae e eanae s 31
Cumulative Distribution of Contributions to Mozilla CVS. (Version 23,
Number of Contributors = 56).......ccceevieriieriieriieiiieeie et 32

vi

19.

20.

21.

22.

23.

24.

Fraction of Contributors with CVS Commit Access for Selected Versions
OF IMOZIILA. e e e e e e e eeeeeeeeeeeeaeeeeeeeneeeeeeeneee 32

Ratio of Duplicate Defect Reports to Non-Duplicate Defect Reports for

Versions of Mozilla. (Number of Versions = 63).........cccecvveveiieniencieeneenieeieeene. 34
A STMPLE SCONATIO....c.uviieiiiiieeiieeciieeciteeeiee et eesreeesaeeetaeeebaeessseeessseeesseeessseeenns 36
A MOTE COMPLEX CASC....ccvieeeiieiiieriieeiiecie et ettt e ebe e e ebeesteeenbeesaeeaseenseesnnas 36
A Trace Path from Mozilla Bugzilla.............cccooooiiiiiiiiie e 36
A Comment from Bug #O67196........cccoeviiiiiiiieeiieiecie et 37

vii

CHAPTER I

INTRODUCTION

To many, open-source software (henceforth OSS) is an enigma. Indeed, the
common description of the OSS development process reads like a bit of dot-com
mythology: roving bands of developers spread over four continents get their heads
together, get organized, and cause millions of lines of enterprise-class code to fall from
the sky. Given this description, any properly-cynical CIO should have reservations about
trusting their enterprise to software developed in a manner that seems so egalitarian.

Furthermore, any project manager who has had the pleasure of trying to keep a
software project on time and under budget knows how difficult it is to herd teams of
developers toward a common goal. Hugely complicated books such as The Unified
Process codify a development process that reflects industry best-practice; however,
cursory glances at OSS development teams reveal communities that seem to have little
respect for these rules. How then can OSS development projects thrive in a software
ecosystem where many well-funded and well-staffed commercial software projects fail?

The key observation that resolves this dramatic tension is the observation that the
OSS development process is not as chaotic as it seems at first glance. This work claims
that an important component of the process is defect-centric — defined by the
introduction and resolution of defects in the software. This paper then isolates and
describes this process and examines the development process of a popular OSS product

through defect-centric analysis.

This examination is split into several different sections. Chapter Il examines
canonical software development methodologies and addresses how they might (or might
not) apply to open-source software development. Chapter III introduces and defines the
defect-centric process of OSS development and sets forth hypotheses presented by the
defect-centric model. Chapter IV introduces the Mozilla project and uses it as a case
study to examine the defect-centric model. Finally, Chapters V and VI address future

areas of study and conclude the work.

CHAPTER II

RELATED WORK

Software engineers have been creating models in order to better understand
software development for decades. Their methods and results are applicable to the
development models that they studied. However, the OSS development process differs
from previously-studied development processes enough to make these previous attempts
inapplicable. This section examines how that could be the case. After establishing this,
this section then introduces the theoretical underpinnings of a new model, probed (but not

rigorously described) by previous research.

Classical Models

In the beginning, software projects were simple and small, allowing a developer to
have an accurate mental model of the entire system. As hardware platforms have become
more powerful and programming languages more complex and expressive, software
systems have grown to the point that it is impossible for a single software developer to
understand the entire system. This problem of imperfect information has given rise to
software processes like the Unified Process [Jacobson et al. 1998] and Extreme
Programming [Beck 2000] that attempt to guide development in a way that reduces this
problem's impact. Because this thesis models the OSS development process, it would

make sense to first try to apply existing models and processes to this new problem

domain. However, as powerful and battle-tested as these existing processes are, there are
at least two reasons why looking to these models is a mistake.

First, the Unified Process and Extreme Programming are iterative (work is done
in a series of discrete steps) and incremental (future work is based on past work).
Though these are also accurate descriptors of the OSS development process, iteration and
incrementation for the OSS serve a fundamentally different purpose than they do for the
Unified Process or Extreme Programming.

In the Unified Process and Extreme Programming, the driving purpose for an
iterative and incremental development style is to mitigate the risk that stems from
imperfect knowledge of the requirements of the software product [Jacobson et al. 1998].
Developers are usually not users of the product that they create; therefore, they should be
supplied with documentation of how the product should function in the form of
requirements or use cases. Often these documents are incomplete or faulty, a problem
that is resolved by iterative and incremental intermediate products (or builds) that
developers present to the client to solicit feedback. The developers then use this
feedback to fine-tune their requirements documentation and ultimately their product.

Open-source software is developed differently. Many development efforts begin
not for money or fame but to scratch an itch -- to solve a problem faced by the originator.
The originator, and those who have the same itch to scratch, are almost always also users
of the product and have intimate knowledge of the product's requirements. Here, risk
management is no longer an all-important concern; rather, the iterative and incremental
development process serves in part both to keep the community that grows around a

software project together [Raymond 2001] and to optimize the defect resolution process

(which will be addressed in Chapter III). Neither of these purposes have an analog in the
Unified Process or in Extreme Programming.

Furthermore, the Unified Process and Extreme Programming primarily concern
themselves with pre-release development. In contrast, researchers have found that it is
extremely hard, if not impossible, to get the OSS development engine started without an
initial release of code, because without code it is impossible to attract co-developers to
the project [Raymond 2001]. Additionally, rather than simply being a prototype or a
proof-of-concept, this first code release must be a working product to attract users'.
Using the classical definition of maintenance, this code distribution fits the definition of a

release, development activities after that release being considered maintenance.

Origins of the Open-Source Software Development Process
To understand why the open-source software development process does not
conform to existing models requires knowing of its origins. Richard Stallman, the Free
Software’ pioneer who authored the GPL (the GNU Public License, a commonly-
encountered OSS license) and founded the FSF (Free Software Foundation), originated
the formal concept of open-source software when he launched the GNU project in 1983
[Free Software Foundation 2005]. However, the development process employed by the

FSF was similar to that found in contemporaneous proprietary software companies: being

1 Attracting more users invites more feedback, which can speed defect resolution. This is discussed in
more detail in Chapter III.

2 To the chagrin of some, this thesis will use the term "open-source software" to refer to both open-source
and Free software. For those readers who desire insight as to the difference between these two terms,
the author invites you to read the official open-source definition at [Open Source Initiative 2005] and
the official Free software definition at [Free Software Foundation 2004].

5

characterized by strong central control, high barrier to entry, and slow release cycles
[Raymond 2001].

When Linus Torvalds and his Linux came on the scene in 1991, the FSF had
completed every significant part of its GNU system but the kernel. Though Torvalds
never thought that Linux would become the kernel of the GNU system, development
ramped up rapidly and Linux soon eclipsed the HURD (the GNU project's kernel) in
terms of features and popularity [Stallman 2001]. The key to Linux's initial success was
not its technical merit (which, though substantial, was not extraordinary) but instead
Torvalds's management style: being characterized by flexible central control, low

barriers to entry, and rapid release cycles [Raymond 2001].

Describing Open-Source Software Development

It was this development style born from Torvald's Linux project that Raymond
describes as being the seminal example of the OSS development process. Through the
exploration of his personal experience with Linux and his own fetchmail, Raymond
presents a set of proverbs that distill OSS development's conventional wisdom into their
essence. The most important of these proverbs, known as “Linus's Law”, forms the
conceptual base for the defect-centric model and is explored in more detail below. In
contrast, most of the rest of the proverbs are little more than rules of thumb and are not
useful when attempting to describe a formal model.

Many other authors have attempted to formalize OSS development practices. The
skeleton of the Mozilla project, used in Chapter IV to illustrate a defect-centric model, is

formally described in [Reis et al. 2002]. In that work, Reis explores the workers, CASE

tools, and low-level activities from which the Mozilla product and process are
constructed; however, Reis does not address the higher-level workflows that drive the
actual software development, a deficiency that this work addresses.

Another work that uses Mozilla as a case study is [Mockus et al. 2002], which
explores the relative levels of participation for contributors to the Mozilla source code
repository. In contrast, this work is concerned less with contributions to the Mozilla code
base and more with contributions to Mozilla's Bugzilla system, a defect tracking
database. Furthermore, the case study of Mozilla found in Mockus was published in mid-
2002, a time when the browser was in a pre-1.0 state, making the observations found
therein somewhat obsolete. An analysis similar to [Mockus et al. 2002] is found in
[German Mockus 2003], which addresses the Evolution product; however, the Evolution

product is much smaller in scope than Mozilla®.

Linus's Law

One of the key questions to answer when trying to describe a development
process is to describe how the development process sustains itself. Fundamentally, a
development process converts fuel (the time investment of its contributors) into work
(successful pieces of software). In classical development processes, the fuel could be
such things as the pressure to deliver to the customer, or even money -- given enough
fuel, the project continues; remove it, and the project must fail.

This thesis argues in Chapter I1I that defects are an important driver in the OSS

development process. The most important insight into the effect of defects on the open-

3 Evolution is a Microsoft Outlook-style mail and calendaring application, whereas the Mozilla product
includes a mail application, a calendar application, and a host of other applications and tools.

7

source development process is given in [Raymond 2001] in a proverb termed “Linus's

Law” and its two corollaries:

Provers 1: Given a large enough beta-tester and co-developer base, almost every
problem will be characterized quickly and the fix will be obvious to someone.
Cororrary 1: Given enough eyeballs, all bugs are shallow.

Cororrary 2: Debugging is parallelizable.

These proverbs have three important consequences. First, they assert that there
exist clearly-defined actors and roles in the OSS development process. Identifying the
roles that particular contributors play is key to describing how actors work together to
create software; these actors and roles are described in Chapter III.

Second, these proverbs assert that eyeballs, or project contributors, are effective in
resolving bugs, or issues in the software. Previous work has cast doubt as to the
applicability of this proverb to the OSS development process, as many claim that faults
are not fixed by the many eyeballs the proverb would suggest, but instead by a small,
select group of core contributors. This argument is flawed: according to Torvalds, the
primary activity of the OSS development process is not fixing faults but is instead fault
characterization, the act of finding faults through examination of a pattern of failures
[Raymond 2001]. This distinction will be explored completely in Chapter I11.

Third, these proverbs assert that OSS projects can effectively scale to many
contributors. This scalability, asserted by the second corollary of Linus's Law, flies in the
face of conventional wisdom as codified by Brooks's Law (in [Brooks 1995]) . Chapter

IIT of this work introduces the concept of Raymond's trace paths and how they allow

open-source development projects to parallelize development and optimize the use of

developer resources.

Open-Source Development Group Organization

Most researchers view the contributors to an OSS development project as being
stratified rather than homogeneous. Raymond, when speaking of the structure of his
fetchmail product and of other open-source products with which he is familiar, refers to
the structure of an OSS project as having a project core consisting of a few major
contributors, surrounded by a halo of comparatively many minor contributors [Raymond
2001]. Other works such as [Nakakoji et al. 2002] and [Ye Kishida 2003] agree with
Raymond on the stratified nature of the contributors but disagree on the particular
number of groups. Regardless of the number or nature of the groups, these works
establish that analysis of a particular development activity should reveal that contributors

are stratified. This is the major motivation behind the discussion in Chapter III.

CHAPTER III

MODELING OPEN-SOURCE SOFTWARE DEVELOPMENT

The open-source software ecosystem is widely (and wildly) diverse,
encompassing a myriad of different projects and management styles. This thesis brings
these disparate projects under a common banner by showing how basic assumptions
about the structure of an open-source software development project can be fleshed out

into a model which should be generally applicable.

Building Blocks

The first step to describe the open-source software development model
(henceforth OSSDM) is to state the assumptions made. This thesis asserts that the
following things are minimally true before the OSSDM can be applied to a software
project:

Work that is performed on the software project can be measured and quantified. A

unit of work is a contribution to the project.

Individuals contribute to the project. These participants are called actors. Work

performed by actors can be grouped into distinct classes called activities.
Not all open-source software projects will fit these requirements; for example, if a project
does not rigorously document its development activities, the OSSDM may not be

applicable because work might not be measurable.

10

Development As Maintenance

The second step in describing the OSSDM is to present a framework for thinking
about development activities within a project. One lens through which OSS development
can be observed is Linus's Law, which describes work on an OSS project in terms of
contributors, defects, and fixes, and as argued in Chapter II this image can be described in
terms of classical maintenance activities. Consequently, OSS development activities
should reflect to a large extent the three classical maintenance activities: corrective
maintenance, perfective maintenance, and adaptive maintenance.

« The way in which the OSSDM handles defects, errors in the source code, is
analogous to corrective maintenance.

« The way in which the OSSDM handles enhancements, or improvements to the
product, is analogous to perfective maintenance.

« The way in which the OSSDM handles adaptations, or changes made to the
product for the sake of making it work on a platform different from the one for
which it was originally built, is analogous to adaptive maintenance.

Each of these three fundamental development activities will be examined in turn to give a

complete accounting of the activities performed in the OSSDM.

Contributions, Actors, and Activities
The above activities, if performed effectively, should tangibly change the OSS
product. The OSSDM should describe how these changes are measured. This
measurement could be something as straightforward as LOC (lines of code) or as esoteric

as an obscure, project-specific code-quality metric; regardless of the particular metric

11

chosen, this fundamental unit of work is a contribution. The people that perform this
work are actors, and the work that is performed by an actor is that actor's activity.

Choosing appropriate metrics of contribution is difficult because all software
projects are managed differently, making it important to choose metrics on a per-project
basis. Regardless, a good metric should have two basic properties:

« The metric should be applicable -- an increase or decrease in the metric should
reflect the increase or decrease of something tangible.

« The metric should be discriminatory -- applying the metric to a pool of
contributors should divide the pool into groups of similar actors.*

Good choices for metrics include:

« Defect reports created per contributor per version, counted by tallying the number
of defect reports created by a particular individual for a particular release of the
software.

« Unique communications generated per contributor per version, counted by
tallying the number of email, message board, or other communications
participated in by a particular individual for a particular release of the software.

+ Source commits per contributor per version, counted by tallying the lines of code
a particular individual committed to a source repository for a particular release of
the software.

Bad choices for metrics include:
« Karma points, counted by the number of pats on the head a particular individual

received from the product's project manager for a particular release of the

4 For OSSDM projects with very few contributors, this guideline may be dropped; however, projects of
that size would probably not be interesting enough to model.

12

software. (This metric is not applicable because a larger karma score does not
necessarily result in something tangible for the software product.)

« Number of email addresses, counted by tallying the number of individuals
registered for the project's defect tracking database. (This metric is not
discriminatory because it does not divide individuals who contribute to the project
from one another.)

« Raw lines of code, counted by counting the total number of lines of code in the
software product for each version. (This metric is not discriminatory because it
applies to the software product as a whole and not to the actors who contribute to
it.)

The discriminatory nature contribution metrics makes the differences between actors
readily apparent. For example, assume that for a particular open-source software project
that the “number of defect reports submitted per contributor” metric is valid. If this is the
case, it can rightly be said that the contributors that have contributed zero defect reports
are not defect reporters, and the contributors that have contributed one or more are. The
property of being a defect reporter refers to work that the actor contributes to the open-

source software development project, which in our nomenclature is an activity.

Development Processes
Given the concept of actors and activities, and given a way to measure their effect
on the software product, it becomes possible to describe and measure the processes by
which the open-source software development process handles defects, enhancements, and

adaptations, the three basic development activities of the OSSDM.

13

producer > defects > consumer

Figure 1: A Skeleton of the Defect Workflow

Defects

Errors in a software product's source code are the unsavory side effect of
software's necessarily-imperfect human origin. Fundamentally, all defects in the source
code must have a producer, or the vector by which the defect was exposed. In good
software products, these defects are eventually removed from the product by the
consumer (Figure 1).

Deconstructing the producer and the consumer allows the analysis of how defects

are resolved by the various actors and processes in the OSSDM.

Deconstructing the Producer

From the point of view of the software project, a particular defect itself is not
observable. What instead exists is a defect report, or an artifact that documents a
particular perceived defect in the system. This defect report does not materialize from
the ether; rather, it must be generated by a tester who observes it and documents fit,
bringing it to the software project's attention.

Furthermore, this perceived defect is not observed in isolation; rather, it is
observed in one or more particular releases of the software product that the tester
acquires and tests. In addition, the product release also did not come from nowhere — at

some point, some actor must have decided to “bless” that release as a formal product

14

project —® release P tester ———P el

manager ‘“plesses” product documents| report
release distributed defect

Figure 2: The Producer Component of the Defect Workflow

defect release
report —> — - without that
P defect

Figure 3: A Skeleton of the Consumer Workflow

release by packaging it and promoting it. This actor is a project manager. (The

producer workflow is described in Figure 2.)

Deconstructing the Consumer

Just as a defect is produced, it should also be consumed. For a defect to be truly
considered consumed, it must be removed from the product: a release of the product must
be made with that defect missing (Figure 3).

The “magic” bubble represents the process of converting the knowledge
documented in the defect report into a release of the software product without that defect.
The first step is to determine whether the defect report documents a fault, or an observed
error in the source code, or a failure, or a situation where the product's behavior deviates

from the observer's expectations (Figure 4).

15

fault

report
defect
or
report
failure
report

Figure 4: Sorting Defect Reports into Faults and Failures

fault i
> patch > fix
report corrective changes changes integrated
to source code made into product

Figure 5: Resolving a Fault Report

Because a fault report describes an error in the product's source code, these errors
can be resolved directly by determining exactly which corrections must be made to the
project's source code. These changes are documented in an artifact called a patch. This
patch, once accepted by the project manager and integrated into the source code of the
product, becomes a fix (Figure 5).

A failure report is handled differently. Because a failure report does not describe
an error in the product's source code, this failure must be traced to the source code to
reveal its underlying fault. To borrow Linus Torvalds' term, the process by which a

failure is mapped to a fault is called characterization’ (Figure 6).

5 The text of Linus' law makes it clear that Torvalds considers the act of characterization and the fix as
two separate activities — they may even be performed by different people!

16

Figure 7: Packaging the Product

failure fault :
> » patch P fix
report failures characterized report
Figure 6: Characterizing Failure Reports
source
with fixes » release
app" ed product packaged

Once the defects (faults and failures) are fixed, those fixes are packaged into a

release (Figure 7).

Bringing It Together

These work flows for handling defects can be connected together to create a

single, coherent work flow for handling defects in the OSSDM. This work flow is called

the defect workflow and is illustrated in Figure 8.

Enhancements

In addition to having defects, most open-source software products seek to enhance

or refine their software offering, an activity analogous to perfective maintenance. New

code that is added to a software product that adds a feature rather than resolving a defect

is an enhancement. The process by which the OSSDM integrates enhancements is the

enhancement workflow.

17

testing ——— » defect
defects | reports

documented
product sorted into
distributed
failure
release
reports
packaged by sorted into characterized
project manager
_ fault
fix
reports

corrective changes
to source code made

added to product
patch

Figure 8: The Defect Workflow

Consider an arbitrary OSSDM project that has just released a version of its
product with a new feature the next oldest release did not have. This new feature must
have been added through changes to the product's source code, or patches. Similarly to
how the OSSDM handles defects, these patches must have been integrated into the
product's source code and then released (Figure 9). Similar to the defect workflow, the
life of this enhancement can be split into two separate activities: the activities that occur
before the patch is accepted (pre-integration activities) and the ones that occur after the
patch is accepted (post-release activities) as shown in Figure 10.

Pre-integration, the development of the enhancement occurs outside of the

OSSDM product's main source code tree. This development is therefore independent of

18

enhanced
patch - » release

integrated with source added to product
product

Figure 9: The Integration of an Enhancement

pre-integration

integration
activities and release activities

post-release

Figure 10: The Lifetime of an Enhancement

the continuing development of the rest of the OSSDM product. Because of this lack of
mandated interaction, the OSSDM is silent on the exact method by which the
enhancement is created; essentially, as long as the enhancement meets the standards set
by the project manager, it does not matter by which process the enhancement was
initially created.

Once the code is integrated into the OSSDM software product, that code and
changes to it fall under the scope of the OSSDM. If no defects are discovered in this
code, the code will live happily in the OSSDM product's source code repository and cost
very little in terms of resources to maintain. If this code is ever changed post-integration,
changes to that code are therefore maintenance and must fall in one of two classes:

« Corrective maintenance, or maintenance that fixes defects in the new
enhancement. These defects are handled just like any other defect in the software

product by the defect workflow.

19

« Perfective maintenance, or maintenance that extends the enhancement by adding
new features. Because this type of maintenance in effect enhances the
enhancement, its development activities are best described by the process detailed

1n this section.

Adaptations

Adaptive maintenance is maintenance that ports the software to a platform for
which it was originally not designed. Maintenance performed under this umbrella is one
of two types:

« Maintenance that corrects errors that prevent the software from working on the
new platform. These changes fall under the scope of corrective maintenance and
are handled by the defect workflow®.

« Maintenance that modifies the product to take advantage of features available on
the new platform that were not previously available. These changes fall under the

scope of perfective maintenance and are handled by the enhancement workflow.

Applying Contribution Metrics

Contribution metrics are used to explore how contributors to an OSSDM project
participate in the activities described above. These contribution metrics must divide
contributors into groups that are significantly different, which is difficult to determine in

general because all OSS projects are different. Therefore, setting a discrete line will

6 Theo de Raadt, project manager for the OpenBSD, noted with regard to porting OpenBSD to the SGI
02 architecture that “...every architecture we add has helped us find bugs in shared code that affects

other architectures. [...] Some very scary and major bugs have been dredged out almost automatically.”
[De Raadt 2004]

20

cause difficulties, such as a case where an individual who contributed at level n» would
not be significant, whereas one who contributed at level n+1 would be.

Good arguments could be made for moving this line to include more or fewer
people into the pool of significant contributors, so rather than trying to set hard thresholds
for contribution metrics in general, it is more interesting to address the question of
anomalous results. For example, consider an OSS project where for the last twenty
versions defect report creation for a certain set of contributors (say the top 10%)
remained relatively constant. Assume that for the next version, the data show that this
value unexpectedly increased or decreased. If this value unexpectedly decreased, the
value for the bottom 90% must have increased, a shift which could have been caused by
an increase in knowledgeable non-core contributors to the software (among other things).
If instead this value unexpectedly increased, this could signal a decrease in participation,
or an increase in central control. Regardless, unexpected shifts in the values from version
to version for contribution metrics indicate that something interesting has happened and

warrants closer scrutiny.

Characterization and Trace Paths
Most of the activities described in the defect workflow and the enhancement
workflow are straightforward in nature and need no further exploration. One activity,
however, is more complex: the activity of characterization, or the mapping of failure
reports to faults in the system. This characterization activity is documented by an artifact

called a trace path.

21

To motivate this discussion, consider a hypothetical scenario. A particular
browser has a defect in its HTML parsing routines that causes memory corruption when it
is fed a particular bogus series of HTML tags. This overflow overwrites a small segment
of the memory space the browser uses to store its DOM tree’. In turn, this DOM failure
causes some Javascript-driven shopping carts to silently fail to submit orders correctly.
Other testers find that a web-based email provider's website fails to load properly and
causes the browser to use 100% of the host computer's CPU. This scenario has two
interesting properties:

+ One fault, the parsing overflow, leads to several different failures that do not
appear to be related at first glance.
« The root fault, the parsing defect, is several steps removed from the failures that
expose it, like layers of an onion.
The act of resolving this defect in involves three different activities. The first activity,
performed by the tester, involves finding and documenting the software failures; this
activity generates the original defect reports. In this example, the testers would use the
product to be tested in their everyday browsing activities to spot defects. The second
activity, performed by the maintainer, involves the actual source-level fixing of the faults
that lead to the defects. The maintainer in this example would have access to the
browser's source repository and write the code to fix the faults documented in the defect
reports submitted by the testers.
The third activity, performed by the analyst, involves transforming the defect

reports contributed by the testers into detailed fault profiles that can be processed by the

7 The DOM, or Document Object Model, is an API used to access documents structured using XML (or
equivalent) programmatically. Programs typically use data structures such as trees to internally
represent a DOM. For more information, see [Le Hegaret et al. 2000].

22

maintainers. In this scenario, the analyst examining the form submission problem might
notice that the structure of the DOM tree for that site is corrupt using a DOM explorer
tool. Upon further exploration, the analyst might find a sequence of HTML tags that
causes such corruption. This process, akin in the above metaphor to peeling back the
layers of a hypothetical onion, is a trace path. Formally, a trace path is the path
discovered and traversed by analysts as they iteratively find the cause to software defects

until they discover a defect that is a fault, not a failure.

Graphing Trace Paths

Because the act of following trace paths describes an iterative process (examining
the cause of one failure reveals another failure, which is caused by another failure, and so
forth) the relationship between faults and failures explored in this way can be modeled as
a graph constructed in the following manner:

« A circle shape represents a failure, and a square represents a fault.

« A directed edge between two shapes represents an “is caused by” relationship.
Note that a failure can be caused by either a fault or another failure, and that faults
are always “first causes” and cannot cause other faults.

« Defects are labeled by unique numbers.

In this notation, a path that leads from a vertex with in-degree zero (representing a failure
reported by the testers) to a vertex with out-degree zero (representing a fault) is a trace
path.

Figure 11 presents a relatively simple scenario. Two failures, 1 and 2, have both

been reported. These two failures are both caused by fault 3.

23

Figure 11: A Simple Scenario Figure 12: A More Complex Scenario

Figure 12 is a second scenario is a more complex case that models the example
given in this section. Failure 1 (the shopping cart issue) and failure 2 (the webmail issue)
are both ultimately caused by fault 4 (the overflow in the parsing routine). Note that the
trace path leading from failure 1 to fault 4 is longer than the trace path from 2 because of
the existence of failure 3, the corrupt DOM tree failure. An analyst starting from failure

1 would have to discover failure 3 before being led to fault 4.

“Debugging is Parallelizable”

The notion of trace paths also gives the tools necessary to show how Brooks's
Law does not overly-burden OSSDM projects. Consider a large OSSDM project with
many contributors and complex software. In such a system, the failures caused by a
single fault might be documented in ten different defect reports that do not initially seem
to be related. Assume that ten analysts begin to trace these failures back to their faults,
and after one month they all discover and document the fault that caused them. This
duplication of effort means that most of their work has been meaningless — one
sufficiently-good defect report is as good as ten to a maintainer, who writes the code to

fix the one defect that caused the ten failures.

24

Assume instead that all ten analysts began to trace these failures back to these
faults, and after one week two of them had discovered and documented the defect that
caused them. These fault reports were converted into fixes by a maintainer, which is
rolled into the next release by the project manager that same day. The other eight
analysts, rather than continuing to work with their old release, all download the new
release and see if the failure they were originally analyzing still exists. If it still exists,
they can continue to trace that fault in the old version or the new version. However, if
that failure no longer exists, they know that it must have been fixed by some change
made in the new version, allowing them to refocus their attention on another failure.
While in the first example the time of ten analysts was used to fix the fault, in the second
example eight of the ten analysts were able to move on after the first week. Analyst
resources are conserved through this rapid release strategy, preventing the explosion of
inefficiency that Brooks's Law would predict. However, releases that are too rapid come

with a cost — the analyst must retest the original failure with each new release.

25

CHAPTER IV

A MOZILLA CASE STUDY

The model presented in Chapter III makes a series of claims that should hold true
for any applicable open-source software project. This section presents the Mozilla
project as a case study of a project that fits to the OSSDM. First, this section shows that
the Mozilla project is observable enough to draw applicable contribution metrics. Then
this section decomposes the claims of Chapter III and explores them using data gleaned

from Mozilla's development.

Applicability of the OSSDM
For the OSSDM to be applicable to Mozilla, measurable contribution metrics
must be derivable. Fortunately, the Mozilla project's history is laid bare in the form of
Internet-accessible databases. The primary databases from which empirical
measurements can be extracted are the Mozilla Bugzilla database and the Mozilla Bonsai

database.

The Mozilla Bugzilla Database
The Mozilla Bugzilla database documents the development activities of the

Mozilla team [Mozilla Foundation 2005¢]. The atoms of the Bugzilla database are what

26

are known as bugs® (a report of a particular fault, failure, or enhancement request). These
bugs have attached commentary (remarks made by other users or the Mozilla
developers); one item of commentary attached to a defect report is a comment.
Examples of data that can be extracted from this database include:

« Absolute number of defect reports created per contributor per release.

- Non-duplicate’ number of defect reports created per contributor per release.

- Comments created per contributor per release.

The Mozilla Bonsai Database
The Mozilla Bonsai database is a database that provides access to the complete
logs of the Mozilla CVS server [Mozilla Foundation 2005b]. Any addition, removal, or
modification of source code in is logged by the Bonsai system. Examples of data that can
be extracted from the Bonsai system include:
- Distinct number of patches submitted by a particular contributor per release.

« Number of lines of code submitted by a particular contributor per release.

The Producer
Showing that the Mozilla project is an OSSDM project requires showing that
project managers create releases and that testers create defect reports. Testers will be

identified first. There are at least two classes of a tester — one who contributes defect

8 The term bug is overloaded. For the purposes of this thesis, bug will always refer to a particular main
topic entry in the Mozilla Bugzilla database. When referring to a particular failure or fault, we will use
the term defect instead.

9 The term duplicate has a special meaning when applied to defect reports. This concept will be
explored later in this chapter.

27

reports and also participates in other ways, and another who contributes defect reports but
does not otherwise contribute substantially. This second group of testers, the pure
testers, is identified by showing that a class of participants exists who contribute defect
reports but do not contribute commentary. The contribution metric that shows this is
calculated by adding the number of defect reports created per contributor to the number
of comments created per contributor, and ranking contributors by their resulting score.

These contribution metrics are evaluated by processing Mozilla Bugzilla data.
For each of the first sixty-three versions of Mozilla, the number of defect reports and
comments created per contributor were tallied and contributors sorted in order from
greatest level of contribution to least level of contribution, and then sorted into percentile
buckets based on the contributor's relative level of contribution for that version. The
level of contribution for each of the buckets were then converted into a fraction of the
total contribution, and those fractions were averaged over the first sixty-three versions of
Mozilla to produce Figure 13 (and Table 1, a detail of Figure 13).

Judicious application of the 80/20 rule is enlightening: the bottom 80% of
participants (as ranked by total participation) contribute 51% of the defect reports but
only 13% of the commentary. Furthermore, the bottom 20% of participants contribute a
number of defect reports generally in proportion with the size of their class (19%) but
contribute an insignificant number of comments. These data show a clear division
between at least the top 80% (and probably the top 20%) of contributors and everyone
else. This lower class of contributors make up the class of pure testers.

The other group of actors addressed in the producer side of the software
development activity are the project managers. The dual responsibility of project

managers, those of being caretakers and reviewers, are analogous to the Mozilla concepts

28

\ Comments
**., Defect Reports

Fraction of Contributions

025

0.1

0.0 T T T T TTT T T T T TTT T T T oo FrT T T T T T T T T T I T T T T T T T T Tl
- ™ 0 ~ o
= S S S S

Fraction of Contributors

Figure 13: Cumulative Distribution of Contributions (Defect Reports and Comments) to Mozilla Bugzilla.
(Number of Versions = 63)

Table 1: Detail of Figure 13 -- Cumulative Distribution of Contributions (Defect Reports and Comments)
to Mozilla Bugzilla. (Number of Versions = 63)

Contribution Percentile % Comments % Defect Reports
Top 20% 87% * 5% 49% * 16%
Top 50% 97.0% = 1.4% 66% = 14%
Top 80% 99.9% = 0.02% 81% * 7%

of module ownership and super-review. To explain how this works, consider the Mozilla
process of getting a patch into the product source as described in the Hacking Mozilla
document ([Mozilla Foundation 2005a]). First, a patch for a particular module is
reviewed by the owner of that module, or one of his or her peers. Then, if that patch
affects in-process code (code that is not stable or otherwise well-known), the code is
super-reviewed by a “strong hacker” to ensure code quality. Once this is done, the code

can be checked in to Mozilla CVS.

29

Even if the process is spelled out in product documentation, the OSSDM requires
a contribution metric; fortunately, the Mozilla project makes available a list of module
owners, their peers, and individuals capable of being super-reviewers. Combined, these
lists identify roughly 250 unique individuals that fill project management roles.
Furthermore, the level of participation of project managers is countable because the
Mozilla developer guide calls for code review to be documented inside a defect report.
Assuming that all of the project managers participate in the project each release, the
project managers would only make up 14% of the total contributors for each release on
average'’. This shows that, rather than many or all contributors being project managers,

project managers are at most a small subset of all contributors.

The Consumer

The consumer side of the equation has two activities that have not been previously
addressed: the characterization task, where defect reports are sorted into fault reports and
failure reports, and the patch-creation task, where patches are made for defects in the
source code.

To address the first activity, that of characterization, a metric must be found that
uniquely identifies characterizers. Fortunately, the Mozilla Bugzilla system records
artifacts of the characterization process: comments. During the course of defect
resolution, contributors add commentary to defect reports. The nature of this
commentary varies, but much of it has to do with whether a bug is a duplicate of another

— any defect marked as DUPLICATE will have at least one comment stating that fact,

10 In actuality, many modules are stable or otherwise dormant; it would be rare for every project manager
to contribute every release.

30

" Ymozilla

Bugzilla Bug 315678 print preview and Re:
Bug List: (41 of 44) First Last Prev Mext Show last sean

Bug#: 315676 alias: |

Erm:luct:l Firefox b |

Cnmgnnent:l General V|
Status: RESOLVED
Resolution: DUPLICATE of bug 3267440

Mobody's working on this, feel free to
take it <nobody@mozilla.org=

Assigned To:

Figure 14: A Duplicate Bug in Mozilla

#%% Thi=zs bugy has been marked as a duplicate of 226718 *=*

Figure 15: Duplicate Commentary

and as previously shown duplicate defect reports are artifacts of the defect resolution
process (Figure 14 and Figure 15).

Because of the above, comments end up being a good indicator of a contributor's
level of participation in the characterization task, making it possible to create a
contribution metric to separate those contributors that perform the characterization task
from those that do not. This metric itself is defined in terms of how many comments a
group of contributors makes compared to the number that would be expected if every
contributor contributed equally. For example, if every contributor contributed equally,
any group of contributors that made up 10% of the total would submit 10% of the

comments; this group would be assigned the value “1” to represent their level of

31

27.5 —
25

225 %

M H -

H . S N H) Y i

= . 'y . H H

20 = RN NS - it H
- . . - - -

g CRRL o .)

o : ol % FH :
g 1753 § ot ;
= sl e ;
& : : i
S 1254% ¢ .,
® H ~, Top 2%
S 10 " :
kE * |\ Top 10%
S 75
o
5 |
25

FTTTTTTTTTTTITT
[te} [t e} 0 [T} [te}
-~ 34 © < [te}

Version

Figure 16: Mozilla Bugzilla Comment Participation of Top 2% and the Top 10% of Contributors.
(Number of Versions = 63)

contribution. If instead that same group submitted 20% of the comments, that group
would be assigned the value “2”, as they performed twice as much work as baseline.

Figure 16 charts this metric for the top 2% and the top 10% of contributors to the
Mozilla project. The data show that the top 2% and top 10% are wildly more productive
than their numbers would suggest, with the top 2% producing an average of 18.88 * 4.07
times more commentary than baseline would predict (37.8% =% 8.1% of the total
commentary). The top 10% also fare well, registering 7.48 % 0.80 on the same scale
(representing a whopping 74.8% of the total commentary). This suggests that, just as
bottom 50% and 80% of contribute submit a disproportionate number of defect reports,
the top 10% and 2% of contributors perform a disproportionate amount of analysis of
those defect reports and are the characterizer actors''.

The other activity that makes up the consumer part of the equation concerns itself

with creating patches that fix defects. The integration of these patches into the Mozilla

11 The large standard deviation in the level of participation for the top 2% of contributors, £22%, is in
part due to the small size of that group, consisting of only 35 *18 individuals.

32

0.375 4
0.35
0.325 4
0.3
0.275
0.25 4
0.225 4
0.2
0.175 o
0.15
0.125 H
0.1
0.075 4
0.05 4
0.025 +

Fraction

20 4

Version

Figure 17: Contributors with CVS Access as a Fraction of All Contributors.(Number of Versions = 35)

source code tree is tracked by the Mozilla Bonsai system, which lists among other things
each contributor's unique identifier and a summary of the changes made by the patch.
The number of patches submitted by each unique contributor can therefore be counted,
and a contribution metric derived.

Because source repository access in the Mozilla project is controlled, the
contribution metric “contributors who have access to the Mozilla CVS per version” is
applicable. Figure 17 shows the number of contributors with CVS access as a fraction of
all contributors for each of the first thirty-five versions of Mozilla. From this figure it is
clear that there are relatively few contributors with CVS access when compared to all
contributors (75.49 £ 34.05 vs. 1681.4 £ 848.82), showing a clear division between
those contributors with CVS access and those without. Furthermore, there is
stratification even within the circle of contributors with access. Figure 18 with

contributors ordered in decreasing level of contribution, is a typical example: in this

33

0.9 1
0.8 1
0.7 4
0.6 +

0.5

Fraction

0.4 —

0.3 4

0.2

0.1

0 [L L e e e B O O

o] el o]
— N

Contributor

o] 0
< o]

Figure 18: Cumulative Distribution of Contributions to Mozilla CVS. (Version 23, Number of

Contributors = 56)

0.375 —
0.35 —
0.325 —
0.3 —
0.275 -
0.25 ——
0.225 —
0.2 4
0.175 —
0.15
0.125 —
0.1 —
0.075
0.05 —
0.025 —

Fraction

1 2 3 4
Version

1

Figure 19: Fraction of Contributors with CVS Commit Access for

Selected Versions of Mozilla

version, the top 20% of contributors made 71.8% of the commits to the source repository

(11 contributors, 1419 commits).

A particularly interesting inconsistency in the Mozilla Bonsai data comes from

data drawn from the first seven versions of Mozilla (Figure 19). For these versions, an

average of 21% of the contributors had CVS access, while the average for the next

34

twenty-eight versions is only 4%. A justification for this sharp difference is the Mozilla
project's unusual origins. Generally, OSS projects add developers as they add features
and attract more users to their software product. Mozilla, on the other hand, leaped from
the womb fully-formed, with a full complement of professional engineers on Netscape's
payroll tasked to encourage its growth. This imbalance was rectified as the Mozilla team
created releases for its users to test and provide feedback on, which in turn resulted in

better software, which in turn attracted more users, and so on.

Trace Paths, Characterization, and Duplicates in Mozilla

The Mozilla project thoughtfully provides a wealth of information through which
to explore the characterization process. This chapter has previously asserted that the
number of comments created by a contributor is a good predictor of that contributor's
participation in the characterization task. This assertion is justified by an analysis of
duplicates and their effect on the Mozilla product's development.

Informally, the notion of a duplicate is the notion of repetition — for example, two
Mozilla defect reports that are mere copies of one another can be considered duplicates.
This particular sort of duplication is frowned upon because of its wasteful nature.
However, other forms of duplication are both necessary and desired because they can
have positive side-effects on the development of the software product. Formally, a
duplicate is a defect report that documents a fault that has been previously reported, or
that documents a failure whose parent fault has been previously reported. Conversely, a

nonduplicate is the defect report that duplicates are considered to be duplicating.

35

25+
22.5 —
20 —
17.5
15

Ratio

12.5
10 —
7.5 —

2.5 —

0 [L L L v e e e e e B B O
[te] 0 0 13 0 13
< [Te)

-~ Y . ™
Version

Figure 20: Ratio of Duplicate Defect Reports to Non-Duplicate Defect Reports for Versions of Mozilla.
(Number of Versions = 63)

It would a waste of time to examine duplicate defect reports if they did not
significantly affect defect report processing; it is telling then to note that the Mozilla
project takes the problem of duplicates seriously enough to deeply integrate sophisticated
duplicate tracking in its Bugzilla defect report tracking tool. Analysis of these data show
the extent of the duplicate problem: in later versions of Mozilla, five defect reports were

resolved DUPLICATE for every two that were not; in older versions this ratio could be

twelve to one or worse (Figure 20).

Understanding Mozilla Duplicates

Clearly, duplicates present a question for the Mozilla project that must be
addressed. Fortunately, the framework presented in Chapter III gives a way by which
they can be understood. As has already been addressed, a trace path is an artifact that

graphs the interaction effects between faults and failures. During the process of

36

characterization, these trace paths are traversed by analysts, who resolve the defect report
to be either a fault report (and therefore a nonduplicate) or a failure report (and therefore
necessarily a duplicate). When resolved in this way, defect reports in Mozilla's Bugzilla
system are tagged with the defect report of which they are a duplicate and marked as
DUPLICATE. A side-effect of the tagging process is that a comment is generated that
records the ID of the tagger and the time and date of the tagging.

Furthermore, the DUPLICATE tag is applied to what we have identified as two
distinct classes of duplicate defect reports in the Mozilla project. The first class, the
temporal class, is where a defect report is a mere copy of one that had been documented
in the past. The second class, the causal class, is where report documents a failure that
has an ““is caused by” relationship with another fault or failure. Given these two classes
of duplicates, our definition of a duplicate report can be made more precise:

« A shallow duplicate is a defect report whose relationship with its mate or mates
is one of mere repetition.
+ A deep duplicate is a defect report that seems unique upon first examination but

actually is not.

Trace Paths in Mozilla

Because shallow duplicates are simply time-shifted copies of an original report,
they are relatively uninteresting outside of the amount of time contributors use to identify
them. Deep duplicates are a more interesting case because the causal relationship
between deep duplicates; the causal relationship between deep duplicates suggests

applying the graphical language described in Chapter III to trace paths in Mozilla. This

37

graphical language is much like the one previously described, with the following
modifications:

A number in a shape uniquely identifies a defect report. A single particular defect

may be reported more than once (i.e., may have shallow duplicates); these are

omitted for clarity.

A letter in a shape uniquely identifies a defect that has not been documented.
Figure 21 is a simple example of this notation. Failures 1 and 2, which are both
documented and are not shallow duplicates, both have their root cause in undocumented
fault a. Figure 22 is a more complex case. Failures 3 and 4 are both known and both
have their root cause in fault 5, which has been documented However, failure 3 is caused
by an intermediate failure, b, which is in turn caused by the root fault 5. A characterizer
resolving the trace path beginning at 3 would have to discover and document failure b
before he or she could know that fault 5 is the root cause of failure 3.

Figure 23 shows a trace path from Mozilla Bugzilla. Bug #52798 documents a
page reflow error that occurred when a GIF image meeting certain specifications was
present on the rendered page. This defect caused the GIF image in question to flicker and
the browser to consume more CPU than normal. This bug has fourteen duplicates, ten
shallow and four deep. The deep duplicates in this case are the ones that are judged
qualitatively to add to the knowledge base regarding the source defect report rather than
being mere duplicates -- #56015 and #56082 are the first to document that the defect can
cause Mozilla to consume 100% CPU, while defect report #65614 documents a test case
where the failure is triggered without the use of HTML table tags. We also remark that
Bug #52798 documents a failure, not a fault, meaning that the bug is conceptually a

duplicate of an undocumented defect report, represented by « in the graph.

38

Q

Figure 21: A Simple Scenario Figure 22: A More Complex Case

56082

@ a
Figure 23: A Trace Path from Mozilla Bugzilla

Trace Paths and Duplicate Resolution

Often, reported defects that developers are trying to resolve simply vanish when a
new version of the software is released. This happens because the defect report with
which the developers were working was a deep duplicate of a fault that was resolved by
another developer in the interim rather than a non-duplicate. (In effect, multiple
developers were working on multiple trace paths of the same fault at the same time.)
Given our definition of duplicate resolution, defect reports that become obsolete after a
new version of the software is released are also successfully resolved as duplicates.

The comment shown Figure 24 illustrates this. Mozilla Bugzilla bug #67196
documents a failure that caused a table to not be rendered correctly on a particular
website. The defect was explored and thought to be related to a problem with the

browser's CSS parsing routines, but this avenue was not immediately explored and the

39

——————— Comment #6 From Scotf Kester 2001-10-02 09:38 PST [reply] -------

The page I originally reported this on (wWwww.narain.com/gecko/) now works
correctly again. I have not a clue what fixed it, but it started to work
zeveral weeks ago. Marking as FIXED.

Figure 24: A Comment from Bug #67196

bug went dormant for a time. When the defect was retested at a later date, it was no
longer reproducible, meaning that it was fixed by some patch integrated into the product
in the interim. Furthermore, it is almost impossible to determine exactly which patch
(and the bug that documents it) fixed this defect because many patches are integrated into
each version of Mozilla, and many versions of Mozilla were released between the time in
which the bug was opened and the contributor made the comment in Figure 24.

This connection between trace paths, duplicates, and duplicate resolution is

further explored in Chapter IV.

40

CHAPTER V

DISCUSSION AND CONCLUSIONS

Defects are the enemy of software reliability. Because of this, it can seem
counterintuitive to use defects as a lens through which to view software development.
However, it is the obsession that classical development models have with reducing both
the number and severity of defects that makes closer analysis of the defects themselves
attractive. It is this, coupled with the easy access to data afforded by OSS projects, that
makes the defect itself a powerful analytical tool.

This tool is used in Chapter III to document a defect-centric style of development.
Though this style is described from a fundamentally different viewpoint than classical
models, its validity is corroborated by the fact that this model and classical models share
important structural components such as actors and activities, just with different
scaffolding. Furthermore, Chapter III also describes a framework for understanding
cases where the data do not fit the model by showing how its predictions are contingent
on projects following Torvald's OSS development philosophy.

Chapter IV uses different views of the data published by the Mozilla project both
to analyze claims of Chapter III and to plumb the depths of the Mozilla project itself.
Most data show a remarkable level of stratification between roles, as predicted by the
defect-centric model, the notable exception happening during a unique time in the

Mozilla project's history..Furthermore, the parallelization of debugging using trace paths

41

presented in Chapter III and explored in Mozilla in Chapter IV shows how every actor in

an OSSDM project must be cognizant of how defects affect every step of development.

42

CHAPTER VI

FUTURE WORK

Open-source software and OSS software engineering is a relatively new and open
research field. This section touches on several areas of future research suggested by this

work.

The Failure of Open-Source Projects

An interesting consequence of the model of defect handling presented above is
that it can be construed to make some predictions as to what would cause the OSS
development process to fail. Basically, if any link in the workflow presented in Chapter
IIT were to fail, the ability of the OSS development process to function would be greatly
hampered. Potential sources for failure include:

Being too difficult for reporting users to document defect reports and

communicate them to the developers. This would cause the project to starve

through lack of feedback.

Being too difficult for developers to process feedback and identify which defect

reports are duplicates and which correspond to real faults in the source code. This

would cause the project to starve through the lack of developer resources.
These sources for failure could be used to create a set of metrics for determining

empirically whether an OSS product has “failed.”

43

Duplicate Tagging Behavior

As time passes after a defect report has been submitted to Mozilla's Bugzilla
system, contributors develop a certain familiarity with the failure or failures the defect
report describes. This growing familiarity should tend to make the pool of contributors
that could accurately tag the defect report as a DUPLICATE increase over time.
Conversely, if a defect is not well known, characterization predicts that work on that
defect will proceed in parallel and will be documented in several different Bugzilla bugs,
which should eventually be marked as duplicates of one another as their causes are
divined. This suggests that in a graph of a non-duplicate and its shallow duplicates
should be wide and shallow, while a graph of a non-duplicate and its deep duplicates
should be narrow and deep. If these assertions are valid, then it should be possible to
analyze the Mozilla Bugzilla duplicate data and quantitatively determine which
duplicates are shallow and which are deep (as opposed to the qualitative analysis

performed in Chapter I'V).

Optimizing Release Cycles
Chapter IV shows in part that duplicates can be resolved simply through the
release of a new version of the software. What is interesting is that the frequency of
releases strongly affects the number of duplicates that can be resolved in this manner.
Releasing too frequently frustrates developers by making the platform a moving target for
resolving trace paths. Similarly, releasing new versions of the software too infrequently
could cause developer resources to be squandered by having developers follow trace

paths that are actually duplicates for a longer time than they would have otherwise.

44

This suggests that there should be a happy medium between releasing too
frequently and too infrequently; this is interesting because of the different schedules OSS
projects use for creating releases of their software. For example, Mozilla creates nightly
releases that developers use to see if faults have been resolved. However, this strategy is
not practical for projects like KDE'", as it is not reasonable to expect your reporting users
to install a new version of their desktop environment on a daily basis to test for defects.
Finding the optimal release cycle for a project such as KDE that would conserve the most
developer resources without frustrating testers could result in a significant productivity

boost.

12 KDE is the K Desktop Environment, a “network transparent contemporary desktop environment for
UNIX workstations.” [K Desktop Environment 2005]

45

APPENDIX A

MOZILLA VERSIONS

This table lists the vital statistics of the versions of Mozilla used in this paper.

Each row in the table corresponds to a single release of Mozilla's development branch.

AV: Absolute version of this Mozilla version release, beginning with number one
(m3).

V: Canonical version name of this release; the name that the Mozilla project assigned
to this release.

Release Date: The date of this release of Mozilla, as recorded from the Mozilla
release information pages.

Days Released: The number of days between the release of the previous version of
Mozilla and this version of Mozilla. Essentially, the number of days that the previous

version was the newest version of Mozilla.

Table 2: Mozilla Vital Statistics

AV Version Release Date Days Released
1 m3 03/19/99 N/A
2 m4 04/15/99 27
3 m5 05/05/99 20
4 m6 05/29/99 24
5 m7 06/22/99 24
6 m8 07/16/99 24
7 m9 08/26/99 41
8 m10 10/08/99 43
9 m11 11/16/99 39

10 m12 12/21/99 35

46

AV Version Release Date Days Released
11 m13 01/26/00 36
12 m14 03/01/00 35
13 m15 04/18/00 48
14 m16 06/13/00 56
15 m17 08/07/00 55
16 m18 10/12/00 66
17 0.6 12/06/00 55
18 0.7 01/09/01 34
19 0.8 02/14/01 36
20 0.8.1 03/26/01 40
21 0.9 05/07/01 42
22 0.9.1 06/07/01 31
23 0.9.2 06/28/01 21
24 0.9.3 08/02/01 35
25 0.9.4 09/14/01 43
26 0.9.5 10/12/01 28
27 0.9.6 11/20/01 39
28 0.9.7 12/21/01 31
29 0.9.8 02/24/02 65
30 0.9.9 03/11/02 15
31 1.0rc1 04/18/02 38
32 1.0rc2 05/10/02 22
33 1.0rc3 05/23/02 13
34 1 06/05/02 13
35 1.1a 06/11/02 6
36 1.1b 07/22/02 41
37 1.1 08/26/02 35
38 1.2a 09/11/02 16
39 1.2b 10/16/02 35
40 1.3 12/02/02 47
41 1.3a 12/13/02 11
42 1.3b 02/10/03 59
43 1.3 03/13/03 31
44 1.4a 04/01/03 19
45 1.4b 05/07/03 36
46 1.4rc1 05/29/03 22
47 1.4rc2 06/17/03 19

47

AV Version Release Date Days Released
48 1.4rc3 06/24/03 7
49 1.4 06/30/03 6
50 1.5a 07/22/03 22
51 1.5b 08/27/03 36
52 1.5rc1 09/17/03 21
53 1.5rc2 09/26/03 9
54 1.5 10/15/03 19
55 1.6a 10/31/03 16
56 1.6b 12/09/03 39
57 1.6 01/15/04 37
58 1.7a 02/23/04 39
59 1.7b 03/18/04 24
60 1.7rc1 04/21/04 34
61 1.7rc2 05/17/04 26
62 1.8a1 05/20/04 3
63 1.8a2 07/14/04 55

48

APPENDIX B

SOURCE CODE

This appendix contains source code listings for the scripts used to acquire and
analyze Mozilla data. All of these programs use Python, a cross-platform scripting

language ([Python Software Foundation 2005]).

BugzillaTools.py
BugzillaTools.py consists of a collection of four classes used to encapsulate
searching Bugzilla. There are two query objects and two search objects; properties of a
particular defect report are scraped from the Bugzilla page using regular expressions and

are stored in instance variables of the BugzillaBug class.

#

BugzillaTools.py

Utilities for building, getting properties of, and executing Bugzilla
queries.

Brandon Nuttall

b.nuttall@vanderbilt.edu

#

import urllib2
import re

from Counter import Counter

class InvalidBugURLError (Exception):

def init (self, value):
self.value = value
def str (self):

return repr(self.value)

class BugzillaQuery(object):
def init (self):
self.url = ""
def doQuery(self):

49

wuan

Execute the query for this query object

mwoan

data = ""

for line in urllib2.urlopen(self.url):

data = data + line
return data

class BugzillaSearchQuery(BugzillaQuery):

mwwan

Encapsulates a Bugzilla query

wuan

def

def

"http://bugzilla.mozilla.org/buglist.cgi?query format=&short desc type=
allwordssubstré&short desc=&long desc type=substring&long desc=&bug file
_loc_type=allwordssubstré&bug file loc=é&status whiteboard type=allwordss
ubstré&status_whiteboard=&keywords type=allwords&keywords=&bug status=RE
SOLVED&bug status=VERIFIED&bug status=CLOSED&resolution=FIXED&resolutio
n=DUPLICATE&emailassigned tol=l&emailtypel=exacté&emaill=&emailassigned
to2=l&emailreporter2=1l&emailga contact2=1l&emailtype2=exacté&email2=&bugi
dtype=include&bug id=&votes=&chfieldfrom=" + self.startDate +

__init (self, startDate, endDate):
self.startDate = startDate
self.endDate = endDate

doQuery (self):

mmoan

Executes the Bugzilla query encapsulated by this object

wuan

self.url =

"gchfieldto=" + self.endDate +

"s&chfield=%5BBug+creation%5D&chfieldvalue=&cmdtype=doit&order=Reuse+sam
et+sort+as+last+time&field0-0-0=noopé&type0-0-0=noop&valuel0-0-0="
return BugzillaSearch(self. BugzillaQuery doQuery ()

class BugzillaBugQuery(BugzillaQuery) :

wuan

Encapsulates a Bugzilla query

mwwan

def

def

def

__init (self, bugID):
self.bugID = bugID
__buildURL(self):

wuan

Creates the URL that will be used for the Bugzilla query

wuan

doQuery (self):

wuan

Executes the Bugzilla query encapsulated by this object

mwwan

self.url = "http://bugzilla.mozilla.org/show bug.cgi?id=" +

self.bugID

return BugzillaBug(self.bugID, self. BugzillaQuery doQuery ()

class BugzillaSearch(object):

def

__init (self, data):

wuan

Parse the data of this search result

wuan

p = re.compile(r'show bug\.cgi\?id=(\d+)""'

50

)

)

for m in p.finditer(data):
bugQuery = BugzillaBugQuery(m.group(1))
try:
self.bugQueries.append(bugQuery)
except AttributeError:
self.bugQueries = [bugQuery]

def getBugNum(self, line):

mwan

Extract the bug number from this line of data from Bugzilla

wuan

return (line.split("""))[1 1]

def queries(self):

wuan

returns list of bugQueries

mmoan

return self.bugQueries

def bugIDs(self):
return [bugQuery.bugID for bugQuery in bugQueries]

class BugzillaBug(object):
def init (self, bugID, data):

wuan

Parse the data of this bug
mmoan
self.bugID = buglD
p = re.compile(r'Reporter:.*?<a
href="mailto: (.*?)".*?Status:.*?<td>(.*?)</td>.*?Resolution:.*?
<td>(.*?) [</td>|\s]"', re.DOTALL)
m = p.search(data)
try:
self.reporter = m.group(1)
self.status m.group(2)
self.resolution = m.group(3)
except AttributeError:
self.reporter = None
self.status None
self.resolution = None

p = re.compile(r'Additional Comment.*?mailto: (.*?)""',
re.DOTALL)
for m in p.finditer(data):
try:

self.commentCounter.add(m.group(1))
except AttributeError:

mwan

commentCounter not yet created

wuan

self.commentCounter = Counter(m.group(1))

wuan

Bugs that have not been looked at yet can sometimes have
blank resolutions

wuan

if self.resolution == "":

51

self.resolution = "NOT YET RESOLVED"

def info(self):

mmoan

Returns the id, status, and res of this bug

wuan

return (self.bugID, self.reporter, self.status,
self.resolution, self.commentCounter)

if name == " main ":

wuan

Unit testing
searchQuery = BugzillaSearchQuery("1999-02-15", "1999-02-20")
searchResults = searchQuery.doQuery ()
for bugQuery in searchResults.queries():
bug = bugQuery.doQuery ()
print bug.info()[0], bug.info()[4]

doAnalysis.py

from urllib2 import HTTPError, URLError

from httplib import BadStatusLine

from BugzillaTools import BugzillaSearchQuery
from Counter import Counter

def dumpCounter (counter, fileName, mode):

wuan

Dump the contents of a Counter to the specified file

mmoan

counterFile = open(fileName, mode)
for key, wvalue in counter.counts(True):
counterFile.write(str(key) + "," + str(value) + "," + "\n"

counterFile.close ()

def getNextDate(releaseDates):

wuan

Returns the first noncommented date in the list of release dates

mman

date = releaseDates.pop(0).strip()
numSkipped = 0
while date[0] == "#":

date = releaseDates.pop(0).strip()

numSkipped += 1
return date, numSkipped

if name == " main ":

wuan

Do the analysis operation

mman

releaseDatesInfile = open("./releasedates"™, "r")

52

for line in releaseDatesInfile:
try:
releaseDates.append(line)
except NameError:

releaseDates = [line]

reporterCounter = Counter () # counts how many bugs reported

commentCounter = Counter () # counts how many comments made

fixedCounter = Counter ()

invalidCounter = Counter ()

wontfixCounter = Counter ()

duplicateCounter = Counter()

worksformeCounter = Counter ()

movedCounter = Counter ()

otherResCounter = Counter ()

#

The version number is kept track of in the version variable. The
script

is designed so that if it terminates, it can be restarted easily
by

commenting out dates in the releasedates file. The getNextDate
returns

as its second return val the number of dates that were commented
out
before it found a legit one. On a virgin file, this will be 0;
it is
incremented at the head of the below loop.
#
startDate, version = getNextDate(releaseDates)
while releaseDates:
#
Pull and tabulate the information for each Mozilla version
#
endDate, numSkipped = getNextDate(releaseDates)
version = version + 1 + numSkipped
search = BugzillaSearchQuery(startDate, endDate) .doQuery()

queries = search.queries|()
for bugQuery in queries:
print str(version) + ": " + bugQuery.buglD,
#
Pull and tabulate data for each bug in Bugzilla query
#
try:

bug = bugQuery.doQuery ()
except (HTTPError, URLError, BadStatusLine):
#
The lookup for the url for this query failed; add to
retry list and reloop (will end up retrying)

#
queries.append (bugQuery)
print ", failed"
continue
else:
print

reporterCounter.add(bug.reporter)

53

try:
commentCounter.merge (bug.commentCounter)
except AttributeError:
#
A commentCounter was never created for this bug,
which means that the bug must have no comments

#
pass
if bug.resolution == "FIXED":
fixedCounter.add(bug.reporter)
elif bug.resolution == "INVALID":
invalidCounter.add(bug.reporter)
elif bug.resolution == "WONTFIX":
wontfixCounter.add(bug.reporter)
elif bug.resolution == "DUPLICATE":
duplicateCounter.add(bug.reporter)
elif bug.resolution == "WORKSFORME":
worksformeCounter.add(bug.reporter)
elif bug.resolution == "MOVED":
movedCounter.add(bug.reporter)
else:

otherResCounter.add(bug.reporter)

#

Dump information in the counters to file

#

reporterFileName = ",/" + str(version) + "-reporter"
commentFileName = ",/" 4+ str(version) + "-commenter"
fixedFileName = "./" + str(version) + "-fixed"
invalidFileName =", /" 4+ str(version) + "-invalid"
wontfixFileName = ".,/" + str(version) + "-wontfix"
duplicateFileName = "./" + str(version) + "-duplicate"
worksformeFileName = "./" 4+ str(version) + "-worksforme"
movedFileName ="./" 4+ str(version) + "-moved"
otherResFileName = "./" 4+ str(version) + "-otherres"
dumpCounter (reporterCounter, reporterFileName, "w")
dumpCounter (commentCounter, commentFileName, "w")
dumpCounter (fixedCounter, fixedFileName, "w")
dumpCounter (invalidCounter, invalidFileName, "w")

(
(
(
(
dumpCounter (wontfixCounter, wontfixFileName, "w")
(
(
(
(

dumpCounter (duplicateCounter, duplicateFileName, "w")

dumpCounter (worksformeCounter, worksformeFileName, "w")

dumpCounter (movedCounter, movedFileName, "w")

dumpCounter (otherResCounter, otherResFileName, "w")

#

Make a list of all people that contributed to Mozilla this
verison

#

contributors = commentCounter.keys ()

for key in reporterCounter.keys():
if key not in contributors:
contributors.append(key)

54

Build a list of 4-tuples in the format:

(contributor, #comments, #totalreports, #dupreports)
using the information in the contributors list and the
generated counters and write them to a file

#
contributorInfo = []
for contributor in contributors:
contributorInfo.append((contributor,
\
commentCounter.get (contributor, "0")
, \
reporterCounter.get (contributor,
"0),
duplicateCounter.get(contributor, "0O"
)))
contributorInfoFile = open(str(version) +
"—-contributorInfo", "w")
for cbtor, numcmts, numrpts, numdups in contributorInfo:
try:
contributorInfoFile.write(cbtor + "," + str(numcmts)
\
+ "," + str(numrpts)
\
+ "," 4+ str(numdups) +
"\n")

except TypeError:
pass
contributorInfoFile.close ()

wuan

Clean up for the next pass
mwwan
reporterCounter.clear ()
commentCounter.clear ()
fixedCounter.clear ()
invalidCounter.clear ()
wontfixCounter.clear ()
duplicateCounter.clear ()
worksformeCounter.clear ()
movedCounter.clear ()
otherResCounter.clear ()
startDate = endDate

analyzeFreq.py

AnalyzeFreq.py is a script used for interpreting the output of doAnalysis.py.

def stripBogusContributors(contributors):

mwmoan

Iterates through the contributors list and removes any contributors
that
have no value for the second, third, or fourth items. This can

55

happen

for certain bogus character strings that the regex in the data

extraction

def

script incorrectly determines to be contributors.

wuan

bogusContribs = []
for i in range(len(contributors)):
contributor = contributors[i]
try:
int (contributor[1 1)

(
int (contributor[2 1)
int (contributor[3])
except (ValueError, IndexError):
bogusContribs.append(contributor)
validContribs = [x for x in contributors if x not in bogusContribs

return bogusContribs, validContribs

getContribInfoFiles(dirName) :
Generator for returning each *-contribInfo file in the dirName
sequentially.

mwan

i =1
try:
while 1:
fileName = dirName + str(i) + "-contributorInfo"
infile = open(fileName, "xr")

yield infile
infile.close()
i+=1

except IOError:

mwan

In this case, we've hit a filename that doesn't exist. Falling

through
this method will cause the iteration to terminate.
mwwan
pass

def commentsCmp(x, y):

wuan

The comparator for sorting the list of contributor info lines.

Sorts

in order of the second element of the list that represents the
contributor

info.

return int(x[1 1) - int(y[1])
if name == " main ":

dirName = "C:\\My Datal\\Thesis\\scripts\data\\"

for contribInfoFile in getContribInfoFiles(dirName):
print contribInfoFile.name

wuan

For each contribInfoFile, read it line-by-line into a list and

then

56

sort that list by its second element (the number of comments).

wuan

contributors = []
for line in contribInfoFile:
contributors.append(line.strip() .split(', "))
bogusContribs, contributors = stripBogusContributors (
contributors)

is done

each

see

less

contributors.sort (commentsCmp)
contributors.reverse ()

wuamn

Generate statistics. To do this, first get the total number of
contributors, then set the thresholds for data collection.This

by finding the particular range of contributors that fall into

of the chosen bins.

wuan

numContributors = len(contributors)
bins = [0.01, 0.02, 0.05, 0.10, 0.20, 0.50]
top = []
bottom = []
for bin in bins:
binSize = int (numContributors * bin)

top.append(binSize)
bottom.append (numContributors - binSize)

numBins = len(bins)
numCmtsTot = 0

numCmtsTop = [0] * numBins
numCmtsBot = [0] * numBins
numBugsTot = 0

numBugsTop = [0] * numBins
numBugsBot = [0] * numBins
numbDupsTot = 0

numDupsTop = [0] * numBins
numDupsBot = [0] * numBins

for i in range(len(contributors)):
For each contributor, first increment the comment,
bug report, and duplicate totals for this version.

wuan

contributor = contributors[i]
cmts = int(contributor[1])
bugs = int(contributor[2])
dups = int(contributor[3 1)

numCmtsTot += cmts
numBugsTot += bugs
numDupsTot += dups
for j in range(len(top)):

For each top bin, get the threshold from this bin and

if this this contributor number (in the /i/ counter) 1is

than the threshold. TIf it is, then it belongs in this

57

bin and
we accumulate the values.
mwan
threshhold = top[J]
if i <= threshhold:
numCmtsTop[j] += cmts
numBugsTop[j] += bugs
numDupsTop[j] += dups
for j in range(len(bottom)):
mwwan
Same thing for the bottom, except if it's greater is
when
we need to accumulate the values.
mwan
threshhold = bottom[J]
if i > threshhold:
numCmtsBot[j] += cmts
numBugsBot[j] += bugs
numDupsBot[j] += dups

wuan

Now we need to output the statistics for this version.
mwwan
dumpFileName = contribInfoFile.name + "-stats.csv"
dumpFile = open(dumpFileName, "w")
dumpFile.write("total contributors," + str(numContributors)
+ n\nn)
dumpFile.write("total comments," + str(numCmtsTot) + "\n")
dumpFile.write("total bugs," + str(numBugsTot) + "\n")
dumpFile.write("total duplicates,"™ + str(numDupsTot) + "\n")
dumpFile.write (
"top,n, #comments, #bugs, #dups, $Scomments, $bugs, $dups\n")
for i in range(len(bins)):

dumpFile.write(str(bins[1 1) + "," +

str(topl 1 1) + "," +

str(numCmtsTop[i 1) + "," +

str(numBugsTop[i 1) + "," +

str(numDupsTop[i 1) + "," +

str(numCmtsTop[i]/float(numCmtsTot))
+ ", 4+

str(numBugsTop|[1]/float(numBugsTot))
+ ", o+

str (numDupsTop[i]/float(numDupsTot))
+ "\n")

dumpFile.write("\n")

dumpFile.write (
"bot, n, fcomments, #bugs, #dups, Scomments, $bugs, $dups\n")
for i in range(len(bins)):

dumpFile.write(str(bins[i1]) + "," +

str(topl 1 1) + "," +

str(numCmtsBot[1 1) + "," +

str(numBugsBot[1]) + "," +

str(numDupsBot[i 1) + "," +

str(numCmtsBot[1]/float(numCmtsTot))
+ ", o+

str (numBugsBot[i]/float(numBugsTot))
+ ", 4+

58

str (numDupsBot[i]/float(numDupsTot))

n\n")

will tap at the end

numDupsTot])

for i in numCmtsTop

for

for

for

for

for

+"\n")
dumpFile.write("\n")
for bogusContrib in bogusContribs:
dumpFile.write(str(bogusContrib)
dumpFile.close ()
Put the figures into a list that we
process
to create a 'master' spreadsheet.
1 = [numContributors]
l.extend([numCmtsTot, numBugsTot,
l.extend(numCmtsTop)
l.extend([i / float(numCmtsTot)
l.extend(numBugsTop)
l.extend([1 / float(numBugsTot)
l.extend (numDupsTop)
l.extend([i / float(numDupsTot)
l.extend(numCmtsBot)
l.extend([1 / float(numCmtsTot)
1l.extend (numBugsBot)
l.extend([i / float(numBugsTot)
l.extend (numDupsBot)
l.extend([i / float(numDupsTot)
try:
masterList.append(1)
except NameError:
masterList = []
masterList.append(1)
mwan
Here, it's time to dump the master sheet.

wuan

print "Writing Master"

masterFileName = dirName + "master.csv"
masterFile = open(masterFileName, "w")
masterFile.write (
for bin in bins:

masterFile.write(", #CmtsTop" + str(
for bin in bins:

masterFile.write(", %CmtsTop" + str(
for bin in bins:

masterFile.write(", #BugsTop" + str(
for bin in bins:

masterFile.write(", %BugsTop" + str(
for bin in bins:

masterFile.write(", #DupsTop" + str(
for bin in bins:

masterFile.write(", %DupsTop" + str(
for bin in bins:

masterFile.write(", #CmtsBot" + str(
for bin in bins:

masterFile.write(", %CmtsBot" + str(
for bin in bins:

59

bin

bin

bin

bin

bin

bin

bin

bin

)

in

in

in

in

in

)

numBugsTop
numDupsTop
numCmtsBot
numBugsBot

numDupsBot

of the

"Version, #Contribs, #CmtsTot, #BugsTot, #DupsTot")

masterFile.write(", #BugsBot" + str(bin))
for bin in bins:

masterFile.write(", %BugsBot" + str(bin))
for bin in bins:

masterFile.write(", #DupsBot" + str(bin))
for bin in bins:

masterFile.write(", %DupsBot" + str(bin))
masterFile.write("\n")

for i in range(len(masterList)):
masterListlLine = masterList[i]
masterFile.write(str(i + 1))
for item in masterListLine:
masterFile.write("," + str(item))
masterFile.write("\n")

Counter.py

Counter.py is a general-purpose class used to keep track of a histogram-style

mapping.
class Counter(dict):
def init (self, words = None, delim = None):
try:

for word in words.split(delim):
self += word
except (TypeError, AttributeError):
pass # no arg passed, or arg is not seq
def iadd (self, key):

Add an item to the freq count and increment the total

counted
try:
self. dict [key] +=1
except KeyError:
self. dict [key] =1
return self
def str (self):

return str(self. dict)
def keys(self):

return self. dict .keys()
def get(self, key, default):

return self. dict .get(key, default)
def add(self, key):

Adds an item to the frequency count.

self += key
def merge(self, c):

Merges two Counters. The count of this counter will
be changed to equal the sum of the counts of the two

60

Counters together.

for key in c. dict :

try:
self. dict [key] += c. dict [key]
except KeyError:
self. dict [key] = c. dict [key]
def counts(self, reverse = None):

Returns list of keys, sorted by values.
Feed a 1 if you want a descending sort.

1 =1 (val, key) for key, val in self. dict .items()
l.sort ()

if reverse:
l.reverse ()
1 =1 (key, val) for val, key in 1]
return 1
def clear(self):
self. dict .clear()

61

BIBLIOGRAPHY

BECK, K.. 2000. Extreme Programming Explained: Embrace Change. Addison-Wesley,
Boston.

BROOKS, F. P.. 1995. The Mythical Man-Month. Addison-Wesley Professional, Boston.

FREE SOFTWARE FOUNDATION. 2004. The Free Software Definition.
http://www.gnu.org/philosophy/free-sw.html.

FREE SOFTWARE FOUNDATION. 2005. Overview of the GNU System.
http://www.gnu.org/gnu/gnu-history.html.

GERMAN, D. AND MOCKUS, A.. 2003. Automating the Measurement of Open Source
projects. In Proceedings of the 3rd Workshop on Open Source Software
Engineering, Portland, Oregon, May 2003, pp.63-67.

JACOBSON, I., BOOCH, G. AND RUMBAUGH, J.. 1998. The Unified Software
Development Process. Addison-Wesley, Boston.

MOCKUS, A., FIELDING, R. T. AND HERBSLEB, J. D.. 2002. Two Case Studies of
Open Source Software Development: Apache and Mozilla. ACM Transactions on
Software Engineering and Methodology, 11, 3, pp.309-346.

MOZILLA FOUNDATION. 2005a. Hacking Mozilla.
http://www.mozilla.org/hacking/life-cycle.html.

MOZILLA FOUNDATION. 2005b. Bonsai - CVS Query Form.
http://bonsai.mozilla.org/cvsqueryform.cgi.

MOZILLA FOUNDATION. 2005c. mozilla.org Bugzilla. https://bugzilla.mozilla.org/.

NAKAKOIJIL K., YAMAMOTO, Y., NISHINAKA, Y., KISHIDA, K. AND YE, Y..
2002. Evolution Patterns of Open-Source Software Systems and Communities. In

Proceedings of the International Workshop on Principles of Software Evolution,
Orlando, FL, 2002, ACM Press, Orlando, FL, pp.76-85.

OPEN SOURCE INITIATIVE. 2005. The Open Source Definition.
http://www.opensource.org/docs/definition.php.

PYTHON SOFTWARE FOUNDATION. 2005. What is Python?.
http://python.org/doc/Summary.html.

RAYMOND, E. S.. 2001. The Cathedral and the Bazaar. O'Reilly Media, Inc.,

62

Cambridge, MA.

REIS, C., PONTIN, R. AND FORTES, M.. 2002. An Overview of the Software
Engineering Process and Tools in the Mozilla Project. In Proceedings of the Open

Source Software Development Workshop, Newcastle upon Tyne, February 2002,
pp.155-175.

STALLMAN, R.. 2001. About the GNU Project.
http://www.gnu.org/gnu/thegnuproject.html.

YE, Y. AND KISHIDA, K.. 2003. Toward an Understanding of the Motivation of Open

Source Software Developers. In Proceedings of the 25th International
Conference on Software Engineering, Portland, OR, 2003, pp.419-429.

63

	 Chapter I

Introduction
	 Chapter II

Related Work
	Classical Models
	Origins of the Open-Source Software Development Process
	Describing Open-Source Software Development
	Linus's Law
	Open-Source Development Group Organization

	 Chapter III

Modeling Open-Source Software Development
	Building Blocks
	Development As Maintenance
	Contributions, Actors, and Activities
	Development Processes
	Defects
	Deconstructing the Producer
	Deconstructing the Consumer
	Bringing It Together

	Enhancements
	Adaptations
	Applying Contribution Metrics

	Characterization and Trace Paths
	Graphing Trace Paths
	“Debugging is Parallelizable”

	 Chapter IV

A Mozilla Case Study
	Applicability of the OSSDM
	The Mozilla Bugzilla Database
	The Mozilla Bonsai Database

	The Producer
	The Consumer
	Trace Paths, Characterization, and Duplicates in Mozilla
	Understanding Mozilla Duplicates
	Trace Paths in Mozilla
	Trace Paths and Duplicate Resolution

	 Chapter V

Discussion and Conclusions
	 Chapter VI

Future Work
	The Failure of Open-Source Projects
	Duplicate Tagging Behavior
	Optimizing Release Cycles

	Appendix A

Mozilla Versions
	Appendix B

Source Code
	BugzillaTools.py
	doAnalysis.py
	analyzeFreq.py
	Counter.py

