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CHAPTER I 

 

MASS SPECTROMETRY AND PATHOGENESIS 

 

A version of the following chapter was previously published and has been adapted from 

Moore et al., Current Opinion in Microbiology, Copyright 2014 by Elsevier1, Spraggins, Rizzo, 

Moore et al., Proteomics, Copyright 2016 by Wiley and Sons2, and from Moore et al., 

Proceedings of the NATO Advanced Study Institute in Rapid Threat Detection, Copyright 2017 

by Springer.3 

 

Overview 

Human disease is characterized by signature changes at a molecular level that present in 

affected tissues and organs. Diseases cause disruption and dysregulation of a number of biological 

molecules, including proteins, lipids, metal, and small molecules. Often, disruption can involve 

rearrangement of biomolecules in a way that is regiospecific. Understanding the spatial distribution 

of biomolecules as it relates to human disease is incredibly important; it represents a way to study 

disease-associated changes in tissues. Certain technologies have been leveraged for such studies, 

including immunohistochemistry, fluorescent in situ hybridization, and other molecular tagging 

approaches. These analytical approaches are limited as they require prior knowledge of the 

analytical target and optimized reagents to perform such analyses. This work utilizes Imaging 

Mass Spectrometry (IMS), a discovery-based analytical approach that enables the detection of 

biological molecules spatially within diseased tissues. For diseases that are hallmarked by small 

regional areas of inflammatory response, such as bacterial infections, IMS proves to be a powerful 
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analytical technology to discover novel molecular changes specific to areas in the tissue where 

pathogens interact with their vertebrate hosts. This region, deemed the pathogen-host interface, 

presents a wealth of information about how vertebrate hosts defend themselves from invading 

pathogens. Further study of these interactions in the field of infectious diseases is paramount to 

understand microbial pathogenesis and to continue to find therapeutic strategies to treat infections. 

 

Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry 

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) is an 

analytical technology that enables direct analysis of biomolecules. MALDI utilizes a matrix, 

typically a small organic acid with strong ultraviolet (UV) absorbance, which is uniformly mixed 

with analytes to aid desorption and ionization.4 MALDI employs the use of a laser that generates 

light in the UV range to provide the energy for desorption and ionization. Historically, nitrogen 

lasers (337 nm) were used extensively in MALDI instruments, but have seen a decline due to their 

low repetition rates, short lifespans, and the increase of more efficient laser technology. Solid-state 

lasers such as the frequency-tripled neodymium-doped yttrium aluminum garnet (ND:YAG, 335 

nm) and neodymium-doped yttrium  lithium fluoride (ND:YLF, 349 nm) have become the standard 

for the majority of MALDI experiments. Gas phase ions are generated post laser pulse and are 

mass analyzed in the mass spectrometer. Ions are detected and displayed in a spectrum according 

to their mass-to-charge ratios (m/z), which yield specific molecular signatures within complex 

samples. Figure 1.1 represents a cartoon schematic of this process. This label-free technology can 

be used without prior knowledge of sample composition, allowing for the detection of a variety of 

analytes, from small molecules to large proteins.5 Combined with efficient analyte identification 

strategies and the emergence of online searchable databases 6, 7, MALDI MS has been successfully 
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applied to a variety of biological samples, including tissue sections 8,  plants 9, insects 10, whole 

animals 11, and microbial colonies.12 The ability to analyze such a wide range of systems has led 

to the use of MALDI MS as a clinical tool, particularly in diagnostic microbiology. Additionally, 

it can be used in a histology-directed manner, where regions of interest are annotated and then 

interrogated using MALDI MS.13 This approach allows researchers to interrogate only certain 

regions of biological interest to save resources, or to use the technology as a diagnostic tool for 

molecular pathology.14-16 

 

 

 

 

Figure 1.1: Schematic of MALDI 
Cartoon schematic of matrix assisted laser desorption/ionization. Here a matrix, pictorially 
depicted as blue circles, is mixed with analytes, depicted as purple circles. The mixture is provided 
energy using a laser pulse, which in turn causes the analytes to ionize and desorb into the gas 
phase, where ions can be separated and measured. Reprinted from Proceedings of the NATO 
Advanced Study Institute in Rapid Threat Detection, 2017, Imaging Infection, with permission 
from Springer Publishing Company3. 
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Mass spectrometry can be used as an imaging modality by systematically interrogating 

samples at defined x/y coordinates, shown in Figure 1.2. Samples are thinly sectioned and mounted 

onto surfaces, typically gold sample plates, stainless steel targets, or glass slides. Next, a matrix is 

applied homogeneously across the sample. The laser is used to interrogate the sample at defined 

x/y coordinates across the sample in entirety. At each x/y coordinate, ions are generated and a mass 

spectrum is recorded. The spectral data can be correlated back to the x/y position to generate heat 

maps for each ion of interest. Heat maps can be generated based on the maximum spectral intensity 

or on the total integrated value of each defined m/z window or bin. Image spatial resolution is the 

term used to define the spacing between pixels, though a number of factors affect spatial resolution. 

Spatial resolution is affected both by the size of the laser spot on the target used to interrogate the 

section as well as the step size between the points in the array. IMS reveals not only the specific 

m/z of the analyte but also the spatial origin of that analyte. Using this modality, molecular species 

of interest can be tracked regiospecifically to biological foci to help draw conclusions. 
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Figure 1.2: Schematic of MALDI Imaging Mass Spectrometry 

The MALDI Imaging Mass Spectrometry workflow begins with tissues sectioned very thinly and 
mounted to a slide. Tissues can be washed to remove interfering lipids and salts or not treated at 
all. MALDI matrix, typically small organic acids, are then applied to the surface in a homogeneous 
way. A laser is used to interrogate the sample at defined x/y coordinates and a mass spectrum is 
collected at each location. Heat maps can be generated by setting mass windows and integrating 
the area under the peak in the selected windows. These heat maps reveal the spatial distribution of 
analytes within thin sections. Reprinted from Proceedings of the NATO Advanced Study Institute 
in Rapid Threat Detection, 2017, Imaging Infection, with permission from Springer Publishing 
Company.3 
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Time-of-Flight Mass Spectrometry 

 The most commonly employed MALDI mass spectrometers is the time-of-flight mass 

spectrometer (MALDI TOF MS.) TOF mass analyzers are used to determine the m/z of ions based 

on the time it takes them to transverse a field-free region. Figure 1.3A represents a schematic of a 

TOF mass analyzer. The components are relatively simple: there is an accelerating electrode which 

serves to start all ions at the same time, a field-free drift region to allow them to separate, and a 

detector to monitor when the ions transverse the drift region. Ions are given the same initial kinetic 

energy from the electrode, but ions will have different velocities based on their masses, thus 

separating them in time. The initial kinetic energy (KE) is defined as the charge of ion (z) times 

the accelerating voltage (V.) 

KE = zV 

This is set equal to the traditional equations for kinetic energy, where the mass of the ion (m) is 

multiplied by the velocity (v.)  

KE = 𝑧𝑧V =
m𝑣𝑣2

2
 

The velocity of the ions can be represented as distance (d) over time (t.) Substituting those 

parameters, the equation can be rearranged to use the time-of-flight to discern the mass to charge 

ratios, since the distance traveled and accelerating voltage are constant. 

t = d�
𝑚𝑚

2𝑧𝑧V
 

 MALDI-TOF mass spectrometers are the primary instrument for molecular imaging 

experiments. They are highly sensitive and have a large practical mass range, allowing them to 

analyze a plethora of biomolecules. They also have high duty cycles, a factor important for imaging 
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experiments when many mass spectra must be collected in a reasonable amount of time. New 

MALDI-TOF systems are equipped with ultrafast lasers, allowing rapid data generation.17  

 

 
Figure 1.3: Time-of-Flight and Fourier Transform Ion Cyclotron Resonance Mass 

Analyzers 
This schematic shows two common types of mass analyzers. A time-of-flight mass analyzer is 
shown in A. Ions are accelerated through an electric field, giving the ions the same kinetic energy. 
The velocity of the ions through the field-free drift region is dictated by their m/z ratio. B. shows 
the electronic circuitry and set-up of a Fourier transform ion cyclotron resonance mass analyzer. 
Ions undergo cyclotron motion within the magnetic field, where they are excited and detected 
using perpendicular electronic plates. B  was reprinted from “Fourier Transform Ion Cyclotron 
Resonance Mass Spectrometry: A Primer” page 1-35, 1998, with permission from John Wiley and 
Sons.18 
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Fourier Transform Ion Cyclotron Resonance Mass Spectrometry 

MALDI sources can also be coupled to other mass analyzers, including Fourier transform 

mass spectrometers. One such examples is the Fourier Transform Ion Cyclotron Resonance 

(FTICR) mass spectrometer, which is explained in great detail by Marshall et al..18 These mass 

analyzers provide the highest mass resolution and accuracy. The mass spectrometer consists of a 

super conducting magnet, which provides a uniform magnetic field, and an ICR cell located in the 

center of the magnet. Ions are introduced to the ICR cell where they are subjected to a Lorentz 

force, causing the ions to move in a direction perpendicular to the magnetic field. The ion motion 

will bend into a circular path, orbiting the cell, with a frequency that is directly proportional to the 

m/z ratios. The motion of the ions is related to their mass, which dictates the frequency with which 

they orbit within the cell. A simple schematic of this is shown in Figure 1.3B. The ICR cell contains 

two trapping plates, two excitation plates, and two detection plates. The trapping plates are placed 

at the end of the ICR cell to confine the ions in the x-plane as shown in Figure 1.3. Upon injection 

into the ICR cell, ion motion is incoherent and not yet useful to determine the mass. To generate a 

detectable signal, a radio frequency is applied between the two excitation plates at a frequency that 

matches the cyclotron frequency of the ion. Upon resonant excitation, ions are accelerated to a 

larger, detectable radius. As a packet of ion moves closer to the detection plate, an image current 

is induced allowing for the ions to be measured. 

These instruments have the unique ability to provide multiple detection events for a single 

laser shot, and even have the ability to accumulate ion populations from multiple laser shots prior 

to detection19. This is unlike MALDI-TOF mass spectrometers, where a single laser shot generates 

a single detection event, and helps contribute to the high mass resolving power of these 

instruments. These mass spectrometers have achieved high resolution in MALDI IMS 
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experiments, with reported mass resolving powers of greater than 50,000 (m/Δm50%) and mass 

accuracy of sub 5 ppm.20, 21 Such performance is quite important for IMS experiments, where on-

tissue analysis demands the ability to distinguish both overlapping isotopic distributions as well as 

nominal isobars. This improvement in resolving power is counterbalanced by time needed for 

analysis; detection events are much longer than those in MALDI-TOF systems, sometimes lasting 

seconds per pixel. This is particularly important for MALDI IMS experiments, which each pixel 

in the image represents a mass spectrum and long detection times can greatly contribute to analysis 

times that are not amicable to clinical workflows. 

 

Laser Ablation Inductively Coupled Plasma Mass Spectrometry 

LA-ICP IMS is a technology enabling in situ analysis of elemental distribution within a 

two dimensional sample.22 Similar to the MALDI IMS workflow, samples are thinly sectioned and 

mounted onto slides for analysis. A UV laser is used to systematically ablate material into a sheath 

gas, which carries the material to the ICP torch for ionization.23 This can be used to visualize the 

spatial distributions of elements within samples, including tissue sections. Heterogeneities of metal 

availability during disease can be determined using this method. The nutrient metal localization 

can then be compared to the protein patterns assessed by MALDI IMS to identify subpopulations 

of analytes that correlate with differential nutrient availability. 

 

Analyte Identification Strategies 

 MALDI IMS experiments uncover a number of spatially resolved species, revealing novel 

molecular information from a variety of systems. However, in order to drive biological 

conclusions, identification of these analytes is necessary. The sheer volume of targets from the 
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robust data can be overwhelming; however, many recent advancements in the field have aided 

analyte identification. Though others have focused on identification of endogenous metabolites, 

small molecules, and lipids; this work will focus on protein and peptide identification strategies. 

An overview of these strategies is depicted in Figure 1.4.  

 Protein identification strategies can be classified in three general categories: bottom-up, 

top-down, and indirect. Bottom-up experiments involve a solution-phase enzymatic digestion of 

protein targets prior to analysis.24 This can be performed in situ, allowing histology-directed or 

imaging MS experiments to be performed on a peptide level, or on purified protein targets. Special 

consideration must be made during in situ digestion to not cause peptide delocalization during 

enzymatic digestions. Matrix is applied and MS and tandem MS (MS/MS) analyses can be 

performed directly from tissue sections.25 MALDI generated ions tend to be singly charged and 

commonly employed MS/MS techniques such as collision-induced dissociation (CID) yield 

insufficient fragmentation data. Additionally, it can be difficult to fragment peptides directly from 

tissue sections both because it is difficult to effectively isolate parent ions from the complex 

background and because the fragmentation efficiency from singly charged parent ions are low. 

Enzymatic digestion of proteins is favorable because it extends the mass range of observable 

proteins by allowing peptides of very large proteins to be analyzed.  

 Top-down proteomics approaches provide another approach for protein identification from 

MALDI IMS experiments. Here a high mass resolution measurement is taken from an intact 

molecular weight species, such as a protein, which is then followed by gas phase fragmentation.26 

Top-down fragmentation from MALDI MS typically utilizes post-source decay and therefore 

relies on analytes that are both abundant and pure, making in situ MS/MS measurements 

challenging. More efficient fragmentation techniques, such as electron transfer dissociation (ETD,) 
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provide an alternative approach to gather useful fragmentation data from an intact protein. 

Although efficient, this technique relies on analytes being in higher charge states and tends to be 

ineffective for MALDI ions. Top-down approaches such as ETD are ideal for studying intact 

proteins as they can characterize different proteoforms of a protein and have been shown to keep 

the labile post-translational modifications (PTMs) intact.  

Indirect identification strategies rely on secondary information generated from additional 

experiments completed in tandem with the imaging experiment. Typical workflows utilize 

electrospray ionization (ESI) to generate peptides and protein in higher charge states, making them 

more amenable for common MS/MS techniques. These indirect methods first involve the 

collection of a MALDI image from a tissue section of interest. In indirect methods, a MALDI 

image is typically collected on a tissue section while proteins are extracted from either serial 

sections or bulk homogenate for either top-down or bottom-up LC-MS/MS based strategies. 

Indirect identification strategies are advantageous because they allow both the imaging and 

proteomics experiments to be operated under optimal conditions to maximize the sensitivity for 

both analytical approaches. 
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Figure 1.4: General Protein Identification Workflow 

Step 1 includes generating targets from MALDI IMS experiments. These can be a range of analytes 
from proteins to lipids and small molecules. An ideal analyte is robust, appearing in technical 
replicates of the same tissue sections and reproducible, appearing in biological replicates of the 
same biological model. Step 2 involves physically extracting the targets from the tissue. This can 
be done from bulk homogenates or spatially from a tissue section. Care should be taken to match 
the sample preparation used in IMS experiments when using the tissue section methods. This 
includes washing strategies to remove interfering analytes. Step 3 is to further purify samples if 
needed. A broad range of strategies can be used, including offline HPLC fractionation, SDS-PAGE 
gels, or affinity chromatography. Step 4 is used to actually fragment the analyte of interest. Two 
main proteomics approaches are used: top-down sequencing which fragments intact proteins and 
bottom-up, which utilized an enzymatic digestion to create peptides which are fragmented. 
Reprinted from Proceedings of the NATO Advanced Study Institute in Rapid Threat Detection, 
2017, Imaging Infection, with permission from Springer Publishing Company.3 
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Protein Identification Strategies 

A majority of intact MALDI IMS and histology-directed experiments focus on small 

proteins, typically under 30 kDas. Protein identification strategies typically begin with analyte 

extraction (Figure 1.4, Step 2). This can be performed in bulk, by homogenization of the sample, 

or in more spatially directed approaches, including laser capture microdissection or punch 

biopsies. Another recent method, called microextraction, allows researchers to extract directly 

from tissue sections in a spatially refined manner.27 When trying to identify species from IMS 

experiments, enriching the sample for the species of interest by spatially directed extraction can 

greatly enhance the chance at analyte identification. 

Bottom-up proteomics approaches have been used with success for protein identification. 

In these experiments, an enzyme, typically trypsin or LysC, is used to cleave the protein of interest 

to peptides for traditional LC-MS/MS analyses. Since the MS/MS analysis is performed at the 

peptide level, it is sometimes difficult to isolate which intact protein mass corresponds to the 

MALDI MS target. In solution digestions of bulk extracts are very rich and will yield a large 

number of protein identifications. While this presents a wealth of knowledge related to the biology 

of the sample, it is not the best approach for matching protein identities to MALDI MS 

experiments.  

A large majority of identification of small proteins from MALDI MS experiments have 

utilized in-gel digestions for identification. In this strategy, the protein of interest is loaded into a 

high percentage SDS-PAGE gel. The gel band or region of interest is excised and subjected to in-

gel tryptic digestion and analyzed by LC-MS/MS analysis. This method is relatively 

straightforward and has been used with success.28, 29 However, a plethora of proteins are 

successfully identified from a single gel band or a region of a gel. This requires the researcher to 
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make an educated association for identification. Identifications should be made with consideration 

of peptide counts for each identified species as well as the theoretical mass of the protein. The 

analyte of interest could be a small fragment of a much larger protein, introducing uncertainty in 

the identification. Additionally, this method has difficulties in assessing post-translational 

modifications or truncations that cause deviation from the anticipated intact mass. Additional 

certainty can be gained by adding a separation before the gel step (Figure 1.4, Step 3). Here, a 

protein extract is fractionated by another analytical technique, traditionally HPLC or affinity 

chromatography, with fractions collected and stored. When MALDI MS is used to interrogate the 

fractions, the analyte of interest can be isolated to a more purified fraction. Using this approach 

will decrease the amount of protein identified from the gel band and can therefore give the 

researcher more confidence in the identification.29  

Top-down sequencing presents an ideal method for protein identification. In this workflow, 

the intact protein is fragmented using ETD. In this approach, the intact mass of the protein is 

recorded prior to fragmentation. This removes any ambiguity about which parent ion the fragments 

derived from. When trying to assign identities to MALDI MS experiments, this approach is 

superior because the mass of the parent can be matched back to MALDI data.30 

 

Peptide Identification Strategies 

MALDI MS profiling and imaging experiments are not limited to intact proteins. 

Performing a digestion step either in solution or in situ prior to MALDI analyses has great benefit. 

It allows for the analysis of proteins that are very large or for the analysis of biopsies that have 

been fixed. Traditional enzymatic digestion protocols require an incubation step to allow the 

enzyme to act upon the proteins in the sample. In situ enzymatic digestion has been performed on 
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both fresh-frozen and formalin-fixed, paraffin embedded (FFPE) tissue for peptide profiling and 

classification.31, 32 Though these methods have not yet been applied to infectious diseases, it is an 

attractive solution for handling clinical biopsies of unknown origin or those of significant biosafety 

risk. Additionally, since the analytes measured in this approach are peptides, it is much easier to 

match the analyte mass to the species sequenced in a parallel LC-MS/MS analysis using indirect 

identification strategies, circumventing the problems discussed above.  

Another emerging technology that can be used for peptide identification is the hydrogel. 

Here a small punch of acrylamide is loaded with enzyme and placed on the tissue for digestion.33 

Spatially defined proteomics can be performed on the surface of tissue samples using such an 

approach. Hydrogel technologies have been used to successfully interrogate both fresh-frozen and 

formalin-fixed biopsies.14 Additionally, hydrogel technologies have been coupled to microwave-

assisted enzymatic digestion to decrease the time needed to perform a digest.34  Rapid tryptic 

digestion allows the analysis of peptides to be within the time range needed for practical 

implementation into clinical workflows.  

 

Infectious Diseases 

According to the Centers for Disease Control, an estimated 2 million people each year 

become infected with antibiotic-resistant bacteria. Of these 2 million, there are a reported 23,000 

deaths directly attributed to the microbes.35  Compounding this threat is the tremendous rate at 

which pathogens are gaining resistance to antimicrobial strategies. This is partially because 

antibiotics are overly prescribed, with suboptimal prescriptions occurring in as often as 50% of all 

cases. Between 1935 and 2003, there were fourteen emerging classes of antibiotics.36 The decrease 

in emerging therapeutics is convoluted; novel antibiotic development is an expensive endeavor 
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that is not often profitable for pharmaceutical companies.36 In addition, the time from antibiotic 

deployment to emergence of clinically relevant resistance has dramatically decreased when new 

antimicrobials do become available.37 This led the Infectious Disease Society of America to release 

a 2009 call to action to study microbial resistance and to target seven bacteria of particular 

concern.38 These pathogens were deemed the “ESKAPE” pathogens and include Enterococcus 

faecium, Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas 

aeruginosa, and Enterobacter species. In order to continue treating infections caused by these 

bacteria, it is important to study their pathogenesis using novel and emerging analytical 

technologies. The application of such technologies might isolate novel targets for antimicrobial 

intervention, and further aid the treatment of antimicrobial resistance at the cusp of the post-

antibiotic era.  
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Figure 1.5: Traditional Workflow for MALDI MS Identification of Microorganisms 
A typical workflow for MALDI MS-based spectral matching for microbial identification. A) 
The unknown pathogen is cultured using standard techniques on agar plates. A single colony 
is selected and moved onto a MALDI target using a sterile device. Care is taken to not move 
agar with the colony, as it introduces interferences into the sample. Finally, cells are lysed on 
target when they are mixed with a MALDI matrix in an organic solvent, typically α-
cyanocinnamic acid in 50% acetonitrile. B) Once the cells are lysed, the proteins extracted into 
the organic solvent will co-crystalize with the MALDI matrix. Upon interrogation in the mass 
spectrometer, a laser passes energy to the matrix, ionizing the small proteins. The ionized 
proteins are measured using a mass spectrometer and result in a characteristic mass spectrum 
that can be used to classify bacteria.  Reprinted from Proceedings of the NATO Advanced Study 
Institute in Rapid Threat Detection, 2017, Imaging Infection, with permission from Springer 
Publishing Company.3 
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MALDI Mass Spectrometry and Infectious Diseases 

MALDI MS can distinguish molecular fingerprints associated with specific 

microorganisms, allowing for the rapid identification of infectious agents. MALDI MS presents a 

means to interrogate intact cells from agar plates or liquid media, leading to robust m/z signatures 

independent of culture conditions.39 Microbial colonies from culture are moved onto MALDI 

targets, mixed with matrix, and analyzed using a mass spectrometer (Figure 1.5). This has been 

expanded to include identification of fungi and bacteria that are difficult to culture, such as 

anaerobic or highly infectious bacteria.40-43 Advances in sample preparation have improved the 

reproducibility of MALDI MS measurements from intact cells, making it a promising tool for 

diagnostic microbiology.12, 44, 45 

Microbial fingerprinting using MALDI MS can provide accurate determination of spectral 

peaks specific to both species and genus.46, 47 Initial studies have been compiled into a collection 

of databases that can be used to classify clinical isolates quickly and accurately. 12 Instrumental 

set-ups, automated analyses, and database searching platforms tailored to these applications are 

available from commercial instrument manufacturers, including FDA-approved systems like the 

MALDI BioTyper system (Bruker Daltonics) and the Vitek microbial identification system 

(Biomérieux).48 Databases are perpetually evolving to meet biological needs and to include 

emerging strains, bacterial subtypes, and to differentiate pathogenic and non-pathogenic strains.46, 

47 49 50 Furthermore, comparative analyses of spectral information can be used to determine 

microbial lineage, which provides a rapid and sensitive tool to diagnose and control outbreaks of 

pathogenic microbes.51 Clinical analyses have also included profiles from complex mixtures, 

including blood cultures and complex polymicrobial infections.52 For example, direct MALDI MS 

analysis of centrifuged blood culture broths from patients with bacteremia in intensive care units 
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has been utilized to accurately identify microbes from complex, polymicrobial samples. The 

approach also requires substantially less time than previous diagnostic methods.52 These continued 

advancements decrease the time needed to identify a pathogen, shortening the amount of time until 

antibiotic intervention and therefore decreasing the cost of care.53  This has revolutionized clinical 

care of bacterial infections, in particular in cases of sepsis.54 Successful implementation of this 

workflow has been extended from clinical diagnostic laboratories to botany labs for the study of 

plant pathogens and to the food service industry to study food-spoiling pathogens.55, 56  

Such advancements greatly decrease both time and cost associated with microbial 

identification, leading to more efficient antimicrobial intervention. Integration of MALDI MS 

technologies into clinical laboratories therefore has the potential to dramatically affect infectious 

disease medicine and have a positive impact on human health.53  

 

MALDI Profiling of Infected Human Tissues 

The analytical power to rapidly identify microorganisms from culture has been a major 

advancement. However, a culture step is still required, removing the microorganism from the 

complex environment of the host organism, and severely delaying the time required to positively 

identify the causative agent of infection. This approach makes the study of microbial pathogenesis 

and virulence difficult because microorganisms in culture are not experiencing the same conditions 

as microorganisms growing within the host. However, there are significant analytical challenges 

associated with the study of bacteria actively causing diseases within the host. Bacteria and their 

products are generally of limited abundance when compared to host markers and require high 

sensitivity in analytical technology. However, MALDI MS is emerging to fill this gap and to 

perform analyses from complex mixtures. 
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MALDI MS profiling experiments collect a number of discrete spectra from various cell 

types within samples for comparison. This approach was used in a recent study that searched for 

serum host-response biomarkers for sepsis in neonates in intensive care units. Sepsis-associated 

m/z values, including m/z 11,528, identified as a variant of the host inflammatory protein serum 

amyloid A, provided diagnostic markers which could be detected from serum at birth. Scoring of 

these biomarkers will allow clinicians to determine which patients should be placed on 

antimicrobial therapies and has prompted the design of a triage strategy for suspected cases of 

neonatal sepsis.57 

Another study utilized MALDI MS profiling to study the host response to Staphylococcus 

aureus infected skin wounds over time. Skin lesions infected with S. aureus were swabbed into 

sterile water at various time points post-infection. Both swab samples and wound exudate were 

analyzed by MALDI MS. Comparison of collected spectra from wound beds and cultured S. 

aureus revealed several matching m/z values. Additional signals were detected from the wound 

bed thought to belong to mouse defensins and blood, highlighting the ability of MALDI profiling 

to monitor bacterial signals, host response to infection, and wound healing over time.58 Such 

analyses could lead to direct microbial analysis from soft tissue infections and aid in diagnosis of 

chronic wound infections.  

In addition to analyzing spotted tissue homogenates or serum, MALDI MS provides the 

distinct advantage of in situ tissue profiling. This method allows molecular signals to be obtained 

directly from tissue sections in a spatially-targeted approach, allowing pathologists to focus 

analyses on histological regions of disease.59  Approaching large sample sets in a histologically-

directed way presents a reasonable method to differentiate signals associated with disease in a 

high-throughput manner. This approach also presents an alternative way to characterize bacterial 
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signatures in vivo at a point when these organisms are actively causing disease within host tissues. 

The histology-directed approach has been applied to the study of bacterial sarcoidosis in snap-

frozen human tissue. Targeting only the granulomas, m/z values were observed to correlate with 

either bacterial infectious foci or control tissue.60  

 

Staphylococcus aureus 

One noted ESKAPE pathogen that has been extensively studied by IMS is Staphylococcus 

aureus. S. aureus colonizes the anterior nares of approximately 30% of the population, with 

approximately 2% of those strains being antibiotic resistant.61 It is a cause of significant morbidity, 

accounting for half of all reported deaths from antibiotic resistant bacteria reported in the CDC’s 

2013 report.35 S. aureus can colonize virtually all sites in the human body to cause diseases, 

including skin and soft tissue infections, osteomyelitis, endocarditis, sepsis, and pneumonia. 

 S. aureus infection causes the formation of purulent inflammatory foci, called abscesses, 

which are characterized by the recruitment of host immune cells, in particular neutrophils (Figure 

1.6.)62 Abscesses consist of a bacterial microcolony in the center surrounded by a sphere of 

necrotic and viable neutrophils. This is further encapsulated in a fibrin sheath.63 Because these 

lesions are inherently heterogeneous and bacterial pathogens occupy only a small fraction of the 

abscess, it has been difficult to determine the presence and spatial distribution of bacterial and host 

proteins that are localized to the host-pathogen interface. Additionally, the mechanisms by which 

bacterial pathogens obtain essential nutrients during abscess growth, as well as the nutrient-

withholding defense strategies employed by infected hosts, are not completely understood. For 

these reasons, this system is an ideal model for MALDI IMS characterization. 
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Figure 1.6: Working Model of Abscess Formation 
“Working model for staphylococcal abscess formation and persistence in host tissues. Stage I: 
following intravenous inoculation, S. aureus survives in the bloodstream and disseminates via 
the vasculature to peripheral organ tissues. Stage II: staphylococci in renal tissue attract a 
massive infiltrate of polymorphonuclear leukocytes and other immune cells. Stage III: 
abscesses mature showing a central accumulation of the pathogen (SAC) surrounded by a 
pseudocapsule of fibrin deposits (pink rim), and zones of necrotic and healthy 
polymorphonuclear neutrophils (PMNs; purple and light blue cells, respectively), and finally 
a rim of eosinophilic material (orange rim). Stage IV: abscesses mature and rupture on the 
organ surface to initiate new rounds of infections. Genes required for specific stages of 
staphylococcal abscess development are in red above the corresponding stage of infection. 
Figure adapted with the authors’ permission from an article published by Cheng and 
colleagues14.” Reprinted from Trends in Microbiology, 19(5), “A play in four acts: 
Staphylococcus aureus abscess formation” 2011 with Permission from Elsevier.64 
 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087859/
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Figure 1.7: Metal Binding Sites of Calprotectin 

“X-ray crystal structure of Mn-bound CP. (A) Ribbon diagram of Mn-bound S100A8 (green) and 
S100A9 (yellow) heterodimer refined to 1.6-Å resolution. The Zn-specific (S2) and Mn/Zn (S1) 
binding sites are labeled. Ca ions are shown as gray spheres, and the Mn ion is shown in purple. 
(B) Close-up view of the Mn/Zn site (S1) with the six histidine residues that chelate the Mn ion 
labeled. (C) Electron density (2FO-FCmap contoured at 2σ) for the Mn ion and histidine side chains 
showing the nearly perfect octahedral geometry.” Figure and caption reprinted from Proceedings 
of the National Academy of Science, 110, 10, “Molecular basis for manganese sequestration by 
calprptectin and roles in the innate immune response to invading bacterial pathogens.”65 
Copyright 2013 National Academy of Sciences. 
 

 

Nutritional Immunity 

Metals are an essential part of biological function for all cells. It is estimated that 

30-45% of all enzymes utilize a transition metal cofactor to enhance catalysis and 

reactivity.66, 67 Conversely, too much metal can have toxic effects, so their bioavailability must 

be tightly regulated. For pathogens invading a vertebrate host, they must acquire these nutrient 
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metals from the host in order to thrive and cause disease. Vertebrate hosts have evolved strategies 

to attempt to sequester such metals from invading pathogens, a process called nutritional 

immunity.  A considerable amount of research has focused on the mechanisms by which microbes 

obtain and hosts withhold essential metals.68 Nutritional immunity of iron is well-studied, most 

likely because it is the most abundant transition metal in the human body. It is the metal center of 

the protoporphyrin heme, which is essential for cytochromes and hemoglobin. To access this pool 

of iron, invading pathogens must lyse red blood cells to obtain the iron from the center of heme.69, 

70 However, there is also a role for manganese and zinc in these processes.71 

An important class of proteins involved in nutritional immunity are the S100 proteins. This 

class of proteins is an EF-handed calcium-binding family. Typically forming dimers, this family 

exists as both homo and heterodimers.72 An example of an S100 protein capable of binding both 

manganese and zinc is the protein calprotectin (CP). This protein has been reported to make up to 

40-50% of the cytosolic protein content of a neutrophil.69, 73 Calprotectin is a metal-chelating 

heterodimer consisting of the protein subunits S100A8 and S100A9.74 This protein was found in 

mouse abscess fluid supernatants and displayed antimicrobial activity that was decreased with the 

addition of exogenous zinc.75 Such studies highlight the importance of metal sequestration for the 

control of bacterial infections. Calprotectin is unique in that it is a heterodimer, and that the 

junction of the two subunits form two distinct transition metal-binding sites, shown in Figure 1.7.76-

79 

The first binding site is formed by six histidines, while the second binding site contains 

three histidines and one aspartic acid.77 Both sites are able to bind zinc with high affinity, but only 

the hexa-histidine site is capable of binding manganese. The individual contributions of zinc and 

manganese sequestration to nutritional immunity are therefore hard to differentiate, since this 
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single protein is capable of chelating both. Calprotectin also contains four calcium-binding 

domains, annotated in Figure 1.7.  Calprotectin is known to accumulate at infectious foci and has 

been shown to be antimicrobial against a broad range of pathogens, including Staphylococcus 

aureus28, 80, Acinetobacter baumannii81, Borrelia burgdorferi82, Candida albicans83, Helicobacter 

pylori84, and Clostridium difficile.85 Nutrient metal chelation of zinc and manganese contributes to 

the antimicrobial and antifungal properties of the protein by disrupting microbial processes and 

inhibiting superoxide defense, leading to enhanced neutrophil killing.80, 86, 87 Interestingly, 

calprotectin-mediated antimicrobial activity can be overcome by the addition of exogenous 

manganese and zinc.  

There are other S100 proteins known to play a role in nutritional immunity. S100A7, for 

example, is a homodimer that binds two zinc molecules. S100A12 is reported to bind both zinc 

and copper.  

 

Innate Immune Response and Oxidative Damage 

The innate immune system represents the universal form of host defense. Innate immune 

response relies on the host recognition of a number of conserved pathogen-associated molecular 

patterns, or PAMPs.88 Once triggered, the host will recruit a number of cells to sites of infections, 

including macrophages, neutrophils, and mast cells. Neutrophils are the most abundant vertebrate 

immune cell, equipped with a range of antimicrobial agents.89 Some of these molecular markers 

allow the immune system to signal that an invading pathogen is present. These markers, called 

damage-associated molecular pattern markers, or DAMPs, are important for sustained immune 

response to bacterial infections. One such DAMP is calprotectin, which was discussed above.  
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Neutrophil  response is the hallmarked by the generation of reactive oxygen species (ROS), 

which can damage both pathogen and host cells.89 Aggregated neutrophils at sites of infection can 

cause excessive tissue damage and require clearance by monocytes and macrophages to resolve 

inflammation. This can only be accomplished once the original inflammatory signal (the pathogen) 

has been eliminated.90, 91 Excessive tissue damage can expand from infected cells to neighboring 

uninfected areas, a process called bystander damage. The repair of protein modifications generated 

under oxidative stress has been studied, and some radical modifications are difficult for the host 

to repair or are considered irreparable.92-95  

Another major component of the neutrophils’ antimicrobial repertoire is the ability to form 

neutrophil extracellular traps (NETs) via a unique form of cell death that requires ROS.96 

Neutrophils create an extracellular fibrous network composed of DNA and histones. These fibers 

are decorated with antimicrobial peptides and proteins, including calprotectin.83 NETs trap 

microbes and hold them in close proximity to high local concentrations of antimicrobial molecules, 

aiding pathogen-killing.96 This is further supported because disassembly of NETs via DNase 

effectively removes antimicrobial activity.97 Additionally, these adherent neutrophils are capable 

of trapping bacteria in high shear flow environments, like blood during sepsis, but often at the 

expense of damaging surrounding tissue.98  

 

Sepsis 

 Sepsis is described as a systemic host response to infection. Left untreated, the uncontrolled 

inflammatory response can lead to severe sepsis, which is hallmarked by organ dysfunction, or to 

septic shock, hallmarked by a decrease in blood pressure.99 When untreated, bacterial infections 

often persist to cause sepsis, which is a life-threatening condition. Septic shock kills one in four 
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patients, and the incidence of septic shock is increasing as bacteria are becoming more resistant to 

therapeutic strategies. The speed at which appropriate medical intervention, such as the correct 

antibiotic, can be administered has a large impact on patient outcome.99 It is recommended that 

antimicrobial therapy be administered within the first hour that septic shock is recognized and that 

a combinatorial empirical approach be used. Here, a wide range of antimicrobials is administered 

and patients are monitored for antimicrobial resistance. Clinicians often drain excessive pus and 

wound fluid from infectious foci in attempts to control the inflammatory response.99 Sepsis 

remains a large problem affecting human health. Sepsis is difficult to treat because a majority of 

the damage to otherwise healthy tissue is due to the host’s own inflammatory response. Because 

therapeutic options are limited in autoimmune situations, the study of sepsis and the host response 

to inflammatory stimuli, such as invading bacteria, remains very necessary and important for 

human health.  
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CHAPTER II 

 

CALPROTECTIN AGGREGATES AT INFECTIOUS FOCI DURING ACTIVE 

INFECTION 

 

A version of the following chapter was previously published and has been adapted from 

Moore et al., Proteomics, Copyright 2013 by Wiley and Sons.100 

 

Overview 

Calprotectin (CP) is an important antimicrobial protein involved in nutritional immunity. 

Understanding how calprotectin responds to active infection is important, including how proteins 

are spatially localized within infected regions. To analyze this, two models are employed: an acute 

model of bacterial pneumonia, which is eventually cleared by the host, and a systemic sepsis 

model, which is not cleared. Imaging Mass Spectrometry (IMS) can reveal the spatial distribution 

of proteins in each of these models and reveals that CP accumulates at infectious foci during active 

infection.  

 

Introduction 

Proteins are dynamic molecules. Though the genome dictates what proteins an organism 

has the ability to make, their transcription and translation is a very complex process and a delicate 

balance within cells. The ability to study proteins as they change over time is very important. 

Fluorescent approaches have been implemented successfully, yet still have certain caveats.101 

Molecules of interest must be tagged before experimentation with a fluorescent reporter, which 
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should be specific for the species of interest and must exhibit spectroscopic characteristics that 

facilitate easy detection. However, altering the protein with a tag can impair or impede its normal 

function within the system.101 Additionally, it is difficult to multiplex fluorescence-based 

approaches.102 Protein microarrays and immunoblots have successfully studied differential 

expression, but they require homogenized samples and therefore sacrifice any information about 

spatial distribution of analytes within a sample.103-106 Immunohistochemistry staining can provide 

spatial information, but requires available antibodies or stains for proteins of interest and cannot 

easily be multiplexed.107 Additionally, all of the above methods struggle to accurately discern 

proteoforms, including proteins with post-translational modifications or mutations. For these 

reasons, MALDI IMS presents an attractive alternative to monitor relative changes in protein 

abundance over time. 

Previous work in our laboratories has employed MALDI IMS of intact proteins to study 

the inflammatory response in animal models of bacterial infection. Studies utilized a mouse model 

of sepsis to visualize infectious foci. In these studies, mice were systemically infected with 

Staphylococcus aureus and it was determined that the host S100 proteins comprising the 

calprotectin heterodimer localize to abscesses.28, 107 The same protein has been detected via 

MALDI IMS in lung tissue of mice infected with Acinetobacter baumannii acute pulmonary 

infections.81  

 

Acinetobacter baumannii 

A. baumannii is a pathogen of global public health concern. It is pervasive in the 

environment and capable of surviving for extended periods on hospital surfaces.108, 109 A. 

baumannii can present clinically as a wide range of diseases, including wound infections, 
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pneumonia, urinary tract infections, and sepsis.110 This bacterium has two compounding factors 

that make it an especially significant threat. First, it often strikes immunocompromised patients 

and is therefore a major concern in the Intensive Care Unit (ICU). Second, A. baumannii is quite 

adept at acquiring and maintaining resistance to antimicrobial therapies.111, 112 Imipenem-non-

susceptible A. baumannii strains have been correlated to longer lengths of treatment in the ICU.113 

In one setting, A. baumannii nosocomial pneumonia occurred more often than pneumonias caused 

by other bacteria, and those patients with A. baumannii pneumonia exhibited increased 

mortality.114 Even with the increasing clinical importance, relatively little is known concerning the 

interactions between the host and this pathogen. 

Human A. baumannii pulmonary infection is often characterized with lobar pneumonia, 

where one lobe experiences dense infection while the remaining lung is spared.115, 116 In response 

to A. baumannii pneumonia, neutrophils are quickly recruited to the lungs leading to a subsequent 

increase in the levels of pro-inflammatory cytokines and a heightened inflammatory response.117 

We have previously shown that calprotectin is recruited to A. baumannii infected lungs and 

enhances the clearance of bacteria from the alveolar spaces. Additionally, calprotectin-deficient 

(CPKO) mice exhibit increased bacterial burdens in the lung and higher levels of dissemination to 

the liver.81 This model presents an acute infection with A. baumannii; if left untreated, mice can 

resolve this inoculum without intervention from researchers. 
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Results and Discussion 

 

Inflammatory Response Correlates to Bacterial Burden in A. baumannii infection 

In order to successfully visualize protein accumulation and dissemination, the bacterial 

burden necessary to establish a detectable inflammatory response in immunocompetent mice was 

determined. A range of inoculum were tested and lung tissue samples were assessed by a 

pathologist. Higher doses of A. baumannii resulted in increased inflammation, as seen in the 

histological staining in Figure 2.1A-B. This is consistent with the idea that the magnitude of the 

immune response is impacted by bacterial burden. IMS analysis of S100A8 and S100A9, Figure 

2.1C-D, showed increased intensity correlating with bacterial burden. This highlights the 

sensitivity of MALDI IMS to detect relative changes in protein abundance. Increasing inoculae 

[from left to right] lead to an increase in inflammation and more signal from both subunits of 

calprotectin. Figure 2.1E shows bacterial enumeration from lungs at 36 hours post infection (hpi), 

further emphasizing a correlation of dose to bacterial burden. There is a trend showing that 

increased bacterial inoculum yield larger bacterial burdens at 36 hpi. Interestingly, when compared 

to the initial inoculum, the mice are able to reduce the burden in lungs by almost three orders of 

magnitude by 36 hpi. This strengthens the model of A. baumannii pulmonary infection to be used 

as an acute model of infection to study protein dynamics. The dotted line in Figure 2.1E represents 

the limit of detection. This trend was reproduced 3 additional times, represented in Figure 2.2. 

Though care was taken to orient lungs in the same way and section to the same depth for each 

analysis, it is clear that there is some biological variability in these infections. This provides a 

pictorial representation of the bacterial burden data represented in Figure 2.1E, where each dot on 
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the graph represents a unique mouse. Though provided the same inoculum, there is variation in 

the infection model that is visually apparent in the histological and MALDI IMS data.  

Using these data, it was determined that bacterial burden of approximately 108 CFUs, 

delivered in 30 μL of a 1 × 107 CFU/μL inoculum, is necessary to cause inflammation and robust 

calprotectin accumulation detectable by MALDI IMS. This inoculum was used in time course 

studies of infection.  
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Figure 2.1: Calprotectin Levels Increase with Bacterial Challenge 
Levels of calprotectin in the lung increase as the bacterial challenge is increased. Seven-week-old 
mice were intranasally infected with varying doses of A. baumannii. (A) hematoxylin and eosin 
(H&E) stained serial sections of lung, (B) 40× magnification of areas with inflammation, (C) ion 
intensity map of m/z 10,165, S100A8, collected at 300 μm spatial resolution, (D) ion intensity map 
of m/z 12,999, S100A9, collected at 300 μm spatial resolution, (E) bacterial burden in the lungs of 
mice at each inoculum. The dashed line represents the detection limit. *p < 0.05 by ANOVA. 
Reprinted from Proteomics, 14, 0, “Imaging Mass Spectrometry for assessing temporal 
proteomics: Analysis of calprotectin in Acinetobacter baumannii pulmonary infection.” 2014, 820-
828 with permission from John Wiley and Sons.100 
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Figure 2.2 Biological and Technical Replicates Show Calprotectin Levels Correlated with 
Bacterial Burden 

Replicates of Figure 2.1, from left: PBS, 1.3×106 CFU, 8.4×107 CFU, 1.4×108 CFU, and 4.8×108 
3 CFU. 4 Ion intensity maps of S100A8, S100A9, and Histone H2A.1 are shown for each trial. (A) 
Shows a 5 biological replicate of increasing bacterial burden, analyzed at 300 μm spatial 
resolution. (B) and (C) 6 show technical replicates, analyzed at 500 μm spatial resolution. 
Reprinted from Proteomics, 14, 0, “Imaging Mass Spectrometry for assessing temporal 
proteomics: Analysis of calprotectin in Acinetobacter baumannii pulmonary infection.” 2014, 820-
828 with permission from John Wiley and Sons.100 
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Figure 2.3: A. baumannii is Rapidly Cleared from Sites of Infection 
A. baumannii is rapidly cleared from sites of infection. Seven-week-old mice were intranasally 
infected with 108 CFUs A. baumannii and monitored over time in hours post infection (hpi) for 
(A) weight change. Values from 6 to 216 hpi were statistically decreased (p < 0.05) from 
uninfected animals by two-way ANOVA. (B) Bacterial burden in the lung, n = 5. Values from 0 
to 72 hpi were statistically different (p < 0.05) from uninfected animals by Student’s t test. (C) 
Bacterial dissemination to the liver, n = 5. Values from 18 to 36 hpi were statistically different 
(p < 0.05) from uninfected animals by Student’s t test. Reprinted from Proteomics, 14, 0, “Imaging 
Mass Spectrometry for assessing temporal proteomics: Analysis of calprotectin in Acinetobacter 
baumannii pulmonary infection.” 2014, 820-828 with permission from John Wiley and Sons.100 
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Calprotectin is Temporally Expressed in Acute Infection of A. baumannii Pneumonia 

To define the kinetics of the inflammatory response to A. baumannii pulmonary infection, a time 

course study was employed.  Lungs were harvested at twelve time points following infection (0, 

6, 12, 18, 24, 36, 48, 72, 96, 144, 192, and 240 hpi.) Animal weight was used to monitor overall 

health (Figure 2.3A). It can be noted that upon initial inoculation, the mice consistently lost weight, 

which is indicative of sickness. However, around 50 hpi, the mice begin to regain weight, 

indicative of improved health. Around 200 hpi, or approximately 8 days, mice have recovered 

weight to preinfection levels and continue to gain weight. This supports the A. baumannii acute 

pneumonia infections as a model to study proteins that respond to infection and their resolution.  

 Bacterial burden was also evaluated from the primary site of infection in the lungs (Figure 

2.3B) and livers (Figure 2.3C), a site of secondary dissemination. These data indicate that the 

majority of the bacterial burden is cleared by 96-144 hpi when compared to the limit of detection, 

which is denoted with a dotted line. Dissemination to the liver also seems to be cleared by 72 hpi. 

This further supports that mice can resolve acute pulmonary infection by A. baumannii within the 

presented time course of infection.  

MALDI IMS was used to study temporal dynamics of the calprotectin subunits at these 

time points. These experiments revealed a strong correlation between calprotectin expression and 

bacterial burden during the time course of infection (Figure 2.4). Signal for S100A8 and S100A9, 

appearing at m/z 10,165 and 12,999, respectively, is first detected at 6 hpi, showing a rapid 

response of the innate immune system to A. baumannii. The signals continue to accumulate in a 

manner that corresponds to the bacterial burdens. A maximal accumulation of the antimicrobial 

proteins occurs at 36-48 hpi and can be correlated to the decrease in bacterial burden shown in 

Figure 2.3B.  
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Signals from S100A8 and S100A9 begin to decrease near 96-144 hpi corresponding to the 

clearance of A. baumannii from lungs (Figure 2.3B). These experiments were performed in both 

biological and technical replicates (Figures 2.5, 2.6).  Additionally, S100A8 or S100A9 were not 

detected in the PBS control tissue (Figure 2.7). In these experiments, mice were anesthetized and 

inoculated with PBS alone. There is a slight signal for S100A8 at 6 hours post infection in the PBS 

mock-infected lung. This is most likely due to the act of mock-infecting the lungs. For all images, 

an ion map of m/z 14,050, an abundant peak in collected spectra belonging to histone H2A.1, was 

generated to demonstrate that changes in calprotectin abundance were not an effect of ubiquitous 

changes in protein signal. The histone signal may also be used to monitor variations in tissue 

density caused by atelectasis of inflamed lungs or perfusion effects. In some instances, tissue did 

not fully perfuse upon resection. The dark-staining regions of the H&E can be correlated to 

atelectasis, or regions of lung that have collapsed. This is also apparent in the PBS mock-infected 

lungs, shown in Figure 2.7. Figure 2.8 shows two tissues from 96 hpi stained for neutrophils using 

an immunohistochemical stain and correlating with MALDI IMS data. Even in regions of 

resection-induced atelectasis, such as the PBS mock-infected lung, there is no detectable staining 

for neutrophils, which is marked by the brown stain. However, in both infected lungs, there is 

considerable brown staining, marking the presence of neutrophils in these organs. This 

demonstrates histological differences introduced by pneumonia and confirms the presence of 

neutrophils in infected lungs. 
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Figure 2.4: Calprotectin is Recruited to Sites of Infection 
Calprotectin is recruited to sites of infection and signal decreases following bacterial clearance. 
Columns, left to right: (A) H&E stained serial sections of lung, (B) 40× magnification of areas 
with inflammation, (C) ion intensity map of m/z 10,165, S100A8 collected at 300 μm spatial 
resolution, (D) ion intensity map of m/z 12,999, S100A9 collected at 300 μm spatial resolution, 
and (E) ion intensity map of m/z 14,050, histone H2A.1 collected at 300 μm spatial resolution. 
Reprinted from Proteomics, 14, 0, “Imaging Mass Spectrometry for assessing temporal 
proteomics: Analysis of calprotectin in Acinetobacter baumannii pulmonary infection.” 2014, 820-
828 with permission from John Wiley and Sons.100 
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Figure 2.5: Biological Replicates Show Calprotectin is Recruited to Sites of Infection 

Biological replicate of Figure 2.4, analyzed at 300 μm spatial resolution. (A) H&E stained serial 9 
sections of lung. (B) 40× magnification of areas with inflammation. (C) Ion intensity map of m/z 
10,165, S100A8. (D) Ion intensity map of m/z 12,999, S100A9. (E) Ion intensity map of m/z 
14,050, Histone H2A.1. Reprinted from Proteomics, 14, 0, “Imaging Mass Spectrometry for 
assessing temporal proteomics: Analysis of calprotectin in Acinetobacter baumannii pulmonary 
infection.” 2014, 820-828 with permission from John Wiley and Sons.100 
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Figure 2.6: Technical Replicates Show Calprotectin is Recruited to Sites of Infection 

Technical replicates analyzed at 500 μm spatial resolution. (A) H&E stained serial sections of 
lung. (B) Ion intensity map of m/z 10,165, S100A8. (C) Ion intensity map of m/z 12,999, S100A9. 
(D) Ion intensity map of m/z 14,050, Histone H2A.1. Reprinted from Proteomics, 14, 0, “Imaging 
Mass Spectrometry for assessing temporal proteomics: Analysis of calprotectin in Acinetobacter 
baumannii pulmonary infection.” 2014, 820-828 with permission from John Wiley and Sons.100 
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Figure 2.7: PBS control lungs contain no appreciable signal for S100A8 or S100A9 

Lungs from mice mock-infected with 30 μl of PBS harvested at each time point, analyzed at 300 
μm spatial resolution. (A) H&E stained serial sections of lung. (B) 40 × magnification of tissue. 
(C) Ion intensity map of m/z 10,165, S100A8. (D) Ion intensity map of m/z 12,999, S100A9. (E) 
Ion intensity map of m/z 14,050, Histone H2A.1. Reprinted from Proteomics, 14, 0, “Imaging 
Mass Spectrometry for assessing temporal proteomics: Analysis of calprotectin in Acinetobacter 
baumannii pulmonary infection.” 2014, 820-828 with permission from John Wiley and Sons.100 
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To further assess signal differences in the time course (Figure 2.4) compared to the 

uninfected controls (Figure 2.7), average pixel intensity was determined by selecting regions of 

interest at random using flexImaging. Average pixel intensities for S100A8 and S100A9 were 

calculated and plotted in Figure 2.9. Though not intended to be quantitative, this provides a 

descriptive assessment of protein changes with time. Trends in the signal for inflammatory proteins 

is somewhat Gaussian, peaking around 36 hours post infection following the highest bacterial 

burdens and then resolving over time.  

 

 

 

Figure 2.8: Immunohistochemistry Confirms the Presence of Neutrophils 
Histological comparison of atelectasis in inflamed lungs versus uninfected at 96 hpi. Lungs from 
96 hour time point. From left, PBS mock-infected and A. baumannii infected. (A) H&E stained 
sections of lung. (B) Immunohistochemistry stain for neutrophils. (D) 10× magnification of 
immunohistochemistry stain for neutrophils. Reprinted from Proteomics, 14, 0, “Imaging Mass 
Spectrometry for assessing temporal proteomics: Analysis of calprotectin in Acinetobacter 
baumannii pulmonary infection.” 2014, 820-828 with permission from John Wiley and Sons.100 
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Figure 2.9: Average Pixel Intensity Shows Differences in Protein Abundance with Time 

Average Pixel intensity extracted from regions of interest from time course in Figure 2.4 and 2.7 
(A) m/z 10,165, S100A8. (B) m/z 12,999 S100A9. (C) Histone. Reprinted from Proteomics, 14, 0, 
“Imaging Mass Spectrometry for assessing temporal proteomics: Analysis of calprotectin in 
Acinetobacter baumannii pulmonary infection.” 2014, 820-828 with permission from John Wiley 
and Sons.100 
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Calprotectin is Identified from A. baumannii Infected Lungs 

In order to confirm that the signals used for these analyses were indeed from calprotectin, 

the protein was sequenced from infected lungs. Lungs at 36 hpi were selected for protein 

identification because they consistently had a robust inflammatory response. A spectrum taken 

from the MALDI IMS data is shown in Figure 2.10A. In this spectrum, robust signals were 

annotated that were thought to belong to S100A8 and S100A9. In order to identify these peaks of 

interest, a bottom-up protein identification strategy was employed. To have more confidence in 

the identification, an extract of proteins was fractionated using a C8 column to decrease the 

complexity of the mixture. 96 fractions were collected over a 75 minute HPLC separation. Each 

of these fractions were analyzed using MALDI MS to isolate the fractions which contained the 

m/z values of interest. The mass spectra of these two fractions are displayed in Figure 2.10B. 

Comparing these two spectra with the spectrum in 2.11A, it is apparent that the complexity of the 

mixture has been reduced while still maintaining robust signal from the two analytes of interest. 

Both fractions of interest were digested using the endoproteinase trypsin and subjected to an 

additional LC-MS/MS analysis. Peptides from the proteins were sequenced to confirm the identity.  
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Figure 2.10: Identification of S100A8 and S100A9 from Murine Lung 
Identification of S100A8 and S100A9 from murine lung. Identification of S100A8 and S100A9: 
(A) Spectrum extracted from a single pixel of IMS data from the 48 hpi lung. (B) Spectra taken 
from selected fractions of HPLC fractionated homogenate, showing S100A8 (left) and S100A9 
(right). (C) Sequence coverage for mouse S100A8 and S100A9 are shown. Underlined peptides 
were detected following recovery of the species of interest by offline HPLC fractionation, tryptic 
digestion, and subsequent LC-MS/MS analysis. Reprinted from Proteomics, 14, 0, “Imaging Mass 
Spectrometry for assessing temporal proteomics: Analysis of calprotectin in Acinetobacter 
baumannii pulmonary infection.” 2014, 820-828 with permission from John Wiley and Sons.100 
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S. aureus Sepsis is an Ideal Model of Severe Infection 

In order to study calprotectin in a more severe infection, we needed to extend our current 

animal models to allow sepsis to progress. To monitor the progression of infection, a time course 

was developed. Female six-week-old mice were retro-orbitally infected with 106 CFU of S. aureus. 

Mice were sacrificed at various time points post infection (0, 3, 6, and 9 days post infection [dpi]) 

and monitored post-mortem for abscess lesions. Throughout the time course, animal weights were 

monitored as an overall measure of health. Figure 2.11A shows percent weight loss of animals 

over time. Each dot represents an individual mouse. Both wildtype and mice lacking calprotectin 

(CPKO) were monitored. Figure 2.11A shows no statistically significant increase in weight loss 

as the time course of sepsis progresses. Organs were also homogenized at each time point to 

quantify bacterial burden in major organ systems. Hearts, kidneys, and livers were plated for 

bacterial burdens in Figure 2.11B. These data showed that over the course of infection the mice 

are unable to clear their bacterial burden, making this model an ideal system to study severe 

infection.  Additionally, the visual appearance of these organs showed significant pathology over 

the course of infection. The 3, 6, and 9 dpi organs had visual lesions that were apparent when they 

were resected, making these foci exemplary for study by IMS (Figure 2.11C). Histological analysis 

of these organs is shown in Figure 2.12. Figure 2.12A shows the gross anatomy of mouse kidney 

as sepsis continues through the time course. Early in the progression, at 0 dpi, the mice were 

infected and immediately sacrificed, giving very little time for bacterial dissemination. No visible 

lesions are apparent at this time. By 3 dpi, abscesses have begun forming in the kidney. Figure 

2.12B shows zooms of these histological regions of interest. Green arrows indicate neutrophil 

infiltration at sites of colonization. Yellow arrows denote staphylococcal colonies. As disease 
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progresses to 6 dpi, large areas of necrosis can be visualized, annotated with blue arrows. We 

would anticipate these regions to be filled with dead cells, including dead neutrophils and NETs. 

 

 

 
 

Figure 2.11: S. aureus is a model of Severe Infection 
A) The overall health of mice systemically infected with S. aureus was monitored by weight over 
the course of infection. Percent weight loss was tracked over the course of the 9 day infection in 
both wildtype (WT) and calprotectin knockout (CP) mice to monitor disease progression. B) Mice 
sacrificed at 3, 6, and 9 dpi were analyzed for bacterial burdens in hearts, kidneys, and liver tissues. 
C) Despite no statistically significant increase in bacterial burdens from 3 to 9 dpi, the visual 
morphology of organs was dramatically different. Shown are two mouse kidneys taken from 3 and 
9 dpi to show the striking difference in lesions, clearly visible to the eye. 
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Figure 2.12: Histological Analysis of S. aureus Sepsis Progression in Mouse Kidney 
Hemotoxylin and Eosin stained sections of mouse kidney taken from various time points in a 
systemic infection of S. aureus. A) shows gross morphology of kidney sections, with visible 
lesions appearing at day 3. B) shows magnifications of regions of interest. Lesions are present at 
days 3 and 6. Aggregated neutrophils are annotated with orange arrows while staphylococcal 
colonies are annotated with yellow arrows. Tissue necrosis is present at 6 dpi and is annotated in 
dark blue. 
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Calprotectin Accumulates in Severe Infection 

 MALDI IMS analysis was performed on this time course model of sepsis using a linear 

TOF MS. An ion intensity map of S100A8 at m/z 10,165 is shown in Figure 2.13. There is very 

little detectable signal for S100A8 in the control and the 0 dpi kidney, supporting the idea that CP 

responds to bacterial threats. By 3 dpi, when there are well-formed lesions in the kidney, we see 

signal for S100A8 robustly co-localized with neutrophils in the lesions. By 6 dpi, when there is 

considerable necrosis, S100A8 signal is very robust and almost encompasses the entire kidney. 

This supports the idea that calprotectin will not be cleared in cases of severe infection where the 

host cannot resolve the threat by killing the pathogen. In these cases, calprotectin continues to 

accumulate at sites of infection without resolution. This could have serious impact on the host, as 

calprotectin is a known signaling molecule and is known to sustain inflammatory response. Such 

sustained inflammatory response is a hallmark of sepsis, making this an important model for 

continued study. Finally, sustained inflammatory response most likely leads to the accumulation 

of neutrophils in regions of infection, causing continued damage to host cells and immune cells 

recruitment.  
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Figure 2.13: Calprotectin Accumulates in Severe Infection 
H&E stained sections of mouse kidney and an ion intensity map for S100A8, appearing at m/z 
10,165. This subunit represents the spatial localization of calprotectin. This shows a dramatic 
accumulation of signal as disease progresses and necrosis encompasses the organ. 
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Methods 

 

Bacterial Strains and Infection 

A. baumannii strain ATCC 17978 (Ab17978) was obtained from the American Type 

Culture Collection and was used for all experiments.  

All animal experiments were approved by the Vanderbilt Institutional Animal Care and 

Use Committee. For pulmonary infections, a previously established pneumonia model with minor 

modifications was used.81, 118 Briefly, cultures of Ab17978 were grown to logarithmic phase in 

Luria-Bertani medium (LB), washed, and resuspended in PBS. Seven week old, female Swiss 

Webster mice (Charles River Laboratories) were anesthetized and intranasally infected with 30 μL 

bacterial suspension. The weights of the animals were measured daily to serve as an indicator of 

overall health. Mice were euthanized at the indicated time points post infection and lungs and 

livers were aseptically removed. Lungs for imaging experiments were perfused with 1 mL 1:1 

OCT:water, marked for histological orientation using dye-based drawing ink, snap-frozen in a dry 

ice/hexane mixture, and stored at -80°C until analysis. Lungs and livers for bacterial enumeration 

were homogenized in 1 mL PBS, serially diluted, and plated on LB agar. 

For experiments to determine optimal dose of Ab17978 needed to cause infection, inoculae 

ranging from 106 to 108 colony forming units (CFUs) were used. Mice mock-infected with 30 μL 

of PBS served as controls.  Seven mice were infected for each inoculum, with five mice used for 

CFU enumeration and two mice used for MALDI IMS. Lungs were harvested at 36 hpi. 

For time course studies, 30 μL  of Ab17978 at a concentration of 1 x 107 CFU/μL were 

administered and organs were harvested at twelve time points following infection (0, 6, 12, 18, 24, 

36, 48, 72, 96, 144, 192, and 240 hpi). For each time point, five mice were used for CFU 
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enumeration and two mice for MALDI IMS. Twelve mice were mock-infected with PBS to serve 

as controls, one at each time point. 

The S. aureus clinical isolate Newman served as the genetic background for all 

experiments.119  Bacteria were grown in tryptic soy broth (TSB) at 37°C with 180 revolutions per 

minute shaking. To prepare inoculae for the disseminated infection model, overnight cultures were 

back-diluted 1:100 and grown for an additional 3 hours, after which time the bacteria were 

harvested by centrifugation and washed in PBS. Washed bacteria were resuspended to a final 

concentration of approximately 5 x 108 colony forming units (CFU) per milliliter, and kept on ice 

until used for retro-orbital injection.  

Female 6-8 week old C57bl/6 mice (Jackson Laboratories) were infected using a retro-

orbital intravenous injection of S. aureus. Mice were anesthetized using Avertin (2-2-

tribromoethanol) and injected with 100 µL of inoculum in PBS. Mice were monitored as they 

recovered from anesthesia and were provided free access to food and water throughout the course 

of infection. At set times post infection, mice were sacrificed and organs aseptically removed. 

Organs were frozen in plastic weigh boats using dry ice and stored at -80°C until analysis.  

 

MALDI IMS of Mouse Lungs 

Frozen lungs were identically oriented based on histological ink and sectioned at -20°C to 

10 μm thickness using a Leica CM3050S cryostat (Leica Microsystems, Bannockburn, IL, USA). 

Tissue sections were thaw-mounted onto indium-tin oxide (ITO) coated glass slides (Delta 

Technologies, Loveland, CO, USA). Excess lipids and salts were removed by washing the slides 

in sequential 30 second washes of chilled 70, 90, and 95% ethanol. Sinapinic acid matrix was 

prepared at a concentration of 20 mg/ml in 60% acetonitrile with 0.1% TFA. A Portrait 630 
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(Labcyte, Sunnyvale, CA, USA) acoustic robotic microspotter was used to apply matrix to 

samples. The microspotter was operated in flyby mode at 300 μm lateral resolution. Technical 

replicates were performed at 500 μm lateral resolution. Matrix was applied in four passes of 15 

droplets, with each droplet having an approximate volume of 170 pL. 

Samples were analyzed using a Bruker AutofleX Speed time-of-flight mass spectrometer 

with a modified Swiss Cross source (Bruker Daltonics, Billerica, MA, USA) equipped with a 

SmartBeam™ laser (Nd:YAG, 355 nm) in linear positive–ion mode. Two hundred laser shots were 

collected at each matrix spot in 50 shot increments with a random walk pattern within the spot. 

The laser repetition rate was 1,000 Hz; extraction and acceleration voltages were 19.67 kV and 

18.22 kV, respectively, with a delayed extraction time of 350 ns and a lens voltage of 8.5 kV. The 

measured mass range was from m/z 3,000- 25,000. Within each trial, lungs were imaged at the 

same time in a random order selected by an unaffiliated and unbiased researcher. Images were 

collected at 300 μm lateral resolution. Technical replicates were performed at 500 µm lateral 

resolution to reduce data size and to show similar spatial distributions from additional sections. 

Images were viewed using flexImaging 3.0 Software (Bruker Daltonics) and were normalized to 

total ion current. Ion intensity maps were extracted and scaling was constant for each ion of 

interest. To assess differences in images, regions of interest were selected from areas of 

inflammation and correlating control tissue using flexImaging. Spectral filter data were exported 

and average pixel intensity was calculated. 

 

MALDI IMS of Mouse Kidney 

 Frozen mouse kidneys were oriented in the same manner and sectioned at 10 µm spatial 

resolution using a Leica CM3050S cryostat (Leica Microsystems, Bannockburn, IL, USA). Tissue 
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sections were thaw-mounted onto ITO coated glass slides (Delta Technologies, Loveland, CO, 

USA). Serial sections were obtain for histological analysis. Slides were washed to remove any 

excess interfering lipids and salts. Slides were washes in a glass petri dish by sequential washes of 

70% ethanol (30 seconds,) 100% ethanol (30 seconds,) Carnoy solution (6:3:1 

Ethanol:chloroform:acetic acid for 120 seconds,) 100% ethanol (30 seconds,) Water with 0.2% 

TFA (30 seconds,) and 100% ethanol (30 seconds.) After sections were dry, a mixed matrix of 15 

mg/mL dihydroxybenzoic acid and 5 mg/mL α-cyano-4-hydroxycinnamic acid were prepared in 

90% acetonitrile with 0.2% TFA. This solution was homogeneously sprayed onto the surface of 

mouse kidneys using a HTX TM Sprayer. The TM sprayer was operated at a speed of 1100 

mm/min with 2 mm track spacing between rows. The nozzle was heated to 90°C and 90% 

acetonitrile was used as a pushing solvent at a rate on 0.2 mL/minute. Six passes of matrix were 

applied in a criss-cross pattern. After matrix was applied, the sample was rehydrated similarly to 

previously described.120 The slide was warmed for 2 minutes at 85°C before it was suspended over 

a solution of 10% acetic acid for 3 minutes. 

MALDI IMS analysis was performed using a Bruker AutofleX Speed TOF/TOF operated in 

linear ion mode with conditions similar to those described above. The analysis was performed at 

75 micron spatial resolution. There were 20,253 positions interrogated leading to a 7 gigabyte file 

that was collected in ≈ 6.5 hours.  

 

Histological Analysis of Mouse Lungs 

For each section analyzed using MALDI IMS, a serial section was collected for histological 

analysis. Serial sections were hematoxylin and eosin (H&E) stained. Slides were scanned using a 

MIRAX Scan slide scanner (Carl Zeiss MicroImaging, Gŏttingen, Germany) in manual bright field 
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mode and optical images were generated using MIRAX Viewer version 1.11.22.0 (Carl Zeiss 

MicroImaging.) Forty times magnification images were generated by an experienced pathologist 

to assess biological and technical replicates for gross pathology and similarity. Images were 

obtained using an Olympus BX41 microscope (Olympus, Melville, NY, USA) equipped with a 

Spot Insight Camera (Diagnostics Instruments, Sterling Heights, MI, USA). 

 

Histological Analysis of Mouse Kidney 

Serial sections of all kidney tissues analyzed using MALDI IMS was collected for 

histological analysis. In addition, post analysis matrix was washed away using ethanol baths and 

the same sections used in MALDI IMS were stained for histological analysis. Slides were scanned 

using a Leica SCN400 Brightfield Scanner at 20x magnification.  

 

Protein Purification 

 Tissue samples with high abundance of S100A8 and S100A9 (samples from 48 hpi) were 

used for protein identification. Adjacent sections of tissue from those imaged were collected and 

homogenized using Tissue Protein Extraction Reagent (T-PER). Extracts were fractionated by 

reversed phase high performance liquid chromatography (HPLC) using a Waters 2690 Separations 

Module and C8 column (VYDAC, Grace Davison Discover Sciences). Proteins were eluted over 

75 minutes using the following gradient: initial flow of 95% solvent A (0.1% TFA), 5% solvent B 

(acetonitrile, 0.1% TFA), ramped to 25% B over 15 minutes, ramped to 60% B over 50 minutes, 

ramped to 95% B over 10 minutes, held for 5 minutes, ramped down to 5% B over 10 minutes and 

held for 20 minutes. Fractions were collected each minute at a rate of 0.5 mL/min.  MALDI spectra 

were collected from each fraction to determine fractions of interest. 
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LC-Coupled Tandem Mass Spectrometry 

Fractions corresponding to S100A8 and S100A9 were dried down and reconstituted in 100 

mM ammonium bicarbonate, pH 8.0. Aliquots corresponding to 2 μg of protein (measured using 

a Bradford assay) were digested with endoproteinase trypsin (Promega Madison, WI) at 1:20 

enzyme: protein ratio overnight at 37°C. The resulting peptides were acidified and bomb-loaded 

onto a self-packed pre-column (4 cm x 0.1 mm, Jupiter 5 μm, 300 Å, C18) (Phenomenex, Torrance, 

CA) fritted with an M520 inline microfilter union (IDEX, Lake Forest, IL). Following 

equilibration, this column was attached to a self-packed analytical column (20 cm x 0.1 mm, 

Jupiter 3 μm, 300 Å, C18) (Phenomenex, Torrance, CA) equipped with a laser-pulled, 1 μm 

nanospray emitter tip (P-2000, Sutter Instruments, Novato, CA) and coupled directly to an LTQ 

mass spectrometer (Thermo Scientific, Waltham, MA) with a nanoelectrospray source.  

 Peptides were eluted over 75 minutes using a nanoAcquity UPLC system (Waters, 

Manchester, UK) using the following gradient: initial flow of 98% solvent A (0.1% formic acid), 

2% solvent B (acetonitrile, 0.1% formic acid), ramped to 25% B over 45 minutes, ramped to 90% 

B over 15 minutes, held for 5 minutes, ramped down to 2% B over 2 minutes and held for 8 

minutes. Throughout the entire run, a full scan was taken followed by five data-dependent collision 

activated dissociation (CAD) MS/MS scans with dynamic exclusion enabled with a repeat count 

of 1, a repeat duration of 30 seconds, and an exclusion duration of 60 seconds. The resulting 

MS/MS spectra were searched via SEQUEST against a UniprotKB database of canonical mouse 

proteins. Identifications were filtered and collated at the protein level using Scaffold (Proteome 

Software, Portland, OR). Peptide hits corresponding to S100A8 and S100A9 were manually 

verified at both the full MS level and MS/MS level using Xcalibur software (Thermo Scientific, 

Waltham, MA).  
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CHAPTER III 

 

PROTEINS THAT ACCUMULATE AT INFECTIOUS FOCI ARE TARGETS OF 

OXIDATIVE DAMAGE 

 

A version of the following chapter was previously published and has been adapted from 

Spraggins, Rizzo, Moore et al, Journal of the American Society for Mass Spectrometry, 

Copyright 2015 by Springer.30 

 

Overview 

 MALDI IMS is a highly sensitive tool for providing spatial information about the 

pathogen-host interface. Traditional TOF analysis has limited mass accuracy and resolving power, 

which hinders both identification and the ability to resolve modified forms of proteins. Using 

MALDI FTICR IMS solves these problems by providing both mass accuracy and high resolving 

power, which enables the differentiation of post translational modification of proteins at the 

pathogen-host interface.  

 

Introduction 

 

Oxidative Modifications to Proteins 

Staphylococcus aureus is a Gram-positive pathogen that has the ability to infect virtually 

any organ.64 A hallmark of S. aureus infection is the formation of purulent infectious foci, called 

abscesses. Abscess formation has been studied extensively using histologically methods and is 
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characterized by the robust accumulation of neutrophils and macrophages. These host immune 

cells are equipped with a range of antimicrobial strategies89, including the ability to induce 

oxidative stress in an attempt to kill pathogens.90, 91, 121, 122 Reactive oxygen species (ROS) 

generated in response to pathogens can have bystander effects to host cells, sometimes causing 

irreparable damage and cell death.  

Of particular interest is the host protein calprotectin, which accounts for an estimated 40-

60% of the cytosolic content of neutrophils.73 Calprotectin is a metal-chelating heterodimer 

consisting of the protein subunits S100A8 and S100A9.123   Bacterial pathogens proliferating 

within vertebrates must obtain nutrient metals from their hosts to survive and cause disease. In 

response, vertebrates sequester these elements from pathogens, a process known as nutritional 

immunity.65, 69  Previous IMS experiments have shown that the subunits S100A8 and S100A9 have 

a high relative concentration at infectious foci. At these foci, calprotectin is in close proximity to 

other proteins known to generate ROS. However, oxidative damage to calprotectin by ROS has 

not been extensively characterized.124-126 Imaging proteins with MALDI FTICR MS provides the 

performance necessary to spatially describe this important family of proteins including their many 

proteoforms. 

Calprotectin has been shown via IMS to be a temporally transient protein- it aggregates at 

sites of active infection and is cleared when the immune stimulant is no longer a threat.100 

Accumulation at infectious foci is not without risk to the protein; these regions are under 

significant oxidative stress from other neutrophils attempting to kill pathogens.80, 87 This supports 

hypotheses that proteins accumulating at these foci could be targets of oxidative damage. However, 

traditional protein imaging using MALDI TOF MS does not provide the resolving power to 

distinguish proteoforms from within tissue, particularly oxidations, which cause a mass shift of 
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+15.99 on large proteins. This is also applicable for downstream identification confidence using 

indirect methods; in order to correlate IMS data to proteomics data with confidence, the mass 

accuracy of a high performance instrument is paramount. Mass accuracies from MALDI TOF 

imaging experiments have particular bias when collecting mass spectra directly from tissue, where 

differences in sample height can introduce surface charging due to the insulating nature of the 

tissue. The practical mass accuracy of a MALDI TOF protein experiment is limited to 20-100 ppm 

from tissue. This makes identification of analytes from tissue quite challenging 

 

Amino Acid Selected Modification  
Cysteine Sulfoxide, Sulfone, Disulfide bonds, Nitrosylation, S-Nitroglutathione, 

Chlorination 
Methionine Sulfoxide, Sulfone 
Tyrosine Dityrosine, 2-Hydroxytyrosine, 3-Hydroxytyrosine, 3-Nitrotyrosine, 3-

Chlorotyrosine, 3-Bromotyrosine 
Tryptophan Hydroxytryptophan, Nitrotryptophan 
Histidine 2-oxo-Histidine 
Lysine 3-Hydroxylysine, Chlorolysine, Protein Carbonyls 
Proline Hydroxyproline, Protein Carbonyls 
Arginine Protein Carbonyls 
Threonine Protein Carbonyls 

 

Table 3.1: Common Oxidative Modifications 

Table 3.1 lists common oxidative modifications and the amino acids they affect. It was adapted 
from Free Radical Biology and Medicine, 41, 10. Schoneich et al, “Mass Spectrometry of Protein 
Modifications by Reactive Oxygen and Nitrogen Species.” 2006 with permission from Elsevier.127  
 

 Oxidative modifications can alter many amino acids, with the most common targets 

detailed in Table 3.1. The most abundant proteins in neutrophils have been reported to be 

oxidatively modified. S100A8, a subunit of calprotectin, can have many modifications at cysteine 

residues induced in vitro, including S-nitrosylation, glutathionylation, and conversion to sulfenic 

and sulfonic acids.128 Additionally, methionine residues in S100A8 can oxidize to sulfoxides.125 

Alteration of easily oxidized residues has shown some changes to biological function. It has been 
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proposed that native calprotectin is anti-inflammatory, but calprotectin under oxidative stress is 

more antimicrobial.129 Mutation of S100A8 cysteine 42 to alanine caused a lack of the dimer’s 

activity and mutation of S100A9 methionine residues at positions 63 and 83 decreased antifungal 

activity.129 These examples highlight the need to study the biological role of oxidative 

modifications to proteins in infection. Such modifications and their biological impact have 

remained largely unstudied and could present a new area of focus for antimicrobial strategies.  

In this work, we propose to explore oxidative modifications on host and bacterial proteins 

spatially localized to the pathogen-host interface. With a focus on calprotectin as a model protein, 

this work intends to analyze the spatial distribution of oxidized calprotectin at infectious foci. 

 

Neutrophil Extracellular Traps 

 Neutrophils are the most abundant innate immune cell. Representing the first line of 

defense for the immune system, they come with an arsenal of antimicrobial compounds. When 

presented with pathogens, neutrophils have three main modes of attack. First, they can use 

phagocytosis to destroy the pathogen intercellularly. Second, they can generate ROS 

extracellularly by degranulation.83 The final method is a novel form of cell death that leads to the 

generation of neutrophil extracellular traps, or NETs.130 Much like their acronym, NETs are net-

like structures formed with a backbone of chromatin and histones. NETs contain all the 

antimicrobial arsenal of the neutrophil and can bind and kill microorganisms.130 Interestingly, the 

formation of NETs requires that ROS be generated; cells lacking NADPH oxidase are unable to 

form NETs.130 A proteomic study a NETs identified 24 NET-associated proteins, including 

calprotectin.83 Additionally, histones were identified as the backbone of the structure as well as 

several proteins that are known to localize to granules. Table 3.2 shows the proteins identified by 
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Urban et al.83 Since these proteins are trapped on the actual NET, they are immobilized at regions 

of intense pathogen-host interactions. Since other neutrophils spatially localized to this regions are 

generating ROS extracellularly in attempts to kill the pathogen, it is hypothesized that the host 

proteins in Table 3.2 might also be targets of oxidative damage. Microorganisms have also 

developed novel mechanisms to escape NETs. The ability to degrade the chromatin backbone of 

the structure has allowed many microorganisms to escape this antimicrobial strategy. For example, 

Group A Streptococcus expresses a DNase that allows the degradation of the NET and the bacteria 

to escape its killing mechanisms.131 
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Cellular 
Localization 

Protein Gene 

Granules Leukocyte Elastase ELA2 
 Lactotransferrin LTF 
 Azurocidan AZU1 
 Cathepsin G CTSG 
 Myeloperoxidase MPO 
 Leukocyte Proteinase 3 PR3 
 Lysozyme C LYZ 
 Neutrophil Defensin 1 and 3 DEFA-1, DEFA-3 
Nucleus Histone H2A H2A 
 Histone H2B H2B 
 Histone H2B-Like H2B 
 Histone H3 H3 
 Histone H4 H4 
 Myeloid Cell Nuclear Differentiation Antigen MNDA 
Cytoplasm S100A8 S100A8 
 S100A9 S100A9 
 S100A12 S100A12 
Cytoskeleton Actin ACTB, ACTG1 
 Myosin-9 MYH-9 
 Alpha-actinin ACTN1, ACTN4 
 Plastin-2 LCP1 
 Cytokeratin-10 KRT-10 
Peroxisomal Catalase CAT 
Glycolytic  Alpha-Enolase ENO1 
Enzymes Transketolase TKT 

 

Table 3.2: Proteins that Localize to NETs 

Proteins that localize to NETs. Proteins are organized by their localization in unstimulated 
neutrophils. Reprinted from PLoS Pathogens, 5, 10, Urban et al. “Neutrophil Extracellular Traps 
Contain Calprotectin, a Cytosolic Protein Complex Involved in Host Defense against Candida 
albicans” 2009 distributed under the terms of the Creative Commons Attribution License.  
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Figure 3.1: Time-of-Flight MS Does Not Resolve Peaks 
Time-of-flight mass spectrometers lacked the resolving power to differentiate peaks surrounding 
S100A8. A representative spectrum is shown in A) taken from the overall averaged spectrum. 
Insets show MALDI IMS ion intensity maps selected from within the spectral region. These ion 
intensity maps share similar spatial resolution, suggesting that they could be related proteins. B) 
is a representative spectrum taken from a single pixel from within the aggregated neutrophils of 
the abscess.   

 
 

Results and Discussion 

 

TOF MS Lacks the Resolution to Resolve Post-Translational Modifications of Proteins 

 Traditional MALDI IMS experiments have been performed on TOF instruments, which 

have limited mass resolving power. This proves problematic for modified protein isoforms. It was 

hypothesized that the proteins in Table 3.2, which are associated with NETs and unable to escape 

the ROS generated by other leukocytes, would be targets of oxidative damage. Two of these 

proteins are S100A8 and S100A9, the subunits of calprotectin. These proteins are abundantly 

recruited to sites of infection in kidney tissue from mice infected with S. aureus.  Figure 3.1 shows 
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a typical MALDI TOF MS spectrum from an on-tissue imaging experiment. Figure 3.1A shows 

the overall averaged spectrum while Figure 3.1B shows a spectrum taken from a single pixel in 

the analysis. It is apparent that there are multiple species represented and that the instrument lacks 

the resolving power to differentiate these species. In order to further study these species and their 

potential biological role, a high mass resolving power instrument was used.  

 

FTICR MS Reveals Post-Translational Modifications of Proteins 

MALDI FTICR MS has the capability to address the lack of resolving power in the 

previous analysis. Figure 3.2 displays the spectral complexity of MALDI FTICR IMS data of intact 

proteins from kidney tissue taken 9 dpi with Strain Newman S. aureus. The overall averaged 

spectrum is shown in Figure 3.2A. Figure 3.2B expands the y axis (intensity) to highlight the 

quality of the data and the ability of high mass resolution instrumentation to differentiate the charge 

state of individual analytes, further aiding downstream protein identification strategies. These data 

were collected at a resolving power of ~75,000 at m/z 5,000 providing isotopic resolution and 

allowing multiple potential isoforms of S100A8 to be distinguished in Figure 3.2C. In this robust 

data set, 2,552 peaks detected between m/z 2,000 – 12,000 with S/N > 20.  
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Figure 3.2: FTICR MS Reveals Multiple Proteins 
“MALDI FTICR IMS of intact proteins from kidney tissue from a mouse infected with S. aureus. 
The average spectrum of the entire imaging data set is shown in panel A.  Expanding the intensity 
scale (B) highlights the overall quality of the data with singly and doubly charged protein signals 
detected between m/z 1,000 – 12,000. Data were collected with a resolving power of ~75,000 at 
m/z 5,000 providing isotopic resolution and allowing multiple isoforms of S100A8 to be 
distinguished (Panel C). Electronic noise peaks are labeled (*). Reprinted from the Journal of the 
American Society for Mass Spectrometry, 26, “MALDI FTICR IMS of Intact Proteins: Using 
Mass Accuracy to Link Protein Images with Proteomics Data.” Spraggins, Rizzo, and 
Moore et al. 974-985. 2015 with permissions from Springer.30 
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Figure 3.3: FTICR Reveals Peaks Not Present in Calprotectin Knock-out Mouse 
In order to support the idea that peaks surrounding S100A8 and S100A9 could be isoforms of 
calprotectin, they were compared to spectra taken from the lesions of a calprotectin knock-out 
(CPKO) mouse. The spectrum from the wildtype mouse is shown in blue while the knockout 
mouse is shown in pink. The CPKO spectrum is falsely inverted on the axis strictly for display 
purposes. A) shows the full spectrum, revealing robust data from each animal and confirming that 
a lack of signal in the CPKO was not due to a poor quality analysis. B) shows a magnification of 
the spectrum around the mass of S100A8, with many peaks present in the WT that are absent in 
the CPKO. C) shows similar data for S100A9, which was best detected in a 2+ charge state. Taken 
together these data support the idea that the peaks could represent modified forms of calprotectin. 
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In order to support the idea that the peaks in Figure 3.2C might be isoforms of S100A8, an 

additional analysis was performed on a calprotectin knock-out (CPKO) mouse. This mouse lacks 

the ability to produce S100A9, but because of this genetic alteration does not express S100A8 

either. Figure 3.3 shows spectra from lesions of either wildtype or CPKO mice collected on a 15T 

FTICR MS. Figure 3.3A shows the robust spectra collected from both lesions taken at 9 dpi with 

strain Newman S. aureus, with the spectra from wildtype abscess in blue and the CPKO abscess 

in pink. The CPKO spectrum is inverted for comparison purposes only. However, Figure 3.3B 

shows a dramatic difference in the spectra surrounding the peak for S100A8 and Figure 3.3C shows 

peaks surround S100A9 in a 2+ charge state. A number of peaks appear in the wildtype (blue) 

spectrum that are absent entirely from the CPKO (pink, inverted) spectrum. It is hypothesized that 

these peaks represent modified forms of S100A8 and S100A9. Although not fully resolved, the 

data suggest there are ~12 species within the highlighted mass window in Figure 3.2C and 3.3B, 

all likely unique proteoforms of S100A8. 

 

Top Down Sequencing Identifies Proteoforms of S100A8 

The protein S100A8 was detected at m/z 10,164.03 ([M+H]1+, -2.1 ppm) in the MALDI 

mass spectrum using a 15T FTICR MS. This peak was subsequently identified using top-down 

fragmentation. Figure 3.4 shows data obtained using LC-MS/MS to isolate and sequence this ion 

of interest. Figure 3.4A shows the full MS of the parent ion, with the charge state selected for 

sequencing annotated in red. Figure 3.4B shows an annotated MS/MS spectrum obtained by top-

down fragmentation using an ETD-enabled Thermo Scientific LTQ Orbitrap Velos.  
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Figure 3.4: ETD Sequencing of S100A8 
ETD LC-MS/MS data for S100A8.  The charge state distribution is shown in the top panel with 
the specific charge state selected for MS/MS highlighted in red.  ETD fragmentation data is shown 
in the bottom panel including selected c (red) and z (blue) ion annotations.  A summary of the 
observed fragments and sequence coverage is also included. Reprinted from the Journal of the 
American Society for Mass Spectrometry, 26, “MALDI FTICR IMS of Intact Proteins: Using 
Mass Accuracy to Link Protein Images with Proteomics Data.” Spraggins, Rizzo, and 
Moore et al. 974-985. 2015 with permissions from Springer.30 
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Figure 3.5: ETD Sequencing of Modified S100A8 

ETD LC-MS/MS data for modified S100A8.  The charge state distribution is shown in A) with the 
specific charge state selected for MS/MS highlighted in red.  ETD fragmentation data is shown in 
B) including selected c (red) and z (blue) ion annotations.  A summary of the observed fragments 
and sequence coverage and modifications is also included. Reprinted from the Journal of the 
American Society for Mass Spectrometry, 26, “MALDI FTICR IMS of Intact Proteins: Using 
Mass Accuracy to Link Protein Images with Proteomics Data.” Spraggins, Rizzo, and 
Moore et al. 974-985. 2015 with permissions from Springer.30 
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Identification was also attempted on the masses that corresponded to the potential 

proteoforms of S100A8. One in particular, appearing at m/z 10,228.00 was extensively purified 

for top-down sequencing to both identify the protein and the residues that were altered or modified. 

MS/MS data are shown in Figure 3.5. The parent spectrum is shown in Figure 3.5A with the charge 

state selected for MS/MS analysis annotated in red. Figure 3.5B shows both the MS/MS spectrum 

and sequence coverage of the protein. This determined a mass shift of +48.00 on cysteine residue 

42, consistent with a trioxidation of cysteine to cysteic acid. There was also a mass shift of +15.99 

on methionine 37, consistent with an oxidation. In order to confirm these post-translational 

modifications, a bottom-up protein identification strategy was employed. After tryptic digestion, 

the peptide containing the modification, annotated in Figure 3.5B by pink text, was fragmented 

using HCD on a Thermo Q Exactive Orbitrap MS. The annotated peptide fragmentation spectrum 

is shown in Figure 3.6. Bottom-up fragment ions of particular importance for making this 

identification included the b2+16 fragment showing the addition of oxygen to methionine 37 and 

the b5+16 and b6+64 fragment ions that result from three oxygen atoms being added to cysteine 

42. Oxidation of S100A8 has been hypothesized to play a critical role in the protein’s antimicrobial 

activity.132 

  



71 
 

 

 

Figure 3.6: MS/MS sequencing at a Peptide Level Confirms PTMs 
An aliquot of the sample in Figure 3.5 was subjected to tryptic digestion to confirm the 
modification at a peptide level. The pink peptide annotated in Figure 3.4 containing the modified 
cysteine residue to sequenced here.  

 

 

Proteoforms of S100A8 are Differentially Localized in Staphylococcal Lesions 

Understanding the impact of oxidative damage to S100A8 on its function during the host-

pathogen interaction is of great importance. In order to study this, MALDI IMS was used to 

spatially localize these identified proteoforms. An abscessed mouse kidney was subjected to 

MALDI IMS experiments using a 15T FTICR. The resulting images are shown in Figure 3.7. 

Figure 3.7 highlights the high quality of these data and the ability to generate many ion intensity 

maps from a single analysis. This also allows for the annotation of charge states of the ions, which 

will greatly aid downstream protein identification strategies by allowing accurate mass 

measurements. Figure 3.8 features selected ion images for a proposed series of oxidative 

modifications to S100A8.  MALDI FTICR images of acetylated Tβ10 (Tβ10-AC, [M+H]1+, 1.2 

ppm) and acetylated Tβ4 (Tβ4-AC, [M+H]1+, 1.6 ppm) were included for comparison.  Labeled 

ions (*) are only tentatively identified based on mass accuracy. Both thymosins were found to 
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localize primarily to non-abscessed tissue, whereas S100A8 and the oxidation products S100A8+O 

(m/z 10,180.07, [M+H]1+, 2.3 ppm), S100A8+2O (m/z 10,196.07, [M+H]1+, 3.0 ppm), and 

S100A8+4O (m/z 10,228.00, [M+H]1+, -2.6 ppm) were all specifically detected with greater 

intensity at infectious foci.  An interesting observation is that oxidation seems to occur at a greater 

rate near the center of abscesses leading to more advanced oxidation products at these locations.  

This is particularly noticeable when comparing the MALDI FTICR IMS data to an H&E stained 

micrograph of a serial tissue section (Figure 3.8B).  Abscesses are clearly distinguished as darker 

stained regions in the microscopy image and a zoomed-in view of one particular abscess highlights 

a staphylococcal microcolony that can be found at the center of these infectious foci.  In comparing 

the histological images to overlays of ion images (Figure 3.8C), advanced oxidation products are 

found to co-localize to regions where the staphylococcal microcolonies are found.  The overlay 

displayed on the left side of Figure 3.8C shows S100A8 is localized to the infectious foci, however, 

the unmodified form of the protein seems to be of lower abundance at the center of the highlighted 

abscess. On the other hand, the S100A8+4O oxidation product, shown on the right side of Figure 

3.8C, is found in the center of this particular abscess suggesting oxidative processes are occurring 

specifically at the host-pathogen interface. 

The ability to differentiate modified proteins with high confidence in MALDI FTICR IMS 

experiments with high resolution and mass accuracy is important to infection biology because 

protein oxidation can generate new proteoforms, which are hypothesized to elicit both innate and 

adaptive immune responses.132  For calprotectin, which has extensive downstream effects as both 

an initiator of inflammation and a signaling molecule, defining the biologically relevant form of 

the protein becomes very important.133 Oxidized proteoforms of S100A8 and S100A9 have 

previously been hypothesized to suppress inflammation.125, 134  Given the important biological role 
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of calprotectin both as a major component of nutritional immunity and as a mediator of 

inflammatory response, IMS analyses such as these stand to greatly enhance our knowledge of 

calprotectin’s oxidative forms at infectious foci. 

 

 

 

Figure 3.7: MALDI IMS Data Generated from FTICR IMS of 9 DPI Kidney 
MALDI FTICR IMS performed on a mouse kidney taken 9 days post infection. The top panels 
shows histological staining as well as several ion intensity maps overlaid to generate molecular 
maps marking histological features associated with infection. The bottom panels show a selected 
series of ions that have interesting distributions throughout this biology as an example of the power 
of MALDI IMS experiments for discovery-based analyses. Ions given protein identities in this 
analysis were determined using accurate mass measurements only. 
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Figure 3.8: Proteoforms of S100A8 are Differentially Localized to Staphylococcal Lesions 

Selected ion images of intact proteins from kidney tissue from a mouse infected with S. 
aureus collected using MALDI FTICR MS (A). Ions were identified using mass accuracy to 
correlate imaging results with separate top-down proteomics experiments. For comparison, a serial 
tissue section was H&E stained (B). Ion image overlays show the advance oxidation product 
S100A8 – M7O/C42O3 is localized specifically to the center of infectious foci (C). Italicized ions 
were tentatively identified by mass accuracy only” Reprinted from the Journal of the American 
Society for Mass Spectrometry, 26, “MALDI FTICR IMS of Intact Proteins: Using Mass Accuracy 
to Link Protein Images with Proteomics Data.” Spraggins, Rizzo, and Moore et al. 974-985. 2015 
with permissions from Springer.30 
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Figure 3.9: Neutrophils Accumulate at Infectious Foci as Infection Progresses 
As systemic bacterial infection progresses without treatment, large inflammatory foci and tissue 
necrosis occur, as shown in A. These foci develop oxidative modifications not present in a CPKO 
mouse, shown in panel B. The spectrum taken from the wildtype lesion is shown in green while 
the spectrum from the CPKO lesion is shown in blue. Mass differences are annotated. Ion intensity 
maps showing such shifts and how they accumulate over the time course are shown in panel C.  
 
 
 

 
Accumulation of Neutrophil Extracellular Traps at Infectious Foci leads to Post-Translational 

Oxidation 

 The previous analyses utilized animals from a late time point in the sepsis model- 9 dpi. 

This allowed oxidative modifications to build with time and disease progression. However, in 

order to study the formation of these proteoforms, a time course model of abscess formation was 

studied. Here, both control and animals at 0, 3, 6 dpi were analyzed using MALDI FTICR IMS. 

Figure 3.9 highlights the formation of modified S100A8 detected during this time course of 

infection. Figure 3.9A shows histological staining for orientation. Figure 3.9B represents a 
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MALDI FTICR mass spectrum taken from a 9 dpi wildtype and CPKO mouse with mass shifts 

from parent S100A8 annotated to the nearest whole value. Modified forms are not detected before 

3 dpi, when lesions are small but well-formed. By 6 dpi, when lesions are large and surrounded by 

necrosis, several modified forms of S100A8 are detected, including those with mass shifts of +153 

and +189, which are still unidentified. Interestingly, the ion at m/z 10,228 representing a 

methionine oxidation and cysteine trioxidation was not detected in this analysis. This could 

indicate that such a product is only formed later, when the host has undergone long time periods 

under oxidative stress, consistent with sepsis progression to severe sepsis or septic shock.  

 

Oxidation of S100A8 Occurs in Acute Infection Models 

The ability of MALDI IMS to detect multiple proteoforms during bacterial infection is very 

analytically powerful. A model of severe infection was an ideal model for this technology, where 

one would expect the disease to progress until it overtakes the host, causing extensive oxidative 

damage to proteins in the process. However, this also prompted us to consider oxidative 

modifications in acute infection models, where the infection is resolved by the host. This would 

reveal whether such oxidative modifications lead to long-term tissue damage or if they are easily 

resolved by the host once the infection is resolved. 

During initial TOF MS imaging analyses from Chapter II, a time course of A. baumannii 

pulmonary infection was utilized to monitor infection over time. This infection begins to resolve 

at 24-36 hpi with a marked decrease in bacterial burden that is below the limit of detection by 96 

hpi. The signal from calprotectin subunits S100A8 and S100A9 was a bit longer lived, with signal 

still present at 144 hpi but resolving by 192 hpi. By this time [8 days post infection] the mice have 
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regained weight to be comparable to pre-infection weights. Though Chapter II only showcased ion 

intensity maps from a few selected ions, there are a plethora of other signals present in these  

 

 
 

Figure 3.10: Unresolved Modifications are Present in an Acute Model of Infection 
Initial time-of-flight analyses of an acute model of A. baumannii pneumonia revealed a number of 
peaks with spatial distribution patterns that closely followed S100A8, shown in B. Many of these 
peaks had m/z ratios that were consistent with oxidative modifications that had been observed in 
staphylococcal lesions. . Reprinted from Proteomics, 14, 0, “Imaging Mass Spectrometry for 
assessing temporal proteomics: Analysis of calprotectin in Acinetobacter baumannii pulmonary 
infection.” Moore et. al, 2014, 820-828 with permission from John Wiley and Sons.100 
 
 
analyses. Revisiting these data for patterns similar to S100A8 and S100A9, which rise with 

infection and disappear when infection resolved yielded many analytes of interest. Figure 3.10 
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shows other signals of interest and potentially represents other proteins involved in response to 

bacterial infection. Several of these signals were similar to those detected in high resolving power 

analyses presented here. Additional analyses were required to confirm this, since it is difficult to 

determine an accurate mass from a peak that is not resolved from neighbors in TOF analyses.  

To determine this, an abridged time course of A. baumannii pulmonary infection was 

analyzed using MALDI FTICR IMS. Figure 3.11 shows two ion intensity maps- one for S100A8 

and one for S100A8 with a mass shift of +15.99, representing the oxidized form of S100A8. These 

two ions seem to have drastically different spatial localization within the inflamed lung. Consistent 

with previous analyses, calprotectin is not detected at 0 hpi but has robust signal at 6 hpi, when the 

host has detected the pathogen. At 36 hpi, when the host is beginning to decrease bacterial burdens, 

there is still signal from both S100A8 and oxidized S100A8. There is a bit of detectable signal at 

192 hpi as well, though for the most part signal from both S100A8 and oxidized S100A8 has 

resolved. In an attempt to understand why S100A8 and oxidized S100A8 would exhibit different 

spatial localizations, more in depth histological analyses were performed on these tissues. Figure 

3.12 shows a more in depth histological look at the lung from 36 hpi, which shows robust 

neutrophil recruitment to airways. Figure 3.12A shows the section of lung at 36 hpi with two 

regions annotated for histological analysis. The grey box annotates the MALDI IMS ion intensity 

maps that are shown at a larger magnification in Figure 3.12B. Areas of immune cell recruitment, 

which stain darker purple in Figure 3.12A, have robust signal in the MALDI IMS data. Focusing 

on one airway from the lung, annotated in Figure 3.12A with a blue box, a side by side comparison 

of both histological and MALDI IMS data can be seen in Figure 3.12C and D, respectively. Here 

robust neutrophil recruitment can be visualized in the airways of Figure 3.12C. Figure 3.12D 

shows that the oxidized calprotectin seems to be localized to the center of affected airways, where 
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we would expect bacteria to be localized. This analysis was carried out at 200 micron spatial 

resolution, and therefore image reconstruction will fill in a 200 by 200 micron region for each 

pixel. To fully understand if calprotectin is secreted into the airways where it is oxidized, higher 

spatial resolution analyses are necessary. These data support the idea that calprotectin is oxidized 

even in cases of acute infection, and support the idea that the host can clear oxidized calprotectin 

similarly to the native form.  

 

Figure 3.11: FTICR IMS Reveals Oxidations in Acute Model of Infection 
High Mass resolution IMS experiments of mouse lungs at various time points post infection. A) 
shows selected time points, which are representative of the time course presented in Chapter II. 
Infectious foci are clearly visible at 6 and 36 hours post infection. B) shows high mass resolution 
MALDI IMS data of two ions of interest, S100A8 and an oxidized form of S100A8 containing a 
single oxidation. Oxidative forms of S100A8 seem to have colocalization patterns in the middle 
of the native form. 
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Figure 3.12: Magnification of 36 HPI lung reveals oxidations localize to airways 
In order to explore to spatial localization pattern of S100A8 and oxidized S100A8, additional 
analyses of the lung from 36 hpi were performed. A) shows histological analysis of the lung with 
two insets enhanced. MALDI IMS data from the grey double box is shown in B. Areas of dark 
histological staining in A are marked with robust signal of S100A8 (pink) with small centers of 
oxidized S100A8 (green.) A more in depth analysis of a single bronchi, marked with a blue box in 
panel A, was performed. Histologically, Figure C shows that this region is marked with robust 
neutrophil aggregation in a series of airways. Interestingly, in these airways, Oxidized calprotectin 
(green) co-localizes in panel D.  
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Methods 

 

Bacterial Strains and Infection 

All in-house animal experiments were performed with approval by the Vanderbilt 

Institutional Animal Care and Use Committee.  

Female 6-8 week old C57bl/6 mice (Jackson Laboratories) were infected using a retro-

orbital intravenous injection of the clinical isolate Strain Newman S. aureus.119 Inoculae were 

prepared as detailed in Chapter II. Mice were anesthetized using Avertin (2-2-tribromoethanol) 

and injected with 100 µL of inoculum in PBS. Mice were monitored as they recovered from 

anesthesia and were provided free access to food and water throughout the course of infection. 

Control mice were retro-orbitally injected with PBS only. The infection was allowed to progress 

up to 9 dpi. At set times post infection, (0, 3, 6, and 9 dpi) mice were sacrificed and organs 

aseptically removed. Moribund mice were sacrificed immediately when found. Organs were frozen 

in plastic weigh boats using dry ice and stored at -80°C until analysis.  

A mouse model of pulmonary infection was used as described in Chapter II. 81, 118 Briefly, 

Strain Ab17978 A. baumannii was grown in LB medium, washed, and resuspended in PBS. Seven 

week old female Swiss Webster mice (Charles River Laboratories) were anesthetized using avertin 

and infected intranasally with 30 μL of bacteria suspended in PBS. Mice were euthanized at set 

time points post infection and lungs were perfused with 1 mL of 1:1 OCT:water. Lungs were then 

marked using histological dye, snap frozen, and stored at -80°C until analyzed. 
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MALDI IMS of Mouse Kidney 

Frozen tissue was sectioned to 10 microns at -20°C using a Leica CM 3050S Cryostat 

(Leica Microsystems, GmbH, Wetzlar, Germany). Sections were mounted onto conductive 

Indium-tin-oxide coated slides (Delta Technologies). Tissue was washed to remove interfering 

lipids and salts in sequential washes of 70% ethanol (30 seconds), 100% ethanol (30 seconds), 

Carnoy fluid (6:3:1 ethanol: chloroform: acetic acid) (2 minutes), 100% ethanol (30 seconds), 

water with 0.2% TFA (30 seconds), and 100% ethanol (30 seconds). Slides were stored at -80°C 

until IMS analysis was performed. Matrix was applied using a TM Sprayer (HTX Technologies, 

Carrboro, NC, USA) with a 15 mg/mL DHA in 8:1:1 acetone:water:acetic acid matrix solution or 

15 mg/mL DHA in in 9:1 acetonitrile:water with with 0.2% TFA. Other instrument parameters 

include a flow rate 0.15 mL/min, nitrogen flow of 10 psi, spray temperature of 30°C, 4 passes with 

offsets and rotations, a spray velocity of 1300 mm/min, and 90% acetonitrile as the pushing 

solvent. 

 Imaging experiments were performed using a 15T Bruker SolariX MALDI FTICR mass 

spectrometer (Bruker Daltonics, Billerica, MA, USA).  The instrument is equipped with an Apollo 

II dual MALDI/ESI ion source and a Smartbeam II 2kHz Nd:YAG (355nm) laser.  All images 

were collected using the small laser setting (~50 μm) with a pixel spacing of 75 μm in both x and 

y dimensions unless otherwise noted.  Data were collected from m/z 1,000 – 15,000 with a 

resolving power of ~75,000 at m/z 5,000 for 9 dpi kidney analyses.  Special tuning of the Funnel 

RF amplitude (190 Vpp), accumulation hexapole (1.4 MHz, 1200 Vpp), transfer optics (1 MHz, 

310 Vpp), time-of-flight delay (2.5 ms), and ICR cell (Sweep excitation power: 43%) were 

required for high m/z analysis.  External calibration was performed prior to analysis using CsI 

clusters.  FlexImaging 4.1 (Bruker Daltonics, Billerica, MA, USA) was used to visualize ion 
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images.  For comparison, linear MALDI-TOF data were collected using a Bruker AutofleX Speed 

(Bruker Daltonics, Billerica, MA, USA). 

 

Protein Purification 

Kidneys of S. aureus infected animals were homogenized using 1 mL of phosphate 

buffered saline and a rolling pin. Cells were lysed by adding 0.5 mL of 50% trifluoroethanol and 

centrifuged for 10 minutes at 9g using Eppendorf Centrifuge 5415c. Protein was extracted from 

homogenates using 0.5 mL of 60% acetonitrile and centrifuged for 10 minutes at 9g. Supernatants 

from the extraction were saved and proteins were quantified using a Bradford Assay (Thermo 

Scientific Pierce, Rockford, IL, USA). Extracted proteins were further fractionated by reversed-

phase HPLC using a Waters 2690 Alliance Separations Module (Waters Milford, MA, USA) and 

a Vydac 218 250 mm C18 5 micron column (Vydac Grace Columbia, Maryland, USA.) The 

column was heated to 40 degrees C and proteins were eluted at flow rate of 0.2 mL/min over a 120 

minute gradient of 0.2%TFA in acetonitrile (solvent A) and 0.2%TFA in water (Solvent B.)  The 

gradient consisted of 95-70% B in 20 minutes, followed by 70-40% B in 60 minutes and 40-20% 

B in 20 minutes. Fractions were collected every 1.5 minute using an offline fraction collector. The 

separation was performed three times and combined. Fractions were dried using a Savant 

SPD131DDA Speedvac Concentrator (Thermo Scientific, Rockford, IL, USA) and reconstituted 

in 30µL of 40% acetonitrile. One µL of each fraction was spotted for analysis by MALDI MS. 

Wells containing protein of interest were targeted for top-down analysis.  
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LC-Coupled Tandem Mass Spectrometry 

For identification of modified S100A8, the purified fraction of interest was diluted 15-fold 

in 0.1% formic acid. Five µL of diluted sample were loaded for each analysis as described 

previously. Sequencing modified S100A8 was performed similarly to above, but the instrument 

method was customized with targeted scan events to assure ETD MS/MS acquisition of 

[M+11H]+11 and [M+12H]+12 charges states of modified S100A8. An isolation width of 4 m/z and 

an ETD reaction time of 70ms were used for MS/MS spectra. The MSn AGC target value in the 

Orbitrap was set to 7.5x105, and MS2 spectra were acquired 15000 resolution. Theoretical 

fragmentation data of mouse S100A8 (P27005) were generated using Protein Prospector MS-

Product (v 5.12.4 http://prospector.ucsf.edu/). MS/MS spectra acquired over an 18-second time 

range (retention time 68.23-68.53 minutes) were averaged and de novo sequenced to determine 

modifications. Modifications were confirmed at the peptide level following LC-MS/MS analysis 

of a tryptic digestion of the S100A8 fraction. An aliquot of the HPLC fraction was digested with 

mass-spectrometry grade endoproteinase trypsin (Promega Coorperation, Madison, WI, USA.) 

Peptides were acidified and bomb-loaded onto a self-packed trap column (360µm OD x 100µm 

ID) packed with 4 cm of C18 reverse phase material (Jupiter C18, 5 μm beads, 300Å, 

Phenomenex). An M-520 microfilter union (IDEX Health & Science) was used to connect the trap 

column to a capillary analytical column (360μm OD x 100μm ID), equipped with a laser-pulled 

emitter tip and packed with 18 cm of C18 material (Jupiter, 3 μm beads, 300Å, Phenomenex). 

Using an Eksigent NanoLC Ultra HPLC, peptides were gradient-eluted at a flow rate of 500 

nL/min, and the mobile phase solvents consisted of 0.1% formic acid, 99.9% water (solvent A) 

and 0.1% formic acid, 99.9% acetonitrile (solvent B).  A 90-minute gradient was performed, 

consisting of 2-40% B in 70 min, followed by 45-95% B in 5 min. Upon gradient elution, peptides 

http://prospector.ucsf.edu/
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were mass analyzed on a Q Exactive mass spectrometer. The instrument method consisted of MS1 

acquisition (R=70,000) followed by up to 18 MS/MS scans (R=17,500) of the most abundant ions 

detected in the preceding MS scan. The MS2 AGC target value was set to 2 x 105 ions, with a 

maximum ion time of 150 ms and a 4% underfill ratio. HCD collision energy was set to 28, 

dynamic exclusion was set to 10s, and peptide match and isotope exclusion were enabled. 

Resulting MS/MS spectra were searched against a Mus musculus subset database of the UniprotKB 

protein database using a custom version of SEQUEST (Thermo Scientific) operating on the 

Vanderbilt ACCRE computing cluster. Search parameters included variable modifications of 

oxidation (+15.9949) on methionine and oxidation of cysteine to cysteic acid (+47.9847). Search 

results were assembled using Scaffold 4.0 (Proteome Software, Porland, OR, USA). 

 

MALDI IMS of Mouse Lung 

Mouse lungs were prepared and frozen as described in Chapter II. Lungs were oriented 

identically and sectioned at 10 micron thickness using a Thermo Scientific Cryostar NX70 

cryostat. Sections were thaw-mounted onto chilled Indium-tin-oxide slides (Delta Technologies.) 

Tissue was washed to remove interfering lipids and salts in sequential washes of 70% ethanol (30 

seconds), 100% ethanol (30 seconds), Carnoy fluid (6:3:1 ethanol: chloroform: acetic acid) (120 

seconds), 100% ethanol (30 seconds), water with 0.2% TFA (30 seconds), and 100% ethanol (30 

seconds).  

2,6-dihydroxyacetophenone (DHA) was used as a matrix and applied via sublimation 

similarly to previously described.120 Briefly, a sandbath was heated to 105°C. DHA was placed in 

the bottom of the sublimation apparatus and samples were suspended above the matrix by taping 

them to a cold finger. The chamber was evacuated to 50 mTorr and the sublimation was allowed 
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to occur for 5 minutes. Samples were rehydrated before analysis using a rehydration chamber 

described by Yang et al.120, only using 1 mL of 50 mM acetic acid as the rehydration solvent. 

Rehydration was carried out at 85°C for 1 minute. Samples were analyzed using a Bruker 15T 

SolariX FTICR MS equipped with an Apollo II dual MALDI/ESI ion source and a Smartbeam II 

2kHz Nd:YAG (355nm) laser.  High mass resolution images were collected with instrumental 

parameters similar to those reported for kidney analysis. Pixel spacing was 200 microns in both 

the x and y direction. FlexImaging 4.1 (Bruker Daltonics, Billerica, MA, USA) was used to 

visualize ion images.   
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CHAPTER IV 
 

METAL SEQUESTRATION AT SITES OF INFECTION AFFECTS BACTERIA 

 

A version of the following chapter was previously published and has been adapted from 

Kehl-fie, Zhang, Moore et al., Infection and Immunity, Copyright 2013 by the American Society 

for Microbiology135 and from Cassat, Moore et al., A Multi-Modality Imaging Platform for 

Identifying Molecular Alterations at the Host-Pathogen Interface., in progress 

 

Overview 

 Nutritional immunity is the basis of calprotectin’s antimicrobial activity- through the 

sequestration of nutrients from invading pathogens, the pathogens are limited in their ability to 

replicate and cause disease. Though MALDI IMS has greatly enhanced our knowledge of host 

response to bacterial infection, it has historically lacked the spatial resolution to resolve bacterial 

signals from those of the host. Additionally, the introduction of LA-ICP-IMS allows for the spatial 

distribution of metals to be determined from within biological samples. This allows for the 

unprecedented study of the metalloproteome, with proteins and metals analyzed in serial sections 

of tissues. This work intends to utilize high spatial resolution MALDI IMS and LA-ICP-IMS to 

uncover how bacteria are responding to calprotectin-mediated nutritional immunity during active 

infection in both tissue sections and whole organ systems.  
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Introduction 

 

Nutritional Immunity and Bacteria 

Metals are essential for all forms of life; they are important for many reasons, including 

enzymatic functions as cofactors or as critical components of tertiary protein structure. 71, 136-138 

Nutritional immunity is the term given to the process of vertebrate hosts sequestering metals from 

invading pathogens. 71, 139 Previous studies utilizing laser ablation inductively coupled plasma 

imaging mass spectrometry (LA-ICP-IMS) revealed that staphylococcal lesions were manganese 

and zinc depleted.140  

For pathogens to cause disease in hostile host environments, they must evolve ways to 

obtain nutrients despite host efforts. The most successful pathogens have evolved mechanisms to 

circumvent nutritional immunity, including the secretion of small molecules with high affinity for 

metals, called siderophores, and dedicated metal uptake machinery. Mn and Zn uptake systems 

contribute to the pathogenesis of a number of bacterial species including Campylobacter jejuini, 

Salmonella enterica, Haemophilus ducreyi, uropathogenic Escherichia coli, Brucella abortus, 

Yersinia pestis, Streptococcus pneumoniae, and Streptococcus pyogenes. 141-156 It is notably 

difficult to study metal uptake systems in the context of pathogenesis because it is difficult to 

distinguish whether such systems that work in vitro are also working within the vertebrate host. 

 

Analysis in 3D 

Determining the nuances of nutritional immunity in an organ system is not a trivial task. 

This is especially true for discovery-based approaches that do not have a priori knowledge of 

analytes so that specialty reagents such as antibodies or probes can be developed. To fully 

understand how metal is sequestered from within the kidney of mice during staphylococcal sepsis, 
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a 3D analysis strategy was implemented. This was partially to study intra-lesion heterogeneity, but 

also to study changes within a single lesion. Figure 1.4 outlined the anatomy of an abscess, where 

a bacterial population occupies only a small niche of the lesion, surrounded by inflammatory cells, 

necrosis, and in some cases completely healthy tissue.  

 In order to further characterize bacterial-host interactions in abscessed tissue, a multi-

modality imaging strategy was developed that would combine bioluminescence, MALDI IMS, and 

LA-ICP-IMS. This strategy was applied to a murine model of disseminated S. aureus infection. 

Initial experimental planning focused on iron as it is a well-studied essential metal critical to host-

pathogen interactions and virulence. Iron acquisition is critical for S. aureus pathogenesis, and also 

serves as one of the most powerful and well-studied signals to bacterial pathogens signifying  a 

change in environment as they invade host tissues.157 Iron levels vary considerably across host 

tissues, and to date it has been technically challenging to determine the abundance and spatial 

distribution of iron and other elements within a particular tissue. To answer this and other 

important biological questions, there was a need to successfully integrate 3D MALDI IMS, LA-

ICP-IMS, and bioluminescence data sets. This task required a computational platform capable of 

accurate co-registration within the 3D volume. This necessitated additional imaging modalities to 

provide registration. To accomplish this, magnetic resonance imaging (MRI) and optical blockface 

imaging were including in the strategy.  

 This work reports the integration of whole animal bioluminescent and blockface optical 

imaging, magnetic resonance imaging, MALDI IMS, and LA-ICP-IMS as a multi-modality 

platform for identifying the abundance and spatial distribution of host and bacterial molecules in 

intact, infected tissues. We focus specifically on the struggle for nutrient metal between host and 

pathogen as a paradigm for innate immune responses to invading bacteria. By combining the multi-
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modality imaging platform with top-down and bottom-up proteomics, we successfully identify 

host proteins involved in the innate immune responses to S. aureus, as well as bacterial proteins 

that specifically mark the bacterial nidus within tissue abscesses. 

 

Results and Discussion 

 

LA-ICP IMS Reveals Dramatic Rearrangement of Metal Distribution in Tissues 

 Bacteria sometimes exhibit preferential colonization of one organ over another. Since the 

ability to secure nutrient metals is so important for survival and dissemination, it is sensible to 

explore metal levels in varying organs. Previous work in our laboratory showed that in areas of 

infection, metal levels are dramatically altered at infectious foci.28 To explore whether the amount 

of metal available in organs varies, bulk analysis of both WT and CPKO mice was performed. 

Kidneys and livers of infected and control animals were digested for total metal content, shown in 

Figure 4.1. In the case of total metal analysis, liver tissues contained much more Mn and Zn per 

gram total tissue than kidney. Interestingly, upon infection, the metal levels of kidney were 

relatively unchanged. Figure 4.1A shows that Mn levels dropped significantly in liver tissues when 

infected, while the change was not significant in kidneys. Zn levels also remained the same in 

infected kidneys, as shown in Figure 4.1B; however, total Zn levels appear to rise in the liver when 

infected. All measured metal levels from the bulk analysis are shown in Table 4.1. 
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Metal Uninfected  
Liver 

Infected  
Liver 

Uninfected 
Kidney 

Infected  
Kidney 

Magnesium 240 ± 37 294 ± 7 95 ± 19 100 ± 15 
Phosphorus 3,240 ± 466 3,855 ± 118 1,658 ± 370 1,657 ± 305 
Calcium 49 ± 8 99 ± 5 30 ± 6 45 ± 7 
Manganese 1.4 ± 0.2 0.9 ± 0.1 0.7 ± 0.2 0.6 ± 0.1 
Iron 193 ± 37 253 ±8 51 ± 10 52 ± 8 
Copper 4.4 ± 0.6 6.1 ± 0.4 2.0 ± 0.4 1.8 ± 0.3 
Zinc 29 ± 3 57 ± 3 8 ± 2 9 ± 1 

Data are results = ± SEM given in µg/gram tissue (n= 5 to 10) 

Table 4.1: Total Metal Content in Organs 
Reprinted from Infection and Immunity, 91, 9 “MntABC and MntH contribute to systemic Staphylococcus 
aureus infection by competing with calprotectin for nutrient manganese.” Kehl-fie, Zhang, Moore et al. 
2013 with permission from The American Society for Microbiology.135 
 
 
 
Previous LA-ICP-IMS experiments had focused on lesions in the liver. The data presented in 

Figure 4.1 showed that liver lesions might not be comparable to those in the kidney, since the total 

metal content varied so greatly. To address this, LA-ICP-IMS was used in addition to MALDI 

IMS to measure both proteins and metals at sites of infection. The distribution of metal and protein 

was measured in both wildtype C57CL/6 and CPKO mice in animals uninfected and infected with 

strain Newman S. aureus. Figure 4.2 shows data from this analysis. 
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Figure 4.1: Manganese and Zinc Levels in Infected Organs 
“Total tissue Mn and Zn levels vary by organ and are influenced by infection. To assess the impact 
of infection on bulk metal availability, 9-week-old C57BL/6 mice were infected with wild-type S. 
aureus or mock-infected with PBS. Following 4 days of infection, livers and kidneys were 
harvested, and total Mn (A) and Zn (B) content was assessed by inductively coupled plasma mass 
spectrometry. *, P = 0.05 via one-way ANOVA with Bonferroni's posttest. Error bars indicate 
SEM (n = 5 to 10)” Reprinted from Infection and Immunity, 91, 9 “MntABC and MntH contribute 
to systemic Staphylococcus aureus infection by competing with calprotectin for nutrient 
manganese.” Kehl-fie, Zhang, Moore et al. 2013 with permission from The American Society for 
Microbiology.135 

 
 
 
 
 

 In Figure 4.2 A, hematoxylin and eosin stains of serial sections are shown for orientation. 

Staphylococcal lesions are the darker staining areas within infected tissues. Figure 4.2B shows 
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selected MALDI IMS data acquired at 100 micron spatial resolution. The ions representing 

S100A8 and S100A9 are shown to co-localized in the WT infected lesions, but are absent in the 

CPKO lesions. Figure 4.2 C highlights the LA-ICP-IMS data on serial tissue section. In both WT 

and CPKO lesions, calcium is increased, consistent with the recruitment of immune cells. A slight 

increase in calcium is also detected in bulk analysis, but the IMS data reveals that this slight 

increase is spatially localized to infectious foci. Manganese and zinc levels were largely unchanged 

in the kidney (Figure 4.1.) Interestingly, Figure 4.2C shows that both the WT and CPKO lesions 

are depleted of manganese. This suggests that there might be compensatory mechanisms or 

mechanisms other than calprotectin responsible for removing this nutrient from infectious foci. 

Figure 4.2C also suggests WT lesions have reduced zinc while the CPKO lesions appear to have 

an increase in zinc. This demonstrates that although there are relatively low zinc and manganese 

levels in the bulk analysis of the kidney (Table 4.1) their spatial distribution is remarkable changed 

upon infection. Such studies highlight the necessity of metal-protein co-localization analyses to 

study nutritional immunity; it is clear that the vertebrate host is sequestering metals in response to 

infection. However, this analysis considers only one plane of a kidney. To fully define how metal 

and protein interact throughout lesions in a kidney, and how they interact with bacteria, more in 

depth analysis is necessary. 
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Figure 4.2: IMS Reveals Localization Changes of Metals and Proteins in Infection 
In tissues with relatively low basal levels of Mn and Zn, access to these metals is further restricted 
during infection. To assess the distribution of Mn and Zn within the kidney during infection, 
C57BL/6 or CP-deficient (S100A9−/−) mice were infected with wild-type S. aureus or mock-
infected with PBS. Following 4 days of infection, the tissues were harvested and analyzed by H&E 
staining (A), MALDI IMS for CP distribution (B), and LA-ICP-MS for calcium, manganese, and 
zinc distribution (C). (B) Scale represents percent maximal ion intensity. To assess the distribution 
of S100A8, a mass of 10,165 Da was mapped. For S100A9, a mass of 12,999 Da was mapped, 
which corresponds to S100A9 in complex with a sodium ion. (C) Scale represents absolute ion 
intensity for the indicated metal. Images are representative of two independent experiments. )” 
Reprinted from Infection and Immunity, 91, 9 “MntABC and MntH contribute to systemic 
Staphylococcus aureus infection by competing with calprotectin for nutrient manganese.” Kehl-
fie, Zhang, Moore et al. 2013 with permission from The American Society for Microbiology.135 
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Figure 4.3: IMS Spatial Resolution and Staphylococcal Communities 
Spatial resolution is important in MALDI IMS to define anatomical features of interest. A) An 
H&E stain of a staphylococcal abscess in a mouse kidney. The inset shows the anatomy of the 
abscess, with staphylococcal colonies residing in the center. B-E) Serial sections of the mouse 
kidney analyzed at increasing spatial resolutions. B, C, D, and E were interrogated at 200, 150, 
100, and 50 µm spatial resolution. A signal co-localizing with the bacterial colony is displayed in 
yellow. At increasing spatial resolution, it is much easier to distinguish this signal from 
surrounding host tissues. Reprinted from Proceedings of the NATO Advanced Study Institute in 
Rapid Threat Detection, 2017, Imaging Infection, with permission from Springer Publishing 
Company.3 

 

 

High Spatial Resolution MALDI IMS reveals Bacterial Signals 

 Early studies of infection were at relatively low spatial resolution, typical around 200-250 

microns between each spectrum. When considering staphylococcal microcommunities within 

lesions, this sampling capability was only able to detect signals associated with host immune 
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response and not from the pathogen. Therefore, recent efforts both in sample preparation and in 

instrument development have focused on making higher spatial resolution analyses a capability. 

Figure 4.3 shows how anatomical features of a staphylococcal lesion are defined with increasing 

spatial resolution. Figure 4.3A shows a hematoxylin and eosin stain of a mouse kidney infected 

with S. aureus. The green box shows a magnification of a lesion. At the center of the lesion is the 

staphylococcal community, which is annotated with a yellow arrow. Four serial sections of this 

kidney were analyzed at increasing spatial resolutions: 200, 150, 100, and 50 microns. As the 

spatial resolution increases, signals marking anatomical features, such an aggregated neutrophils, 

blood vessels, and even staphylococcal communities can be distinguished with molecular data. At 

50-100 micron spatial resolution, signals co-localizing to staphylococcal communities within the 

center of abscesses can be determined. MALDI IMS experiments can be performed at very high 

spatial resolution. Figure 4.4 features a staphylococcal abscess analyzed at 10 micron spatial 

resolution. A cartoon schematic of cell types and a hematoxylin and eosin stain of the section post 

analysis are shown in Figure 4.4A. Figure 4.4B highlights the quality of the MALDI IMS data at 

such high spatial resolutions. Here signals belonging to bacterial colonies can be clearly 

differentiated, as well as signals marking heterogeneities within the actual bacterial colony. For 

example, an ion at m/z 5522 is co-localized with the bacteria, while m/z 6422 is localized in the 

necrotic area immediately surrounding the colonies. This type of spatial resolution allows us to 

clearly isolate and differentiate the pathogen-host interaction by detecting signals from both 

pathogen and host, and could provide novel information about microbial pathogenesis.  
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Figure 4.4: High Spatial Resolution IMS Reveals Heterogeneities within Staphylococcal 
Communities 

MALDI IMS was performed on a staphylococcal abscess at 10 micron spatial resolution. H&E 
staining of the tissue post MALDI IMS analysis is shown in A. A simplified schematic of the 
histology of the staphylococcal lesion is also shown. B shows data from IMS at 10 microns. An 
ion at m/z 2,795 marks aggregated neutrophils and is shown in blue while an ion at m/z 4,937 
marks surrounding host epithelial tissue and is shown in red. Of great interest are the ion at m/z 
6,422 (pink) and m/z 5,522 (green). Both of these ions are co-localized within the center of the 
abscess, but have different spatial distributions. The green ion seems to directly co-localize with 
the colony while the pink ion is in the region directly outside of the colony. 
 
 
 

 
Though high spatial resolution IMS experiments provide novel molecular information 

about pathogen-host interaction, there is a trade-off for such analyses. First, they tend to be large 

data sets, making file storage cumbersome and expensive. Second, they are time consuming, 

requiring large amounts of instrumental time for data acquisition. These considerations make high 
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spatial resolution analyses not feasible for 3D analysis of abscess lesions. In order to characterize 

a kidney abscess in 3D, analyses were performed at 50 micron spatial resolution. 

 

 

 

Figure 4.5: Bioluminescent Imaging Reveals Metal-Starved Bacteria within Host 
Bioluminescent Analyses of a mouse shows regions of bacterial colonization that are experiencing 
metal starvation. A) shows the mouse within IVIS being analyzed. After sacrifice, the 
bioluminescent data was overlaid with blockface images taken during sectioning. B shows gross 
morphology of the mouse during sectioning with kidneys circled in red and abscessed regions 
shown with yellow arrows. C shows four different planes of the analysis throughout sectioning the 
mouse, 1, 40, 77, and 201. Abscesses appear as white circular foci on internal organs. In some 
cases, like section 40, all abscesses within the plan have signal. In others, such as plane 77 and 
201, only certain lesions have signal. 
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3D Bioluminescent Analysis Determines Iron Starvation of S. aureus within Lesions 

 To determine how metals and proteins change throughout organ systems, we established a 

model to perform analysis of biomolecules in 3D. Iron is one of the most studied metals in the 

field of nutritional immunity. Iron withholding is therefore an ideal system to probe iron starvation 

of bacteria within host. If staphylococcal lesions are heterogeneous within an organ system, we 

would expect varying levels of iron starvation throughout the organ. In order to test this hypothesis, 

mice were intravenously infected with a strain of S. aureus (Newman pisdI.Xen1) containing an 

iron-responsive luminescent construct, in which the promoter of the iron-regulated surface 

determinant gene isdI is fused to a luxABCDE operon. When these bacteria are iron-starved, we 

expect that they will luminesce. Previous studies revealed that this promoter is active in vivo in 

response to iron limitation 158. The infection was allowed to progress for 96 hours (4 dpi) at which 

time the mice were anesthetized and subjected to bioluminescent imaging (BLI) using an IVIS 200 

platform. Figure 4.5 shows data collected from BLI experiments. Figure 4.5A shows the BLI from 

the animal chosen for 3D imaging analysis. Recorded foci of light production are recorded 

throughout the mouse, consistent with a disseminated sepsis infection. The bacteria causing this 

light production are under iron starvation. This mouse was subjected to further 3D BLI to more 

accurately determine the origin of the luminescent signal. This allowed for better registration 

throughout the 3D volume by clarifying the location of bacteria undergoing iron starvation, as well 

as the extent of the foci exhibiting bioluminescent signal. Figure 4.5B shows a blockface image 

obtained during sectioning with the kidneys annotated in red and the abscesses annotated with 

yellow arrows. Figure 4.5C shows four blockface images from different depths of the 3D volume. 

These were taken at sections 1, 40, 77, and 201. Staphylococcal lesions appear as small white 

circular structures in the blockface images. When overlaid with BLI, it is apparent that not all 
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abscesses are experiencing comparable iron starvation. Since bacteria express metal acquisition 

systems to combat host-imposed nutritional immunity, it is reasonable to assume that not all 

bacteria residing within lesions will be iron-starved and therefore would not express signal 

detectable using BLI. Alternatively, the lack of light production in tissue abscesses may result from 

insufficient bacterial burdens in a single abscess, reflecting the absence of suitable numbers of 

bacteria to reach the detection threshold for bioluminescent imaging.  

 

 

Figure 4.6: Histological Analysis Reveals Lesions without Bioluminescent Signal Contain 
Bacteria 

To ensure that lesions lacking bioluminescent signal were not void of bacteria, histological 
analysis was performed. Two planes of analysis are shown above: section 77 in A and section 198 
in B. Section 77 represents a lesion where bacteria are visibly present via microscopic analysis but 
do not seem to be iron starved. Section 198 features a lesion with bacteria in the plane that has 
signal in bioluminescence analysis, suggesting that this lesion is iron starved. 
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Magnetic Resonance Imaging, Iterative Blockface Imaging, and Histological Staining Define 

Tissue Architecture 

To study each lesion individually required further definition of the tissue architecture to 

determine how lesions were distributed throughout the 3D volume. To facilitate high-resolution 

MRI and other downstream applications, the mouse was secured to a rigid restraint device prior to 

BLI. Immediately after BLI, MRI was performed using a Varian 9.4T horizontal bore imaging 

system and included the portion of the mouse encompassing the kidneys, a site of maximal 

pathology in the S. aureus disseminated infection model.121 BLI data was manually co-registered 

with MRI data using an iterative closest point algorithm.159 The coordinated imaging data set 

revealed the presence of multiple kidney abscesses. Previous studies have shown that S. aureus 

exists as a microcolony or “staphylococcal abscess community” in mature tissue abscesses.63 

However, such small bacterial structures are not visible on MRI, necessitating additional analyses 

to pinpoint the bacterial niche. Further high resolution analysis of tissue might also delineate the 

source of bioluminescent heterogeneity in tissue abscesses. 

At the completion of MRI, the infected mouse was euthanized and carefully flash-frozen 

in liquid nitrogen, minimizing movement from the initial imaging position. The middle third of 

the frozen mouse was then transversely sectioned at 30 μm increments to include both kidneys in 

their entirety. Adjacent sections were digitally imaged, and then utilized alternatively for 

hematoxylin and eosin (H&E) staining or downstream imaging analyses. Digital blockface 

imaging of adjacent sections was archived as a volume and then manually co-registered to the BLI 

data set. To determine if this heterogeneity in BLI signal was due to fluctuating metal availability 

or the absence of bacteria, adjacent tissue sections were stained with H&E and scanned at high 

resolution. Staphylococcal microcolonies could be visualized in many abscesses throughout the 
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infected kidneys, including those without bioluminescent signal. Figure 4.6 shows histological 

stains adjacent to BLI data. Figure 4.6A was taken from section number 77. The dotted box 

surrounds a lesion that was optically analyzed at higher magnification. The dark purple regions in 

the center of the lesion are staphylococcal microcolonies. When compared to the BLI imaging on 

the far right, it is apparent that there is no luminescence from these bacteria. Figure 4.6B provides 

another example of aligning histological data with BLI data, taken from section 198. Here, the 

lesion highlighted with dotted boxes is shown at 10x magnification and contains bacteria. The 

panel at the far right shows robust signal from BLI, further strengthening the idea that certain 

bacteria within lesions are experiencing different levels of metal starvation. It is interesting to note 

that both of these lesions have similar histopathological appearance, defining the need for 

advanced imaging modalities to study nutritional immunity. This showcases the power of co-

registered volumes of BLI, MRI, and blockface imaging data but also highlights the need for more 

molecular information for the analysis of bacterial stress responses.  

 

Staphylococcal Lesions are Molecularly Defined by MALDI IMS 

The creation of a 3D volume of MRI and blockface data provides a framework onto which 

additional imaging modalities may be co-registered. Because the BLI analyses revealed 

heterogeneity in staphylococcal communities throughout the organ system despite histological 

similarity, it was clear that additional molecular information was needed to more fully study 

abscess formation and bacterial proliferation. In order to analyze both host and bacterial proteins 

involved in the pathogen-host interaction, MALDI IMS analyses were performed at 50 micron 

lateral spatial resolution every 150 microns throughout the sections encompassing the kidney. 

These analyses intended to define host proteins that respond to pathogens and potentially isolate 
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staphylococcal proteins marking lesions. Figure 4.7 highlights the ability of MALDI IMS to 

differentiate different tissues within a section of mouse. Figure 4.7A represents the nearest H& E, 

taken from section 77. Figure 4.7B shows MALDI IMS data analyzed using a 15T SolariX MALDI 

FTICR MS. A composite image of several ions is shown. The ion at m/z 3,006.646 is displayed in 

yellow, and co-localizes with bacterial colonies. Surrounding these bacterial signals is m/z 

5082.547, the ion representing S100A8 (2+,) displayed in pink. This ion is co-localized with 

aggregated neutrophils and surrounds the signal representing the bacterial colonies. The ion at m/z 

3,454.771 is shown in teal and marks the medulla of the two kidneys in the plane of analyses. The 

ion displayed in green, m/z 4,116.946 is marking the intestinal tract while m/z 5,921.093 marks 

liver. Finally, displayed in dark blue is m/z 5,653.720, an ion belonging to Histone H4 (2+), which 

is detected throughout the mouse tissues.  
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Figure 4.7 MALDI IMS Molecularly Defines Tissue Architecture 
A section serial to that used in the 3D analysis was analyzed for high mass resolution MALDI IMS 
to aid in the identification of analytes. A shows the nearest H&E for the analysis. Both kidneys, 
liver, and some intestines are present in this analysis. B shows an overlay of several ions to recreate 
the tissue morphology with molecular data. Individual ions and their m/z values are shown to the 
right. C shows the overall averaged spectrum from the analysis, highlighting the robust nature of 
these data and the number of analytes identified in this analysis.  
 

 

Identification of Bacterial Signals from MALDI IMS Experiments 

In addition to the signals at m/z 3,006, a signal at m/z 6,888 also seemed to exhibit a 

localization pattern consistent with staphylococcal microcolonies. Because of these strong co-

localization patterns and the possibility that these ions could represent microbial proteins, protein 

identification was necessary. In order to enhance these signals for extraction and downstream 
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MS/MS sequencing, tissues from additional mice were used for protein purification. Infection of 

additional mice was allowed to progress for 9 dpi in order to generate larger abscesses. 

Microextraction techniques directly from visible staphylococcal abscess communities paired with 

top-down proteomics yielded the identification of m/z 6,888 as NWMN_0783, a CsbD-like 

superfamily protein. Figure 4.8 shows the data supporting this identification. The full scan is 

shown in Figure 4.8A, with the charge state selected for MS/MS analysis annotated in red. The 

+10 charge state at m/z 689.6499 was selected for ETD fragmentation, with MS/MS data shown 

in Figure 4.8B. This data was manually de novo sequenced and searched against the 

Staphylococcus aureus strain Newman Uniprot database. Sequence coverage is notated in Figure 

4.8B, with MS/MS data representing 89% coverage of the protein. To confirm this finding, the 

infection was repeated using a strain of S. aureus with NWMN_0783 knocked out. This strain of 

bacteria still formed abscessed with staphylococcal abscess communities visible by microscopy. 

Figure 4.9 shows these data. A lesion caused by S. aureus strain Newman is shown in Figure 4.9A 

while a lesion caused by strain Newman Δ NWMN_0783 is shown in Figure 4.9B. The robust 

signal at m/z 6,888 shown in Figure 4.9A is absent in the lesion caused by the knock-out strain, 

further reinforcing this identification. The role of NWMN_0783 in staphylococcal physiology is 

unknown, but CsbD-like proteins have been proposed to have roles in stress responses and metal 

starvation.160, 161 
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Figure 4.8: Top down Identification of NWMN_0783 
ETD LC-MS/MS data for NWMN_0783.  The charge state distribution is shown in A) with the 
specific charge state selected for MS/MS highlighted in red.  ETD fragmentation data is shown in 
B) including selected c (red) and z (blue) ion annotations.  A summary of the observed fragments 
and sequence coverage is included. 
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Figure 4.9: Infection with a knock-out strain of S. aureus confirms the Identification 
To confirm the identity of m/z 6,888 as NWMN_0783, an infection was repeated with both strain 
Newman S. aureus (A) and strain Newman Δ NWMN_0783. Staphylococcal colonies are present 
in both sections and are annotated with orange lines. The signal at m/z 6,888 is present in strain 
Newman (B) but absent in the knock-out strain, further confirming this identification. 
 
 
 

Identification of the signal at m/z 3,006 proved more challenging, as it was not successfully 

sequenced using top-down proteomics approaches. In order to identify this species of interest, the 

small protein was extensively purified using offline HPLC and a fraction collector. Fractions were 

analyzed using MALDI MS to determine where the protein of interest eluted. Top-down analysis 

of the purified protein was also unsuccessful. In order to have more material to work with, S. 

aureus was cultured to stationary phase under moderately hypoxic conditions. These bacteria also 

robustly expressed the signal of interest at m/z 3,006. Figure 4.10 shows the purification of this 

analyte of interest. Figure 4.10A shows an intact cell MALDI mass spectrum taken from an S. 
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aureus pellet. Figure 4.10B shows a mass spectrum from the same sample after proteins were 

extracted and purified using HPLC with offline fraction collection. Figure 4.10C is a mass 

spectrum taken from a protein extract from mouse kidney sacrificed at 9 dpi after being 

fractionated using the same HPLC method. Both 4.10 B and C shared the same retention time, 

strengthening the hypothesis that this protein was bacterial. In order to sequence this small protein, 

a tryptic digestion was attempted to further simplify the protein and increase the chances of 

identification by peptide sequencing. This proved to be effective, and m/z 3,006 was identified as 

NWMN_2624 encoding for the virulence factor delta hemolysin. Figure 4.11 shows MS/MS 

sequence data for the peptide WIIDTVNK. A targeted MS/MS analysis was used to include a scan 

of m/z 497.77, which represented the [M+2H]2+ ion of this particular tryptic peptide and to increase 

the likelihood of strong fragmentation data. Figure 4.11A shows the MS/MS spectrum purified 

from S. aureus pellet while Figure 4.11B shows the MS/MS spectrum purified from 9 dpi mouse 

kidney. The sequence for delta hemolysin is shown, with the peptide of interest annotated in red.  

Delta hemolysin is a well-characterized and broadly conserved virulence factor in S. 

aureus.162 A member of the phenol-soluble modulin class of secreted toxins in S. aureus, delta 

hemolysin is an amphipathic peptide capable of lysing host cells and contributing to mortality 

during experimental septicemia.163, 164 Collectively, these data reveal the power of MALDI IMS, 

when part of a multi-modality imaging platform, to identify host and bacterial proteins involved 

in the pathogenesis of invasive infection. Additionally, by identifying bacterial proteins that mark 

the infectious niche during invasive infection, this imaging platform provides a potential 

mechanism for the label and culture-free diagnosis of S. aureus infection in pathologic specimens. 
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Figure 4:10 Purification of m/z 3,006 
The target at m/z 3,006 required extensive purification for successful identification. To attempt 
this, S. aureus was cultured to stationary phase under moderately hypoxic conditions. Whole cell 
MALDI MS analysis of the cell pellet revealed the target of interest, shown in A. Both a protein 
extract from this S. aureus pellet and from a mouse extract at 9 days post infection were purified 
using HPLC with offline fraction collection and the analyte of interest was discover at the same 
retention time from both the S. aureus pellet (B) and kidney extract (C). 
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Figure 4.11: Identification of m/z 3006 as Delta Hemolysin 
Purified protein from Figure 4.10 was subjected to tryptic digestion and MS/MS sequencing at the 
peptide level. This identified the protein of interest as delta hemolysin. A) shows the MS/MS of 
the peptide from S. aureus pellet while B) shows the MS/MS from mouse kidney. The signals are 
the same, confirming the identity as delta hemolysin. The sequence of the peptide is shown in red 
from the overall sequence.  
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Figure 4.12: Co-registration of MALDI IMS data with Blockface and MRI Data 
Co-registration of the MALDI IMS ion intensity maps of m/z 10,164, representing the S100A8 
subunit of calprotectin, to either blockface (A) or MRI (B) data. 
 

 

Integration of MALDI IMS and LA-ICP-IMS Characterizes Metal and Protein Distributions 

Associated with Infection 

Because the 3D volume of MRI and blockface data provides a framework onto which 

additional imaging modalities may be co-registered, MALDI IMS and LA-ICP-IMS data can be 

overlaid to explore changes in distribution in 3D. Figure 4.12 highlights this ability by showing 

the co-registration of the MALDI IMS ion intensity maps of m/z 10,164, representing the S100A8 

subunit of calprotectin, to either blockface (Figure 4.12A) or MRI (Figure 4.12B) data. Signal for 

S100A8 directly co-localized with abscesses, showing the robust nature of MALDI IMS to 

molecularly represent anatomical features. Figure 4.13 represents these data in the 3D volume, 

where images in Figure 4.13 sequentially step through the entirety of the kidney and show these 
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data in 3D space. Figure 4.14 overlays the MALDI IMS data for the two bacterial proteins, CsbD 

and Hld, onto two blockface images serial to H&E sections contain bacterial colonies. Section 157 

(Figure 4.14A) and section 220 (Figure 4.14B) both show strong co-localization of MALDI IMS 

data with bacterial colonies. Co-registration of both MRI and blockface imaging with MALDI-

IMS revealed bacterial and vertebrate proteins associated with the host-pathogen interface. 

 

 

 
 

Figure 4.13: Registration of MALDI IMS data creates 3D Ion Maps of S100A8 
Co-registration of MALDI IMS data to MRI and blockface images is continued throughout the 
entirety of the collected data. This allows for MALDI IMS data to be presented in 3D. Eight stills 
selected from throughout the 3D volume are shown above with blue signal representing the signal 
for S100A8. 
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Figure 4.14: Bacterial Proteins Overlaid with Blockface Volume 
The two signals identified as bacterial proteins were co-registered to this 3D volume. Presented 
here are two sections, 157 (A) and 220 (B). Microbial colonies were detected in each of these 
sections by histological staining. This presents strong co-localization of both the signal for CsbD 
and Hld with bacterial colonies. 
 
 

This approach was also used to more globally define shifts in elemental availability during 

invasive staphylococcal infection using LA-ICP-IMS. LA-ICP-IMS is capable of determining the 

relative abundance and spatial distribution of elements in a two-dimensional tissue sections. LA-

ICP-IMS was performed at 100 micron lateral resolution every 150 microns throughout the mouse 

to create a three-dimensional volume of elemental abundance and distribution throughout an entire 

kidney for inclusion in our multi-modality platform. Tissue distribution of calcium, phosphorous, 

manganese, zinc, magnesium, copper, and iron were determined in this manner, and the resultant 

elemental maps were co-registered to MRI and blockface volumes, as well as to the MALDI IMS 
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data set. Figure 4.15 provides an example of elemental IMS data co-registered to a single blockface 

image, section 224. Tissue abscesses were determined to be rich in calcium and relatively devoid 

of manganese, iron, and zinc. Copper was also largely excluded from tissue abscesses. Magnesium 

and phosphorus, on the other hand, were present in abscessed tissues. This data can be compared 

to the BLI data, where S. aureus bioluminescent signal is indicative of iron starvation. LA-ICP-

IMS confirmed that bacterial iron starvation signals corresponded to areas relatively devoid of 

iron. 

 

 

Figure 4.15: LA-ICP-IMS data are Registered to the 3D Volume 
Generated metal IMS data can be co-registered to this 3D volume. One section, 224, is shown as 
an example. Bioluminescence data from this section is shown in the lower right corner to highlight 
the power of this analysis for comparing BLI to elemental iron analysis. 
 
 

Co-registration of MALDI IMS and LA-ICP-IMS further characterizes factors involved in 

nutritional immunity and the host-pathogen interface by revealing protein signals that are spatially 

associated with nutrient metal distribution. Figure 4.16 shows MALDI IMS data for m/z 10,164, 

representing the subunit S100A8 of the protein calprotectin, a known calcium-binding protein. 
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Figure 4.16A shows co-localization with calcium throughout four sections of tissue, sections 61, 

122, 205, and 227. Calprotectin generally co-localized with calcium throughout the infected organ. 

Calprotectin signal was inversely localized with manganese and zinc, Figure 4.16 B and C. This 

supports the idea that calprotectin has a role in chelation and removing these metals from infectious 

foci.  
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Figure 4.16: S100A8 signal is co-registered to Ca, Mn, and Zn 
Calprotectin is known to bind calcium, manganese, and zinc. To explore this, MALDI IMS data 
for S100A8 was co-registered to calcium (A,) manganese (B,) and zinc (C.) S100A8 is displayed 
in orange while metals are shown in blue. Data from four sections selected from the 3D volume is 
displayed here. There were sections 61, 122, 205, and 227. 
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Figure 4.17: 3D Volume of S100A8 and Delta Hemolysin 
To study the interaction of pathogen and host, a 3D volume was created that overlaid both S100A8, 
a robust marker of host neutrophils, and the newly identified signal for delta hemolysin, a known 
S. aureus virulence factor. Stills from two representative sections are shown: section 67 (A) and 
section 156 (B.) The panels display signal from S100A8 and delta hemolysin individually and then 
overlaid in the third panel. S100A8 is displayed in green while delta hemolysin is yellow. Insets 
show magnification of these signals. Panel C shows these ions displayed in the entire 3D volume, 
which highlights spheres of calprotectin signal with hollow centers that are occupied by delta 
hemolysin signal. 
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When comparing calprotectin signal with the identified bacterial signals, shown in Figure 

4.17, there is a general lack of calprotectin signal in the center of the abscess, where the 

staphylococcal communities are residing. Figure 4.17 A and B provide two examples of this in 

two sections, 67 and 156, respectively. The phenomenon is also recapitulated throughout the entire 

3D volume, shown in Figure 4.17C. Additionally, this phenomenon can explored over time, 

throughout a time course of bacterial infection, and is shown in Figure 4.18. Delta hemolysin is 

detectible as early as 3 dpi, when staphylococcal lesions are formed. The mutual exclusion of 

bacterial and calprotectin protein signals may suggest mechanisms of calprotectin degradation or 

exclusion in the staphylococcal microcolony in vivo, providing a partial explanation for how 

bacteria persist in the presence of a host protein that severely limits bacterial growth in vitro.  

Alternatively, additional high mass resolution IMS experiments on late-stage lesions in a time 

course of infection reveal a number of signals similar to the m/z observed for delta hemolysin, 

shown in Figure 4.18 C-F. Continuing with the themes explored in Chapter III, it is possible that 

these m/z values represent post translationally modified forms of the protein. If true, this could 

help visualize not only bacterial degradation of host proteins, but also host-imposed oxidation of 

bacterial toxin. Whether or not such PTMs and oxidative modification affect the virulence and 

toxicity of delta hemolysin remains unstudied, but presents another strong example of how 

MALDI IMS provides unprecedented molecular information about pathogen-host interactions. 
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Figure 4.18: Potential Modifications of Delta Hemolysin 
The m/z 3,006 was identified as delta hemolysin, a staphylococcal virulence factor known to lyse 
host cells. There are several other peaks around this m/z present in high mass resolution analysis. 
Interestingly, some of these m/z shifts are consistent with extensive oxidations (D, +4O, E, 5O,) 
and some with unknown modification (F, +237.) 
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Methods 

 

Bacterial Strains and Infections 

 The S. aureus clinical isolate Newman served as the genetic background for all experiments 

unless otherwise noted.119 Newman pisdI.Xen1 was previously described.158 A Newman csbD 

transposon mutant was created by φ85-mediated transduction of the csbD::erm allele from strain 

NE946, which was obtained from the Network on Antimicrobial Resistance in Staphylococcus 

aureus (NARSA) transposon library at BEI Resources. This csbD mutant strain was used for 

subsequent proteomic analyses (see below). Bacteria were grown in tryptic soy broth (TSB) at 

37°C with 180 rpm shaking. Chloramphenicol was added to the media at a final concentration of 

10 μg/ml where indicated. To prepare inoculae for the disseminated infection model, overnight 

cultures were back-diluted 1:100 and grown for an additional 3 hours, after which time the bacteria 

were harvested by centrifugation and washed in PBS. Washed bacteria were resuspended to a final 

concentration of approximately 5 x 108 colony forming units (CFU) per milliliter, and kept on ice 

until used for retro-orbital injection.  

All experiments involving animals were reviewed and approved by the Institutional Animal 

Care and Use Committee of Vanderbilt University. All experiments were performed according to 

NIH guidelines, the Animal Welfare Act, and U.S. Federal law. Disseminated infection was 

induced in 6-8 week BALB/cJ (imaging) or C57BL6/J (proteomic identification) female mice by 

intravenous injection of S. aureus. Briefly, mice were anesthetized with 2-2-tribromoethanol 

(Avertin) and then subjected to retro-orbital injection of 5x107 CFU of S. aureus in 100 μl PBS. 

Upon recovery from anesthesia, the mice were returned to the animal housing facility and provided 

food and water ad libitum. At 4 days post-infection, the mice were subjected to the imaging 
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procedures below. For proteomic identification of proteins imaged by MALDI IMS, infection was 

allowed to proceed for 9 days. For imaging mass spectrometry-based analysis on individual 

organs, organs were flash-frozen in a slurry of dry ice and technical grade hexanes (Sigma Aldrich, 

St. Louis MO) and then stored at -80˚C. 

 

Total Tissue Elemental Analysis 

Quantitative analysis was performed on a Thermo Element 2 high resolution sector field 

inductively coupled plasma mass spectrometer (Thermo Fisher Scientific, Bremen, Germany). 

Following harvest, the samples were placed in Optima grade nitric acid and sulfuric acid (Sigma 

Aldrich, St. Louis MO), then heated to promote digestion. After digestion, the samples were 

diluted using ultrapure water. The introduction of diluted acid-digested samples were conducted 

by an ESI auto sampler (Elemental Scientific, Omaha, NE) via 0.50 mm ID sample probe and 

sample capillary in self-aspiration mode. The sample capillary was directly connected to a PFA 

microflow nebulizer (Elemental Scientific, Omaha NE) followed by a double channel spray 

chamber (at room temperature). The fine sample aerosol formed in the spray chamber was then 

transported by argon gas to hot plasma for vaporization, atomization, and ionization.  Then all 

analyte ions were filtered and separated by magnetic sector and electric sector for the selected 

element isotopes. Each sample was analyzed 10 times, and the following isotopes were monitored: 

25Mg, 31P, 44Ca, 55Mn, 56Fe, 63Cu, 66Zn. The instrument was operated in medium resolution mode 

with an RF power of 1250 W. Samples gas was set to a flow rate of 0.97 L/min with a  cooling gas 

at a flow rate of 16.00 L/min. Auxiliary gas was set to 0.8 L/min.  

 

 



122 
 

Bioluminescent Imaging 

Bioluminescence imaging was performed using an IVIS 200 optical imaging system 

(PerkinElmer, Waltham, MA). Mice were anesthetized with 2% isoflurane, shaved, secured to a 

rigid restraint device, and placed in the imaging chamber of the IVIS 200 system. Spectral imaging 

was obtained by imaging bacterial luciferase emission through four 20 nm band pass filters at 

wavelengths from 560 to 620 nm. The surface topography of the mouse was generated using a 

structured light image. Tomographic source reconstruction was performed using the Living Image 

Software 3D Analysis software package (PerkinElmer, Waltham, MA). The emission spectrum of 

bacterial luciferase and tissue optical properties of muscle were used for reconstruction. An 

emission lower threshold of 2000 photons/sec was used. Final reconstructed source voxel size was 

2 mm. 

 

Magnetic Resonance Imaging 

Following bioluminescent imaging, mice were maintained under anesthesia in the rigid 

restraint device and carefully transported to the MRI area. Mice were subsequently secured in the 

prone position in a 38-mm inner diameter radiofrequency (RF) coil and placed in a Varian 9.4T 

horizontal bore imaging system (Varian Inc, Palo Alto, CA) for data collection.  Respiration rate 

and internal body temperature were continuously monitored.  A constant body temperature of 37°C 

was maintained using heated airflow. Scout images were collected in all three imaging planes for 

localization of the kidneys, using a gradient echo sequence with repetition time (TR) = 75ms, echo 

time (TE) = 5ms, slice thickness = 2mm, flip angle = 35, and an average of 4 acquisitions. 

Additional parameters include field of view (FOV) = 32mm x 32mm and data matrix = 128 x 128. 
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Following localization of the kidneys, three dimensional multiple gradient echo imaging 

data was acquired with FOV = 25.6mm x 25.6mm x 25.6mm, TR = 40ms, echo spacing = 1.7ms, 

echo train length = 7, flip angle = 25 degrees, data matrix = 128 x 128 x 128, with 4 acquisitions 

per phase encode step, for a total acquisition time of approximately 43 minutes per animal. The 

acquired data were zero padded and reconstructed using Matlab 2014a (The Mathworks, Inc., 

Natick, MA) at 256 x 256 x 256 matrix using an inverse Fourier transform, resulting in a nominal 

isotropic resolution of 100 microns.  Following imaging, the mice were sacrificed with a 5% 

isoflurane overdose, and then submerged for approximately thirty seconds in liquid nitrogen. Care 

was taken to avoid movement of mice within the rigid restraint device. The samples were then 

stored in a -80 C freezer until removed for sectioning, blockface imaging, and MALDI IMS / LA-

ICP-IMS. 

 

Sample Preparation of 3D Mouse 

The frozen mouse body was manually truncated by removing both the head and tail regions 

and leaving an approximately 2-3 inch piece of the torso containing both kidneys. The posterior 

side was affixed to a cryostat chuck with Optimal Cutting Temperature Polymer (Tissue-Tek, 

Sakura Finetek, Torrance, CA). Transverse 30-µm thick sections were acquired throughout the 

length of the kidney using a Leica CM 1900 cryostat (Leica Microsystems, Bannockburn, IL. 

Digital images of the remaining blockface were acquired after every section using a digital camera 

(Canon EOS 60D SLR digital camera, Canon, New York, NY). Sectioning was performed by 

collecting serial tissue sections in batches of 5 onto the following types of slides (in order, labeled 

A through E): A) Gold-coated stainless steel plate for MALDI IMS; B) Glass slide for histological 

analysis; C) Nitric-acid washed poly(L)lysine-coated vinyl slides (Electron Microscopy Sciences, 
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PA) for LA-ICP MS imaging; D) Gold-coated stainless steel plate for MALDI IMS backup; and 

E) Nitric-acid washed poly(L)lysine-coated vinyl for LA-ICP MS imaging backup. This set of 5 

serial tissue sections (A through E) constitutes a single ‘voxel’ in 3D image reconstruction. As the 

tissue was sectioned at 30-µm thickness, a single voxel transverses 150 µm, resulting in a z-

dimension spatial resolution of 150 µm. A total of 240 sections were ultimately collected, or 48 

voxels. For the MALDI analyses, two sections were collected onto a single gold plate (i.e., voxel 

1, section A and voxel 2, section A were collected together). 

Sections obtained for MALDI analysis (A and D) were thaw-mounted on gold-coated 

stainless steel MALDI target plates for 30 sec.  All plates for MALDI IMS analyses were washed 

to remove interfering lipids and salts as previously described.30, 120 Briefly, sections were 

sequentially washed in 70% ethanol for 30 sec; 100% ethanol for 30 sec; Carnoy’s fluid (60% 

ethanol, 30% chloroform, and 10% acetic acid) for 2 min; 100% ethanol for 30 sec; water for 30 

sec; and 100% ethanol for 30 sec. The plates were allowed to dry in a fume hood before being 

placed in Petri dishes, flooded with nitrogen gas, sealed, and placed in a -80°C freezer until 

analysis.   

The slides for histological analysis (B) were stained with hematoxylin and eosin.  Optical 

images of stained sections were obtained at 20x magnification using a Leica SCN400 Brightfield 

Slide Scanner (Leica Microsystems, Bannockburn, IL). 

Sections obtained for LA-ICP MS analysis (C and E) were thaw-mounted onto nitric-acid 

washed poly(L)lysine-coated vinyl slides as previously described. 29, 135, 165 Slides were placed in 

a slide box and stored at -80°C until analysis.   
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MALDI IMS of Single Organs 

Serial sections denoted for MALDI IMS were washed to remove excess lipids and salts. 

Slides were sequentially washed in 70% ethanol for 30 seconds, 100% ethanol for 30 seconds, 

Carnoy’s fluid (6:3:1 ethanol: chloroform: acetic acid) for 2 minutes, 100% ethanol for 30 seconds, 

0.2% trifluoracetic acid (TFA) for 30 seconds, and 100% ethanol for 30 seconds. Slides were 

allowed to dry before matrix was applied. For the matrix in Figure 4.2, a 5 mg/ml solution of 

sinapinic acid matrix was prepared in 60% acetonitrile with 0.1% TFA and sonicated for 5 minutes 

to ensure that the matrix was completely dissolved. Matrix was applied using a TM-Sprayer (HTX 

Imaging, Carrboro, NC) heated to 90°C in 8 passes at a rate of 1050 mm/minute with a 2 mm 

spacing. The spray pattern was spatially alternated at a 90° angle and offset by 1 mm to ensure 

uniform sample coverage. After matrix application, samples were rehydrated at 85°C in an oven 

(Thermolyne Oven Series 1297, Dubuque, IA). Samples were fixed to the lid of a petri dish using 

conductive tape and preheated in the oven for 2 minutes. Following this, 1 ml of water and 100 µL 

of acetic acid were pipetted onto filter paper in the petri dish bottom. The petri dish was 

reassembled to form a rehydration chamber and was heated at 85°C for an additional 3.5 minutes. 

The rehydrated slide was allowed to dry at room temperature before analysis. Trifluoracetic acid 

(TFA) and sinapinic acid were purchased from Sigma-Aldrich (St. Louis, MO). HPLC-grade 

acetonitrile, ethanol, chloroform, glacial acetic acid, and technical grade hexanes were purchased 

from Fisher Scientific (Pittsburgh, PA, USA).  

For Figures 4.3 and 4.4, 2,6-dihydroxyacetophenone (DHA) was used as a matrix and 

applied via sublimation similarly to previously described.120 Briefly, a sand bath was heated to 

105°C. DHA was placed in the bottom of the sublimation apparatus and samples were suspended 

above the matrix by taping them to a cold finger. The chamber was evacuated to 50 mTorr and the 
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sublimation was allowed to occur for 5 minutes. Samples were rehydrated before analysis using a 

protocol similar to above, only using 1 mL of 50% acetic acid as the rehydration solvent. 

Rehydration was carried out at 37°C for 3.5 minutes. 

Following rehydration, the tissue was analyzed using a Bruker AutofleX Speed TOF(/TOF) 

mass spectrometer (Bruker Daltonics, Billerica, MA, USA) equipped with a Gaussian beam profile 

laser (Nd:YAG, 355 nm) in linear positive–ion mode at 75 μm spatial resolution. One hundred 

laser shots were collected at each position in a random walk pattern in 25 shot step increments, 

with a laser repetition rate of 1000 Hz. Extraction and acceleration voltages were 19.5 kV and 18.0 

kV, respectively, with a delayed extraction time of 340 ns and a lens voltage of 7.5 kV. The 

measured mass range was from m/z 3,000-30,000, with a deflection mass of 3,000. Images were 

viewed using flexImaging 3.0 Software (Bruker Daltonics) and were normalized to total ion 

current. Ion density maps were extracted and scaling, relative to total ion current, was constant for 

each ion of interest.  

 

3D MALDI IMS 

Plates for MALDI IMS were removed from the -80°C freezer and allowed to warm up to room 

temperature for 30 min prior to opening the sealed Petri dish in order to minimize water 

condensation on the samples.  After warming, digital images of each plate were acquired on a 

desktop scanner at 2400 dpi.  2,5-dihydroxyacetophenone (DHA) MALDI matrix was prepared at 

a concentration of 15 mg/mL in 90% acetonitrile with 0.2% trifluoroacetic acid. Matrix was 

applied to the plate robotically using a TM Sprayer (HTX Technologies, Carrboro, NC, USA.) The 

sprayer was operated at a flow rate of 0.2 mL/min with a 10-psi nitrogen flow gas and a nozzle 

temperature of 85°C. Samples were sprayed at a velocity of 1100 mm/min and a track spacing of 
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2 mm. Six total spray passes were applied to sections, rotating and offsetting every other pass by 

1 mm to ensure even coverage of matrix. Just prior to MS analysis, the plates were rehydrated by 

first heating the plate to 37°C in a lab oven for 2 min, followed by 3 min at 37°C in a Petri dish 

with 1 ml of 50 mM acetic acid. 2, 120 

 Sections for 3D analysis were analyzed on a MALDI TOF MS (SimulTOF 200 Combo, 

SimulTOF Systems, Sudbery, MA) in positive ion linear mode. This system is equipped with a 

349 nm, diode-pumped, frequency-tripled Nd:YLF laser (Spectra-Physics, Santa Clara, CA). Ion 

images were acquired in typewriter mode (i.e., acquisition in one lateral direction only) using 

continuous raster sampling at a 50-µm calculated horizontal spatial resolution and a 50-µm vertical 

step. 17, 166 For most sections, only a region encompassing the kidney was analyzed. Sections were 

analyzed using 2000-kHz laser repetition rate, 2-mm/s stage speed, and 50 hardware averages for 

a 40-Hz digitizer acquisition rate. The effective pixel rate is slightly slower due both to the time 

required to return the stage to the beginning of the next raster line and to a built in delay to flush 

acquired spectra from the acquisition card to the hard disk at the end of each line scan. Over the 

48 plains of analysis, 930,398 pixels were acquired in just 22.2 hours of instrument time (for an 

effective pixel rate of ~11.6 Hz). On more conventional imaging platforms, which are capable of 

1-2 Hz acquisition rates, this same analysis would have required 5-11 days of instrument time. 

Following data acquisition, all spectra were preprocessed for baseline subtraction, intensity 

normalization, and m/z alignment. All 48 individual 2D IMS data sets were concurrently loaded 

into MATLAB to establish a single 3D IMS data set. Each 2D data set consists of spectra that 

contain around 30,000 m/z bins, each describing a range from m/z 600 to 49,000. Given that each 

2D IMS experiment reports its own m/z axis, and subsequent preprocessing algorithms need to 

approach the spectra that were collected over all cutting depths as a single (3D) IMS data set with 
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a single m/z axis, the spectra of all 2D data sets were resampled to a single consensus m/z axis. 

The msresample() function from the Bioinformatics Toolbox of MATLAB (The Mathworks Inc., 

Natick, MA) was used to resample uniformly. To reduce the size and dimensionality of the overall 

data set, this step was also used to down-sample the number of bins per spectrum to 7,944. The 

resampling step ensures that the spectra collected across different 2D experiments can be directly 

compared along the chemical (m/z) domain. To ensure that ion intensity values can be compared 

along the (inter-experiment) z dimension as well as along the (intra-experiment) x and y 

dimensions, all spectra across the different cutting planes were preprocessed as one all-

encompassing data set. Although this induces an increased computational and memory resource 

cost over preprocessing 2D IMS data serially on a plane-by-plane basis, it makes 3D ion volumes 

more robust and less susceptible to cutting plane-to-plane signal variation. The preprocessing steps 

entail normalization, baseline correction, m/z alignment, and peak picking. The spectra were 

normalized using common ion current as a reference, disregarding differential peaks. Baseline 

correction was accomplished using a spline approximation of the baseline at the 0.1-quantile of 

ion intensities per spectrum, employing a window size of 500 and a step size of 250. Furthermore, 

the spectra were aligned along the m/z axis to reduce peak drift, allowing a maximum m/z shift of 

60. These steps were implemented using the msbackadj() function and the msalign() function 

provided by the Bioinformatics Toolbox of MATLAB (MathWorks). The subtraction of the 

baseline estimate can sometimes result in small negative intensity values in non-peak areas of the 

mass spectral profile when the estimate overshoots the true baseline. Such artifacts were removed 

by setting negative ion intensities to zero post-baseline correction. The m/z alignment was driven 

by five reference peaks that were present across the majority of cutting depths: m/z 5,653; 10,164; 

11,306; 14,050; and 14,956. The preprocessing phase was finalized by a feature extraction step 
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that reduces the high-dimensional full profile spectra to distinct peaks, retrieving the corresponding 

peak intensities across all cutting depths. This peak-picking step employs the mspeaks() function 

provided by MATLAB and uses nearest neighbor interpolation to extract peak heights from each 

spectrum.167 

 High mass resolution and accuracy IMS data were collected on a 15T MALDI Fourier 

Transform Ion Cyclotron Resonance (FTICR) MS (Bruker Daltonics, Billerica, MA) from the 

kidney region of a single transverse tissue section (Section 13D). The instrument is equipped with 

an Apollo II dual MALDI/ESI ion source and a Smartbeam II 2kHz Nd:YAG (355nm) laser. Data 

were collected from m/z 900 – 18,000. Special tuning of the Funnel RF amplitude (190 Vpp), 

accumulation hexapole (1.4 MHz, 1200 Vpp), transfer optics (1 MHz, 310 Vpp), time-of-flight 

delay (2.0 ms), and ICR cell (Sweep excitation power: 40%) were required for high m/z analysis. 

Imaging data were collected using the small laser setting (~50 μm) with a pixel spacing of 75 μm 

in both x and y dimensions and 500 laser shots averaged per pixel. External calibration was 

performed prior to analysis using CsI clusters and internally following analysis using a series of 

previously identified proteins. 2, 30 FlexImaging 4.1 (Bruker Daltonics, Billerica, MA, USA) was 

used to visualize ion images. 

 

LA-ICP IMS 

Trace element imaging was performed similarly to previously described.29, 135 Briefly, 

samples were ablated using an LSX-213 laser ablation system (LA, CETAC, Omaha, NE USA) 

and analyzed using a coupled Element 2 high resolution sector field ICP-MS (Thermo Fisher 

Scientific, Bremen, Germany). Vinyl slides were placed into a sealed ablation chamber and were 

ablated in multi-line mode (line by line) at a rate of 30 µm/s using a focused Nd:YAG laser beam 



130 
 

(213 nm). The laser had a spot size of 100 µM with a laser shot frequency of 5 Hz.  For most 

sections, only the region encompassing the target kidney was ablated. Helium gas was used to 

assist in laser ablation of the sample, and ablated sample particles were introduced online into the 

ICP-MS using helium gas to maximize sample transport efficiency at a flow rate of ~1 L/min. 

Particles were mixed with argon gas at a flow rate of ~1 L/min before online introduction to the 

ICP-MS. The mass spectrometer was operated in resolution mode.  The following isotopes were 

detected: 44Ca+, 55Mn+, 56Fe+, and 66Zn+. Flow rates of carrier and sample gas were tuned for each 

sample to obtain the same signal response from a standard. 

 

Histological Analysis 

Serial sections collected for histological analysis were hematoxylin and eosin (H&E) stained. 

Stained slides were scanned using a MIRAX Scan slide scanner (Carl Zeiss MicroImaging, 

Gŏttingen, Germany) in manual bright field mode. Optical images were generated from the scans 

using MIRAX Viewer version 1.11.22.0 (Carl Zeiss MicroImaging). 

 

Protein Identification 

Selected protein ions of interest from the MALDI images were identified using an indirect 

strategy.27, 30, 168 Briefly, common spatial localizations between an ion image acquired on the high 

mass resolution FTICR instrument and ion images acquired on the low mass resolution TOF 

instrument were used to link high mass accuracy measurements made on the FTICR to the protein 

ions observed in the TOF data. These exact mass measurements (<5 ppm) provided values to 

subsequently target for top-down LC-MS/MS proteomics. 
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For top-down proteomics, on-tissue protein microextractions were first performed on 

abscesses using a section containing clear infectious foci similarly to previously described.27 

Protein was extracted from abscesses using 0.5μL of 30% acetonitrile 0.1% TFA and microextracts 

from four sections were combined. A second extraction was performed sequentially on the same 

four sections using 0.5μL of 50% acetonitrile 5% formic acid.2 or 2.3 μL of microextract was 

diluted at least 10-fold in 0.1% formic acid and was bomb-loaded onto a reversed-phase capillary 

trap column using a helium-pressurized cell as previously described.27, 30 Eluted proteins were 

mass analyzed using an ETD-enabled LTQ Orbitrap Velos mass spectrometer that was equipped 

with a nanoelectrospray ionization source (Thermo Scientific, San Jose, CA, USA) operated with 

a data-dependent method. A full scan spectrum of m/z 400–2000 (resolving power (RP): 60,000 

at m/z 200) was acquired as the initial scan event per duty cycle. Following the full-scan, four data-

dependent scan events were selected for fragmentation using ETD in the Velos ion trap using the 

four most abundant ions in each MS scan. Dynamic exclusion was enabled allowing a repeat count 

of 1 within 20 seconds. ETD tandem mass spectra were acquired sequentially using the LTQ Velos 

ion trap followed by the Orbitrap (RP: 15,000 at m/z 200) for mass analysis. An isolation width of 

3 Da and an ETD reaction time of 90-100ms were used for MS/MS spectra. The MSn AGC target 

value in the ion trap was set to 2 × 104, the MSn AGC target for Orbitrap scan events was 8 × 105, 

and the ETD reagent ion (fluoranthene) AGC target was set to 1 × 105. Parent ions of interest were 

selected from the full-scan and matched ions detected in FTICR IMS data sets. Fragmentation 

spectra from these ions were manually de novo sequenced and searched using BLAST databases. 

Targets of interest isolated from data-dependent methods were targeted for fragmentation by 

customizing the instrumental method with targeted scan events to ensure ETD MS/MS of selected 

ions. 
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Further protein purification was needed to isolate certain targets of interest. In order to 

maximize the abundance of bacterial proteins in kidney abscesses, S. aureus infection was allowed 

to proceed for 9 days, after which time the kidneys were excised and homogenized in 1 mL of 

phosphate buffered saline using a rolling pin. To extract proteins, 1 ml of 2,2,2-trifluoroethanol 

and 2 mL of 50% acetonitrile was added to the homogenate. Kidneys were further homogenized 

using an ultrasonicator dismembrator Model 150E (Fisher Scientific). Extracts were centrifuged 

to remove particulates and were fractionated using a Waters 2690 Separations Module (Waters, 

Milford, MA, USA) equipped with an offline fraction collector. Proteins were fractionated using 

a Vydak 208TP 150 mm 5 µm C8 column (Vydac Grace, Columbia, Maryland) and an aqueous to 

organic gradient over 120 minutes. Fractions were collected every minute. The fractionation was 

performed four times and the fractions were combined. The fractionation was dried using a Savant 

SPD131DDA SpeedVac Concentrator (Thermo Scientific) and reconstituted in 20 μL of 50% 

acetonitrile with 0.1% TFA. One μL of each well was spotted onto a Bruker Anchorchip (Bruker 

Daltonics) with 1 uL of 15 mg/mL DHA matrix in 40% acetonitrile. A MALDI MS was obtained 

for each spot and fractions of interest were manually selected based on the presence of m/z values 

of interest. Fractions of interest were subjected to targeted MS/MS analysis as described above.  

To identify HLD, a bottom-up proteomics approach was used. A purified fraction from above 

was subjected to overnight tryptic digestion. For analysis by LC-coupled tandem mass 

spectrometry (LC-MS/MS), peptides were loaded onto a capillary reverse-phase analytical column 

(360 μm o.d. × 100 μm i.d.) using an Eksigent NanoLC Ultra HPLC and autosampler. The 

analytical column was packed with 20 cm of C18 reverse-phase material (Jupiter, 3 μm beads, 300 

Å, Phenomenex), directly into a laser-pulled emitter tip. Peptides were gradient-eluted over a 90-

minute gradient at a flow rate of 500 nL/min. The mobile phase solvents consisted of water 
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containing 0.1% formic acid (solvent A) and acetonitrile containing 0.1% formic acid (solvent 

B). The gradient consisted of the following:  0-15 min (sample loading via autosampler onto 

column), 2% B; 15-65 min, 2-40% B; 65-74 min, 40-90% B; 74-75 min, 90% B; 75-76 min 90-

2% B; 76-90 min (column equilibration), 2% B.  

 Peptides were sequenced using Q Exactive Oribtrap MS (Thermo Scientific.) The mass 

spectrometer collected one full scan followed by MS/MS fragmentation data for the top 12 ions. 

A mass range of m/z 300-2000 was collected per each scan. A targeted scan event was included to 

obtain MS/MS data for m/z 497.77, representing the [M+2H]2+ ion for the tryptic peptides 

WIIDTVNK. 

 

Imaging Reconstruction and Registration 

As described above, care was taken not to move the mouse between optical imaging, MRI, 

and the freezing process. Thus, a rigid-body image registration was used to transform the MRI 

data into the blockface images’ coordinate system.159, 169  The resulting transformation was also 

applied to the optical data, resulting in the optical, MRI, and blockface data in a unified coordinate 

system.  

Imaging the blockface data during tissue sectioning does not create intrinsically registered 

images. In order to reconstruct an aligned three-dimensional blockface dataset, the imaging data 

was aligned slice by slice through an image registration that maximizes a normalized mutual 

information metric using a rigid body transformation.159, 169 This approach starts with the central 

blockface image and registers a neighboring slice in the same direction. Registration is continued 

for the entire volume by registering each successive slice to the proceeding slice until the initial 

image is reached. Once all blockface slices were aligned, they were combined into one three-
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dimensional dataset, providing the base coordinate system to which all imaging data will be 

transformed. 

To perform the optical to MR registration a full-body MRI dataset of the mouse was 

needed. However, due to limitations of the MRI coil two separate scans were required to obtain 

full coverage of the specimen. Thus, the upper and lower sections of the mouse were imaged 

separately with overlapping portions towards the middle of the body. Following acquisition, the 

overlapping data were used to combine the two scans to form one cohesive structural image using 

image registration. 

The transformation between the optical imaging coordinate system and MRI coordinate 

system was calculated using a surface based registration. During acquisition the optical imaging 

system creates a 3D surface mesh of the mouse. A second mesh was created in the MRI coordinate 

system by manually segmenting the mouse body using the full body MRI. Once each surface mesh 

was created and manually reoriented to similar positions an iterative closest point algorithm was 

used to align the optical mesh in the MRI mesh coordinate system.159 This provided the necessary 

transformation to move the raw optical data into the MRI coordinate system. 

Once the 48 2D MALDI datasets were acquired, a single m/z bin was chosen with well-

defined anatomical features for each slice. This image was manually registered to the 

corresponding blockface image. The resulting transformation was then applied to all ion images 

for this slice. These data were combined to form one 3D MALDI dataset for each of the defined 

m/z bins by inserting data into the appropriate location in an empty matrix of the same dimensions 

as the blockface data, and interpolating the missing data between slices using a weighted 

interpolation. This resulted in a 3D MALDI image for each of the selected m/z bins within the 

same coordinate system as the blockface. 
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 Similar to the MALDI IMS to Blockface registration, a single element image from LA-

ICP-IMS was chosen for each slice and manually registered to the corresponding blockface image.  

The resulting transformation was applied to the remaining element images for the similar slice.  

Once all data had been registered, the 2D data were inserted into the correct location in 3D space, 

and data between slices were interpolated. The result was a 3D LA-ICP-IMS dataset for each 

analyzed element in the same coordinate system as the blockface. 

 

Statistical analysis 

 Statistical analysis was performed using Graph Pad Prism version 5.0 and the indicated 

statistical test. 
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CHAPTER V 

 

CALPROTECTIN AFFECTS BACTERIAL BIOFILMS 

 

A version of the following chapter was previously published and has been adapted from 

Wakeman and Moore et al., Nature Communications, Copyright 2016 by Springer Nature29 and 

from Spraggins, Rizzo, Moore et al. Proteomics, Copyright 2016 by Wiley and Sons.2 

 

Overview 

 Bacterial biofilms represent the physiologically relevant form of bacteria, both in 

pathogenic and non-pathogenic settings. It is known that biofilms contain differentiated bacterial 

populations, all performing different tasks within the community. However, very little is known 

about the factors driving that differentiation. Mass Spectrometry is a powerful analytical tool to 

understand biological systems. In this work, biofilms grown in a drip-flow reactor are subjected to 

MALDI IMS, LA-ICP-IMS, and shotgun proteomic analysis to further understand the factors that 

drive differentiation. Biofilms are subsequently challenged with the host protein calprotectin, an 

abundant innate immune protein responsible for the chelation of nutrient manganese and zinc at 

sites of infection. It was determined that calprotectin exposure promotes interactions between 

Staphylococcus aureus and Pseudomonas aeruginosa- two microbes that do not tolerate each other 

in culture, but are known to co-colonize humans with diseases hallmarked by chronic inflammation 

and calprotectin recruitment, such as cystic fibrosis.  
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Introduction 

 

Bacterial Biofilms 

Biofilms are multicellular microbial communities that represent the most common lifestyle 

of many microorganisms.170  The unique architecture of biofilms allows these microbial structures 

to persist in a wide range of niches, including biotic and abiotic surfaces.171, 172 A biofilm can 

originate from a single microbial species or from numerous and diverse microorganisms, 

potentially encompassing multiple domains of life.170, 173 Even biofilms containing a single species 

exhibit distinct roles within the community, characterized by different gene and protein 

expression.174, 175 The presence of these spatially-defined regions of differentiated cells gives a 

biofilm tissue-like properties in which different subpopulations of cells serve defined roles in the 

microbial community to promote the overall health of the biofilm.176, 177 It is believed that nutrient 

gradients form as the biofilm thickens and that such gradients influence the physiology within the 

microbial structure.175, 178 

Many infections are caused by biofilms arising from either a single species or a community 

of pathogens, making the study of biofilms important for human health and industry.170 The role 

of nutrient metal fluctuations is particularly important in the context of infection because host cells 

attempt to sequester metals from invading pathogens as a major innate defense mechanism.179 This 

process is known as nutritional immunity; some of the best studied strategies of nutritional 

immunity are the chelation of iron (Fe) through the action of host-derived proteins such as 

transferrin and lactoferrin as well as chelation of zinc (Zn) and manganese (Mn) by calprotectin.157, 

179 
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Consistent with the theory that host-imposed nutrient starvation can affect microbial 

community structure, environmental iron levels impact the gross morphology of various types of 

single-species biofilms.180, 181 iron levels also influence the composition of pathogenic 

polymicrobial communities.182-184 For example, in response to iron depletion, Pseudomonas 

aeruginosa up-regulates production of alkyl-hydroxyquinolones (AQs) to lyse staphylococcal 

cells for use as an iron source.182, 185 

These works supported new hypotheses that metal gradients within developing biomasses 

might cause dramatic shifts from the proteins expressed in certain bacterial populations. 

Techniques such as RNA fluorescence in situ hybridization (RNA FISH) and reporter gene fusions 

have been successfully employed in multiple studies to establish the existence of bacterial 

subpopulations within a biomass.175, 186 However, these methods are limited by the number of 

differentially-expressed targets that can be assessed at one time and require prior knowledge of 

molecules of interest. In order to study the impact that metal distributions have on bacterial 

subpopulations, a multi-modality Imaging Mass Spectrometry (IMS) approach was utilized. Here 

we present a combination of matrix-assisted laser desorption/ionization (MALDI) IMS 187 and 

laser ablation inductively coupled plasma (LA-ICP) IMS to visualize heterogeneity of proteins, 

small molecules, and metals within a P. aeruginosa biofilm in intricate and unprecedented detail. 

 

Pseudomonas aeruginosa 

 Pseudomonas aeruginosa is a Gram negative bacterium typically found in soil. The 

bacterium is quite adaptable and has been found to grow in soil, water, and other abiotic 

surfaces.188 This is partially due to P. aeruginosa’s ability to form robust biofilms, leading this 

bacterium to be often used as a model organism for the study of biofilm formation.  



139 
 

P. aeruginosa will also adopt a pathogenic lifestyle and cause infections of most vertebrate 

niches. In addition to adept colonization of the host, this organism has high capabilities to resist 

antimicrobial strategies.189 This is partially due to its genetic abilities to produce efflux pumps and 

other proteases that degrade antimicrobial compounds. It has also emerged as a major pathogen 

affecting immunocompromised patients. It is the third leading cause of hospital-acquired urinary 

tract infections, a major cause of swimmer’s ear, and a major cause of nosocomial pneumonia.189 

Of particular interest is the ability of P. aeruginosa to colonize the airways of patients with cystic 

fibrosis.  

 

Cystic Fibrosis 

Cystic fibrosis (CF) is a genetic disorder affecting 1 in every 3,000 newborns. The disease 

is caused by mutations in the cystic fibrosis transmembrane conductance regulator protein, which 

is involved in homeostasis of epithelial sodium channels. This can cause dysregulation of sweat, 

gastrointestinal fluids, and mucus.190 Hallmarked by long-term persistent bacterial colonization in 

the lungs, patients with late-stage lung disease develop thick mucus blocking airways and causing 

fibrosis, making it increasingly difficult for patients to breathe.191 Pseudomonas aeruginosa is a 

known persistent colonizer of the CF lung.192 

 

Results and Discussion 

Biofilms Grown in a Drip Flow Reactor Have Distinct Structural Features 

A drip flow reactor (DFR) generates robust bacterial biofilms.193 In this system, a 

continuous influx of nutrients is supplied to a developing biofilm over the course of several days 

while the waste is removed by gravity flow to minimize shear force. Figure 5.1 shows a cartoon 
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schematic of a DFR. Figure 5.1A shows how fresh media is delivered at a constant flow over 

bacteria seeded in a chamber. The low-shear force flow is gravity-driven, so fresh media always 

flows down the slide toward the waste container.  The biofilms in a DFR chamber form on a 

provided surface, such as a glass slide. After six days of growth in this system, P. aeruginosa 

develops a robust biofilm that is ~3 mm thick and capable of withstanding significant physical 

manipulation. An example biofilm is shown in Figure 5.1B.  

 P. aeruginosa biofilms that are grown in the DFR are visibly influenced by the flow of 

nutrients. The portion of the biomass that developed around the initial drops of medium entering 

the chamber formed a distinct pore, which is annotated in Figure 5.1B. As the medium flowed 

down the length of the slide, a pink-pigmented population of cells formed on this presumably 

nutrient-rich channel. The biomass forming on the edges of the glass slide with no direct access to 

the nutrients from the central channel relied on nutrient diffusion and was likely experiencing 

greater levels of starvation. Despite the visible differences in these distinct portions of the P. 

aeruginosa DFR biofilm, all regions of the biomass were composed of approximately equivalent 

ratios of live to dead cells as determined by live/dead staining confocal microscopy, shown in 

Figure 5.2.  Additional Analyses by electron microscopy are shown in Figure 2 and further support 

the live/dead staining. This confirmed that the visual heterogeneities throughout the biomass were 

not simply due to cell death at the nutrient poor regions or from any contaminating microorganisms 

who were contributing to the heterogeneity. 
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Figure 5.1: Drip Flow Reactor Biofilms 
Panel A) shows a cartoon schematic of a drip flow reactor, where fresh media is dripped over 
bacteria in a chamber using a peristaltic pump. Waste leaves the chamber based on gravitational 
force, which results in low shear-force on the biofilms. P. aeruginosa biofilms grown in this 
manner are very robust, shown in panel B) Structural features of interest include a nutrient pore, 
formed at the point where media drips onto the slide. A pink central channel forms in regions 
where medium flows. Nutrients diffuse outward from the central channel, creating nutrient-
depleted edges. Reprinted from Nature Communications, vol 7, Wakeman and Moore et al, from 
“The innate immune protein calprotectin promotes Pseudomonas aeruginosa and Staphylococcus 
aureus interaction” 2016 with permission from Nature Publishing Group under a Creative 
Commons license.29  
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IMS Reveals Heterogeneities in Bacterial Biofilms 

 In order to study protein distributions in an unbiased way throughout heterogeneous 

bacterial biofilms, a MALDI IMS analytical approach was implemented. To identify differential 

protein expression within the P. aeruginosa biofilm, various portions of the biomass both proximal 

and distal to nutrient influx were analyzed using MALDI IMS. This analysis revealed the presence 

of distinct subpopulations throughout the biomass by tracking unique mass to charge (m/z) ratios. 

These data are shown in in Figure 5.3. Interestingly, many of the ion intensity maps generated 

correlated with the nutrient gradients that were predicted from both visual and microscopic 

analyses.  
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Figure 5.2: Biofilm Heterogeneity Revealed by Microscopic Analysis 
Different portions of P. aeruginosa biofilms were analyzed by confocal and scanning electron 
microscopy to reveal the microscopic structural features unique to different regions of the biofilm. 
The letters adjacent to each picture correspond to the regions highlighted on the top biofilm image. 
In the confocal analysis, green stain (Syto 9) represents live cells, red stain (propidium iodide) 
denotes dead cells, and blue stain (calcofluor white) highlights carbohydrate-rich features. The 
electron micrograph images of each biofilm are shown at four different magnifications. Reprinted 
from Nature Communications, vol 7, Wakeman and Moore et al, from “The innate immune protein 
calprotectin promotes Pseudomonas aeruginosa and Staphylococcus aureus interaction” 2016 with 
permission from Nature Publishing Group under a Creative Commons license.29 
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Figure 5.3: Heterogeneous structure of a Pseudomonas aeruginosa biofilm grown in a drip 
flow reactor (DFR) 

(a) Representative image of a P. aeruginosa biofilm grown in a DFR. The flow of nutrients is 
depicted by the topmost arrows ranging in color from blue to brown. Blue boxes denote the 
approximate regions from which 12 µm thick sections were obtained for MALDI IMS analysis. 
(b-c) MALDI IMS signals with differential biofilm localization found primarily in portions of the 
biomass presumed to be nutrient-replete. (d-e) MALDI IMS signals primarily localized to portions 
of the biomass predicted to be nutrient-deplete. (f) Overlay of signals shown in b-e highlighting 
sublocalization of signals within the predicted nutrient-replete and nutrient-deplete niches with 
zoomed insets highlighted. Scale bar = 3 mm . . Reprinted from Nature Communications, vol 7, 
Wakeman and Moore et al, from “The innate immune protein calprotectin promotes Pseudomonas 
aeruginosa and Staphylococcus aureus interaction” 2016 with permission from Nature Publishing 
Group under a Creative Commons license.29 
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 As nutrients are introduced to the chamber and flow towards the waste, access to fresh 

media is reduced. Many molecules that were abundant in biofilm sections proximal to the influx 

of nutrients were virtually absent in distal sections. This is displayed in Figure 5.3B and 5.3C. 

Other ions, like those in Figure 5.3D and 5.3E, exhibit a reciprocal ion intensity map. These 

molecules are relegated to the edges of the presumably nutrient-poor regions and are enriched in 

the distal portions of the biomass. When differentially-expressed m/z signals were overlaid, there 

were distinct subpopulations within the nutrient-rich and nutrient-deplete portions of the biofilm, 

indicating MALDI IMS is capable of uncovering biofilm heterogeneity extending beyond that 

intuitively dictated by nutrient gradients. These data are shown in Figure 5.3F. Intricate details in 

biofilm architecture revealed by MALDI IMS include a heterogeneous population of cells within 

the central channel (m/z 4,557 and 5,829,) and the nutrient-deplete edges (m/z 1,415 and 6,297). 

Figure 5.4 shows additional signals from MALDI IMS data with surprising localization patterns. 

A small population of cells residing at the interface of the central channel and nutrient-deplete 

edges was also isolated (m/z 9,731). Additional signals were found primarily at the air-exposed 

surface of the biofilm while others were only present deep within the portions of the biomass 

adhered to the glass slide. These trends in biofilm heterogeneity may be influenced by oxygen 

availability as oxygen might not efficiently diffuse throughout the ~3 mm thick biomass (m/z 5,867 

and 11,701, Figure 5.4). This finding is consistent with similar results identifying differential gene 

expression within anoxic regions of biofilms.174, 186, 194 In total, these results demonstrate that 

MALDI IMS is a useful tool to study biofilm heterogeneity, capable of determining the spatial 

localization of hundreds of proteins in a single experiment. 



146 
 

 

Figure 5.4: Additional Heterogeneously-expressed Signals Revealed by MALDI IMS 
Biofilm sections #1 and #3 represent the two sections most proximal to nutrient entry highlighted 
in Figure 5.1. (a) A peak at m/z 9,731is enriched at the interface between the nutrient-replete center 
(marked by m/z 9,126) and the nutrient-deplete edge (marked by m/z 3,056.) (b) A peak at m/z 
11,701 is found only in the anoxic portion of the most nutrient-deplete biofilm section, whereas a 
peal at m/z 6,463 which localizes with nutrient-replete regions of the biomass is excluded from the 
anoxic portion. A peak at m/z 5,867 is found abundantly throughout the nutrient rich portions of 
the biofilm but appears further enriched at the oxygen-exposed surface. Reprinted from Nature 
Communications, vol 7, Wakeman and Moore et al, from “The innate immune protein calprotectin 
promotes Pseudomonas aeruginosa and Staphylococcus aureus interaction” 2016 with permission 
from Nature Publishing Group under a Creative Commons license.29 

 

 

MALDI IMS analysis of replicate biofilms revealed numerous ions with consistent and 

reproducible patterns within the biomass. These m/z species were targeted for identification using 

bottom-up proteomics approaches. Initial identification strategies revealed a number of small 

ribosomal proteins, RpmC, RpmD, and RpsP, are either enriched in the central channel or the 

putatively nutrient-deplete edge of the biofilm (Figure 5.5). Ribosomal proteins can be regulated 

in response to Zn levels195; therefore, it is possible these ribosomal proteins are differentially-

regulated in response to nutrient gradients occurring within the biomass. Proteins of unknown 
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function, including the proteins PA14_19610 and PA14_50750, as well as proteins related to 

general stress, such as cold shock protein Csp were also identified. Additionally, general metabolic 

proteins were detected, including cytochrome cbb oxidase CcoQ and DNA-binding protein HupB. 

Many of these signals appeared to be distributed relatively evenly throughout the biomass with 

subtle decreases in signal intensity in the biofilm edge, likely attributed to decreased cell density 

in regions with limited nutrient access. These results demonstrate MALDI IMS signals can be 

identified using bottom-up proteomic approaches. 

 
 

Figure 5.5: MALDI IMS signals identified using bottom-up proteomics.  
m/z values and associated protein designations are included adjacent to MALDI IMS images of 
the biofilm section proximal to the nutrient pore highlighted in Fig. 1. These identifications derive 
from signals that were reproducibly detected during the analysis of 15 replicate DFR biofilms. . 
Reprinted from Nature Communications, vol 7, Wakeman and Moore et al, from “The innate 
immune protein calprotectin promotes Pseudomonas aeruginosa and Staphylococcus aureus 
interaction” 2016 with permission from Nature Publishing Group under a Creative Commons 
license.29 
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Figure 5.6: Metal Distribution Patterns Revealed by LA-ICP IMS Correlate with 
Differential Protein Localization within the Biofilm.  

(a) LA-ICP IMS analysis of a biofilm section containing a defined “central channel” and “nutrient-
deplete edge.” (b) ICP-MS quantification of metal levels within distinct portions of the biofilm. 
Error bars represent s.d. of data derived from triplicate biofilms. * designates p<0.05, ** designates 
p<0.002 as determined by a Student’s t-test. (c) MALDI IMS analysis highlights the presence of 
differential protein distribution patterns that follow similar trends to the metal localization patterns. 
(d) shows approximate section dissected from DFR biofilms for analyses. (e) Raw ICP-<S data 
acquired from triplicate DFR biofilms. Biofilm homogenates were normalized to total protein 
content prior to analysis by ICP-MS. Error bars represent SD of triplicate samples. Reprinted from 
Nature Communications, vol 7, Wakeman and Moore et al, from “The innate immune protein 
calprotectin promotes Pseudomonas aeruginosa and Staphylococcus aureus interaction” 2016 with 
permission from Nature Publishing Group under a Creative Commons license.29 
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Calprotectin Alters Nutrient Availability in Bacterial Biofilms 

Alterations in metal availability have been shown to influence overall biofilm 

architecture.180, 181 In an effort to determine which metals are restricted in the nutrient-deplete 

edges of the P. aeruginosa DFR biofilm, a section of biomass was analyzed using LA-ICP IMS. 

This analysis revealed that not all metals were equally depleted within the biofilm edges. Zn and 

Mn were found in low levels in the biofilm edge; however, Fe and Ca were distributed throughout 

the biomass as displayed in Figure 5.6A. To verify that the visibly distinct edges of the P. 

aeruginosa biofilm corresponded to regions experiencing Zn and Mn deprivation, the nutrient-

deplete edges of the DFR biofilm were dissected away from the central channel. Separated regions 

are shown in in Figure 5.6D. These samples were homogenized, digested, and subjected to ICP-

MS analysis to determine total metal concentration, revealing that the nutrient-deplete edges of the 

DFR biofilm indeed correspond to areas of low Zn and Mn levels. Figure 5.6 B shows metal levels 

adjusted to total protein content. Figure 5.6E shows raw values, in ppb. Interestingly, when the 

measured metal concentrations were adjusted to total protein content of the sample, an apparent 

increase in Fe and Ca was observed in the biofilm edge. These metal localization patterns 

correspond well with regions of differential protein production (Figure 5.6C). These results 

indicate nutrient metals differentially diffuse throughout the bacterial biomass. 

 

Proteomic Analysis of Biofilms Reveals Changes in Proteome Due to Nutrient Limitation 

The dissected biofilm samples from Figure 5.6D were submitted for bottom-up proteomic 

analysis to augment the MALDI IMS studies and to identify overall protein changes that occur in 

response to the nutrient metal-depletion found in the biofilm edge. Overall, the detected proteins 

in the biofilm edge and central channel were largely similar with several distinct changes in 



150 
 

abundance (data available online using the Pride Repository PXD004081). One trend of note was 

the suppression of several well-studied biosynthetic enzymes of P. aeruginosa in the nutrient-

deplete biofilm edge, shown in Figure 5.7. The hcn, phz, and pqs genes control production of 

hydrogen cyanide, pyocyanin, and alkyl hydroxyquinilones (AQs), respectively. Each of these 

molecules has antimicrobial capabilities that enable P. aeruginosa to outcompete surrounding 

bacterial species.196 S. aureus, an organism commonly found in polymicrobial infections involving 

P. aeruginosa, is particularly susceptible to these products. These biosynthetic operons are 

regulated by quorum sensing (QS).197 

However, overall QS capabilities were not inhibited in the biofilm edge as the QS-activated 

enzyme LasA was dramatically up-regulated in this niche while other QS-regulated proteins, such 

as RmlC, were unchanged throughout the biomass (Figure 5.7). In addition to QS-based regulation, 

the anti-staphylococcal activity of P. aeruginosa is increased under Fe-limiting conditions.182 

However, in the Zn and Mn-limited portion of the biofilm, P. aeruginosa appears to repress the 

production of these factors. The repression of anti-staphylococcal factor production in the biofilm 

edge contrasts with other proteins known to be activated under Fe-limitation such as the 

pyoverdine receptor FpvA198 which was enriched in the biofilm edges, or the Fe-regulated 

succinate dehydrogenase SdhA199 which was constitutively detected throughout the biomass 

(Figure 5.7). Because FpvA was enriched and HcnB, PhzS, and PqsB were repressed in a Zn and 

Mn-deplete yet Fe-replete portion of the biofilm, it is possible that a subset of characterized Fe-

regulated genes is responsive to multiple metal ions. 
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Figure 5.7: Bottom-up Proteomics Reveals Repression of Anti-staphylococcal Biosynthetic 
Proteins  

HcnB, PhzS and PqsB are components of various anti-staphylococcal biosynthetic pathways that 
were found in lower abundance in the biofilm edge. While expression of the corresponding genes 
has been shown to be both Fe and quorum sensing (QS)-regulated, the proteins’ distribution 
profiles did not correlate with those of known Fe-responsive proteins such as FpvA and SdhA or 
proteins encoded by known QS-responsive genes such as LasA and RmlC. Error bars are s.e.m. 
derived from biological triplicate samples processed in four technical replicates per biofilm. ‘*’ 
denotes P<0.05, ‘**’ denotes P<0.02 as determined by a Student’s t-test. NS, not significant. 
Reprinted from Nature Communications, vol 7, Wakeman and Moore et al, from “The innate 
immune protein calprotectin promotes Pseudomonas aeruginosa and Staphylococcus aureus 
interaction” 2016 with permission from Nature Publishing Group under a Creative Commons 
license.29 
 

 

Calprotectin Causes a Repression in P. aeruginosa Anti-Staphylococcal Factors 

To determine which of the various genetic changes observed in the nutrient-deplete biofilm 

edge can be specifically attributed to Zn and/or Mn deprivation, P. aeruginosa biofilms were 

treated with calprotectin to induce Zn and Mn starvation throughout the biomass and to recapitulate 

conditions the biofilm might encounter within a vertebrate host. Calprotectin is an abundant innate 

immune protein with antimicrobial activity deriving from its ability to sequester transition metals 

away from invading pathogens.65, 140 Proteomic analyses indicated that calprotectin diffusion 
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throughout the biomass was incomplete, likely owing to the protective features of the biofilm 

(Figure 5.8A). This was also shown with MALDI IMS data, shown in Figure 5.8B. Here a 

calprotectin-treated and untreated biofilm were both analyzed. Several ions did not change despite 

treatment with calprotectin. Calprotectin itself clearly does not fully penetrate the biofilm when 

administered in a DFR. However, these studies identified a subset of differentially-localized 

proteins that were constitutively expressed or repressed throughout the biofilm upon calprotectin 

treatment (Figure 5.9). This subset of proteins, which included many of the anti-staphylococcal 

biosynthetic enzymes, may represent the targets most responsive to calprotectin-induced metal 

starvation. However, the incomplete diffusion of calprotectin throughout the biomass indicated 

there may be additional calprotectin-dependent responses undetected in this experiment. 

Therefore, we sought to determine if these metal-dependent responses could be recapitulated in 

planktonic culture. 
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Figure 5.8: Calprotectin does not Penetrate the DFR Biofilms 
The protective nature of the biofilm does not allow calprotectin to fully penetrate the biofilm. A. 
shows peptide counts taken from the center and edge of DFR biofilms both proximal and distal to 
the nutrient pore, which represents the point of treatment. Panel B explores a series of ion intensity 
maps in section 3 of both a calprotectin-treated and untreated biofilm. Several ions did not change 
due to calprotectin. The ion intensity map of calprotectin subunit S100A8 is also displayed to show 
that the biofilm is not fully exposed to the protein.  
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Figure 5.9: Venn Diagram Summary of Shotgun Proteomics Data 
(a) The total number of protein identified from shotgun proteomics of untreated and calprotectin-
treated biofilms reveals that the bulk of proteins in both data sets are identical. (b) Approximately 
half of the proteins found to be enriched in the central channel of untreated biofilms were also 
enriched in the central channel of calprotectin-treated biofilms. (c) Approximately half of the 
proteins found to be enriched in the edge of the untreated biofilms were also enriched in the edge 
of the calprotectin-treated biofilm. Reprinted from Nature Communications, vol 7, Wakeman and 
Moore et al, from “The innate immune protein calprotectin promotes Pseudomonas aeruginosa and 
Staphylococcus aureus interaction” 2016 with permission from Nature Publishing Group under a 
Creative Commons license.29 
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Figure 5.10: Calprotectin (CP)-treatment Represses P. aeruginosa Biosynthetic Genes 
Responsible for Production of Numerous Anti-staphylococcal Factors 

(a) qRT-PCR quantification of anti-staphylococcal biosynthetic gene transcripts in the presence or 
absence of 0.25 mg/mL CP. (b) Quantification of pyocyanin in cultures grown in the presence or 
absence of 0.25 mg/mL CP and/or 10 µM Zn. * designates p<0.05, ** designates p<0.002 as 
determined by a Student’s t-test.  Error bars represent s.d. of triplicate samples. (c)  MALDI IMS 
detection of secondary metabolites, pyocyanin (PYO) and the alkyl hydroxyquinolones PQS and 
HQNO, as well as a control ion at m/z 168 on media embedded with increasing CP concentrations. 
Reprinted from Nature Communications, vol 7, Wakeman and Moore et al, from “The innate 
immune protein calprotectin promotes Pseudomonas aeruginosa and Staphylococcus aureus 
interaction” 2016 with permission from Nature Publishing Group under a Creative Commons 
license.29 
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RNA-seq analysis of planktonic cultures grown in the presence or absence of calprotectin 

revealed additional metal-dependent genetic responses.  qRT-PCR quantification of anti-

staphylococcal biosynthetic gene expression revealed significant repression of pyocyanin and 

hydrogen cyanide biosynthetic genes upon calprotectin exposure in planktonic culture with trends 

towards decreasing levels of PQS biosynthetic gene expression (Figure 5.10A). The unchanging 

levels of lasA transcription provided evidence that these responses did not result from decreased 

QS capacity of the culture. These transcriptional responses corresponded with a dramatic reduction 

in pyocyanin production that was reversed by the addition of exogenous Zn to the cultures (Figure 

5.10B). The metal-dependent regulation of anti-staphylococcal secondary metabolites was also 

visualized using MALDI IMS of bacteria grown on agar plates infused with increasing levels of 

calprotectin. MALDI IMS identified signals with m/z ratios corresponding to pyocyanin and the 

AQs, PQS and 4-hydroxy-2-heptylquinoline-N-oxide (HQNO), which decreased with 

increasing calprotectin concentrations (Figure 5.10C).  These signals were confirmed to be 

pyocyanin and HQNO/PQS as they were absent in strains with mutations in these biosynthetic 

operons (Figure 5.11, A-C). In total, these data demonstrate that calprotectin-induced metal 

deprivation significantly reduces anti-staphylococcal factor production under multiple growth 

conditions in both biofilm and planktonic states. 

 

Calprotectin Promotes P. aeruginosa and S. aureus Co-culture 

The biological impact of the metal-dependent regulation of P. aeruginosa anti-

staphylococcal factors was tested in co-culture experiments with S. aureus under multiple types of 

growth conditions. In agar-based assays, a lawn of S. aureus cells was plated onto the surface of 

LB agar infused with either calprotectin or calprotectin-free buffer, and P. aeruginosa culture was 
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spotted onto discs positioned on the agar surface (Figure 5.12A). On calprotectin-free medium, a 

characteristic zone of clearance in the staphylococcal lawn formed around P. aeruginosa. 

However, in the presence of calprotectin, this zone of clearance was dramatically diminished. In a 

titration of calprotectin concentrations, maximal inhibition of P. aeruginosa anti-staphylococcal 

activity was shown to occur in the presence of 0.25 mg/mL calprotectin on both agar plates and in 

liquid culture. This supported the idea that calprotectin might promote the interactions between S. 

aureus and P. aeruginosa. 
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Figure 5.11: MALDI IMS Comparison of WT PA14 and Biosynthesis Mutants 
(a) MALDI IMS detection of secondary metabolites, pyocyanin (PYO) and the alkyl 
hydroxyquinolones PQS and HQNO, as well as a control ion at m/z 168 in media embedded with 
increasing calprotectin (CP) concentrations. (b) A ΔphzM mutant on PA14 in unaffected in 
PQS/HQNO production as well as m/z 168. However, PYO signal is completely absent. (c) A 
ΔpqsC mutant of PA14 exhibits only background signal at the PQS/HQNO peak and also produces 
decreases levels of PYO because PYO levels are regulated by PQS levels. Reprinted from Nature 
Communications, vol 7, Wakeman and Moore et al, from “The innate immune protein calprotectin 
promotes Pseudomonas aeruginosa and Staphylococcus aureus interaction” 2016 with permission 
from Nature Publishing Group under a Creative Commons license.29 
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Figure 5.12: Calprotectin (CP) exposure promotes microbial interaction between P. 

aeruginosa and S. aureus  
(a) Staphylococcal zones of inhibition on LB agar plates with or without the addition of CP. Lawns 
of S. aureus were spread onto plates and P. aeruginosa cultures were spotted onto paper disks. 
Zones of inhibition were visualized after 24 hours of incubation. Scale bars = 5 mm. (b) Colony 
forming units (cfus) obtained after liquid growth with or without 0.25 mg/mL CP. Error bars 
represent s.d. of replicate experiments from nine separate days. Experiments were performed in 
biological triplicate on each day. * designates p<0.02, ** designates p<0.0002 as determined by a 
Student’s t-test. Reprinted from Nature Communications, vol 7, Wakeman and Moore et al, from 
“The innate immune protein calprotectin promotes Pseudomonas aeruginosa and Staphylococcus 
aureus interaction” 2016 with permission from Nature Publishing Group under a Creative 
Commons license.29 
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Co-Colonization is promoted in Diseases Hallmarked by Long-term Inflammation 

Because calprotectin-treatment promoted microbial co-culture between P. aeruginosa and 

S. aureus under a variety of in vitro growth conditions, it seemed possible that this phenomenon 

might also occur upon calprotectin exposure experienced during infection. In order to test whether 

or not calprotectin production can promote the establishment of polymicrobial infections, 

calprotectin-deficient mice were obtained. Co-infections in these mice were compared to co-

infections occurring in wildtype C57BL/6 mice, the parental background from which the 

calprotectin-deficient mouse strain was derived.200 When calprotectin-deficient mice were 

intranasally inoculated with equal numbers of P. aeruginosa and S. aureus, P. aeruginosa 

outcompeted S. aureus by 38 hours post infection. However, when wildtype C57BL/6 mice were 

infected with the same inoculum, equivalent numbers of P. aeruginosa and S. aureus were present 

at 38 hours post infection (Figure 5.13). These data demonstrate that the presence of calprotectin 

can promote co-colonization of the murine lung. 

While cystic fibrosis patients commonly become infected with both P. aeruginosa and S. 

aureus, it is unknown whether these organisms share common niches within the human lung or 

remain segregated from each other within specific pulmonary compartments. Optical images 

were obtained from a human cystic fibrosis lung explant known to be chronically co-infected 

with P. aeruginosa and S. aureus. The images revealed that bacteria with morphological and 

Gram-staining features consistent with P. aeruginosa and S. aureus occupied the same airspace 

within the diseased lung (Figure 5.14A). The portion of the lung that housed the polymicrobial 

infection exhibited a high degree of inflammation as determined by H&E staining as well as an 

associated accumulation of calprotectin as visualized by MALDI IMS (Figure 5.14B and C). 

Calprotectin accumulation was monitored by following the signal at m/z 10,836 indicative of the 
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S100A8 subunit of calprotectin.201 These results strongly indicate that P. aeruginosa and S. 

aureus interactions can occur within a diseased lung and confirm that calprotectin is abundantly 

present at sites of inflammation and polymicrobial infection within the lungs of patients with 

cystic fibrosis. 

 

 
 

Figure 5.13: Calprotectin Production During Infection of the Murine Lung Promotes S. 
aureus and P. aeruginosa Co-colonization. 

Wild-type (WT) or calprotectin-deficient (CP−/−) C57BL/6 mice were intranasally infected with 
equivalent amounts of P. aeruginosa and S. aureus. Bacterial burdens were enumerated 38 h post 
infection. Equivalent burdens of P. aeruginosa were obtained from both mouse strains. In WT 
mice, S. aureus levels were equivalent to the P. aeruginosa burden. However, in mice lacking 
calprotectin production, P. aeruginosa significantly outcompeted S. aureus during the course of 
infection. ‘**’ designates P<0.0000001 as determined by a Student’s t-test. Error bars represent 
s.d. of data that was replicated in two independent experiments performed on separate days. n=18 
mice (shown as individual dots or squares) for both WT and CP−/− groups. NS, not significant. . 
Reprinted from Nature Communications, vol 7, Wakeman and Moore et al, from “The innate 
immune protein calprotectin promotes Pseudomonas aeruginosa and Staphylococcus aureus 
interaction” 2016 with permission from Nature Publishing Group under a Creative Commons 
license.29 
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Figure 5.14: Polymicrobial Communities Exist within Calprotectin-replete Airways of a 
Cystic Fibrosis Lung Explant 

(a) Gram-stain of an inflamed airspace of a cystic fibrosis lung explant containing bacterial 
morphologies consistent with both S. aureus (white arrows) and P. aeruginosa (black arrows). 
Scale bar, 5 μm. (b) H&E histology of the cystic fibrosis lung explant with the inflamed airspace 
that was visualized by Gram-stain enlarged (inset). Black scale bar, 2 mm; inset white scale bar, 
200 μm. (c) MALDI IMS analysis of the lung explant reveals calprotectin-enrichment at 
inflammatory foci (inset). Reprinted from Nature Communications, vol 7, Wakeman and Moore 
et al, from “The innate immune protein calprotectin promotes Pseudomonas aeruginosa and 
Staphylococcus aureus interaction” 2016 with permission from Nature Publishing Group under  a 
Creative Commons license.29 
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Cystic Fibrosis Lung Biopsies are Highly Heterogeneous 

High-speed MALDI-TOF IMS protein data collected from human lung tissue from a cystic 

fibrosis patient is shown in Figure 5.15. Data were collected with the same experimental 

parameters as the previously described rat brain tissue imaging experiment. Figure 5.15A shows 

overlaid IMS data from the individual ions highlighted in Figure 5.15B-F. High spatial resolution 

(10 μm) MALD-TOF IMS data (Figure 5.15G) highlight the extreme spatial heterogeneity of the 

sample. Protein identifications were made based on mass accuracy from secondary MALDI FTICR 

IMS experiments (Data not shown). Hemoglobin subunit alpha (residues 2-142), is depicted in 

orange at m/z 15,145 and, aside from the airways, is observed throughout the lung. Hemoglobin is 

involved in oxygen transport from the lung to other cells in the body. Therefore, it is reasonable 

that this ion marks the majority of the lung cells. The observed ion at m/z 11,339 (dark blue) was 

determined to be Histone H4. Histones are abundant proteins involved in gene regulation. In 

addition, they protect DNA from damage by keeping non-transcriptionally active DNA tightly 

bound. Histone H4 was observed at higher abundance surrounding infected airways. This is likely 

to be associated with a change in cell density, as the areas around these airways show an increase 

in immune cell recruitment. S100A6 (calcyclin) was detected at m/z 10,095 (yellow), representing 

residues 2-90 with an acetylation. It is known to be found in higher concentrations when cells are 

under mechanical strain.190 Here the protein is localized to large airways within the lung 

parenchyma, which supports previous work that such cells are sensitive to changes in mechanical 

force.202  This could be a factor in breathing difficulties when airways are infiltrated with immune 

cells in cystic fibrosis patients. S100A8 was found to be spatially localized primarily within 

infected airways. S100A8, depicted in teal at m/z 10,846, is a subunit of the neutrophil-associated 

protein calprotectin. Neutrophilic recruitment to airways is a characteristic of cystic fibrosis.  
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Figure 5.15: Cystic Fibrosis Lung Tissue is Heterogeneous 
Selected ion images of human lung tissue from a cystic fibrosis patient collected using ultra-high 
speed MALDI-TOF IMS. Observed substructures in the overlaid 30 μm ion image of m/z 3,450 
(neutrophil defensin 1, red), m/z 10,095 (S100A6, yellow), m/z 10,846 (S100A8, teal), m/z 11,339 
(histone H4, blue) and m/z 15,145 (hemoglobin subunit alpha, orange) were consistent with the 
trichrome staining following IMS acquisition (A).  To highlight the spatial diversity of the selected 
proteins, individual images of each ion are shown in (B-F). High spatial resolution (10 μm) 
MALD-TOF IMS data were collected from the area outlined in yellow (G). Reprinted with 
permission from Spraggins, Rizzo, Moore et al. “Next-Generation Technologies for Spatial 
proteomics: Integrating Ultra-High Speed MALDI-TOF and High Mass Resolution MALDI 
FTICR Imaging Mass Spectrometry for Protein Analysis.” Proteomics, 2016, Reprinted with 
Permission from John Wiley and Sons.2 
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Calprotectin was originally isolated from cystic fibrosis patients and was later found to 

have extensive antimicrobial properties through the chelation of nutrient metals. Neutrophil 

defensin 1 (m/z 3,450, red) is an abundant antibacterial peptide involved in host innate immune 

defense. This protein is rich in lysine and arginine residues whose cationic properties contribute to 

the disruption of microbial membranes, aiding in the killing of pathogens. This analysis revealed 

how heterogeneous this tissue is, especially with the marked additional pathology of late-stage 

lung disease. Taken into consideration, this heterogeneity strengthens the idea that there are many 

niches for bacteria to occupy within host tissues. 

 

Polymicrobial Infections and Cystic Fibrosis 

The finding that P. aeruginosa can repress its anti-staphylococcal capacity in the presence 

of an abundant innate immune protein adds to the growing body of literature describing the role 

of the host environment in shaping the physiology of polymicrobial communities. Previous studies 

have described host and microbial factors that contribute to the switch from S. aureus- to P. 

aeruginosa-dominated infections that occur during the lifetime of many cystic fibrosis patients.184, 

203 The current manuscript provides insight into the impact of the host environment on the 

physiology of the stable P. aeruginosa and S. aureus co-infections that develop in a large 

population of cystic fibrosis patients. In total, these data provide an additional facet to the complex 

interactions occurring at the host-pathogen interface during chronic infection. 

P. aeruginosa and S. aureus co-infections are associated with diseases characterized by 

high levels of inflammation and subsequent calprotectin accumulation such as chronic wound 

infection and the highly diverse morphology of pulmonary infection in cystic fibrosis patients.204-

206 Therefore, the finding that P. aeruginosa can dampen its anti-staphylococcal activity in 
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response to calprotectin-induced Zn starvation may have clinical implications regarding the 

common occurrence of P. aeruginosa and S. aureus co-infections. This response is surprising 

given that, under conditions of starvation, it would be advantageous to inhibit the growth of 

competing organisms. Therefore, an alternative evolutionary explanation for the development of 

this behavior must exist.  One theory originates from the fact that S. aureus has acquired numerous 

mechanisms to counteract endogenous host defenses.207 The infection course of cystic fibrosis 

patients typically begins with S. aureus colonization of the lung prior to infection with P. 

aeruginosa, hinting that P. aeruginosa might benefit from initial seeding of the lung environment 

with S. aureus. 208 Therefore, it is possible that over the course of chronic infection, P. aeruginosa 

might find it evolutionarily advantageous to maintain a population of S. aureus to combat the host 

immune response. These findings could have clinical ramifications owing to the unique 

physiology, antibiotic resistance, and disease severity associated with polymicrobial communities. 

209, 210  

 

Imaging Mass Spectrometry Defines Microbial Subpopulations 

Through the application of MALDI IMS, we were able to identify many different 

subpopulations within the microbial structure. Because the host environment at infectious foci is 

known to contain low levels of bioavailable Zn and Mn, the study of the populations arising within 

the Zn and Mn-deplete regions of the biomass may provide insight into the physiology of P. 

aeruginosa at the host-pathogen interface.211, 212 Additionally, MALDI IMS enabled the 

identification of subpopulations within the nutrient-replete portions of the biomass as well as 

populations with no apparent correlation with nutrient gradients. Further study of each of these 

populations will expand our knowledge of biofilm architecture and provide insight into the 



167 
 

functionality of subpopulations in response to various environmental pressures. These studies 

complement previous research that has utilized MALDI IMS to explore molecular interactions 

occurring at the interface of competing microbial communities.213, 214 

In total, these data demonstrate that the application of MALDI IMS and LA-ICP-IMS to 

the study of microbial community structure will further our understanding of the process of 

differentiation within a clonal population as well as enable studies into the role of nutritional 

gradients in the development of polymicrobial communities. The identification of multiple 

subpopulations and numerous differentially expressed proteins and small molecules in bacterial 

biofilms using MALDI IMS is a testament to the power of this technology for the study of 

microbial community structure as well as the analysis of sample heterogeneity in general. Future 

applications of MALDI IMS towards the study of biofilm architecture may uncover additional 

bacterial subpopulations, provide insight into the functionality of these populations, and reveal 

novel factors driving biofilm differentiation. 

 

Methods 

 

Bacterial Strains, Infections, and Clinical Samples 

The Pseudomonas aeruginosa strain used in this study was the highly virulent human 

wound isolate PA14.215 The transposon insertion mutants targeting phzM and pqsC were part of a 

transposon mutant library derived from this parental background.216 The Staphylococcus aureus 

strain used was USA300 JE2 217, a laboratory adapted strain derived from the parental USA300 

strain isolated from a skin and soft tissue infection. 218 
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 All animal experiments were approved by the Vanderbilt Institutional Animal Care and 

Use Committee. The co-infection of mice was performed similarly to previously published 

procedures for acute polymicrobial pneumonia.219 C57BL/6 mice were obtained from Jackson 

Laboratories. Calprotectin-deficient (S100A9−/−) mice derived from a C57/BL6 background were 

a gift from Wolfgang Nacken (Institute of Experimental Dermatology, University of Münster, 

48149 Münster, Germany). Nine-week-old male mice were intranasally infected as previously 

described 220 using 30 µL of a PBS suspension containing 1x106 CFU of both P. aeruginosa and 

S. aureus. Infections were allowed to progress for 38 hours prior to organ harvest. Bacterial 

colonies were enumerated following organ homogenization and plating on both TSA and MSA 

agar. 

Human lungs were obtained for research purposes from a patient with cystic fibrosis and 

end-stage lung disease at the time of lung transplantation.  Informed consent was obtained and the 

protocol was approved by the Vanderbilt University Institutional Review Board. 

Wild type and mutant calprotectin was expressed and purified as described previously. 65, 

221 

 

Growth and Processing of Biofilms for IMS 

Biofilms were grown in a Drip Flow Biofilm Reactor (DFR) (BioSurface Technologies, 

Bozeman, MT) similarly to previously described methods 193 using glass microscope slides as the 

growth surface. Glass microscope slides (VWR #48300-025) were treated overnight with filtered 

adult bovine plasma containing Na-EDTA (Lampire Biological Laboratories, Pipersville, PA) 

diluted to 20% concentration in carbonate-bicarbonate buffer and placed into the Drip Flow 

Reactor (DFR) chambers. Individual chambers were inoculated with 10 mL of a 1:10 dilution of 
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an overnight bacterial culture grown in YESCA medium (10 g/L casamino acids; 1 g/L yeast 

extract). Cultures were incubated statically for 18 hours at 37 °C before waste lines were opened 

and the chamber was tilted at a 10° angle to promote drainage of waste medium. Fresh YESCA 

medium was continuously supplied over the course of 6 days through the action of a peristaltic 

pump at a flow rate of ~0.3 mL/minute/chamber while incubation continued at 37 °C. At the end 

of the 6-day incubation, biofilms adhered to slides were removed from the DFR chambers and 

washed twice in 20 mL of Milli-Q water prior to subsequent processing. For calprotectin treatment 

of DFR biofilms, nutrient lines were detached after 5.5 days of incubation and replaced with lines 

containing calprotectin-treatment media (60% YESCA, 40 mM NaCl, 1.2 mM CaCl2, 0.5 mM β-

mercaptoethanol, 8 mM Tris, pH 7.5, and 0.25 mg/mL calprotectin). The calprotectin-treatment 

media was supplied to the biofilms over the course of 12 hours at a flow rate of ~0.3 

mL/minute/chamber. 

Biofilms to be cryosectioned were frozen in 25% Optimal Cutting Temperature Polymer 

(Tissue-Tek, SakuraFinetek, Torrance, CA). Biofilms analyzed by bottom-up proteomics and ICP-

MS were frozen in Milli-Q water. Biofilms were sectioned at -20°C using a Leica CM 3050 S 

Cryostat (Leica Microsystems, Bannockburn, IL) or a Thermo Scientific Cryostar NX70 (Thermo 

Fisher Scientific, Waltham, MA). Sections for MALDI IMS were cut at a thickness of 12 µm and 

mounted onto chilled indium-tin oxide coated glass slides (Delta Technologies, Loveland, CO.) 

Sections prepared for LA-ICP IMS were cut at a thickness of 35 µm and mounted onto nitric-acid 

washed poly(L)lysine-coated vinyl slides (Electron Microscopy Sciences, PA). 
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MALDI IMS of Biofilm Sections 

Biofilm sections analyzed by MALDI IMS were washed using sequential 30 second 

washes of 70, 90, and 95% ethanol. Matrix was applied as previously described for the agar 

colonies using only 8 total passes of the robotic sprayer. IMS of biofilms was performed at 50 µm 

step size using a rapifleXTM MALDI TissuetyperTM operated in linear positive ion mode with 50 

by 50 µm pixels with the laser in single beam mode. A total of 500 laser shots were collected per 

pixel in 50 shot increments. IMS of biofilms collected at greater than 50 µm step size was 

performed using an AutofleX Speed tandem time-of-flight (TOF/TOF) mass spectrometer (Bruker 

Daltonics, Billerica, MA) outfitted with a Gaussian beam profile Nd:YAG laser (355 nm) and 

operated in linear positive ion mode. A total of 50 laser shots were collected in random-walk mode 

at each pixel. Data were processed using fleXimaging version 4.1. 

 

Protein Identification from MALDI IMS Data 

Proteins of interest, selected based on unique m/z distributions in MALDI IMS 

experiments, were further purified by reversed-phase HPLC for identification. Protein extracts 

from the center and edge regions of the biofilm (Figure 5.8) were selected for protein fractionation. 

These samples were fractionated using a Waters 2690 Separations Module equipped with an 

offline fraction collector. Proteins were fractionated using a Vydak 208TP 150 mm 5 µm C8 

column (Vydac Grace, Columbia, Maryland) and an aqueous to organic gradient over 120 minutes. 

Fractions were collected every minute. The separation was performed twice and fractions were 

combined. Fractions were dried using a Speedvac Concentrator and reconstituted in 30 µL of 40% 

acetonitrile. One µL of each well was spotted onto a MALDI anchor chip for analysis by MALDI 

MS. Wells containing proteins of interest were isolated and further fractionated onto Novex 16% 
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Tricine gels (Invitrogen, Carlsbad, CA) and stained using SimplyBlue SafeStain.  Gel bands 

corresponding to the mass range of interest were extracted and subjected to in-gel reduction, 

alkylation, and tryptic digestion. The resulting peptides were sequenced as described below.  

 

Peptide Sequencing for Protein Identification from MALDI IMS data 

Peptides were sequenced using an Orbitrap Fusion Tribrid Mass Spectrometer (Thermo 

Scientific) coupled to an Easy-nLC 1000 (Thermo Fisher Scientific) ultrahigh pressure liquid 

chromatography (UHPLC) system. Peptides were separated on a 75 µm inner diameter, 25 cm 

long PepMap RSLC C18 column (2 µm, 100 Å, Acclaim) at a flow rate of 300 nL/min using 

mobile phases of 0.1% formic acid, 99.9% water (solvent A) and 0.1% formic acid, 99.9% 

acetonitrile (solvent B). The gradient consisted of 2-20%B in 100 min, 20-32%B in 20 min, 32-

95%B in 1 min, 95%B for 4 min, 95-2%B for 2 min, and the column equilibrated at 2%B for 3 

min. Upon gradient-elution, peptides were ionized via nanoelectrospray ionization using a 

Nanospray Flex ion source (Thermo Fisher Scientific). The instrument was operated in a 3 second 

top speed data-dependent acquisition mode, where precursor ions were selected for a maximum 3 

second cycle. Fourier transform Mass Spectra (FTMS) were collected at 120,000 resolution using 

an automated gain control (AGC) target of 200,000 and a maximum injection time of 50 ms. 

Precursor ions were filtered according to charge state (9> z >1 required) and monoisotopic 

precursor assignment. Previously interrogated precursor ions were excluded using a dynamic 

window (30 s ± 10 ppm). Precursor ions for MS/MS analysis were isolated with a 1.5 m/z 

quadrupole mass filter isolation window. Precursor ions were fragmented with higher energy 

dissociation (HCD) using a normalized collision energy of 35%.  Ion trap MS/MS spectra were 

acquired using an AGC target of 1,000 and maximum injection time of 40 ms. Data analyses were 
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performed using Protalizer software (Vulcan Analytical, Birmingham, AL). Spectra were searched 

against the Pseudomonas aeruginosa strain UCBPP-PA14 UniProt database using a target FDR 

of 1%. Searches were performed using a 20 ppm MS1 tolerance and a ±0.6 Da MS2 tolerance 

while allowing for up to 2 missed cleavages as well as carbamidomethyation, phosphorylation, 

and oxidation modifications. 

 

Processing and Analysis of DFR Biofilms by Proteomics 

Biofilms selected for bottom-up proteomics experiments were dissected into central 

channel and nutrient-deplete edge regions (Figure 5.6) and further dissected into four replicates 

prior to processing. Each region of biofilm was moved to a 15 mL conical tube for lysis and protein 

extraction. Cells were lysed using 1 mL of 80% Acetonitrile 5% Formic acid and 400 µL of 

Bacterial Protein Extraction Reagent (BPER) (Thermo Scientific, Rockford, IL). Biofilms were 

homogenized using an ultrasonicator dismembrator Model 150E (Fisher Scientific). Protein was 

quantified using a Bradford Assay (Thermo Scientific, Rockford, IL). Twenty-five μg of protein 

was removed from each sample, dried using a speedvac concentrator (Thermo Scientific), 

reconstituted in sample buffer, and loaded onto a 10% Novex Bis-Tris Gel (Invitrogen, Carlsbad, 

CA) with MES Running Buffer. Samples were run into the gel at 200 V for 5 minutes and stained 

using SimplyBlueTM SafeStain (Invitrogen, Carlsbad, CA). Stained gel bands were removed and 

subjected to in-gel reduction, alkylation, and tryptic digestion. The resulting peptides were 

analyzed by data-dependent LC-MS/MS analysis as described below.  
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LC-MS/MS Analysis for Bottom-up Proteomics of PA14 Biofilms 

Peptides were autosampled onto a 200 mm by 0.1 mm self-packed analytical column 

(Jupiter 3 µm, 300A) coupled directly to an LTQ (Thermo Scientific, Waltham, MA) using a 

nanoelectrospray source. Peptides were eluted over a 70 minute aqueous to organic gradient. A 

full scan mass spectrum followed by 5 data-dependent tandem mass spectra (MS/MS) was 

collected with enabled dynamic exclusion to minimize the acquisition of redundant spectra. 

Tandem mass spectra were searched using SEQUEST against the PA14 database containing both 

forward and reversed versions for each entry (UniProt Pseudomonas aeruginosa strain UCBPP-

PA14, taxon 208963 reference proteome set).  Identifications were filtered and compiled at the 

protein level using Scaffold 4 (Proteome Software) with a 5% FDR and 2 minimum peptide 

threshold. Differences in peptide enrichment in the biofilm center versus the biofilm edge were 

assessed using a three step process. First, peptides of interest were identified by assessing the 

peptide counts obtained from center-derived samples versus edge-derived samples and 

determining a statistically-significant enrichment in a biofilm compartment using a Student’s t-test 

comparing the four technical replicates of a single run. Secondly, this statistically-significant 

peptide enrichment needed to be maintained in replicate biofilms in order for the protein of interest 

to make the final cut-off. Finally, the averaged peptide counts of all replicate biofilm edge and 

center samples needed to be significantly enriched in one of these compartments in order to be 

included in data, which is available at http://www.ebi.ac.uk/pride/archive/projects/PXD004081.  

 

Processing and Analysis of Trace Metal in Biofilms by ICP-MS 

Trace metals were quantified from homogenates extracted for bottom-up proteomic 

analysis. Samples were diluted to 10 µg of protein in 100 µL protein extraction buffer and moved 

http://www.ebi.ac.uk/pride/archive/projects/PXD004081
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into 15 mL metal-free conical tubes (VWR, USA). Samples were digested with nitric acid by 

adding one milliliter of 50% HNO3 (Optima grade; Fisher) to the 100 µL sample and incubating at 

50°C for 18 hours with caps loosened. After digestion, samples were diluted to a 10-mL final 

volume in Milli-Q water. Five parts per billion Ga was included in each sample as an internal 

standard. Elemental quantification of these samples was performed on the ELEMENT 2™ 

inductively coupled plasma mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) 

coupled with an ESI autosampler (Elemental Scientific, Omaha, NE). The ICP-MS was equipped 

with a PFA microflow nebulizer (Elemental Scientific, Omaha, NE), a double channel spray 

chamber (at room temperature), a magnetic sector followed by an electric sector, and a second 

electron multiplier.  The sample uptake was achieved through self-aspiration via 0.50 mm ID 

sample probe and sample capillary which then introduced samples to the ICP-MS for the detection 

of isotopes of 25Mg+, 44Ca+, 55Mn+, 56Fe+, 66Zn+, and 69Ga+. 

 

Processing and Analysis of Trace Metal in Biofilms by LA-ICP-IMS 

Trace element imaging was performed using an LSX-213 laser ablation system (LA, 

CETAC, Omaha, USA) coupled with ELEMENT 2™ inductively coupled plasma mass 

spectrometer (Thermo Fisher Scientific, Bremen, Germany). Slide-mounted slices of biofilm were 

placed in a sealed ablation cell and ablated in multi-line mode (line-by-line) with a focused 

Nd:YAG laser beam with a spot size of 100 μm. The ablated sample particles were then online 

introduced to ICP-MS for the detection of isotopes of 44Ca+, 55Mn+, 56Fe+, and 66Zn+. 
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Analysis of Biofilms by Microscopy 

Bacterial biofilms were grown as described above and analyzed by either scanning electron 

microscopy or confocal laser scanning microscopy as previously described.222  Briefly, for electron 

microscopy, samples were fixed with 2.0% paraformaldehyde (Electron Microscopy Sciences, 

Hatfield, PA), 2.5% gluteraldehyde (Electron Microscopy Sciences) in 0.05 M sodium cacodylate 

(Electron Microscopy Sciences) buffer for 24 hours.  After primary fixation, samples were washed 

three times with 0.05 M sodium cacodylate buffer before sequential dehydration with increasing 

concentrations of ethanol.  After dehydration, samples were dried at the critical point using a 

Tousimis Critical Point Dryer machine, mounted onto aluminum SEM sample stubs (Electron 

Microscopy Sciences), and sputter-coated with 5 nm of gold-palladium.  Afterward, samples were 

painted with a thin strip of colloidal silver (Electron Microscopy Sciences) at the edge to facilitate 

charge dissipation.  Biofilms were imaged with an FEI Quanta 250 field-emission gun scanning 

electron microscope (Hillsboro, OR).  For confocal microscopy, samples were stained with 

LIVE/DEAD® BacLight™ bacterial viability kit which includes both Syto 9 (green) and 

propidium iodide (red) (Life Technologies, Carlsbad, CA) to visualize bacterial cells and 

calcofluor white (blue) (Sigma-Aldrich) to visualize carbohydrate capsule/matrix within the 

biofilm.  Biofilms were mounted with ProLong Antifade (Life Technologies) and visualized with 

a Zeiss LSM 710 (Oberkochen, Germany).  Images were analyzed and both ortho and 2D 

renderings were generated with Zen 2010 software.  Micrographs shown are representative of three 

biological replicates. 
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Growth and Processing of Agar Colonies for IMS 

Prior to addition of calprotectin to agar-based growth medium, the medium was cooled to 

50°C. Agar-based co-culture assays were performed on LB agar embedded with appropriate 

calprotectin concentrations as mentioned in the text or the equivalent volume of calprotectin buffer 

(100 mM NaCl, 3 mM CaCl2 10 mM β-mercaptoethanol, 20 mM Tris, pH 7.5). A lawn of S. aureus 

was established on the media surface by spreading a 1:1000 dilution of an overnight culture onto 

solidified media using sterile cotton swabs. Sterile discs were placed on the agar surface and 

inoculated with 5 µL of a 1:1000 dilution of an overnight P. aeruginosa culture. Plates were 

incubated at 37 °C for 24 hours. 

Agar colonies for MALDI IMS were grown on modified ISP2 agar medium (5 g/L proteose 

peptone #2; 3 g/L yeast extract; 3 g/L casamino acids; 10 g/L glucose; 20 g/L agar) similarly to 

previously described methods.223 The medium was supplemented with appropriate calprotectin 

concentrations as mentioned in the text or an equivalent volume of calprotectin buffer. Ten-

milliliters of medium were used per 100 mm by 15 mm petri dish to create a thin layer of growth 

medium that is more optimal for subsequent MALDI IMS. Two microliters of a 1:1000 dilution 

of an overnight P. aeruginosa culture were spotted onto solidified medium and plates were 

incubated at 37 °C for 24 hours prior to MALDI IMS. 

Bacterial colonies were excised from the petri dish as previously described 223 and 

methanol soft-landed onto a Bruker 384-well stainless steel target. A mixture of 15 mg/mL 2,5-

dihydroxybenzoic acid (DHB) and 5 mg/mL α-cyano-4-hydroxycinnamic acid (CHCA) was 

prepared in 90% acetonitrile with 0.2% trifluoroacetic acid and sonicated until crystals were fully 

dissolved. Matrix was applied to sample sections using a TM-Sprayer (HTX Imaging, Carrboro, 

NC). The matrix was sprayed onto the sections at a flow rate of 0.2 ml/min using a pushing solvent 
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of 90% acetonitrile. The TM-Sprayer was operated at a speed of 1200 mm/min and at a nozzle 

temperature of 80°C. The spray pattern was set to 2 mm spacing and 12 passes were applied. IMS 

of metabolites was collected in reflector positive ion mode on an AutofleX Speed mass 

spectrometer (Bruker Daltonics, Billerica, MA) at 400-micron spatial resolution. Fifty laser shots 

were acquired per pixel in random walk mode in 10 shot steps. Data were processed using 

flexImaging version 4.1.  

 

Processing of Cystic Fibrosis Patient Lung Explants 

Human lungs were obtained for research purposes from a patient with cystic fibrosis and 

end-stage lung disease at the time of lung transplantation.  Informed consent was obtained and the 

protocol was approved by the Vanderbilt University Institutional Review Board. The right upper 

lobe was sectioned and frozen in 50% Optimal Cutting Temperature Polymer (Tissue-Tek, 

SakuraFinetek, Torrance, CA).  The lung was sectioned at 10 μm thickness using a Leica CM 3050 

S Cryostat (Leica Microsystems, Bannockburn, IL) and serial sections were prepared as follows: 

(i) stained with hematoxylin and eosin (H&E), (ii) Gram stained, and (iii) sectioned for MALDI 

IMS. Optical images of H&E stained lungs were obtained at 20x magnification using a Leica 

SCN400 Brightfield Slide Scanner. For MALDI IMS analysis, biopsies from explanted cystic 

fibrosis lung tissues were mounted onto chilled indium-tin oxide coated glass. Tissue was 

sequentially washed as follows: 70% ethanol for 30 seconds, 100% ethanol for 30 seconds, 6:2:1 

ethanol:chloroform:acetic acid for 2 minutes, 100% ethanol for 30 seconds, water for 30 seconds, 

and 100% ethanol for 30 seconds.224  
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MALDI Imaging Mass Spectrometry of cystic fibrosis lungs 

A solution of 15 mg/mL 2,5-dihydroxyacetphenone (DHA) was prepared in 90% 

acetonitrile with 0.2% trifluoroacetic acid and sonicated until crystals were fully dissolved. Matrix 

was applied to washed sample sections using a TM-Sprayer (HTX Imaging, Carrboro, NC). The 

matrix was sprayed onto the sections at a flow rate of 0.2 ml/min using a pushing solvent of 90% 

acetonitrile. The TM-Sprayer was operated at a speed of 1200 mm/min and at a nozzle temperature 

of 80°C. The spray pattern was set to 2 mm spacing and 6 passes were applied. The matrix coating 

was rehydrated using 1 mL of 50 mM acetic acid in a sealed petri dish at 85°C for 3 minutes. IMS 

was performed using a rapifleXTM MALDI TissuetyperTM (Bruker Daltonics, Billerica, MA). The 

instrument was operated in linear positive ion mode with 50 by 50 µm pixels with the laser in 

single beam mode. A total of 500 laser shots were collected per pixel in 50 shot increments.  

High-throughput and spatial resolution imaging experiments were performed using a 

rapifleX MALDI Tissuetyper (Bruker Daltonics, Billerica, MA, USA). The instrument is equipped 

with a Smartbeam 3D 10kHz Nd:YAG (355nm) laser. The instrument is capable of rapidly 

generating IMS data from discrete square pixels by moving the laser and the stage 

independently.  This enables the stage to be moved continuously while the laser scans the full area 

of each pixel. All images were collected using the single spot laser setting (~5 μm) with a pixel 

scan size of 30 μm or 10 μm in both x and y dimensions. For protein analysis data were collected 

in positive ion mode from m/z 2,000 – 20,000 and each pixel consisted of an average of 300 laser 

shots. 30 μm ion images of rat brain and human lung tissue sections consisted of 144,682 and 

140,772 pixels respectively. 10 μm ion images of rat brain and human lung tissue sections 

consisted of 24,218 and 29,236 pixels respectively.  Lipid imaging data was collected in negative 
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ion mode from m/z 600 – 1,000 with 200 laser shots averaged per pixel. 10 μm lipid images of 

human lung tissue sections consisted of 1,015,083 pixels. 

High-mass resolution imaging experiments were performed using a 15T Bruker SolariX 

MALDI FTICR mass spectrometer (Bruker Daltonics, Billerica, MA, USA). The instrument is 

equipped with an Apollo II dual MALDI/ESI ion source and a Smartbeam II 2kHz Nd:YAG 

(355nm) laser. All images were collected using the small laser setting (~50 μm) with a pixel 

spacing of 100 μm in both x and y dimensions. Data were collected from m/z 1,100 – 25,000 with 

a data size of 1MB per spectrum. Special tuning of the Funnel RF amplitude (250 Vpp), 

accumulation hexapole (1.4 MHz, 1950 Vpp), transfer optics (1 MHz, 380 Vpp), time-of-flight 

delay (2.8 ms), and ICR cell (Sweep excitation power: 48%) were required for high m/z analysis. 

External calibration was performed prior to analysis using CsI clusters. Ion images consisted of 

13,596 pixels and 14,632 pixels for rat brain and ccRCC samples respectively. FlexImaging 4.1 

(Bruker Daltonics, Billerica, MA, USA) was used to visualize ion images.   

 

In vitro co-culture 

P. aeruginosa and S. aureus mono-cultures were grown overnight in glucose-supplemented 

low nutrient broth (GLNB) (2 g/L tryptic soy broth; 2 g/L glucose) at 37 °C with shaking at 180 

rpm. The next morning, cultures were metal-restricted by pelleting and suspending samples in 

Chelex 100-treated GLNB supplemented with 100 µM CaCl2 and 1 mM MgCl2. These cultures 

were grown at 37 °C with shaking at 180 rpm for 2 hours. Cultures were then pelleted, suspended 

in fresh metal-restricted GLNB, and grown for an additional 2 hours to produce metal-limited 

samples. Co-culture assays were performed in 96-well plates containing 150 µL of co-culture 

media (60% TSB; 40% calprotectin buffer [100 mM NaCl, 3 mM CaCl2, 10 mM β-
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mercaptoethanol, 20 mM Tris, pH 7.5]). When noted, co-culture media was supplemented with 

WT or ΔS1ΔS2 (transition metal-binding deficient) calprotectin at specified concentrations in the 

presence or absence of specified metal concentrations. The 96-well plate co-cultures were seeded 

with 1:100 dilutions of the metal-limited P. aeruginosa and S. aureus mono-cultures and grown 

for 44 hours statically at 37 °C. At the completion of co-culture growth assays, samples were mixed 

by repeated pipetting, serially diluted in PBS, and plated onto cetrimide agar and mannitol salt 

agar for the enumeration of P. aeruginosa and S. aureus, respectively. 

Agar-based co-culture assays were performed on LB agar embedded with appropriate 

calprotectin concentrations as mentioned in the text or the equivalent volume of calprotectin buffer 

(100 mM NaCl, 3 mM CaCl2 10 mM β-mercaptoethanol, 20 mM Tris, pH 7.5). A lawn of S. aureus 

was established on the media surface by spreading a 1:1000 dilution of an overnight culture onto 

solidified media using sterile cotton swabs. Sterile discs were placed on the agar surface and 

inoculated with 5 µL of a 1:1000 dilution of an overnight P. aeruginosa culture. Plates were 

incubated at 37 °C for 24 hours.  

 

qRT-PCR and RNA-seq 

Samples for metabolite analysis or RNA extraction were grown in calprotectin-treatment 

media (60% TSB, 40 mM NaCl, 1.2 mM CaCl2, 0.5 mM β-mercaptoethanol, 8 mM Tris, pH 7.5) 

in the presence or absence of 0.25 mg/mL calprotectin and/or 10 µM ZnCl2. Five milliliter cultures 

were grown shaking at 180 rpm for 18 hours at 37 °C. Cells were pelleted and retained for RNA 

extraction. Supernatants were retained for metabolite measurement. Colony forming units were 

plated to determine culture density. 
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Total RNA was harvested using a combination of LETS  buffer (0.1 M LiCl; 10 mM 

EDTA; 10 mM Tris-HCl pH 7.4; 1% SDS) and TRI Reagent as previously described 225. qRT-

PCR was performed using SYBR green supermix (Bio-Rad) following manufacturer’s instructions 

using the primers listed in Supplementary Table 1. RNA samples for RNA-seq were submitted to 

HudsonAlpha (Huntsville, AL) for ribosomal reduction, 50 bp paired-end sequencing with 12.5 

million reads per sample, and subsequent data analysis. The statistical test used for this data set 

was a moderated t-test with a corrected p value cutoff of 0.05, asymptotic p value computation, 

and Benjamini-Hochberg multiple testing correction. 

 

Pyocyanin measurement 

Pyocyanin measurements were performed similarly to previously described methods 226. 

Briefly, the pyocyanin from 1 mL of supernatant obtained from samples of equivalent cell density 

was extracted with 0.5 mL chloroform after vigorous mixing. The chloroform layer was 

subsequently acidified with the addition of 0.5 mL 0.2N HCl upon vigorous mixing and the 

pyocyanin was eluted to the aqueous phase. Pyocyanin concentration was calculated by measuring 

absorbance at 520 nm. 
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CHAPTER VI 

 

CONSPECTUS 

 

A version of the following chapter was previously published and has been adapted from 

Moore et al., Current Opinion in Microbiology, Copyright 2014 by Elsevier1 and from Moore et 

al., Proceedings of the NATO Advanced Study Institute in Rapid Threat Detection, Copyright 

2017 by Springer.3 

 

Overview 

 This work presented many examples in which Imaging Mass Spectrometry has been used 

to greatly enhance our knowledge of the intricate relationship between pathogen and host. As 

technologies continue to advance, the application of such work flows stands to only increase our 

understanding of microbial pathogenesis. In this conspectus, the current state of the field and the 

future directions of this project are discussed.   

 

MALDI MS and the Clinical Laboratory 

MALDI MS is a maturing technology; each technological advancement yields potential to 

enhance the capabilities of the diagnostic laboratory. As the clinical microbial laboratory embraces 

more advanced analytical technologies, the potential for rapid and accurate diagnostics becomes 

more realistic. Rapid diagnostics are currently attainable for cultured microorganisms, but signals 

from pathogens directly from the host specimens are more difficult to determine. The challenges 

arise from both the relative low abundance of microbial proteins and the small size of most 



183 
 

microorganisms. The substantial technological progress in MALDI MS solidifies its future in both 

research and clinical settings. Rapid diagnostic capabilities could make this technology a future 

point-of-care testing method, guiding the approaches of physicians for antibiotic administration 

and treatment regimens in an era of increased antibiotic resistance. MALDI MS remains a robust 

and high throughput discovery tool for novel biomarkers from complex mixtures.  

 

MALDI MS and Infectious Diseases 

MALDI mass spectrometry has had broad positive impacts on the field of infectious 

diseases. Through microbial biotyping by matching an intact bacterial colony’s spectral fingerprint 

to known databases, the ability to rapidly identify pathogens from culture has enabled many 

clinicians to rapidly provide appropriate antimicrobial intervention for patients. Appropriate 

antimicrobial intervention in a timely manner saves lives, particularly in cases of sepsis. In one 

study of Gram-negative bacteremia, MALDI TOF identification altered the course of treatment in 

35% of patients in a 202 patient cohort.227 Through the integration of this technology into the 

clinical workflow, a rapid and cost-effective analytical approach has had dramatic impact on 

human health. 

 This can be further extrapolated to histology-directed MALDI mass spectrometry, where 

histological features within tissue sections can be targeted for interrogation with a mass 

spectrometer. Though still in elementary stages and without FDA approval, the application of 

similar technologies to tissue biopsies could aid the field of histopathology as MALDI MS 

profiling has aided diagnostic microbiology. Future work in this field could involve targeting areas 

within biopsies that were suspect for microbial infection and obtaining a spectral fingerprint to 

identify the pathogen causing disease from directly within host tissues. Additional studies could 
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attempt similar analyses from body fluids, including sputum, blood samples, and other wound 

exudates. Though this approach would inherently have sensitivity difficulties in attempting to 

detect pathogenic markers from within host fluids.  

Imaging Mass Spectrometry takes these experiments one step further by systematically 

interrogating a tissue surface to reconstruct the molecular pathology of a biopsy. This allows 

researchers to target not only the pathogen signals but also the changing host environment 

surrounding the threat, allowing for unprecedented molecular study of the pathogen-host interface. 

The same sensitivity issues surrounding the detection of bacterial markers in host fluids is 

applicable here, though this approach remains more useful for primary scientific research and not 

clinical applications as microbial infections rarely require tissue resection. The future benchmark 

for clinical microbial identification remains pathogen identification without additional culture, 

directly from would fluids, sputum, and blood. 

 

Next Generation IMS 

MALDI IMS instrumentation has also experienced great advancements in the last five years, 

further enabling such analyses. For example, laser optics can be refined to decrease the footprint 

of the beam, allowing high spatial resolution experiments to be possible. 228 This has even included 

MALDI imaging of single cells.229-231 Next generation instrumentation is being designed to rapidly 

and accurately interrogate tissue at higher spatial resolution, ideal for 3D data sets.2, 17 In these 

examples, throughput is maximized using continuous laser raster sampling where the laser is 

continuously fired while the sample stage is moved laterally to the area of interest.  Although this 

approach can achieve high data acquisition rates (>30 pixels/s for small molecules) this sampling 

approach introduces complications in defining the true pixel size.  More recently, a unique 
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approach for performing continuous sampling in a way that still maintains discrete pixels was 

reported. Here the sample and laser are moved simultaneously so that discrete square pixels can 

be scanned as the sample target moves continuously.  This platform also incorporates a 10kHz 

laser allowing for data acquisition rates of ~50 pixels/s to be achieved. 

 New detector systems allow for higher molecular weight proteins to be efficiently detected 

directly from complex environments, including tissue.232 Improvement in sample preparation has 

focused on the enhanced sensitivity and ionization of selected analytes. For example, ionic 

matrices have detected signals from mouse blood and urine correlating to masses of cultured 

bacteria in an in vivo model of systemic bacteremia.233 Such ionic matrices improve the ionization 

of proteins and reduce spot-to-spot variation, characteristics critical for clinical diagnostics.234 

MALDI-compatible surfaces have been designed to capture bacteria from biological solutions. 

Bacterial signatures from 104 colony forming units (CFU)/mL have been detected from titanium-

based chips 235;  graphene magnetic nanosheets decorated with chitosan allow detection of bacterial 

signatures from 102 CFU/mL 236; and zirconium hydroxide immobilization followed by direct 

cultivation enable detection of 32 CFU/mL of Enterococcus faecalis spiked into milk.237 These 

technological advancements have allowed tissues to be studied at extremely high spatial resolution 

and are important innovations to support the continued study of the pathogen-host interface. 228, 231 

 

In situ Analyte Identification 

Both MALDI profiling and MALDI imaging approaches yield a wealth of data from tissue. 

A number of analyses have been able to successfully perform diagnostic assays simply by 

fingerprint matching. For example, it is hypothesized that most of the signatures in microbial 

fingerprinting from agar are actually small ribosomal proteins.238-241 These analytical strategies 
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have made a large impact on clinical microbiology and the time to diagnosis and antibiotic 

intervention even without knowing the identities of the peaks in the classifier. Recently, the field 

has begun the arduous task of identifying the proteins yielding the fingerprint patterns used in 

classification.238, 240 Identification of analytes that denote antibiotic resistance or increased 

pathogenicity has utility not only in clinical settings but also in the primary research laboratory. 

MALDI profiling and imaging experiments performed in the research laboratory have the potential 

to reveal unprecedented information about microbial pathogenesis and the pathogen-host 

interaction by allowing for the study of bacteria within host tissues actively causing disease. 

In addition to need for identification from intact cell MALDI MS for microbial 

identification, there is also a great need to identify analytes from both histology-directed MS and 

MALDI IMS experiments. Identification of analytes that are regiospecifically localized to areas of 

interest is paramount to enhance our knowledge of disease, making this area of research incredibly 

important to the field. Some researchers have worked to increase the charge state of MALDI ions, 

which are generally in a 1+ or 2+ charge state. Researchers have attempted to increase the charge 

state of ion generated directly from tissue or profiling experiments to assist in MALDI-based 

fragmentation. These studies utilize supercharging matrices- matrices that generate ions with 

higher charge states. Alternatively, others have attempted ESI surface analysis techniques, such as 

desorptive electrospray ionization and laser-ablation electrospray ionization.242, 243 These 

technologies suffer from low spatial resolution due to solvent spread as it directly interacts with 

tissue, though they do provide an attractive alternative for on-tissue analyte identification.  
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Organ-Specific Variation in Pathogen-Host Interactions 

 Our laboratories have pioneered the use of IMS technology to study infection biology. 28, 

124, 135, 244, 245 This work has focused extensively on characterizing staphylococcal lesions in kidney 

tissues. This is partially because the foci in this organ system are robust and ideal for method 

development. However, organ-specific colonization is still an area requiring extensive study. 

Chapter IV reveled that metal levels vary greatly among organs, providing individual 

microenvironments with individual proteomics niches that could affect pathogenesis. 

Additionally, the size of lesions in other organ systems is smaller, requiring high sensitivity high 

spatial resolution IMS analyses of both metals and proteins. These studies should be performed in 

depth at varying time points throughout the course of infection to fully characterize the biological 

nuances. Signals detected from the staphylococcal colonies in different tissue types should be 

compared along with proteomic data to determine factors affecting organ-specific colonization. 

Such data could help determine why bacteria prefer certain niches within the host. 

 Such organ-specific fluctuations in nutrients might also affect how bacteria form biofilms 

to colonize these niches. Continuation developing biofilm models that mimic environmental 

conditions experienced within the vertebrate host are important to continue to study how bacteria 

respond to host-imposed limitation of nutrients and nutritional immunity. Though research into 

these communities is hindered by challenges associated with studying intact biofilms, our 

laboratories use of a drip flow reactor has provided an unbiased view of the molecular 

heterogeneity within these microbial communities. 29, 246, 247  
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Concluding Remarks 

The application of advanced mass spectrometry technologies to study the pathogen-host 

interaction can provide novel information about the biological changes associated with microbial 

pathogenesis and therapeutic resistance. 1, 248, 249 Imaging mass spectrometry (IMS) is an ideal 

analytical technology to study the competition for metals at the host-pathogen interface because it 

allows for spatial visualization of metals, metalloproteins, and metal-associated small molecules. 

As this technology is further developed for imaging at higher spatial resolutions the ability to 

differentiate bacterial signals associated with microbial communities within the host becomes a 

possibility. Understanding how bacteria behave in a pathogenic environment allows us to develop 

ex vivo models that mimic infection. In this regard, the application of IMS to bacterial biofilm 

models has revealed the unique molecular diversity within microbial communities. 250 The unique 

opportunity to fuse different imaging modalities to visualize proteins and metals at high spatial 

resolution will provide the information necessary to redefine the study of nutritional immunity and 

uncover novel biological information about metal homeostasis during infection. IMS technologies 

enable the study of infectious diseases with unprecedented resolution and will generate 

opportunities to develop new antimicrobial strategies. In an era of antibiotic resistance, such 

studies are paramount for future successful treatment of bacterial infections.  
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Disease is characterized by signature molecular changes in affected tissues and organs. Diseases 
cause disruption and dysregulation of a number of biological molecules, including proteins, lipids, 
metal, and small molecules. Understanding the spatial distribution of biomolecules as it relates to 
human disease is incredibly important; it represents a way to study disease-associated changes in 
tissues. This work utilizes Imaging Mass Spectrometry (IMS), a discovery-based analytical approach 
that enables the detection of biological molecules spatially within diseased tissues, to study infectious 
diseases. IMS discovered molecular changes specific to areas in the tissue where pathogens interact 
with their vertebrate hosts. This region, deemed the pathogen-host interface, presents a wealth of 
information about how vertebrate hosts defend themselves from invading pathogens, including the 
accumulation and oxidative damage of the metal-chelating host protein calprotectin. In response to 
metal-starvation, bacteria also exhibit characteristic changes that are observable by mass 
spectrometry. Further study of these interactions is paramount to the understanding of microbial 
pathogenesis and to the continued treatment of infectious diseases.  
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• Jessica L. Moore, Yaofang Zhang, Thomas E. Kehl-fie, Joshua J. Nicklay, Eric P. Skaar, Richard 
M. Caprioli, “Multimodality Imaging Mass Spectrometry for Co-localization of Trace Metals and 
Proteins in Murine Tissue Abscesses Elicited from Staphylococcus aureus Infection.” Poster, 61st 
Conference on Mass Spectrometry and Allied Topics, June 9-13, 2013, Minneapolis, Mn 

• Jessica L. Moore, Kyle W. Becker, Joshua J. Nicklay, Kelli Boyd, Eric P. Skaar, Richard M. 
Caprioli. “Assessing Temporal Proteomics using Imaging Mass Spectrometry in an Acinetobacter 
baumannii Pulmonary Infection” Vanderbilt Institute for Chemical Biology [VICB] 10th 
Anniversary Research Symposium Poster Session, March 12, 2013 
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• Jessica L. Moore, M. Indriati Hood, Erin H. Seeley, Eric P. Skaar, Richard M. Caprioli. “Imaging 
Mass Spectrometry as an Analytical Tool to Study Immune Response to Bacterial Challenge.” 
Vanderbilt Institute for Chemical Biology [VICB] Student Research Symposium Poster Session, 
August 9, 2012  

• Jessica L. Moore, Elizabeth Ellison, R. Daniel Johnson. “Rotating Disk Microfluidic Platforms 
prepared by Three-Dimensional Printing.” The Pittsburg Conference for Analytical Chemistry, 
Atlanta, GA. March 13-18, 2011 

• Jessica L. Moore, Elizabeth Ellison, R. Daniel Johnson. “Rotating Disk Microfluidic Platforms 
prepared by Three-Dimensional Printing.” Kentucky EPSCOR Conference Poster Session, 
Lexington, KY. May 2010 

• Jessica L. Moore, “Construction of a Three Dimensional Microfluidic Platform.” Oral 
Presentation at the University of Tennessee at Martin. American Chemical Society Regional 
Meeting. April 10, 2010  

• Jessica L. Moore, "The Castrati in Opera" Murray State University Scholars Week Presentation, 
May 2009 

• Jessica L. Moore, "Samuel Barber's 'Hermit Songs'" Kentucky Honors Roundtable, Murray, KY. 
Lecture Recital, Spring 2009 

• Senior Vocal Recital, March 2009 
• Jessica L. Moore, “Voicing Gender in Baroque Opera.” Kentucky Honors Round Table. 

University of Louisville, Fall 2008 
• Jessica L. Moore, "Health Care in Mexico," Murray State University International Education 

Week Speaker, Spring 2007 
• International Education Week Panelist. Spring 2007. “Study Abroad Program at Murray State 

University”  
• Jessica L. Moore, "The Castrati in Opera," Southern Regional Honors Round table, Baton Rouge, 

Louisiana. Fall 2006  
• Jessica L. Moore, "The Castrati in Opera," Kentucky Honors Round Table. University of 

Kentucky. Fall 2006  
• Jessica L. Moore, Charlie A. Adams, “Alcoholism on Murray State’s Campus,” Kentucky Honors 

Round Table, University of Kentucky, Spring 2005 
 

Research Experience 
Vanderbilt University National Institute for Imaging Mass Spectrometry: Research Assistant 
January 2012-Present 
 My current dissertation work focuses on integrating Imaging Mass Spectrometry technologies into the 
study of infectious diseases and the pathogen-host interaction. This work is performed under the direction 
of Dr. Richard Caprioli and Dr. Eric Skaar.  
 
Murray State University Department of Chemistry Teaching Assistant 
Fall 2010-Spring 2011 
I taught laboratory sections of Chemistry 201 and 202, Basic College Chemistry; I also taught study and 
review sessions for Basic College Chemistry and Introduction to Chemistry, Chemistry 101 and 105. 
 
Murray State University Department of Chemistry Research Assistant 
Summer 2009-Spring 2011 
I studied fluid dynamics of centrifugal microfluidics devices for point of care diagnostics under the direction 
of Dr. Daniel Johnson.  
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Graduate Awards 
• Fall 2015 Vanderbilt Prize Scholar Student Award Recipient  
• 2015 Vanderbilt Institute for Chemical Biology Prize finalist, Awarded Oral Presentation Award 
• Fall 2014 Vanderbilt University Department of Chemistry Warren Graduate Research Fellow 
• 2012 Vanderbilt University Chemical Biology Interface Training Grant Recipient (T32GM 

065086) 
• 2011-2012 Vanderbilt Institute for Chemical Biology Research Fellowship Recipient 
• 2011-2012 Vanderbilt University David Hercules Fellowship Recipient 
• 2010-2011 Murray State University Innovation Research Fellowship Recipient, August 2010-

May 2011 
• 2010-2011 Murray State University Hattie Mayme Ross Graduate Fellowship Recipient, August 

2010-May 2011 
• 2009-2010 Omicron Delta Kappa Leader of the Year Award Murray State University 
• 2009-2010 Omicron Delta Kappa Leader of the Year Award (Regional) 
• 2009-2010 Carl Fisher Book Award Recipient (Omicron Delta Kappa Outstanding Leader 

Award) 
 

Teaching Experience 
• Stratford High School Science Program Guest Lecturer, Fall 2016 
• Advanced Imaging Mass Spectrometry Short Course Instructor 

o Microtome and Cryostat 
o Protein Identification 
o Histology-Directed Mass Spectrometry: Labcyte Acoustic Spotter 
o Time-of-Flight Mass Spectrometry 

• National Institute for Imaging Mass Spectrometry Lecture Series Leader 
o ICP-MS, LA-ICP-MS, Magnetic Sector Mass Analyzers 
o Electron Transfer Dissociation  

• CPBP 320, Foundations of Chemical Biology teaching assistant, Vanderbilt University, Spring 
2013 

• Vanderbilt Program for Talented Youth, The Chemistry of Everyday Things, Summer 2013 
• Chemistry 201 and 202, General College Chemistry, Murray State University, Fall 2010-Spring 

2011 
• Vanderbilt University Aspirnaut Program, Summer 2014 

o Served as a mentor to an undergraduate researcher 
• Undergraduate Research Mentor 

o Vanderbilt University, 2014-2016. I managed one undergraduate researcher in the field of 
Chemistry  

o Vanderbilt Aspirnaut Program, Summer 2015. I designed research strategies for a high 
school student summer researcher 

o Murray State University, 2009-2011. I managed two undergraduate researchers in the 
field of Chemistry  

 
 


