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CHAPTER 1  

 

INTRODUCTION 

 

1.1 Motivation and Objectives 

 The goal of this PhD is to correlate changes that occur in the uterine cervix to differences 

seen in Raman spectra. This work shows that the sensitivity of Raman spectroscopy (RS) to 

cervical changes can be used to detect cervical dysplasia and the changes associated with 

pregnancy in humans and mice. 

In 2012, it is estimated that over 12,170 women will be diagnosed with new cases of 

invasive cervical cancer and over 4,220 women will die of the disease in the US alone.
1
 

Worldwide, from statistics gathered in 2010, there are over 529,000 new cases and 275,000 

deaths each year resulting from cervical cancer, making it the second most common cancer in 

women worldwide and the most common cancer in women in developing countries.
1
 The use of 

the Papanicolaou (Pap) smear starting in the early 1950s has led to a large decrease in mortality 

from this disease.
2
 The recent introduction of vaccinations against high-risk strains of human 

papillomavirus (HPV, the virus that causes over 99% of cervical cancer cases) and HPV DNA 

testing has the potential to further reduce the incidence and mortality rates of cervical cancer. 

However, there are disadvantages to both of these advances: The vaccines only protect against 2 

of the 15 high-risk strains of HPV and the DNA test requires expensive equipment. Furthermore, 

these new developments have not been implemented in lower-resource settings. One of the goals 

of this research is to use RS, an optical technique, to screen for and diagnose cervical dysplasia 

in vivo. Before this application can be implemented in a clinical setting, changes that may occur 
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due to ethnicity, body mass index (BMI), HPV infection, previous disease, proximity to disease, 

previous pregnancies or health insurance status (a measure of socioeconomic status), must be 

investigated; important factors will be identified and studied in this dissertation. 

Pregnancy is another event that leads to significant changes in the cervix and preterm 

labor is a problem associated with abnormal changes of the uterine cervix. One in eight 

pregnancies is preterm, making preterm birth the leading cause of perinatal morbidity and 

mortality. Despite significant research funding, the rate of preterm labor has been increasing over 

the last decade. Preterm labor can cause a myriad of complications for both the mother, such as 

blood loss and sterility, and the child, such as brain damage, chronic lung diseases, and long-

term physical and mental disabilities. The exact causes of preterm birth are largely unknown and 

while some risk factors exist (i.e. if a woman has had a previous preterm birth), over half of all 

preterm births fall into no "at-risk" category. Currently, there are no accurate quantitative 

assessments to determine a woman's risk of developing preterm labor. One goal of this project is 

to use Raman spectral measurements to identify changes associated with pregnancy in the cervix. 

As Raman spectra from the cervix of pregnant women have never been acquired, obtaining data 

from pregnant mice to determine the detailed effects of pregnancy on Raman spectra will be 

completed first. Finally, a small pilot study acquiring Raman spectra from pregnant women to 

see if significant changes can be identified prior to the onset of labor will be completed. 

Therefore, the overall objective of this doctoral project is to characterize the effects that 

normal, physiological changes in the cervix have on Raman spectra in order to more accurately 

distinguish among differences that exist between normal and precancerous tissue and between 

low- and high-risk pregnancies. 
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1.2 Specific Aims 

Specific Aim (1): Characterize variability of Raman spectra in normal and diseased cervix. 

Previous studies have shown that classifying Raman spectra based on hormonal status (i.e. 

ovulation status or menopausal state) before statistical analysis greatly increases the sensitivity 

and specificity of RS.
3, 4

 In this aim, further clinical studies were performed on a diverse 

population to evaluate the effect of other factors on the cervix and, therefore, the Raman spectra. 

These spectra were obtained from the cervix of women at Nashville General Hospital at Meharry 

Medical College undergoing an annual Pap smear exam or a colposcopy-guided biopsy using a 

fiber-optic probe-based portable RS system. Patients with a history of disease and with a normal 

cervix were recruited into the study. Factors such as socioeconomic status, BMI, previous 

pregnancies, and ethnicity were considered. Changes associated with these factors were then 

correlated to the Raman spectra and their effect on disease classification was evaluated. 

 

Specific Aim (2): Develop Raman microspectroscopy for the detection of HPV, HPV-strain 

and malignancy. Two high-risk HPV strains (16 and 18) were also examined under a cell 

culture setting to determine their effect; in this case, spectra were obtained using a Raman 

microscope system. They were compared to two other cell lines: malignant but HPV-negative 

and benign (normal). HPV-positive and HPV-negative patient samples were also obtained and 

examined to determine if RS is sensitive to HPV infection.  

 

Specific Aim (3): Understand the relationship between Raman spectra and pregnancy in 

normal mice. In this aim, a normal mouse strain was used. Raman spectra were acquired in vivo 

and ex vivo from the mouse cervix at various time points before, during, and after pregnancy ( 19 
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day gestation) with a portable system similar to the one used in Aim (1). After the cervix was 

excised from the mouse, biomechanical tests and histological staining were performed to 

correlate different types of information from the tissue with the differences seen in the Raman 

spectra. A classification algorithm was also used to classify the Raman data based on the time 

point within pregnancy. 

 

In Appendix 1, a pilot, in vivo study validating the ability of RS to detect changes in the 

cervix during human pregnancy is discussed. Raman spectra were acquired from the cervix of 

patients at five time points during their pregnancy and one point six weeks after their pregnancy 

or weekly during their third trimester using the portable Raman system from Aims 1 and 3. 

Women experiencing a normal pregnancy were recruited to the study. The feasibility of using a 

Raman system in the clinic to detect the onset labor was investigated. A classification algorithm 

was again used to determine if significant changes can be detected in the Raman spectra as a 

function of pregnancy. 

 

The combination of these three aims and Appendix 1 serves to continue exploring the 

effects of normal factors, such as ethnicity, BMI, HPV infection, health insurance status, 

previous disease and pregnancy, on Raman spectra of the cervix. The completion of this project 

demonstrates that the sensitivity of RS to normal changes in the cervix can be utilized to 

determine which differences are normal and which are indicative of abnormal changes. 

Understanding these changes resulted in higher classification accuracies of spectra acquired from 

areas of cervical dysplasia and in finding spectral differences associated with pregnancy in mice 

and humans.  
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1.3 Summary of Chapters 

Following this introductory chapter, Chapter 2 contains relevant background information 

on the biology of the cervix, cervical dysplasia and preterm labor, as well as various types of 

optical spectroscopy techniques, including RS. Chapter 3 details the preliminary results that were 

used as the basis of this research. 

Chapter 4 provides the first report on the sensitivity of RS from this research, specifically 

the differences between areas near disease, areas that have had previous disease and a “true 

normal” area, a region without any previous or current disease. 

In Chapter 5, the effect of four normal patient variables (BMI, obstetric history, 

race/ethnicity, health insurance status) on data obtained from true normal cervical tissue in vivo 

is examined. 

Chapter 6 contains the details of ranking normal patient variables listed above, as well as 

ovulation and menopause (previously examined) to increase the classification accuracy of 

spectra acquired from areas of cervical disease. 

Chapter 7 has the results of a cell culture and patient sample study using Raman 

microspectroscopy to detect high-risk HPV infection. It also contains the effect of copy number, 

HPV infection type and malignancy without HPV infection. 

Chapter 8 describes the research using RS to monitor biochemical changes that occur 

during a mouse pregnancy, verifying the Raman data with tissue testing (mechanical testing) and 

histology. 

Chapter 9 provides a summary of the major results presented in this dissertation and 

potential future directions for this project. It also contains information about the impact of this 

research on the larger scientific field and society. 
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Appendix 1 is a short summary of the pilot in vivo human pregnancy study using RS to 

examine the changes in the cervix during and after pregnancy. 

Appendix 2 defines and describes the mathematical processes used in these studies. 
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CHAPTER 2  

 

BACKGROUND 

 

2.1 Normal Cervix 

The cervix consists of squamous and columnar epithelium. Multiple layers of squamous 

epithelia cover most of the ectocervix and are separated from the stroma by the basal layer. A 

normal cervix is shown in Figure 2.1. The columnar epithelium consists of a single layer of 

columnar cells, covering the surface of the endocervical canal. The interface of the two epithelia 

is called the squamo-columnar junction. In a normal cervix, the columnar epithelium is replaced 

by squamous epithelium, causing the squamo-columnar junction to move towards the opening of 

the cervix (os). This transitional epithelium is termed squamous metaplasia.
1
 Virtually all 

squamous cervical neoplasias begin at the squamo-columnar junction, with their precursors 

coming from the transformation zone.
2
 An atypical cervix may result from different pathologies. 

Cervicitis or inflammation, which may or may not be due to infection, is usually the response of 

tissue to injury and is a by-product of the natural repair mechanism.
2
 It is a benign condition. 

 

Figure 2.1 Picture of a normal cervix (Courtesy of the University of Washington). 
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Squamous metaplasia is also a benign change in the cervix associated with irritation, 

inflammation, and low vaginal pH.  

 

2.2 Normal Changes in the Cervix Throughout a Woman's Lifetime 

Luteinizing hormone (LH) and follicular stimulating hormone (FSH) are two important 

gonadotropic hormones produced by the anterior pituitary gland (Figure 2.2). They work in 

tandem during reproduction. Ovulation is induced by a large burst of LH. It also controls the 

length and sequence of the menstrual cycle, which includes ovulation, preparation of the uterus 

for implantation of the fertilized egg, and production of estrogen and progesterone from the 

ovaries. FSH promotes the recruitment and maturation of eggs by the ovaries. It stimulates the 

production of estradiol during the first half of a woman's menstrual cycle. FSH levels are low 

during childhood and high after menopause. 

During each cycle, the cervix undergoes many changes. One role of estrogen is to 

regulate the consistency and composition of cervical mucus. Also, as estrogen levels rise, the os 

gradually opens, softening the cervix and a watery, elastic mucus is produced.
3
 From puberty to 

menopause, these levels fluctuate typically on a 28-day cycle (Figure 2.2). Estrogen is 

responsible for the maintenance and maturation of the uterus, fallopian tubes, cervix, and vagina. 

Progesterone is another important hormone of the female reproductive system. Along 

with estrogen, it causes the lining of the uterus to thicken, preparing for implantation of the 

fertilized egg. It is produced by the corpus luteum, which is formed by a ruptured follicle after an 

egg is released. If the egg is not fertilized, the corpus luteum dissolves, and progesterone is no 

longer produced. Estrogen levels then decrease, the lining of the uterus breaks down, and a new 

menstrual cycle begins.
4
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Menopause is defined as the permanent cessation of the menstrual cycle in the female 

reproductive system. Perimenopause is defined as the transitional period from normal menstrual 

periods to no periods at all. During menopause, the ovarian source of estrogen disappears and 

estrogen levels decline rapidly (Figure 2.3). This decrease results in several physiological 

changes, such as the thinning of the vaginal epithelium, decreased vaginal secretions, and 

vascular instability.
3
 The transition can take up to ten years and is associated with hormonal, 

 

 

 

Figure 2.2. The menstrual cycle is regulated by four important hormones: LH, FSH, estrogen, and 

progesterone (©2003 Merck). 
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physical, and physiological changes which can affect the spectral signatures of cervical tissue. 

 

 

2.3 Changes During Pregnancy 

A wide range of changes occur as a woman progresses through her pregnancy, from an 

enlarged uterus, an increase in vaginal discharge, larger breasts, and a rising heart rate. These 

transformations are initiated and promoted by varying hormone levels, regulated by hormones 

released by the hypothalamus (Figure 2.4). A few of the important hormones are LH, FSH, 

estrogen, progesterone, and beta-human chorionic gonadotropic hormone (b-HCG). After an egg 

is fertilized, these hormones promote and regulate the changes that occur. 

The first four hormones are also important for menstruation, triggering ovulation and 

preparing the uterus for implantation of the fertilized egg. The roles of LH and FSH have been 

discussed above. Progesterone and estrogen are critical during the course of the pregnancy; they 

are both continuously produced, first by the corpus luteum in the ovaries and then by the 

placenta, with their levels increasing until right before labor. Estrogen regulates the level of 

progesterone over the full term of pregnancy and is a key factor in fetal development. Organs 

such as the lungs, kidneys, liver, and adrenal glands need estrogen in order to mature. It also  

 

Figure 2.3. Estrogen levels from puberty to menopause (©2006 Promensil) 
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plays an important role for the mother, assisting in the lactation process and promoting blood 

flow within the uterus. Progesterone works in tandem with estrogen, maintaining the functions of 

the placenta and keeping the endometrium thick. In order to prevent infection, progesterone 

keeps the cervix covered by strengthening its mucus plug. It also strengthens the pelvic walls in 

preparation for labor, while at the same time, preventing the uterus from contracting. The 

decrease in progesterone starts the contractions that eventually lead to labor. b-HCG is released 

after the fertilized egg is implanted into the uterine wall. Its main role is to stimulate the corpus 

luteum to produce progesterone and estrogen during the early part of pregnancy (8-9 weeks), 

before the placenta has matured enough to produce those hormones on its own. Presence of b-

HCG is tested in pregnancy tests as well as the "Triple Test," where elevated levels of b-HCG, 

along with some other factors, can be indicative of neural tube defects or Down syndrome. 

 The most important event that happens in the cervix during pregnancy is cervical 

ripening, where the cervix softens, effaces, and dilates to prepare for labor (Figure 2.5). This 

complicated process is regulated throughout pregnancy by many hormones, specifically relaxin 

and oxytocin. Relaxin triggers the softening and stretching of the cervix and the relaxing of the 

 
Figure 2.4. A snapshot of the events that occur at the beginning of pregnancy. 
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pelvic muscles. Produced by the corpus luteum and the placenta, its level tends to reach its peak 

during the 14
th

 week of pregnancy and at delivery. While some studies show that the presence of 

relaxin can lead to decreased collagen accumulation and an increase in cervical cell proliferation, 

the exact mechanism of its effect on the cervix during pregnancy remains unknown.
5
 The second 

hormone is oxytocin, which acts in response to cervical stretching to make the uterus contract 

and to stimulate milk production in the mammary glands. The high levels of progesterone 

throughout pregnancy prevent oxytocin from being effective; progesterone's rapid decrease prior 

to labor results in oxytocin's effects. 

 

All of the hormones mentioned above play a vital role in regulating the downstream 

effects of a wide range of molecules, like collagen, elastin, and aquaporin water channels. Not 

only do collagen levels decrease during pregnancy, but, based on luminosity measurements, the 

collagen fibers also become highly unorganized.
6
 Elastin has a role in keeping the cervix closed 

and not dilated during pregnancy.
7
 Increasing concentrations of aquaporin channels during 

pregnancy lead to a higher water content and causes cervical dilation.
8
 There are many more 

hormones and proteins involved in the cervical ripening process than mentioned here. Together, 

they are responsible for keeping the cervix strong during most of pregnancy, until right before 

 

 

Figure 2.5 Cervical softening, ripening, and effacing occur as a woman's body prepares for birth. 

(©ADAM) 
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labor, where a number of changes quickly occur to soften, efface, and dilate the cervix in 

preparation for labor and birth. 

 

2.4 Other Factors that May Affect the Cervix 

A variety of other factors can lead to downstream changes that affect hormone levels and 

other factors that can then lead to changes in the tissue. Some of these factors are body mass 

index (BMI), ethnicity, and socioeconomic factors. Many of the studies described below are 

based on epidemiological data and/or correlative results. Although the mechanisms behind how 

these factors influence changes that then affect the cervix is not explicitly known or understood, 

their role in changing the normal, baseline cervix must be considered. 

In general, black and Hispanic women have higher cervical cancer rates than white 

women.
9
 Higher BMIs and lower socioeconomic classes may be the cause, but some studies have 

found that levels of hormones and hormone receptors may vary on the basis of race or ethnicity 

alone. For example, studies have shown that hormones such as estrogen and testosterone can 

vary dramatically between white, black, Asian, and Hispanic groups.
10, 11

 On the other hand, 

some studies have found that there are more estrogen-receptor-negative cases of breast cancer in 

black women, which may mean that even if there are elevated estrogen levels in black women, 

the more aggressive breast tumor type is found more often.
12

 Differences even exist at the gene 

level, such as increasing levels of estrogen receptor α found in black Americans.
13

 Variations 

with circulating levels of hormones like thyroid-stimulating hormones also exist.
10

 Also, there 

are some cultural activities, like douching, that change the vaginal flora; some studies even 

report that this can lead to an increased incidence of cervical dysplasia, pelvic inflammatory 

disease, and Chlamydia infections.
14, 15
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 Body mass index (BMI) is a value that estimates a healthy body weight based on how tall 

the person is; the equation is as follows: 

)m(height

)kg(weight
BMI

22
 .  

Typical ranges of BMI, as defined by the World Health Organization (WHO), are found in Table 

2.1. Many research groups believe that other measurements like waist circumference are more 

accurate in explaining obesity-related health risks, particularly in Asian populations due to 

different body proportions.
16

 However, BMI is still the most widely used measure of health in 

terms of weight. 

 

BMI Value (kg/m
2
) Category 

16.5-18.49 Underweight 

18.50-24.99 Normal 

25.00-29.99 Overweight 

Greater than 30 Obese 

Table 2.1. Health categories based on BMI values, as determined by the WHO. 

 

 Obesity has been linked to greater risks of heart disease, diabetes, cancer, and 

Alzheimer's. Many studies have explored the reasoning behind why obesity can lead to increased 

disease. Some studies postulate that the extra adipose tissue produces additional hormones and 

other molecules that then lead to these increased risks. For example, research has shown that due 

to increased amounts of androgens in adipose tissue, aromatized, circulating estrogen levels are 

usually elevated in people with higher BMIs.
17

 Some studies have linked these higher levels of 

estrogen to an increased risk of breast carcinoma.
18

 Fat tissue also may be a storage site for 

toxins, which could also serve as a continuous, living source of carcinogens.
19

 In addition, this 
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adipose tissue is a source of insulin and insulin-like growth factors, which have been associated 

with a higher incidence of carcinoma.
20

 Finally, women with higher BMIs may have a 

compromised immune system since androgens appear to suppress it, making the body less 

capable of recognizing and eliminating neoplastic cells.
17

  

In general, most cancers also occur at a higher rate in lower socioeconomic classes due to 

less access to hospitals, primary care, physicians, and clinics.
21

 Lower socioeconomic classes 

also tend to have a lower level of education. Many factors, such as access to consistent health 

care, food intake and use of hygiene products may differ within this population compared to the 

population at large. The combination of these factors, as well as the general psychological 

distress that can be felt during a medical exam, make health screenings and follow-up 

appointments a tremendous hurdle within this population.
22

 A study by Miller et al. found that 

close to 61% of women from inner cities did not show up for follow-up visits after an abnormal 

Pap smear.
23

 While there may be no physiological mechanism behind the changes that occur in 

lower socioeconomic classes, there is a need to evaluate how a normal cervix may change under 

these conditions. Any significant differences between populations need to be determined in order 

to create a tool for successfully diagnosing malignant changes in the cervix. 

 

2.5 Cervical Cancer  

In 2012, it is estimated that over 12,170 women will be diagnosed with new cases of 

invasive cervical cancer and over 4,220 women will die of the disease in the US alone.
24

 

Worldwide, from statistics gathered in 2010, there are over 529,000 new cases and 275,000 

deaths each year resulting from cervical cancer, making it the second most common cancer in 

women worldwide and the most common cancer in women in developing countries.
24

 Although 
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early detection of cervical dysplasia has played a key role in reducing the mortality associated 

with this disease over the last 50 years,
25

 the incidence of pre-invasive squamous cervical 

carcinoma has risen dramatically, especially among women under the age of 50,
26

 demonstrating 

the continued need for an effective diagnostic tool. 

Cervical intraepithelial neoplasia (CIN) refers to the development of neoplasia arising 

from the epithelium of the cervix. CIN refers to the precancerous stages of cervical carcinoma 

and is often also referred to as cervical dysplasia. The progression can be seen between Figure 

2.6a and Figure 2.6b. Precancers may be categorized as mild (Figure 2.6a), moderate, or severe 

dysplasia or precancer. The next step in the progression of this disease is carcinoma-in-situ CIS) 

which is one step before the transformation of the dysplasia to cancer (Figure 2.6b).
2, 27, 28

 

Clinically speaking, cervical lesions can be divided into low-grade lesions (mild dysplasia) and 

high-grade lesions (moderate or severe dysplasia and CIS). This distinction is important as 

patients with low-grade lesions usually come more often for Pap smears (i.e. every 6 months), 

but are not treated. Patients with high-grade lesions are usually treated immediately and go 

through extended follow-up appointments. 

Cervical dysplasia can occur any time after a female becomes sexually active since most 

cases of cervical dysplasia are caused by a sexually transmitted HPV infection. Cervical cancer, 

 (a) (b) 

 

Figure 2.6. Progression of Cervical Disease from (a) mild dysplasia with abnormal area that turned white 

after application of acetic acid (courtesy of the Military Obstetrics & Gynecology) and (b) cervical cancer 

(Courtesy of Dr. Alicia Ubeda Hernandez) 
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on the other hand, usually occurs in women after the age of 40. In clinical practice, women 65 

and older who have had at least three normal Pap tests and no abnormal Pap tests in the last 10 

years may stop having annual Pap smears.
29

 Therefore, most cervical precancer cases occur 

before women go through menopause and most cervical cancer develops in women who are 

either perimenopausal or menopausal. Most likely, this slow progression is due to the normal 

maintenance that occurs at the sqamo-columnar junction, as cells are dying and being 

replenished in this region. 

 

2.5.1 HPV Infection 

Human papillomaviruses (HPV) predominantly infect skin and mucosal membranes to 

promote epithelial proliferation. This extraneous proliferation can lead to malignant 

transformations, even though most HPV infections have no symptoms and go into remission over 

the course of a few years.
2
 A number of studies have determined that certain strains of HPV are 

involved in the early stages of precancer and other strains may aid in the progression of the 

disease.
30

 Some HPV infections, therefore, are placed in the same category as mild precancers 

(low-grade lesions) and are clinically treated as such. An HPV vaccine (released in fall 2006), 

Gardasil
TM

, has been shown to prevent infection from HPV 16 and 18 that together cause 70% of 

cervical cancer cases worldwide. Gardasil
TM

 also protects against HPV 6 and 11, which account 

for 90% of genital warts cases. This vaccine, a sequence of 3 shots over a 6-month time period, 

is available to women ages 9-26. However, females are not protected if they have been infected 

with HPV prior to the vaccination. Additionally, Gardasil
TM

 does not protect against the other 12 

high-risk (but less common) HPV types. Although the vaccination is a huge step towards 

eradicating cervical cancer, the vaccination is currently voluntary and the other high-risk HPV 
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strains still pose a great danger, particularly in countries other than the United States.
29, 31

 

HPV, identified in humans more than 40 years ago,
32

 has a small, circular, double-

stranded DNA genome. Even though they are small, with only 8 pairs of genes, they are quite 

complex. E5, E6, and E7 are three oncogenes found in most high-risk strands of HPV that 

regulate the transformation process. E6 and E7 proteins cause cell damage and abnormal cell 

proliferation by cooperatively interfering with functions of cellular tumor suppressor proteins, 

p53 and pRb, respectively.
33

 Two regulatory proteins (E1 and E2) modulate transcription and 

replication. L1 and L2 are two structural proteins that make up the viral capsid.
34

 An infection 

occurs when the virus infects the basal cells of human epithelial tissues. During cellular 

reproduction, some infected basal cells reproduce. Infected virions are only produced in 

terminally differentiated cells, which then shed as squamous cells filled with more viruses. Since 

HPV only infects cells in the basal layer and replicates only in fully differentiated cells, it can 

usually remain undetected by the immune system, avoiding a humoral or cell-mediated immune 

response.
34

 HPV infection can lead to chronic inflammation, which may recruit a host of proteins 

such as chemokines which aid in cell proliferation and growth.
35

 

 

2.5.2 Screening Methods 

The primary screening tool for cervical precancer is the Pap smear, where scrapings from 

the walls of the ecto- and endocervix are examined and diagnosed.
36

 Although the widespread 

application of the Pap smear as a screening tool has greatly decreased the incidence of cervical 

cancer,
37

 sampling and reading errors still lead to high false positive and negative rates. A meta-

analysis of the accuracy of Pap smears showed that in low-risk populations, the mean sensitivity 

and specificity of the Pap smear was 48% and 95%, respectively.
38

 Another meta-analysis which 
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looked at a more diverse population found a mean sensitivity of 58% and a specificity of 69%,.
39

 

Results from both of these studies suggest that the presence and specific identification of cervical 

dysplasia is often incorrect. The annual Pap smear is the standard of care amongst women in the 

developed countries. However, for most women in developing countries, Pap smears are not 

available. In such areas, if the disease is found, it is often already progressed to a later stage.  

When a woman has an abnormal Pap smear result, biopsies are taken from the cervix 

during a colposcopic exam.
26

 A colposcope consists of a fixed focal length microscope with a 

variable magnification (4-40x) to observe the surface of the cervix. The colposcopic image is 

produced by illuminating both the surface epithelium and the underlying stroma. To enhance the 

colposcopic image, 4-6% acetic acid is applied to the cervix to turn abnormal areas white (Figure 

2.6a). This process is reversible; as the acetic acid is depleted, the change reverts to normal. This 

technique can be used repeatedly on the same patient without harm. Acetic acid whitens 

abnormal areas of the cervix by briefly coagulating proteins and dehydrating intracellular 

components. Optically, acetic acid causes the cells to become more refractive, which in turn 

leads to more light being reflected towards the viewer. This amount of coagulation increases if 

the nuceli are large and the cytoplasm contains more protein, which occurs with metaplasia and 

dysplasia. 

Colposcopy, compared to Pap smear, has a high degree of accuracy in finding the lesion 

and assessing its grade.
40

 However, using a colposcope requires extensive training and even in 

the hands of expert practitioners, it has a variable accuracy.
41

 As a result, colposcopy is limited 

and it cannot be used as a stand-alone method for diagnosis. If abnormal sites are identified 

colposcopically, multiple biopsies are taken using standard punch biopsy forceps. These tissue 

samples are fixed in formalin and then sent for histological examination. Histology then forms 
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the gold standard for diagnosis and determination of treatment. 

Several new techniques for cervical disease detection have been introduced in the past 

few years, such as wet prep and cervicography. Wet prep, or liquid-based thin-layer slide 

preparation, modifies conventional Pap smear. This technique rinses the cells into a vial of liquid 

instead of smearing them onto a slide, reducing cell clumping and making the final slide earlier 

to read. Results of this method suggest that it may reduce reading error, making it more sensitive 

than conventional Pap smear for detecting cervical abnormalities.
29

 Wet prep is now routinely 

used in conjunction with the Pap smear. In cervicography, a high-resolution photograph is taken 

of the cervix after application of acetic acid. This photo is then sent to a laboratory to be read by 

colposcopists who have received specialized training in interpretation of these photographs. 

Cervicography would not only eliminate the need for trained colposcopists to look at each 

individual cervix, but it would also standardize how these images are interpreted.
42

 The main 

disadvantage of this method is the increased amount of time needed for the photographs to be 

read. HPV-infection is also routinely tested for during Pap smear and colposcopy-guided biopsy; 

this DNA assay tests for all high-risk HPV types, including 16, 18, and 13 others.
43

 A positive 

result indicates infection with one of those types, without identification of the specific one. A 

recent FDA-approved study tests for the presence of strains 16 and 18 only (not specifically). 

However, it is currently not being using in most clinics.
44

 

Existing screening and diagnostic techniques for cervical precancers have several 

deficiencies that prevent efficient management of an otherwise controllable disease. Standard of 

care ultimately continues to rely on histology for a definitive diagnosis before treatment is 

planned. An accurate, automated diagnostic method could allow for faster, more effective patient 

management. 
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2.6 Preterm Labor 

Preterm labor or when birth occurs before week 37 of pregnancy (typical pregnancies last 

38-42 weeks), affects 1 in 8 pregnancies. Preterm birth is the second leading cause of infant 

mortality, causing over 17% of all infant deaths and 75% of infants that have perinatal death are 

premature.
45

 Preterm birth can result in a wide array of complications for the mother and baby (if 

born), including cerebral palsy, developmental delay, visual and hearing impairment, and chronic 

lung disease.
46

 Even with the current advances in medical knowledge and research, the rate of 

preterm labor has been steadily increasing over the last few decades. While all races and 

ethnicities suffer from preterm birth, it is particularly dominant within the black community.
47

 

Preterm birth is the number one cause of infant mortality in this population, causing over 20% of 

infant deaths. Infants born to black women have an infant death rate due to preterm birth four 

times higher than those born to Caucasian women.
48

 

The reasons for preterm labor remain largely unknown. Various factors, from a rapid 

decrease in collagen content
49

 to improper hormone levels,
50

 have been implicated in occurring 

during preterm labor, but none have been determined as the sole cause. While some populations 

are at risk for preterm labor (women who have had a previous preterm birth, are pregnant with 

more than one child, or have uterine/cervical abnormalities), over half of all women who have 

preterm births do not fall into any known high-risk category.
51

 At this time, there is no way to 

predict preterm labor, making its prevention and treatment virtually impossible. There are four 

accepted causes of preterm birth: (1) premature activation of the fetal hypothalamic-pituitary 

axis, (2) infection/inflammation, (3) hemorrhage/ischemia, and (4) uterine overdistention.
52

 Each 

of these causes may lead to inappropriate uterine contractions and cervical dilation.
53

 

Preventing preterm labor even for a day is beneficial. When doctors can diagnose preterm 
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labor, they have the option of prescribing corticosteroids or tocolytics to increase the time a baby 

spends in the womb, which can greatly help brain and lung development and improve the odds of 

survival. These drugs, given at the earliest sign of preterm labor, can delay delivery from 2-7 

days and reduce infant death by 30%.
54

 They can also reduce the two most serious complications 

of preterm birth: respiratory distress and bleeding in the brain. Another treatment that has been 

investigated is catechol-O-methyltransferase inhibition, which is the enzyme that catalyzes the 

methylation of hydroxyestrogens to methoxyestrogens.
55

 

 

2.6.1 Screening Methods 

Two clinical tests can be used to identify women at risk for preterm birth. The first 

method is based on measuring the length of the cervix. At the first prenatal visit, the length of the 

cervix is measured as a baseline and changes to this measurement are monitored during 

pregnancy.
56

 In subsequent prenatal visits, if the cervix changes by becoming shorter too quickly, 

this may imply that the cervix is beginning to thin out, which could lead to preterm delivery. If 

cervical insufficiency (an abnormally short cervix) is suspected, an ultrasound may be performed 

to measure cervical changes more accurately. However, ultrasound is known to be limited in 

predicting prematurity, particularly in low-risk populations. 

Fetal fibronectin (fFN) screening, the second test, takes 24 hours to complete and is 

usually performed on women presenting symptoms of preterm labor, such as contractions.
57

 fFN 

is a protein produced by the fetal membranes and found in amniotic fluid. This protein attaches 

the fetal sac to the uterine lining and is only detected during early pregnancy and about 1-2 

weeks before delivery. The presence of fFN during weeks 24-34 (a positive result) may suggest 

that the fetal sac is separating from the wall and labor may occur in the next 14 days. A negative 
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result (fFN is not present) means there is a very low risk of delivery within the next two weeks. 

A negative result is extremely accurate, but the positive result is unreliable and does not always 

lead to preterm labor. Thus, the two tests described above have many limitations that make them 

either subjective or inaccurate, restricting their effectiveness. 

Detecting preterm labor is difficult because initial symptoms and signs are often mild and 

can occur in normal pregnancies. Many women who report symptoms during prenatal visits do 

not end up experiencing preterm labor, while others dismiss early warning signs as normal in 

pregnancy. By definition, a physician will diagnose preterm labor if there are persistent 

contractions accompanied by progressive cervical dilatation and effacement. This diagnosis is 

most accurate when contraction frequency is six or more per hour, cervical dilatation is 3 cm or 

more, effacement is 80% or more, membranes rupture, and/or bleeding occurs.
46

 When digital 

examination is used to monitor cervical change, in correlation with lower thresholds for 

contraction frequency, both sensitivity and positive predictive value for actual preterm labor 

decrease, with the rate of false positives increasing to almost 40%. Even with combining the 

different screening tests, their maximum sensitivity is 50% and the maximum specificity is 

95%.
46

 However, currently, these are the only options available to doctors for monitoring their 

pregnant patients. 

 

2.7 Optical Spectroscopy  

Light-based methods have the potential to provide automated, fast determination of the 

types of changes that are occurring in the cervix without disrupting or removing any tissue for 

such analysis. Although there are several techniques that have been used to investigate cervical 

pathology in dysplasia and preterm labor, these techniques have limited applicability in detecting 
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normal or abnormal transformations of the cervix.
28

 This doctoral project used Raman 

spectroscopy (RS) to achieve the stated aims. The physical principles of various optical 

spectroscopy modalities are shown in the Jablonski diagram in Figure 2.7. A few of these 

methods and their role within the cervix are described below. 

 

Figure 2.7. Jablonski diagram illustrating physical principles of common optical spectroscopic 

modalities. Sx refers to electronic energy levels; vi to vibrational levels 

 

 

2.7.1 Optical Coherence Tomography (OCT) for Cervical Dysplasia 

OCT is a high resolution, cross sectional imaging modality analogous to ultrasound, 

except it is based on elastic light scattering. It uses a low coherence near-infrared light source to 

obtain depth-resolved images of tissue microstructure. Even in highly scattering tissues, 

structures up to 2 mm deep (2-3 cell layers) can be imaged.
58

 OCT has high spatial resolution 

(~11 μm, depending on the source) and images can be taken in real-time. A recent study done by 

the Cleveland Clinic recruited 220 patients with a history of an abnormal Pap smear (in the US 

and Dominican Republic). For each patient, a visual exam, a colposcopic exam, and OCT 

measurements were completed. Using visual inspection, combining colposcopy and OCT on 

abnormal tissue has a sensitivity of 46% and a specificity of 69%.
59

 Figure 2.8 shows an OCT 

image of an abnormal cervix with high-grade dysplasia (a) and of a normal cervix (b). To the 

untrained eye, there seem to be very few differences between these two OCT images. 
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OCT is ultimately dependent on structural changes that occur in small areas of the tissue. 

The biggest drawback of OCT is its lack of sensitivity since many situations, normal and 

abnormal, lead to similar architectural disruptions and, therefore, similar OCT images. The study 

from Escobar et al., indicates that OCT alone does not have a sensitive enough performance to 

improve the detection of cervical dysplasia.
62

 

 

2.7.2 Fluorescence for Cervical Dysplasia 

Fluorescence spectroscopy is the most commonly tested optical technique for the in vivo 

detection of diseases in general and cancers in particular. Fluorescence spectroscopy of both 

exogenous and endogenous chromophores has been successfully used to identify neoplastic cells 

and tissues in a variety of organ systems.
60

 The modality has been studied extensively for 

diagnosing and screening cervical precancers.
61-64

 The first in vitro studies for assessing the 

potential of fluorescence spectroscopy for cervical dysplasia was performed by Mahadevan et 

al.
65

 The results from this study highlighted the inter-patient variability of fluorescence signals, 

suggesting the need for comparisons of abnormal sites to normal areas from the same patient.  

Richards-Kortum et al. have extensively developed and evaluated fluorescence 

spectroscopy for detecting cervical precancers in vivo.
66

 Most efforts have focused primarily on 

 

 
Figure 2.8. OCT images of a cervix with high-grade dysplasia (a) and of a normal cervix (b).

62 
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applying single-point fluorescence spectra, acquired at multiple excitation wavelengths, for 

detecting cervical lesions.
67

 Multivariate discriminations algorithms were developed based on 

fluorescence spectra acquired from 95 patients at three excitation wavelengths (337, 380 and 460 

nm). The prospective sensitivity and specificity of the multivariate algorithms based on paired 

fluorescence information for distinguishing between cervical dysplasia from normal tissues was 

82% and 73% respectively. These studies described above also show that the specificity in 

discriminating precancers from non-precancerous tissues is 68%.
68

 Subsequent studies by this 

group have moved to measuring entire excitation-emission matrices to improve the diagnostic 

performance of the technique. More recently, the use of diffuse reflectance has been included to 

enhance the performance of fluorescence spectroscopy for cervical precancer detection.
62

 

Another group from the University of Alabama discriminated between high-grade lesions 

and all other tissue types with a sensitivity of ~90% and a specificity of 50%.
69

 This result in the 

cervix, along with similar observations made in the colon, indicate that fluorescence spectra of 

dysplastic and cancerous tissues are similar in many patients to the fluorescence spectra of 

benign abnormalities such as inflammation, hyperplasia and metaplasia.
68, 70

 Fluorescence-based 

diagnosis yields an unacceptably high false positive rate in distinguishing cancers and dysplasia 

from all other tissues. It should also be noted that clinically it is extremely important to detect 

every high-grade lesion. The sensitivities and specificities found with fluorescence-based 

diagnosis of cervical dysplasia are not sufficient to change the current standard of care.
68

 

 

2.7.3 Raman for Cervical Dysplasia 

Raman spectroscopy is based on the Raman Effect, which occurs when an incident 

photon causes a scattering molecule to enter a virtual excited state, and then return to a ground 
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state either higher or lower than the original through the emission of another photon, as seen on 

the right side of Figure 2.7. It is named after the Indian physicist Sir C.V. Raman, who first 

observed the Raman effect in 1928 and was awarded the Nobel Prize in 1930. Raman Stokes 

scattering occurs when the scattered photon has less energy than the incident photon, while 

Raman anti-Stokes scattering occurs when the scattered photon has more energy than the 

incident photon. In contrast to fluorescence, which involves transitions between electronic 

energy levels, Raman scattering exploits smaller transitions between vibrational energy levels. 

This less intense signal requires a more powerful laser source as well as a sensitive detector. 

Furthermore, fluorescence, much brighter than the Raman signal, is inevitably generated when 

collecting Raman signal and must be dealt with by subtracting it from the raw spectrum. 

A Raman spectrum is a plot of scattered light intensity versus the frequency shift of the 

scattered photon, making it independent of excitation wavelength. The frequency shift is 

expressed in units of wavenumber or Raman shift, which is the reciprocal of the wavelength, 

making it proportional to frequency. The spectrum consists of a series of peaks, each of which 

represents a different vibrational mode of the scattering molecule. These peaks are narrow and 

highly specific to a particular chemical bond, so each molecule has a unique spectrum or 

“fingerprint” associated with it from about 600 to 1800 cm
-1

. Many biological molecules have 

unique and distinguishable spectra, so one can determine the gross biochemical composition of a 

tissue from its Raman spectrum. One particularly relevant biochemical change for cancer cells is 

an increase in the nucleic acid content correlated with increased proliferation and genetic 

instability. These changes, among others, can be detected with RS.
68, 71

 Another important factor 

is the amide-III mode that appears when studying collagen. These amide-III peaks are found at 

1271 and 1248 cm
-1

, and the ratio of peaks at 1303 and 1260 cm
-1

.
72

 It is not trivial to determine 
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from where Raman peaks originate. Therefore, the Raman spectra of cervical tissue must be 

extensively studied to determine the differences between various states and what factors are 

contributing to the differences.
71

 

Raman spectroscopy was historically used in analytical chemistry to determine chemical 

structures or the presence of certain molecules. It has only been in the last ten or twelve years 

that it has become a more popular choice for studying tissue. Many early studies were performed 

in vitro, attempting to distinguish normal from cancerous tissue in areas like cervix,
74

 bladder 

and prostate,
75, 76

 lung,
77

 and GI tract.
75

 Recent studies have used Raman for in vivo 

applications,
78, 79

 with successful application to many organs, such as the breast
80

 and GI tract.
81, 

82
 As seen in Figure 2.7, Raman spectra results from different electronic processes compared to 

fluorescence. Only a limited number of biological molecules can contribute to tissue 

fluorescence, most with broadband emission. On the other hand, several biological molecules 

such as nucleic acids, proteins and lipids, have distinctive Raman features that yield molecular 

specific structural and environmental information.
83

 

 

2.7.4 Fluorescence for Preterm Labor 

 In 2005, Maul et al., found decreases in collagen content during pregnancy by measuring 

collagen autofluorescence (390 nm) with a collascope, an instrument that measures cervical 

ripening by analyzing the light-induced fluorescence of collagen in the cervix (Figure 2.9).
84, 85

 

In this study, they were able to obtain measurements from 40 non-pregnant and pregnant 

patients. For the pregnant patients, seven measurements were taken over the course of their 

pregnancy, as well as one post-partum measurement. While this instrument provides a good 

measure of the collagen content, there are many other processes that are happening during 
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pregnancy that are not solely reflected in collagen content or organization. Therefore, the largest 

drawback of this study is that they were only able to focus on one substance. Although 

fluorescence signal is greater than Raman signal, its lack of surveying the entire cervix is the 

greatest disadvantage of this technique. 

 

2.8 Significance and Impact 

We hypothesize that understanding the effects of changes in the cervix on Raman spectra 

will improve the application of RS to diagnose cervical dysplasia and preterm labor. Cervical 

cancer is the second leading cause of female mortality worldwide. With Pap smears and 

colposcopy-guided biopsy, its prevalence in developed countries has greatly diminished over the 

last 40 years. However, these same techniques cannot be used in settings that do not permit cell 

fixing and transporting, follow-up visits, and highly-trained clinicians. Optical techniques can 

potentially be used in lower-resource settings to diagnose abnormalities in real-time. 

The use of RS for identifying patients at risk for preterm labor has never been 

investigated. It follows that if Raman spectra are sensitive to the subtle, normal changes in the 

 
 

Figure 2.9. Decreases in collagen found by a collascope during pregnancy.
87 
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cervix due to menstrual cycle and menopausal status, it would certainly be sensitive to the large 

changes that occur during pregnancy. Understanding which changes happen normally will result 

in a method of detecting when labor is about to begin. Knowing which differences, if they occur 

at inappropriate times, are abnormal will lead to a method of detecting when preterm labor is 

about to begin. 

The thesis has determined which variations in the cervix and other confounding factors 

significantly impact the Raman spectra. This work will serve as an important base for researchers 

considering this problem or similar ones that require looking at various, normal factors and their 

effects on spectral measurements. These changes, if significant enough, may be masking the 

Raman data, making it more difficult to determine which changes are due to cancer or preterm 

labor. This work has identified those changes in order to increase the feasibility of using RS in 

the clinic for detecting cervical dysplasia and the onset of labor. 
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CHAPTER 3  

 

PRELIMINARY STUDIES 

 

The work described below represents preclinical studies utilizing Raman spectroscopy to 

diagnose cervical dysplasia and to understand variations that occur in the cervix. The results 

below were obtained by two previous PhD students (Amy Robichaux-Viehoever (ARV) and 

Elizabeth Kanter (EK)) and me (EV). These studies laid the foundation for the rest of this 

dissertation. 

 

This majority of this chapter has been published as the following: 

Robichaux-Viehoever A, Kanter EM, Shappell H, Billheimer D, III Jones H, A Mahadevan-

Jansen. Characterization of Raman Spectra Measured In vivo for the Detection of Cervical 

Dysplasia. Applied Spectroscopy, 61: (9), 986-993, 2007 

 

Kanter EM, Vargis E, Majumder S, Keller MD, Beaven RB, Rao GG, A Mahadevan-Jansen. 

Application of Raman spectroscopy for Cervical Dysplasia Diagnosis. Journal of Biophotonics, 

2: (1-2), 81-90, 2009 

 

Kanter EM, Majumder S, Vargis E, Robichaux-Viehoever A, Kanter G, Shappell H, III Jones H, 

A Mahadevan-Jansen. Multiclass Discrimination of Cervical Precancers using Raman 

Spectroscopy. Journal of Raman Spectroscopy, 40: (2), 205-211, 2009 

 

Kanter EM, Majumder S, Kanter GJ, Woeste EM, A Mahadevan-Jansen. Effect of Hormonal 

Variation on Raman Spectra for Cervical Disease Classification. American Journal of Obstetrics 

and Gynecology, 200: (5), 512e1-5, 2009 

 

3.1 Characterization of the Normal Cervix 

Raman spectroscopy has the potential to provide non-invasive, real-time diagnosis of 

different pathologies in the cervix. Yet the sources and relative contributions of spectral 

variability for a given pathology must be understood to accurately predict its effectiveness. To 
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begin studying this, Raman spectra were collected in vivo from 35 patients undergoing 

hysterectomy with no evidence of cervical dysplasia. The effects of signal collection, time, and 

acetic acid on the measured spectra were examined in the first few patients. The remaining 

patient data was used to quantify the spectral variance within a site, within a patient, and between 

different patients. Further analysis of the sources of inter-patient variability included menopausal 

status, smoking history, and overall patient diagnosis.  

Thirty-five patients undergoing total abdominal or vaginal hysterectomies were recruited 

to participate in the study as approved by the Vanderbilt Institutional Review Board (IRB). After 

the patient was placed under anesthesia, but before the hysterectomy procedure began, a 

colposcopic examination of the cervix was performed and Raman spectra were measured. Four 

percent acetic acid was applied to the cervix to visually enhance any abnormal areas of the 

epithelium by inducing aceto-whitening. Colposcopy was performed for two reasons: to ensure 

the measured areas were colposcopically normal and to maintain consistency with the current 

study of dysplasia patients. Multiple Raman spectra of colposcopically normal appearing sites 

were measured in vivo using the portable RS system (Figure 3.1). 

       
Figure 3.1. Schematic and picture of Raman system. 
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Raman spectra were acquired using a portable RS system consisting of a 785 nm diode 

laser (Process Instruments, Inc., Salt Lake City, UT), custom fiber optic probe (Visionex, Inc.), 

imaging spectrograph (Kaiser Optical Systems, Inc., Ann Arbor, MI), and back-illuminated, 

deep-depletion, charge coupled device (CCD) camera (Princeton Instruments, Princeton, NJ) 

which were all controlled with a laptop computer (Figure 3.1). For this study, the fiber optic 

probe delivered 80 mW of incident light onto the tissue and collected the scattered light for 3-5 

seconds. In all cases, the overhead fluorescent and colposcope lights were turned off during the 

measurements. Any luminescent lights were left on but turned away from the measurement site.
1
 

The measured sites were subsequently marked with a methylene blue. The hysterectomy 

procedure proceeded according to standard clinical protocol. Upon removal of the cervix, 

histological analysis was performed.
1
 

Studies on the first five patients were designed to determine the optimal signal collection 

time. In these patients, three sites on the cervix were chosen. Five spectra were acquired at each 

site with a different integration time: 1, 3, 5, 8 seconds, or 3 accumulations of 5 seconds for a 

total of 15 seconds. The fiber optic probe was kept in contact with the tissue throughout the five 

measurements. Studies on 2 other patients examined the effect of applying acetic acid to cervix. 

In this study, three sites were chosen for measurements. All spectra were collected using a 5 

second signal collection time. Spectra were acquired at each site prior to applying acetic acid and 

at various time intervals ranging from 0-180 seconds after the application of acetic acid to 

determine its effect on the Raman spectra. Studies on the remaining subjects (subjects 8-35) were 

designed to examine the sources of variation. In this study, 3 sites were chosen for measurements 

and 3 spectra were collected at each site: the first two were collected without moving the fiber 

optic probe, and the last was acquired after removing the probe and placing it at the same site. 
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These differences allowed for determination of the relative variability due to user error of probe 

placement versus intrinsic variability of the Raman spectra. Measurements at different locations 

within the normal ectocervix of a given patient provided the calculation of variation due to 

different locations. The comparison of spectra between different patients allowed for the 

calculation of inter-patient variation.
1
  

Prior to each day of measurements, the system was calibrated using a neon-argon lamp 

and a naphthalene standard to correct for system wavenumber, laser excitation, and throughput 

variations. Raman spectra from the cervix were noise smoothed using a Savitzky-Golay filter and 

fluorescence was subtracted using the modified polyfit technique with a 5
th

 degree polynomial 

developed within our lab.
2
 The resulting spectra were then correlated with the corresponding 

histopathologic diagnosis to characterize the differences between various diagnostic categories. 

A study of the optimal integration time showed that signal to noise ratio (SNR) increases 

linearly with an increase in integration time until 5 seconds. Further increase in the integration 

time did not proportionally improve SNR and, as such, subsequent spectra were acquired using a 

5-second integration time. The acetic acid analysis showed two small, non-significant spectral 

changes arising after the application of acetic acid; no time-dependent changes were noted. Thus 

it was determined that applying acetic acid did not affect Raman spectra from cervical tissue 

regardless of how long after application the Raman measurement was taken.
1
 The variability due 

to probe placement was quantified by calculating the mean spectral difference between an initial 

measurement and a subsequent measurement in which the probe was either kept in place or 

removed and replaced at the initial site. 

The remaining components of variance, defined in this study as inter-patient (between 

different patients), intra-patient (between different locations within a given patient), and intrinsic 
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measurement error were calculated using analysis of variance (ANOVA) and Henderson’s 

method.
3
 Henderson’s method is a commonly used statistical method for unbalanced data that 

estimates the variance due to each component. The analysis was done at each wavenumber in the 

spectrum. In using this method, an ANOVA table was constructed and the observed mean 

squared error for each category was set equal to its expected value, as defined by Henderson’s 

method.
3
 A series of three equations (for each component of variance) with three unknowns 

(variance due to each component) can then be solved to determine the variance due to each 

component. Using this method, the main source of variability within normal ectocervix was 

identified to be due to inter-patient variations, contributing 73% of the total variance. Variability 

from the same site as well as from the same patient was found to be minimal. Since there is little 

variation in the Raman spectra from normal tissue within a given patient, it was determined that 

a single measurement from the normal cervix is sufficient to characterize the normal signature of 

that patient (ARV). 

 
Figure 3.2. Mean Raman spectral overlays for the following categories: (a) Premenopausal spectra and 

postmenopausal and (b) normal from normal and normal for dysplasia. 
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In order to characterize inter-patient variability, spectral differences were compared 

based on menopausal status, smoking, and disease state. Spectral differences between smokers 

and non-smokers were negligible. Spectral differences were found between premenopausal and 

postmenopausal normal spectra (Figure 3.2a). The peak at 1324 cm
-1 

and the region around 1600 

cm
-1 

are all areas of statistically significant differences. In comparing the normal spectra from 

normal patients (with no cervical disease) to normal spectra from cervical dysplasia patients, 

interesting differences were observed (Figure 3.2b). Although, the normal ectocervix from 

normal and dysplasia patients appear identical histologically, there are spectroscopic differences 

between them. The most notable visual distinctions appear in the peaks at 1006, 1055, 1244 and 

1450 cm
-1

. This finding indicates that RS may be able to detect differences in tissue biology that 

are not evident by histological examination. It is possible that RS can detect malignancy-

associated changes, perhaps occurring at the sub-cellular level. These changes have been 

documented using high resolution image analysis of cervical smear specimens.
4
 The observed 

malignancy-associated changes increased in intensity with higher grades of dysplasia. 

 

3.2 Characterization of Cervical Dysplasia 

In the first attempt to determine if Raman spectroscopy (RS) could be used to distinguish 

between normal and dysplasia, spectra were measured in vivo from 110 patients undergoing 

diagnostic or therapeutic procedures which involved the removal of cervical tissue. Written 

informed consent was obtained from each patient prior to spectral measurements. Two to six 

Raman spectra were acquired from both colposcopically normal and abnormal areas after the 

application of 4% acetic acid prior to tissue excision. Following spectral measurements, the 

measured sites were marked with a methylene blue paste. The tissue was then excised according 
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to standard clinical protocol and the histological analysis was performed. All normal locations 

were assumed to be normal unless pathological evaluation indicated otherwise (ARV and EK).
1
  

Figure 3.3 shows the mean spectra (for 79 patients) comparing two different categories 

for easy comparison (ARV). The most consistent peaks are labeled and found at 1006, 1058, 

1086, 1244, 1270, 1324, 1450, 1550, 1655 cm
-1

. Several spectral regions show statistically 

significant differences
 
in comparing high-grade dysplasia from the normal ectocervix. Even with 

only 6 low-grade dysplasia spectra in the analysis, interesting trends are still observed. There is 

an increase in the 1324 cm
-1 

peak as compared with normal ectocervix, which matches 

comparisons between high-grade dysplasia and normal ectocervix. Yet the intensity of the 1272 

and 1450 cm
-1 

peaks in the low-grade dysplasia spectra seems to remain similar to those seen in 

normal ectocervix, unlike high-grade dysplasia spectra. The comparison of high-grade dysplasia 

 
Figure 3.3. Mean Raman spectral overlays for the following categories: (a) high-grade dysplasia (n=29 

spectra) and low-grade dysplasia (n=6 spectra), (b) normal endocervix (n=8 spectra) and high-grade 

dysplasia, (c) normal ectocervix (n=100 spectra) and normal endocervix, (d) low-grade dysplasia and 

normal endocervix, (e) low-grade dysplasia and normal ectocervix, (f) low-grade dysplasia and 

squamous metaplasia (29 spectra).
1 
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with normal endocervix spectra in Figure 3.3b shows a decrease in intensity at the 1272 cm
-1 

peak compared to the high-grade dysplasia spectra. This change is also seen when comparing 

normal ectocervix and squamous metaplasia spectra. The normal endocervix spectra also appear 

to retain the valley seen at 1305 cm
-1

, similar to the normal ectocervix spectra. However, a 

comparison of normal endocervix and ectocervix spectra surprisingly shows some striking 

differences. Most notably, there is an increase in the intensity of the 1272 and 1324 cm
-1 

peaks in 

the endocervix spectra as compared with ectocervix spectra, while the 1450 cm
-1 

peak shows a 

decrease in intensity.
1
  

Based on these differences observed and using histology as the gold standard, logistic 

regression discrimination algorithms were developed to distinguish between normal ectocervix, 

squamous metaplasia, and high-grade dysplasia using independent training and validation sets of 

data. Low-grade dysplasia was not classified due to the low number of samples. The 

classification model was constructed to automatically classify spectra into one of two categories 

- high-grade dysplasia or benign cervix - using a two-tiered logistic regression model. The first 

algorithm was trained to classify a spectrum as either normal ectocervix (score=0) or high-grade 

dysplasia (score =1) and was developed using independent training and validation sets that were 

randomly generated by dividing the normal ectocervix and high-grade dysplasia data sets into a 

training set (two-thirds of the patients) and a validation sets (one-third of the patients). Any 

major peak that showed statistical difference at the level of p< 0.01 between normal ectocervix 

spectra and high-grade dysplasia spectra were chosen as an input for the algorithm. Thus, the 

inputs to the algorithm are the normalized intensity values at 1006, 1058, 1240 1305 1324, 1450, 

1550, 1655 cm
-1

 

and the logistic regression equation. A two-tiered algorithm was developed to 

separate high-grade dysplasia from everything else and to remove any misclassified squamous 
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metaplasia samples. An unbiased estimate of the model's accuracy indicates that RS was able to 

distinguish between high-grade dysplasia and benign areas of the cervix (normal ectocervix and 

squamous metaplasia) with a sensitivity of 89% and a specificity of 81%. Colposcopy, in expert 

hands, can discriminate such areas with a sensitivity of 87% and a specificity of 72% (ARV).
1
 

The limitation of this particular study is that the discrimination algorithms developed 

above were binary and therefore did not allow for multi-class discrimination. Thus, a new 

discrimination algorithm was developed based on novel statistical methods: Maximum 

representation and discrimination feature (MRDF) combined with sparse multinomial logistic 

regression (SMLR). 

MRDF is a method of feature extraction that maximally extracts the diagnostic 

information that tends to be hidden in a set of measured spectral data. It achieves this by 

reducing its dimensionality through a set of mathematical transforms. Given a set of input data 

with spectra from different tissue types, MRDF will try to find a set of nonlinear transforms 

(restricted order polynomial mappings) of the input data that optimally discriminate between the 

different classes in a reduced dimensionality space. This occurs in two steps. In the first stage, 

the input spectral data T

Nxxx ],....,[ 21x  (intensities corresponding to wavenumbers of the 

spectra) from each tissue type are raised to the power p
 
to produce the associated nonlinear input 

vectors ],...,,[ 21

p

N

pp

p xxx


 x , which are then subject to a transform MΦ  such that 
p

T

MM 
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the first stage output features in the nonlinear feature space of reduced dimension M <<N. In the 
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transformed nonlinearly to the power p to produce higher order features ],....,,[ 21
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nonlinear feature space of dimension K (K  M).
5
 

SMLR, a method of supervised classification, is the second stage of this statistical 

analysis. It is a probabilistic multi-class model based on a sparse Bayesian machine-learning 

framework of statistical pattern recognition. SMLR's goal is to separate a set of labeled input 

data into its classes by predicting the posterior probabilities of their class-membership. It 

computes the posterior probabilities using a multinomial logistic regression model and constructs 

a decision boundary that separates the data into its constituent classes based on the computed 

posterior probabilities following Bayes’ rule. Data is assigned to a class for which its posterior 

probability is the highest.
5
 

In order to determine the effectiveness of this new discrimination algorithm as compared 

to the one used previously,
1
 Raman spectra from the same 79 patients were classified using an 

algorithm based on MRDF and SMLR. This algorithm is capable of discriminating in vivo 

Raman spectra acquired from the human cervix simultaneously into various pathological 

categories using leave-one-spectra-out cross validation. The results indicate that RS can 

distinguish high-grade dysplasia from normal ectocervix and squamous metaplasia with a similar 

sensitivity of 92% and much higher specificity of 96% than colposcopy performed by experts 

(EK, EV, ARV).
6
 The posterior probability output by the algorithm is also clinically-relevant 

since clinicians can recheck any sample having lower posterior probabilities of belonging to a 

category using the traditional biopsy method. However, further clinical studies were needed to 

increase the number of tissue spectra, especially from low-grade dysplasia, so independent 

training and test sets can be used to optimize the algorithm for discriminating all pathology 

categories of cervix.
5 



48 

 

Additional data was collected to increase the number of samples within each category 

with particular emphasis on low-grade lesions. Low-grade patients were primarily collected from 

Tri-State Women's Health in Florence, KY during colposcopy-guided biopsies, so as to increase 

the likelihood of studying such patients.
6
 A total of 110 patients were recruited and analyzed 

using the algorithm based on MRDF and SMLR. Due to the similarities found between spectra 

from the same patient,
1
 leave-one-patient-out cross validation was performed, instead of leave-

one-spectra-out as in the analysis above. The performance of spectra that were classified 

correctly into each category is reported as percentages in Table 3.1. The high-grade spectra 

classified correctly 95% of the time, and only one misclassified as normal. Low-grade data never 

classified as high-grade, but it did misclassify 26% of the time.
6
 Even though emphasis was 

placed on the collection of low-grade spectra, only 23 low-grade spectra were obtained in this 

study, which may account for the higher misclassification rate. However, at this point, it also 

became clear that even with an increase in low-grade spectra, the spectra were still being 

misclassified at rates that would not be acceptable in a clinical setting. A different approach 

needed to be taken to see if the diagnostic algorithm and Raman spectra are sensitive enough to 

distinguish between normal and low-grade cervix. 

 
Raman Classification, output of MRDF and SMLR 

High-grade Low-grade Metaplasia Normal 

Pathology 

High-grade 95% 0 0 5% 

Low-grade 0 74% 0 26% 

Metaplasia 0 0 90% 10% 

Normal 0 0 4% 96% 
 

 

Table 3.1. Confusion matrix showing classification of Raman spectra based on MRDF-SMLR 
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In the next study, 133 patients undergoing either colposcopy-guided biopsy or Pap smear 

were recruited from either Vanderbilt University or Tri-State Women's Health. The same 

protocol and system (Figure 3.1) were used to acquire Raman spectra from diseased and normal 

cervix. First, the effect of location within menstrual cycle and menopausal state were 

investigated by using MRDF-SMLR to classify spectra into four categories: premenopausal 

proliferative phase (days 1-14 of the menstrual cycle) or premenopausal before ovulation (PBO); 

premenopausal secretory phase (days 15-28 of the menstrual cycle) or premenopausal after 

ovulation (PAO); perimenopausal (PERI); and postmenopausal (POST). Perimenopausal patients 

were defined as women between 45 and 55 years of age or with any symptoms of menopause, 

such as irregular periods or hot flashes. MRDF-SMLR was used to classify Raman spectra from 

normal cervix based on the four categories.  

 Out of the 156 spectra obtained from normal patients, only 3 misclassified or had 

posterior probabilities less than 0.5 (Figure 3.4) when classified as PBO, PAO, PERI, or POST. 

These results showed that the normal fluctuations caused by varying hormonal levels affects the 

Raman spectra, even if it does not affect the pathology of the cervix.
7, 8

 From these results, we 

determined that normal variations may be masking the low-grade dysplasia spectra and hindering 
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Figure 3.4. Posterior probabilities (chance that the spectrum belongs to a certain category) for spectra 

when classified based on menstrual cycle or menopausal status. 
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MRDF-SMLR's ability to correctly classify such spectra. Our previous results with low-grade 

data classifying correctly only 74% of the time (Figure 3.5) is not feasible for use in clinical 

applications. By adding more patients into this study, we could begin stratifying data based on 

menstrual cycle and menopausal state. As seen in Figure 3.5, classifying data based on 

menopausal state before running statistical analysis results in not only a higher classification rate, 

from 88% to 94%, but also posterior probabilities that are closer to 1. Furthermore, low-grade  

spectra classified with 97% accuracy (EK and EV), proving that Raman spectra are indeed 

affected by normal changes that occur in the cervix.
7, 8

 

3.3 Understanding the Basis of Spectral Signatures 

Organotypic raft cultures were used as a controlled in vitro model of in vivo tissue 

conditions to understand how alterations in tissue biology affect RS. Organotypic cultures are 

multilayer, three dimensional cultures designed to reproduce the in vivo structure and function of 

tissue. Raft cultures represent a specific type of organotypic cultures that reconstruct epithelial 

tissue types consisting of avascular epithelium attached via the basement membrane to a 

supporting connective tissue stroma. Three different types of rafts were constructed representing 

normal squamous tissue, squamous cell carcinoma (SCC) of skin and SCC of the cervix using 

 
Figure 3.5. Posterior probabilities of classification as normal ectocervix (N), metaplasia (MP), low-

grade (LG) and high-grade (HG) from the entire data set and the premenopausal data only.
3
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protocols developed in our lab.
9
 Raman spectra were measured from multiple samples of each 

type of raft culture and compared with spectra acquired from intact cervical tissue in vivo (ARV).  

Figure 3.6 shows histological and spectral comparison of raft cultures compared to intact 

tissues. Other studies in the breast have indicated that raft cultures are an accurate model for 

morphologic and biochemical representation of in vivo tissue.
10

 The spectral differences seen 

between the dysplastic cultures and normal cultures parallel those seen between high-grade 

cervical dysplasia and normal ectocervix in vivo. The spectral contribution of the two layers of 

the cervix (epithelium and stroma) were analyzed in normal and dysplastic rafts and compared to 

in vivo tissue spectra. Results indicate that the key spectral differences observed in vivo arise 

primarily from the epithelial layers of the tissue. The 1325 cm
-1

 peak originates primarily from 

the epithelial layer in contrast to the 1272 cm
-1

 peak which has almost no contribution from the 

(a) In vivo            Raft Culture               (b) In vivo              Raft Culture 

50 um50 um

 
 

Figure 3.6. Comparison of in vivo vs. raft culture histology and Raman spectra. (a) Left panel shows 

histology (top) from an area of normal cervix squamous epithelium and the corresponding Raman spectra 

(bottom). Right panel shows results from raft cultures constructed using normal keratinocytes from 

neonatal foreskin with histology from a representative raft culture (top) and the corresponding Raman 

spectra (bottom). (b) Left panel shows histology (top) from a cervix with high-grade dysplasia and the 

corresponding Raman spectra (bottom). Right panel shows results from raft cultures constructed using 

SiHa (cervical squamous cell carcinoma cells). The top panel shows histology from a representative raft 

culture; the bottom panel is the Raman spectra.  
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epithelial layer and can be associated with the type I collagen in the stromal layer. Other peaks in 

the spectra were found to have equal contributions from the epithelial and stromal layers. This 

technique can be useful in perfecting the discrimination algorithm and in determining the effect 

of other components such as HPV infection on tissue Raman spectra. 
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CHAPTER 4  

 

EFFECT OF NORMAL VARIATIONS ON DISEASE CLASSIFICATION OF RAMAN 

SPECTRA FROM CERVICAL TISSUE 

 

This first step of this dissertation was to study the effect of proximity to disease and previous 

disease on correctly classifying spectra from diseased areas of the cervix. It corresponds to work 

performed prior to the development of the Specific Aims obtained from patients at Vanderbilt 

University and Tri-State Women’s Health (Florence, KY). This chapter was published in the 

Analyst, a multidisciplinary journal that reports the development of analytical methods for 

clinical diagnostics. 

Vargis E, Kanter EM, Majumder S, Keller MD, Beaven RB, Rao GG, A Mahadevan-Jansen. 

Effect of Normal Variations on Classification of Raman Spectra of Cervical Tissue. Analyst, 

136: (14), 2981-2987, 2011 

 

4.1 Abstract 

In this paper, we examine how variations in normal tissue can influence classification of 

Raman spectra acquired from areas of disease. Raman spectra from normal areas may be affected 

by previous disease or proximity to areas of dysplasia. Spectra were acquired in vivo from 172 

patients and classified into five tissue categories: true normal (no history of disease), previous 

disease normal (history of disease, current normal diagnosis), adjacent normal (disease on cervix, 

spectra acquired from visually normal area), low-grade disease, and high-grade disease. Taking 

into account the various ‘‘normal’’ states of the tissue before statistical analysis led to a disease 

classification accuracy of 97%. These results indicate that abnormal changes significantly affect 

Raman spectra, even when areas are histopathologically normal. The sensitivity of Raman 
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spectroscopy to subtle biochemical differences must be considered in order to successfully 

implement it in a clinical setting for diagnosing cervical dysplasia and cancer. 

 

4.2 Introduction 

Cervical cancer is the second most common malignancy among women worldwide, with 

over 529,000 new cases diagnosed and 275,000 deaths yearly.
1
 Fortunately, cervical cancer takes 

years to progress from an intraepithelial lesion to an invasive disease, making screening and 

diagnostic tests successful in detecting early malignancies. In particular, the Papanicolaou (Pap) 

smear introduced in the 1950s has played a major role in reducing mortality from cervical cancer 

by up to 70%.
2
 During this test, cells are exfoliated from the cervix, stained with the 

Papanicolaou stain, and examined visually under a light microscope to detect any abnormal 

morphological changes.
3
 Recently, the presence of high-risk strains of the human papilloma virus 

(HPV) has been associated with the incidence and progression of cervical cancer.
4-6

 Oncogenes 

found in these high-risk strains of HPV can block tumor suppressor gene products, such as p53 

and pRb, which can cause cell proliferation and tumor formation.
7
 The American College of 

Obstetrics and Gynecologists recommends that in conjunction with high-risk HPV testing, most 

women should undergo a Pap smear exam to screen for cervical dysplasia every 1 to 3 years.
8, 9

 

If abnormal cells are found during the Pap smear, a colposcopy-guided biopsy is required for a 

definitive diagnosis to determine the severity of the disease. From the diagnosis, the medical 

provider can decide on an appropriate treatment from a few choices: screen at a later date for 

follow-up or perform a loop electrosurgical excision procedure (LEEP) to remove disease areas 

of the cervix or perform a hysterectomy to remove the entire cervix. 
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However, up to 61% of women with abnormal Pap smears do not return for follow-up 

testing.
10, 11

 This large number is due in part to a lack of access to easy, affordable healthcare for 

women.
12

 Colposcopy-guided biopsies, although widely used, have been shown in some studies 

to have a low sensitivity and colposcopists have difficulty visually differentiating among tissue 

areas with different levels of malignancy.
13, 14

 Even though many tools
15, 16

 have been developed 

to aid colposcopists in choosing the best site to biopsy, they still rely on a biopsy which is 

painful, costly, and incompatible with delivering a real-time diagnosis. 

A tool for screening and diagnosing cervical cancer in a single visit would have a 

tremendously positive impact on both the patients and the medical community by reducing the 

number of unnecessary biopsies, ameliorating the patient’s stress, and eliminating the possibility 

of patients failing to present for follow-up evaluation.
17 

Such a tool must be sensitive enough to 

differentiate among various benign and malignant histopathological categories of cervical tissue, 

including normal, inflammation, metaplasia, low-grade squamous intraepithelial lesion (LGSIL), 

high-grade squamous intraepithelial lesion (HGSIL), and cancer. 

Optical techniques have the potential to fill the need for “see and treat” procedures due to 

their noninvasive nature and short measurement times, allowing for near-real-time diagnosis. In 

this study, we continue our research on using Raman spectroscopy (RS) for rapid cervical tissue 

discrimination.
18-21

 Raman spectroscopy is a molecular-specific technique that provides detailed 

information about the biochemical composition of a sample by probing vibrational or rotational 

transitions in chemical bonds.
22

 

Raman spectroscopy has been shown by multiple groups to be an effective method for 

cervical dysplasia detection.
20, 23-25

 Previous studies in our lab and other labs have shown that 

spectroscopic techniques, including Raman, can be used to differentiate among normal, LGSIL, 
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and HGSIL.
19, 21

 However, with a classification accuracy of only 88%, the full clinical potential 

of this method has not been achieved. During these prior studies, it became apparent that 

misclassifications of low-grade and normal spectra were one of the main reasons for the lower 

classification rates. Furthermore, the spectra from these two groups had more variance compared 

to the high-grade spectra. In order to understand a cause of this variance, the effect of hormonal 

(before and after ovulation) and menopausal status of the patients was determined.
21

 Our 

previous results show that if we look at normal spectra alone, they classify according to 

hormonal and menopausal status with an accuracy of over 98%. Considering only spectra 

obtained from premenopausal women in the disease analysis led to a classification accuracy of 

normal, metaplasia, LGSIL, and HGSIL groups of over 94%, compared to the previous 88%. 

Other research groups have used similar optical techniques and found variability due to normal 

differences, such as hormonal levels, age, and type of cell population.
26-28

 While these accuracies 

are higher than what is used currently, maximizing the classification accuracy of a new 

technology is necessary to increase its chance of becoming a part of routine medical care. 

In order to implement this optical method in a clinical setting, further evaluation of the 

types of variations among normal spectra must be considered. Specifically, prior disease or 

presence of disease near a normal area of the cervix may alter those regions and consequently the 

Raman spectra obtained from them. Separating “true normal” data (no history of cervical 

disease) from “previous disease normal” data (history of abnormal cervix, currently 

histologically normal) and “adjacent normal” (histologically normal areas of cervix with current 

presence of disease) may reduce the variance in the normal data by accounting for any 

permanent changes caused by disease.  



58 

 

The goal of this research is to characterize normal variations and their effect on disease 

classification. In this paper, we present results from 2 clinical studies in which Raman spectra 

have been acquired from 165 patients undergoing either a routine annual screening consisting of 

a Pap smear or following up an abnormal Pap smear result with a colposcopy-guided biopsy. In 

the first study, Raman spectra were acquired from Pap smear patients to understand the impact of 

previous disease. In the second study, measurements were taken from patients coming in for 

screening and for biopsy to see how proximity to disease affects the classification of spectra. 

Next, a multivariate statistical algorithm has been used to classify Raman measurements of 

cervical tissue as either true normal or previous disease in the first study or true normal, adjacent 

normal, LGSIL, or HGSIL in the second study. From these results, we conclude that previous 

disease and proximity to disease significantly affect the Raman spectra acquired from 

histopathologically normal areas of the cervix. When the normal spectra are separated into 

different categories, the variance among the spectral classes decreases while the disease 

classification accuracy increases, demonstrating that this methodology is very sensitive to subtle 

biochemical changes that occur in or adjacent to tissue. These changes must be characterized 

before RS can be used clinically as a screening and diagnostic tool for cervical dysplasia.  

 

4.3 Experimental Methods 

Raman spectra were obtained from two sets of patients, Pap smear patients for study 1 

and 2 and dysplasia patients for study 2. Pap smear patients are patients coming in for a routine 

annual screening for cervical cancer. These patients may have had an abnormal Pap smear result 

in the past, but any cervical disease has been treated and recent Pap smears have all been within 

normal limits. Dysplasia patients have had an abnormal Pap smear and are returning for a follow 



59 

 

up exam to visualize and biopsy (if necessary) specific diseased sites of the cervix. During this 

exam, acetic acid is placed on the cervix to whiten any abnormal areas. A colposcope is then 

used to visualize the cervix and a biopsy is taken from any abnormal area and examined by a 

pathologist to determine a diagnosis. 

These studies were approved by the Copernicus Group and Vanderbilt Institutional 

Review Boards. To be eligible for enrollment, the patient must be undergoing a Pap smear or 

colposcopy-guided biopsy, be between the ages of 18-75, and still have a cervix (i.e. no history 

of a hysterectomy). Informed consent was obtained from each patient. The patient’s age, last 

period date (for menstrual cycle), use of artificial hormones, menopausal status, and any previous 

abnormal Pap smears were all noted upon chart review. These two patient groups were designed 

in order to obtain data from true normal, previous disease normal, adjacent normal, LGSIL, and 

HGSIL areas of the cervix. These areas will be defined in greater detail below. Three to five 

Raman measurements were taken from each patient using a portable RS system and each 

measurement had an integration time of 3 seconds. A multivariate statistical algorithm (MRDF-

SMLR) was then used to classify the data into one of the tissue categories.
20

 

 

4.3.1 Clinical study design 1: Previous disease 

In order to study the effect of previous disease on the classification of Raman spectra, we 

recruited patients during their annual cervical cancer screening. A total of 93 patients undergoing 

a routine Pap smear were recruited to this study. With an effect size of 1, the power of this study 

was over 90% (two-sample t-test, α=0.05). The following protocol was used to acquire the 

Raman spectra. The cervix was exposed and visually examined by the attending physician. The 

cervix was wiped clean with a dry cotton swab and then with a saline solution, after which 
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Raman measurements were taken from two to three locations on the ectocervix. The Pap smear 

procedure was done according to standard clinical protocol. If the patient’s Pap smear was 

negative for disease and she had no history of abnormal Pap smears, the spectra were considered 

true normal. If she was negative for disease, but had a history of abnormal Pap smears, the 

spectra were considered previous disease normal. See Table 4.1 for the complete set of 

definitions. A total of 163 spectra were used in this study. Only spectra from women with a 

currently normal Pap smear result were used for further analysis. 

 

Description 
True 

Normal 

Previous 

Disease 

Normal 

Adjacent 

Normal 
LGSIL HGSIL 

History of Abnormal Pap 

smear (i.e. one or more) 
No Yes Yes Yes Yes 

Evidence of Current 

Disease on the cervix 

regardless of location 

No No Yes Yes Yes 

Evidence of disease 

where measurement is 

taken 

No No No Yes Yes 

Presence of acetic acid 
No (Study 1) 

Yes (Study 2) 
No Yes Yes Yes 

Pathology results normal normal 
N/A – 

No biopsy 

Cervical 

intraepithelial 

neoplasm 

(CIN) I, HPV 

cellular 

effects 

CIN II, 

CIN III, 

carcinoma 

in situ 

Table 4.1 Summary of the categories used to describe the data sets. 

 

4.3.2 Clinical study design 2: Adjacent normal 

To study the effect of proximity to disease on classification accuracy, spectra were 

acquired from patients coming in for a routine cervical screening and from patients referred for 

biopsy following an abnormal Pap smear. Twenty-nine patients undergoing a routine Pap smear 
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and 43 patients who were referred for a colposcopy-guided biopsy following an abnormal Pap 

smear were recruited to participate in the study. With an effect size of 1, the power of this study 

was over 80% (two-sample t-test, α=0.05). To compare these two groups, acetic acid was applied 

to each patient. Specifically, for the Pap smear patients, the Pap smear was performed first, 

according to standard protocol as described above, prior to obtaining the Raman measurements 

so there were no changes to the Pap smear samples sent to the pathology lab due to the 

application of acetic acid. Next, the cervix was wiped clean with a dry cotton swab, a saline 

solution, and then with acetic acid. The Raman measurements were then taken from two to three 

locations on the ectocervix. For the colposcopy-guided biopsy patients, acetic acid was applied 

to the cervix to turn abnormal areas white for visualization and spectra were acquired from 

multiple areas of abnormal tissue that were to be biopsied and 1-2 visually normal areas. 

Abnormal tissue was then removed and placed in fixative solution for pathological examination. 

Based on the pathology results from the Pap smear or the biopsy, spectra were placed into 

five categories for analysis: true normal, previous disease normal, adjacent normal, LGSIL, and 

HGSIL. True normal and previous disease normal were described above. Adjacent normal 

spectra were acquired from patients who were coming in for a biopsy and had abnormal areas on 

their cervix that were biopsied; these spectra were taken from the visually normal areas of the 

cervix. LGSIL and HGSIL spectra were acquired from areas of the cervix that were biopsied and 

diagnosed as such in the pathology report. Table 4.1 describes the five tissue categories within 

the two studies. A total of 146 spectra were used for further analysis. Only spectra from patients 

with no history of disease or current disease were used for the true normal samples. There were 

some cases where adjacent normal measurements were not acquired from the colposcopy-guided 

biopsy patient group. 
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4.3.3 Data Collection 

Raman spectra were collected in vivo using a portable RS system consisting of a 785 nm 

diode laser (Process Instruments, Inc., Salt Lake City, UT), a beam-steered fiber optic probe 

(Visionex, Atlanta, GA), an imaging spectrograph (Kaiser Optical Systems, Ann Arbor, MI), and 

a back-illuminated, deep-depletion, thermo-electrically cooled CCD camera (Princeton 

Instruments, Princeton, NJ), all controlled with a laptop computer. Details of the system have 

been previously reported.
29

 The fiber optic probe delivered 80 mW of incident light onto the 

tissue at an integration time of 3 seconds with all room lights turned off. The system provided a 

spectral resolution of 8 wavenumbers (cm
-1

). 

Spectral calibration of the system was performed each day using a neon-argon lamp and 

naphthalene and acetaminophen standards to correct for day-to-day variations. A National 

Institute of Standards and Technology (NIST)-calibrated tungsten lamp was also used to account 

for the wavelength dependent response of the system. The spectra were processed for 

fluorescence subtraction and noise smoothing using the modified polynomial fit and Savitzky-

Golay methods, described previously.
29

 Following data processing, each spectrum was 

normalized to its mean spectral intensity across all Raman bands to account for intensity 

variability. 

 

4.3.4 Statistical Analysis 

 A multivariate statistical analysis method was used to classify the spectra as true normal 

or previous disease normal for the first study or as true normal, previous disease normal, adjacent 

normal, LGSIL, or HGSIL for the second study. Briefly, the process consists of two steps – first, 

nonlinear maximum representation and discrimination feature (MRDF) is used to extract 
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diagnostic features and reduce the dimensionality of the spectra; second, a probabilistic, multi-

class scheme of classification based on sparse multinomial logistic regression (SMLR) is 

developed for classifying the MRDF output into corresponding tissue categories. This analysis 

outputs posterior probabilities that a given spectrum belongs to each histopathology class; the 

spectrum is then placed into the class corresponding to its highest probability of membership. All 

classification was performed using leave-one-patient-out cross-validation. Further details of this 

multivariate statistical analysis technique have been published previously.
30

 

 

4.4 Results and Discussion 

To understand the effect of normal variations on disease classification, Raman spectra 

were acquired and separated into the following categories: true normal – no history of cervical 

disease, previous disease normal – history of abnormal cervix, currently histologically normal, 

adjacent normal – histologically normal areas of cervix with current presence of disease, low-

grade dysplasia – LGSIL, and high-grade dysplasia – HGSIL (Table 4.1). For this study, we 

were unable to collect enough data from patients who had areas of metaplasia and inflammation. 

In previous studies, statistically significant amounts of data from these two groups have been 

collected; spectra acquired from those areas classified correctly with over 90% accuracy.
19, 21

 

 

4.4.1 Spectral difference – previous disease 

The average Raman spectra from true normal ectocervix and previous disease normal 

ectocervix are shown in Figure 4.1. The area of the largest qualitative differences is in the 1200-

1400 cm
-1

 range, indicated by the dashed box. The peak around 1250 cm
-1

, associated with 

proteins like collagen type I, is higher in the true normal spectra compared to the previous 
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disease spectra.
31

 The peak around 1330 cm
-1

, which is usually associated with DNA and 

glycogen, is higher in the previous disease spectra compared to the normal spectra.
32, 33 

 
Figure 4.1 Average Raman spectra for true normal ectocervix and previous disease normal ectocervix. 

The area within the dashed box has the highest variability. 

 

Even though these two groups would both be diagnosed as normal by a pathologist, there 

are areas of variation found in the spectra. These results suggest that the presence of any disease 

on the cervix may permanently change the biochemical and optical properties of the cervical 

tissue. Similar results have been found in breast tissue, where even the presence of benign 

disease (fibrocystic change) has a significant impact on normal optical properties of the breast.
28

 

Likewise, cervical disease is typically correlated with HPV infection. While the tissue may have 

either been treated for the disease or may no longer be diagnosed as abnormal, the HPV infection 

may have led to permanent changes in, for example, the amount and arrangement of DNA, 

collagen, and glycogen of the cervix.
34, 35
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4.4.2 Spectral differences – adjacent normal 

A pilot study was first performed to investigate the effect of acetic acid on spectra 

acquired from the cervix. Average Raman spectra from normal ectocervix before and after the 

application of acetic acid are displayed in Figure 4.2 in 10 patients. Two areas of visual 

difference (1006 cm
-1

 and 1305 cm
-1

) are seen in the spectra. However, these areas were highly 

variable and analyzing the spectra with the MRDF-SMLR algorithm described above yielded 

low classification rates, suggesting that the application of acetic acid does not significantly 

change the spectra to affect its classification. Acetic acid may increase the overall signal 

obtained from the cervix, but not enough to affect the classification accuracy of algorithms used 

for detecting normal differences or disease. 

 

Figure 4.2. Average Raman spectra from high-grade dysplasia ectocervix before and after application of 

acetic acid. No significant differences were observed. 

 

The average Raman spectra from true normal ectocervix, adjacent normal ectocervix, 

LGSIL, and HGSIL are shown in Figure 4.3. Due to the smaller patient population of this study, 
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the number of previous disease spectra acquired was not statistically significant. The spectra in 

this group are more varied compared to the previous group, which were both pathologically 

normal. Similar to the spectra in Figure 4.2, the largest qualitative difference between dysplasia 

and normal spectra occur in the 1200-1400 cm
-1

 range, highlighted by a dashed box. The peak 

around 1250 cm
-1

 (associated with collagen) is higher in both true normal and adjacent normal 

spectra. The relative amount of collagen decreases as the tissue becomes more dysplastic and 

disorganized. Similar changes occur as a woman becomes older, but this data has been obtained 

from a group of premenopausal women, between the ages of 18-45. Conversely, the peak around 

1330 cm
-1

 (associated with glycogen and DNA) is higher in the LGSIL and HGSIL spectrum. 

This difference is consistent with changes that occur in dysplastic tissue. Specifically, the 

amount of DNA increases in dysplastic tissue due to rapid cell dividing and irregular growth.  

 
Figure 4.3. Average Raman spectra for true normal ectocervix, adjacent normal ectocervix, LGSIL, and 

HGSIL. Acetic acid was applied to all tissue prior to acquisition of the spectra. The area within the dashed 

box has the highest variability. 
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While the shape of the previous disease normal spectra does not appear to differ 

significantly from the true normal spectra (Figure 4.1), the adjacent normal appears more similar 

to the LGSIL spectra compared to the true normal spectra. The presence of disease on the cervix 

may affect the “normal” areas more adversely than a prior presence of abnormal cervical cells, 

making the adjacent normal spectra qualitatively resemble LSGIL spectra more than true normal 

spectra. Similar results have been reported with breast tissue.
28

 

This concept has previously been described as malignancy associated changes (MACs) or 

field effect.
36, 37

 MACs are defined as biochemical changes, such as chromatin rearrangement or 

a lower number of cell surface binding sites, which may be seen in histologically normal cells 

adjacent to a tumor.
38, 39

 These subtle changes in areas near malignancy are typically only 

observed using high resolution techniques, like cytometry and fluorescence endoscopy.
40, 41

 This 

idea was proposed in the 1950s and has been validated by studies in tissues such as the lung, 

cervix, blood, and breast.
40-43

 A few studies using optical techniques have also found results that 

suggest their sensitivity to detecting MACs.
44-46

 

 

4.4.3 Multivariate Statistical Analysis 

Based on these and other spectral differences, a multivariate algorithm was used to 

classify the data into the aforementioned tissue classes (true normal, previous disease normal, 

adjacent normal, LGSIL, and HGSIL). Data acquired from premenopausal women alone was 

used in the analysis, based on results discussed previously.
19

 The overall results using MRDF 

and SMLR can be seen for the study 1 and 2 in Table 4.2 and Table 4.3, respectively. In the first 

study, the algorithm classified the two tissues types with an accuracy of over 99%. Only 1 

previous disease normal spectrum misclassified as true normal (out of 163, Table 4.2). For the 
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second study, the MRDF-SMLR algorithm classified the four tissue types with 97% accuracy. Its 

best performance was with true normal and HGSIL, where all spectra were classified correctly. 

Four of the 146 spectra from this study misclassified (Table 4.3). 

 

Classification Accuracy: 99% 
Raman Classification 

True Normal Previous Disease Normal 

Histological 

Classification 

True Normal 

(nspectra=110) 
109 1 

Previous Disease 

Normal 

(nspectra=53) 

0 53 

Table 4.2. Classification of true normal and previous disease normal spectra using MRDF and SMLR 

with leave-one-patient-out cross-validation. 

 

Classification Accuracy: 97% 

Raman Classification  

True Normal 
Adjacent 

Normal 
LGSIL HGSIL 

Histological 

Classification 

True Normal 

(nspectra=52) 
52 0 0 0 

Adjacent 

Normal 

(nspectra=37) 

1 35 0 1 

LGSIL 

(nspectra=45) 
1 1 43 0 

HGSIL 

(nspectra=12) 
0 0 0 12 

Table 4.3. Classification of true normal, adjacent normal, LGSIL, and HGSIL spectra using MRDF and 

SMLR with leave-one-patient-out cross-validation. 

 

In Figure 4.4, posterior probabilities are shown from the classifications from Table 4.3 to 

demonstrate how correct and incorrect classifications are generated. Furthermore, it shows the 

probabilistic nature of the technique could help a medical provider decide on a diagnosis, based 

on the spectra alone. The provider could acquire the Raman spectra, use MRDF-SMLR to 

classify them, and then based on the posterior probability generated by the algorithm, decide on 

the appropriate course of action. If spectra have a posterior probability close to 1, the provider 
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can rely on the spectra belonging to that classification group with a high amount of accuracy 

without the need for a Pap smear or a colposcopy-guided biopsy to confirm (spectrum 

highlighted with dashed box, Figure 4.4). However, for example, if the algorithm calculates the 

posterior probability of a normal spectrum as approximately 0.6 (spectrum highlighted by dashed 

circle, Figure 4.4), the provider can always continue with the current clinical protocol to verify 

the diagnosis. For the spectra represented in Figure 4.4, the probabilities for LGSIL spectra are 

all near 1, indicating that there is a very high chance that the spectra belong within that category. 

There is a larger variation in the probabilities of the other tissue categories, though many of the 

correct classifications still display probabilities close to 1, which is a result that may help RS 

become clinically relevant to positively affect patient care.
47

 

 
Figure 4.4. Posterior probabilities of classification as true normal ectocervix, adjacent normal ectocervix, 

LGSIL, and HGSIL. The dashed box has a spectrum with a posterior probability close to 1; the dashed 

circle has a spectrum with a posterior probability close to 0.6. 

 

In the previous disease study, 1 out of 163 spectra misclassified as true normal. This 1 

spectrum was from an inflamed area of the cervix. In the adjacent normal study, 4 out of 146 

spectra were misclassified. Two adjacent normal samples were misclassified: one as true normal 

and one as HGSIL. The first sample was from a patient who was returning for her first follow-up 
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after her first abnormal Pap exam. The spectrum that incorrectly classified as HGSIL was 

diagnosed as intense chronic endocervicitis, a benign inflammatory condition usually resulting 

from a pathogenic bacteria.
48

 Two LGSIL spectra misclassified, one as true normal and the other 

as adjacent normal. The first misclassification correlated with biopsy results of mild HPV 

changes (LGSIL) in the tissue but no dysplasia. For the second misclassification, the abnormal 

area may have been at the very early stages of disease or with cervical biopsy error rates between 

12-15%, the pathologic result may be incorrect.
49

 Although these 5 misclassifications only 

represent 1.6% of the data acquired, some conclusions can be drawn from them. First, disease 

may take a longer time to affect nearby normal areas. Other diagnostic categories, such an 

inflammation, to account for areas of endocervicitis, and early HPV effects, may need to be 

incorporated in future implementations of the statistical algorithm for RS to be used clinically. 

For example, florid cervicitis may need to be a separate classification category or may just 

simply as inflammation. Finally, there can be small differences between where the Raman 

measurement was acquired from and what area was excised for pathology, which could 

specifically account for the errors in LGSIL classifications. 

 

4.4.4 Clinical Impact and Future Considerations 

 The ultimate goal of this research is to use RS for real-time diagnosis of cervical 

precancers, effectively eliminating the majority of Pap smears, follow up exams, and 

colposcopy-guided biopsies, widening the success of early screening.
17

 The focus of this paper, 

however, is on normal tissue and its variations, which may seem contradictory to diagnosing 

disease. Yet, before RS can move from the lab to the clinic, we have to understand the effect of 

normal physiological variability on Raman spectral signatures. Once the normal variations are 



71 

 

understood, we can continue to understand the effect of disease on RS to improve diagnosis.
28

 

The results of this study show that variations in normal spectra are statistically significant. 

Furthermore, incorporating normal variations into the disease classification algorithm results in 

better classification overall, including within the disease groups. 

 The current standard of care dictates that acetic acid is applied to patients coming in for a 

colposcopy-guided biopsy. Therefore, for the adjacent normal study, acetic acid was applied to 

both normal and dysplasia patients in order to compare and classify spectra acquired from each 

group. The initial study, looking for any statistically significant effects on the Raman spectra 

after applying acetic acid, suggests that its application does not change the accuracy or 

performance of classifying Raman spectra (Figure 4.2). This result has been found in similar 

studies looking at fluorescence spectra acquired from the cervix, with or without the presence of 

acetic acid.
50

 both groups of this study, results shown in Figure 4.2 and Figure 4.3 confirm that 

RS can be used to detect disease, with or without acetic acid. In future applications, it will be 

possible to implement RS for disease classification whether acetic acid is used or not. 

 Other variations may need to be considered to fully characterize the sensitivity of RS and 

optimize it for disease classification. While age and hormonal changes have already been 

considered,
19, 21

 previous disease and proximity to disease were the focus of this paper. Ethnicity, 

socioeconomic status, and body mass index are other factors that may also have an effect on the 

normal cervix and therefore the Raman spectra.
28

 From the posterior probabilities shown in 

Figure 4, it also seems that there is a high variance among HGSIL spectra. As Table 4.1, row 6 

shows, HGSIL corresponds to a number of pathological results; the HGSIL category may 

potentially need to be separated into subcategories so the spectra classify with a posterior 
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probability closer to 1. A restrospective analysis, where a few patients were followed after a 

diagnosis of HGSIL may to fully characterize the sensitivity of Raman spectroscopy. 

 The results from our previous studies demonstrated that RS can classify spectra from 

normal, LGSIL, and HGSIL areas of the cervix with 94% accuracy.
19

 This previous analysis only 

included premenopausal women, which improved upon the prior 88% classification rate. 

However, the normal category from that study included women who may have had a previous 

abnormal Pap smear. In this paper, we have demonstrated that by accounting for normal 

variations, the classification accuracy of cervical disease increases from 94% to 97%. 

 

4.5 Conclusions 

This paper describes the continued development of RS to discriminate between normal, 

benign and malignant areas of the cervix. The results of this paper demonstrate the significant 

sensitivity inherent in RS, suggesting it can be successfully implemented in clinical applications 

for diagnosing disease. Teasing out these subtleties will improve the sensitivity and specificity of 

disease classification, leading to the use of RS for the diagnosis of cervical malignancies in vivo. 
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CHAPTER 5  

 

SENSITIVITY OF RAMAN SPECTROSCOPY TO NORMAL PATIENT VARIABILITY 

 

This chapter describes the first study of this PhD dissertation, looking at the effect of normal 

variables on Raman spectra acquired from the normal cervix. It corresponds to Specific Aim 1. 

The Raman data was acquired from patients at Meharry Medical College. This chapter was 

published in the Journal of Biomedical Optics. 

Vargis E, Byrd T, Logan Q, Khabele D, A Mahadevan-Jansen. Sensitivity of Raman 

Spectroscopy to Normal Patient Variability. Journal of Biomedical Optics 16 (11): 117004-1-9, 

2011 

 

5.1 Abstract 

Many groups have used Raman spectroscopy for diagnosing cervical dysplasia, however 

there have been few studies looking at the effect of normal physiological variations on Raman 

spectra. This study assesses four patient variables that may affect normal Raman spectra: 

Race/ethnicity, body mass index (BMI), parity, and socioeconomic status. Raman spectra were 

acquired from a diverse population of 75 patients undergoing routine screening for cervical 

dysplasia. Classification of Raman spectra from patients with a normal cervix was performed 

using SMLR to determine if any of these variables had a significant effect. Results suggest that 

BMI and parity have the greatest impact, while race/ethnicity and socioeconomic status have a 

limited effect. Incorporating BMI and obstetric history into classification algorithms may 

increase sensitivity and specificity rates of disease classification using Raman spectroscopy. 

Studies are underway to assess the effect of these variables on disease. 
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5.2 Introduction 

Multiple research groups have taken advantage of the extreme sensitivity of Raman 

spectroscopy (RS) to detect subtle changes in a variety of samples. Raman spectroscopy has been 

used to solve many types of problems, from detecting malignant areas in various sites, such as 

the cervix,
1
 bladder,

2, 3
 colon,

4, 5
 breast,

6, 7
 and esophagus

8, 9
 in vivo and in vitro, detecting 

controlled substances,
10

 and authenticating works of art.
11

 Raman spectroscopy is useful for 

multiple applications because it is a molecular-specific technique that provides detailed 

information about the biochemical composition of a sample by probing vibrational or rotational 

transitions in chemical bonds. Therefore, a Raman spectrum consists of a series of spectrally-

narrow peaks and valleys which represent the different vibrational modes of specific scattering 

molecules. These peaks are associated with specific bonds, such that a Raman spectrum may be 

referred to as a biochemical fingerprint of a molecule, tissue or sample. Changes in peaks may be 

related to differences in the concentration of glycogen or collagen,
12

 which is useful in cancer 

detection, benzoic acid rings for detecting illegal drugs,
13

 and natural or synthetic stains to 

decipher ages of works of art.
14

 

 Although RS is inherently a sensitive technique, previous studies using Raman to detect 

cervical dysplasia both in vivo and in vitro have reported a wide range of sensitivity (70-100%) 

and specificity (70-100%) rates.
1, 15-19

 Krishna et al. used a bench top RS system to acquire 

information from cervical samples ex vivo and classified normal compared to malignant samples 

at sensitivity and specificity rates of 75% to 99.5%.
19

 Since infection with certain strains of 

human papillomavirus (HPV) is the cause of cervical dysplasia in over 99% of cases 

worldwide,
20-22

 certain research groups have used RS to identify differences between HPV types. 

Jess et al. used a confocal Raman microscope system and were able to discriminate varying HPV 
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types in live and fixed cells with sensitivity and specificity rates of 70% to 100%.
15

 Our research 

group has used a portable probe-based RS system to distinguish between normal and malignant 

cervical samples in cell culture, in vitro and in vivo. The sensitivity and specificity rates of this 

work have ranged between 81% and 97%.
1, 16, 17

 

Variations in classification rates that are observed when using RS to detect malignant 

areas of the cervix are a hurdle that must be overcome in order for this technology to benefit 

clinical practice. Fortunately, as more research into using RS to diagnose cervical dysplasia has 

been conducted, it has become apparent that by accounting for normal patient variations, the 

sensitivity and specificity of Raman for diagnosing disease can increase.
23, 24

 Similar research on 

inherent normal patient variability has been seen when using Raman on other tissue sites, such as 

the colon and the breast.
25-27

 In many cases, accounting for these normal differences has led to an 

increase in both the sensitivity and specificity rates of classifying normal spectra compared to 

disease. 

 Specifically, research from our lab has shown that both hormonal differences due to 

menstrual cycles and menopause
23

 and previous disease or presence near disease
24

 have a 

significant impact on the Raman spectra acquired from benign areas of the cervix in vivo as well 

as the classification of spectra acquired from metaplastic and dysplastic sites. During a menstrual 

cycle and menopause, varying levels of hormones are released throughout the body that can 

cause changes in the cervix, including softening, drying or thinning.
28, 29

 Permanent field effects 

or malignancy-associated changes that result from the presence or prior history of disease may 

account for the significant effect of such differences on Raman spectra.
30, 31

 Accounting for 

hormonal levels and history of disease prior to disease classification resulted in sensitivity and 

specificity rates of over 95%. By recognizing and accounting for these normal variations prior to 
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disease classification, better training sets were used for the classification algorithms, and 

therefore, differences among spectra were more likely to result from malignancy than normal 

variations. Other factors may further improve cervical disease classification with RS.  

Race and ethnicity, for example, as well as socioeconomic status are all correlated with 

different incidences of cervical malignancies.
32

 In 2010, black and Hispanic populations had the 

highest incidence of and mortality rates from cervical dysplasia in the US (11.1 cases and 4.6 

deaths and 12.7 cases and 3.1 deaths per 100,000 women, respectively, compared to 7.9 cases 

and 2.2 deaths per 100,000 white women).
33, 34

 Worldwide, cervical cancer is the fifth most 

common cancer for women and the most common cancer for women in Central America and 

southern Africa.
35

 These differences are likely correlated with less access to routine care and 

screening. Obesity is also associated with higher rates of cancer, including cervical cancer.
22, 36, 37

 

There are many potential reasons for the contribution of obesity to cervical cancer, including 

differences in vaginal flora patterns, steroid hormone and cholesterol levels, cultural norms and 

bacterial or viral infections.
36

 HPV could also be a potential factor in the differences in incidence 

and mortality rates since several high-risk strains are more prevalent in certain racial and ethnic 

populations.
20-22

 Any of these characteristics may significantly influence the biochemical 

makeup of the cervix and thus the Raman spectra acquired from the cervix. Such important 

variables must be accounted for prior to disease classification to increase classification accuracy 

rates. 

It is interesting to explore whether other optical techniques are similarly influenced by 

normal patient variables. Studies have shown that fluorescence spectroscopy is not significantly 

influenced by changes that occur during a woman’s menstrual cycle or menopause as it only 

causes a variation of 8-16% in normal spectra.
38, 39

 This result suggests that fluorescence 
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spectroscopy is not sensitive to the small biochemical changes that occur as a result of the 

fluctuations in normal hormonal levels. Biochemical changes due to hormonal fluctuations, age, 

and parity have been observed in the breast using reflectance and transmittance spectroscopy,
40, 

41
 however their effect on disease classification has yet to be determined. Similar results have 

been found in the cervix,
42

 but these results are controlled by levels of hemoglobin, water and 

lipids, instead of the broader biochemical fingerprint obtained with RS. Kelly et al. used infrared 

(IR) spectroscopy to separate samples based on HPV infection and age and was able to show 

separation of samples using principal component analysis followed by linear discriminant 

analysis (PCA-LDA), but this in vitro study was performed on cells grown in culture.
43

 IR 

spectroscopy, analogous to RS, may perform with similar sensitivity rates. However, the water 

content found in bulk tissue may inhibit IR spectra, thereby reducing its utility as a tool for in 

vivo detection. To our knowledge, there are no published reports that consider the effect of 

race/ethnicity, BMI, obstetric history or socioeconomic status on optical measurements. 

 The goal of this study is to examine the significance of such normal variations on the 

classification of Raman spectra. Implementing RS in a clinical setting will require it to be 

successfully applied to any patient population, regardless of race or ethnicity, body mass index 

(BMI), parity, or socioeconomic status. To accomplish this goal, Raman measurements were 

acquired from a diverse patient population without current or previous disease. A classification 

algorithm (SMLR) was then used to determine if the Raman spectra were significantly affected 

by race/ethnicity, BMI, obstetric history or socioeconomic status. 
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5.3 Materials and Methods 

In our lab, previous studies were performed on a predominantly white population with 

BMI levels of normal to overweight.
1, 17, 23, 24

 For this study, patients were recruited from the 

county hospital in Nashville, TN (Nashville General Hospital at Meharry Medical College) to 

acquire data from patients of varying racial/ethnic background, BMI, obstetric history and 

socioeconomic status. This study was approved by the Meharry Medical College Institutional 

Review Board.  

 

5.3.1 Patient Enrollment 

A total of 75 adult, female patients undergoing a routine Pap smear were consented to 

participate in the study. With an effect size of 1, the power of this study was over 80% (two-

sided statistical test, α=0.05). The patient’s age, date of last menstrual period, use of artificial 

hormones, menopausal status, height, weight, obstetric history, ethnicity, address, insurance, 

relevant medical history and any previous abnormal Pap smears were all noted upon chart 

review. After the cervix was exposed and visually examined by the attending physician, the 

cervix was wiped clean with a dry cotton swab followed by saline. Raman measurements were 

then taken from two to three locations on the ectocervix. Next, the Pap smear procedure was 

done according to standard clinical protocol. The spectra were correlated with histological results 

and considered normal if the Pap smear was negative.  

 

5.3.2 Patient Information 

Patients were stratified according to four sets of data to determine the sensitivity of RS: 

1) Race/ethnicity (white, black and Hispanic); 2) BMI category: (normal, overweight and obese); 
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3) parity (no pregnancies or 1 or more) and 4) socioeconomic status (uninsured or insured, 

determined by whether the patient had government-subsidized or private health insurance). 

Racial or ethnic group was determined by what the patient identified as. Body mass index (BMI) 

was calculated using the formula below from the height and weight measured the same day when 

Raman spectra were acquired.
44

  

2))((

703)(

inheight

lbmass
BMI


  

BMI values that define specific categories used in this study, normal, overweight and obese, are 

in Table 5.1. Obstetric history was determined from a chart review. 

Category BMI Range 

Normal 18.50 – 24.99 

Overweight 25.00 – 29.99 

Obese ≥ 30.00 

Table 5.1. BMI categories. 

 

5.3.3 Instrumentation and Data Processing 

Raman spectra were collected in vivo using a portable RS system consisting of a 785 nm 

diode laser (PI-ECL-785-350, Process Instruments, Inc., Salt Lake City, UT), a beam-steered 

fiber optic probe (Visionex, Atlanta, GA), an imaging spectrograph (Holospec f/1.8i-NIR, Kaiser 

Optical Systems, Ann Arbor, MI), and a back-illuminated, deep-depletion, thermo-electrically 

cooled CCD camera (Pixis 256BR, Princeton Instruments, Princeton, NJ), all controlled with a 

laptop computer. Details of the system have been reported previously.
45

 The fiber optic probe 

delivered 80 mW of incident light onto the tissue at an integration time of 2-3 seconds with all 

room lights and the computer monitor turned off. The system provided a spectral resolution of 8 

wavenumbers (cm
-1

). 
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Spectral calibration of the system was performed each day using a neon-argon lamp and 

naphthalene and acetaminophen standards to correct for day-to-day variations. A NIST-

calibrated tungsten lamp was also used to account for the wavelength-dependent response of the 

system. The spectra were processed for fluorescence subtraction and noise smoothing using the 

modified polynomial fit and Savitzky-Golay methods, described previously.
45

 Following data 

processing, each spectrum was normalized to its mean spectral intensity across all Raman bands 

to account for intensity variability. 

 

5.3.4 Data Analysis 

As previously reported, menopausal status and history of cervical disease affects Raman 

spectra.
23

 For this reason, only premenopausal patients with no history of cervical disease were 

used in this analysis. A composite spectrum averaging Raman measurements from each patient 

was used as it would contain the effects of any significant patient variations. Discrimination was 

performed with sparse multinomial logistic regression (SMLR), a Bayesian machine-learning 

framework that computes the posterior probability of a spectrum belonging to each tissue class 

based on a labeled training set.
24, 46

 For this analysis, whichever class had the higher probability 

of membership was the one to which the spectrum was classified. Since only one composite 

spectrum per patient was used, SMLR was run with leave-one-patient-out cross-validation. A 

range of input parameters to SMLR have been tested previously and these tests revealed that the 

combination of parameters that provide the most accurate classification, while also maximizing 

sparsity, was using a Laplacian prior, direct kernel, lambda value of 0.01, with no additional bias 

term (see Appendix 2 for a complete explanation). 
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5.4 Results 

The epidemiologic makeup (race/ethnicity groups, BMI category, obstetric history and 

socioeconomic status) of the entire cohort of 75 patients recruited to this study is shown in Table 

5.2. In the analyses below, only Raman spectra from premenopausal women with no history or 

current presence of cervical disease were used. Due to lower recruitment numbers, patients of 

Arabic descent or underweight BMI were excluded. Some spectra could not be classified into 

appropriate categories, such as those from women with spontaneous abortions and from women 

whose health insurance status was different at their previous medical appointment (for example, 

they were uninsured the last time they came for medical care, but now they are insured). Those 

spectra were also excluded.  

White 23 (31%) 

Black 31 (39%) 

Hispanic 20 (27%) 

Arabic 1 (1%) 

  

Underweight BMI 2 (3%) 

Normal BMI 21 (28%) 

Overweight BMI 24 (32% 

Obese BMI 28 (37%) 

  

No previous pregnancies 33 (44%) 

Prior Pregnancy/ies 42 (56%) 

  

Insured 44 (59%) 

Not Insured 31 (41%) 
Table 5.2. Patient Categories. Total in all categories is 75. 

 

5.4.1 Race and Ethnicity 

Raman spectra (nspectra=193) were acquired from the cervix of patients from 3 different 

racial and ethnic groups (white npatients=21, black npatients=23, Hispanic npatients=18, total number of 

patients=62, excluded=13 if multiple race/ethnicity or Arabic due to low recruitment numbers). 
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There are many similarities across these spectra throughout the wavenumber range. Figure 5.1A 

shows difference spectra of Raman measurements from white and black patients and white and 

Hispanic patients. A few of the small differences between the spectra are shown as the box plots 

in Figure 5.1B-D, including the peaks that have been assigned in previous studies as lipid and 

DNA around 1303 cm
-1

, the phenylalanine and DNA region around 1510-1520 cm
-1

 and the 

shoulders of the 1656 cm
-1

 amide-I peak.
47-49

 Changes in the shoulders of the amide-I peak are 

usually due to changes in the secondary structures of amide-I, like the β pleated sheet proteins.
49

 

These peaks that seemed to qualitatively have the most difference in the averaged composite 

spectra have large areas of overlap. Box plots were used to visualize the data as they provide 

more detailed information compared to bar graphs. These figures have been explained in detail 

previously.
50

 Generally, the box represents the 25
th

 and 75
th

 percentiles as the bottom and top of 

the box. The center line is the median, the error bars represent one standard deviation from the 

mean, and any outliers are represented by a +. 
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Figure 5.1 A) Normalized average Raman spectra of white, black and Hispanic patients. Highlighted 

regions are displayed in C-E. B) Difference spectra between measurements from white and black patients 

and white and Hispanic patients. C-E) Box plots of specific peaks of Raman spectra from normal cervix 

of patients who described themselves as white, black, or Hispanic. Potential peak assignments: Lipid & 

DNA (C), Phenylalanine & DNA (D), Amide-I shoulder (E). The box contains data between the 25
th
 and 

75
th
 percentile, with the center line representing the median. The error bars are ±1 S.D. about the mean. 

Outliers are represented by the +. 

 

 

5.4.2 BMI 

Raman measurements (nspectra=187) from 3 different BMI categories (normal npatients=19, 

overweight npatients=21, obese npatients=23, total number of patients=63, excluded=12 if no patient 

history or underweight due to low recruitment numbers) were acquired and averaged. The 

spectra among these 3 categories appear similar in most areas, but a few significant differences 

occur in the peaks at 1010 cm
-1

, 1656 cm
-1

 and 1750 cm
-1

. Difference spectra have been plotted 

in Figure 5.2A showing differences between patients of normal BMI and overweight BMI, as 

well as normal and obese. To visualize important areas of the spectra, box plots for these peaks, 

which have been assigned by other researchers as phenylalanine, lipid and C=C bonds, 

respectively, are shown in Figure 5.2B-D.
49, 51, 52
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E 

 
Figure 5.2. A) Normalized average Raman spectra from normal, overweight and obese patients. 

Highlighted regions are displayed in C-E. B) Difference spectra between measurements from normal and 

overweight patients and normal and obese patients. C-E) Box plots showing regions of difference 

between patients with normal and overweight + obese BMI levels. Potential peak assignments: 

Phenylalanine (C), Lipid (D), C=C bond (E). The box contains data between the 25
th
 and 75

th
 percentile, 

with the center line representing the median. The error bars are ±1 S.D. about the mean. Outliers are 

represented by the +. 

 

5.4.3 Parity 

Raman measurements (nspectra=117) were obtained from two groups of patients, 

nulliparous (npatients=23) and parous (npatients=24, total number of patients=47, excluded=28 if 

prior miscarriage or abortion). Compared to previous spectra, there are variations throughout the 

entire range. A subtraction spectrum showing the differences between measurements from 
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women who have and have not been pregnant is in Figure 5.3A. More significant differences are 

seen in the region of 1050–1130 cm
-1

, which have been attributed to C-C and C-O stretches, as 

well as the concentration of collagen, elastin, lipid and proline.
49, 53, 54

 Box plots peaks 

corresponding to some of these differing regions are shown in Figure 5.3B-D. 
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Figure 5.3. A) Normalized average Raman spectra from patients with zero pregnancies and one or more 

pregnancy. Highlighted regions are displayed in C-E. B) Difference spectra between measurements from 

patients with and without previous pregnancy. C-E) Box plots showing regions of difference between 

patients with and without previous pregnancy. Potential peak assignments: Collagen/Elastin (C), Amide-

III (D), C-O stretch (E). The box contains data between the 25
th
 and 75

th
 percentile, with the center line 

representing the median. The error bars are ±1 S.D. about the mean. Outliers are represented by the +. 
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5.4.4 Socioeconomic Status 

For this study, patients’ health insurance status was used as an indicator of 

socioeconomic status. Raman spectra (nspectra=123) were obtained from the cervix of patients 

with or without private health insurance with 26 patients in each category (excluded=23 if health 

insurance status was unknown or had recently changed). Included in the group of patients 

without health insurance were women who qualified for the Tennessee Breast and Cervical 

Cancer Screening (TBCC) program. These patients have health care for mammograms, Pap 

smears, etc. but the program does not provide comprehensive health care coverage. The spectra 

from the two groups mostly overlap, with only a few areas of small differences between patients 

with and without health insurance. This outcome is shown in Figure 5.4A. Figure 5.4B-D contain 

box plots for the peaks at 1095 cm
-1

, 1265 cm
-1

 and 1656 cm
-1

, which correspond to PO2
-1

, 

protein content and the shoulder of the amide-I band.
49, 54-56 
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Figure 5.4. A) Normalized average Raman spectra from patients with and without health insurance. 

Highlighted regions are shown in C-E. B) Difference spectra between measurements from patients with 

and without health insurance. C-E) Box plots showing regions of difference between patients with and 

without health insurance. Potential peak assignments: PO2
-1

 (C), Protein content (D), Amide-I shoulder 

(E). The box contains data between the 25
th
 and 75

th
 percentile, with the center line representing the 

median. The error bars are ±1 S.D. about the mean. Outliers are represented by the +. 

 

 

5.4.5 Statistical Analyses 

Although box plots have been used to highlight various regions of the spectrum, the 

entire normalized spectrum from 990 to 1800 cm
-1

 for each patient within each category was 

used for this analysis. The first step of this analysis was to classify the spectra according to the 

previous categories (i.e. white, black, and Hispanic, etc.) to determine if significant differences 

exist in the Raman spectra acquired from these specific groups of patients. Various iterations of 

analyses were used to decide how the spectra should be classified, which was determined by 

finding the greatest classification accuracy of these iterations. For example, for the BMI 

category, SMLR was first performed to classify the spectra as normal, overweight or obese. 

However, a higher classification accuracy rate was found when SMLR was performed with only 

two categories: normal versus a combined category of spectra from overweight and obese 

patients. Table 5.3 shows the maximum classification accuracy obtained within each patient 

variability category. The category of race/ethnicity classified with a maximum rate of 58%, BMI 
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with a maximum rate of 78% when spectra were classified as normal or a combined category of 

overweight or obese, parity with a rate of 75%, and socioeconomic status with a rate of 61%. 

Patient Variable 
Optimized Classification Categories 

(Number of Categories Used) 

Maximum 

Classification 

Accuracy 

Race/Ethnicity White, Black, Hispanic (3) 58% 

   

BMI Normal, Overweight+Obese (2) 78% 

   

Obstetric History No pregnancies, ≥1 Pregnancy (2) 75% 

   

Socioeconomic 

Status 
Uninsured, Insured (2) 61% 

Table 5.3. Results from statistical analyses of patient variables 

 

5.5 Discussion 

Previous studies using RS to detect cervical dysplasia have shown limited success.
1, 15, 16

 

We have previously demonstrated that some of these limitations can be overcome by accounting 

for both normal patient variability, such as hormonal differences and the history or presence of 

disease.
1, 23, 24

 In this paper, we evaluate whether Raman spectra acquired from normal tissue can 

be separated based on other patient variables, including race/ethnicity, BMI, obstetric history and 

socioeconomic status. 

 The spectra used in the analyses presented here were acquired from patients with no 

history of disease and whose current Pap smear result was within normal limits. When a 

pathologist examined these cytology specimens, few variations were observed and the clinical 

diagnosis of each patient was normal. If there are no significant differences due to common 

patient variations, like ethnicity, height and weight, we expect spectra acquired from the cervix 

of patients with a normal pathology to also appear similar and have few variations. Furthermore, 

if these variables, like BMI, parity, etc., have no impact on the spectra, statistical classification 
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should produce results with accuracy rates around 50%, similar to a coin toss. Previous studies 

have suggested the patient variables analyzed in this paper may be correlated with higher 

incidences of cervical dysplasia.
32, 35

 While we do not expect a significant impact from these 

normal physiological and social variables on the biochemical makeup of the cervix or the 

acquired Raman spectra, investigating the influence of these variables is an important first step in 

validating the application of RS on a diverse patient population. The results from this study show 

that some of these variables produce significant changes to Raman spectra that are separable 

using statistical classification methods. 

 The two patient variables that resulted in the most separable spectra were BMI and parity, 

with classification rates of 78% and 75%, respectively. These results suggest that BMI and parity 

cause significant changes in the cervix and therefore affect any spectra acquired from the cervix. 

As discussed previously, higher BMI is associated with increased areas of inflammation and 

higher blood serum hormonal levels.
22, 24, 37

 While there are cycling levels of hormones that 

effect the elasticity and softness of the cervix, varying baseline levels of steroid hormones due to 

BMI differences may change the cervix as well. Similarly, it is reasonable to believe that parity 

would influence normal Raman spectra. The cervix is known to change dramatically during 

pregnancy and labor.
57

 These changes appear to be long-term and affect tissue biochemistry 

significantly enough to be recognizable with RS. Furthermore, accuracy rates may increase by 

defining narrower classification groups. Figure 5.3B shows a box plot of the peak at 1070 cm
-1

, 

correlating to collagen and elastin content. While there is little variance in patients who have not 

been pregnant, there is a significant amount of variance in the spectra from those who have. This 

variance may be correlated with number of pregnancies and type of delivery (vaginal or 

caesarean), both of which may change the concentration and organization of collagen.
58

 In the 
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future, comparing groups of patients with different delivery types and number of pregnancies 

may increase accuracy rates. 

Classification by socioeconomic status and race/ethnicity resulted in accuracy rates of 

61% and 58% respectively, suggesting that these variables have a smaller impact on the Raman 

spectra. While there are small differences in the Raman spectra that lead to a classification rate 

higher than 50%, socioeconomic status and race/ethnicity are less significant compared to BMI 

and parity. One possible explanation for the 61% classification accuracy with socioeconomic 

status may be an increased prevalence of undiagnosed medical problems due to the lack of 

medical insurance reducing access to comprehensive health care. These results also suggest that 

the different incidence rates of cervical dysplasia among racial and ethnic groups are not due to 

fundamental differences in the biochemical makeup of the cervix. Even though there is no 

physiological evidence that race or ethnicity change the biochemical makeup of the cervix, it was 

important to investigate these variables to ensure that RS can be applied to detect cervical 

dysplasia in diverse populations. The low rate of classifying data by race or ethnicity alone 

suggests that these variations do not significantly affect the cervix or the classification of Raman 

spectra. This outcome is significant as it indicates RS may be applied in clinical settings on any 

patient population. 

The success of the analyses performed in this study depends on the reliability of the data 

used to categorize the spectra. For example, the patient reported her own race or ethnicity, but 

the categories were limited to “white,” “black” and “Hispanic” and she may fit into more than 

one or none of these. BMI is a controversial measure of body fat that may be inaccurate since it 

does not reflect changes due to age, race, gender, etc.
59

 To classify spectra based on parity, 

higher rates may be achieved by further categorizing previously pregnant patients by number of 
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pregnancies and number and type of delivery (vaginal or cesarean). In this study, some spectra 

(nspectra=11) were acquired during a patient’s post-partum exam, typically 6-10 weeks after 

delivery. Obtaining data at this point may not only affect spectra acquired from the cervix, but 

also a patient’s BMI. Future studies on patient variability should exclude data from such patients. 

Finally, whether or not a patient has health care coverage may not be an accurate measure of 

socioeconomic status or other cultural practices such as dietary and social habits which are 

associated with different economic levels. To truly investigate the influence of specific variables, 

surveys of the patients may be more beneficial.  

Previous studies from our research group using RS to detect changes in the cervix 

analyzed the data with a combined algorithm of maximum representation and discrimination 

feature (MRDF) and SMLR.
1, 23, 24

 MRDF is a kernel-based algorithm that extracts important 

features by reducing the dimensionality of a set of data by performing a number of mathematical 

transforms. These features were then used by SMLR to classify the data sets. In this study and in 

chapters 7 and 8 and Appendix 1, SMLR was used on its own to reduce the time and computing 

power needed to classify the data. SMLR, also a kernel-based algorithm, maximizes the sparsity 

between separate sets of data by maximizing the sparsity between them. The results from this 

paper suggest that SMLR may be capable on its own for discriminating between the subtle 

differences among various data sets. 

Studies from our lab and others have looked at the effect of hormonal variations,
28

 age,
26

 

acetic acid,
24

 creams and lotions,
27

 history or presence of disease,
24, 25

 smoking, BMI, obstetric 

history, insurance status and race/ethnicity on Raman spectra obtained from non-malignant areas 

of the cervix and other tissues. The results from previous work have shown that, prior to 

classification, stratifying spectra based on hormonal changes and history or presence of disease 
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reduces intra-class variability amongst both normal and diseased spectra.
1, 24

 Unsupervised 

classification algorithms were then more likely to account for the variance due to differences 

from disease instead of the variance due hormonal status or disease history, resulting in 

improved performance. However, close examination of these results revealed that a significant 

amount of intra-class variance among the normal spectra remained,
1, 23, 24

 which motivated 

investigating additional factors that could be used to account for the variance among normal 

spectra and improve classification of disease. 

Therefore, the purpose of this paper is to perform the critical intermediate step of 

identifying the most separable sources of intra-class variation amongst normal spectra. Our 

results indicate that of the variables investigated, normal spectra are best separated as a function 

of BMI and parity, which are both easily obtainable from the patient. Based on previous 

experience with hormonal status and disease history, it is possible that stratification of the 

spectra by BMI and parity may also improve the accuracy of disease diagnosis using RS. 

Because an effect of race/ethnicity or socioeconomic status on classification was not identified, 

there appears to be no benefit to accounting for those variables prior to classification. 

Consideration of other variables beyond those discussed here may be important and can be 

determined based on organ sites. However, the cost to benefit ratio of incorporating additional 

physiological patient variables prior to spectral classification must be considered before further 

analysis is performed. 

Current research is underway in our lab to understand the significance of BMI, parity, 

race/ethnicity, and socioeconomic status on disease classification and to quantify the relative 

variance these factors impart on normal spectra compared to diseased spectra. While it may be 
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possible that BMI and parity do not affect disease spectra as has been demonstrated with normal 

spectra, they are still important factors to be aware of prior to classification of cervical dysplasia. 

The goal of using RS for precancer detection is to provide an automated, real-time 

method of accurately detecting malignant cells in any patient population, regardless of race, 

ethnicity, BMI, parity or socioeconomic status. Previous work using RS for in vivo screening and 

diagnosis of cervical dysplasia has shown promising results, with sensitivities and specificities 

above 90%, however this work was done in a fairly homogenous patient population. In this 

study, we investigated the spectral variations in a more diverse patient group and found more 

distinct differences due to BMI and obstetric history compared to race/ethnicity and 

socioeconomic status. We believe these results suggest that classification algorithms for the 

detection of cervical dysplasia with RS should be developed to incorporate BMI and obstetric 

history, but it does not appear necessary to control for race, ethnicity or a patient’s 

socioeconomic status. These results also suggest that normal sources of physiological variability, 

such as hormone levels, BMI, etc., may affect the inherent baseline Raman spectra acquired from 

other organ systems as well. For example, skin pigment and dryness may be important variables 

to account for when using RS for diagnosing melanoma. Age and gender may be significant 

factors that impact the biochemical makeup of the GI tract. Parity and hormonal fluctuations may 

affect the classification accuracy of Raman spectra acquired from the ovary. By examining the 

effect of such normal physiological variables on spectra, the sensitivity of RS will be revealed, as 

will its effectiveness for detecting and diagnosing disease. 
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CHAPTER 6  

 

ANALYSIS OF THE EFFECT OF PHYSIOLOGICAL VARIABLES ON DISEASE 

CLASSIFICATION OF RAMAN SPECTRA 

 

This chapter demonstrates the effect of the normal variables that were previously studied on the 

classification of Raman spectra acquired from areas of cervical dysplasia, corresponding also to 

Specific Aim 1. The data was acquired from patients with current cervical disease at Meharry 

Medical College. It is being prepared for submission. 

Vargis E, Pence IJ, Byrd T, Khabele D, A Mahadevan-Jansen. Analysis of the Effect of 

Physiological Variables on Disease Classification of Raman Spectra. (In preparation) 2012 

 

6.1 Abstract 

Raman spectroscopy is a sensitive technique that has been used to detect and diagnose 

tissues at multiple sites as normal, inflammatory or diseased. As more research into using Raman 

spectroscopy to diagnose cervical dysplasia has been conducted, it has become apparent that by 

accounting for normal patient variations, the sensitivity and specificity of Raman for diagnosing 

disease can increase. The goal of this research is to use Raman spectroscopy to successfully 

diagnose abnormal areas of the cervix of any patient independent of other factors. Raman spectra 

were acquired from a diverse patient population coming in for a colposcopy-guided biopsy. 

Multiple generalized linear methods were used to determine which variables should be 

considered and in what order to maximize the classification accuracy of Raman spectra from 

diseased areas of the cervix. For this data, using menopausal status, parity and BMI were 

sufficient to achieving 100% classification accuracy. 
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6.2 Introduction 

Raman spectroscopy (RS) is a sensitive technique that has been used to detect and 

diagnose multiple tissue sites as normal, inflammatory or diseased. This optical method is a 

molecular-specific technique that probes into the vibrational or rotational transitions of chemical 

bonds, providing detailed information about the biochemical composition of a sample.
1
 In 

particular, near-infrared RS has been used to detect cancers in many sites, such as the colon,
2
 

lung,
3
 cervix,

4
 breast,

5
 and skin

6
 with varying sensitivity and specificity rates (65%-100%). In 

this study, we examine normal physiological factors and quantify their effect on Raman spectra 

acquired from the cervix. Such factors may be inhibiting the success of using RS to correctly 

diagnose cervical dysplasia.  

As more research into using RS to diagnose cervical dysplasia has been conducted, it has 

become apparent that by accounting for normal patient variations, the sensitivity and specificity 

of Raman for diagnosing disease can increase.
7, 8

 Similar research on inherent normal patient 

variability has been seen when using Raman on other tissue sites, such as the colon and the 

breast.
9-11

 In many cases, accounting for these normal differences has led to an increase in both 

the sensitivity and specificity rates of classifying normal spectra compared to disease. 

Raman spectra are influenced by many factors, such as the varying levels of hormones 

released throughout the body during a menstrual cycle which can cause changes in the cervix, 

including softening, drying or thinning.
12, 13

 The presence or prior history of disease may cause 

permanent field effects or malignancy-associated changes, significantly impacting the Raman 

spectra.
14, 15

 Accounting for these normal variations prior to classification creates more accurate 

training sets for algorithm development. The variance between spectra from different sites, 
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therefore, is more likely to result from true malignancy instead of normal differences, resulting in 

higher classification accuracy rates. 

More recently, the effect of other normal physiological variables, including 

race/ethnicity, body mass index (a measure of body fat, BMI), obstetric history and whether or 

not a patient has health insurance, has been studied in spectra obtained from the normal, non-

diseased cervix.
16

 Race and ethnicity and health insurance status are all correlated with different 

incidences of cervical malignancies,
17

 with black and Hispanic populations having the highest 

incidence of and mortality rates from cervical dysplasia in the US in 2010.
18, 19

 These differences 

are likely correlated with limited access to routine care and screening. Going through pregnancy 

and parturition can result in permanent changes to the normal cervix. Obesity is also associated 

with higher rates of cancer, including cervical cancer,
20-22

 possibly due to differences in vaginal 

flora patterns, steroid hormone and cholesterol levels, cultural norms and bacterial or viral 

infections.
21

 The results from our previous studies indicate that BMI and parity both have a 

slightly significant effect on Raman spectra from the normal, benign cervix, whereas 

race/ethnicity and health insurance status (an indicator of socioeconomic status) had a minimal 

effect.  

The number of normal physiological variables that may affect Raman spectra and 

therefore disease classification are limitless. At this time, the impact of six variables on normal 

Raman spectra acquired from the cervix has been studied. Four of these variables have been 

determined to have a significant effect. While adding additional variables, such as human 

papilloma virus (HPV) strain or type of birth control, may increase disease classification 

accuracy, we must first develop a method for analyzing the effect of such variables in a 

quantifiable manner. Physiological variables such as these contribute to the variance of the 
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baseline or normal Raman spectra, which may result in classification algorithms placing an 

inappropriate significance on those normal differences, instead of focusing on the differences 

due to disease. Determining the importance of the effect of each variable will help identify the 

ones that should be considered prior to disease classification. 

Other groups have examined the effect of normal variations on Raman spectra. Knudsen 

et al. looked at variations due to measuring spectra from the skin at different times during the 

day and on different days, from different measurements at the same location, and from persons 

with differing skin pigmentation.
23

 The variability was assessed by comparing relative intensities 

of peaks; small differences were found in the overall spectral intensity and the amide-I and 

amide-III peaks. Studies using fluorescence spectroscopy to study the cervix have examined 

different sources of intra-patient and inter-patient variability including menopausal status, 

menstrual cycle variations, age, smoking history, the application of acetic acid, and overall 

diagnosis of the patient, finding that few of these variables affect the fluorescence spectra.
24, 25

 

Both of these studies, however, had a limited and homogenous group of  patients.  

In this article, we examine the effect of combining normal physiological variations: 

menopause, ovulation, race/ethnicity, body mass index (BMI), parity and health insurance status, 

on the classification of spectra acquired from a diseased cervix. These variables were chosen 

based on the results of our previous work.
7, 16

 The goal of this research is to use RS to 

successfully diagnose abnormal areas of the cervix of any patient regardless of the above factors. 

Raman spectra were acquired from a diverse and diseased patient population coming in for a 

colposcopy-guided biopsy following a previous abnormal Pap smear. Multiple generalized linear 

methods were used to determine which variables should be considered and in what order to 

maximize the classification accuracy of Raman spectra from diseased areas of the cervix. 
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6.3 Materials and Methods 

Patients with a previous abnormal Papanicolaou (Pap) result, scheduled for follow-up 

colposcopy-guided biopsy were recruited to this study. This study was conducted at the county 

hospital in Nashville, TN (Nashville General Hospital at Meharry Medical College, a hospital in 

an urban setting) in order to obtain measurements from a diverse set of patients. This study was 

approved by the Meharry Medical College Institutional Review Board (IRB).  

 

6.3.1 Clinical study design: Patient recruitment 

A total of 97 adult, female patients undergoing a colposcopy-guided biopsy were 

consented to participate in the study. With an effect size of 1, the power of this study is over 80% 

(two-sided statistical test, α=0.05). The patient’s age, date of last menstrual period, use of 

artificial hormones, menopausal status, height, weight, obstetric history, ethnicity, address, 

insurance, relevant medical history and any previous abnormal Pap smears were all noted upon 

chart review with Health Insurance Portability and Accountability Act (HIPAA) authorization. 

To obtain the Raman measurements, first, the cervix was exposed and visually examined by the 

attending physician. Acetic acid was applied to the cervix to turn abnormal areas white to enable 

their visualization. Raman measurements were taken after the application of acetic acid from 

each area to be biopsied and one or two visually normal areas. Next, abnormal tissues were 

biopsied according to standard clinical protocol and sent for pathological examination. The 

spectra were correlated with histological results and considered normal, inflammation 

(metaplasia or cervicitis), CIN 1/HPV changes, or CIN 2/3, depending on the pathology report.  

 Patients were stratified according to four sets of variables to determine the effect of 

normal patient variations on disease classification of RS: 1) menopausal status (pre, peri or post), 



 

112 

 

2) menstrual cycle (before or after ovulation), 3) Race/ethnicity (white, black, Hispanic, or 

other); 4) BMI category: (underweight, normal, overweight and obese); 5) parity (never pregnant 

or 1 or more full-term pregnancies) and 6) insurance status (uninsured or insured). Patients’ 

menopausal status and menstrual cycle were determined by the patient’s age and last menstrual 

period, respectively. The patient identified her own racial or ethnic group. Body mass index 

(BMI) was calculated using the formula below with height and weight measured the same day 

that Raman spectra were acquired.
26

  

2))((
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
  

Patients were classified as normal if their BMI was between 18.50–24.99, overweight if it was 

between 25.00–29.99, and obese if it was equal to or greater than 30.00. Obstetric history was 

determined by a chart review. Health insurance status was established by whether the patient had 

private (insured) or government-subsidized health insurance (uninsured).  

 

6.3.2 Instrumentation and Data Processing 

The portable RS system used to collect Raman spectra in vivo consisted of a 785 nm 

diode laser (PI-ECL-785-350, Process Instruments, Inc., Salt Lake City, UT), a beam-steered 

fiber optic probe (Visionex, Atlanta, GA), an imaging spectrograph (Holospec f/1.8i-NIR, Kaiser 

Optical Systems, Ann Arbor, MI), and a back-illuminated, deep-depletion, thermo-electrically 

cooled CCD camera (Pixis 256BR, Princeton Instruments, Princeton, NJ), all controlled with a 

laptop computer (Figure 6.1). The fiber optic device delivered 80 mW of light onto the tissue 

with an integration time of 2-3 seconds. During the measurements, all room lights and the 

computer monitor were turned off. A spectral resolution of 8 wavenumbers (cm
-1

) was achieved 

with this system. 
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Figure 6.1. Picture of Raman system used for this study. 

 

Spectral calibration of the system was performed daily with a neon-argon lamp and 

naphthalene and acetaminophen standards to correct for day-to-day variations. A National 

Institutes of Standards and Technology (NIST)-calibrated tungsten lamp was used to adjust for 

the wavelength-dependent response of the system. Spectra were processed for fluorescence 

subtraction and noise smoothing using the modified polynomial fit (9
th

 degree) and Savitzky-

Golay methods, described previously.
27

 Following data processing, each spectrum was 

normalized to its mean spectral intensity across all Raman bands to account for intensity 

variability. 

 

6.3.3 Physiological Variable Ranking and Disease Classification 

 Ranking of the variables was achieved by analyzing the data considering each variable 

and combinations of variables. The spectra were first classified into their disease categories, 
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without accounting for any variable. Then, the spectra were separated by each variable and 

reclassified. The variable that led to the highest classification accuracy rate was considered to 

have the greatest effect on the spectra. This process continued until each of the 6 variables was 

used to separate the data.  

The spectra were analyzed using an elastic-net regularized generalized linear model 

(GLMnet). Briefly, this method uses different methods (linear regression, two-class logistic 

regression, and multinominal regression) to fit the data and penalties (called the elastic net) while 

using the elastic net, i.e. the lasso and ridge regression as penalties to reduce the dimensionality 

of the data.
28, 29

 The methods and penalties are combined to handle large data sets while 

efficiently dealing with sparse features. For this study, leave-one-patient-out cross validation was 

used to minimize bias. Predicted or posterior probabilities of a spectrum belonging to a specific 

class were output from this analysis. The posterior probability was set to 0.5 such that if a 

spectrum’s probability for belonging to a certain class was 0.5 or higher, the spectrum was 

assigned to that class. Four groups were used for disease classification: negative for abnormal 

changes (negative), benign (cervicitis, metaplasia, etc.), CIN 1/HPV changes, and CIN 2/3. CIN 

2 and 3 were combined because they are treated similarly in clinical practice. 

The results from these analyses are presented in two ways. A confusion matrix is used to 

show the algorithm classification compared to the true classification of the sample determined by 

pathologists. Secondly, the posterior probabilities for each sample in each of the 4 groups are 

graphed. A posterior probability close to 1 suggests that there is a higher chance that the 

spectrum has classified correctly.  
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6.4 Results and Discussion 

The types of disease and epidemiologic makeup of the patient group (menopausal status, 

ovulation, race/ethnicity groups, BMI category, obstetric history and insurance status) in this 

study are shown in Table 6.1. The entire data set consisted of two-hundred seventy-three spectra 

(273) acquired from a total of ninety-seven (97) patients. With an effect size of 1, the power of 

this study is over 80% (two-sided statistical test, α=0.05). Figure 6.2 shows Raman spectra of the 

four classification groups, regardless of menopause, ovulation, racial/ethnic background, BMI, 

parity, and insurance status. There are many variations in the spectra found among the different 

disease types. Some of these differences include the peak around 1070 cm
-1

 and the region 

between 1230 and 1330 cm
-1

, which have been found to potentially correspond to collagen, 

elastin, lipids and DNA.
30-32

 While differences in the spectra can be observed based on disease 

type, there are also underlying sources of variance due to normal patient variation. 

 

Figure 6.2. All 273 Raman spectra for all disease groups. The most amount of difference occurs in the 

two highlighted regions. 
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Negative 105 

Inflammation 70 

CIN 1/HPV Changes 83 

CIN 2/3 15 

  

Premenopausal 209 

Perimenopausal 46 

Postmenopausal 18 

  

Before ovulation 103 

After ovulation 97 

No ovulation 73 

  

White 91 

Black 106 

Hispanic 74 

Arabic 2 

  

Underweight BMI 8 

Normal BMI 77 

Overweight BMI 89 

Obese BMI 99 

  

No previous pregnancies 120 

Prior Pregnancy/ies 153 

  

Insured 161 

Not Insured 112 
Table 6.1. Demographic table of all spectra from patients recruited to this study. A total of 273 spectra 

were used. 

 

 

Without taking any patient variable into consideration, all of the data (nspectra=273) 

classified with an overall accuracy of 86% using the GLMnet method described above. The 

classification results are shown in Table 6.2. The maximum accuracy found was 97% for the 

negative spectra and the lowest classification accuracy was 80% for the CIN 1/HPV spectra. 

Overall, the spectra classified with an over 94% accuracy rate, however, 20% of the spectra 

obtained from malignant (CIN 1-3 or HPV) regions of the cervix classified as normal. Although 
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the accuracy rates are quite high in this first set of analysis, there is a considerably low sensitivity 

rate or a high false-negative rate which makes using the data unfeasible in a medical setting 

  Raman Classification, output of GLMnet 

 Negative Benign CIN 1/HPV CIN 2/3 

Pathological 

Diagnosis 

Negative 97% 2% 1% - 

Benign 16.3% 75.5% 8.2% - 

CIN 1/HPV 30.5% 2.8% 66.7% - 

CIN 2/3 22.2% 5.6% - 72.2% 
Table 6.2. Confusion Matrix for data classified by disease only. 

 

The variables were then considered in order to determine their influence on disease 

classification accuracy, especially their effect on reducing the number of false negatives 

(increasing the specificity). Table 6.3 shows the GLMnet output when the spectra are stratified 

by specific patient variables. For example, for the menopausal category, GLMnet was first run 

on the diseased spectra from premenopausal women, then on the spectra from perimenopausal 

women, etc. The classification accuracy displayed is the average of the groups for each patient 

variable. The variable that led to the maximum classification accuracy, sensitivity and specificity 

was menopausal status, followed by parity. BMI and menstrual cycle time point had a minimal 

impact on the classification accuracy, while health insurance and race/ethnicity had none.  

Patient Variable 

Maximum 

Classification 

Accuracy 

Sensitivity Specificity 

None 86% 82% 96% 

Menopausal 

Status 
97% 100% 99% 

Ovulation 95% 99% 100% 

Race/Ethnicity 94% 84% 99% 

BMI 95% 94% 98% 

Obstetric History 97% 98% 99% 

Socioeconomic 

Status 
94% 85% 97% 

Table 6.3. First iteration of looking at the effect of 1 patient variable. 
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Next, the data were classified again by taking multiple variables into consideration. First, 

the data was stratified by menopausal status. At this point, there were 3 groups of data: 

premenopausal, perimenopausal and postmenopausal. Each of these three groups was separated 

by another variable, for example, BMI, creating new groups of patients, such as a set of 

premenopausal women with a normal BMI. GLMnet was used to reclassify these new groups of 

data into 4 categories. In this second step, incorporating obstetric history resulted in the highest 

classification accuracy. This process was repeated and BMI was the next variable that, when 

incorporated into the analysis to separate the data prior to disease classification, resulted in the 

maximum classification accuracy. At this point, the classification accuracy, and therefore the 

sensitivity and specificity, were 100%. Further analyses were performed to consider the effects 

of menstrual cycle time point, race/ethnicity, and health insurance status. Classification accuracy 

was no longer used as a metric to determine success. Rather, the graphs of the posterior 

probabilities were used to measure if more of the spectra were classifying in their correct 

categories at a posterior probability closer to 1. Incorporating ovulation time point resulted in a 

small improvement in increasing posterior probability, but race/ethnicity and health insurance 

status had none (data not shown). 

These results are displayed in Figure 6.3 and Figure 6.4. Figure 6.3 shows the posterior 

probabilities of all the data, before its stratification based on any patient variable. Although all of 

the data classified with 86% accuracy, there remains a large spread in all of the categories 

(Figure 6.3). In Figure 6.3, the y-axis corresponds to each of the 273 spectra. The x-axis 

corresponds to the posterior probability that the spectrum belongs to any of the 4 categories 

(Negative, Benign, CIN 1/HPV Changes, CIN 2/3). A posterior probability is generated for each 

spectrum to classify as each pathology (i.e. a posterior probability is calculated that each 
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spectrum is negative, benign, etc.). Therefore, each spectrum on the x-axis has a corresponding 

1, 2, 3, or 4, indicating the posterior probability of classifying the spectrum into a specific group 

(negative = 1, benign = 2, CIN 1/HPV Changes = 3, CIN 2/3 = 4). If the spectrum has a high 

chance of belonging to a certain category, the posterior probability will be close to 1. Ideally, the 

number 1 (corresponding to the negative spectrum classifying correctly as negative) would be 

seen across the negative section (the first box on the left) with posterior probabilities close to 1; 

“2” would be seen with high posterior probabilities in the next box, corresponding to benign 

spectrum correctly classifying as benign, etc. The posterior probability spread is calculated by 

subtracting lowest posterior probability from the highest within a certain class; the largest spread 

is reported. A smaller spread suggests that the classification algorithm is successfully 

differentiating between spectra acquired from various pathology groups.  

When menopausal state, parity and BMI are used to separate the data before disease 

classification, not only does the accuracy increase to 100%, but the posterior probabilities for the 

samples in all 4 groups increases (Figure 6.4). Only data from premenopausal, overweight 

women with a history of at least 1 pregnancy was included in this analysis. When the posterior 

probabilities were displayed when menstrual cycle was also considered, there was a slight 

increase in the posterior probabilities, especially in the CIN 1 group as well as a decrease in the 

overall posterior probability spread (Figure 6.5). Incorporating race/ethnicity or health insurance 

status led to no increase. 
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Figure 6.3 Posterior probabilities when classifying all data. Plotted are the posterior probabilities of each 

spectrum belonging to each of the 4 pathological classes. Classification accuracy: 86%; posterior 

probability spread: 0.89 
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Figure 6.4. Posterior probabilities of 98 samples, taken from the original set of data. This data was 

obtained from premenopausal, overweight women who had at least 1 pregnancy. Plotted are the posterior 

probabilities of each spectrum belonging to each of the 4 pathological classes. Classification accuracy: 

100%; posterior probability spread: 0.49 
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Figure 6.5. Posterior probabilities of 93 samples, taken from the original set of data. This data was 

obtained from premenopausal, overweight women before ovulation who had at least 1 pregnancy. Plotted 

are the posterior probabilities of each spectrum belonging to each of the 4 pathological classes. 

Classification accuracy: 100%; posterior probability spread: 0.39 

 

Raman spectroscopy is a sensitive optical modality, used by many groups to detect 

abnormal or malignant areas of tissue. Results from previous work have shown that when spectra 

are stratified based on hormonal changes and history or presence of disease prior to 

classification, a reduction in intra-class variability was seen in both normal and diseased 

spectra.
4, 8

 When noise from normal differences among patients was considered, unsupervised 

classification algorithms were then more likely to account for the variance due to differences 

from disease, resulting in improved performance. However, close examination of these results 

revealed that a significant amount of intra-class variance in the normal spectra remained,
4, 7, 8
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which motivated investigating additional factors that may account for the variance among normal 

spectra and improve classification of disease. 

The classification accuracies found in this study were based on the posterior probabilities 

that each spectrum belonged to a specific class. For this work, a threshold of 0.5 was set to 

determine when a spectrum classified correctly. To increase the accuracy of this system, a higher 

probability may be set as the threshold. Setting a higher threshold would drastically affect the 

initial disease classification output, where no patient variables were considered. However, in our 

later classifications, where normal patient variables were used prior to inputting the data into 

GLMnet, the majority of the data classified correctly at a threshold above 0.7. This result 

suggests that by incorporating important variables, our classification algorithm has a better 

ability to define spectra as being more likely to belong to a specific pathological diagnosis. 

In this study, we have demonstrated that the impact of normal patient variations must be 

accounted for in order to maximize disease classification accuracy of Raman spectra. To our 

knowledge, this is the first report where normal physiological variables were ranked based on 

their effect on disease classification. After ranking the variables by their order of importance, 

classification of disease spectra was then performed. Those results showed that menopausal 

status, parity and BMI have the greatest effect on correctly classifying Raman data. We have 

effectively performed a cost-benefit analysis on the basis of disease variables. The small increase 

in classification accuracy that ovulation time point, race/ethnicity and health insurance status 

provide are not significant enough to warrant their inclusion in further studies for diagnosing 

dysplasia in the cervix. However, these variables may be important for other disease sites, such 

as the skin, and a similar analysis should be conducted prior to using Raman to diagnose disease. 
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CHAPTER 7  

 

NEAR-INFRARED RAMAN MICROSPECTROSCOPY DETECTS HIGH-RISK HUMAN 

PAPILLOMAVIRUS 

 

This chapter contains results showing the effect of HPV infection, HPV strain and malignancy 

from cells and patient samples on Raman spectra obtained using a microscope system. This data 

was acquired from cell culture and patient samples from Vanderbilt University Medical Center. 

It corresponds to Specific Aim 2. A manuscript of this chapter is currently under review with the 

journal Translational Oncology. 

Vargis E, Tang YW, Khabele D, A Mahadevan-Jansen. Using Near-Infrared Raman 

Microspectroscopy for the Detection of High-Risk Strains of Human Papillomavirus. 

Translational Oncology (In review) 2012. 

 

7.1 Abstract 

Detecting HPV infection in cervical cells is an exceedingly important part of the clinical 

management of cervical dysplasia. Current guidelines in women’s health outline the need for 

both the Pap smear as well as high-risk HPV testing. Testing for HPV is expensive, time-

consuming and requires experienced technicians. Two sets of experiments were conducted. First, 

using a Raman confocal microscope system, Raman spectra were acquired from four different 

cell culture lines, 2 positive for HPV (HeLa, SiHa), 1 negative for HPV but malignant (C33A) 

and one normal, HPV-negative cell line (NHEK). The 3 malignant lines were all derived from 

cervical cells. Second, Raman spectra were acquired from de-identified patient samples that were 

previously tested for the presence of high-risk HPV. The spectra from the cell culture lines and 

the patient samples contained many statistically significant differences. Using SMLR to classify 
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the data led to classification accuracies of 89-97% for the cell culture samples and 98.5% for the 

patient samples. Raman microspectroscopy can be used to detect the presence of HPV and 

differentiate among specific HPV strains. This technique may provide health providers with a 

new method for quickly testing cell samples for the presence of HPV. 

 

7.2 Introduction 

Persistent infections with sexually transmitted human papillomaviruses (HPV) are 

correlated with essentially all cases of cervical cancer.
1
 Out of over 150 HPV strains, a limited 

number of high-risk strains (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 73 and 82) have 

been found to cause cervical cancer..
2, 3

 Of these, two high-risk HPV strains, 16 and 18, together 

cause 70% of cervical cancer cases worldwide. These high-risk strains predominantly infect skin 

and mucosal membranes to promote epithelial proliferation, resulting in uninhibited proliferation 

and malignant transformations. Three oncogenes, E5, E6, and E7, are found in high-risk HPV 

strains and cause cell damage and abnormal cell proliferation by cooperatively interfering with 

the functions of cellular tumor suppressor proteins, specifically p53 and pRb.
4
 Since HPV infects 

basal layer cells and only replicates in fully differentiated cells, it can usually remain undetected 

by the immune system, avoiding a humoral or cell-mediated immune response for years.
5
 

The Papanicolaou (Pap) test, where cells are scraped from the cervix and examined for 

atypical cytological features under a microscope, was introduced in the early 1920s. Since then, 

clinical management of cervical dysplasia has been achieved by administering regular Pap tests. 

However, Pap tests alone do not provide a complete picture of the possible malignant changes 

that occur in the cervix due to HPV infection. Since 2009, the American Society of Colposcopy 

and Cervical Pathology has recommended including HPV testing for the clinical management of 
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cervical dysplasia in women.
6
 Therefore, in the past few years, testing for all high-risk HPV 

strains or only strains 16 and 18 has been incorporated into routine cervical cancer screening in 

women over 30, leading to more accurate results and a reduction in the overall number of Pap 

smears as women who have both a negative Pap result and a negative HPV-DNA test are only 

tested every 2-3 years. 

Current testing methods rely on obtaining a cellular sample, fixing the cells on a slide, 

and then transporting the slide to a pathology lab that runs the HPV test. After 7-12 days, the test 

results, whether the cell sample is positive or negative for a high-risk strain of HPV, are reported. 

No tests currently used for routine screening report the specific high-risk strain. The HPV tests 

developed by Qiagen, Roche, Gen-Probe and Hologic are the most commonly used.
7, 8

 Cervista® 

tests for HPV types 16 and 18 and is approved for use in conjunction with Pap tests in women 

over the age of 30.
9
 In cases where the Pap smear shows malignant cells and the sample is 

positive for high-risk HPV, the patient then needs to return for a follow-up appointment for 

either another Pap smear or a colposcopy-guided biopsy. A diagnostic tool that can rapidly 

identify specific high-risk HPV strains in vivo or ex vivo would help medical providers determine 

appropriate follow-up treatment to diagnose cervical dysplasia and prevent its progression.  

Two HPV vaccines, Gardasil
TM

 and Cervarix® prevent infection from high-risk HPV 

strains 16 and 18.
9, 10

 These vaccines are available to women ages 9-26 and some men only on a 

voluntary basis. However, these vaccines may not protect against the other high-risk HPV types, 

which are common in countries other than the United States.
11, 12

 A tool for identifying cervical 

samples that are positive for high-risk strains of HPV remains necessary even with the increasing 

use of HPV vaccines.  
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Optical techniques, such as drug-mediated fluorescence,
13

 autofluorescence,
14

 Fourier 

transform infrared (FTIR) spectroscopy,
15

 and Raman spectroscopy (RS)
16-18

 have been used to 

detect cervical dysplasia. As the clinical management of cervical cancer has shifted more 

recently, some of these techniques have been extended to the detection of infection with HPV. 

Such methods can be used non-invasively, either directly on the cervix to detect dysplasia or to 

detect the presence of HPV in small volumes of ex vivo samples. The results from these studies 

have ranged from detecting the difference between HPV-positive and -negative samples with 

sensitivities and specificities ranging from 90-94%
13, 15

 and 92-96%,
13, 15, 17

 to understanding the 

important spectral signatures that are associated with different types of HPV infection without a 

diagnostic application. These optical techniques do have their drawbacks, however, as 

fluorescence signal increases with HPV infection, regardless of strain, and FTIR is significantly 

hindered by water content, a significant hurdle for potential in vivo applications. 

In this study, we use a confocal Raman microspectroscopy system to study the 

biochemical characteristics of various HPV strains and malignant cervical cells. Raman 

spectroscopy is based on the inelastic scatter effect, where incident light is scattered from a 

molecular or cellular sample. This scattered light exhibits an energy shift that reports the energy 

of specific molecular vibrations within the sample, effectively providing a detailed biochemical 

composition or fingerprint. A Raman spectrum, therefore, plots the energy shift away from the 

incident wavelength, usually measured in relative wavenumbers, versus scattering intensity. This 

optical technique can objectively characterize samples from multiple tissues based solely on their 

biochemical constituents, without relying on specific chemical markers or exogenous agents.
19-21

  

Previously, we have acquired Raman spectra from bulk cervical tissue in vivo using a 

fiber optic tool to detect and differentiate types of cervical dysplasia within a diverse patient 
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population.
18, 22

 Recently, we have found that accounting for patient variables, such as 

menopausal status or previous pregnancies, can lead to an increase in disease classification 

accuracy.
16, 22

 Infection with HPV is also an important variable that has yet to be included in 

these analyses because not every patient is tested for HPV and the most widely used testing 

standards do not differentiate between various HPV strains.  

The goal of this study is to evaluate the ability of RS for detecting the presence of HPV 

and the differences between specific HPV strains. Therefore, in this study, two sets of 

experiments were conducted to determine if RS is sensitive to HPV infection. First, Raman 

spectra were acquired using a Raman confocal microscope from 4 different cell lines, HPV-16 

positive SiHa cells, HPV-18 positive HeLa cells, HPV-negative but malignant C33A cells, and 

benign NHEK cells. Next, Raman spectra were obtained from HPV-positive and -negative 

patients samples. Logistic regression algorithms were then used to classify spectra into either 

specific strain categories for the cell culture studies or HPV-positive or -negative for the patient 

samples. Other research groups have performed similar tests acquiring Raman spectra from 

HPV-expressing cell lines.
23-25

 However, these studies omitted either a positive or a negative 

control. Also, many of these studies only reported on the oncogenic component of the virus (i.e. 

E7), instead of a complete HPV infection. Furthermore, to our knowledge, no study has 

incorporated Raman spectra acquired from HPV-positive and HPV-negative patient samples into 

their analysis of the sensitivity of RS towards HPV. 

 

7.3 Materials and Methods 

Two sets of experiments were conducted to evaluate RS’s ability to differentiate between 

HPV strains in cell culture lines and the presence of high-risk HPV strains in patient samples. 
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7.3.1. Cell Culture and Sample Preparation 

In the first set of experiments, 4 cell types with different HPV strains or no HPV 

infection (Table 7.1) were used. First, the two HPV-expressing cells, SiHa and HeLa (ATCC, 

Manassas, VA), were grown in RPMI with L-glutamate media with 10% FBS and antibiotics 

(Gibco, Carlsbad, CA). SiHa cells express HPV-16 and HeLa cells express HPV-18, two high-

risk strains. A C33A cell line (ATCC), transformed but HPV negative, was grown in DMEM 

with 10% FBS and antibiotics. NHEK cells (a human keratinocyte cell lines) were grown in 

EpiLife Media (Gibco) and antibiotics. 

Cell Culture Sample HPV Positive Transformed (malignant) 

SiHa cell culture Yes – HPV 16, 1-2 copies Yes 

HeLa cell culture Yes – HPV 18, 10-50 copies Yes 

C33A cell culture No Yes 

NHEK cell culture No No 

   

Patient Samples HPV Positive Transformed (malignant) 

HPV-Positive patient samples 

(nsamples=25) 
Yes – one or more high-risk strains Potentially 

HPV-Negative patient samples 

(nsamples=25) 
Negative for high-risk strains No 

Table 7.1. Description of Samples Used in this study 

 

Once the cells reached approximately 90% confluency in a T-75 flask (on average, 18.2 x 

10
6
 cells), the cells were washed with PBS and trypsinized (media was used to stop the 

trypsinization process). The cell mixture was then centrifuged at 300 g for 5 minutes. After the 

supernatant was removed, 10 ml of PBS was added and the mixture was centrifuged. This 

process was repeated 3 times. Next, 10 ml of sterile water was added and the cell-water mixture 
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was centrifuged at 300 g for 5-7 minutes, also repeated 3 times. Finally, the supernatant was 

removed and the cellular pellets were transferred onto CaF2 slides (Crystran, Dorset, UK). The 

slides were allowed to air dry in a sterile environment overnight. Raman spectra were acquired 

the next day. This protocol was developed to minimize the effects of the different types of media 

used to grow each cell type. 

 

7.3.2 Patient Samples and Preparation 

 After approval from the Vanderbilt University Institutional Review Board (IRB) was 

obtained, HPV-positive (nsamples=25) and -negative (nsamples=25) de-identified patient samples 

were obtained from the Molecular Infectious Diseases Laboratory at Vanderbilt University 

(Table 7.1). The samples were initially acquired for standard HPV testing, which includes cells 

from the cervix also used in liquid-based Pap smears. Vanderbilt University uses the digene HC2 

HPV DNA test developed by Qiagen (Valencia, CA). After 8 weeks, when samples are typically 

discarded, we were able to acquire 50 samples. Each sample contained 20 µl, with an average of 

9 x 10
4
 cells (fewer than the cell culture samples). Each cell sample was centrifuged at 300 g for 

5 minutes. After the supernatant was removed, 10 ml of sterile water was added and the mixture 

was centrifuged again. This process was repeated 3 times. Finally, the supernatant was removed 

and the cellular pellets were transferred onto CaF2 slides (Crystran). The slides were allowed to 

air dry in a sterile environment overnight. Raman spectra were acquired the next day. 

 

7.3.3 Raman Microspectroscopy Measurements 

Confocal Raman microspectroscopy provides a platform for acquiring Raman spectra 

from small sample volumes. The Renishaw InVia Raman microscope (Gloucestershire, United 
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Kingdom, Figure 7.1) consisted of a temperature-stabilized diode near-infrared laser with a 

maximum power of 120 mW (Innovative Photonics, Monmouth Junction, NJ) that operates at 

785 nm and delivers ~30 mW to the sample. Light was guided through a collimator onto a series 

of mirrors that focused the light through an open field 50x microscope lens. Dried cell pellets 

were illuminated with the laser beam and then light from the illuminated spot was collected with 

a lens and sent through a monochromator. Rayleigh scattering close to the laser line was filtered 

through an edge filter. The remaining inelastic (Raman) scattered light was then focused through 

a slit (100-μm width) and dispersed by a diffraction grating (600 grooves per millimeter) onto a 

CCD detector (576 x 384 pixels; each pixel is 22 × 22 μm), which then sent the detected Raman 

spectra to a workstation for further processing. This system yields a resolution of          ∼6 cm
-1

, 

compared to a resolution of 8 cm
-1

 found with the portable probe-based system. For the cell 

culture samples, spectra were acquired with an exposure time of 30 seconds. For the patient 

samples, spectra were acquired with an exposure time of 45-60 seconds. Three accumulations 

were acquired at each acquisition point, with a binning of 3. 

 
Figure 7.1. Schematic of Renishaw Confocal Raman System 
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The spectra were processed for fluorescence subtraction and noise smoothing using the 

modified polynomial fit and Savitzky-Golay methods, described previously.
26

 Following data 

processing, each spectrum was normalized to its mean spectral intensity across all Raman bands 

to account for intensity variability. 

 

7.3.4 Analysis and Classification of Raman Spectra 

 A Student’s t-test (unpaired two-sample, equal variance) was first conducted to find 

regions of significant differences among the 4 cell culture samples and between the 2 patient 

samples. Next, classification algorithms were used to tease out subtle differences among spectra 

acquired from different samples. For this study, a logistic regression method called Sparse 

Multinomial Logistic Regression (SMLR) was used.
27

 In brief, SMLR is a Bayesian machine-

learning framework that computes the posterior probability of a spectrum belonging to each 

tissue class based on a labeled training set. For these analyses, a composite spectrum averaging 

Raman measurements from each cell culture or patient sample was used. A range of input 

parameters to SMLR was tested. The settings that provided the most accurate classification while 

also maximizing sparsity among the cell samples were a Laplacian prior, a direct kernel, a 

lambda value of 0.01, and not adding a bias term. After every analysis, a confusion matrix that 

displays how each spectrum classified was produced which can be presented as either the total 

number of spectra or a percentage. Also, each SMLR analysis provides a training algorithm that 

can be used for validation.  

 For the cell culture samples, 3 sets of SMLR analyses were used. First, HPV-positive 

samples (HeLa, SiHa) were compared to HPV-negative samples (C33A, NHEK). Next, 

malignant samples (HeLa, SiHa, C33A) were compared to the benign sample (NHEK). Finally, 



 

136 

 

SMLR was used to classify each cell line. For the patient samples, HPV-positive and HPV-

negative samples were classified using SMLR. The algorithm developed from the patient 

samples was then applied to classify the cell samples. 

 

7.4 Results 

The goal of this study is to determine if the differences between HPV-positive and -

negative samples, malignant and benign samples, and specific HPV strains from cell culture and 

patient samples can be detected using RS (Table 7.1). Approximately 30 Raman spectra were 

obtained from fifteen (15) independent samples, consisting of at least 1x10
8
 cells per sample. 

The power of the cell culture experiments is over 90% (two-sided statistical test, α=0.05) with an 

effect size of 1; the power of the human sample study is over 80% under the same criteria. Figure 

7.2 displays the Raman spectra acquired with the Raman microscopy system from 4 cell culture 

samples: HeLa, SiHa, C33A and NHEK. Spectra acquired from the fixed HeLa cells appears to 

be the most different visually across the range of the spectrum, specifically around 990, 1080-

1160, around 1400, and around 1670 cm
-1

. These areas have been shown in previous work to 

correspond to C-C stretching in lipids and proteins, DNA content, and CH2 deformation.
28
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Figure 7.2. Spectra of HeLa, SiHa, C33A and NHEK cell culture samples. 

 

In Figure 7.3, peaks and peak ratios of the spectra in Figure 7.2 are displayed to provide 

an in-depth view of the changes that occur in the spectra from different cell lines. Figure 7.3a 

and Figure 7.3b demonstrate that concentrations of molecules vary depending on cell type, HPV 

strain and the number of HPV copies. Specifically, wavenumber 1260 has been tentatively 

assigned to the deformation of CH3 bonds and amide-III.
29

 Wavenumber 1400 cm
-1

 has been 

shown to correspond to DNA and RNA components, such as uracil and adenine.
28

 Looking at the 

changes among ratios of wavenumbers is another method commonly used to interpret Raman 

spectra. c shows the ratio of 1650 cm
-1

 to 1440 cm
-1

, which is one way of describing the intensity 

of the CH2 bending and the intensity of the C=C stretch.
30

 In these samples, this ratio has a 

negative linear dependence on HPV infection and malignancy, leading to a decrease in the ratio. 
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In Figure 7.3d, the ratio of 1260 cm
-1

 to 1340 cm
-1

 or the ratio of Amide-III to amino acids is 

displayed.
31

 In this case, as the number of copies of HPV increases in each sample (1-2 in SiHa 

cells, 10-50 in HeLa cells), this ratio increases, resulting in a linear correlation between HPV 

infection and this ratio.
32

 A Student’s t-test was also performed to compare the differences in the 

peak intensities to HeLa cells. A p-value less than 0.01 was defined as significant. 

Figure 7.3. Specific wavenumbers and ratios of wavenumbers from spectra of cell culture samples with ± 

standard error. * represents a p-value < 0.01 when compared to HeLa cells. 
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The first step of this analysis to determine the clinical significance of this technique was 

to use SMLR to classify the cell culture samples as HPV-positive or -negative (Table 7.2). Table 

7.2 shows that the presence of HPV is correctly identified using RS with a classification 

accuracy of 97%. Next, the analyses classified the spectra as malignant or benign (Table 7.3). 

Combining the malignant cell lines for comparison to the NHEK benign cell line resulted in a 

lower classification accuracy of 92%, with 10% of the Raman spectra obtained from malignant 

cells classifying as normal. Finally, SMLR was used to classify the spectra from the 4 different 

cell culture types with an accuracy of 89% (Table 7.4). The HeLa samples had the highest 

classification accuracy (98%), while the HPV-negative, malignant cells (C33A) had the lowest 

(84%) with 8% of its spectra classifying as normal. 

Classification Accuracy: 97% 

Raman Classification, output of SMLR 

HPV Positive 

 (HeLa, SiHa) 

HPV Negative  

(C33A, NHEK) 

Cell Culture  

Sample Type 

HPV Positive  

(HeLa, SiHa, 

nspectra=1365) 
98% 2% 

HPV Negative 

 (C33A, NHEK, 

nspectra=1390) 

4% 96% 

Table 7.2. Classification Table for HPV-positive and HPV-negative cell culture samples 

 

 

Classification Accuracy: 92% 

Raman Classification, output of SMLR 

Malignant 

(HeLa, SiHa, C33A) 

Normal 

(NHEK) 

Cell Culture  

Sample Type 

Malignant 

(HeLa, SiHa, C33A, 

nspectra=2075) 
90% 10% 

Normal 

(NHEK, nspectra=680) 
6% 94% 

Table 7.3. Classification Table for Malignant and Normal cell culture samples 
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Classification Accuracy: 89% 
Raman Classification, output of SMLR 

HeLa SiHa C33A NHEK 

Cell Culture 

Sample Type 

HeLa 

(nspectra=675) 
98% 1% 1% 0% 

SiHa 

(nspectra=690) 
2% 96% 1% 1% 

C33A 

(nspectra=710) 
3% 5% 84% 8% 

NHEK 

(nspectra=680) 
1% 2% 9% 88% 

Table 7.4. Classification Table for cell culture samples: HeLa, SiHa, C33A, and NHEK 

 

 

Figure 7.4 shows the spectra acquired from patient samples that were tested for the 

presence of high-risk strains for HPV. Spectra from these two samples vary significantly across 

the 600-1800 cm
-1

 range, in many of the same regions listed above, but also in areas 

corresponding to both Amide-III and Amide-I (1200-1300 cm
-1

 and 1660 cm
-1

, respectively).
31

 

P-values less than 0.001, resulting from a Student’s t-test, are also shown on this graph, 

demonstrating that many regions of the spectra obtained from HPV-positive and -negative 

samples are significantly different.  
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Figure 7.4. Spectra of HPV-positive vs. HPV-negative patient samples. Black line represents regions of 

significant difference (p-value < 0.001) when the two samples are compared. 

 

 

The classification algorithm SMLR was also used to classify patient samples as HPV 

positive or negative and the results were compared to the HPV test result. These spectra from 

patient samples classified with an accuracy of 98.5% (Table 7.5). The training algorithm that 

resulted from using SMLR on the patient samples was then applied to both the malignant and 

benign classification (data not shown) and the classification of the 4 different cell culture lines. 

When the classification algorithm derived from the patient data was used to classify malignant 

and normal samples, the classification accuracy increased from 92% to 93%. For classifying the 

4 cell culture lines, using the patient-sample algorithm instead of the cell-culture algorithm 

resulted in an increase in classification accuracy from 89% to 93% (Table 7.6). The spectra 

acquired from HeLa and SiHa cells maintained their previous classification accuracies, but the 

C33A and NHEK spectra increased their classification accuracies by 5% and 1%, respectively. 
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Classification Accuracy: 98.5% 
Raman Classification, output of SMLR 

HPV Positive HPV Negative 

Pathological 

Diagnosis 

HPV Positive 98% 2% 

HPV Negative 1% 99% 
Table 7.5. Classification Table for HPV-Positive and -Negative Patient Samples. 

 

Classification Accuracy: 93% 
Raman Classification, output of SMLR 

HeLa SiHa C33A NHEK 

Cell Culture 

Sample Type 

HeLa 98% 1% 1% 0% 

SiHa 2% 96% 1% 1% 

C33A 2% 4% 89% 5% 

NHEK 1% 2% 8% 89% 
Table 7.6. Classification Table for cell culture samples: HeLa, SiHa, C33A, and NHEK, using algorithm 

derived from patient samples. 

 

7.5 Discussion 

 The results of this study demonstrate that RS is able to differentiate between various cell 

culture samples as well as patient samples, based on the presence of HPV alone and the specific 

HPV strain. These results may positively contribute to screening for cervical disease by 

determining if cervical samples are positive for high-risk strains of HPV. 

 In Figure 7.2, there are certain regions that are more variable, including those 

corresponding to C=C stretching in lipids and proteins, DNA content, and CH2 deformation. 

Also, the SiHa, C33A and NHEK spectra seem to resemble each other more than the HeLa 

spectra. HeLa cells have the highest number of copies of HPV 18, which may result in a more 

malignant cell line that has a higher concentration of DNA than the other cells types. The 

deformation of both proteins and lipids, found within cells and the phospholipid membrane, is 

observed within the Raman spectra acquired from more advanced malignant cell lines and those 

with a higher number of copies of high-risk strains of HPV. These changes may be associated 

with the increased disorganization caused by HPV infection and more advanced malignancy. 
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 When smaller regions of the spectra are considered, differences can be observed among 

the cell culture samples. These differences may be related to HPV infection, the number of 

copies of HPV, and the transformation of the cell line. The two ratios that have been graphed 

(Figure 7.3c-d) demonstrate some of the biochemical changes that occur as cells with and 

without HPV infection advance malignantly. The 1650 cm
-1

: 1440 cm
-1

 ratio demonstrates that as 

the cell develops increasingly malignant characteristics and as number of HPV copies increases, 

the ratio of CH3 bending to C=C stretching decreases. This result suggests an increase in 

disorganization occurring at a cellular level. The 1260 cm
-1

: 1340 cm
-1 

ratio corresponds to 

amide-III and the amount of amino acids (Figure 7.3d), suggesting that there are slight increases 

in the amount of protein as the cells become malignant and infected with HPV. It is also 

interesting to note that although the C33A cell line is a transformed, malignant cell line, it mostly 

resembles the spectra obtained from the normal NHEK cell line. This result suggests that 

infection with HPV is the more pertinent feature affecting Raman spectra. 

 The spectra obtained from patient samples appear to be dramatically different based only 

on infection with high-risk strains of HPV (Figure 7.4), verifying the hypothesis that RS is 

sensitive to HPV infection. The differences between the spectra are seen in multiple regions, 

such as those corresponding to lipid, amino acid, and DNA content, as well as CH stretching and 

bending regions that have been assigned to proteins such as albumin and collagen.
32

 Many of 

these differences correlate with changes that occur in patient samples that are positive for at least 

one high-risk HPV strain. Specifically, an increased DNA content and density is found with an 

increased amount of phosphate and an increasing amount of disorganization, seen throughout the 

spectra as the deformation and breakdown of CHx bonds.
32

 Furthermore, the concentration of 
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lipids (tentatively assigned to 1450 cm
-1

) seems to decrease as the number of copies of HPV 

increases. 

 Using SMLR algorithms developed from the cell culture spectra led to classification 

accuracy rates from 89% to 97%. Spectra of HPV-positive and HPV-negative cells classified 

with an accuracy of 97% (Table 7.2). As discussed, HPV infection leads to modifications within 

the cellular environment by circumventing normal cell growth pathways, specifically by 

increasing DNA synthesis. This phenomenon can be observed in the spectra, since the density or 

organization of DNA is lower in HPV-positive cells because the DNA is transcriptionally active, 

as opposed to densely packed and quiescent.
33

 Next, SMLR differentiated between 3 malignant 

cell lines and 1 benign cell line with a classification accuracy of 92% (Table 7.3). This result is 

lower than the result from discriminating the HPV-positive and -negative cell lines, most likely 

due to the addition of the HPV-negative cell line (C33A) into the malignant category. C33A is a 

transformed, malignant epithelial cervical cell line, however, its spectra is closer to the spectra 

obtained from NHEK cells than the HPV-positive cell lines. Therefore, it is not surprising that 

10% of the spectra obtained from C33A samples misclassified. It is important to note that 

clinically, a patient having malignant cervical cells without the presence of HPV is a very rare 

occurrence, accounting for approximately 0.01% of all cases of cervical dysplasia.
34

 

Management of such patients therefore would depend solely on the results of their Pap smears. 

 The lowest classification accuracy from the cell culture study was achieved when all four 

cell types were classified independently, resulting in an accuracy of 89% (Table 7.4). The normal 

NHEK cells classified correctly only 89% of the time, perhaps due to the similarities between the 

NHEK and C33A spectra from the lack of HPV infection, as discussed above. It is also important 

to note that SMLR was able to correctly classify over 95% of the spectra obtained from HeLa 
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and SiHa cells. The difference between these cells is likely due to the type of HPV (18 vs. 16) 

infection as well as the number of copies of HPV in each line (estimated 10-50 copies of HPV 18 

in HeLa cells vs. 1-2 copies of HPV 16 in SiHa cells).  

 HPV-positive and -negative patient samples were also classified used SMLR with an 

accuracy of 98.5% (Table 7.5). This result corresponds with the differences observed between 

the two spectra, quantified by the low p-values across the spectral range. Similar to the cell 

culture studies, classifying patient samples based on the presence of HPV, as opposed to HPV 

type or copy number, leads to extremely promising results. The algorithm generated by SMLR 

based on the patient data set was then applied to previous data obtained from the cell culture 

samples to determine if the differences between the patient samples were more representative of 

the differences between HPV-positive and -negative cell lines. This algorithm was applied to 

both the malignant and benign samples (data not shown) and the 4 different cell lines (Table 7.6). 

Both sets of data classified with a higher accuracy when the patient-data algorithm was used. 

More specifically, using the patient-data algorithm lead to an increase in the classification of 

both the C33A and NHEK cells by decreasing their incorrect assignments to each other (i.e. 

C33A spectra classifying as NHEK spectra), implying that the algorithm developed from the 

patient data contains more accurate information about HPV-negative cells. It is also interesting to 

note that only a few cells needed to be infected with high-risk HPV strands to be considered 

HPV positive. On the other hand, it is assumed that all of the cells from HPV-negative samples 

were HPV negative. Future work will determine the detection limit of our RS system for 

detecting HPV-positive and -negative samples in patient samples in comparison to current HPV 

tests. 
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 A few studies by other groups have shown that the presence of the biomarker protein 

p16
INK4A

 has a great influence on cells infected with HPV.
35-37

 p16
INK4A

 is a minichromosome 

maintenance (MCM) protein found normally in cervical cells.
34

 This protein is one of many that 

regulates the level of active cyclin D/CDK, part of the feedback loop involved in maintaining 

levels of MCM proteins, proliferating-cell nuclear antigens and cyclin E. p16
INK4A

 is one of the 

biomarkers that corresponds to elevated E7 expression, and therefore, to high-risk HPV 

infection. Overexpression of p16
INK4A

 has been detected in all grades of cervical lesions.
35, 37

 

Results from FTIR and confocal fluorescence microscopy studies on p16
INK4A

 has shown that 

overexpression of p16
INK4A

 and HPV infection result in an increase in nucleic acid levels, a 

decrease in lipid levels and a moderate to low change in protein levels.
36

 The Raman spectra 

corresponds to these results, showing a biochemical increase in nucleic acid levels and a 

decrease in lipid levels (Figure 7.3). Current studies are focused on correlating the presence of  

biomarkers with HPV-positive or -negative status within the Raman data. 

Recent studies have shown that combining HPV testing with the Pap test is more 

effective than the Pap test alone at detecting clinically relevant high-grade dysplasia early and 

results lead to increased prevention against more aggressive forms of cervical dysplasia in 

women over 30.
38

 In fact, dual screening detected 25% more potentially cancerous lesions than a 

Pap test alone and resulted in fewer cancer cases five years later, compared to patients who were 

only screened with a Pap test. While previous work shows that RS is capable of detecting 

dysplastic areas of the cervix,
16-18

 this research demonstrates that RS is capable of detecting 

HPV-infected cells as well. Therefore, RS could potentially be used as an alternative method to 

Pap tests and HPV screening to detect abnormal areas of the cervix and the presence of HPV in 

vivo and in real-time. Although in vivo samples were not used in this study, since HPV testing is 
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now recommended for women over 30, in vivo Raman measurements can be taken concurrently 

with HPV DNA testing. This work is being pursued currently. 

The results from this paper demonstrate that RS is sensitive to changes occurring in cells 

due to HPV infection, HPV type and the number of copies of HPV. This technique can be 

combined with current methods used to screen for cervical dysplasia to provide a tool that can 

detect the presence of HPV immediately without the need for extensive sample preparation, 

quickly leading to accurate results. Current studies within our lab are focused on using the same 

technique to study the differences between low-risk and high-risk HPV strains. HPV testing is 

being introduced in conjunction with our ongoing in vivo Raman study for cervical dysplasia 

detection, to obtain in vivo measurements with the presence of HPV.  
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CHAPTER 8  

 

DETECTING BIOCHEMICAL CHANGES IN THE RODENT CERVIX DURING 

PREGNANCY USING RAMAN SPECTROSCOPY 

 

This work in this chapter shows how Raman spectroscopy can be used to study pregnancy in 

normal mice and corresponds to Specific Aim 3. This study was based on the hypothesis that 

Raman spectra will be sensitive to changes in the cervix during pregnancy. Chapters 5 and 6 

demonstrated that permanent biochemical changes occur due to pregnancy, labor and delivery. 

These changes are observed in the Raman spectra. It follows that the significant cervical 

variations that happen during pregnancy can be observed using Raman spectroscopy. The data 

was collected from mice housed in Dr. Jeff Reese’s animal colony at Vanderbilt University. This 

entire chapter has been submitted to the Annals of Biomedical Engineering. 

Vargis E, Brown N, Williams KC, Paria BC, Al-Hendy A, Reese J, A Mahadevan-Jansen. 

Detecting Biochemical Changes that Occur in the Rodent Cervix during Pregnancy Using Raman 

Spectroscopy. Annals of Biomedical Engineering (Accepted pending minor revision) 2012 

 

8.1 Abstract 

The goal of this research is to determine whether Raman spectroscopy, an optical method 

that probes the vibrational modes of tissue components, can be used in vivo to study changes in 

the mouse cervix during pregnancy. If successful, such a tool could be used to study cervical 

changes due to pregnancy, both normal and abnormal, in animal models and humans. In this 

study, Raman spectra were acquired before, during and after a 19-day mouse gestational period. 

In some cases, after Raman data was obtained, cervices were excised for structural testing and 

histological staining for collagen and smooth muscle. Various peaks of the Raman spectra, such 
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as the areas corresponding to fatty acid content and collagen organization, changed as the cervix 

became softer in preparation for labor and delivery. These findings correspond to the increase in 

compliance of the tissue and the collagen disorganization visualized with the histological 

staining. The results of this study suggest that non-invasive Raman spectroscopy can be used to 

study cervical changes during pregnancy, labor and delivery and can possibly predict preterm 

delivery before overt clinical manifestations, which can potentially lead to more effective 

preventive and therapeutic interventions. 

 

8.2 Introduction 

The physiologic changes during pregnancy that result in labor and delivery are part of 

complicated processes that are not fully understood. Current studies correlate maternal steroid 

hormonal changes and paracrine molecules with gestation and parturition (pregnancy and 

labor).
1-3

 These small molecules regulate many of the changes in the tissues of both the mother 

and baby by altering the biochemical composition of the cervix to prepare for labor and delivery 

and by promoting fetal development. However, although pregnancy has been studied for 

centuries, the interactions of these molecules and the exact mechanisms governing the regulation 

and progression of pregnancy remain unknown. Researching human parturition is hindered since 

direct testing on pregnant women is limited and the hormonal pathways regulating animal 

pregnancy and labor vary substantially from those of humans. Much research into the maternal 

reproductive tract is currently focused on identifying important markers that trigger specific 

changes during pregnancy. Yet, it may be equally important to study the downstream effects 

such molecules have on maternal tissues, which change throughout pregnancy in preparation for 

birth. 
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During pregnancy, there are many well-documented physical changes in maternal tissues. 

The cervix, for example, is initially rigid and stays tightly closed to protect the fetus within the 

uterus and withstand its increasing weight. Closer to delivery, the cervix undergoes ripening, 

leading to its effacement (thinning) and dilation. As the uterus contracts with increasing 

frequency and intensity, the fetus is expelled through the softened cervix. These contractions also 

speed up the dilation process, with each contraction dilating the cervix as much as 30%.
4
 Many 

of these properties require changes to the components of the extracellular matrix (ECM) of the 

tissues, which consists of fibrillar collagen, proteoglycans, hyaluronan, elastin and water.
4, 5

 

These components undergo a complex biochemical reorganizing and remodeling process 

throughout pregnancy, including a realignment of the collagen structure.
6, 7

 

A number of small molecules have been implicated in regulating such processes.
3
 

Factors, such as estrogen and progesterone,
2, 3

 platelet-activating factor,
8
 prostaglandins

9, 10
 and 

interleukin-8,
11

 may all play a role in controlling the process that prepares the cervix for labor 

and delivery. Other research groups have focused on detecting changes in some of these 

individual factors.
12-14

 However, few correlations have been found between specific molecules 

and biochemical changes in cervical tissues. Gestation and parturition are complex processes and 

it is likely that multiple interacting pathways control the progression of pregnancy, resulting in 

uterine contractions and cervical ripening.
3
 As these pathways are discovered, health care 

providers may be able to more accurately determine pre-symptomatically when a woman is 

about to give birth and if necessary, intervene to delay preterm labor and premature birth.  

Here we propose using an optical method to quantify changes downstream of small 

biomolecules in the cervix. Rather than removing tissue or measuring how a single molecule 

changes in blood or bodily secretions, optical methods can provide non-invasive, real-time, 
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automated measurements from bulk tissues as a whole. These measurements can contain a wide 

range of information, including collagen content and organization, changes due to hormonal 

fluctuations, and a measure of cervical length. For example, Garfield et al. used 

electromyography to measure changing action potentials of the uterus throughout pregnancy.
15

 

Kuon et al. used a collascope to measure the autofluorescence of the cervix and correlated the 

results with the cervical surface area, finding that during pregnancy, surface area increases as 

autofluorescence increases.
16

 Jokhi et al. used electrical impedance spectroscopy to measure 

cervical resistivity to determine the onset of labor, with predictive values of 0.65 to 0.8.
17

 

Second-harmonic generation has also been used to measure changes in collagen structure during 

gestation.
18

 Other groups have used optical methods, such as Fourier-transform infrared 

(FTIR),
19

 resonance,
20

 and light-scattering
21

 spectroscopy to measure salivary changes and the 

presence of nitric oxide or fetal nucleated red blood cells, respectively. To our knowledge, this is 

the first report using Raman spectroscopy, a sensitive optical method, to study biochemical 

changes in tissue during pregnancy. 

Raman spectroscopy (RS) is based on the Raman effect by which energy can be 

exchanged between incident photons and scattering molecules. When an incident photon collides 

with certain molecules, energy may be transferred either from the molecule to the photon or vice 

versa. The energy differences of the scattered photons are indicative of the molecules set into 

vibration. A Raman spectrum then consists of a series of peaks, which represent the different 

vibrational modes of the scattering molecules. These peaks are spectrally narrow and molecular-

specific, such that the observed peaks may be associated with specific bonds in specific 

molecules. Many biological molecules have distinguishable spectra, so that one can determine a 

tissue’s biochemical composition from its Raman spectrum. For example, one relevant 
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biochemical change during pregnancy is the softening and ripening of the cervix due to changes 

in collagen. This change, among other changes in elastin, glycogen and water content, can be 

detected with RS.
22-25

 Other changes that RS is likely to be sensitive to are changes in collagen 

cross-linking, water content and hormonal variations, many of the important factors that fluctuate 

during pregnancy, labor and delivery, which has been seen in other studies.
26

 

We have previously demonstrated the potential of RS to detect subtle changes in tissue 

biochemistry from the cervix.
24, 25

 This technology has been applied to detect cervical precancer 

lesions in vivo and can distinguish between normal, inflammation, low-grade dysplasia and high-

grade dysplasia areas with classification accuracy rates of over 97%. Also, it has been 

demonstrated that RS is sensitive to subtle changes in hormonal levels, the permanent effects of 

pregnancy and delivery, as well as malignancy-associated changes.
22

 The only report on using 

RS for obstetrics research is for studying preeclampsia, an abnormal gestation-related increase in 

maternal blood pressure.
27

 However, previous work indicates that the technology and knowledge 

exists to develop RS as a tool for studying the cervix throughout pregnancy.
15, 16, 24, 25

 In this pilot 

study, RS was used to monitor and understand cervical changes in normal mice during 

pregnancy.  

 The goal of this paper is to characterize changes in the cervix of normal mice throughout 

pregnancy using Raman spectroscopy. To achieve this goal, two sets of studies were conducted. 

First, Raman spectra were acquired from the cervix of non-gravid (not pregnant) mice to develop 

a baseline of the normal cervix during murine estrus cycles. Once the effect of normal cycling 

was characterized, the primary study was conducted and spectra were acquired from normal mice 

at multiple time points before, during and after pregnancy. To verify the changes observed in the 

Raman spectra, after Raman data was acquired, the cervix was harvested to find the structural 
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properties of the tissue and to visualize cellular changes with histological staining. Logistic 

regression algorithms and statistical analyses were used to determine if significant differences 

existed in the Raman measurements, force-displacement testing and histological staining 

indicative of the changes related to pregnancy. 

 

8.3 Materials and Methods 

 

8.3.1 Animals and Tissue Collection 

Adult virgin female and male mice (strain: CD1(ICR)) were purchased from Charles 

River Laboratories, Raleigh, NC. They were maintained in a 12 hour:12 hour light/dark cycle in 

the Vanderbilt University Animal Facility with unlimited access to water and food. All animal 

maintenance, handling and procedures were performed in accordance with National Institutes of 

Health guidelines for the care and use of laboratory animals and were approved by the 

Vanderbilt University Institutional Animal Care and Use Committee (IACUC). Before studying 

normal pregnancy, non-pregnant (or non-gravid (NG)) mice with normal cyclicity were first 

evaluated to examine the effect of hormonal changes during the estrous cycle on the cervix. 

Accordingly, two sets of experiments were conducted: a study to observe changes in the cervix 

due to hormonal changes alone and a study to examine changes due to pregnancy. Raman 

measurements were first obtained from 3 sets of NG mice, with 3-4 mice in each set (n=11). 

Measurements were taken from each set for 5 days straight over the course of 3 weeks to acquire 

data. The stages of the estrous cycle that were measured include proestrus, estrus, metestrus and 

diestrus.
28

 Prior to the Raman measurements, vaginal washings were obtained by rinsing the 
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vaginal canal with saline and the estrous stage was determined by identifying cell types and their 

relative abundance present in smears under a stereo-microscope.  

Timed matings were carried out by housing one normal fertile male with three normal 

females to study the cervical changes related to pregnancy. On the following day, females were 

evaluated at 0900 for the presence of a copulatory plug with gestation day 1 defined by the 

presence of the plug. Data from any mouse that was not visually pregnant by day 12 was not 

used in any of the following results. Animals in this colony typically give birth on the evening of 

gestation day 19. A set of mice was followed before, during and after pregnancy (n=47). Female 

mice were anaesthetized with isoflurane and Raman measurements were acquired prior to mating 

(NG), on days 1, 4, 12, 15, 18, and 19 of pregnancy, and on post-partum day 1 (PP1). At the 

same time points, Raman measurements were acquired and then the mouse was euthanized 

(overdose of isoflurane inhalation) to collect the cervix for force-displacement testing or 

histological staining. The cervix was dissected and trimmed to 5 mm in length to maintain 

consistency for the force-displacement testing. Cervices were dissected with the uterus and 

vaginal tissue still attached in order to control for orientation during sectioning and imaging.  

 

8.3.2 Raman Instrumentation and Data Processing  

Raman spectra were collected in vivo using a portable RS system consisting of a 785 nm 

diode laser (I0785MM0350MS, Innovative Photonic Solutions, Monmouth Junction, NJ), a 

beam-steered fiber optic probe without its casing (785nm, Emvision, Loxahatchee, FL), an 

imaging spectrograph (Holospec f/1.8i, Kaiser Optical Systems, Ann Arbor, MI), and a back-

illuminated, deep-depletion, thermo-electrically cooled charge-coupled device (CCD) camera 

(Pixis 256BR, Princeton Instruments, Princeton, NJ), all controlled with a laptop. The fiber optic 
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probe (10 cm long and approximately 2.1 mm in diameter) delivered 80 mW of incident light to 

the tissue at an integration time of 2-3 seconds with all room lights and the computer monitor 

turned off. The system provided a spectral resolution of 8 wavenumbers (cm
-1

). 

Spectral calibration of the system was performed everyday using a neon-argon lamp and 

naphthalene and acetaminophen standards to correct for day-to-day variations. A National 

Institute of Standards and Technology (NIST)-calibrated tungsten lamp was used to account for 

the system’s wavelength-dependent response. The spectra were processed for fluorescence 

subtraction and noise smoothing using the modified polynomial fit and Savitzky-Golay methods, 

described previously.
29

 Following data processing, each spectrum was normalized to its mean 

spectral intensity across all Raman bands to account for intensity variability. The code developed 

to process the data minimized the error introduced by the fluorescence subtraction and the 

background removal. The same code with the same parameters was used for all the samples such 

that the same amount of minimal error was introduced to all the spectra. Finally, the spectra were 

normalized in order to perform relative comparisons across the data. 

 

8.3.3 Tissue Structural Properties 

Structural properties of excised cervical tissues were evaluated using modifications of the 

methods developed by Harkness and Harkness
30

 to correlate structural tissue properties to 

biochemical Raman measurements. Briefly, the cervix was mounted onto two hooks inserted 

through the cervical canal. The hooks were made of stainless steel (22 Ga, 316L AISI grade). 

They were approximately 0.8mm thick and 7 mm long. One hook was attached to a stationary 

hook and the other hook was attached to a force transducer and a micrometer. Tissues were 

incubated in a water-jacketed bath containing Krebs solution at 37 °C bubbled with 95% O2/5% 
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CO2. The force transducer was calibrated using standard weights to set the minimum (~-1.03 V) 

to 0 g and the maximum (~9.04 V) to 50 g.  

Baseline cervical dilation was determined by increasing the distance between the two 

hooks until a small increase (~0.1 g, constant) was detected with the force transducer. The cervix 

was incubated in Krebs solution and held at this displacement for 10 minutes before 

measurements were recorded. Then the inner diameter of the cervix was increased in 1-mm 

increments at 4-minute intervals to produce cervical distention. The amount of force at each 1-

mm displacement and every 4 minutes was recorded (displacement rate: 0.0042 mm/s). The 

diameter was increased until the tissue tore. Force was plotted as a function of cervical diameter. 

A moving average function was used to calculate the slope of the force-displacement curve; this 

slope was then used as cervical stiffness. A steeper slope indicates an increased resistance to 

stretch or a reduced compliance. Results are displayed as mean ± standard error (S.E.) from 5 

independent samples in each group. 

 

8.3.4 Statistical Analysis 

Cycling status was determined by the cells observed in vaginal smears. Pregnancy dating 

was determined by the presence of a cervical plug.
28

 These are two gold standards often used, 

however, there can be errors associated with such techniques based on the expertise of the user. 

Measurements were excluded from any mouse originally enrolled in the study that ended up not 

being pregnant. 

 For this study, a logistic regression method called Sparse Multinomial Logistic 

Regression (SMLR) was used to tease out subtle differences among spectra acquired from 

different samples.
31

 In brief, SMLR is a Bayesian machine-learning framework that computes the 
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posterior probability of a spectrum belonging to each tissue class based on a labeled training set. 

For these analyses, a composite spectrum averaging Raman measurements from each mouse at 

each time point was used. A range of input parameters to SMLR was tested. The settings that 

provided the most accurate classification while also maximizing sparsity were a Laplacian prior, 

a direct kernel, a lambda value of 0.01, and no additional bias term. To avoid bias, SMLR 

employs a leave-one-mouse-out at each time point. The algorithm uses all but one of the spectra 

to create a classification algorithm that is used to classify the left out spectrum. In the next 

iteration, a different spectrum is left out, creating a new training algorithm that is then used to 

classify the left out spectra. This process is completed until all of the spectra are classified. A 

Student’s t-test was performed to compare individual peaks from d4 to all the other time points. 

A p-value less than 0.1 was considered significant. 

 For the force-displacement testing studies, a Kruskal-Wallis one-way analysis of variance 

(ANOVA) was performed, followed by Dunn’s Method for post-hoc analysis and pairwise 

comparison to control for errors among the same sample group. The Kruskal-Wallis is the 

nonparametric alternative to ANOVA and has been used in previous tissue structural studies of 

the rodent cervix.
7
  

 

8.3.5 Tissue Processing and Masson’s Trichrome Staining 

Cervical tissues were removed and stained to correlate the Raman spectra to important 

molecular and cellular changes resulting from pregnancy. First, excised cervico-uterine tissue 

sections were immediately snap-frozen in liquid nitrogen after removal and stored at -80 °C for 

later use. Next, the tissues were embedded in optimal cutting temperature (OCT) embedding 

medium (Tissue-Tek, Quiagen, Valencia, CA). Embedded tissues were cryosectioned into 12 μm 
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thick slices and thaw-mounted onto poly-L-lysine coated slides. Tissues were then fixed in 

Bouin’s fixative, followed by Masson’s trichrome staining per protocol (Sigma-Aldrich, St. 

Louis, MO). Trichrome staining labels collagen fibrils (blue), nuclei (black), and smooth muscle 

and cytoplasm (red). Tissue sections were imaged and recorded under 20x magnification.  

 

8.4 Results 

 

8.4.1 Cycling Study 

The first step of this study was to determine if RS is sensitive to changes in the NG cervix 

due to hormonal cycling alone. Raman spectra (nspectra=120) were acquired from the cervix of 

NG mice (nmice=11) at 4 different cycling time points: proestrus, estrus, metestrus, and diestrus 

(Figure 8.1). Figure 8.1 shows some variations across the different time points. The majority of 

these differences are in the region between 1200 and 1400 cm
-1

. This area potentially 

corresponds to collagen, amide-III, and lipid content.
31-34

 Logistic regression analysis (SMLR) 

was used to determine if any significant differences existed due to cycling alone. Ninety-two of 

the 120 spectra or 77% classified correctly, meaning that SMLR was able to correctly classify 

the spectra as belonging to its corresponding time point within the estrous cycle 77% of the time 

(Table 8.1). 
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Figure 8.1. Normalized average Raman spectra of non-gravid mice at various points during the menstrual 

cycle. 

 

 

Classification Accuracy = 

77% 

Raman Classification from SMLR Output 

Proestrus Estrus Metestrus Diestrus Di to Pro 

Cycling 

Time Point 

Proestrus 

(nspectra=23) 
79% 6% 11% - 4% 

Estrus 

(nspectra=26) 
14% 78% 7% 1% - 

Metestrus 

(nspectra=25) 
- 8% 83% 6% 3% 

Diestrus 

(nspectra=23) 
2% 2% 7% 80% 9% 

Di to Pro 

(nspectra=23) 
13% 4% 5% 11% 67% 

Table 8.1. SMLR output for cycling study. Di to pro are measurements taken between diestrus and 

proestrus phases. The numbers in bold represent the percentage of spectra that classified correctly. 
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8.4.2 Pregnancy Study 

After characterizing the NG cervix using RS, Raman spectra were acquired from multiple 

time points during pregnancy (day 1, 4, 12, 15, 18, 19, and PP1, Figure 8.2, nspectra=317). For 

some mice, acquiring spectra before mating or on day 1 (after the presence of the copulatory 

plug) led to miscarriage (discussed below). Accordingly, measurements were acquired starting 

on day 4 of the gestational period. Within these spectra, there are many regions that appear 

different across the entire range of 990-1800 cm
-1

. Differences are most visible in the spectra 

between NG and day 19 mice.  

 
Figure 8.2. Normalized average spectra from the cervix of pregnant mice at 5 time points during their 

pregnancy and at 1 time point 24 hours after delivery (PP1). 

 

Figure 8.3 shows changes in peak intensity (a-c) and peak width (d) as a function of 

pregnancy in four important peaks. It has been demonstrated previously that some of these 

regions correspond to certain biochemical structures, such as amino acids like proline and 
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tyrosine (Figure 8.3a, 1200 cm
-1

),
32-34

 CH2 and lipids (Figure 8.3b, 1308 cm
-1

),
31

 and the CH3CH2 

bending modes found in protein side chains of multiple tissue types (Figure 8.3c, 1450 cm
-1

).
31, 33

 

Figure 8.3d shows the full width at half max (FWHM, ± S.E.) of the 1650 cm
-1 

peak, which has 

tentatively been assigned to amide-I and collagen.
34

 For this region, the FWHM, as opposed to 

peak intensity, is a more accurate indicator of the organization and polarization of the amide-I 

bonds in the tissue. Performing SMLR on spectra across 6 time points: NG, early (days 1, 4 and 

12), day 15, day 18, day 19 and PP1, resulted in a classification accuracy of over 94% (Table 

8.2). Combining the early time points (d1, d4, d12) led to an increase in classification accuracy. 

Non-gravid data was used from the cycling study and day 1 data was used from any mouse that 

maintained its pregnancy after a day 1 measurement.  
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Figure 8.3. Bar graphs of specific peak intensities from Raman spectra that change over the course of 

pregnancy. These Raman shift peaks are potentially correlated to fatty acids and lipids (a), protein side 

chains (b), and amino acids (c). Bar graph of full-width at half-max shows the change of the amide-I 

band, which is consistent with the presence of collagen (d). 

 

Classification Accuracy 

= 94% 

Raman Classification from SMLR Output 

NG Early d15 d18 d19 PP1 

Pregnancy 

Time Point 

NG 99% 1% - - - - 

Early 2% 97% 1% - - - 

d15 - 9% 84% 3% - 4% 

d18 - - 2% 92% 6% - 

d19 - - - 3% 96% 1% 

PP1 2% 3% - - - 95% 
Table 8.2. SMLR output results of pregnancy and postpartum study. The numbers in bold represent the 

percentage of spectra that classified correctly. 

a) b) 

c) d) 
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8.4.3 Stress-Strain Testing 

 Stress-strain testing was performed to examine the physical properties of the cervix as it 

changes during pregnancy. The two plots in Figure 8.4 demonstrate how the structural properties 

of the cervix change over the course of pregnancy and 24 hours after delivery. In Figure 8.4a, 

force is plotted as a function of displacement or cervical diameter, showing how samples react 

and resist to a specific amount of elongation. Figure 8.4a is equivalent to a stress-strain curve. 

For this study, cervical stiffness (g/mm), or the amount of tension (g) divided by the maximum 

displacement (mm) is plotted for samples at each time point (Figure 8.4b), similar to previous 

studies.
7
 This plot corresponds to the slope of the linear portion of the Figure 8.4a or the inverse 

of the compliance of the cervix. Any result with a p-value less than 0.1 was defined as being 

statistically significant. Results from day 19 are statistically significant compared to NG, day 1, 

day 4 and PP1. Cervical stiffness results from both NG and PP1 mice are also significantly 

different (p < 0.1) than days 15, 18 and 19. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

167 

 

A 

 
 

B 

 
Figure 8.4. Measurements from biomechanical testing of cervical tissue. A) Tension as a function of 

time, displaying that the cervix can withstand increased displacement as pregnancy progresses. B) 

Cervical stiffness, measured from the slope of the graph in (a) showing that the cervix becomes less stiff 

during pregnancy and quickly regains its strength 24 hours after delivery. Day 19 is significantly different 

than NG, d1 and PP1. NP and PP1 are significantly different than d15, d18 and d19. * corresponds to p < 

0.1, ** corresponds to p < 0.05 

 

8.4.4 Histological Staining 

 Trichrome staining of samples from multiple time points (NG, d4-19, and PP1) during 

mouse pregnancy is shown in Figure 8.5. Before, at the start of and after pregnancy, a dense 

collagen network, stained blue, is the most prominent tissue component (d4, white arrow). 

* 

** 

* 
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Smooth muscle cells, stained red, also appear to form tight bundles within the collagen and along 

the edges of the uterus and cervix. As pregnancy progresses, the dense collagen network 

becomes disorganized, especially on day 19 (d19, black arrow). While the cervix is not 

completely recovered by PP1, the blue-stained regions in PP1 are thicker compared to d19, 

signifying a reorganization of collagen within 24 hours of delivery.  

 
Figure 8.5. Trichrome staining images acquired at 20x from NG, d4, d12, d15, d19 and PP1 cervical 

tissue samples. Note the densely packed collagen structures (blue) from d4 (white arrow) compared to the 

disorganized areas in d19 (black arrow). Samples 24 h after delivery (PP1 resemble early time points. 

 

 

8.5 Discussion 

 The goal of this research is to demonstrate the feasibility of using Raman spectroscopy to 

detect changes in the cervix during normal pregnancy. Before studying pregnancy, cervical 

changes associated with estrous cycling of NG mice were studied using RS to create a baseline 
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for comparison. Next, Raman spectra were acquired from the cervix of pregnant mice prior to 

structural testing and histological staining to study cervical changes during pregnancy using three 

sets of data. We found that biochemical changes correlate with the compliance of the cervical 

tissue and the histological results that were observed in the Raman spectra of late-stage 

pregnancy mice. These results will provide researchers with a better understanding of the 

biochemical function of the cervix during pregnancy and the mechanisms regulating pregnancy, 

labor and delivery.  

 The cycling data was obtained to determine if ovarian steroid hormonal changes during 

the estrous cycle would have an effect on NG data. Our prior human studies showed that the 

cervical changes during the menstrual cycle could be identified within Raman spectra, making it 

necessary to study the hormonal fluctuations of the NG cervix of mice using RS prior to 

comparison to a gravid cervix.
23, 24

 Furthermore, prior to this study, our lab had not used RS on 

the cervix of mice. If the steroid hormonal effect of the cycling time point had an effect on the 

spectra, then multiple NG categories would need to be considered when comparing NG spectra 

to spectra obtained from pregnant mice. However, unlike the human data, which classified with 

an accuracy of over 98% based only on cycling time point,
23

 the mouse cycling data classified 

with an accuracy of only 77% (Table 8.1), suggesting that there are few distinctions in Raman 

spectra from the mouse cervix due to cycling time point alone. The difference in classification 

accuracies between mice and humans may be due to the smaller variations that exist in the 

shorter 4-day mouse cycle compared to an approximately 28-day human cycle. In the human 

study, only two phases were considered, the proliferative and secretory phases, as opposed to the 

four distinct phases studied in the mouse. From these results, it was concluded that a single 
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category combining all the spectra acquired from NG mice could be used in the analysis that 

followed. 

 The measurements acquired during pregnancy demonstrate that many changes in the 

cervix can be observed in the Raman spectra (Figure 8.2). As pregnancy progresses, there is a 

sharp loss of spectral integrity seen by the lack of distinct peaks and valleys that is most 

prominent on day 19, resulting from the increasing amount of elasticity, collagen reorganization 

and dilation. Measurements taken on day 19 were acquired 6-12 hours prior to delivery and 

represent the maximum change of the cervix during pregnancy. Taken within 24 hours after 

delivery, the postpartum spectra (PP1) appear similar to spectra acquired from NG mice and 

mice early in pregnancy.  

Changes in the Raman spectra associated with the changes over the course of pregnancy 

are observed in the four plots in Figure 8.3. Figure 8.3a-b show specific peaks decreasing in 

intensity as a function of gestational age. These peaks may potentially correlate to carbon bonds 

and lipids, as discussed previously.
31

 It follows that as pregnancy continues, a decrease in the 

concentration of many cervical components occurs. While many of the peak intensities decrease 

as pregnancy continues, there are some that increase, such as the 1200 cm
-1

 peak (Figure 8.3c), 

which has been shown to correlate to proline, tyrosine, and amino acids.
32, 34

 Amino acids play 

an important role in many hormonal and enzymatic pathways, and therefore may increase as 

labor and delivery approach.
35

 The FWHM of the 1650 cm
-1

 amide-I peak provides information 

about the collagen content, organization and polarization (Figure 8.3d). The widening of the 

band may indicate an increasingly dispersed distribution of peptide carbonyl stretching during 

the course of pregnancy, signifying a change in the orientation of collagen fibers.
36

 Many studies 
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have demonstrated that the total amount of collagen does not necessarily decrease during 

pregnancy; instead, its reorganization contributes to cervical ripening.
6, 7

  

A classification accuracy of over 94% was found when SMLR was used to classify the 

spectra from multiple time points during pregnancy (Table 8.2), showing that the biochemical 

components changing during pregnancy are substantial and distinctive differences at specific 

gestational ages can be utilized to classify the spectra. Spectra acquired from mice at day 15 of 

their pregnancy had the lowest classification rate (85%). Day 15 of pregnancy marks the start of 

rapid changes to the cervix.
7
 Although Raman measurements for each day were taken at the same 

time, some mice may have started the cervical ripening process before others, effectively 

introducing a higher amount of variation in day 15 measurements compared to other time points. 

Although the goal of this study is not to classify spectra based on gestational age, these results 

verify that the changes occurring in the Raman spectra during pregnancy can be teased out using 

SMLR. 

The stress-strain testing verified that the cervix is able to withstand a larger displacement 

(Figure 8.4a) while becoming softer (Figure 8.4b) throughout pregnancy. The steep slope found 

in measurements taken at early time points and post-partum (Figure 8.4a) indicates an increased 

resistance to stretch. Many of the changes seen in the Raman data acquired during pregnancy 

(Figure 8.3a-b) correspond with the changes seen with the stress-strain testing (Figure 8.4). The 

intensities of the two Raman peaks displayed in Figure 8.3a-b correspond to fatty acids, lipids 

and protein side chains. These constituents play an important role in maintaining the cervix’s 

rigidity
4, 5, 7

 and the decrease in their concentration corresponds to an increase in compliance as 

the cervix prepares for birth. The similarities between important Raman peaks and these tests 



 

172 

 

show that RS is correctly identifying many of the important biochemical components responsible 

for the changes in the stiffness of the cervix. 

The histological analysis shows how the collagen organization changes over the course of 

pregnancy. The results of the Masson’s trichrome staining (Figure 8.5) provide one explanation 

for the changes observed in the Raman spectra and force-displacement results and are similar to 

previous studies that used histology to understand collagen organization in the cervix during 

pregnancy.
40-42

 As pregnancy continues, the concentration of collagen appears to remain 

consistent, while its organization is altered. These results correspond to the loss of spectral 

integrity in the Raman measurements on days 18 and 19 (Figure 8.2). The FWHM plot of the 

amide-I peak from the Raman spectra (Figure 8.3d) also matches the results from the staining. 

Although there is no change in the intensity of the 1650 cm
-1

 peak (corresponding to the total 

amount of collagen), there are differences due to protein orientation, polarization and solubility. 

Collagen reorganization and increased solubility are two factors that result in increased elasticity 

of the cervix as it prepares for labor and delivery,
5, 7

 an outcome which has been verified in all 

experiments. The parallels among the Raman measurements, the structural properties, and the 

histological staining indicate that RS is a quantifiable method for assessing the structural 

properties and cellular components of the cervix during pregnancy without excising tissue. 

There were some drawbacks in this current study design that can be overcome in future 

studies. First, vaginal cytology was used to quickly determine the cycling point. While the results 

of the cycling and pregnancy studies suggest that the changes in a NG cervix are less noticeable 

than the changes resulting from pregnancy, it may be beneficial for future cycling studies to use 

serum testing to ensure that the correct cycling point is reported. Furthermore, the mouse is not 

the ideal model for studying estrous cycling since the phases can be shorter or longer than 24h, 
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as some studies have suggested.
43

 Acquiring Raman data from other rodents, such as the guinea 

pig, may provide more accurate results.
44

 Repeated in vivo Raman measurements of the NG 

cervix sometimes led to pseudopregnancy; such measurements were excluded in further 

analyses. Also, in the initial experimental design, data were acquired before mating and on the 

first day of gestation. However, taking Raman measurements at these time points sometimes 

resulted in the loss of the pregnancy about day 12. It was determined that starting on gestational 

age day 4 led to full term pregnancies without complications. Future studies may consider 

decreasing the size of the fiber optic probe to prevent pseudopregnancies and miscarriages.  

Throughout pregnancy, the epithelium of the cervix becomes thicker. The probe used to 

obtain these measurements contains forward-looking optics which takes volumetric 

measurements approximately 1 mm in depth. For this in vivo study, the placement of the probe 

onto the mouse cervix is not known, however, each measurement is an average of at least 3 

different measurements where the probe was completely removed from the cervix and vaginal 

canal and then replaced. Few regional variations in the spectra were found in the measurements 

obtained consecutively from the cervix, suggesting that data can be taken reliably without having 

to control from site-specificity, matching previous human studies in our lab.
45

 Since this method 

is meant to be performed without surgery or removing tissues, knowing the placement of the 

probe is not essential in this initial study. Future studies will consider the effect of the thickening 

of the epithelium and the placement of the probe on the data.  

The results from this study demonstrate that RS can be a useful tool to non-invasively 

and accurately study biochemical changes in the cervix during pregnancy. The impact of these 

results provides a new avenue for obstetrics research that does not rely on removing tissue and is 

not focused on one molecule. Instead, RS can be used to identify cervical changes resulting from 
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the interactions of multiple biomolecules, hormonal agents, feedback loops, etc., thereby 

providing researchers with new ways to understand the progression of pregnancy. The next steps 

are to use RS to study what occurs during labor and normal human pregnancy. The long-term 

goal of this research is not only to use RS to understand how pregnancy affects the human 

cervix, but to develop a method for determining patients at risk for preterm labor and delivery. 

Preterm birth, defined as labor prior to 37 weeks, is a serious medical complication, affecting 

over 1 in 8 pregnancies in the US and 75% of infants that have perinatal death are born 

premature.
46

 Even with current advances in health care and research, there are limited 

diagnostics in place for predicting preterm birth.
46

 Developing an effective and non-invasive 

method that identifies women who are at risk for preterm birth would have a tremendous impact 

on the medical community, enabling providers to identify patients at risk for preterm labor, 

thereby improving the management of these patients. 
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CHAPTER 9  

 

SUMMARY AND CONCLUDING REMARKS 

 

9.1 Summary and Integration 

 This dissertation focused on the continued development using Raman spectroscopy (RS) 

to detect changes in the uterine cervix. The first part of this work carried on the research using 

RS to detect cervical dysplasia but in a more diverse population and with the consideration of the 

role of HPV infection. The second part of this work used concepts and techniques developed 

from the cervical dysplasia project to monitor the changes in the cervix due to pregnancy. 

Demonstrating the success of RS to detect cervical dysplasia in diverse populations brings this 

method one step closer to being utilized in lower-resource settings. This research has also shown 

for the first time that RS can be used to monitor the changes in the cervix during pregnancy, 

potentially leading to a method that can alert health care providers to patients at risk for preterm 

labor or other complications during pregnancy, labor or delivery. 

 The preliminary studies in Chapters 2-3 laid the background and foundation for the work 

that followed within this dissertation. These studies looked at normal and malignant cervical 

tissue, both in vivo and as excised tissue. Understanding contributions to the Raman spectra was 

also pursued by acquiring data from mimicked cervical tissue (raft cultures) containing stromal 

and epithelial layers of cultured cells.
1
 In the first set of in vivo studies, the Raman spectra 

classified with an accuracy of 88% across 4 disease categories (normal, inflammation, low-grade 

and high-grade dysplasia).
2
 It was then determined that when hormonal status (specifically 

menstrual cycle and menopausal state) was accounted for, the classification of diseased tissues 
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increased to over 94%.
3-5

 While these results were promising, they were all performed at 

Vanderbilt University and a private medical practice in northern Kentucky. Accordingly, the 

majority of the patients recruited to the previous studies was Caucasian and had health insurance.  

The first step of this PhD dissertation, therefore, was to verify the results of the previous 

study in a more varied patient population. In the course of doing so, it became apparent that a 

study of the sensitivity of RS to patient variables was also necessary in order to translate this 

method to a clinical setting. Further, it became clear that if RS is sensitive to subtle changes in 

the cervix due to previous disease, for example, it would also be able to detect the changes that 

occur in the cervix during pregnancy. This is the first report, to our knowledge, using RS to study 

the biochemical changes that occur in the cervix of pregnant mice and humans. 

 As discussed above, previous studies examining the sensitivity of RS first looked at the 

effect of normal hormonal variations due to menstrual cycle and menopausal state.
5
 The next 

step, described in Chapter 4, looked at the permanent and localized effects of disease. To observe 

their impact, data were acquired from normal cervical areas from patients who had no cervical 

disease (currently or in the past) and from patients who currently presented with cervical 

malignancies. After the Raman spectra were processed, combined MRDF-SMLR was used to 

classify the data. In this study, it was found that accounting for previous disease increased the 

classification accuracy to 97%. Previous studies that did not separate true normal, currently 

normal, and adjacent-to-disease normal tissue resulted in classification accuracies at a maximum 

of 94%. This study was conducted at the same private practice in northern Kentucky, with a 

largely Caucasian population who had health insurance. At this point within the cervical 

dysplasia project, it was determined that hormonal status, previous disease and proximity to 
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disease are important variables that must be accounted for in order to maximize the disease 

classification accuracy of RS. 

The next two chapters, 5 and 6, deal with normal patient variables that may have an effect 

on both the normal cervix as well as the classification of disease. For this part of the research, the 

cervical dysplasia study was conducted at the Nashville General Hospital at Meharry Medical 

College, which is a county hospital in middle Tennessee serving a more diverse population. Four 

common patient variables that were considered for these studies were body mass index (BMI), 

previous pregnancies (parity), race/ethnicity and health insurance status. These four variables can 

be readily found while obtaining a patient’s history. The sensitivity of other optical methods, like 

fluorescence spectroscopy, to patient variables has been previously tested. Such techniques, 

however, are not affected by these types of variables.
6, 7

 BMI may correlate with the level of 

hormones circulating through the body. A previous pregnancy may have a permanent impact on 

the cervix. Race/ethnicity may have an effect on the baseline makeup of the cervix and needed to 

be studied since there is an increase rate of cervical cancer incidence in black and Hispanic 

women compared to white and Asian.
8
 Having health insurance is one indicator of 

socioeconomic status and may be correlated with diet, exercise and other lifestyle factors. These 

four variables were used for the following studies due to their potential impact on the physiology 

of the cervix and to compare Raman to other optical techniques.
9
 

In Chapter 5, normal patients were studied to determine the importance and the role of 

the four variables. In this study, Raman spectra were acquired from 75 premenopausal women 

with no history of cervical disease.
5, 10

 Next, SMLR was used to classify the data by these four 

variables alone, i.e. would the data be classified into two categories based on whether or not the 

patient was pregnant previously? If the variable had no effect on the data, a classification 
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accuracy rate of close to 50% would have been found. For the variables race/ethnicity (white, 

black, Hispanic) and health insurance status, the spectra classified with accuracies of 58% and 

61% respectively. For BMI (normal, overweight and obese) and parity, the spectra classified at 

78% and 75% respectively. These results suggest that race/ethnicity and health insurance status 

are factors that do not affect Raman spectra acquired from the cervix. Incorporating BMI and 

obstetric history into algorithms prior to classification may increase the sensitivity and specificity 

rates of the results. At this study’s completion, we concluded that hormonal status, previous 

disease, BMI and obstetric history were all important factors that should be included in any 

algorithm using RS to detect cervical dysplasia. 

In Chapter 6, previous results were combined to assess the effect of each variable on 

classifying disease spectra. Patients coming to Nashville General Hospital for a colposcopy-

directed biopsy, after an abnormal Pap test, were recruited to this study, regardless of 

menopausal status, previous disease, BMI, etc. Iterations of SMLR were then performed to 

determine which combination of variables resulted in the highest classification accuracy. Results 

showed that combining menopausal status, obstetric history and BMI led to classification 

accuracies of over 99% across 4 different pathologies. Raman spectroscopy is therefore sensitive 

to these patient variables, and it does not seem necessary to include other variables such as 

menstrual cycle, race/ethnicity or health insurance status to achieve maximal classification. 

 More recently, the pivotal role of high-risk HPV infection in the initiation and 

progression of cervical cancer has been elucidated.
11

 While HPV testing is now recommended to 

be performed in conjunction with routine cervical exams, not every facility runs the time-

consuming and costly test. Therefore, to understand the impact of high-risk HPV infection on 

Raman spectra, four cell culture lines were grown and patient samples that were negative and 
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positive for HPV were obtained, summarized in Chapter 7. Two of the cell lines were positive 

for high-risk strains of HPV, one was malignant and HPV-negative, and one was a benign cell 

line. Raman microspectroscopy was used to acquire data from these small samples. SMLR was 

then used to classify the data, leading to accuracies of 89-97% for the cell culture samples, 

depending on how the spectra were combined, and 98.5% for the patient samples. Therefore, 

HPV is another factor that has a significant impact on Raman spectra and the results of this study 

show that Raman microspectroscopy can be used to detect the presence of high-risk HPV. 

The results from studying these variables in cervical dysplasia and their effect on Raman 

data show that RS is a highly sensitive technique. The changes that occur in the cervix during 

pregnancy are significant and many times greater than those that are associated with cervical 

disease. Using RS to study the cervix of pregnant patients may lead to a method of detecting 

preterm labor and other complications associated with labor by understanding the biochemical 

changes that occur within the tissue. 

 The World Health Organization estimates that 1000 women per day die from 

complications related to pregnancy and childbirth.
12

 Even with an increase in research in the last 

20 years, over half of all patients who experience problems during pregnancy are never 

suspected to be at risk for such difficulties. During pregnancy, the changes that occur in the 

cervix become more obvious as the body prepares for labor and delivery. However, there may be 

biochemical changes at the cellular level potentially indicative of problems associated with 

pregnancy that cannot be easily detected.. These subtle changes may be observed using RS. To 

assess if RS can diagnose at-risk pregnant women, the first step is to obtain and analyze data 

from normal pregnancies in mice and women.  
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Chapter 8 describes the Raman data acquired from mice during their 19-day gestational 

period (in vivo and ex vivo) and its correlation to mechanical testing and Masson’s trichrome 

staining (collagen, smooth muscle). Various peaks of the Raman spectra, such as the areas 

corresponding to fatty acid content and collagen organization changed significantly as the cervix 

became softer and more elastic in preparation for labor and delivery. These results correspond to 

the increased amount of stretch with an increased amount of strain found with the mechanical 

testing, as well as the collagen disorganization visualized with the histological staining. These 

findings suggest that non-invasive RS can be used to study the cervical changes during 

pregnancy, labor and delivery in mice. 

 In the appendix that follows, the results from a pilot human pregnancy study are reported. 

Patients were recruited to this study during their 1
st
 trimester and six measurements were 

obtained throughout the pregnancy, one from the 1
st
 trimester, 1 from the 2

nd
, 3 from the 3

rd
 and 

1 post-partum from a total of 41 patients. A smaller study was conducted on 5 patients where 

weekly measurements were obtained during their 3
rd

 trimester. The Raman data shows that 

biochemical changes occur in the cervix of these patients. Using SMLR to classify the data led to 

an accuracy of 87%, suggesting that significant changes are occurring throughout pregnancy and 

that these changes are significantly different between measurements. Further work must be 

pursued to see if RS can be developed as a tool for monitoring women during pregnancy. 

 There were a number of challenges that were overcome during the course of this PhD. 

Moving the cervical dysplasia study to Meharry Medical College, a hospital in a more urban 

environment, presented a new set of obstacles. Minority populations in a lower socioeconomic 

setting proved difficult to recruit to research studies. While only 2 patients out of 168 asked to 



 

185 

 

participate refused, they frequently did not show up for their appointments, making it difficult to 

consistently obtain measurements.  

Even so, the majority of obstacles came from the clinic administration itself, which 

caused this study to last longer than the other cervical dysplasia studies. However, I found that 

by maintaining a routine twice-weekly schedule, befriending the clinical staff, and having at least 

one doctor who was committed to recruiting patients I was able to recruit a high number of 

patients.  

 Initially, the human pregnancy study (Appendix 1) began at Meharry Medical College 

where it proved difficult to retain patients in the study for the full 5 measurements during 

pregnancy and the 1 postpartum measurement. Because of this, a small grant was obtained from 

the Vanderbilt Institute for Clinical and Translational Research (VICTR) to provide up to $100 

compensation for each patient participating in the study. About this same time, however, the care 

of pregnant patients at Meharry moved under the control of a midwife who was uncooperative 

and intentionally put up barriers between researchers and patients. Therefore, the study was 

moved to Vanderbilt’s 100 Oaks site, where there were still some difficulties in recruiting and 

retaining patients. However, posting flyers  throughout the clinic, mailing them to new patients, , 

and, as with the cervical dysplasia study, consistently checking the schedule for new patients 

were all vital to recruiting patients to the study. Working with our research nurse, Amy Rudin, 

was essential to accomplishing this study. 

 

9.2 Major Conclusions 

 Previous disease as well as the current presence of disease leaves a permanent effect on the 

cervix, altering the biochemical fingerprint of such tissues. Accounting for previous disease 
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and proximity to disease prior to spectral classification leads to higher classification accuracy 

when using RS to detect cervical dysplasia. 

 Two patient variables, BMI and parity, which can both be easily obtained from the patient, 

were determined to be important variables to incorporate into classification algorithms in 

order to maximize disease classification accuracy. 

 Almost 100% classification accuracy of diseased spectra can be obtained when menopausal 

status, obstetric history and BMI are considered before classifying Raman data. Menstrual 

cycle, race/ethnicity and health insurance status do not have as great an effect on Raman 

spectra and do not need to be incorporated in the classification algorithm. 

 Raman spectroscopy may be more sensitive than other optical methods like fluorescence 

spectroscopy or optical coherence tomography (OCT), which is why normal variations have 

a significant effect on its spectra. While this may seem like a disadvantage, Raman’s 

sensitivity is also the reason why it can be used to classify diseased areas of the cervix with a 

much higher success rate than similar optical methods. 

 Raman spectra obtained from pregnant mice show consistent and extreme change during the 

19-day gestational period, verified with standard tissue testing and staining for collagen. RS 

can be used as often as needed, in vivo to monitor the changes without affecting the 

pregnancy or sacrificing mice. 

 The biochemical changes that occur in the cervix of women during pregnancy can also be 

monitored non-invasively using RS. A lot of information is within these spectra, however, at 

this time, it is not clear if these changes are consistent or if they can be used to indicate the 

onset of preterm labor or other complications associated with pregnancy. 
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9.3 Recommendations 

 The conclusions presented in this dissertation lead to many recommendations for current 

research goals and more long-term plans. Presently, there are a number of studies in both the 

cervical dysplasia and the pregnancy research that should be pursued. With the cervical dysplasia 

research, the immediate need is to acquire Raman data from patients and test the same patients 

for infection with high-risk strands of HPV. The results from such a study would provide a direct 

correlation between the in vivo data, the pathology report from a Pap test or a colposcopy-guided 

biopsy, and the results of the HPV test. Definitive conclusions on the effect of HPV infection on 

Raman spectra acquired directly from cervical tissue can then be made. Also, the analysis in this 

work used a woman’s health insurance status as a loose measure of her socioeconomic status. 

Surveying patients for their education, eating habits, etc., may be a more accurate method of 

correlating the Raman data with a patient’s true socioeconomic status.  

 The cervical dysplasia study should also be moved to lower-resource settings, so that the 

ability of RS to diagnose women in other environments can be tested. Such settings can include 

free clinics (e.g. the Shade Tree Family Clinic run by Vanderbilt University’s Medical School) or 

rural clinics that are temporarily set up to provide isolated populations easier access to medical 

care. A goal for the future would be to take the RS system to Zambia or India to use RS as a tool 

for accomplishing real-time diagnosis of cervical cancer, or as a “see and treat” tool. 

 The results from the pregnancy study presented in this dissertation were only the 

beginning of this work and many avenues of further research can be pursued in the future. The 

most pressing need is to determine if RS can be used to detect changes that occur during labor 

and delivery. This could be accomplished by designing a study that acquires data during labor on 

day 19 in mice and over the course of labor and delivery in women. Correlating this data with 
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current standards of care, such as measurements of cervical length or ultrasound, would also 

demonstrate the feasibility of using RS for monitoring pregnancy and labor.  

 This dissertation only contained Raman data from normal mice and low-risk pregnant 

patients. Another step for the pregnancy study includes using models of preterm labor and at-risk 

patients. Injecting mice with lipopolysaccharide (LPS) to initiate preterm labor after infection or 

with mifepristone (RU486), an anti-progesterone that causes abortion, are two ways to mimic 

preterm birth using mice. Raman data acquired from mice that undergo preterm labor and 

delivery (between days 15-18) can then be compared to data obtained from mice who gave birth 

on day 19 to determine what changes are different between the 3 sets of mice. Similarly, the 

human in vivo study should be conducted on at-risk patients referred to the maternal-fetal 

medicine clinic. Data acquired from at-risk patients should then be compared to the data acquired 

from lower-risk patients, again to determine if the changes are similar or different between the 

two groups. Many of these at-risk patients are prescribed progesterone to prevent preterm labor. 

However, the mechanism that makes progesterone work and its effect on the cervix are 

unknown. Raman spectroscopy can be used to non-invasively observe the biochemical changes 

that occur in the cervix under progesterone therapy.  

 The more long-term goals of this research include designing a side-firing probe and a 

more portable Raman system. The current probe is front-facing and all the data collected in vivo 

has been obtained from the front surface of the cervix. A side-firing probe would be beneficial 

for detecting cervical dysplasia and indicators of preterm labor. There are a number of 

circumstances, such as when a woman gets older or as the cervix prepares for labor, that the 

cervical squamo-columnar junction (or transformation zone) recedes into the cervical os or the 

small opening of the cervix. This area contains a large amount of information, since it is the 
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junction between the squamous and columnar (glandular) epithelium. Samples from this area are 

currently obtained with a more invasive endocervical curettage (ECC) or a scraping of the inner 

cervix, which is never performed on pregnant patients. To obtain a complete analysis of the 

cervix, Raman data must also be obtained from inside the os, which may be achieved by the 

development of a side-firing probe that can be used to non-invasively acquire such information. 

Finally, beyond cervical dysplasia and preterm labor detection, RS could be used in the cervix 

for other purposes, such as fertility treatments. The results from the mouse work demonstrate that 

the differences among the 4 hormonal stages that non-pregnant mice experience can be detected 

with RS. It is possible that similar differences may be seen in women if more than 2 phases of 

the ovulation cycle were considered. Raman spectroscopy could be developed as a tool used by 

doctors or patients to detect ovulation or monitor a woman’s ability to conceive. My PhD work 

has demonstrated that RS may be sensitive enough to detect the right time for implantation. 

 Ultimately, translating RS for detecting abnormal cervical changes to any setting will 

depend on the system’s portability and ease of use. While the cart system is practical for clinical 

work, using it in lower resource settings may be cumbersome or unfeasible. Developing a Raman 

system that is smaller and more energy efficient, such as utilizing a cell phone to obtain Raman 

spectra may make the system’s worldwide use a reality. The current design requires two people, 

one to place the probe on the patient and one to collect the data. Future plans should strive to 

allow the patient to make measurements by herself. Also, when designing a new system, efforts 

should be pursued to make the probe easy to sterilize and eliminate the need for obtaining data in 

a dark room.  
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9.4 Contributions to the Field and Societal Impact 

 Throughout the course of my PhD work, I have made many contributions to optical, 

cancer and obstetrics research areas. To my knowledge, I am the first person to use RS to 

examine the cervical changes in both mice (nmice=19) and humans (npatients=46) during pregnancy. 

This is an innovative use and a new application of RS as a tool to non-invasively monitor the 

changes in the cervix during pregnancy. Over 1 in 8 pregnancies results in a preterm birth, a rate 

that has risen by over 36% in the last 25 years.
13

 Using RS as a method to prevent preterm labor 

has the potential to curtail this increasingly important challenge in health care. As outlined in 

Appendix 1, successfully implementing this technique would have a significant benefit for all 

pregnant patients and their health care providers.  

 Raman spectroscopy has been applied with moderate success to detect malignancies and 

other abnormal tissue sites; however, its translation to the medical field has not occurred. One 

reason for this may be Raman’s sensitivity to factors that have not previously been accounted 

for. This dissertation provides the most detailed account of variables that may influence Raman 

spectra obtained from the cervix in vivo, leading to much higher and consistent classification 

accuracy rates. I was able to draw these conclusions from the data collected from over 175 

patients at Nashville General Hospital and 40 patients at the private practice in Kentucky. By 

determining the factors that affect the data, the classification algorithms focused on the changes 

in the spectra that were most likely to correspond to disease. I suggest that other Raman 

researchers consider normal variations that may impact their data, which may result in higher 

success rates when using Raman. 

To my knowledge, my work is also the first report  that correlates structural properties of 

cervical tissue to Raman spectra. The only mechanical measurements that have been correlated 
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to Raman data have been obtained from bone, therefore these are the first soft tissue stretching 

measurements correlated to Raman spectra. Such measurements provide another approach for 

describing and understand the Raman data. The system and protocol for measuring the structural 

properties of tissue samples was developed and redesigned by me, with the guidance from 

members of Dr. Jeff Reese’s lab. It is currently being used by other students to perform similar 

studies. 

 

9.5 Protection of Research Subjects 

As stated in the methods sections of the relevant chapters, all patient samples were 

collected after having been de-identified, with approval from the Vanderbilt Institutional Review 

Board (#100668). For clinical measurements, informed written consent was obtained by a 

participating doctor or nurse practitioner in a process approved by the Vanderbilt IRB (#010245 

– cervical dysplasia; #100544 – human pregnancy) and the Meharry Medical College IRB. The 

mouse studies were performed with the approval of the Vanderbilt University Institutional 

Animal Care and Use Committee (Protocol M/10/051). 
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APPENDIX 1 

 

EVALUATION OF THE CERVIX DURING PREGNANCY  

USING RAMAN SPECTROSCOPY 

 

This chapter includes work from a pilot in vivo study examining the usefulness of Raman 

spectroscopy to detect changes in the cervix during pregnancy. The manuscript corresponding 

with this chapter is currently in preparation. 

 

A1.1 Abstract 

Preterm birth is the second leading cause of neonatal mortality and leads to a number of 

complications including delayed development and cerebral palsy. Currently, there is no way to 

accurately predict preterm labor, making its prevention and treatment virtually impossible. While 

there are some at-risk patients, over half of all preterm births do not fall into any high-risk 

category. This study seeks to prevent preterm labor by using Raman spectroscopy to detect 

changes in the cervix during pregnancy indicative of the onset of labor. Since Raman 

spectroscopy has been used to detect cancers in vivo in organs like the cervix and skin, it follows 

that spectra will significantly change over the course of pregnancy. Previous studies have shown 

that fluorescence, due to collagen organization, decreased during pregnancy and increased during 

post-partum exams to pre-pregnancy levels. We believe important changes will occur in the 

Raman spectra obtained during the course of pregnancy. In this study, Raman spectra from the 

cervix of women undergoing a low-risk pregnancy were acquired. Specific changes that occur 

due to cervical softening and ripening were observed within the spectra. 
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A1.2 Introduction 

Almost half a million - or one in eight - babies born in the US are preterm, leading to 

complications for the mother and the baby, both during birth and through further development.
1
 

Currently, there are no accurate ways to predict preterm labor, making its prevention and 

treatment virtually impossible.
2
 While there are some at-risk populations for preterm birth (for 

example, women who have had a previous preterm birth, are pregnant with more than one child, 

or have uterine/cervical abnormalities), over half of all preterm births do not fall into any high-

risk category.
3
 Therefore, an accurate and non-invasive method of identifying women who are at 

risk for preterm birth is greatly needed. The impact of a successful approach would lead to fewer 

preterm births and an improved outcome for at-risk patients and their children. 

Preterm birth is the leading cause of infant mortality, causing over 17% of all infant 

deaths and 75% of infants that have perinatal death are premature.
4
 A successful preterm birth 

can still result in a wide array of complications for the mother and baby (if living), including 

cerebral palsy, developmental delay, visual and hearing impairment, and chronic lung disease.
5
 

Even with current advances in medical knowledge and an increase in research funding, the rate 

of preterm labor has steadily increased over the last few decades. Furthermore, the reasons for 

preterm labor remain vague. Various factors, from an insufficient change in collagen content in 

the cervix to unregulated hormone levels or infection, have been implicated to occur during 

preterm labor, but none have been determined as the major cause. A fundamental change must 

occur in the way we approach the problem of preterm labor. The immediate need is to improve 

the ability of physicians to recognize the onset of labor early, before physical signs are apparent, 

giving the physician sufficient time to implement preventive treatment options.  
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An accurate and non-invasive method that identifies women who are at risk for preterm 

birth early would have a tremendous impact on the management of care for these patients. This 

tool would need to incorporate many factors since it appears that a combination of factors, not 

just one or two, lead to preterm labor. The impact of a successful approach would result in fewer 

preterm births and an improved outcome for at-risk patients and their children. Preventing 

preterm labor even for a day is beneficial. When doctors can accurately diagnose preterm labor, 

they then have the option of prescribing corticosteroids or tocolytics to increase the time a fetus 

spends in the womb, which can greatly help brain and lung development, thus improving the 

odds of survival. These drugs, given at the earliest sign of preterm labor, can delay delivery from 

2-7 days and reduce infant death by 30%.
5
 They can also reduce the two most serious 

complications of preterm birth: respiratory distress syndrome (RDS) and bleeding in the brain. 

However, these drugs cannot be maximally utilized unless the physician is able to accurately 

diagnose preterm labor. A tool for decreasing the incidence of preterm birth must be able to do 

so regardless of the patient’s race, ethnicity, or socioeconomic status.  

We have demonstrated the potential of Raman spectroscopy (RS), an optical technique, to 

detect subtle changes in tissue biochemistry, in vivo, in patients, in the cervix.
6, 7

 While the 

technology thus far has been applied primarily for cancer and precancer detection, the sensitive 

nature of RS indicates that it has the potential to be applied towards the specific problem of 

predicting cases of preterm birth. Further, RS has been applied to humans in vivo to detect subtle 

changes in tissue biochemistry associated with changes to cervical hormonal status.
6-8

 Two 

groups of patients were recruited to this pilot study. In the first group (npatients=41), patients were 

recruited during the 1
st
 trimester of their pregnancy. One measurement was acquired during the 

1
st
 trimester, 1 during the 2

nd
 trimester and 3 during the 3

rd
 trimester. A final measurement was 
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taken at the patient’s postpartum visit. A smaller group of patients (npatients=5) was recruited for 

weekly measurements during their 3
rd

 trimester and one measurement at their postpartum visit. 

Initial results show that many changes that occur in the cervix during pregnancy can be observed 

using RS. To our knowledge, this is the first report using RS to monitor pregnant patients.  

 

A1.3 Methods 

Raman spectroscopy is based on the Raman effect where energy is exchanged between 

incident photons and scattering molecules. When an incident photon collides with certain 

molecules, energy may be transferred either from the molecule to the photon or vice versa. The 

energy differences of the scattered photons are indicative of the molecules set into vibration. A 

Raman spectrum consists of a series of peaks, which represent the different vibrational modes of 

the scattering molecules. These peaks are spectrally narrow and molecular-specific, such that the 

observed peaks may be associated with specific bonds in specific molecules. Many biological 

molecules have distinguishable spectra, so the biochemical composition of a tissue can be 

determined from its Raman spectra. One particularly relevant biochemical change that occurs 

during pregnancy is the ripening or the softening of the cervix due to changes in collagen. This 

change, among other changes in elastin and glycogen, can be detected with RS.
8, 10

 Other 

changes that RS is likely to be sensitive to are changes in collagen cross-linking, water content, 

and hormonal variations. In addition, biochemical changes that are triggered in preparation for 

labor are likely to be picked up by RS.  
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A1.3.1 Human Subjects 

Raman spectra were collected from low-risk pregnancy patients to evaluate the ability of 

RS to detect the early signs of labor in a human population. Adult patients of any race or 

ethnicity at the Vanderbilt Clinic and Meharry Medical College Women’s Clinic were included 

in the study. Informed written consent was obtained from each patient studied. Patient 

information such as age, parity, race, and obstetric and gynecological history was noted. The 

protocol was approved by the both Institutional Review Boards prior to the study and the 

physician determined if the patient is eligible to participate. A total of 41 full pregnancy and 5 

weekly measurement patients were recruited to this study.  

 

A1.3.2 Raman Data Acquisition and Instrumentation 

A portable RS system (Figure A1.1, left) was used to collect Raman spectra in vivo. It 

consisted of a 785 nm diode laser (I0785MM0350MS, Innovative Photonic Solutions, 

Monmouth Junction, NJ), a beam-steered fiber optic probe (Figure A1.1, right, 400 µm 

excitation fiber, 7 200-µm collection fibers, 2.1 mm inner diameter, 785nm filtering, Emvision, 

Loxahatchee, FL), an imaging spectrograph (Holospec f/1.8i-NIR, Kaiser Optical Systems, Ann 

Arbor, MI), and a back-illuminated, deep-depletion, thermo-electrically cooled CCD camera 

(Pixis 256BR, Princeton Instruments, Princeton, NJ), all controlled with a laptop computer 

(Figure A1.1, left). The fiber optic device delivered 80 mW of light onto the tissue with an 

integration time of 2-3 seconds. During the measurements, all room lights and the computer 

monitor were turned off. A spectral resolution of 8 wavenumbers (cm
-1

) was achieved. 
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Figure A1.1. Picture of RS system used for in vivo measurements (left) and close-up of Raman probe 

(right). 

 

Spectral calibration of the system was performed daily with a neon-argon lamp and 

naphthalene and acetaminophen standards to correct for day-to-day variations. A National 

Institutes of Standards and Technology (NIST)-calibrated tungsten lamp was used to adjust for 

the wavelength-dependent response of the system. Spectra were processed for fluorescence 

subtraction and noise smoothing using the modified polynomial fit and Savitzky-Golay methods, 

described previously.
12 

Following data processing, each spectrum was normalized to its mean 

spectral intensity across all Raman bands to account for intensity variability. 

The following protocol was used to acquire the Raman data: first, the cervix was exposed 

using a speculum and wiped with a cotton swab to remove any discharge. All in vivo spectral 

measurements (i.e. placement of the probe) was performed by the participating clinician or 

health care provider to maintain consistency. No additional tissue was removed. These 

measurements were performed during 5 prenatal visits (1 during the 1
st
 trimester, 1 during the 

2
nd

, 3 during the 3
rd

) until term and 1 postpartum visit. Patients were classified based on when 

they delivered their baby. Probes were disinfected completely between each measurement using 

standard protocols for cervical instruments. Raman spectra were measured from 3-5 areas on the 
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cervix, with each measurement taking 3 seconds. All spectra were calibrated and processed using 

methods described above. Spectral differences observed as a function of time and with the onset 

of labor were then characterized. 

 

A1.3.3 Data Analysis 

 Sparse multinomial logistic regression (SMLR) was used to extract the important features 

from the Raman spectra across the various time points and use those features to classify the data. 

SMLR is a Bayesian machine-learning framework that computes the posterior probability of a 

spectrum belonging to each pregnancy time point on a labeled training set. For these analyses, a 

composite spectrum averaging Raman measurements from each patient at each time point was 

used. A range of input parameters to SMLR was tested. The settings that provided the most 

accurate classification while also maximizing sparsity were a Laplacian prior, a direct kernel, a 

lambda value of 0.01, and no additional bias term. Leave-one-patient-out analysis was performed 

to minimize bias. 

 

A1.4 Results 

A total of 7 patients from Meharry Medical College and 34 patients from Vanderbilt’s 

Clinic were recruited into this study and measurements were acquired across their pregnancy. 

Five patients from Vanderbilt’s Clinic were recruited for weekly measurements in their 3
rd

 

trimester. A representative set of spectra from one patient is shown in Figure A1.2. 
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Figure A1.2 Spectra obtained from one representative patient over the course of her pregnancy. 

 

Similar to the mouse data (Chapter 8), a spectral disintegration can be observed in the 

spectra acquired at later time points within pregnancy. These differences are the most prominent 

in the regions around 1200 cm
-1

 and around 1650 cm
-1

. Based on previous work, these regions 

have been labeled as potentially corresponding to proteins, amide-I and amide-III.
8,9

 All of these 

are important constituents of the cervix which drastically change during pregnancy, as the cervix 

begins to prepare for labor and delivery.
13

 Many of these differences are similarly seen across the 

patient population to various extents (data not shown).  

The classification algorithm SMLR was used to classify data across the patient group 

who were recruited for measurements throughout their pregnancy (npatients=41) to determine if the 

regions of difference among the various time points were significant enough to be used to 

classify the data based on the time point during pregnancy (Table A1.1). The best classification 
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was obtained when all data obtained during the 3
rd

 trimester was combined. Classifying the data 

based on the 4 separate time points resulted in a classification accuracy of 87%. 

 
Raman Classification, Output of SMLR 

1
st
 Trimester 2

nd
 Trimester 3

rd
 Trimester Postpartum 

Pregnacy 

Time Point 

(Based on 

Delivery 

Date) 

1
st
 Trimester 82% 6% 4% 8% 

2
nd

 Trimester 7% 87% 2% 4% 

3
rd

 Trimester 4% 5% 88% 3% 

Postpartum 6% 2% 1% 91% 

Table A1.1. Confusion matrix when all data from pregnant patients was classified by SMLR. A 

classification accuracy of 87% was achieved. 

 

 

 With the weekly measurement patient population (npatients=5), an initial analysis was 

conducted to visualize any important changes that occur close to the onset of labor. Spectra from 

multiple time points from one patient which have been subtracted from the patient’s postpartum 

measurement are shown in Figure A1.3. There are a few areas (~1050, ~1250, and ~1610 cm
-1

) 

where the measurement acquired prior to labor and delivery are significantly different compared 

to other time points.  

 
Figure A1.3. Weekly measurements from one representative patient. Each measurement was subtracted 

from the patient’s postpartum measurement. 
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A1.5 Discussion 

Preterm labor is a common problem in obstetrics and prenatal care, affecting over 12% of 

all births in the United States.
5
 Even with the steady increase in research funding, this rate has 

not decreased. In fact, some reports are showing a slight increase in the rate of preterm births, 

particularly in lower socioeconomic communities.
1
 A paradigm shift in how preterm labor is 

studied has to occur to decrease its incidence rate. Instead of looking for one or two particular 

biomarkers that may indicate the onset of labor, it is possible that looking at the complete picture 

of downstream effects may be a more useful method for recognizing symptoms of preterm labor. 

Using RS, we are able to see multiple factors, such as collagen, DNA, and fat content of the 

cervix can be measured. This wide array of data is something that cannot be found by doing 

assays or even looking at autofluorescence; those techniques are limited to analyzing only one or 

at least a few biomarkers at a time. This study was the first step in utilizing RS for detecting the 

onset of labor in humans.  

Looking at the spectra, a lot of information is contained in the Raman data that may be 

useful for monitoring the changes in the cervix throughout pregnancy (Figure A1.2 and Figure 

A1.3). Many of the important constituents that are involved in cervical ripening as the cervix 

prepares for birth, such as collagen crosslinking (Amide-III) and water content (disorganization 

of the spectra), are significant factors that can be visualized in the spectra.
11,13

 These changes are 

so dramatic that they are noticeable after standard processing, prior to any statistical analysis. 

However, to see if these changes are indeed statistically significant, SMLR was needed to 

classify the data. An overall classification of 87% was achieved when the algorithm was used to 

classify the data as 1
st
, 2

nd
, 3

rd
 trimester or post-partum (Table A1.1). This high classification rate 

demonstrates that changes are consistent across multiple patients. The 1
st
 trimester measurements 
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classified with the lowest amount of accuracy. They were obtained from patients at their first 

visit. It is possible that this initial measurement is more affected by the patient’s history, for 

example, if the patient had a previous cervical disease or if she had been pregnant recently. It is 

also important to note that measurements from the 3
rd

 trimester were combined because patients 

returned at various times. Combining all the measurements from the 3
rd

 trimester may have led to 

a lower classification across all categories, since it is clear that the cervix is rapidly changing as 

labor and delivery become closer (Figure A1.3). Nonetheless, these results suggest that the 

cervix in the 3
rd 

trimester remains significantly different compared to other time points, no matter 

when the 3
rd

 trimester measurement is obtained. 

In this study, 80mW of light was delivered with a 400 µm excitation fiber with an 

integration time of 3 seconds. The thickness of the cervix at the beginning of the 1
st
 trimester is 

between 4-5 cm, thinning to approximately 2.5 cm towards the end of the 3
rd

 trimester. Previous 

work has shown that such a fiber optic probe interrogates approximately 1-1.5 mm into the 

tissue, suggesting that all photons will be absorbed by the cervix.
14

 When the probe is applied to 

the cervix, approximately 63.7 W/cm
2

 of 785 nm light is delivered. The maximum permissible 

exposure (MPE) of the skin is 0.3 W/cm
2
; the MPE of the cornea is 1.9 mW/cm, as published by 

the American National Standards Institute (ANSI). While we are orders of magnitude above the 

MPE, we do not believe the eyes of the infant are being harmed. These MPE values are for direct 

exposure to either tissue site, i.e. if the probe was placed on the cornea. As the light penetrates 

the cervix, it becomes scattered and absorbed, which dramatically decreases the power of the 

light and the amount of photons that continue to the placenta and to the infant.  Also, damage due 

to the laser has never been observed on the cervix. If data is ever acquired from the cervix during 

later time points in pregnancy when the cervix is thinner, we will need to ensure that light is not 
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reaching the retina of the fetus. Possible alternatives to the current design are to increase the size 

of the excitation fiber and to decrease the power of the laser. 

Ideally, this system will be used to find indicators of the abnormal progression of 

pregnancy prior to what can be seen by health care providers. These studies and the studies that 

will follow, however, are focused on determining the important changes that occur during the 

latter part of pregnancy and during labor and delivery (future work) in low-risk patients. It is 

necessary to start with these later time points in low-risk pregnancies to ascertain what happens 

normally and which changes are the most important. Certainly, to determine if this method has 

any success, studies must be moved to an at-risk preterm labor patient population and data must 

be acquired early during pregnancy, where the maximum benefit of diagnosis and intervention 

can be attained. These future studies will determine how early abnormal changes can be detected. 

In this cohort of patients, there were no preterm births because any patient who was suspected of 

going into preterm birth was removed from the study. In the future, it will also be helpful to 

study patients who are low risk, but end up going through preterm birth. 

At the time, measurements from a controlled population are still necessary to determine if 

the regions found in this pilot study are indicators of the onset of labor and delivery. The first 

step is to acquire data from more patients, both throughout pregnancy and during weekly 

measurements during the 3
rd

 trimester. Next, data should be acquired from patients during labor 

and delivery, both when induced and naturally, to determine the most significant changes that 

occur. Finally, as discussed above, at-risk patients will be recruited, especially those who are 

currently being given progesterone treatment to delay the onset of labor and birth. Similar to the 

mouse studies, further analysis into the mechanical properties of the human cervix and the 

hormonal background of the patients should be pursued in order to correlate the Raman data to 
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other forms of data. The results of these studies will provide insight into the biochemical and 

medical basis of Raman spectra in order to have a better understanding of the role of the cervix 

during pregnancy and to come closer to identifying factors indicative of preterm birth.  
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APPENDIX 2 

 

EXPLANATION OF MATLAB TOOLS AND STATISTICAL ANALYSIS 

 

GLMnet
1
 – Generalized Linear Models with elastic net penalties 

This method for classifying the Raman data relied on sparsity-promoting criterion to select the 

values within the spectra that contribute most highly to discriminating between classes. Multiple 

linear methods (linear regression, logistic regression, and multinomial regression) are used to 

model the Raman spectra. GLMnet then uses penalties, L1 (the lasso) and L2 (ridge regression) 

and the mixture of the 2 (also known as the elastic net) to separate the data into specific 

categories. 

The advantage of GLMnet is that it incorporates multiple methods and multiple types of 

penalties into one algorithm. It is currently being used instead of SMLR (described below) 

because it utilizes many regression methods including logistic regression which is the basis of 

SMLR. GLMnet is more suitable for large amounts of data with higher dimensions to solve 

complex optimization problems. 

A GLMnet package is available for download to use in R. This method was used in Chapter 6. 

MRDF
2
 –Maximum Representation Discrimination Feature 

MRDF is a method of feature extraction that maximally extracts the diagnostic information that 

tends to be hidden in a set of measured spectral data. It achieves this by reducing its 

dimensionality through a set of mathematical transforms. Given a set of input data with spectra 

from different tissue types, MRDF finds a set of nonlinear transforms (restricted order 

polynomial mappings) of the input data that optimally discriminate between the different classes 

in a reduced dimensionality space. First, the input spectral data T

Nxxx ],....,[ 21x  (intensities 

corresponding to wavenumbers of the spectra) from each tissue type are raised to the power p
 
to 

produce the associated nonlinear input vectors ],...,,[ 21

p

N

pp

p xxx


 x , which are then subject to a 

transform MΦ  such that 
p

T

MM 
 xy Φ  are the first stage output features in the nonlinear feature 

space of reduced dimension M <<N. In the second stage, the reduced M-dimensional output 

features My  for each tissue type are transformed nonlinearly to the power p to produce higher 

order features ],....,,[ 21

p

M

pp

Mp yyy y , and a second transform K is computed so as to yield the 

final output features 
Mp

T

KK yy Φ  in the nonlinear feature space of dimension K (K  M).
2 

This method was used prior to SMLR in Chapters 3 and 4.  
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Savitzky-Golay filter
3
 – determines the smoothed value for each point in the Raman spectrum by 

performing a moving polynomial fit or a local polynomial regression (of degree k) on a series of 

values (of at least k+1 equally spaced points).  

The advantage of this filter compared to other techniques (i.e. moving average filter) is that it 

preserves the features of the distribution such as relative maxima, minima and width, which can 

be reduced with other averaging techniques. In our case, using this filter preserves the Raman 

features while minimizing the noise within the signal. 

When I processed my Raman data, I used the MATLAB function sgolayfilt with a polynomial 

order 3 and a frame size of 11. 

SMLR
4
 – Sparse Multinomial Logistic Regression 

SMLR is a method of supervised classification that also promotes sparsity. It is a probabilistic 

multi-class model based on a sparse Bayesian machine-learning framework of statistical pattern 

recognition. SMLR's goal is to separate a set of labeled input data into its classes by predicting 

the posterior probabilities of their class-membership. It computes the posterior probabilities 

using a multinomial logistic regression model and constructs a decision boundary that separates 

the data into its constituent classes based on the computed posterior probabilities, following 

Bayes’ rule. Data is assigned to a class for which its posterior probability is the highest. 

For my analysis, I used the following range of input parameters: a Laplacian prior, a direct 

kernel, a lambda value of 0.01, and no additional bias term. 

This algorithm can be downloaded directly from www.cs.duke.edu/~amink/software/smlr/ and 

was used in Chapters 3, 4, 5, 7, 8 and Appendix 1. 
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APPENDIX 3 

 

ROLE OF THE STUDENT IN THE MANUSCRIPTS 

 

Chapter 3 (summary of preliminary studies) – I am the 2
nd

 author and 3
rd

 author on 2 of the full-

lengths manuscripts summarized in this chapter. They were published in the Journal of 

Biophotonics and the Journal of Raman Spectroscopy respectively, both in February 2009. 

 

Chapter 4 – I am the co-1
st
 author of this paper, and am responsible for a majority of the data 

collection and the writing. It was published in Analyst in June 2011. 

 

Chapter 5 – I am the 1
st
 author of this paper, which was published in the Journal of Biomedical 

Optics in November 2011. 

 

Chapter 6 – I am the 1
st
 author of this paper, currently being prepared for submission. 

 

Chapter 7 – I am the 1
st
 author of this paper, which is under review with the editors of 

Translational Oncology. 

 

Chapter 8 – I am the 1
st
 author of this paper, which has been accepted pending minor revision to 

the Annals of Biomedical Engineering. 

 

Appendix 1 – I am the 1
st
 author of this paper, which is currently in preparation. 


