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CHAPTER I 

 

INTRODUCTION 

 

Motivation 

 

To determine the genetic etiology of disease, we must understand the functional effects of 

disease-causing genetic variants. Causal variants that alter amino acids in the protein-coding 

sequences of genes (i.e., missense variants) are believed to predominantly derive their 

pathogenicity from the alteration of protein structure, and consequently, protein function. 

Through evolutionary and molecular analyses, we know that functionality is not distributed 

evenly throughout a protein. Few amino acids in a protein structure compose active sites or 

binding interfaces; most amino acids are responsible for protein folding and stability. The 

mechanism by which a missense variant does or does not disrupt protein function is dependent 

on the part of the protein it affects and the degree to which the specific amino acid substitution 

affects it. While the specific function of many proteins is not always well characterized, 

evolutionary conservation analyses can identify which amino acids in a protein have been highly 

conserved across species, indicating functional importance. Initial evidence from a small number 

of proteins suggests that these evolutionarily conserved amino acids are spatially clustered within 

protein structures. If this pattern holds for all proteins, the spatial analysis of evolutionarily 

conserved amino acids in protein structure has the potential to accurately resolve regions of 

functional importance. While sequence conservation highlights the importance of some amino 

acids, clear spatial boundaries can inform functional hypotheses about why they are important. 
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If functionally important residues are spatially clustered, we hypothesize that functionally 

disruptive, disease-causing missense variants will also be spatially clustered. While evolutionary 

conservation may identify amino acids (or regions) of functional importance, it provides no 

information about what function is being performed. Disease-causing variation can often infer 

the functional role of a region from the phenotypic outcome of its disruption. With the recent 

abundance of whole-genome and whole-exome sequencing data, coupled with growing numbers 

of experimentally derived and computationally predicted protein structures, we have an 

opportunity to investigate these patterns on the scale of the human proteome. 

 

Evidence for Conserved Amino Acid Clustering in Protein Structure 

 

Identifying functional regions of protein structures is currently difficult, as our understanding of 

protein function is incomplete. Computational modeling and prediction is steadily improving 

with the advent of methods like ddg_monomer1 and VIPUR2, but at present we cannot reliably 

predict (in an accurate, high-throughput manner) the structural impact of amino acid 

substitutions or how the resulting structural changes will ultimately influence function without 

expert analysis. While it is sometimes possible to empirically determine the functional effect of a 

given substitution, such assays are inherently low-throughput and limited to proteins for which a 

functional assay is available. Sequence conservation can help to bridge this gap by identifying 

amino acids that have been highly conserved throughout evolution, suggesting they play an 

important role in the function or stability of that protein.  

This measure of functional importance has motivated several efforts towards the analysis of 

evolutionary conservation in protein structure. ConSurf-DB3 was designed to identify and 
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visualize the most and least conserved amino acids in a protein structure, independent from the 

protein’s baseline degree of conservation. Capra et al. found that the combination of 

evolutionary sequence conservation and protein structure significantly improved detection of 

ligand-binding sites over both conservation-only and structure-only methods.4 Madabushi et al.5 

more directly evaluated the spatial clustering hypothesis, calculating Evolutionary Trace6 for 

each amino acid in 46 proteins from different structural and functional classes. They found that 

conserved amino acid clusters were significantly larger than expected (relative to a random 

distribution) in 45 of the 46 proteins analyzed. The utility of this spatial clustering pattern has 

also been recognized in the field of protein fold prediction. Baker et al. 7 identified significant 

clustering of conserved residues in 73 of 79 analyzed protein structures. They then demonstrated 

that algorithmic constraints requiring conserved residues to be in close spatial proximity 

dramatically improve de novo protein structure prediction. Other structural analyses of 

evolutionary conservation include the identification of conserved positions in protein folds,8 

binding interfaces,9 and the prediction of functional sites.10–13 Each of these analyses is limited in 

either scope or scale, but the consistency of their findings supports the hypothesis that 

evolutionarily conserved residues cluster in protein structures and that those clusters represent 

functional regions of proteins. 

 

Evolutionary Conservation is Predictive of Variant Pathogenicity 

 

Disease-causing missense variants are presumed to derive their pathogenicity from the disruption 

of protein function and stability. As discussed above, functional amino acids can be identified 

through evolutionary conservation analysis. It follows that missense variants affecting 
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evolutionarily conserved amino acids are more likely to disrupt protein function. Application of 

this hypothesis has been overwhelmingly successful in variant pathogenicity prediction. All nine 

of the popular pathogenicity prediction algorithms evaluated by Thusberg et al.14 incorporate 

some measure of evolutionary conservation15–22.  

 

Mendelian Germline Variants and Recurrent Somatic Mutations Cluster in Protein Structure 

 

The strong evidence for conserved residue clustering and the relationship between evolutionary 

conservation and variant pathogenicity suggests that disease-causing missense variants also form 

clusters in protein structure and that these clusters identify functional regions of proteins with 

relevance to specific diseases. Indeed, the literature already includes initial evidence for the 

pathogenic clustering of Mendelian and somatic cancer mutations. In an analysis of 162 diseases 

affecting 181 genes, Turner et al.23 found that both dominant and recessive disease-causing 

mutations were significantly more clustered than neutral variants from the 1000 Genomes 

Project24. Numerous studies have also analyzed the clustering of somatic mutations in cancer25–

31, where discriminating between driver and passenger mutations is a challenge. Despite 

differences in methodology, all have identified significant clustering of somatic mutations in 

both the sequence and structure of oncogenes, tumor suppressors, and genes not previously 

associated with cancer. These germline and somatic analyses are analogous. Oncogene and 

dominantly inherited mutations are largely presumed to result in gain-of-function, while tumor 

suppressor and recessive mutations are presumed to result in loss-of-function. It is likely that 

these analyses are detecting a similar phenomenon: pathogenic variants in close spatial proximity 

share similar functional and disease-related properties. This phenotypic similarity is highlighted 
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by Guo et al. in their comprehensive analysis of three-dimensional protein interactome networks. 

They found that recessive mutations in interacting proteins were significantly more likely to 

cause the same disease if they affected the binding interface of those two proteins32.   

 

Current Methods for Quantifying Missense Variant Clustering 

 

There is substantial evidence to support the hypothesis that pathogenic variants form spatial 

clusters in protein structure, but the methods for evaluating these distributions are redefined by 

each subsequent publication and are often focused towards the identification of a few known 

examples. In this section I will discuss four methods for quantifying the degree of spatial 

clustering observed for missense variants along with their strengths and weaknesses.  

A straightforward way of evaluating clustering amongst a set of points is the sum of inverse 

pairwise distances. Stehr et al.30 adopted this approach in their analysis of somatic mutations in 

24 oncogenes and tumor suppressors (Figure 1A). Within each protein structure, they calculated 

the sum of inverse pairwise distances amongst somatic mutations from COSMIC33 and 

population-derived missense single-nucleotide polymorphisms (SNPs) from the 1000 Genomes 

Project. They conclude that all missense variants, regardless of pathogenicity, were significantly 

more clustered than expected at random. Moreover, somatic mutations in oncogenes were more 

significantly more clustered than population-derived SNPs, while somatic mutations in tumor 

suppressors were not. Although the sample size is small and limited to known cancer genes, the 

results of this analysis defined expectation for future studies of the spatial distributions of 

somatic mutations. 
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While the sum of inverse pairwise distances is simple to compute, it incorporates no 

information about biologically meaningful distances or the frequency at which a mutation is 

observed in individuals with cancer. Kamburov et al.26 addressed these concerns with the 

introduction the two transformations shown in Figure 1B.  First, each variant is weighted 

according to its frequency using somatic mutation counts from The Cancer Genome Atlas 

(TCGA)34.   The mutation frequency is transformed, such that mutations observed in only one 

individual receive values near 0, while mutations observed in six or more individuals receive a 

value of 1. Each pair-wise distance is then transformed such that highly proximal mutations 

receive values near 1, and distal variants receive values approaching 0. The extent of clustering 

within the protein structure is then scored as the sum of the weighted, pairwise distances between 

recurrence-weighted somatic mutations. Ultimately, proteins with highly recurrent mutations in 

close spatial proximity receive high scores and those containing distal mutations with low 

recurrence receive low scores. The significance of these scores is evaluated by randomly 

permuting the locations of somatic mutations within the protein structure. In their analysis of 

4,062 human proteins, 10 were found to harbor significantly clustered recurrent somatic 

mutations at a false discovery rate (FDR) q<0.1. Unlike Stehr et al., Kamburov et al. observe 

significant clustering in both oncogenes and tumor suppressors, as well as in proteins not 

previously associated with cancer; they attribute this difference largely to methodological 

differences and dataset selection. A weakness of this approach is the reliance on user-intuition in 

defining biologically plausible distances and recurrence counts. Additionally, neither of these 

approaches identify discrete clusters of mutations nor do they define functional boundaries; 

rather, they report that somatic mutations within the protein structure are more clustered than the 

null expectation.  
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In contrast, the approach proposed by Meyer et al.25 aims to define clusters directly and then 

evaluates the significance of the clusters themselves. It accomplishes this with complete-linkage 

hierarchical clustering using the distance between somatic mutations (Figure 1C). Complete-

linkage clustering enforces a maximum distance between any two mutations in the same cluster. 

This distance is user-defined, but a value of 15Å was used for their comprehensive analyses. The 

algorithm additionally enforces the minimum cluster size (number of mutations) of three or more 

unique amino acid substitutions at two or more unique protein positions. Justification of these 

parameters is not provided. The significance of each cluster was determined through random 

permutation of the mutations within the protein structure. Clusters that contained more mutations 

than expected at random were considered significant. Although this approach defines clear 

mutation clusters, there are also several weaknesses. First, many of the algorithm’s parameters 

are user-defined without clear evidence for biologically plausible arguments. Second, many of 

the clusters identified by the algorithm are heavily influenced by highly recurrent mutations at 

only two protein positions. While these recurrent mutations may disrupt the same function, it is 

unlikely that cluster analysis is required to identify their importance.  

Most recently, a novel cluster analysis was reported by Tokheim et al.27 that incorporates 

many of the attributes from the above work. The first stage of this analysis evaluates the local 

missense mutation density around each somatic mutation. This is defined as the sum of the count 

of missense mutations observed at each mutation position and the count of missense mutations 

within 10Å of that site (Figure 1D). A distance threshold of 10Å was chosen because it is the 

order of magnitude of an amino acid side chain27. Permutation of the mutation positions within 

the structure is used to generate an empirical null and determine which mutations are within 

“mutation hotspot regions.” Once identified, these mutations are grouped into clusters using a 
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neighbor graph such that neighbors within 10Å of one another are connected. Each subgraph is 

then defined as a mutation cluster. With this approach, Tokheim et al. can define clusters of 

variable shape and size while still restricting local density measures to a biologically plausible 

scale. However, the method still makes assumptions about what distance scales are biologically 

plausible. Also, because no recurrence normalization was applied to the somatic mutation counts 

(as described in Kamburov et al.) and because the mutation count for a given protein position is 

included in its local mutation density estimate, the method tend to identify individual (or pairs 

of) highly recurrent mutations that are likely identifiable without cluster analysis. 

 

 

Figure 1: Methodological illustrations of approaches for identifying missense variant clustering in protein structure. 
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Limitations of Hypothesis-Driven Clustering Methodologies 

 

Each of the methods described above was designed specifically for the identification of 

clusters of somatic mutations, with heavy influence from known examples in cancer. This limits 

the generalizability and applicability of these methods for testing alternative spatial hypotheses. 

Collectively, these methods have several limitations. The first is a reliance on experimenter 

intuition. All but Stehr et al. include intuition-based parameterization: Kamburov et al. transform 

distance and recurrence, Meyer et al. impose an arbitrary upper bound on cluster diameter and 

lower bound on mutation counts within observed clusters, and Tokheim et al. define distance 

bounds for the “local” neighborhood of a mutation that are based on the approximate length of an 

amino acid side chain. Within each study, justification was provided for why these 

normalizations and bounds are necessary, but little justification was provided for their 

parameterization. While it is important that method parameters and results are within 

biologically plausible limits, each of these decisions narrows the types of clusters that can be 

discovered. For example, a major benefit of hierarchical clustering is its ability to detect non-

spherical clusters, but the complete-linkage aggregation and maximum distance threshold used 

by Meyer et al. will lead the algorithm towards small, spherical clusters and cannot accurately 

recognize non-spherical clusters if the longest axis exceeds 15Å. These restrictions limit its 

effectiveness in analyzing transmembrane proteins or protein-protein binding interfaces where 

functional regions may be non-spherical. It is also unclear if parameters inferred from somatic 

mutation clusters will be optimal for other types of genetic variation and structural properties. 

There has been significant, recent interest in identifying genes with significantly less population-

derived missense variation than expected by chance35. Evaluating the regional patterns of this 



 10 

phenomenon within protein structure would require a fundamentally different hypothesis about 

the expected and observed spatial distribution of (putatively neutral) missense variants. Each of 

the methodologies described above would require significant modification to evaluate these new 

hypotheses because they’ve been designed specifically to identify clusters of disease-causing 

variants. 

The second major limitation is the narrow scope of previous work. Most of these analyses 

focus heavily on clusters of somatic mutation in cancer, but the functional properties driving 

missense spatial constraint should be similarly applicable to germline missense variation. Meyer 

et al. briefly discuss an increased likelihood of clustering Human Gene Mutation Database 

(HGMD)36 pathogenic variants relative to putatively benign variants from the Exome Variant 

Server (http://evs.gs.washington.edu/EVS/), but that analysis pools together pathogenic and 

putatively benign variants to simulate the mixture of driver and passenger mutations in cancer. 

Ultimately, the comparison is only discussed as justification for analyzing somatic mutation data. 

Some analyses have instead focused on the spatial clustering observed for evolutionary 

conservation, but these studies have been limited in scale. Despite heavy reliance on the 

conclusions of several small studies, there has not been a comprehensive, systematic evaluation 

of conserved residue clustering across all human proteins. 

Many previous studies have compared the general patterns of clustering observed for somatic 

mutation with the patterns observed for population-derived missense variants, but none provide 

the option of evaluating one dataset in relation to another. For example, Stehr et al. found that 

somatic mutations in tumor suppressors were no more clustered than population-derived 

missense variants. This conclusion was drawn from a comparison of the global trends observed 

for the two datasets. A more direct hypothesis for this comparison would test whether somatic 

http://evs.gs.washington.edu/EVS/
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mutations were more or less clustered than population-derived missense variants within each 

structure. This more specific hypothesis may identify specific proteins in which the clustering of 

somatic mutations is significantly more than for population-derived missense variation, in 

contrast to the global trend. 

The methodology for analyzing spatial distributions in protein structure should not be 

influenced by domain-specific hypotheses. A general, data-driven approach is needed that is 

equally capable of analyzing evolutionary and structural properties as well as germline and 

somatic protein-coding variation. This approach should then be applied to the numerous datasets 

of evolutionary, genetic, and structural data publically available to evaluate previously observed 

patterns and novel hypotheses on a comprehensive scale. These data are not independent from 

one another, but are largely influenced by similar biological pressures. This approach should 

enable comparisons between synonymous and missense variants, conserved amino acids and 

pathogenic variants, or germline and somatic variants. In the following chapters, I describe such 

an approach along with a pipeline and database to support the high-throughput, spatial analysis 

of evolutionary conservation and human genetic variation within protein structure. 

 

Chapters 

 

The process of linking genetic variant information to amino acid coordinates in experimentally 

derived protein structures is a non-trivial task involving numerous resources and databases, each 

with their own format, cross-references, and inconsistencies. In chapter 2, I provide a detailed 

description of the PDBMap pipeline and database. The purpose of this resource is the linkage of 



 12 

existing databases of genetic and structural information to facilitate efficient evaluation of 

structural hypotheses about missense variation on a global scale. 

Once missense variants have been placed within protein structure, we require a robust 

statistical framework to quantify their spatial distribution. In chapter 3, I describe a general 

methodology for evaluating spatial distributions within and between datasets of protein-coding 

variation and structural properties. These methods make no assumptions about cluster size, 

shape, or scale, are sensitive to both clustering and dispersion, and are not tailored to find 

domain-specific examples. With this framework, we aim to quantify on a large-scale whether 

evolutionarily conserved amino acids are clustered in protein structures. We next evaluate 

whether spatial patterns of missense variation are derived from the effects of amino acid 

substitution by contrasting synonymous and nonsynonymous distributions. With these properties 

defined, we evaluate the hypotheses that pathogenic missense variants are clustered in protein 

structures and that the degree of clustering exceeds what is observed for neutral variants. Finally, 

we highlight the utility of spatial information by evaluating its predictive performance in 

classifying pathogenic and neutral missense variants.
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CHAPTER II 

 

PDBMAP: MAPPING PROTEIN-CODING VARIATION INTO PROTEIN STRUCTURE 

 

Introduction 

 

Although the processes of gene transcription, mRNA translation, and protein folding are 

biologically linked, the scientific fragmentation of genetics, proteomics, and structural biology 

introduces technical barriers to holistic analysis. These limitations impede large-scale analysis of 

genetic variation in the context of protein structure and complicate the evaluation of otherwise 

testable hypotheses. In this chapter, I present PDBMap, a pipeline and database for explicit 

mapping between the human genome and structome. The initial pipeline pre-computes the 

mapping between all amino acids in all experimentally derived and computationally predicted 

protein structures and all protein-coding nucleotides in the human genome. Using this resource, 

genetic variants and annotations can be directly mapped into all available protein structures 

without navigating the entire cross-reference network. Finally, we populate this database with the 

largest public datasets of protein structures and genetic variation: The Protein Data Bank37 

(27,624 human protein structures), ModBase38 (102,235 human homology models), ExAC35 

(4,521,130 synonymous and missense variants), and ClinVar39 (56,162 missense variants). 
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Protein Structural Databases 

 

The Protein Databank 

The Protein Data Bank (PDB) is the central repository for experimentally derived protein 

structures with over 5,000 distinct human proteins represented by more than 27,000 structures. 

Because of the many-to-many relationship of proteins to structures, there are analyses included 

in this project that limit the dataset to a representative subset of individual protein chains. This 

subset was generated by Kamburov et al.26 and is intended to provide the greatest coverage of 

the human proteome while minimizing redundancy. Although protein structures in the PDB are 

determined by a variety of experimental methods, all those included in this subset were derived 

from either X-ray crystallography or solution NMR. All solution NMR structures were 

represented by the first recorded model. 

 

ModBase 

ModBase is a public repository of comparative protein structure models. Their automated 

pipeline uses the Modeller40 software to generate homology models for the database. Homology 

modeling involves the identification of proteins with high sequence identity to a protein of 

interest, which is likely to adopt a similar tertiary fold. The homologous structure is then used as 

a template along which the sequence of the target protein is threaded. From this starting state, a 

series of loop-building and relaxation processes attempt to identify the lowest energy 

conformation, which is presumed to be the protein’s native state. The quality of computationally 

predicted homology models is highly variable and largely dependent on sequence identity with 

the template structure. Models are evaluated using the ModPipe quality score (MPQS), a 
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composite score incorporating sequence identity of the target protein with the identified template 

structure, structural coverage of the target protein, and three external quality scores: e-value, z-

Dope, and GA341. ModBase considers a MPQS > 1.1 to indicate a reliable structural model. The 

ModBase database is included to supplement the Protein Data Bank and improve coverage of 

proteins without experimentally derived protein structures to over 17,000 distinct human 

proteins. 

 

Genetic Variation Databases 

 

The Exome Aggregation Consortium (ExAC) 

Whole-exome sequencing provides a comprehensive view of protein-coding variation within the 

human genome. To elucidate the mechanisms behind disease-causing variation, we must first 

understand the patterns of the neutral variation we all carry in abundance. ExAC aggregates 

whole-exome sequencing data from fourteen cohorts totaling 60,706 individuals and six human 

continental populations: African/African American, Latino, East Asian, South Asian, Finnish, 

and Non-Finnish European. This resource provides a high-resolution view of where putatively 

neutral variation is tolerated within human proteins and serves as a neutral background for the 

analysis of pathogenic missense variation. 

 

ClinVar 

Managed by the National Center for Bioinformatics (NCBI), ClinVar is a submission-based 

database of variant-disease associations. Clinical significance is assigned in accordance with 

recommendations by the American College of Medical Genetics (ACMG), which stratifies 
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variant disease associations into five classes: uncertain significance, benign, likely benign, likely 

pathogenic, and pathogenic. ClinVar represents our current understanding of the genetic cause of 

many complex diseases, but also includes Mendelian associations reported by the Online 

Mendelian Inheritance in Man (OMIM). 

 

Linking Genetic Variants to Protein Structure 

 

There are three primary components required to link genetic and protein structural information. 

The first involves the reconciliation of protein structural sequences with reference protein 

sequences and alignment with the human genome. The second is consequence determination for 

protein-coding genetic variants. Third, these two sources must be joined using shared identifiers 

to create a complete path from genetics to protein structure, enabling high-throughput analyses. 

A schematic of the PDBMap pipeline and database is provided for reference in Figure 1. 
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Figure 2: A schematic overview of the PDBMap pipeline and database. Structural processing tasks are shown in blue. 

Alignment of protein chains with gene transcripts is shown in red. Consequence prediction for genetic variation is shown 

in green. Intersection of genetic datasets with the structure-to-genome mapping is shown in purple. Light blue and orange 

describe downstream applications of this resource. Dashed arrows indicate where external data is fed into the pipeline. 

 

Aligning protein structures to the human genome 

A protein structure is a snapshot of the three-dimensional conformation assumed by a human 

protein. However, the experimental process of deriving these structures is a source of both 

intentional (e.g. expression tags, mutations) and incidental (e.g. alternative residue numbering) 

deviations from the reference protein sequence. In many cases, these errors can be resolved 

through simple pairwise alignment, but recently a more robust alternative was released. SIFTS41 

is a manually curated database of protein structural information that, among other useful 

annotations, provides a residue-level mapping from structure to reference sequence for each 

amino acid in a protein. Further, protein sequences not matching the reference sequence (e.g. 
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expression tags, mutations) can be easily identified and/or removed. Any remaining alignment 

errors are corrected through simple pairwise alignment.  

Having aligned each chain of each protein structure to its reference protein sequence 

(structome to proteome), we next attempt to match UniProt proteins with EnsEMBL gene 

transcripts (proteome to genome). For each protein accession identifier, UniProt provides a list of 

corresponding EnsEMBL gene transcripts. However, the two databases often disagree, primarily 

due to differences in the handling of genes with multiple isoforms and homologous genes that 

produce highly similar transcripts. This issue is compounded by the lack of protein isoform 

information in the PDB. This introduces a many-to-many relationship between gene transcripts 

and protein isoforms, where not all transcript-isoform matches are valid. We again approach this 

step as an alignment problem. Rather than aligning protein structure sequences to reference 

protein sequences, we instead align them directly to the translated peptide sequences of 

EnsEMBL gene transcripts. Alignments with high sequence identity (>90% with respect to 

protein structure) are considered valid matches (not only does the protein identifier match, but 

the specific protein isoform matches the sequence encoded by the gene transcript). This approach 

identifies and removes transcripts that could not plausibly produce the sequence observed in the 

protein structure. The 90% threshold is intended to accommodate minor alterations to the protein 

sequence, like point mutations or short gaps in the protein structure.  

Using the aligned EnsEMBL transcripts for each protein structure, we derive the nucleotide 

coordinates for each amino acid in the protein sequence. On completion of this pipeline, every 

amino acid in every protein structure is directly annotated with both its structural and genomic 

coordinates. Of the 20,160 human proteins reviewed by Swiss-Prot, PDBMap currently includes 
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27,624 protein structures containing 5,223 (26%) distinct human proteins and 102,235 homology 

models containing 17,341 (86%) distinct human proteins.  

 

Determining variant consequence 

Not all protein-coding variants cause a change in the protein sequence. Some may introduce 

stop-codons that truncate the protein, while some nucleotide substitutions produce codons that 

encode the same amino acid. Similarly, a single variant may have different consequences or 

affect different amino acid positions for different gene transcripts. We determine variant 

consequences using EnsEMBL’s Variant Effect Predictor (VEP)42 tool. In addition to 

determining transcript-specific consequences for each genetic variant, VEP also provides 

numerous informative annotations including global and population allele frequencies, gene and 

transcript annotations, and pathogenicity predictions from established tools like SIFT and 

PolyPhen2. None of the information reported by VEP is required for structural mapping (only 

the genomic position is required), but consequence prediction is useful for validation and critical 

for understanding the potential effects of each variant on the protein structure. 

 

Intersecting genetics and structure 

We’ve presented above the structural and genetic components of the PDBMap database. The first 

provides a direct link between the structural and genomic coordinates of each amino acid in a 

protein structure. The second determines the consequence of each genetic variant for each 

transcript of the affected gene. Both datasets now contain a collection of shared identifiers that 

we can use to efficiently map all genetic variants into protein structure. This alignment is 

conducted in two stages. 
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To create the initial mapping from genetic variant to protein structure, we generate two sets 

of genomic coordinates. The first is the set of genomic ranges that define the codon for each 

amino acid in a protein structure. The second is a set of genomic positions (or ranges, if INDELS 

are present) identifying the location of each genetic variant. Using intersectBED43, we can 

efficiently intersect these two datasets to identify all variant positions that overlap codons 

mapped to amino acids in a protein structure, in effect mapping genetic variants into protein 

structure. We then use the consequence predictions from VEP to eliminate matches where the 

transcript associated with the variant consequence does not match the transcript aligned to the 

protein sequence. Finally, we verify that the affected protein position predicted by VEP matches 

the reference position in the matched protein structure. These final two steps use information 

derived from different sources to eliminate erroneous mappings. Upon completion of the 

intersection and validation, a direct link is created between each genetic variant and each amino 

acid in every protein structure affected by that variant. The current status of genetic datasets in 

the PDBMap database is provided in Table 1. 

 

 Total  Mapped to PDB Mapped to ModBase 

ExAC Synonymous 1,549,333 178,626 (12%) 955,173 (62%) 

ExAC Missense 2,971,797 300,604 (10%) 1,809,201 (61%) 

ClinVar Missense 56,162 13,997 (25%) 38,894 (69%) 

COSMIC Missense 1,366,383 158,985 (12%) 881,446 (65%) 

Table 1: Number of distinct synonymous or missense variants within each genetic dataset. 
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High-throughput analysis of genetic variation in protein structure 

The alignment of a large whole-exome sequencing dataset with all protein structures in the 

Protein Data Bank and/or ModBase is a complicated and time-consuming task. Running the 

described pipeline for a dataset like ExAC, parallelized across chromosomes, requires just over a 

day of processing time. However once the process is complete and the results uploaded to the 

PDBMap database, the coordinates of any variant or set of variants in any or all affected protein 

structures can be rapidly determined with a simple MySQL query. For example, querying the 

structural coordinates of all ExAC synonymous and missense variants in all solved protein 

structures requires just over one second of processing (plus download time).  

 

Conclusion 

 

This resource enables high-throughput, large-scale analysis of protein-coding variation within 

protein structures. In the following chapters, we present several spatial analyses comparing 

different classifications of protein-coding, single-nucleotide variation. All of the work included 

in those chapters is derived from and dependent upon the structure-to-genome mapping provided 

by the PDBMap database. 
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CHAPTER III 

 

QUANTIFYING SPATIAL PATTERNS OF GERMLINE PROTEIN-CODING  

VARIATION IN PROTEIN STRUCTURES 

 

Introduction 

 

The foundational work presented in Chapter II facilitates efficient, large-scale analysis of 

missense variation in its protein structural context. As described in Chapter I, several approaches 

have been used in the analysis of somatic mutations in cancer. These analyses have largely been 

focused towards specific hypotheses and the re-identification of canonical examples from cancer. 

In this chapter, we present a general, statistical framework – adapted from Ripley’s K44–46 – for 

defining and evaluating the spatial distribution of missense variants (and other residue-level 

annotations) in protein structures. We focus the application of this methodology towards the 

analysis of evolutionary conservation and germline variation. We first evaluate the fundamental 

hypothesis that missense variants are spatially constrained and that this constraint is not observed 

in synonymous variation. We next determine if the clustering of evolutionarily conserved amino 

acids is a general phenomenon. Finally, we evaluate the spatial distributions of disease-causing 

missense variation, contrast it with neutral variation, and evaluate the predictive performance of 

these spatial relationships. 
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Methods 

 

Protein structure selection, variant mapping, and annotation 

Three single-nucleotide variant (SNV) datasets were included in our comprehensive analyses: 

Exome Aggregation Consortium35 (ExAC) r0.3, and ClinVar (01-07-2016). Synonymous SNVs 

in ExAC were included for comparison with ExAC missense SNVs. All other datasets were 

reduced to missense SNVs. Variant consequences and annotations were determined using v82 of 

the Ensembl Variant Effect Predictor.42 Additional dominant and recessive HGMD36 missense 

variants from Turner et al.23 were used to investigate gain- and loss-of-function spatial patterns. 

 Ensembl47 transcripts were matched with UniProt48 accession and Protein Data Bank37 

(PDB) IDs using ID-mapping tables provided by UniProt. Reference protein sequences were 

aligned with observed sequences in the PDB using SIFTS.41 Any discrepancies were corrected 

by pairwise alignment with Biopython.49 Proteins were represented by the subset of minimally 

overlapping PDB structures described by Kamburov et al.26. For each protein, the algorithm 

selects the PDB chain with the greatest coverage of the protein sequence. This process continues 

iteratively, excluding PDB chains with greater than 10% sequence overlap with the set of already 

selected chains, until the complete sequence is structurally represented or all available structures 

have been processed. Evolutionary conservation was calculated by Jensen-Shannon divergence50 

using multiple sequence alignments from HSSP51.  

 For each missense variant in ExAC, we identified the Euclidean nearest neighbor using 

genomic position and protein structural coordinates. Genomic nearest neighbors were restricted 

to other missense variants within the same gene. Structural distances were measured from the 
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centroid of each amino acid side-chain. Missense variants without a neighbor in either the gene 

or protein structure were excluded from the comparison. 

 

Ripley’s K for quantifying spatial distributions in protein structure 

Ripley’s K is a test for spatial heterogeneity that measures the deviation of a set of positions from 

complete spatial randomness (CSR), capturing both clustering and dispersion. Because missense 

variants are constrained to the positions of amino acids in a protein structure, the assumption of 

CSR for randomly distributed variants is inappropriate. In a constrained space, permutation 

testing provides an empirical null distribution for comparison with observed patterns. At each 

distance threshold, the number of neighbors around each variant is compared with the empirical 

null expectation. When the number of neighbors exceeds expectation, the variants are clustered; 

when the number of neighbors is lower than expectation, the variants are dispersed. Because K is 

measured across a range of distances, it is possible to identify clustering or dispersion at any 

scale. Our estimator for K is defined as, 

𝐾� =  
∑  ∑  𝐼(𝐷𝑖𝑖 < 𝑡)𝑁

𝑗!=𝑖
𝑁
𝑖

𝑁(𝑁 − 1)
 

where N is the number of variants, Dij is the Euclidean distance between variants i and j in the 

protein structure, and I is an indicator function that evaluates to 1 when Dij is less than the 

distance threshold t and 0 otherwise. N(N-1) is applied as a normalization factor such that K is 

the proportion of variant pairs within distance t. This normalization allows for comparison 

between proteins with different variant counts. Variant positions are defined as the centroid of 

the reference amino acid. Permutations are generated by randomly sampling N amino acids from 

the protein structure over 100,000 iterations and recomputing K. Two-tailed p-values are derived 

from the percentile rank of the observed K value relative to the distribution of permuted K 
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values. Z-scores are also calculated to indicate the direction (clustering or dispersion) and 

magnitude of the effect. An illustrative description of the K analysis is shown in Figure 1. 

 

 

Figure 3: Quantifying the spatial distribution of missense variants in protein structure with Ripley’s K. (A) Missense 

variants are mapped into solved structures from the Protein Data Bank. (B) Using a range of distance thresholds, (C) the 

proportion of variants within that radius is measured. (D) An empirical null distribution is determined through random 

shuffling of variant positions (un-weighted univariate) or variant labels (bivariate and weighted univariate) and used to 

calculate permutation p-values. 

 

 Ripley’s K can also evaluate real-valued data to determine if the values are spatially 

correlated, conditioned on the variant positions. The weighted K is define as, 
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𝐾�𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡 =  
∑  ∑  𝐼�𝐷𝑖𝑖 < 𝑡�𝑤𝑗𝑁

𝑗!=𝑖
𝑁
𝑖

∑  ∑  𝑤𝑗𝑁
𝑗!=𝑖

𝑁
𝑖

 

where wj is the weight applied to variant j. A variant cannot be counted as its own neighbor, so 

the weight of wi is not included in the function. The implication of this restriction is that a single, 

high-valued variant cannot form its own cluster. 

 The weighed K analyzes the process by which weights, not positions, are distributed. 

Thus, the significance of the weighted K is calculated by permuting weights over fixed positions 

and recomputing K. This approach assesses whether the assigned values are significantly 

clustered or dispersed beyond what is explained by variant position. When N is small, our ability 

to assess the significance of the weighted K is constrained by the number of unique permutations 

of the sample weights. 

 Ripley’s K is designed to quantify spatial distributions across a range of distances, 

capturing clustering or dispersion at any scale. To evaluate spatial patterns only at biologically 

relevant distance scales, we define the distance range from the minimum observed distance 

between variants to half the maximum observed distance between variants. Proteins for which 

the minimum distance was greater than half the maximum distance were extended to the 

maximum distance. 

 While the ability to investigate spatial patterns at multiple distances is valuable, a protein-

level summary statistic is required to compare between proteins and identify those containing 

significant spatial patterns. Each protein is summarized by the difference between observed K 

values and the median empirical null K values. The area between the curves is defined as the 

difference of their integrals, as estimated by Simpson’s rule. This summarization captures the 

direction (clustering or dispersion) and magnitude (absolute z-score) of the multi-distance signal 

observed for that protein. The distance threshold yielding the most significant signal is also 
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retained to approximate the scale at which the spatial signal is strongest. Finally, a protein 

summary z-score and p-value is determined by calculating the summary K for each permutation, 

such that positive z-scores indicate clustering, negative z-scores indicate dispersion, and z-scores 

near zero indicate spatial randomness (e.g. a lack of spatial constraint). To control for a False 

Discovery Rate of 10%, we calculate q-values from the protein-summary p-value distribution in 

each analysis. 

 

Bivariate K for spatial comparisons between variant datasets 

The univariate K is useful for quantifying biases in the spatial distribution of a single dataset, but 

many biological questions involve comparisons between variants of different types (e.g. neutral 

and deleterious). These comparisons are best made with bivariate K functions. The simplest form 

of the bivariate test examines whether one set of positions is more or less clustered than another 

using the difference in K between the two datasets. 

𝐷� =  𝐾�𝑁 −  𝐾�𝑀 

Similar to the weighted univariate K, the bivariate D45 evaluates the process by which dataset 

labels are assigned. It follows that the significance of the bivariate D is determined through 

random permutation of the class labels over fixed positions.  

 

Relative proximity to pathogenic variation as a predictor of pathogenicity 

To measure the proximity of an unlabeled variant to a set of known variants, the distance 

between each variant is first transformed by the NeighborWeight function52, 

NeighborWeight(x, y, lower bound, upper bound) = 

⎩
⎪
⎨

⎪
⎧

1, 𝑖𝑖 𝑑𝑥,𝑦 ≤ 𝑙𝑙𝑙𝑙𝑙 𝑏𝑏𝑏𝑏𝑏
1
2�cos (

𝑑𝑥,𝑦 − 𝑙𝑙𝑙𝑙𝑙 𝑏𝑏𝑏𝑏𝑏
𝑢𝑢𝑢𝑒𝑒 𝑏𝑏𝑏𝑏𝑏 − 𝑙𝑙𝑙𝑙𝑙 𝑏𝑏𝑏𝑏𝑏 × 𝜋)+1�,

𝑖𝑖 𝑙𝑙𝑙𝑙𝑙 𝑏𝑏𝑏𝑏𝑏 <  𝑑𝑥,𝑦 < 𝑢𝑢𝑢𝑢𝑢 𝑏𝑏𝑏𝑏𝑏
0, 𝑖𝑖 𝑑𝑥,𝑦 ≥ 𝑢𝑢𝑢𝑢𝑢 𝑏𝑏𝑏𝑏𝑏
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where 𝑑𝑥,𝑦 is the distance between variants x and y. A lower bound of 8Å provides full weight to 

amino acids for which direct interaction is plausible. A lower bound of 24Å centers the cosine 

curve on 16Å, providing larger weights to variants with the potential for indirect interaction and 

smaller weights to variants with some likelihood of affecting similar structural regions or 

domains. Using this transformation, we define the average proximity of an unlabeled variant x to 

a set of variants Y as, 

𝑃𝑥,𝑌 = �
𝑁𝑁𝑁𝑁ℎ𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑡(𝑥,𝑦, 8,24)

|𝑌|

𝑌

𝑦

 

The pathogenic proximity score for each variant is then defined as the relative proximity to 

pathogenic and putatively neutral variation, 

∆𝑃𝑥 =  𝑃𝑥,𝑝𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑃𝑥,𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

such that values of ∆𝑃𝑥 greater than 0 indicate that variant x is more nearby pathogenic variants 

than neutral variants. Using leave-one-out cross validation, we rank variants by their relative 

proximity to ClinVar pathogenic and ExAC missense variants and calculate receiver-operator-

characteristic (ROC) and precision-recall (PR) curves. We evaluate predictive performance using 

area under ROC and PR curves (AUC). These results are then compared using Analysis of 

Variance (ANOVA) with pathogenicity predictions from PolyPhen2, SIFT, and evolutionary 

conservation. 
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Results 

 

Most SNVs have a different nearest neighbor in sequence and structure 

Nearly all analyses of protein-coding variation are based on the position of variants within the 

linear nucleotide or protein sequence. More recent analyses have begun grouping variants by 

gene53 or predicted functional domains54. These partitions are problematic for spatial analyses 

because protein folding dramatically alters the spatial distribution of amino acids, bringing 

linearly distant residues into close structural proximity. To assess the extent of this phenomenon, 

we examined each ExAC missense variant and identified its nearest neighboring missense 

variant by genomic and structural coordinates. We found that nearest neighbors differed between 

sequence and structure for 60% of structure-mapped missense variants. While this metric doesn’t 

quantify the full impact of protein folding on the spatial landscape of missense variation, it 

highlights the potential impact of incorporating structural information into spatially informed 

aggregate analyses of protein-coding variation like collapsing tests, burden tests, and SKAT55, 

which may not otherwise be capturing the most relevant functional groups of missense variants. 

 

Synonymous and missense variants have different spatial distributions 

An important assumption in our spatial analyses is that patterns of missense variation are 

influenced by the functional and structural impact of amino acid substitution. However, the 

spatial patterns we observe can also arise from other biological and technical effects, like 

inconsistencies in mutation rate, sequencing coverage, and similar effects. To test this 

assumption and evaluate the extent to which these effects influence the observed spatial 

distributions, we compared the spatial distributions of synonymous variants and missense 
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variants from ExAC. Synonymous variants do not alter protein sequence, so their distribution in 

protein structure should be under no spatial constraint. Thus, all deviations from spatial 

randomness can be attributed to the genomic inconsistencies that affect both synonymous and 

missense variation. By evaluating the spatial distribution of missense variants in protein structure 

in reference to the spatial distribution of synonymous variants, we can identify the patterns of 

spatial constraint attributable only to amino acid substitution. For each protein, we calculated the 

univariate K for synonymous and nonsynonymous variants. As expected, we find that 

synonymous variants show little divergence from random spatial distributions (Figure 2), with 

only one protein reaching statistical significance (MYOM1, FDR<0.1). Conversely, missense 

variants display a general trend towards spatial dispersion and were significantly non-randomly 

distributed in 51 proteins; 37 with significant dispersion and 14 with significant clustering (Table 

1). There was a highly significant difference between the synonymous (Nsynonymous=4,498) and 

missense (Nmissense=4,487) spatial distributions (p=2.71x10-120 Mann Whitney U), supporting the 

hypothesis that missense variants are under increased spatial constraint relative to synonymous 

variants. 

 Despite the difference in the univariate trends, a bivariate analysis directly comparing 

synonymous and missense variants in 4,173 proteins identified only two in which missense 

variants were significantly more dispersed than synonymous. These results suggest that while 

globally, missense variants are consistently more dispersed than synonymous variants, within 

any given protein structure the sample size is likely too small and the difference too subtle to 

reach significance. 
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Figure 4: The distribution of protein-summary z-scores describes the general spatial patterns of a variant dataset. 

Synonymous variants from ExAC are generally randomly distributed, as indicated by a near-normal distribution of z-

scores with median near 0. In contrast, missense variants from ExAC trend towards spatial dispersion, with significant 

spatial patterns identified for 51 proteins. 

 

Spatial dispersion identifies a tendency for protein surface residues 

In an unconstrained space, dispersion manifests as an even spacing between observations (Figure 

S1). Because protein structure is a constrained space, we hypothesized that dispersion would be 

greatest for amino acids at the protein surface. This is supported by a previously observed bias 

for population-derived missense variants to preferentially alter surface residues.56 We performed 

two analyses to investigate whether signals of spatial dispersion identified by the univariate K 

were correlated with surface exposure. 

 We first performed a weighted, univariate K analysis of relative solvent accessibility 

(RSA). If collections of surface-exposed residues yield high dispersion values, then RSA should 

yield highly significant dispersion across all structures. Indeed, we observed significant spatial 

dispersion in 4,114 of 4,495 proteins (92%, FDR<10%) (Figure 3). 
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 We next evaluated whether missense variants where more solvent accessible than all 

residues, which would indicate a bias for residues at the protein surface. We found that the RSA 

of all missense variants (Nall,missense=209,841) was significantly greater than the RSA of all 

residues (Nall,residue=972,121) (p≈0 Mann Whitney U) and that the RSA of missense variants in 

significantly dispersed missense variants (Ndispersed,missense=2,253) was significantly greater than 

the RSA of all missense variants (p= 5.0x10-54 Mann Whitney U). Interestingly, we also found 

that significantly clustered missense variants (Nclustered,missense=428) were no more or less solvent 

accessible than all residues (Nclustered,residue=2,902) (p=0.39 Mann Whitney U), suggesting that 

clusters of missense variants affect both the protein core and surface. 

 

 

Figure 5: Distribution of protein z-scores for the weighted univariate analysis of relative solvent accessibility (RSA). The 

significant dispersion of RSA in 92% of proteins demonstrates that spatial dispersion identifies a bias for surface residues. 

 

Evolutionary conservation is spatially constrained and generally clustered 

As we currently lack a comprehensive understanding of the molecular function of all proteins in 

our study, evolutionary conservation serves as the most uniform measure of functional 

importance. Previous studies have demonstrated on a small scale that conserved residues form 

spatial clusters in protein structure5 and that minimizing the distance between conserved residues 

can improve structure prediction7. Considering the conservation of sequence-adjacent residues 
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has also been shown to improve the identification of functionally important protein residues50. 

To evaluate the tendency for evolutionarily conserved residues to cluster in protein structure, we 

performed a weighted, univariate K analysis of evolutionary conservation scores. We identified 

significant clustering in 3,752 of 4,286 proteins (88%, FDR<0.1) and significant dispersion in 

101 proteins (2%). (Figure 4). This finding confirms that clustering of evolutionarily conserved 

residues is a general phenomenon. Furthermore, it forms the basis for our analysis of pathogenic 

variation in protein structure, as it demonstrates that protein function – as measured by 

evolutionary conservation – is spatially constrained and detectable with our methodology. By 

directly analyzing pathogenic variants, we can determine which of these regions are most 

relevant to particular diseases and identify regions poorly suited to evolutionary analysis, like 

gain-of-function hotspots. 

 

 

Figure 6: Distribution of protein z-scores for the weighted univariate analysis of evolutionary conservation as measured 

by Jenson-Shannon divergence. Evolutionary conservation is significantly clustered in 88% of protein structures. 

 

Pathogenic missense variants are spatially clustered within protein structures 

Pathogenic missense variants derive their pathogenicity from the disruption of protein structure 

and function. We have demonstrated that functional residues commonly form clusters in protein 

structure, thus we expect pathogenic variants to form clusters at functional sites relevant to 
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specific diseases. We analyzed 449 protein structures containing three or more pathogenic 

variants from ClinVar and identified a global trend towards clustering (Figure 5), with significant 

clustering of pathogenic variants in 125 proteins (22%) and significant dispersion in one protein. 

To determine if these clusters were characteristic of pathogenic variation – and not spatial 

constraints on missense variation – we performed a bivariate analysis of pathogenic variants 

relative to putatively neutral missense variants from ExAC in 440 proteins containing three or 

more variants from each set. We identified 112 proteins (25%) in which ClinVar pathogenic 

variants were significantly more clustered than ExAC missense variants, 98 of which were also 

significant in the univariate analysis (Figure 6). This union represents proteins in which the 

clustering of ClinVar pathogenic variants is statistically significant and independent from the 

general patterns observed for missense variation, suggesting that pathogenic variants have focal 

effects within a protein structure. 

 

 

Figure 7: Distribution of z-scores for the un-weighted univariate analysis of ClinVar pathogenic missense variants. 

Pathogenic variants demonstrate a strong trend towards spatial clustering, with significant clustering identified in 126 

proteins (28%). 
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Figure 8: Comparison of the univariate and bivariate p-values for ClinVar pathogenic variation. The dashed lines mark the 

p-value threshold from each analysis where q<0.1. Proteins plotted in orange were significantly clustered in only one 

analysis. Proteins plotted in red had significant clustering of ClinVar pathogenic variants that exceeded what was 

observed for ExAC missense variants. 
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Dominant missense variants form smaller clusters than recessive variants 

Having demonstrated pathogenic variants trend towards spatial clustering, we next evaluated 

whether the mode of inheritance for pathogenic variants influences their spatial constraint. 

Missense variants causing protein loss-of-function (LoF) may disrupt numerous critical elements 

of a protein structure, but the opportunity for gain-of-function (GoF) is likely limited to a small 

subset of regions with functional potential. Previous work by Turner et al.23 investigated these 

spatial patterns in protein sequence using autosomal dominant (AD, typically gain-of-function) 

and autosomal recessive (AR, typically loss-of-function) missense variants from the Human 

Gene Mutation Database36 (HGMD). Turner et al. demonstrated a significant global trend for 

dominant variants to be more clustered than recessive, which in turn were more clustered than 

neutral variants from the 1000 Genomes Project, with dominant variants in 9 proteins and 

recessive variants in 5 proteins significantly more clustered than neutral variants (FDR<5%). 

 The functional impact of gain- and loss-of-function missense variants is derived from 

their effect on protein structure. Thus, the spatial distributions derived from these effects are 

perhaps more accurately evaluated within that context. Using the HGMD dataset curated by 

Turner et al., we performed two bivariate analyses evaluating dominant and recessive missense 

variants relative to ExAC missense variants (Figure 7). We identified 27 (of 69, 39%) and 16 (of 

47, 34%) structures in which dominant and recessive variants (respectively) were significantly 

more clustered than variants from ExAC (FDR<10%). Additionally, we found that univariate 

scores for both dominant and recessive variants were significantly higher (more clustered) than 

ExAC variants (AD: p=3.53x10-30, AR: p=6.97x10-20 Mann Whitney U), but found no significant 

difference between dominant and recessive variants (p=0.274). However, within proteins with 

significantly clustered variation, dominant variants (NAD=35) formed significantly smaller 



 37 

clusters (median peak significance: 10Å) than recessive variants (NAR=16) (median peak 

significance: 13.5Å) (p=0.014 Mann Whitney U). These findings support previous conclusions 

that both gain- and loss-of-function variants are more clustered than neutral variants. The smaller 

clusters formed by dominant variants additionally support the hypothesis that gain-of-function 

mutations are localized to specific sites with functional potential, while loss-of-function 

mutations more generally disrupt regions of functional importance. 

 

Figure 9: Autosomal dominant and recessive missense variants from the Human Gene Mutation Database (HGMD) are 

both spatially more clustered than ExAC missense variants in protein structure, consistent with ClinVar pathogenic 

variation. No significant difference in the strength of clustering was identified between the two groups, but dominant 

mutations did on average form smaller clusters (AD=11Å, AR=14Å). 

 

Proximity to clustered pathogenic variants is predictive of pathogenicity 

The identification of pathogenic variant clusters in protein structures may lead to better 

understandings of disease etiology and improvements in pathogenicity prediction for variants of 

unknown significance. To estimate the predictive potential of spatial information, we defined a 

simple metric that ranks amino acids by their relative proximity to pathogenic and neutral 

variation and measures predictive performance using leave-one-out cross validation (Figure 8). 
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Applying this approach to all 442 proteins from the bivariate analysis of ClinVar pathogenic and 

ExAC missense variants did not accurately classify pathogenic and neutral variants (median 

ROC AUC=0.55), but performance on the subset of 98 proteins with significant univariate and 

bivariate clustering of pathogenic variants was significantly improved (median ROC AUC=0.73, 

p=2.46x10-17 Mann Whitney U) and comparable to SIFT, PolyPhen2, and evolutionary 

conservation (ANOVA p=0.128) (Figure 9). To determine if protein fold or conformation 

influenced the performance of spatial proximity, we stratified our analysis by CATH domain. 

We observed no significant difference in performance between protein structures containing the 

various CATH domains (Figure 10). These results suggest that proximity to pathogenic clusters, 

not individual pathogenic variants, is predictive of variant pathogenicity. 
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Figure 10: The average proximity of each residue to missense variants in the (A) neutral and (B) pathogenic datasets is 

measured using the NeighborWeight function. Residues are then scored by (C) the difference in their pathogenic and 

neutral proximity scores. Prediction performance is then quantified using the area under the (D) receiver-operating 

characteristic curve (ROC AUC). 
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Figure 11: Receiver-operating characteristic (ROC) curves for spatial prediction performance. (A) Predictive performance 

over all proteins is poor, but (B) for proteins in which ClinVar pathogenic variants are significantly more clustered than 

ExAC missense variants, spatial prediction performance is comparable (ANOVA p=0.46) to general pathogenicity 

prediction algorithms. 
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Figure 12: Spatial prediction performance stratified by CATH domain. There were no significant differences in prediction 

performance between CATH domains (ANOVA p=0.28). 
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CHAPTER IV 

 

DISCUSSION 

 

The near-random spatial distributions of synonymous variation, in contrast with the trend 

towards spatial dispersion observed for missense variants, suggests that non-random spatial 

patterns of missense variation are derived from the functional effects (or lack thereof) of amino 

acid substitutions. Pathogenic variants are often significantly clustered in protein structure and 

are typically more clustered than neutral missense variants, with dominant variants forming 

smaller, more localized clusters than recessive variants. In proteins where pathogenic variants are 

significantly clustered and significantly more clustered than neutral variants, simple spatial 

predictors perform as well as general predictors of variant pathogenicity. 

 The spatial clustering of evolutionarily conserved amino acids in protein structures has 

been shown previously in only a small number of proteins. Our analysis evaluated all proteins 

with solved structures and confirmed the trend on a large scale. This property of conserved 

residues supports the hypothesis that deleterious variants, which are presumed to disrupt or 

enhance protein function, will also form spatial clusters.  

 Within most proteins, the difference between the spatial distributions of synonymous and 

missense variants distributions is subtle. However, comprehensive analysis of all proteins with 

solved structures reveals a significant shift towards missense variant dispersion, while 

synonymous variants vary little from spatial randomness. This shift towards dispersion and the 

significantly non-random spatial distributions of missense variants in 51 proteins suggest that the 

neutral and deleterious effects of amino acid substitutions influence the spatial constraint we 



 43 

observe for missense variation. It follows that we can infer from these distributions which 

regions of a protein are variant-intolerant. For proteins with significantly dispersed missense 

variation, we infer that variation in the core of the protein, likely affecting protein stability, is not 

well tolerated. Similarly, proteins with significant clustering of missense variants are variant-

intolerant in general, but contain isolated regions where mutations can be introduced without 

deleterious effects. 

 While conservation analysis provides a hypothesis about which regions of a protein are 

evolutionarily important and vulnerable to disruption, clusters of pathogenic variants identify 

regions with relevance to human disease. Pathogenic gain-of-function variant clustering may also 

identify regions with functional potential not captured by evolutionary analysis. We find that 

pathogenic missense variants were significantly clustered in 28% of the analyzed proteins. 

Comparison with the neutral missense background further improves our ability to identify 

pathogenic clustering that exceeds neutral expectation, while simultaneously filtering proteins in 

which the observed pathogenic clustering is attributable to general patterns of missense variation. 

In total, 99 proteins were found to contain significant clustering of pathogenic missense variants 

that significantly exceeded what was observed for neutral missense variants. 

 Separately analyzing dominant and recessive variants demonstrates that this phenomenon 

is not limited to gain- or loss-of-function. The tendency for dominant variants to form smaller 

clusters supports previous findings and suggests that gain-of-function potential is limited to a 

small number of residues, while loss-of-function variants affect larger regions of existing 

functional importance. These differences may assist in the classification of variants of unknown 

significance by setting an expectation for the distance between disease-causing variants in a 
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protein. Candidate variants within a plausible distance of a pathogenic cluster may be prioritized 

over more distant variants. 

 In the presence of pathogenic clustering, spatial proximity has the potential to enhance 

variant pathogenicity prediction. Clusters of pathogenic variation indicate regions of a protein 

structure that are functional, intolerant to variation, and contributory to disease. When attempting 

to classify variants of unknown significance, variants in close proximity to such a cluster are 

more likely to perturb functional and thus have a higher likelihood of causing a similar, 

deleterious effect. The limitation of this approach to variants with significantly clustered 

pathogenic variation may be due to small samples of known, pathogenic variants, but is likely 

exacerbated by a lack of specificity when relying exclusively on spatial information. The 

inclusion of evolutionary and biochemical features is essential to properly assessing the potential 

effect of an amino acid substitution. 

 To comprehensively investigate spatial patterns of genetic variation, we have 

summarized the multi-distance results for each protein by calculating the area between expected 

and observed K values. This approach captures robust signals identifiable over many distances. 

Other summarization approaches may capture different spatial patterns or reveal signals that are 

significant only at very specific distance scales. Ultimately, the utility of our multi-distance 

approach is the fine-grained analysis of individual protein structures, such that the details of 

these patterns are apparent. For an individual protein-of-interest, we recommend a review of the 

multi-distance results to identify the patterns most relevant to a specific hypothesis. Further, we 

have analyzed only a representative subset of proteins with solved structures in the Protein Data 

Bank, but selecting a structure in a relevant conformation is critical for the meaningful 

interpretation of spatial patterns within that protein. 
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 We have demonstrated in this study that evolutionarily conserved residues are almost 

universally clustered in protein structures, that missense variants are generally dispersed, that 

pathogenic variants are generally (and often significantly) clustered, and that differences between 

these distributions have the potential to predict variant pathogenicity. The methods we have 

proposed identify patterns in spatial data that are analogous to the input parameters required by 

many density-based and hierarchical clustering algorithms. Using data-driven parameterization 

of these algorithms, we can accurately define spatial boundaries for evolutionarily conserved, 

disease-associated, or variant-intolerant regions of protein structures. We have also started 

developing novel variant-aggregation and association methods that incorporate the spatial 

relationships identified in this study. In combination with the wealth of phenotypic data in 

electronic health records, which are becoming increasingly accessible for research, these 

approaches have the potential to associate specific protein regions directly with clinical 

outcomes. This thesis makes a significant advance in our understanding the spatial distribution of 

missense variants in protein structures that will ultimately improve our understanding of the link 

between protein structure, function, and human disease. 
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