
    

Multidisciplinary Analysis and Optimization under Uncertainty 

By     

Chen Liang 

Dissertation 

Submitted to the Faculty of the  

Graduate School of Vanderbilt University 

in partial fulfillment of the requirements 

for the degree of 

DOCTOR OF PHILOSOPHY 

in 

Civil Engineering 

May, 2016 

Nashville, Tennessee 

Approved:     Date:     

________________________________________________________________     

Professor Sankaran Mahadevan   
___________________

     

________________________________________________________________     

Professor P. K. Basu    
___________________

     

________________________________________________________________     

Professor Mark N. Ellingham    
___________________

     

________________________________________________________________     

Professor Mark P. McDonald 
___________________

     

________________________________________________________________     

Professor Dimitri Mavris 
___________________

     

________________________________________________________________     

Professor Roger Cooke  
___________________

     



I 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2016 by Chen Liang 

All Rights Reserved 

 

 

 

  



II 

 

DEDICATION 

 

 

 

 

 

To my father Dehong, mother Shiping and cousin Yingli 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



III 

 

ACKNOWLEDGEMENT 

 

 

I would like to express my utmost gratitude to my adviser Professor Sankaran Mahadevan, 

for his knowledge, insight and work ethic that have been a great value to my dissertation and 

graduate life. He showed me how to think, work, write and talk professionally, which is a 

tremendous inspiration and invaluable guidance for my future career. I am thankful for his 

indescribable patience and enormous support, and am looking forward to continuing our 

relationship during my professional career. 

I would like to convey my sincere appreciation to my committee members, Professors 

Prodyot Basu, Mark Ellingham, Mark McDonald, Dimitri Mavris and Roger Cooke. Their knowledge, 

lectures, insights and feedback have motivated me and offered precious contributions to this 

dissertation. I would also like to express my gratitude to Dr. Anca Hanea from University of 

Melbourne and Dan Ababei at LightTwist Software for the gracious time and effort they spent 

passing on their wealth of knowledge about copulas. 

I am grateful to have the opportunities to work with several brilliant students and 

postdoctoral fellows at Vanderbilt. In particular, I thank Dr. Sirisha Rangvajhala for mentoring me 

and offering me her profound knowledge in optimization and aeroelasticity. I thank Dr. Shankar 

Sankararaman for his outstanding mentorship in multidisciplinary analysis and uncertainty 

quantification. I thank Dr. You Ling for his generous academic help and personal friendship. I also 

thank Dr. Vadiraj Hombal for teaching his programming expertise.  

This dissertation could not have been accomplished without the unconditional love and 

support from my father, my mother and all family members. I am also thankful for the friendships I 

made with Ghina Nakad, Josh Mullins, Erin Decarlo, Chenzhao Li, Lindsay Jenkins, Tong Hui, 

Bethany Burkhardt, Lyndsey Fyffe, Hao Yan, Long Wang, Muqun Li, Johnny Pryor, Alyson Dickson, 



IV 

 

Geoff Macdonald and many others at Vanderbilt. Finally, I would like to offer my special 

appreciation to Greg and Katherine Letterman and their family, for their unselfish love and help 

throughout years, which makes Nashville my second home. 

This study was supported by funds from several sources: (1) NASA Langley Research Center 

under a Hypersonics NRA project (Cooperative Agreement No. NNX08AF56A1, Technical Monitor: 

Lawrence Green), (2) Sandia National Laboratories, and (3) Department of Civil and Environmental 

Engineering at Vanderbilt University. The support is gratefully acknowledged. The licenses of the 

software UNINET by LightTwist Inc. and VisualDOC by Vanderplaats R&D Inc. were graciously 

offered by the product owners. The numerical studies were conducted using the computational 

resources of the Advanced Computing Center for Research and Education (ACCRE) at Vanderbilt 

University 

 

 

 

 

 

 

 

 

 



V 

 

TABLE OF CONTENTS 

 

 

DEDICATION ................................................................................................................................................................................................ II 

ACKNOWLEDGEMENT .......................................................................................................................................................................... III 

LIST OF TABLES ...................................................................................................................................................................................... VII 

LIST OF FIGURES ................................................................................................................................................................................... VIII 

CHAPTER 1 ......................................................................................................................................................................................................... 1 

INTRODUCTION.......................................................................................................................................................................................... 1 

1.1. OVERVIEW .................................................................................................................................................................................... 1 

1.2. RESEARCH OBJECTIVES ......................................................................................................................................................... 6 

1.3. ORGANIZATION OF THE DISSERTATION ....................................................................................................................... 7 

CHAPTER 2 ......................................................................................................................................................................................................... 9 

MDA UNDER ALEATORY AND EPISTEMIC UNCERTAINTY .................................................................................................... 9 

2.1. INTRODUCTION ......................................................................................................................................................................... 9 

2.2. LIKELIHOOD-BASED APPROACH FOR MULTIDISCIPLINARY ANALYSIS (LAMDA) .................................. 13 

2.3. INCLUSION OF DATA UNCERTAINTY IN MDA ........................................................................................................... 17 

2.4. INCLUSION OF MODEL UNCERTAINTY IN MDA........................................................................................................ 20 

2.4.1. MODEL ERROR QUANTIFICATION ....................................................................................................................... 20 

2.4.2. AUXILIARY VARIABLE METHOD ........................................................................................................................... 23 

2.4.3. REPRESENTATION OF MODEL UNCERTAINTY .............................................................................................. 24 

2.5. GLOBAL SENSITIVITY ANALYSIS IN FEEDBACK-COUPLED MDA ..................................................................... 26 

2.6. NUMERICAL EXAMPLES ....................................................................................................................................................... 29 

2.6.1. MATHEMATICAL MDA PROBLEM ......................................................................................................................... 30 

2.6.2. ELECTRONIC PACKAGING EXAMPLE .................................................................................................................. 37 

2.7. SUMMARY ................................................................................................................................................................................... 47 

CHAPTER 3 ....................................................................................................................................................................................................... 49 

STOCHASTIC MDA WITH HIGH-DIMENSIONAL COUPLING ................................................................................................. 49 

3.1. INTRODUCTION ....................................................................................................................................................................... 49 

3.2. CHALLENGES POSED BY HIGH-DIMENSIONAL COUPLING .................................................................................. 52 

3.3. BAYESIAN NETWORK AND COPULA-BASED SAMPLING ...................................................................................... 54 

3.3.1. BAYESIAN NETWORK FOR COUPLING VARIABLES DISTRIBUTION..................................................... 55 

3.3.2. DIMENSION REDUCTION OF THE BAYESIAN NETWORK .......................................................................... 57 

3.4. NUMERICAL EXAMPLES ....................................................................................................................................................... 64 

3.4.1 MATHEMATICAL MDA PROBLEM ......................................................................................................................... 64 



VI 

 

3.4.2 MDA FOR AIRCRAFT WING ...................................................................................................................................... 70 

3.5. SUMMARY ................................................................................................................................................................................... 80 

CHAPTER 4 ....................................................................................................................................................................................................... 82 

MULTI-OBJECTIVE OPTIMIZATION UNDER UNCERTAINTY ............................................................................................... 82 

4.1. INTRODUCTION ....................................................................................................................................................................... 82 

4.2. OPTIMIZATION UNDER UNCERTAINTY ....................................................................................................................... 87 

4.2.1. SINGLE OBJECTIVE OPTIMIZATION ..................................................................................................................... 87 

4.2.2. MULTI-OBJECTIVE OPTIMIZATION ..................................................................................................................... 89 

4.3. BAYESIAN NETWORK AND COPULA-BASED SAMPLING ...................................................................................... 91 

4.3.1 UNCERTAINTY PROPAGATION USING VINE COPULA-BASED SAMPLING ......................................... 93 

4.3.2 TRAINING POINT SELECTION FOR PARETO SURFACE CONSTRUCTION ........................................... 93 

4.4. NUMERICAL EXAMPLE ......................................................................................................................................................... 96 

4.5. SUMMARY ................................................................................................................................................................................ 110 

CHAPTER 5 .................................................................................................................................................................................................... 112 

MULTIDISCIPLINARY OPTIMIZATION UNDER UNCERTAINTY ...................................................................................... 112 

5.1. INTRODUCTION .................................................................................................................................................................... 112 

5.2. MULTIDISCIPLINARY OPTIMIZATION UNDER UNCERTAINTY ...................................................................... 116 

5.3. BNC-MDO WITH LOW-DIMENSIONAL COUPLING ................................................................................................ 118 

5.4. BNC-MDO WITH HIGH-DIMENSIONAL COUPLING ............................................................................................... 121 

5.5. NUMERICAL EXAMPLES .................................................................................................................................................... 124 

5.5.1 MATHEMATICAL EXAMPLE .................................................................................................................................. 125 

5.5.2 ELECTRONIC PACKAGING DESIGN .................................................................................................................... 131 

5.5.3 AERO-ELASTIC WING DESIGN ............................................................................................................................. 137 

5.6. SUMMARY ................................................................................................................................................................................ 141 

CHAPTER 6 .................................................................................................................................................................................................... 142 

CONCLUSION .......................................................................................................................................................................................... 142 

6.1. ACCOMPLISHMENTS ........................................................................................................................................................... 142 

6.1.1 MDA UNDER EPISTEMIC UNCERTAINTY ....................................................................................................... 142 

6.1.2 MDA WITH HIGH-DIMENSIONAL FEEDBACK COUPLING ....................................................................... 144 

6.1.3 MULTI-OBJECTIVE OPTIMIZATION UNDER UNCERTAINTY ................................................................. 145 

6.1.4 MULTIDISCIPLINARY OPTIMIZATION UNDER UNCERTAINTY ........................................................... 146 

6.2. LIMITATIONS OF THE RESEARCH ................................................................................................................................ 147 

6.3. FUTURE WORK ...................................................................................................................................................................... 147 

BIBLIOGRAPHY ........................................................................................................................................................................................... 150 

APPENDIX I.  GAUSSIAN PROCESS SURROGATE MODEL ......................................................................................................... 157 

APPENDIX II. PROBABILISTIC SURROGATE MODELING WITH BAYESIAN NETWORKS .......................................... 159 

 



VII 

 

LIST OF TABLES 

 

 

Table 2.1 Model errors in coupled analysis ....................................................................................... 32 

Table 2.2 Mean and standard deviation of coupling variables ...................................................... 33 

Table 2.3  Mean and standard deviation of ��, �� and � ................................................................ 35 

Table 2.4: Global sensitivity indices .................................................................................................... 36 

Table 2.5 Parameters of the electronic packaging system ............................................................. 39 

Table 2.6 Mean and standard deviation of temperature and power density .............................. 44 

Table 2.7: Sensitivity indices of electronic packaging problem .................................................... 47 

Table 3.1. Comparison of computational cost ................................................................................... 68 

Table 3.2. Results using SOFPI, LAMDA and BNC-MDA .................................................................... 68 

Table 3.3.  Cumulative distribution of the first 30 principal components .................................. 72 

Table 3.4. Kullback-Leiber divergence for different scenarios (258 nodes) .............................. 74 

Table 3.5  Computational effort comparison between FPI and BNC-MDA ................................... 77 

Table 3.6  Time required for sampling (seconds) by BNC-MDA .................................................... 79 

Table 4.1.Input and output variables of the side impact model .................................................... 97 

Table 4.2. Uncertainty sources of the model ..................................................................................... 97 

Table 4.3. Correlations between output variables ......................................................................... 102 

Table 4.4. Comparison of optimal solutions using SR and BNC ................................................... 104 

Table 4.5. Performance comparison of the optimal solutions using SR and BNC .................... 104 

Table 5.1. Comparison of the optimization results using SOFPI and BNC-MDO ....................... 130 

Table 5.2: Parameters of the electronic packaging system .......................................................... 132 

Table 5.3. Comparison of the optimization results using SOFPI and BNC-MDO with different 

number of training samples ................................................................................................................ 134 

Table 5.4  Optimization results considering discretization error and stochastic GP output 137 

Table 5.5. Optimal solution of the aero-elastic wing design......................................................... 140 

 

 

  



VIII 

 

LIST OF FIGURES 

 

 

Figure 1.1. Aero-elastic analysis: feedback coupled structural and fluid dynamic analyses..... 2 

Figure 1.2  Optimization for MDA under uncertainty ........................................................................ 4 

Figure 2.1. Multidisciplinary system ................................................................................................... 14 

Figure 2.2 Multidisciplinary system: partially decoupled .............................................................. 14 

Figure 2.3 Multidisciplinary system: partially decoupled .............................................................. 17 

Figure 2.4 Family of distributions ....................................................................................................... 18 

Figure 2.5 FORM with auxiliary variable ............................................................................................ 25 

Figure 2.6 Output uncertainty due to model errors ......................................................................... 27 

Figure 2.7 Functional relations of the mathematical MDA model ................................................. 30 

Figure 2.8 Non-parametric PDF of ��.................................................................................................. 31 

Figure 2.9.  PDFs of coupling variables ��� (left) and ��� (right) ............................................... 33 

Figure 2.10 Electronic packaging problem: feedback coupled MDA. ........................................... 37 

Figure 2.11  Mean and 95% bound of GP prediction, accounting for discretization error 

(Thermal analysis) .................................................................................................................................. 41 

Figure 2.12 PDF of coupling variables: component heat 	
 (left) and temperature 	� (right)

 .................................................................................................................................................................... 43 

Figure 2.13  PDF of system output: power density ........................................................................... 44 

Figure 2.14: Comparison of results from LAMDA and SOFPI for (a) Temperature, (b) 

Component heat, and (c) Power density ............................................................................................ 45 

Figure 3.1 Two-dimensional coupled analysis and one iteration representation ..................... 53 

Figure 3.2  Bayesian network connecting coupling variables in two successive iterations .... 56 

Figure 3.3  One iteration of a high-dimensional coupled system .................................................. 59 

Figure 3.4  Bayesian network using the ��
 principal component ................................................ 60 

Figure 3.5. Flowchart of BNC-MDA approach .................................................................................... 63 

Figure 3.6. Mathematical example of two-discipline coupled analysis ........................................ 66 

Figure 3.7 Marginal PDFs of coupling variables ............................................................................... 69 

Figure 3.8  Fluid and structure meshes and refinement parameters ........................................... 71 

Figure 3.9  Normal probability plot of pressure from four cases at Node 1 ................................ 73 

Figure 3.10  Unseparated Bayesian network with 20 principal components ............................. 76 

Figure 4.1  Bayesian network representation of optimization under uncertainty ................... 92 

Figure 4.2. Parallel coordinate representation of the model dependencies ............................... 93 

Figure 4.3. Sculpting for training points selection ........................................................................... 94 

Figure 4.4.  Flowchart for the training point selection and multi-objective optimization 

scheme ....................................................................................................................................................... 96 

Figure 4.5. Vehicle side impact model [95] ........................................................................................ 97 

Figure 4.6. Non-parametric PDFs for uncertain parameters.......................................................... 98 

Figure 4.7. Optimization with BN ....................................................................................................... 101 

Figure 4.8  Single objective RBDO history for SR and BNC ............................................................ 103 

Figure 4.9. Comparison of Pareto fronts with/without joint probability constraints ............ 106 



IX 

 

Figure 4.10. Pareto fronts with BNC, and SR solutions .................................................................. 107 

Figure 4.11.  Scatter plots of weight and door velocity .................................................................. 108 

Figure 4.12. Comparison of the outputs from different resampling approaches ..................... 109 

Figure 4.13. Comparison of the results between the two resampling approach ...................... 109 

Figure 5.1  A general Bayesian network for MDO ........................................................................... 118 

Figure 5.2  Parallel coordinate representation of MDO ................................................................ 120 

Figure 5.3. One iteration of feedback coupled analysis with high-dimensional coupling ...... 121 

Figure 5.4. Bayesian network with reduced coupling variables ................................................. 123 

Figure 5.5.  Flowchart for BNC-MDO .................................................................................................. 124 

Figure 5.6 Functional relations of the mathematical MDA model ............................................... 126 

Figure 5.7. One iteration of feedback coupled analysis ................................................................. 128 

Figure 5.8  BN based on the samples from Fig. 5.7 ......................................................................... 129 

Figure 5.9  Optimization histories of SOFPI and BNC-MDO .......................................................... 130 

Figure 5.10  BBN for the electronic packaging problem ............................................................... 133 

Figure 5.11  BN for MDA with stochastic model error ................................................................... 136 

Figure 5.12. BN of the aeroelastic wing with reduced coupling variables ................................. 139 

Figure A2.1 Bayesian network representation of a model with input and output variables 160 

Figure A2.2  Vine representation of the BN shown in Figure A2.1   ..................................................... 161 

 

 

 



1 

 

CHAPTER 1  

 

 

INTRODUCTION 

 

 

1.1. OVERVIEW 

 

 

Many engineering system analyses are composed of multiple disciplinary analyses 

that are governed by different physics. Interaction between individual disciplines is 

typically modeled by exchanging physical quantities between individual analyses (e.g., 

displacements and pressures exchanged between fluid and structural analyses as shown in 

Figure 1.1  in order to model fluid-structure interaction). In many problems, 

computational models are available for individual disciplinary analyses, but not for coupled 

system analysis; even if the latter exists, the computational cost of the coupled analysis is 

usually quite high.  
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Note that the fluid analysis is accomplished by computational fluid dynamics (CFD) 

and the structural analysis is done using FEA (finite element analysis). Multi-disciplinary 

analysis (MDA) and multidisciplinary design optimization (MDO) techniques have been 

studied during the past three decades to develop computational methods [1, 2] for systems 

that involve multiple coupled disciplines, analyses or subsystems in various applications 

such as fluid-structure interaction [3], thermal-structural analysis [4], fluid-thermal-

structural analysis [5], etc. The performance of a multidisciplinary system is determined by 

individual disciplines as well as the interactions between them. The increasing 

dimensionality with analysis and design variables accumulated from multiple disciplines 

presents serious computational challenges in MDA and MDO [6].  

The consideration of uncertainty sources further increases the computational effort, 

since probabilistic assessment requires repeated runs of the deterministic analysis. A 

simple approach to extend the deterministic multidisciplinary analysis (MDA) to 

(a) Airfoil structural and fluid meshes          (b) Relationships between two analyses 

Figure 1.1. Aero-elastic analysis: feedback coupled structural and fluid dynamic analyses 
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nondeterministic MDA is by conducting Monte Carlo sampling outside the deterministic 

analysis. This can be unaffordable when computationally expensive codes (e.g., high-fidelity 

CFD and FEA [6] that model the system in Figure 1.1) are used for individual disciplinary 

analyses. Therefore, efficient approaches need to be developed for MDA and MDO under 

uncertainty.  

Three types of uncertainty sources need to be considered in design optimization: 

physical variability, data uncertainty and model uncertainty. Physical variability (aleatory 

uncertainty) in loads, system properties, etc., is irreducible and is commonly represented 

through probability distributions. Data uncertainty (epistemic) may be caused by sparse 

and/or imprecise data, and can be reduced by collecting more information. Model 

uncertainty (epistemic) arises from the model used to approximate the physics, and can be 

attributed to three types of sources: uncertain model parameters (due to limited data), 

numerical errors (i.e., solution approximations due to limited computational resources), 

and model form error (due to the assumptions made in the model) [7]. The propagation of 

aleatory uncertainty is well-studied in the literature, and can be accomplished by Monte 

Carlo sampling or First/Second-Order Reliability Methods (FORM/SORM) [8]. However, 

epistemic uncertainty (lack of knowledge) is an active research topic, and needs careful 

treatment due to its variety of sources and representation formats. 

In the context of MDA under uncertainty, several studies have particularly focused 

on reliability analysis for multidisciplinary systems. Du and Chen [9] included the 

disciplinary constraints in the most probable point (MPP) estimation for reliability analysis. 

Mahadevan and Smith [10] developed a multi-constraint FORM approach for MPP 

estimation. Sankararaman and Mahadevan [11] proposed a likelihood-based approach for 
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MDA (known as the LAMDA approach). This methodology estimates the PDF of the 

coupling variables by calculating the probability of satisfying interdisciplinary 

compatibility, and obtains a theoretically exact solution while preserving the functional 

dependence between the coupling variables. Liang et al. [12] extended the LAMDA method 

to include model uncertainty, by using an auxiliary variable approach. The majority of 

these existing approaches convert the stochastic MDA into a few deterministic MDA 

problems through linear approximations, solved by a gradient-based method (i.e., FORM). 

This approximation is beneficial in terms of computational efficiency. However, the existing 

methods are only suitable for low-dimensional coupling, and are found to be inefficient 

when solving MDA with a large number of coupling variables.  

 

 

 

 

 

Optimization methods under uncertainty within engineering design have generally 

been pursued in two directions: (1) reliability-based design optimization (RBDO), where 

CFD  FEA 

MDA 

      UQ / Reliability Analysis 

Optimization 

Figure 1.2  Optimization for MDA under uncertainty 
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the focus has been on achieving desired reliability levels for constraints [13, 14, 15], and (2) 

robust design optimization (RDO), where the primary focus has been on minimizing 

objective function variations, typically quantified by their respective variances [16, 17, 18]. 

The components for MDO under uncertainty diagram are shown in Figure 1.2. In each 

design cycle, the optimizer passes a set of design values to the inner loop, where the MDA 

under uncertainty is implemented, and the output will be used for further design. 

Efficient uncertainty propagation strategies have be proposed by several 

researchers considering different sources of uncertainty, but only in MDO settings with 

low-dimensional coupling. Gu et al. [19] proposed a worst case uncertainty propagation 

method using derivative-based sensitivities. Li and Azarm [20] developed a multi-objective 

collaborative robust optimization approach that considers interval uncertainty and both 

continuous and discrete design variables for multidisciplinary problems. Jiang et al. [21] 

proposed a spatial-random-process approach for both aleatory and epistemic uncertainty 

propagation in low-dimensional multidisciplinary analysis. Little work has been found 

focusing on the efficient optimization under uncertainty for high-dimensional coupled 

analysis. 

Non-probabilistic approaches such as fuzzy set theory [22, 23] and evidence theory 

[24] have also been studied in the literature.  Similar to the existing MDA approaches, these 

methods adopt either linear approximation and/or gradient-based algorithm when solving 

the optimization problem, and thus suffer from the curse of dimensionality. In another 

category of approaches, surrogate models have often been used for individual disciplinary 

analyses when the original disciplinary analysis codes are expensive [25]. Based on 

surrogate modeling (or metamodeling), Kokkolaras et al. [26] developed an advanced mean 
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value method, which was extended by Liu et al. [27] by using moment-matching and 

considering the first two moments. Surrogate models such as Kriging models [28], neural 

networks [29] etc. can be expensive to train, since fully converged analysis of the physics 

model is required for each training point. Thus, many surrogate models become unreliable 

for high-dimensional problems in feedback-coupled MDA and MDO. 

 

1.2. RESEARCH OBJECTIVES 

 

 

The overall goal of the proposed research is to develop an efficient framework for 

multidisciplinary analysis and optimization with the consideration of both aleatory and 

epistemic uncertainty. As mentioned earlier, the previous implementation of LAMDA which 

uses the FORM approach is only suitable for low-dimensional coupling. Therefore this 

dissertation aims to extend the LAMDA concept to high-dimensional coupling, and 

investigates the use of Bayesian network for this purpose. Once the uncertainty 

propagation methodology is developed, next an optimization under uncertainty framework 

is developed, also using the Bayesian network, to implement multi-disciplinary and multi-

objective design under uncertainty. 

Specifically, four objectives are pursued, two related to MDA and two related to 

MDO. The first objective addresses the propagation of epistemic uncertainty — data 

uncertainty and model error — through multidisciplinary analysis. When the individual 

disciplinary analyses are connected using a large number of coupling variables, approaches 

dealing with low-dimensional problems may not be applicable any more [30]. Therefore, 
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the second objective is to investigate a methodology for uncertainty propagation in a high-

dimensional coupled system. The third objective aims at developing a framework to 

incorporate different sources of uncertainty in single disciplinary design optimization, 

considering multiple objectives. The fourth objective investigates a Bayesian methodology 

for the design optimization of multidisciplinary systems with feedback coupled analyses.  

 

1.3. ORGANIZATION OF THE DISSERTATION 

 

 

The subsequent chapters are arranged to address the four research objectives. 

Chapter 2 presents a probabilistic framework to include the effects of both aleatory 

and epistemic uncertainty sources in feedback-coupled multi-disciplinary analysis. A 

previously developed likelihood-based approach is extended in this chapter to incorporate 

the effects of epistemic uncertainty arising from data uncertainty and model errors. Global 

sensitivity analysis is extended to quantify the contribution of model uncertainty in 

feedback-coupled MDA. 

Chapter 3 develops a novel approach for efficient uncertainty quantification and 

propagation in multidisciplinary analysis (MDA) with a large number of coupling variables. 

A Bayesian network approach is proposed for probabilistic MDA, i.e., inference of 

distributions of the coupling variables by enforcing the interdisciplinary compatibility 

condition (which is treated similarly to data for updating). A copula-based approach is 

employed for efficient sampling from the joint and conditional distributions. Further 
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computational efficiency is achieved through dimension reduction using principal 

component analysis. 

Chapter 4 develops a probabilistic graphical modeling approach for multi-objective 

optimization under uncertainty. Given paired samples of the inputs and outputs from the 

system analysis model, a Bayesian network is constructed to represent the joint probability 

distribution of the inputs and outputs. This Bayesian network is then exploited as a 

surrogate model in reliability-based design optimization (RBDO). The joint probability of 

multiple objectives and constraints is included in the formulation. The Bayesian network 

along with conditional sampling is also exploited to select training points that enable 

effective construction of the Pareto front. 

Chapter 5 proposes a comprehensive framework for the optimization of 

multidisciplinary systems with feedback coupling between the individual disciplines. The 

proposed framework is composed of four elements: multidisciplinary analysis, Bayesian 

network, vine copula-based sampling and design optimization. The Bayesian network is 

pursued in two directions: (1) probabilistic multidisciplinary analysis (MDA), as in Chapter 

3, and (2) probabilistic surrogate modeling, as in Chapter 4. The copula-based sampling 

technique is employed for efficient sampling from the joint and conditional distributions. 

The proposed Bayesian network surrogate is then used for efficient reliability assessment 

within an optimization framework. This leads to simultaneous interdisciplinary 

compatibility enforcement and the objectives/constraints evaluation within MDO. The 

proposed MDO methodology is implemented within a framework of reliability-based 

design optimization. 
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CHAPTER 2  

MDA UNDER ALEATORY AND EPISTEMIC UNCERTAINTY 

 

 

2.1. INTRODUCTION 

 

 

As mentioned in Section 1.1, multidisciplinary analysis requires the collaboration of 

multiple individual disciplinary analyses. Based on the direction of information flow, the 

coupling between two individual disciplinary analyses can be either uni-directional (feed-

forward) or bi-directional (feedback). The focus of this dissertation is on feedback coupling 

which is more complex due to the iterations between two analyses to achieve 

interdisciplinary compatibility. Computational methods for feedback-coupled MDA can be 

classified into three different groups: (1) Field elimination methods [31], (2) monolithic 

methods [32], and (3) partitioned methods [33]. The field elimination and monolithic 

methods tightly couple the disciplinary analyses together, while the partitioned method 

does not. The well-known fixed point iteration method (repeated analysis until 

convergence of coupling variables) and the staggered solution approach [31, 33] for time-

dependent problems are examples of partitioned methods. 

An important factor in the analysis and design of multi-disciplinary systems is the 

presence of uncertainty in the system inputs and the models used for each analysis. In this 

chapter, we consider the three sources of uncertainty mentioned in Section 1.1, which are: 

(1) Natural variability (aleatory), (2) data uncertainty (epistemic), and (3) model 
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uncertainty (epistemic). The representation and propagation of these types of uncertainty 

in multi-disciplinary analysis is the focus of this chapter. 

Methods for the representation and the propagation of aleatory uncertainty in a 

monolithic or feed-forward system are well established. Aleatory uncertainty has been 

modeled through random variables with fixed probability distributions and distribution 

parameters. A variety of approaches such as Monte Carlo Methods, first-order reliability 

method (FORM), second-order reliability method (SORM), etc. are available for the 

propagation of aleatory uncertainty through monolithic or feed-forward analysis [8]. 

However, only a small number of studies have addressed the propagation of both aleatory 

uncertainty and epistemic uncertainty in single disciplinary analysis [34,35, 36, 37, 38,  39, 

40, 41, 42]. Studies on uncertainty propagation through feedback-coupled MDA are even 

fewer [9, 10, 11, 26, 19], and have only addressed aleatory uncertainty. 

The input variables in an analysis could be deterministic or stochastic, and 

epistemic uncertainty may be present regarding both types of inputs (due to lack of 

information, referred here generally as data uncertainty). For example, an input variable 

may be a fixed but unknown constant, and the information may be available as an interval 

from an expert. Or an input variable may have natural variability (aleatory), but due to lack 

of data, its distribution type and/or parameters may be uncertain. Epistemic uncertainty 

regarding the inputs has been addressed through evidence theory [35, 36], possibility 

theory [43], fuzzy sets [23], imprecise probabilities [44], p-boxes [40], aleatory-like but 

conservative treatment [41], likelihood-based probabilistic approaches [42, 45], etc., but 

has been mostly applied to feed-forward or monolithic problems.  
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Model errors can generally be categorized into two types [7]: (1) model form errors 

which are due to assumptions about system behavior, boundary conditions, operating 

conditions and model parameters; and (2) numerical solution errors, which arise from the 

solution process adopted to solve the mathematical model, and include discretization error, 

surrogate model error, truncation error (e.g., lower-order approximations), etc.. Liang and 

Mahadevan [46] considered a detailed treatment of model errors due to both model form 

assumptions and numerical solution approximations, and developed a methodology to 

systematically quantify and aggregate the uncertainty due to multiple error sources. 

Kennedy and O’Hagan [47] quantified model error in monolithic or feed-forward analysis 

using Bayesian calibration. To the best of our knowledge, no work has been reported in 

uncertainty quantification that includes model errors within feedback-coupled MDA. 

The aforementioned sources of uncertainty (variability, data uncertainty and model 

errors) cause the output of MDA to be uncertain. Non-deterministic MDA in the presence of 

variability can be solved by SOFPI (i.e., Monte Carlo sampling loop outside the 

deterministic fixed-point-iteration analysis). However, such analysis is computationally 

prohibitive. Therefore, efficient alternatives, in the presence of aleatory uncertainty alone, 

have been investigated by several researchers [9, 10, 11, 22, 23, 24] (see Section 1.1). 

Review of these studies reveals that the existing methods for MDA under 

uncertainty either require considerable computational effort or introduce several 

approximations to reduce the computational effort. For example, in the decoupled 

approach adopted by Du and Chen [9] and Mahadevan and Smith [10], the probability 

density functions (PDF) of the coupling variables are calculated by Taylor series-based 

first-order second moment approximation. These approaches improve the efficiency by 
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trading off the accuracy since they ignore the dependence between the coupling variables. 

To include dependence between the coupling variables, a likelihood-based MDA (LAMDA) 

approach was proposed by Sankararaman and Mahadevan [11]. In this method, the 

probability of satisfying the inter-disciplinary compatibility is calculated using the principle 

of likelihood, which is then used to estimate the PDF of the coupling variables. This 

approach requires no coupled system analysis and yet is theoretically exact, thereby 

preserving the functional dependence between the individual disciplinary analyses.  

In [11], only aleatory uncertainty was considered. In this chapter, the LAMDA 

method is extended to include epistemic uncertainty (i.e., data uncertainty and model 

errors) in multidisciplinary analysis. A likelihood-based approach is employed to represent 

the effect of data uncertainty (sparse and/or imprecise data) through either parametric 

families of distributions [48] or  non-parametric distributions [34] for the input variables. 

The presence of model uncertainty makes the output of analysis uncertain even for a fixed 

input, and model error usually varies with the input. This presents a serious challenge for 

non-deterministic MDA, since previously available methods have only considered models 

with deterministic output for a particular input realization. A novel approach is developed 

in this chapter to include model error in MDA using the concept of an auxiliary variable 

defined through the probability integral transform.  

The system output uncertainty is due to the contribution of different sources of 

variability, data uncertainty and model uncertainty. The identification of the dominant 

contributors of uncertainty can be realized using probabilistic sensitivity analysis. A global 

sensitivity analysis (GSA) approach [49] which explores the entire space of input factors is 

considered in this chapter. However, previous work in GSA has only considered 
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deterministic feed-forward or monolithic models with only aleatory inputs; this chapter 

extends GSA to feedback-coupled MDA under both aleatory and epistemic uncertainty. 

In the following sections, the basic LAMDA framework is briefly introduced first. 

Then a likelihood-based approach is proposed to include data uncertainty within the 

LAMDA framework. After that, the consideration of model uncertainty in MDA is addressed 

through a novel auxiliary variable approach, based on the probability integral transform. 

Using the auxiliary variable concept, a global sensitivity analysis approach for feedback-

coupled MDA is proposed also. A mathematical example and an electronic packaging 

problem are used to demonstrate the proposed methodology. 

 

2.2. LIKELIHOOD-BASED APPROACH FOR MULTIDISCIPLINARY ANALYSIS (LAMDA) 

 

 

This section briefly introduces the likelihood-based approach for MDA. Figure 2.1 is 

a diagram of a multidisciplinary system which consists of three analyses. A feedback 

analysis is required between analyses 1 and 2.  The input vector is � = {��, ��, ��} where �� 

and �� are the input vectors for each individual analysis, and �� is shared by both analyses. 

Given a realization of �, the interdisciplinary analysis between analyses 1 and 2 is 

conducted; the coupling variables, i.e. ��� and ���, will converge to particular values. A 

simplistic implementation of this iterative analysis is fixed point iteration (FPI). After 

convergence, each disciplinary analysis releases a subsystem output, i.e., �� and ��, to 

analysis 3 to evaluate the  system level output, i.e.,  f. 
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Figure 2.2 shows one iteration of the feedback coupled analysis.  This single 

iteration is denoted by a function � whose input is ��� and output is ���, i.e., 

 ��� = �����, �� = ������, �� (2.1) 

where ��� =	������, ��. The input variable ��� is yielded by “Analysis 1” from the previous 

iteration, and the output ��� is the input of “Analysis 2” in the following iteration. Inter-

disciplinary compatibility is satisfied when ��� 	= 	���.  

 

 

 

�� 

���
���

� 

�� �� 

Analysis 1 Analysis 2 

Analysis 3 

�� �� 

Figure 2.1. Multidisciplinary system 

��� ��� 

G 

��� 
Analysis 1 

A1(���, x) 

Analysis 2 

A2(���, x) 

Figure 2.2 Multidisciplinary system: partially decoupled 
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For a given value of ���, when input variability is considered, the output ��� can be 

denoted by a probability density function: ��������|����. It is desired to calculate 

!���� 	= 	 ���	|	���� , which is the probability of satisfying the interdisciplinary 

compatibility conditioned on ���. This is similar to the definition of a likelihood function in 

parameter estimation problems where !�"	 = 	"#$%	|&�  indicates the probability of 

observing the output to be equal to some value "#$% conditioned on the value of the 

parameter of interest &. Thus here the likelihood of ��� may be defined as:  

 '����� ∝ !���� 	= ���|���� (2.2) 

Note that likelihood is only meaningful up to a proportionality constant. The 

probability in Eq. (2.2) can be approximated by integrating the conditional PDF 

��������|���� over an infinitesimal window around the conditional value of ���: 

 !���� = ���|���� = 1* + ��������|����,���
-��./�

-��0/�  (2.3) 

where 1 is the length of the window. In Ref [11], the integration in Eq. (2.3) is estimated by 

the first-order reliability method (FORM). FORM calculates the probability that a 

performance function H ≡ h(x) is less than or equal to ℎ3 , given stochastic input variables �, 

which is equivalent to calculating the cumulative probability density (CDF) of H at H=ℎ3  [8]. 

Using this idea, FORM analyses are applied to calculate the integral in Eq. (2.3) at the upper 

and lower bounds, i.e., ℎ- = 4������� = ��� + /� |����  and ℎ6 = 4������� = ��� − /� |���� , 

which are essentially the probability of ���� < ��� + /�� and ���� < ��� − /�� respectively.  

Note that in implementing FORM for each ���, only the feed-forward analysis of Figure 2.2 
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is needed to estimate � and its derivatives ∇����; i.e., in each iteration of FORM, only � is 

changing, not ���. The likelihood of ��� is approximated by: 

 '����� ∝ ℎ- − ℎ61  (2.4) 

The likelihood function only needs to be evaluated at a few points. Then the PDF of ��� 

can be evaluated as: 

 ������ = '�����: '�����,��� (2.5) 

A recursive adaptive version of Simpson’s quadrature [50] can be used to evaluate 

the integral in Eq. (2.5). After evaluating the PDF for a few values of ���, the entire PDF is 

approximated by interpolation. The LAMDA method is theoretically exact; but 

approximations are introduced in the numerical implementation by using FORM to 

calculate the CDF values in Eq. (2.3). However, the LAMDA framework is not dependent on 

FORM; if the analysis is nonlinear, SORM or one of several methods of Monte Carlo 

sampling can be used instead. The key point is that LAMDA only needs a single run through 

the two analyses for each realization of ��� and not an iterative analysis to convergence for 

each ���. 

Once the PDF of the converged value of ��� is constructed, the feedback-coupled 

analysis of Figure 2.1 can be replaced by a unidirectional coupled analysis as shown in 

Figure 2.3. The coupling variable ��� is brought to the same level with the input variable �; 

both � and ��� can be treated as the input variable to this partially decoupled system. The 

uncertainty of the subsystem level and system level output can be characterized by 

sampling � and ���; for each sample of input and ���, only one function evaluation of 

Analyses 1 and 2 is required to compute �� and ��. The results are then used to calculate �. 
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Note that the LAMDA approach is general, and is equally applicable to correlated or 

uncorrelated �. The focus of this chapter is on coupling between disciplines, and the input 

correlation is not considered in the numerical examples. However, the problem of 

correlated input random variables has been solved long ago, and does not present any new 

challenge. When input correlation is considered, the input random variables can be 

transformed into a space of uncorrelated variables [8], after which FORM can be used to 

evaluate the likelihood.  

 

2.3. INCLUSION OF DATA UNCERTAINTY IN MDA 

 

 

This section develops a likelihood-based approach to include data uncertainty 

regarding the input variables (due to sparse and/or imprecise data) within MDA. 

 
Figure 2.3 Multidisciplinary system: partially decoupled 

 

�� 

���
Estimated ��� 

� 

�� �� 

Analysis 1 Analysis 2 

Analysis 3 

�� �� 



18 

 

 

 

 

Data uncertainty can be regarding a stochastic or deterministic quantity. This 

chapter focuses on the first type of uncertainty, i.e., only sparse and/or interval data is 

available on an input random variable. An enhanced LAMDA method that accounts for 

epistemic uncertainty regarding the input random variables is proposed here. This method 

combines data uncertainty due to sparse point data and interval data and develops a 

probabilistic representation for this uncertainty through a nonparametric PDF [34].  

Suppose the available information for a random variable X is a combination of m 

data intervals: {;<�, =�>, … ;<@, =@>}, and n data points {B�, … BC}. Based on the principle of 

likelihood, two approaches can be pursued to represent this type of uncertainty: 

parametric [48] and non-parametric [34]. In the parametric approach, a discrete random 

variable D and a random variable vector E are assumed to denote the distribution type and 

the distribution parameters respectively. Randomly sampling D and E will result in a family 
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P
ro

b
ab

il
it
y
 D

en
si

ty
 F

u
n
ct

io
n Family of distributions 

Unconditional distribution 

Figure 2.4 Family of distributions 
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of probability distributions as shown in Figure 2.4. This family of distributions is used to 

fit the data interval and data points of F, and the likelihood of D and E  is given by: 

 '�D, E� ∝ GH4IJ=KLD, EM − 4I�<K|D, E�N@
KO� G �I�BP|D, E�C

PO�  (2.6) 

D and E may be estimated by maximizing the likelihood function in Eq. (2.6) (note 

that D is discrete). The candidate distribution types can sometimes be selected based on 

prior knowledge or physical considerations; in other cases, however, the choice of 

distribution type candidates may be difficult. 

To avoid the assumption of distribution type, a non-parametric approach [34] can 

be adopted. Consider the variable F with Q interval and Rpoint data. The maximum and 

minimum values in this data are used as the upper and lower bounds of X. The entire 

domain is then uniformly discretized by a set of points SP (T = {1, … 	U}). Let VP denote the 

PDF value at the TWX point, i.e., �I�YP = SP� = VP; the PDF over the entire domain can be 

constructed by interpolating these PDF values. Let Z denote the vector of the PDF values, 

i.e., Z = �V�, … V[�; the likelihood function of Z, which is defined as the probability of 

observing the given data (point values and data intervals) given Z, can be written as: 

 '�Z� ∝ GH4IJ=KLZM − 4I�<K|Z�N@
KO� G �I�BP|Z�C

PO�  (2.7) 

 The value of Z can be estimated by maximizing the likelihood'�Z� using the 

optimization problem in Eq. (2.8). The three constraints for the optimization are: (1) the 

vector Z (PDF values at the discretized points) needs to be positive; (2) the PDF value over 

the entire domain of X needs to be positive; and (3) the integrated area under the PDF 

curve must be unity. A Gaussian Process (GP) interpolation technique is employed in this 
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chapter to fit the entire PDF curve based on ;V�, … V[>; however, other interpolation 

techniques may also be used. 

 

Q<Y\ '�\� 

s.t. VP ≥ 0 for  ∀	VP ∈ \ �a�Y� ≥ 0 for  ∀	Y 

+ �a�Y�,Y = 1 

(2.8) 

The above likelihood-based method is exploited to fit a non-parametric probability 

distribution to include the effect of data uncertainty due to sparse and interval data. It 

avoids assumptions on the distribution type or distribution parameter. The resulting 

probability distribution can be easily applied to uncertainty propagation with Monte Carlo 

sampling or FORM. 

 

2.4. INCLUSION OF MODEL UNCERTAINTY IN MDA 

 

 

2.4.1. MODEL ERROR QUANTIFICATION 

 

 

Liang and Mahadevan developed approaches for model error quantification in feed-

forward computational models [46]; however, the propagation of model error through 

multiple models is not straightforward in feedback-coupled MDA. Model errors can be 

classified into two categories: (1) model form error caused by simplifications or 

assumptions about the physics of the problem, and (2) numerical errors due to the solution 
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process, such as discretization error, error due to limited sampling, etc. The quantification 

methods for different types of model errors are distinct from each other. Model form error 

can be estimated using actual experimental data; and numerical solution error can be 

calculated using the result of model verification. When input variability and data 

uncertainty are considered, the model errors need to be quantified at each input realization. 

This section focuses on the inclusion of model error within MDA in a generalized manner 

that includes both model form error and numerical solution errors.  

A simple way to handle input-dependent model error is to use an additive model 

discrepancy term and include it in subsequent analysis.  Kennedy and O’Hagan [47] used 

Bayesian calibration to quantify this model discrepancy term. Mahadevan and Rebba [51], 

and Chen [52] included the additive model error term in reliability-based design 

optimization.  However, when multiple sources contribute to model error, and when these 

sources do not combine in a simple manner, the additive term approach is not easy to use. 

Sankararaman et. al [53] used a Bayesian network approach to combine multiple sources of 

model error. However, complication arises in feedback-coupled MDA if the model error 

term has to be added after each iteration of individual disciplinary analyses. Also, model 

error is a function of the input and this function is not generally known; thus, it is not 

straightforward to include the additive model error term in feedback-coupled MDA. 

In many problems, the original disciplinary analyses may be expensive, and may 

need to be replaced by surrogate models. Many types of surrogate modeling techniques are 

available (e.g., Gaussian process models [47], polynomial chaos expansion [54], support 

vector regression [55], artificial neural network [56], etc.). A review of state-of-the-art 

modeling techniques for solving different types of optimization problems is provided in 



22 

 

[56]. Use of a surrogate model introduces error in the prediction, which has two 

components: bias and variance. A leave-one-out cross validation approach can be used to 

estimate bias with an existing number of training points [57], and sequential training point 

selection techniques have been proposed in the literature for bias reduction [57, 58]. 

Expressions for the variance of surrogate model prediction are also available in the 

literature (for example, variance is readily available for Gaussian process and polynomial 

chaos expansion models; see [46]). 

Regardless of whatever individual or multiple sources contribute to the model error, 

the output of a model due to the presence of model error is a probability distribution even 

for a fixed value of the input. Note that some errors are deterministic (e.g. discretization 

error) and some are stochastic (e.g. surrogate model error); their combined effect makes 

the model output stochastic even for a fixed input. This presents an interesting challenge. 

Only aleatory uncertainty was considered in the original LAMDA method (Section 2.2). 

Therefore, for a given value of ��� and �, the output ��� was a deterministic value. However, 

in the presence of model error, the output ��� becomes a probability distribution. This 

makes it difficult to evaluate Eq. (2.2): How can we talk about the probability of a 

distribution being equal to a particular value?  The likelihood in Eq. (2.2) can only be 

calculated when the output ��� is a deterministic value for a given value of ��� and �. An 

auxiliary variable method is proposed below to overcome this challenge. 
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2.4.2. AUXILIARY VARIABLE METHOD 

 

 

For the sake of illustration, consider a normal random variable b with uncertain 

parameters. Assume that the parameters of b, i.e. cI and *I, have normal distributions; the 

uncertainty of b is therefore denoted as: b~	e�cIJcf, *fM, *I�cg, *g��, where cf, *f, cg  and 

*g are deterministic values based on sources such as expert opinion. Given a realization of 

cI , and *I, b is a distribution. Let ! denote an auxiliary variable, defined by the probability 

integral transform [59] as 

 ! = + �I�b|cI , *I�,ba
0h

 (2.9) 

where Y is a generic realization of b. ! ∈ ;0,1> is the CDF value. For a realization of cI and 

*I, the well-known inverse CDF method of Monte Carlo simulation taken over a realization 

of ! from a uniform distribution gives a fixed value of �. Therefore, � can be written as:  

 � = 4I|fi,gi0� �V� or � = jk�V, cI , *I� (2.10) 

where V is a realization of !. Thus by introducing the auxiliary variable !, we get a unique 

value of b for a given value of cI and *I. The probability integral transform helps to define 

the auxiliary variable !, and will be used to include the stochastic model error in coupled 

MDA.  

Note that this approach can also be extended to handle the case when a parametric 

family of distributions is used to represent an input random variable due to data 

uncertainty. In that case, if a discrete variable D represents the distribution type, and Θ 
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represents the vector of distribution parameters, then a unique value of Y can be obtained 

for a realization of D, & and ! as: 

 
Y = jk�V, ,, &� 

(2.11) 

Note that j′ is not the same in Eqs. (2.10) and (2.11). 

 

2.4.3. REPRESENTATION OF MODEL UNCERTAINTY 

 

 

For a given value of ��� and input �, the output ��� follows a probability distribution 

due to model error. This distribution can be represented by a conditional PDF 

��������|���, ��. Let auxiliary variable ! denote the conditional CDF at ��� = ��� given ��� 

and �, i.e., 

 ! = + ��������|���, ��,���
-��

0h
 (2.12) 

where ! ∈ ;0,1>. For a given value of input � and ���, when a single value of ! is sampled 

from ��0,1�, a unique value of ��� can be obtained through the inverse CDF method. Hence 

��� = j′�V, ���, ��, which is deterministic, can now be used to evaluate the likelihood in Eq. 

(2.2)  using FORM, as shown in Figure 2.5. With a unique value of ��� defined as above, 

two evaluations of FORM are implemented at n = ��� + /� and n = ��� − /� to get ℎ-and ℎ6  
respectively. In FORM, !op=�jk − n ≤ 	0� = 	Φ	�−s�.  
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The PDF of ��� can then be obtained using Eq. (2.4) and Eq. (2.5).  

The auxiliary variable approach to include model error in MDA offers several 

benefits: (1) the auxiliary variable ! represents the overall effect of model error in a 

generalized manner; no matter how different types of model errors are combined, it 

considers the overall distribution of the output as a result of these error sources for a fixed 

input. (2) The use of the auxiliary variable provides an elegant method to include model 

error in the LAMDA method, and the challenge of accumulating model error through 

multiple iterations of MDA is bypassed due to the single iteration strategy of LAMDA. (3) 

The use of the probability integral transform to define the auxiliary variable provides a 

theoretically exact way to include model error in feedback-coupled MDA. (4) 

Representation of the model error through a random variable ! brings Y and ! on the same 

level, and facilitates a single loop approach to implement FORM, thus providing 

computational efficiency. In contrast, a sampling-based approach to include model error 

would need an additional nested loop of analysis. 

 

 

 

Given PDFs of �, ! 

Min β = u
T
u 

s.t. jk�Z, �, ���� − n = 	0 

where standard normal u = t�V, �� 

Figure 2.5 FORM with auxiliary variable 
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2.5. GLOBAL SENSITIVITY ANALYSIS IN FEEDBACK-COUPLED MDA 

 

 

Uncertainty propagation analysis is often accompanied by sensitivity analysis to 

identify the significant contributors to the model output uncertainty. Several benefits are 

possible such as: (1) reduction of number of uncertainty sources considered in the analysis 

and design optimization; (2) guidance in resource allocation for data collection; and (3) 

guidance in model refinement. Global sensitivity analysis has been used to calculate the 

effect of the variability of an input quantity on the variance of the output quantity  [49]. 

Consider a model given by: 

 u = ��b�, b� …bC� (2.13) 

where bP and Y are input-output pairs of a generic model. The first-order sensitivity indices 

are estimated as: 

 vP� = wIx�yI~x�u|bP��w�u�  (2.14) 

where the notation  yI~x�u|bP� denotes the expectation of output Y given a particular value 

of variable bP and considering the random variations of all other variables except for bP 
( denoted	by	b~P ). The symbol wIx  represents the variance of the aforementioned 

expectation over multiple samples of bP. The first-order sensitivity index indicates the 

contribution of uncertainty due to a particular individual variable, regardless of its 

interactions with other variables. The evaluation of Eq. (2.14) can be accomplished by 

either double-loop or single-loop Monte Carlo sampling. The sum of first-order indices of 

all variables is always less than or equal to unity. 
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A total effects index is also calculated to account for the uncertainty contribution of 

bP in combination with all other variables: 

 vP� = yI~x�wIx�u|b~P��w�u� = 1 − w~P �yIx�u|b~P��w�u�  (2.15) 

where wIx�u|b~P� denotes the variation of output u at a fixed realization of all variables 

except bP , over multiple samples of bP only; yI~x  calculates the expectation of this variation 

over multiple samples of b~P. The sum of the total effects indices of all variables is always 

greater than or equal to unity.  

Previous work in GSA has only considered aleatory uncertainty in the input 

variables [46]. When model output uncertainty is caused by input variability, data 

uncertainty and model errors, the contribution of all the sources needs to be quantified. 

The sensitivity to the input variable distributions is straightforward to calculate by using 

sampling techniques. However, when uncertainty caused by stochastic model errors is 

considered, the GSA cannot be directly implemented due to the lack of a deterministic 

input-output transfer function.  

 

 

 

 

 

Figure 2.6 shows the stochastic functional relation between input F and output �. 
Consider Eq. (2.14) and Eq. (2.15), in which the inner loops of sampling calculate yI~x�u|bP� 

Analysis F � 

Figure 2.6 Output uncertainty due to model errors 
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and wIx�u|b~P� respectively; both evaluations require deterministic function output. In the 

presence of model uncertainty, the output � is a distribution even for a fixed input F. 

Therefore, a new auxiliary variable is introduced to explicitly include model uncertainty in 

sensitivity analysis. Consider the model in Eq. (2.1). Suppose model output has a 

distribution D at a given input F; this can be denoted as: u	~	D�c�����F�, *�����F��, where 

c���� is the predicted mean function value and *���� is the standard deviation that 

represents the uncertainty in the prediction due to model uncertainty.  

Let �� denote the auxiliary variable which is defined as �� = : ���u|F�,u�0h , where 

F is one realization of the input and �� is the PDF of u conditioned on F. The individual and 

total effects of �� are: 

 v��� = w���yI�u|����w�u�  (2.16) 

 v��� = yI�w���u|b��w�u� = 1 − w�� �yIJuLb��M�w�u�  
(2.17) 

Thus, the use of the auxiliary variable method in variance-based GSA provides an 

explicit means to quantify the contribution of the stochastic model error to the system level 

output variance. It represents the effect of model uncertainty through the auxiliary random 

variable ��, and brings model uncertainty to the same level of analysis as input uncertainty. 

The sensitivity of �� given in Eq. (2.16) and Eq. (2.17) can be regarded as an index of the 

contribution of model error to the overall output uncertainty. 

Note that Eq. (2.15) to (2.17) are often used in the context of feedforward analyses. 

In the LAMDA approach, after the distribution of the coupling variable is obtained, 

uncertainty propagation is implemented with the partially decoupled analysis in Figure 
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2.2, which is essentially a feedforward analysis. Therefore, the above sensitivity analysis 

can also be applied in the context of feedback coupled analysis, with the help of LAMDA. 

In summary, Sections 2.3 to 2.5 introduced the representation and the propagation 

of data uncertainty and model uncertainty in coupled MDA. Likelihood-based parametric 

and non-parametric approaches to handle data uncertainty were presented. Model error 

sources result in a stochastic model output; and an auxiliary variable method is introduced 

to account for the model error through a random variable which provides a breakthrough 

in the implementation of both LAMDA and GSA to feedback coupled MDA.  Since variability 

and data uncertainty of a random variable are together represented by a non-parametric 

distribution, the combined effect of aleatory and epistemic uncertainty in each input 

random variable is identified by a single sensitivity index. However, if a variable has a 

significant impact on the output uncertainty, and separation of the effects of aleatory and 

epistemic uncertainty is desired, then a parametric distribution can be used for this 

variable, with uncertain distribution type and parameters. See [45, 60] for details of such 

analysis. 

 

2.6. NUMERICAL EXAMPLES 

 

 

A mathematical MDA example is considered in this section first. Two assumptions 

for model error are made for the sake of illustration and propagated using the enhanced 

LAMDA approach. Next, an electronic packaging example is used to demonstrate the 
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quantification and propagation of different sources of uncertainty in MDA using the 

proposed approach.  

 

2.6.1. MATHEMATICAL MDA PROBLEM 

 

 

The mathematical example shown in Figure 2.7 consists of 3 analyses. A feedback 

coupling exists between “Analysis 1” and “Analysis 2”, and the coupling variables are 

denoted as ��� and ���. Then the subsystem output ��	and �� are calculated and used as 

the inputs to analysis 3 to compute the system level output �. The input variables Y�, Y� and 

Y�  are assigned normal distributions: e�1,0.1� . Y�  is characterized by a lognormal 

distribution: 'p�e�1,0.1�. 

 

 

 

��	��	

��� = Y�� + 2Y� − Y� + 2���� + �y� 

�� = 4.5 − �Y�� + 2Y� + Y� − Y����� 

Analysis 1 ��� = Y�Y� + Y�� + Y� + ��� + �y� 

�� = �Y� + Y� + Y��0.4Y�� 

Analysis 2 

Y�	, Y�	 Y�	, Y�	Y�	

� = �� − �� 

Analysis 3 

��� 

��� 

Figure 2.7 Functional relations of the mathematical MDA model 
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2.6.1.1. Epistemic Uncertainty Due to Insufficient Data 

 

Epistemic uncertainty is assumed for Y�. The data is available in the form of 3 

intervals {[0 2], [0.02 1.97], [0.14 1.89]} and 2 point values {0.99, 1.02}. The domain 

bounded by the maximum and minimum available values of the available data is divided 

into 10 equally spaced points, with PDF values !P , T = 1 … 10. The optimization framework 

in Eq. (2.8) is then adopted to estimate the optimal !P  that maximizes the likelihood 

function constructed using Eq. (2.7). A cubic spline technique is employed to interpolate 

the likelihood and construct the non-parametric PDF presented in Figure 2.8. 

 

 

 

 

 

2.6.1.2. Epistemic Uncertainty Due to Model Errors 

 

For the sake of illustration, model errors �y� and �y� are assumed in “Analysis 1” 

and “Analysis 2” respectively as functions of the input and coupling variables. Two cases of 
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Figure 2.8 Non-parametric PDF of �� 
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model error are addressed: (1) deterministic model error, and (2) stochastic model error. 

The assumed mathematical forms of the model errors are listed in Table 2.1.  Additionally, 

results are also computed for the case with no model error, for the sake of comparison. 

 

 

Table 2.1 Model errors in coupled analysis 

 

 

2.6.1.3. Uncertainty Quantification of the Coupling Variables 

 

For each coupling variable in both cases, the entire PDF is estimated by 

interpolating 15 integration points, each of which has been evaluated by LAMDA (Eq. 1). 

The propagation of variability and data uncertainty for deterministic model errors can be 

fulfilled by the original LAMDA method. In the stochastic error scenario, the proposed 

auxiliary variable method is used to address the model error. Two auxiliary variables ℎ� 

and ℎ�, representing the CDFs of the model errors respectively, are introduced; both are 

uniformly distributed from 0 to 1 based on the probability integral transform (Section 

2.4.2). The resultant PDFs of the coupling variables with deterministic and stochastic 

model errors and without error are shown in Figure 2.9. The mean and standard deviation 

Model Error Deterministic Model Errors Stochastic Model Errors 

�y� �y�� = 0.05Y� + 0.1������� 

cJ�y��M = �y�� 

*J�y��M = 0.15 ∗ �y��
 

�y� �y�� = 0.1���� + 0.2Y� 
cJ�y��M = �y�� 

*J�y��M = 0.15 ∗ �y��
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of ��� and ��� are calculated and listed in Table 2.2. SOFPI is implemented with 20,000 

samples of the input as the benchmark solution.  

 

 

 

 

 

Table 2.2 Mean and standard deviation of coupling variables 

Case No. Type  ��� ��� 
No. of Function 

Evaluations 

1 No model error 
�� 8.95 11.94 

572 �� 0.49 0.72 

2 Deterministic model error 
�� 9.40 12.99 

594 �� 0.48 0.73 

3 
Stochastic model error 

(LAMDA) 

�� 9.45 12.98 
768 �� 0.62 1.08 

4 
Stochastic model error 

(SOFPI) 

�� 9.46 13.03 
379,246 �� 0.62 1.10 

 

 

 

Figure 2.9.  PDFs of coupling variables ��� (left) and ��� (right) 
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The following observations are drawn from Table 2.2: 

(1) The PDFs of ��� and ��� for cases 1 and 2 have almost the same shape and standard 

deviation, and are only separated by the deterministic model error value. 

(2) Including the stochastic model error increases the computational effort by 34.3% 

comparing with the “No model error” case, and 26.3% with the “Deterministic model 

error” case. This is because the introduced auxiliary variables increase both the 

dimension and the nonlinearity of the problem. This case can be finished in less than 1 

second using LAMDA method. On the other hand, 20,000 SOFPI evaluations take 493.1 

seconds and 379,246 function evaluations. 

(3) Once the PDF of the coupling variable is calculated, the scheme in Figure 2.3 can be 

used for uncertainty propagation and estimate the PDF of the individual disciplinary 

and system outputs: ��, �� and �. Note that this does not require the iterative analysis 

between Analyses 1 and 2, therefore becomes a simpler uncertainty propagation 

through a feed-forward analysis. For the sake of illustration, Monte Carlo sampling is 

used to estimate the PDF of the system output. Following the scheme in Figure 2.3 the 

analysis in the other direction is retained. The PDFs of the inputs � and ��� are used 

first in “Analysis 2” to estimate ��� and ��, and then in “Analysis 1” to estimate ��, 

followed by the overall system output �. Table 2.3 lists the mean values and standard 

deviations of the outputs in different cases.  
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Table 2.3  Mean and standard deviation of ��, �� and � 

 
�� �� � 

No Model Error 
� 12.50 2.41 -10.1 � 1.2 0.16 1.18 

Deterministic Case 
� 13.52 2.41 -11.11 � 1.26 0.16 1.23 

Stochastic (LAMDA) 
� 13.60 2.43 -11.17 � 1.42 0.16 1.40 

Stochastic (MCS) 
� 13.49 2.41 -11.08 � 1.60 0.15 1.55 

 

 

 

(4) It could be argued that in the presence of expensive disciplinary computational models, 

SOFPI could be used with surrogate models. However, building the surrogate model 

has significant computational expense. In the mathematical example, an average of 19 

function evaluations is needed for deterministic MDA to converge at each input. To 

obtain the training points for the surrogate model, such coupled analysis needs to be 

evaluated at multiple realizations of the input. The number of training points can be 

very high if the input is high-dimensional and the model is highly nonlinear. Therefore, 

the total number of function evaluations will still be large. Thus the computational 

effort in building the surrogate model should also be considered in such comparisons. 

Global sensitivity analysis is conducted to quantify the sensitivity of the system level 

output � to the uncertain inputs and model errors from both analyses. The auxiliary 

variables ℎ� and ℎ� denote the uncertainty introduced by the model errors. The input, 

coupling and auxiliary variables are sampled, then the decoupled analysis is executed to 

evaluate the output uncertainty.  Therefore, the total number of function evaluations equals 

the number of variables (input/coupling/ auxiliary) times the sample size (1,000 samples 
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are used), which equals 8,000. The first-order sensitivity indices and the total-effect indices 

are shown in Table 2.4. 

 

 

Table 2.4: Global sensitivity indices 
 

 

 

  

 

The index for ℎ� indicates that the stochastic model error from “Analysis 2” has a 

large impact on the uncertainty of the final system output, while model error from 

“Analysis 1” has a small effect. The use of the auxiliary variable method enabled the 

sensitivity analysis to include uncertainty contributions from model errors. It replaced the 

double-loop approach with a single-loop calculation, thus greatly reducing the 

computational effort. According to Table 2.4, it can be observed that the first-order and 

total effect sensitivity indices of the corresponding variables are quite similar. Since the 

total effect reflects the uncertainty significance of a variable from both its individual 

variation and its interactive effect with other variables, the result indicates that the 

collaborative effect of the variables is insignificant. 

 

 

 

 �� �� �� �
 �� 
� 
� 

First-Order 0.007 0.670 0.019 0.036 0.019 0.039 0.180 

Total Effect 0.007 0.681 0.019 0.037 0.021 0.041 0.184 
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2.6.2. ELECTRONIC PACKAGING EXAMPLE 

 

 

The electronic packaging problem [61] is a two-discipline analysis with feedback 

coupling between the electrical and thermal analyses. The system is composed of a circuit 

with a single resistor and a heat sink on which the resistor is mounted. A diagram of the 

heatsink is shown in Figure 2.10(a).  

 

 

 

 

 

When the circuit is turned on, the resistor generates heat that is dissipated by the 

heatsink. The component resistance is affected by the operating temperature, while the 

temperature depends on the heat produced by the resistor. The interdisciplinary 

relationships are shown in the Figure 2.10(b). The electronic analysis is computed 

Electrical 

Parameters 

Component Heat  

Total Power 
 Dissipation 

Heatsink 

Temperature 

Electrical 
Analysis  

Thermal 
Analysis 

Watt Density: 
Total Power  Dissipation

Volume of  the Heatsink
 

Heatsink Size 
Parameters 

(a) Geometry of a regular heatsink         (b) Disciplinary analyses and coupling variables 

Figure 2.10 Electronic packaging problem: feedback coupled MDA. 
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algebraically, whereas the thermal analysis needs to solve a 2D heat transfer problem 

through finite difference method. 

The deterministic parameters are: Voltage = 10.0 volts and room temperature 

20.0T C= ° . The random variables together with their uncertainty are listed in Table 2.5. 

The state variables are defined by the relations:
5

1

7

  
y

y
y

= ; 2 5 6 5 (1 ( )) y x x y T= + − ; 3

2

  
Voltage

y
y

= ;

2

4 3 2  y y y= ; ( )5 4 1 2 3 4, , , ,  y Thermal y x x x x= , "�  is an implicit function of the geometric 

parameter of the heatsink and the power dissipation in resistor, it needs to be computed 

through the finite difference method, and 6 1 2 3   y x x x= .  

In this example, geometric parameters Y�, Y�, Y� and Y� are appointed as the design 

variables, of which the upper and lower bounds are [0.15, 0.15, 0.08, 0.05] and [0.05, 0.05, 

0.02, 0.01]. The design variables are assumed to have variability. Y� and Y� are additional 

uncertain variables. The distribution types and parameters are assumed to be precisely 

known forY�, whereas the distribution characteristic of Y� are uncertain due to the 

availability of only interval data and sparse point data (epistemic uncertainty). A non-

parametric PDF is constructed using the likelihood-based approach [34] for a combined 

representation of the aleatory and epistemic uncertainty regarding Y�. Details about the 

uncertain variables are provided in Table 2.5.  

The coupling variables are component heat (due to power dissipation in resistor) 

computed in the electrical analysis, and component temperature "� estimated in the 

thermal analysis. The system output power density is the ratio between total power 

dissipated and the volume of the heatsink. 
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Table 2.5 Parameters of the electronic packaging system 

 

 

2.6.2.1. Model Error Quantification 

 

The two disciplinary analyses (electrical and thermal) are evaluated using two 

different mathematical models. The electrical analysis is solved algebraically based on 

electrical circuit analysis and the computational process is straightforward. In the thermal 

analysis, the component temperature "�  is retrieved by numerically solving a two-

dimensional heat transfer differential equation using a finite difference method. Due to 

limited computational resources for solving the continuum problem, assume that only a 

Parameter Parameter (Unit) 

Input 

Variables 

and Associated 

Uncertainty 

 

Y�	 Heat sink width (m) ~e�0.1,0.01� Y� Heat sink length (m) ~'p�e�0.1,0.01� Y� Fin length (m) ~e�0.05,0.005� Y� Fin width (m) ~e�0.025,0.0025� Y� Nominal resistance at temperature T° (W) ~e�10,0.1� 

Y� 

Temperature coefficient of electrical resistance (°K-1) 

data Intervals: 

[0.004,0.009],[0.0043,0.0085],[0.0045,0.0088] 

data Points: 

{0.0055, 0.0057} 

Thermal and 

Electrical State 

Variables 

"�	 Power density (watts/m3) "� Resistance at temperature T1 (W) "� Current in resistor (amps) "� Power dissipation in resistor (watts) "� Component temperature (t�) of resistor (°C) "� Heat sink volume (Q�) 
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coarse mesh can be used, causing discretization error. Meshes are only required for Y and " 

directions (heat transfer in the thickness direction is ignored for the thin plate). A Gaussian 

Process-based technique is used to estimate discretization error [62] in FDA/FEM analysis 

as an enhancement of the traditional Richardson extrapolation method. The basic theory of 

the Gaussian Process (GP) technique is provided in Appendix I on page 150. The GP 

approach to quantify discretization error is briefly summarized below: 

For a given input YC, T mesh tests : ℎ%�W= {ℎ�, ... ℎ�} are conducted, where ℎP  denotes 

a particular mesh size combination. The associated model outputs, i.e. �� ¡ = 

{�� ¡�YC, ℎ��,...,	�� ¡�YC, ℎ��}, are then collected. A GP model is constructed using the mesh 

sizes and the corresponding outputs {ℎ%�W;�� ¡}. The corrected estimate of the function 

value at input YC is then predicted at h = 0, i.e., the function value is estimated at an 

infinitesimal mesh size. In the electronic packaging application, the finest affordable mesh 

size 0.005; Therefore, three mesh tests: hset = {0.007, 0.006, 0.005} (same mesh in both Y 

and " directions) are conducted; the mesh sizes together with the output component 

temperatures are used to train the GP model; after that, the heatsink temperature at h=0 is 

predicted using this GP model. Figure 2.11 is a demonstration of GP getting trained by 

three data points (circle dot) and prediction at ℎ = 0.  The red square dot represents the 

mean prediction by the GP model and the green dashed lines are the 95% bounds. The 

Richardson extrapolation method is also applied under three mesh tests: ℎ¢ = {0.0072, 

0.006, 0.005} (the mesh refinement ratios need to be constant), and its result denoted by 

the blue square dot agrees well with the GP prediction. Even though the true function value 

is deterministic, the GP prediction quantifies the uncertainty in estimating it. This 
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uncertainty is epistemic uncertainty due to the finite number of training points; as the 

number of training point increases, this uncertainty will be reduced.  

 

 

 

Figure 2.11  Mean and 95% bound of GP prediction, accounting for discretization 

error (Thermal analysis) 

 

 

In stochastic MDA, discretization error needs to be quantified at each input 

realization using GP extrapolation. As mentioned above, the predictions of GP at mesh size 

ℎ = 0 include a predicted mean value, and variance that indicates the uncertainty in the 

prediction as shown in Figure 2.11. The presence of the stochastic model prediction even 

for a single fixed input value poses a challenge for uncertainty propagation in coupled MDA. 

Consider one iteration of the coupled analysis in Figure 2.10(b). Given one realization of 

the inputs �, the output temperature "� = tℎ£oQ<¤�"�, ��	 must be deterministic where t 

denotes the thermal analysis; however, when "� is evaluated using a GP, the outcome will 
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be accompanied with variability; the mean and standard deviation of the output, which are 

determined using  Eq. (A1.4) and (A1.5), are functions of ¦ and y�: 

 ��"�|��~	e�c��, "��, *��, "��� (2.18) 

For each realization of � and "�, the epistemic uncertainty due to model error will 

lead to a family of distributions for "�. Since FORM requires a deterministic output from the 

performance function, the stochastic GP prediction cannot be directly used in the LAMDA 

method.  

Therefore an auxiliary variable !X~�;0,1> is defined. With the auxiliary variable !X, 

a unique value of the prediction can be determined through inverse CDF. Therefore, the 

model output becomes a deterministic function of �, "� and ℎ and the LAMDA approach can 

be implemented using FORM as in Eq. (2.8). Two different cases, with different model error 

assumptions are considered:  

Case 1 (No model error): No assumption of model error is made for the electrical analysis; 

and for the thermal analysis, the temperature value is evaluated using the finest mesh 

within the limitation of computation resources. The uncertainty sources are only the six 

input variables; note that Y� has both aleatory and epistemic uncertainty, whereas Y� to Y� 

have only aleatory uncertainty (fixed distribution type and distribution parameters). 

Case 2 (Stochastic model error): The discretization error of thermal analysis is quantified 

using GP. The resulting uncertainty is then included in LAMDA using an auxiliary variable. 

The sources of uncertainty being considered are 5 aleatory inputs, 1 input with both 

aleatory and epistemic uncertainty, and the model prediction uncertainty due to 

discretization error. Note that the discretization error is actually deterministic, but there is 

uncertainty in estimating it because of a small number of mesh sizes tested. This 
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uncertainty is expressed by the variance of the GP prediction of temperature at  ℎ = 0. And 

in the MDA and sensitivity analysis, this uncertainty is represented by the auxiliary variable 

!X. 

 

2.6.2.2. PDF of the coupling variables and system output 

 

The PDFs of temperature and component heat are estimated for both cases and are 

shown in Figure 2.12. The system level output, power density, is calculated as: 

 !p§£o	,£RBT¨" = npQVpR£R¨	j£<¨	�"��j£<¨BTR©	wp¤�Q£	�Y� × Y� × Y�� (2.19) 

where Y�, Y�, Y� are the geometric parameters. Its distribution is evaluated using Monte 

Carlo simulation for illustration. Samples of component heat "� together with Y�, Y� and Y� 

are generated independently and used to calculate power density using Eq. (2.19).  Figure 

2.12 compares the marginal PDFs of temperature and component heat under two model 

error assumptions; the PDFs of power density are compared in Figure 2.13. The first and 

second moments of the PDF are compared in Table 2.6.  
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Table 2.6 Mean and standard deviation of temperature and power density 

 
Temperature 

Component 

Heat 

Power 

Density 

No Model Error 
Mean 52.24 4.13 8757.82 

STD 1.06 0.21 1618.00 

Stochastic Model 

Error 

Mean 47.13 3.98 8080.00 

STD 2.80 0.23 1507.09 

 

 

The number of function evaluations in the LAMDA method when considering the 

model error and stochastic model output is 1219, whereas 910 evaluations are needed 

when no error is considered. When the disciplinary analyses are computationally cheap, 

SOFPI can be used to generate the benchmark solution (the entire PDF) for LAMDA to 

compare with, as shown in the earlier mathematical example.  However, when the 

disciplinary analyses are expensive, it may not be affordable to generate the entire PDF 

using SOFPI. In such a situation, SOFPI could be run for a few samples of input realizations, 

and the SOFPI outputs can be compared against the PDF generated by LAMDA.  
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Figure 2.13  PDF of system output: power density 
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Figure 2.14 compares SOFPI results for 35 input realizations against the LAMDA-

generated PDF for the coupling variables and the system level output. It is seen that the 

SOFPI results are within the range of the LAMDA-generated PDF. In addition to a graphical 

comparison, model validation techniques can also be used for a quantitative comparison; 

several such techniques are well studied in the literature [42, 43]. 

 

 

                                 (a)                                                                                       (b) 
 

 

 

 

 

 

 

 

 

(c) 

Figure 2.14: Comparison of results from LAMDA and SOFPI for (a) Temperature, (b) 

Component heat, and (c) Power density 
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2.6.2.3. Results and discussion 

 

According to Figure 2.11, for a given input {Y� … Y�}, the predicted temperature 

from thermal analysis decreases as the mesh becomes finer. This phenomenon agrees well 

with the PDFs of the temperature in Figure 2.12, where the distribution for the stochastic 

model error case shifts to the left compared with the no model error case. When model 

error is included, all subsystem outputs have greater variances as expected. In addition, the 

model error appears to cancel the effect of input variability and data uncertainty and lead 

to a smaller final output uncertainty. A GSA is implemented to quantify the sensitivity of 

heat to the input uncertainty and model error. The auxiliary variable !X represents the 

uncertainty due to the GP-based estimation of discretization error (i.e., discretization error 

in thermal analysis). The total number of function evaluations mostly depends on how fast 

FORM converges. When the number of input, coupling and auxiliary variables is small, and 

if the analysis is linear, FORM converges quickly and the number of function evaluations is 

small. On the other hand, if the input and coupling variables are high dimensional, and if 

more auxiliary variables are used (i.e., more models with stochastic model error), or if the 

decoupled analysis is highly nonlinear, more function evaluations are expected for FORM to 

converge. The first-order sensitivity indices and the total-effect indices are given in Table 

2.7. 
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Table 2.7: Sensitivity indices of electronic packaging problem 

 

 

  

 

 

In Table 2.7, variables Y� to Y� have aleatory uncertainty, Y� has both aleatory and 

epistemic uncertainty, and !X is epistemic uncertainty due to model error. The global 

sensitivity analysis is able to include both types of uncertainty by using the auxiliary 

variable approach. It is observed that in this example, three aleatory variables - length (Y�) 

and width (Y�) of the heatsink and the length of the fin (Y�) - have a dominant impact on 

the output variance, whereas the other uncertainty sources only have a small influence. 

Similarly to Table 2.4, the difference between the first-order and total effect is very small, 

which means the collaborative effect between the variables is negligible.  

 

2.7. SUMMARY 

 

 

This chapter proposed a methodology to include input variability, data uncertainty, 

and model errors within feedback-coupled MDA. Data uncertainty in the input random 

variables (due to sparse and/or imprecise data) is represented through non-parametric 

distributions using a likelihood-based approach. The effect of stochastic model error is 

considered by an auxiliary variable method based on the probability integral transform. 

These developments bring the epistemic uncertainty to the same level of analysis as input 

variability such that the propagation of both aleatory and epistemic uncertainty can be 

 �� �� �� �
 �� �« \
 

First-Order 0.362 0.228 0.327 0.000 0.037 0.046 0.048 

Total- Effect 0.371 0.236 0.333 0.000 0.038 0.049 0.053 
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implemented in a single loop manner. The auxiliary variable approach also provides a way 

for including epistemic uncertainty within global sensitivity analysis, which previously 

could only be applied to aleatory uncertainty sources. The proposed methodology thus 

provides a general formulation to include input data uncertainty, model form error and 

numerical errors (e.g., discretization error, surrogate model error, etc.) within feedback 

coupled MDA. 

Based on the concept of likelihood, the next chapter investigates a novel approach to 

expand the scalability and solve MDA problems with a large number of coupling variables. 
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CHAPTER 3  

STOCHASTIC MDA WITH HIGH-DIMENSIONAL COUPLING 

 

 

3.1. INTRODUCTION 

 

 

The problems addressed in the LAMDA approach and the methodology developed in 

Chapter 2 only contains one coupling variable in each direction. In reality, the number of 

coupling variables can be very large.  For example, in the areoelasticity analysis of Figure 

1.1, the nodal pressures and nodal displacements exchanged by CFD and FEA are both 

vectors of large size. In this scenario, the computational effort for even a first-order 

approximation increases dramatically with the dimension, while the solution accuracy 

drops even faster. Further, the disciplinary simulation models are computationally 

expensive, hence the function evaluations demanded by the LAMDA method is quite 

prohibitive.  

Due to the scalability challenges posed by such problems, this chapter focuses on 

developing efficient methods for the uncertainty quantification for high-dimensional 

feedback coupled analysis. The LAMDA concept discussed in Chapter 2 is implemented 

using a Bayesian network, using samples of input, output and coupling variables from one 

iteration of feedback coupled MDA. 

A Bayesian network (BN) is essentially the representation of a multivariate 

distribution through a directed acyclic graph which represents variables with nodes and 
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their dependence relationships with edges. Within mechanical systems, it has been used for 

system reliability assessment [63], model validation under uncertainty [64], diagnosis [65] 

and uncertainty quantification [66].  The Bayesian network is capable of incorporating a 

large number of variables and exhibits strong capability for uncertainty integration from 

multiple aleatory and epistemic sources [67, 68]. A Bayesian network can be created using 

multivariate samples to describe the statistical dependence among the variables and 

updated using available data. In this chapter, the satisfaction of the interdisciplinary 

compatibility is shown to be mathematically similar to updating with observed data, and 

thus the joint PDF of the coupling variables can be computed using the Bayesian updating 

process. 

The estimation of the posterior distribution in Bayesian updating requires an 

appropriate sampling technique.  Common algorithms such as Markov Chain Monte Carlo 

(MCMC) sampling [69] and expectation maximization [70] are computationally prohibitive 

for large size problems. To overcome this challenge, a copula-based sampling technique is 

introduced in this chapter to efficiently generate samples from the Bayesian network. A 

copula is a function that relates the joint CDF of multiple variables to their marginal CDFs 

and their correlations [71, 72]. The copula has been used to obtain the joint CDF in many 

fields such as actuarial science and statistics [72], and in investigating reliability analysis 

and RBDO for correlated [15] and non-Gaussian [73] input random variables. In this 

chapter, given interdisciplinary compatibility, the copula is conditionally sampled [67] to 

estimate the conditional joint distribution of all the variables.  

Generating samples from a Bayesian network using a copula-based approach is 

quite general. However, if a joint Gaussian copula is assumed, then the conditional joint 
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updating and conditioning of the BNs can be accomplished analytically [74], providing 

tremendous computational efficiency.  

In the aeroelasticity problem, the coupling variables in each direction (e.g., pressure, 

displacement) are correlated to each other. This issue leads to difficulty in the numerical 

implementation because the quantities at neighboring nodes are highly correlated, causing 

singularity in the covariance matrix of the copula. Therefore, a principal component 

analysis (PCA) [75] is adopted to capture the dominant variance in the data and reduce the 

dimensionality, and the Bayesian network is built in the principal component space.  

The contributions of this chapter can be summarized as follows:  

1. Develop a Bayesian network approach for stochastic MDA with feedback coupling; 

2. Use copula-based sampling for efficient construction of the joint PDF of coupling 

variables that satisfy interdisciplinary compatibility; and 

3. Use principal component analysis to reduce the dimension of the Bayesian network. 

The proposed approach consisting of the above three contributions is referred to as 

BNC-MDA (Bayesian Network and Copula-based Multi-Disciplinary Analysis) in this 

dissertation. BNC-MDA is basically the implementation of the LAMDA concept using a 

Bayesian network, which facilitates scaling up to high-dimensional problems. The proposed 

method is illustrated using a mathematical MDA problem first, and later using an aircraft 

wing aeroelastic analysis problem.  

The rest of the chapter is organized as follows. Section 3.2 discusses the difficulty of 

LAMDA in solving high-dimensional coupled MDA. Section 3.3 develops the proposed BNC-

MDA methodology. Two numerical examples - a mathematical example and an aeroelastic 
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problem - are presented in Section 3.4 to demonstrate the proposed methodology. Section 

3.5 provides concluding remarks. 

 

3.2. CHALLENGES POSED BY HIGH-DIMENSIONAL COUPLING 

 

 

This section briefly analyzes the difficulty in applying FORM-based LAMDA (Chapter 

2) to problems with a large number of coupling variables. 

In the LAMDA approach, for a given instance of the coupling variable, the integral in 

Eq. (2.3) is computed by taking the finite difference of two FORM analyses. This calculation 

needs to be repeated for multiple instances of the coupling variable to construct its PDF 

using Eq. (2.5).  

In high-dimensional coupled problems where the coupling quantities are large in 

number, each individual discipline accepts and yields a large number of coupling variables 

as inputs and outputs respectively (e.g., displacements and pressures at a large number of 

nodes in coupled FEA/CFD analyses). In this case, the joint distribution of the coupling 

variables needs to be evaluated. Consider a problem with two coupling variables in each 

direction as shown in Figure 3.1(a). A single iteration is shown in Figure 3.1(b). To 

estimate the joint distribution of ���  and ¬��  under interdisciplinary compatibility, 

suppose a first-order approximation of the bivariate joint distribution is adopted [76].  
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The coupling variables from “Analysis 2” to “Analysis 1” are denoted by ��� and ­��. 

To evaluate the joint PDF value at an instantiation of (���, ®���, the FORM analysis needs to 

be conducted to compute four joint CDFs 4� at ���� + 1�,®�� + 1��, 4� at ���� + 1�,®�� −
1��,	4� at ���� − 1�, ®�� + 1�� and 4� at ���� − 1�, ®�� − 1��. Then finite difference can be 

used to obtain the joint PDF value at (���, ®���: 

 					  �����, ®��� = 4� − 4� − 4� + 4�41�1�  (3.1) 

As the number of coupling variables increases, the number of function evaluations 

required by the above finite difference procedure becomes very large.  For example, 

consider 2 disciplinary analyses coupled by R variables in each direction. If 10 integration 

points are taken for each variable, 10C points will need to be evaluated in the n-

dimensional hypercube. At least 2R + 1 FORM analyses need to be executed at each point 

for the finite difference analysis. Assuming Q function evaluations are required for each 

���, ®�� Analysis 2 

¯�(���, ®��, �) 

Analysis 1 

¯�(���, ®��, �) ���, ®�� 

���, w�� ���, ®�� ���, ­�� 
Analysis 2 

¯�(���, ®��, �) 

Analysis 1 

¯�(���, ®��, �) 

Figure 3.1 Two-dimensional coupled analysis and one iteration representation 

(a) Coupled analysis with two coupling variables in each direction 

(b) One iteration of the coupled analysis 
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FORM analysis to converge (on average), the total number of function evaluations is: 

10C × �2R + 1� × Q. As R increases, the number of function evaluations will become 

enormous, resulting in prohibitive computational effort. In addition, since FORM is a first-

order approximation, the nonlinearity of the function G may also affect the accuracy, and 

the approximation may get worse as the dimension becomes higher. Consequently, the 

problems that can be solved by the original LAMDA approach (implemented using FORM 

and finite difference) are confined to low-dimensional coupling where the functions are 

inexpensive to evaluate and not highly nonlinear. Therefore, Section 3.3 develops a 

Bayesian network-based approach to implement the LAMDA concept for high-dimensional 

problems. 

 

3.3. BAYESIAN NETWORK AND COPULA-BASED SAMPLING 

 

 

The Bayesian network approach is investigated in this section, together with a 

copula-based sampling technique, to overcome the challenges of high-dimensional coupling 

discussed above. Given samples of coupling variables yielded by individual disciplinary 

analyses in two consecutive iterations, a Bayesian network is constructed to represent the 

joint distribution of these coupling variables. Next, a copula-based sampling technique is 

used to generate samples of the coupling variables that satisfy interdisciplinary 

compatibility. 
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3.3.1. BAYESIAN NETWORK FOR COUPLING VARIABLES DISTRIBUTION 

 

 

A Bayesian network (BN) is a probabilistic graphical model that represents a 

multivariate joint distribution (nodes) through univariate distributions and conditional 

probabilities (edges). A common usage of the Bayesian network is to infer the posterior 

distribution of the nodes given observed data (evidence). The posterior probability of event 

� given evidence e could be evaluated using Bayes’ theorem as: 

 					  !��|£� = !��, £�!�£� = !��, £�∑ !��, £��  (3.2) 

In a coupled analysis, the uncertainty regarding the coupling variables in MDA can 

be represented by their probability distributions conditioned on interdisciplinary 

compatibility. The Bayesian network for the two-discipline analysis of Figure 3.1, 

regarding two coupling variables in one direction is shown in Figure 3.2. In this network, 

��� and ®�� represent the coupling variable values generated from the TWX iteration, while 

��� and w�� are the corresponding values from the �T + 1�WX iteration. 	±-�� , ±²�� represent 

the differences of the corresponding variable values between the two iterations, i.e., 

 					  
±-�� = ��� − ���,  ±²�� = w�� − ®�� 

(3.3) 
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Due to the input uncertainty, the coupling variables and the difference terms are all 

stochastic quantities. The Bayesian network can be trained using samples of these variables, 

generated by first generating samples of input variables � and executing the �T − 1�WX and 

the TWX iterations of the coupled analysis. Note that the  �  variables are not included in the 

BN, since our interest is in connecting the coupling variables in two consecutive iterations 

for the same  �. The evidence e, which is interdisciplinary compatibility being satisfied, can 

be represented as H±-�� , ±²��N = ;0,0>. Therefore, the joint PDF of ���, w��, ��� and ®�� given 

the compatibility condition is: 

 			
  

����,³��,-��,²��J���,w��, ���, ®��|��� = ���, w�� = ®��M= �́ µ��,¶��,·��,¸��J���,w��, ���, ®��|±-�� = 0, ±²�� = 0M 
(3.4) 

This formulation could be easily extended to coupled analyses with higher 

dimensions. The accuracy of the Bayesian network depends on the number of training 

samples. In the Bayesian network in Figure 3.2, the samples of the coupling variables used 

to construct the Bayesian network are obtained from two consecutive iterations of the 

original coupled analysis. Since a full convergence analysis is not required, collecting a 

��� 

±-��  

��� w�� 

®�� 

±²��
Figure 3.2  Bayesian network connecting coupling variables in two successive iterations 
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large number of samples of the coupling variables becomes more affordable for high-

fidelity models.  

To evaluate the joint posterior distribution in Eq. (3.4), a proper sampling technique 

is required. Markov Chain Monte Carlo (MCMC) sampling is frequently used in Bayesian 

updating [77]; however, this technique is usually time-consuming. Therefore, a vine copula-

based sampling technique is employed here to estimate the joint PDF in an efficient manner.  

Details of Bayesian network and vine copula-based sampling are provided in 

Appendix II. 

 

3.3.2. DIMENSION REDUCTION OF THE BAYESIAN NETWORK 

 

 

The technique of BNC-MDA could be used for both the forward problem, i.e. 

uncertainty propagation, and the inverse problem, i.e. Bayesian inference. The size of the 

Bayesian network for a high-dimensional problem increases as the number of variables 

increases. For example, in the aeroelastic problem shown in Figure 1.1(and later discussed 

in Section 3.4.2), the FEA mesh has 258 nodes. Each node has 1 nodal pressure and 3 nodal 

displacements (along each coordinate). Therefore, it leads to a coupled system with 258 

nodal pressures as coupling variables in one direction, and 774 nodal displacements as 

coupling variables in the other. Using the proposed decoupled approach, we can simplify 

the problem by only looking at the direction with fewer coupling variables. Nevertheless, it 

still requires us to build a BN similar to Figure 3.2 but with 258 nodes each for the nodal 

pressure at the �T − 1�WX  iteration, the TWX iteration and the difference between them (thus 
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774 nodes in one BN). This will cause a tremendous amount of work constructing the 

network. Meanwhile, the nodal pressures in adjacent nodes are highly correlated with each 

other. This may lead to a singular covariance matrix affecting the sampling. 

Therefore, principal component analysis (PCA) is adopted for the purpose of 

reducing the dimensionality of the BN. PCA, also known as Karhunen-Loeve expansion or 

proper orthogonal decomposition [75] depending on the field of application, maps 

correlated variables to an uncorrelated space using an orthogonal transformation. The 

resulting uncorrelated variables are referred to as principal components. Each principal 

component is a linear combination of the original variables; all the principal components 

are orthogonal to each other, hence no redundant information is stored. The number of 

principal components is as large as the original set of variables, but the first few principal 

components may capture a large fraction of the total variance of the original data if the 

original variables have strong correlation. Therefore, use of PCA helps to reduce the 

number of variables (i.e., first few principal components) while including most of the 

variance in the problem. 

In the context of high-dimensional coupled MDA, coupling variables in each 

direction constitute a vector. Considering one iteration of the coupled analysis as shown in 

Figure 3.3, assume that the input coupling variable ��� is a vector consisting of e 

components; so is the output ���. Considering the variability in input �, if we draw � 

random samples of � , then each component of the vectors ���  and ���  has the 

corresponding � samples. 
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The � pairs of ��� and ��� are first merged into a single 2� × e matrix: the first � 

rows as samples of input ��� and last M rows as samples of output ���, and each column 

representing one component of the vector ���(and the corresponding component of ���). 

We denote this 2� × e data matrix by F. The singular value decomposition is denoted as 

F = �¹¬�, where º is a 2� × e rectangular diagonal matrix with �λP	, (T = 1 …e) at the 

first e diagonal entries, and zeros at the rest. ¬ is the e × e matrix of the eigenvectors of 

F¼F, and � is a 2� × 2� matrix of vectors, each of which is calculated as �½ = ��¾½ F­½. The 

PCA transformation of F with preserved dimensionality is given by: 

 			
  

�� = F�� = ¬¹���� = ¬¹� (3.5) 

where each row of � is a linear transformation of the corresponding row in F. Since: 

 			
  

F = �� (3.6) 

If ¿ denotes the first ¤ rows of �, and À denotes the first ¤ columns of �, then 

approximation of F by FÁ is achieved as: 

 			
  

FÁ = ¿À (3.7) 

��� ��� ��� Analysis 2 ¯�(���, x) 

Analysis 1 ¯�(���, x) 

Figure 3.3  One iteration of a high-dimensional coupled system 
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¤ is the selected number of principal components (PCs). The number of PCs required 

is determined by the amount of variance captured. Note that the matrix À consists of two 

parts: the top M rows are the principal components for input ���, i.e., !n���K
, Â = 1 … ¤, 

whereas the bottom M rows are the principal components for output ���, i.e., !n���K , Â =
1 … ¤. After PCA, the differences between the corresponding principal components of ��� 

and ���are calculated as: 

 			
  

Ã\Ä� = \Ä���� − \Ä����
 (3.8) 

and a Bayesian network is built with the quantities in Eq. (3.8). The resulting Bayesian 

network has 3¤ nodes. A simplifying approximation is also possible, by assuming the 

uncorrelated nodes to be separated (no edges). In that case, the full Bayesian network is 

decomposed into ¤ smaller Bayesian networks with 3 nodes each. The smaller Bayesian 

network for the TWX principal component is shown in Figure 3.4.  

 

 

 

 

 

Once the network is built, impose ±ÆÇP = 0 and update the distribution of !n-��P . Prior 

to PCA, there was one BN for the entire problem containing all the correlated coupling 

!n���K
 !n-��K

 

±ÆÇP
 

Figure 3.4  Bayesian network using the ��
 principal component 
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variables in one direction. After applying PCA, we have a few principal components that are 

uncorrelated. As a result, we have a smaller BN with all the principal components in one 

network, or if the above approximation is invoked, a few separate BNs for the principal 

components, each with only 3 nodes as shown in Figure 3.4. Thus in the example in Section 

3.4.2 , if 10 or 20 principal components are used to implement the proposed methodology, 

the monolithic BN with 774 nodes is either reduced to a smaller size BN with 30 or 60 

nodes, or based on the above approximation, decomposed into 10 or 20 independent BNs, 

each with only 3 nodes. Therefore, by using PCA we can reduce a large BN in two ways and 

drastically improve the efficiency in solving high-dimensional problems. The updated 

samples of the first few principal components are converted to the original correlated 

space using Eq. (3.7) to get the joint distribution of the coupling variables under 

interdisciplinary compatibility condition. 

Note that PCA is applied in this research in a manner different from previous 

applications of PCA in the context of MDA.  In previous applications, PCA is used to identify 

the principal components among the inputs and outputs, and then a reduced-order model 

is built in terms of the principal components [78].  However, in this research, we use PCA 

only to reduce the dimension of the Bayesian network; the training samples for the 

Bayesian network are generated from the analysis of the full model, not a reduced-order 

model.  

In summary, the proposed BNC-MDA methodology has four elements: (1) a Bayesian 

network is built using the samples of the coupling variables from 2 consecutive iterations. 

(2) The distributions of the coupling variables are estimated using a Bayesian network by 

enforcing the interdisciplinary compatibility condition, in a manner similar to updating the 
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Bayesian network with observed data. (3) A vine copula-based sampling technique is 

adopted for efficient sampling from the joint distribution. (4) Principal component analysis 

is used to reduce the dimension of the Bayesian network for further efficiency of the BNC-

MDA methodology. Note that the coupled multi-disciplinary analysis (only a few iterations) 

is only required in the first element and dominates the computational effort. The effort in 

the other three elements is negligible compared to that for the first element, as will be 

demonstrated in the aeroelasticity example below (in Table 3.5 and Table 3.6). The more 

iterations the coupled physics analysis requires for convergence, and the longer each 

individual disciplinary analysis takes, the more time will be saved by using BNC-MDA. The 

steps are summarized in the flowchart in Figure 3.5. 
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It is also worth noting that the proposed BNC-MDA framework is a sample-based 

methodology. This method includes two stages of sampling: (1) generating samples as 

training points for the Bayesian network, and (2) after the BN is built, samples are 

generated conditioned on the compatibility condition; this is a separate step from (1). The 

input distributions come into play in the first stage, while generating training points for the 

BN.  The input distributions can be correlated or uncorrelated; the training samples should 

Generate samples of 
the input uncertain 

variables ���
Propagate each 

sample through the 
feedback coupled 

analysis for 3-4 
iterations

Collect samples of 
the coupling 

variables from the 
last two consequtive 
iterations ��	and ��

High 
Dimension

al?

Apply PCA to reduce 
the dimensions into 
a smaller number of 
PCs �\Ä�	and \Ä��

Taking the 
differences between 
the samples of �	and � (\Ä�	and \Ä�), 

denoted by Ã
Build BN using the 

samples of  �, � and Ã as shown in Fig. 
3.2 (\Ä�, \Ä� and Ã\Ä in Fig. 3.4)

Update the BN 
conditioned on ± = 0

Collect the updated 
samples of variable � to estimate the 

joint posterior 
distribution

Yes 

No 

Figure 3.5. Flowchart of BNC-MDA approach 
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be generated accordingly. It is significant to realize that generating samples of the input 

variables is the step prior to constructing the Bayesian network. 

 

3.4. NUMERICAL EXAMPLES 

 

 

In this section, a mathematical problem with two coupling variables in each 

direction is first presented to compare the previous methods (SOFPI, FORM-based LAMDA) 

and the proposed BNC-MDA method. A multidisciplinary aeroelastic analysis of an aircraft 

wing is then used to demonstrate the effectiveness of the proposed approach to higher 

dimensional problems. 

 

3.4.1 MATHEMATICAL MDA PROBLEM 

 

 

The numerical example in [11] is modified to include two coupling variables in each 

coupling direction. This is an extension of the problem discussed in Du and Chen [79], and 

later in [10] where only two analyses were considered. The functional relationships are 

shown in Figure 3.6. The input variables � = ;Y�, Y�, Y�, Y�, Y�> are assumed to be normally 

distributed: e�1,1� and independent of each other. The independent and normal input 

assumption does not affect the proposed BNC-MDA methodology. If some of the input 

variables are correlated, we need to jointly sample these variables, then propagate them 

through one iteration of the coupled analysis to calculate the corresponding coupling 
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variable values. But the Bayesian network is only built after the training samples are 

generated. These training samples could be generated in a correlated or independent 

manner, depending on the problem data.  
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���, ®�� 

 

���, ®�� ��� = Y�Y� + Y�� + Y� + ��� + 0.1�®�� 

®�� = Y�Y� + Y�Y� + Y� + 0.15	��� − 0.3®�� 

Analysis 2 

Y� , Y� Y� , Y� Y� 

��� = Y�� + 2Y� − Y� + 2���� − 0.22®�� 

®�� = 2Y� + Y�Y� − 0.31���� + 0.2®�� 

Analysis 1 

Figure 3.6. Mathematical example of two-discipline coupled analysis 
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In Figure 3.6, the coupling variables are ���, ®�� from “Analysis 1” to “Analysis 2”, 

and ���, ®�� in the opposite direction. For the purpose of illustration, only the joint 

distribution of ���and ®�� is estimated and the joint distribution of ��� and ®�� can be 

calculated using the same method. In this example, we focus on calculating the PDFs of the 

coupling variables and do not calculate any further system output.  

Once the joint distribution of the coupling variables ���and ®�� is obtained, one can 

propagate Monte Carlo samples of this joint distribution through one iteration of the 

feedback coupled analysis similar to Figure 2.3, to obtain the corresponding samples of the 

coupling variables in the other direction, as well as the disciplinary and system level output 

(which are not assumed in this example). The dependence relations among the output and 

the coupling variables are preserved, because the connections between the two 

disciplinary analyses are not completely severed.  

Three different approaches, i.e. SOFPI, LAMDA and BNC-MDA are implemented to 

solve this problem. 10,000 samples of inputs are generated to execute the SOFPI method, 

which requires 107,421 function evaluations in total. A 2-D kernel density estimation 

technique is adopted to build the joint distribution. The resultant joint distribution of the 

coupling variables is used as the benchmark solution.  

In the LAMDA method, 10 integration values are chosen in Eq. (2.3) for each 

coupling variable. Therefore, a total of 100 likelihood values need to be evaluated; and an 

overall 14,619 function evaluations are required. A cubic spline interpolation is then 

exploited to construct the entire joint distribution.  

In the BNC-MDA method, 1,000 samples of the input and output of the function in 

Figure 3.1(b) are generated. The training points for building the Bayesian network are 
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generated by samples of the input variables Y� to Y�	and coupling variables ���, ®�� to run 

through one iteration of the coupled analysis to calculate ���, w��. Samples of the outputs 

after the first and second iterations of the coupled MDA are collected; the number of 

function evaluations is twice the number of the samples, which in this case is 2,000. The 

computational cost of the three approaches is summarized in Table 3.1. The outputs from 

the two iterations together with their differences are used to construct the Bayesian 

network shown in Figure 3.4.  Note that PCA is not used within BNC-MDA in this examples, 

since there are only two coupling variables in each direction. The results using the three 

approaches are listed in Table 3.2, and the marginal distributions are compared in Figure 

3.7.  

 

 

Table 3.1. Comparison of computational cost 

Approach 
Number of 

input samples 

Integration values 

for ���\®�� 

Total number of 

function evaluations 

SOFPI 10,000 N\A 107,421 

LAMDA N\A 8:0.5:15\0:0.25:3.5 14,619 

BNC-MDA 1000 N\A 2,000 

 

 

 

 

Table 3.2. Results using SOFPI, LAMDA and BNC-MDA 

 

 

 

 

 

 ��� ¬�� È���¬��  
 � � � � 

SOFPI 11.65 0.69 1.6 0.16 0.24 

LAMDA 11.48 0.67 2.02 0.17 0.52 

BNC-MDA 11.59 0.69 1.59 0.15 0.24 
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It can be concluded from Table 3.2 and Figure 3.7 that the proposed BNC-MDA 

method is able to capture the probability distribution of w�� and the value of the É���³��  

better than the original LAMDA, even though the mean and standard deviation of the 

marginal distribution of ��� calculated by LAMDA and BNC-MDA are both quite close to the 

benchmark solution. The Kullback-Leiber (K-L) divergence [80] is estimated for the 

marginal distributions of ��� for further comparison of accuracy.  

The K-L divergence of distribution S from distribution V, denoted by	DÊË�V||S�, is a 

measure of the information lost when V is approximated by S. A smaller value of the K-L 

divergence indicates a greater similarity between the two distributions. For continuous 

distributions V and S, the K-L divergence is defined as: 

 			
  

DÊË�V||S� = + V�Y�ln	�V�Y�S�Y��,Y.h
0h  (3.9) 

 

In practice, the PDFs are evaluated numerically, and the K-L [80] divergence is 

calculated as: 
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Figure 3.7 Marginal PDFs of coupling variables 
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DÊË�V||S� = Í ln	�V�YP�S�YP��V�YP�C
PO�  (3.10) 

where V and S represent the PDF values at YP  and R is the number of points at which the 

PDF are evaluated; in this chapter, R = 1,000. The K-L divergence is only defined if areas of 

V and S each sums to 1, and V�YP� > 0 and S�YP� > 0 simultaneously. The K-L divergence 

value with respect to SOFPI is 0.033 for LAMDA and 0.016 for BNC-MDA; thus the BNC-

MDA method results in a better approximation to the benchmark solution than the LAMDA 

approach (also confirmed by Figure 3.7).  The large error produced by the LAMDA 

approach is mostly due to its adoption of the first-order approximation. 

This mathematical example demonstrates the advantage of the proposed BNC-MDA 

method for bivariate coupling in each direction. The method achieves an accurate result 

while requiring much fewer function evaluations compared with both SOFPI and LAMDA. 

The next example illustrates the benefits of BNC-MDA in the case of high-dimensional 

coupling. 

 

3.4.2 MDA FOR AIRCRAFT WING 

 

 

In this section, a three-dimensional aeroelastic analysis of an aircraft wing is used to 

illustrate the proposed BNC-MDA method. A cantilevered wing with a NACA 0012 airfoil is 

adopted [81]. We use ANSYS to perform the fluid-structure interaction analysis of the wing. 

The fluid and structure meshes are shown in Figure 3.8.  
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This problem consists of hundreds of coupling quantities in each direction.  In this 

case, the computational effort of LAMDA — even if combined with PCA (LAMDA+PCA) — 

will still be very high while the accuracy will be worsened (due to the use of finite 

difference and the construction of a joint probability distribution with a sparse grid of 

integration points and using FORM). The total number of function evaluations in the 

LAMDA method assuming 10 integration values for each coupling variable is 10C × �2R +
1� × Q (n: number of coupling variables, m: average number of function evaluations for 

each FORM analysis).  If R is too large and only 20 principal components are used, 

‘LAMDA+PCA’ approach still needs 10�Ð × 21 × Q  function evaluations, which is an 

enormous amount of computing effort. Therefore, the ‘LAMDA+PCA’ approach is not 

affordable and not pursued here. BNC-MDA, which requires much fewer training samples 

of the input and coupling variables (and not fully convergent analysis) to construct the 

           (a)       Overall view                              (b)         Fluid and structure meshes 

Figure 3.8  Fluid and structure meshes and refinement parameters 
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Bayesian network, is very efficient in solving the problem; its accuracy will be compared 

with the SOFPI approach below. 

This example is run with two different mesh sizes (258 nodes and 1218 nodes) 

below. The backsweep angle bw is chosen to be the input variable with natural variability, 

and is assumed to be normally distributed as	e�0.4,0.04� without loss of generality. 110 

realizations of the backsweep angle are sampled to perform the coupled FSI analysis. The 

values of nodal pressure oscillate drastically in the first and second iterations; typically a 

large bias between the PDFs of the coupling variables will occur, and the resulting 

difference term ± will be either all positive or all negative. If the empirical CDF of ± for the 

copula is computed using all positive (or all negative) values, the conditional sampling will 

need an extrapolation to calculate the conditional joint distribution given ± = 0. This will 

significantly decrease the accuracy the proposed approach. To balance the solution 

accuracy and the computational efficiency, the FSI analysis is terminated after 3 iterations, 

the Bayesian network is built with the nodal pressure results of the 2nd and 3rd iterations.  

 

 

Table 3.3.  Cumulative distribution of the first 30 principal components 

No. of PCs 
258 

Nodes 

1218 

Nodes 
No. of PCs 

258 

Nodes 

1218 

Nodes 

1 0.7412 0.7095 16 0.9909 0.9931 

2 0.8344 0.7825 17 0.9919 0.9943 

3 0.9007 0.8400 18 0.9929 0.9954 

4 0.9237 0.8871 19 0.9937 0.9962 

5 0.9389 0.9160 20 0.9944 0.9969 

6 0.9501 0.9349 21 0.9949 0.9976 

7 0.9604 0.9473 22 0.9954 0.9980 

8 0.9677 0.9584 23 0.9959 0.9983 

9 0.9736 0.9669 24 0.9963 0.9986 

10 0.9788 0.9739 25 0.9966 0.9989 
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11 0.9818 0.9804 26 0.9969 0.9991 

12 0.9845 0.9842 27 0.9972 0.9992 

13 0.9865 0.9872 28 0.9974 0.9993 

14 0.9882 0.9894 29 0.9977 0.9994 

15 0.9896 0.9914 30 0.9978 0.9995 

 

 

It can be seen from Table 3.3 that, after applying PCA, the first 30 PCs can cover 

more than 99.99% or the variances from the original samples. Therefore, six cases are 

discussed here: (1) BNC-MDA method using first 10 principal components.  (2) BNC-MDA 

method using 15 principal components. (3) BNC-MDA method using 20 principal 

components. (4) BNC-MDA method using 30 principal components. (5) Output collected 

after 2 iterations. (6) Output collected after 3 iterations. For Cases 1, 2, 3 and 4, 5,000 

samples are generated using the BN to estimate the coupling variable distributions. The 

result of SOFPI is used as the benchmark solution.  

 

 

 

 

Figure 3.9  Normal probability plot of pressure from four cases at Node 1 
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Figure 3.9 shows the normal probability plot of Cases 3, 5, 6 as well as the 

benchmark solution (SOFPI) at Node 1. Cases 3 and 6 are closer to the SOFPI distribution 

compared with case 5. For an n-variable distribution, the K-L divergences for all marginal 

distributions are computed, and an average value is estimated using Eq. (3.11). 

 			
  

Average DÊË = ÑÒxÓ�Ô ��ÕÖx ��||×���		
C  

(3.11) 

where DÊËP  denotes the K-L divergence of the marginal distribution for the TWX node, and R is 

the total number of the nodes. For the sake of comparison, the Student’s t-copula is also 

used to implement the BNC-MDA approach. Table 3.4 summarizes the average K-L 

divergences for all six cases, using both Gaussian and t copulas.  

 

 

Table 3.4. Kullback-Leiber divergence for different scenarios (258 nodes) 

 

BNC-MDA FSI 

10 PCs 15 PCs 20 PCs 30 PCs �ØÙIter �ÚÙIter 

Average �Û�ÜÝ���
 0.25 0.19 0.16 0.16 

0.21 0.18 

Average	�Û��
 0.24 0.21 0.20 0.19 

 

 

The following observations are made: 

1. The results using the Gaussian and t copulas are similar for this problem. 

2. Case 1, Case 2, Case 3 and Case 4: As the number of utilized principal components 

increases, the K-L divergence becomes smaller and converges after 20 PCs. As more 

principal components are taken, more variance of the original data is captured, and 

the results are refined; however, for this example, 20 PCs are seen to be sufficient.  
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3. Case 5 and Case 6: Case 6 approaches the converged results better than Case 5. As 

the iteration number (of the physics analysis) increases, the stability of the solution 

is enhanced, and the differences between the results from consecutive iterations 

will become smaller. Also, the 3rd iteration of FPI achieves similar accuracy as the 

BNC-MDA result in the wing problem; therefore, very few further iterations of FPI 

are needed for convergence. The proposed BNC-MDA approach saves the 

computational effort by reducing the total number of iterations in the feedback 

coupled analysis. Therefore, the more iterations the FPI analysis requires for 

convergence, and the longer each individual disciplinary analysis takes, the more 

time will be saved by using BNC-MDA.  

4. In the implementation of BNC-MDA in this example, the large BN is broken into 

several separated small BNs for sampling, as in Figure 3.4. This is an approximation 

since ‘uncorrelated’ does not imply ‘independent’. To verify the accuracy of this 

approximation, we have also considered an unseparated network with 20 principal 

components connected to each other as shown in Figure 3.10. 
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Each node in the network represents a random variable. The 40 nodes on the top 

left and top right denote the principal components of the nodal pressure after the 

2nd and 3rd iterations respectively. The bottom 20 nodes, each connected to 2 nodes, 

represent the differences between the corresponding values. This unseparated BN is 

costly to build, and requires care in connecting the nodes correctly since it is 

particular to each problem, whereas the separated network is generic and only 

consists of 3-node networks as in Figure 3.4. Thus the separated network although 

approximate, is easy to implement for high-dimensional problems, but its accuracy 

needs to be verified. The average DÊË is computed between the results of the 

unseparated network and the independent network, and found to be 0.063, which 

indicates very similar solutions given by both methods. Therefore, the 

Figure 3.10  Unseparated Bayesian network with 20 principal components 
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approximation of individual separated BNs improves the efficiency of the BNC-MDA 

methodology for this example without too much sacrifice of the accuracy.  

5. To demonstrate the scalability of the proposed BNC-MDA approach, the same 

aeroelasticity problem is considered with a finer mesh of 1218 nodes. Thus the 

number of coupling variables in each direction is increased to 1218 (nodal 

pressures) and 3654 (nodal displacements). The same 110 realizations of the input 

variables (as in the coarse mesh model) are used to perform both BNC-MDA and 

fixed-point-iteration for this scaled-up problem. The FPI for the finer mesh model 

takes an average of 6 iterations and 750 seconds for convergence corresponding to 

each single realization of the input variables. Disciplinary analysis results (i.e., CFD 

and FEA) after the 3rd and 4th iterations are recorded and used to implement the 

proposed BNC-MDA methodology. It takes the desktop PC about 550 seconds to 

complete a 4-iteration analysis for each realization of the input variable. The 

computational cost of FPI and BNC-MDA, just for the coupled physics analysis, are 

compared in Table 3.5.  

 

 

Table 3.5  Computational effort comparison between FPI and BNC-MDA 

 

 

 

 

 

Number of Nodes 
FPI 

(secs) 

BNC-MDA 

(secs) 

Time saved 

(secs) 

258 14,300 9,350 4,950 

1218 82,500 60,500 22,000 
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It can be concluded from Table 3.5 that the computational savings with BNC-MDA 

improves with the size of the problem. The main reason for the savings in 

computational effort is that the coupled physics analysis is not run till full 

convergence; only a few iterations are used to build the Bayesian network (3 

iterations for the coarse mesh case, and 4 iterations for the fine mesh case). The CPU 

time reported in Table 3.5 also includes the time to build the model for each sample 

of input realization, which actually takes up 50% of the computational effort for a 

fully converged analysis. That is, for the 258-node model, it takes about 1 minute to 

build the model and 1 more minute to converge in about 6 iterations. Thus the BNC-

MDA approach takes 1.5 minutes (on average) per sample, compared to 2 minutes 

per sample for SOFPI. In terms of function evaluations, the savings is 50% in this 

problem. The savings will be more impressive if the fixed-point iteration took many 

more iterations to converge. So the computational savings is problem-dependent. In 

the earlier mathematical example (Section 3.4.1), BNC-MDA needed only 2000 

function evaluations compared to 107,421 by SOFPI, thus giving a 98% savings in 

computational effort.  

6. The number of principal components only comes into the picture in sampling the 

Bayesian network, after generating training samples from the coupled physics 

analysis. The time required for sampling by BNC-MDA with different numbers of 

principal components is shown in Table 3.6.  
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Table 3.6  Time required for sampling (seconds) by BNC-MDA 

 

 

 

 

 

It is seen that for the same number of principal components, there is no significant 

difference in the sampling effort between the coarser and finer physics models, 

because the Bayesian network has the same dimension between the two cases for 

the same number of principal components. The number of principal components 

will affect the accuracy of the result, but the effect on computational cost is 

insignificant compared to the cost of the physics (fluid-structure interaction) 

analysis. This is because the principal components only affect the dimension of the 

Bayesian network. 

7. A very important observation is the comparison of computational effort between 

Table 3.5 and Table 3.6. Table 3.6 shows that the computational effort in building 

the Bayesian network and subsequent sampling is negligible compared to the 

physics analysis effort shown in Table 3.5.   

8. In addition to the proposed BNC-MDA approach, the interdisciplinary compatibility 

can also be imposed using a sample-based conditioning strategy. After building the 

BN, a large number of unconditional samples of the variables are generated at first. 

Then the difference term ± are conditioned by a small interval around 0, i.e.,  

;−1Þ , 1Þ>. Then, the corresponding samples of the coupling variables are collected to 

estimate the joint distribution under compatibility condition. This approach slightly 

Number of Nodes 
 

10 pcs 15 pcs 20 pcs 30 pcs 

258  12.77 18.90 26.52 37.89 

1218  11.29 16.58 21.95 32.38 
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relaxes the compatibility condition using a tolerance value, which better agrees with 

the deterministic MDA.  

 

3.5. SUMMARY 

 

 

This chapter proposed a new approach for uncertainty propagation in high-

dimensional feedback-coupled multidisciplinary analysis. The Bayesian network technique 

is exploited for this purpose and the joint probability distribution of the coupling variables 

given interdisciplinary compatibility is computed using conditional sampling of the 

Bayesian network. A vine copula-based sampling technique, which is not restrained by the 

type of marginal distributions of the variables, is introduced for efficient sampling of the 

BN. The joint probability distribution of the coupling variables is estimated using 

conditional sampling with the copula. Principal component analysis is adopted to decrease 

the dimensionality of the Bayesian network. A mathematical MDA example and an 

aeroelastic wing analysis example are used to demonstrate the efficiency and accuracy of 

BNC-MDA.   

 Note that each training sample for constructing the Bayesian network only requires 

a few iterations of the coupled physics analysis instead of a fully converged solution as in 

FPI. Thus the proposed BNC-MDA approach is promising for high-dimensional problems.  

Since the Bayesian network and copula can both incorporate any types of 

distributions, the proposed BNC-MDA approach can therefore be applied to include 

epistemic sources of uncertainty. For sparse and interval data, the likelihood-based 
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approach introduced in Section 2.3 can be used to convert such data into a non-parametric 

distribution, which can be represented by a random variable node in the BNC approach. 

For model uncertainty, especially for the stochastic model output, the auxiliary variable 

method proposed in Section 2.4 can be adopted to represent the model error by an 

additional random variable (corresponding to the auxiliary variable), which subsequently 

be included in the proposed BNC-MDA as well. The inclusion of epistemic sources of 

uncertainty in BNC-MDA will be demonstrated using an example in Section 5.5.2. 

In the next two chapters, the Bayesian network and copula-based sampling 

approach is further investigated as a probabilistic graphical surrogate model for use in 

multi-objective and multi-disciplinary optimization under uncertainty.  
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CHAPTER 4  

MULTI-OBJECTIVE OPTIMIZATION UNDER UNCERTAINTY 

 

 

4.1. INTRODUCTION 

 

 

Chapters 2 and 3 focused on multidisciplinary analysis under uncertainty. Design 

optimization of multidisciplinary systems under uncertainty brings additional 

computational burden. Thus, the methodologies proposed in the previous chapters need to 

be integrated in the optimization framework effectively. Therefore, studies of appropriate 

optimization techniques are significant for MDO. In this chapter, the optimization 

technique for single disciplinary analysis (i.e., blackbox analysis) under uncertainty is first 

investigated. The optimization multidisciplinary systems will be studied in Chapter 5. 

A large system is usually designed to meet multiple objectives, which in many cases 

are conflicting with each other. To improve the overall performance of the system, the 

conflicting objectives need to be balanced through multi-objective optimization. In multi-

objective optimization (MOO) with competing objectives, the multiple solutions are often 

characterized through a Pareto surface, which is a series of designs describing the tradeoff 

among different objectives. The decision maker will select the appropriate design 

alternative based on his/her preferences on the objectives [82]. Four approaches have 

been studied in the literature to construct the Pareto surface: weighted sum, goal 

programming, constraint-based methods, and genetic algorithm. 



83 

 

The weighted sum approach assigns weights for each objective based on the stake-

holder’s preferences, and formulates a single objective optimization. The Pareto front is 

achieved by trying different weights for the objectives and performing the optimization 

multiple times. The goal programming approach treats each conflicting objective as an 

equivalent constraint (one goal), and introduces detrimental deviations for each of the 

goals. The objective is to minimize the weighted sum of the detrimental deviations. In 

constraint-based methods [83], one of the objective functions is selected as the only 

objective, and the remaining objective functions are treated as constraints. The Pareto front 

can be obtained by systematically varying the constraint bounds. Similarly, multiple 

optimizations need to be implemented. The genetic algorithm-based approach globally 

searches for feasible solutions, compares and ranks them based on objectives and 

constraints, and selects the non-dominated solutions [84]. The first three approaches 

convert the multi-objective optimization problem into a single objective problem and solve 

with optimization algorithms, therefore are more efficient. Compared to the first three 

approaches, a genetic algorithm requires more function evaluations; however, the former 

three approaches are more likely to result in solutions that do not belong to the Pareto 

front. 

As mentioned earlier, the presence of input uncertainty and model errors introduces 

uncertainty in the estimation of the system model outputs. As a result, optimization under 

uncertainty (OUU) requires an extra loop of uncertainty quantification (UQ) or reliability 

assessment in each optimization iteration. Such stochastic optimization formulation often 

suffers from intensive computational effort. 
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Therefore, surrogate modeling techniques, which replace the expensive physics code 

with an inexpensive model for UQ and reliability analysis, are often used for optimization 

under uncertainty. However, most surrogate modeling approaches suffer from the curse of 

dimensionality and may be inaccurate for modeling a system with a large number of input 

and output variables. Furthermore, multiple outputs need to be considered in multi-

objective optimization. If the surrogate models are built for individual analyses, the 

correlations between the outputs are likely to be missed. To overcome this challenge, 

surrogate modeling that considers output dependence has been proposed using techniques 

such as co-kriging [85]. However, the size of the co-kriging covariance matrix grows rapidly 

as the number of outputs considered increases; thus one can incorporate dependence 

between only a small number of output variables at present.    

As mentioned in Section 1.1, optimization under uncertainty can be addressed by 

reliability-based design optimization (RBDO) and robustness design optimization (RDO). 

This chapter addresses multi-objective optimization in terms of RBDO; however, the 

proposed approach can also be extended to RDO problems.   

Reliability assessment, which needs to calculate the probability of the output being 

less (or greater) than a threshold, is often applied to individual outputs. However, given a 

set of design values, due to common uncertainty sources propagating through the model, 

the outputs are inherently correlated with each other. To enhance the system-level 

reliability, the joint probability of success (or failure) should be introduced in the 

optimization formulation. This requires the consideration of output dependencies. 

Inclusion of dependence between the objectives has been proposed in [86], and using the 

joint probability as a constraint has been considered in [87]. Both studies use first-order 
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approximation and consider the input variability as the only uncertainty source. Joint 

probabilities of only 2 objectives in [86] and 3 objectives in [87] are considered. As the 

number of output variables increases, the accuracy of the first-order approximation gets 

worse, whereas the number of function evaluations increases many times more than the 

number of variables [88].  

Review of the existing work reveals current limitations of surrogate modeling for 

large and dependent systems. Therefore, it is important to develop effective OUU methods 

that can handle a large number of design variables and multiple objectives, while still 

preserving the correlations between the objectives. Also, a more efficient and accurate 

method is essential to evaluate the joint probability for a large number of variables. 

Towards this end, the Bayesian network and vine copula-based sampling technique 

described in Appendix II is explored as a probabilistic graphical surrogate modeling tool in 

this chapter.  

A BN is first trained using the samples of the input and output variables of the 

original codes. In optimization under uncertainty, given the values of the design inputs, the 

Gaussian copula can be conditionally sampled [67] to estimate the conditional joint 

distribution of all the output variables. The concepts of Bayesian network and copula-based 

sampling are combined for MOO in this research, and referred to as BNC-MOO. The 

proposed approach is used with an optimization algorithm to accomplish design under 

uncertainty. Since the proposed approach is efficient in sampling, genetic algorithms is 

hence affordable. A Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [84] that 

specifically solves multi-objective optimization is applied for identifying the Pareto front in 

this research.  
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Since the Bayesian network is used as a surrogate model in this research, its 

predictive capability largely relies on the selection of useful and informative training points. 

Selection of training points for enhancing the performance of surrogate models in 

optimization, referred to as Efficient Global Optimization (EGO), has been studied using 

Gaussian process surrogate models [89], where an expected improvement function is built 

to select the location at which new training points should be added. Previous research only 

focuses on the improvement of a single function. However, this is not sufficient when 

multiple objectives that share the same inputs need to be improved simultaneously. This is 

because different training points need to be added to improve different objectives. If the 

EGO-based approach is used, then co-Kriging will have to be adopted to properly account 

for dependence among the objectives; this is computationally burdensome in the presence 

of multiple objectives. In this chapter, a novel optimal training point selection technique is 

proposed based on the inverse propagation capability of the Bayesian network. A sample-

based ‘sculpting’ technique [90] is exploited to selectively choose the input samples that 

correspond to multiple outputs in the desired region simultaneously. This strategy is found 

to be effective and efficient in constructing the Pareto surface of solutions. 

The contributions of this chapter are as follows: 

(1) A new concept of probabilistic surrogate modeling technique based on the Bayesian 

network is adopted in order to consider large numbers of input variables and preserve 

the dependence between the objectives. 

(2) The BNC approach is developed for multi-objective optimization under uncertainty in 

the context of an RBDO formulation. 
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(3) A novel training point selection approach is proposed using sample-based conditioning 

of the BN, in order to efficiently construct the Pareto surface. 

The rest of the chapter is organized as follows. Section 4.2 briefly formulates single 

objective and multi-objective optimization problems under uncertainty, in the context of 

RBDO. Section 4.3 develops two innovations: (1) the use of the BNC approach for efficient 

uncertainty quantification and design optimization, and (2) the use of sample-based 

conditioning to improve the Pareto surface. The first innovation exploits forward 

propagation through BN, whereas the second innovation exploits inverse propagation 

through the BN. An automotive side impact problem is used in Section 4.4 for numerical 

illustration of the proposed MOUU methodology. Section 4.5 provides concluding remarks.  

 

4.2. OPTIMIZATION UNDER UNCERTAINTY 

 

 

4.2.1. SINGLE OBJECTIVE OPTIMIZATION 

 

 

This section formulates the optimization problem used in Chapters 4 and 5. A 

typical deterministic design optimization formulation can be given as follows.  

 QTRa ���, Z�  

s.t. 

 �P��, Z� 	≤ 	0	T	 = 	 {1, . . . , R×} (4.1) 

 ¤=aß 	≤ 	 Yà 	≤ 	�=aß , ©	 = 	 {1, . . . , Ra}  
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where f is the performance function or objective to be minimized; x is the vector of design 

variables; Z is the vector of non-design variables (i.e., not controlled by the designer); R×  

and Ra  are the number of constraints and design variables, respectively; ¤=aß  and �=aß  are 

the lower and upper bounds of Yà. When the uncertainties in variables �	and Z are of the 

aleatory type, the formulation and solution approaches are rather well-established; a 

survey is provided in [13]. An RBDO formulation of the above problem combining 

uncertainty can be given as 

 QTRfi,Ù c´�F, Ù, \, ZÙ�  

s.t 

 

 

!op=��P�F, Ù, \, ZÙ� ≤ 0� ≥ VWP 				T = {1, … , R×} 
(4.2) 

 !op=�F ≥ áâF� ≥ V6$W   

 !op=�F	 ≤ 	�âF� 	≥ 	V-$W   

 áâÙ 	≤ 	Ù	 ≤ 	�âÙ  

   

where F is the vector of random design variables with bounds áâI  and �âI, respectively; µf 

and μF are the mean of � and F, respectively; Ù is the vector of deterministic design 

variables with bounds áâ�  and �â�; \ is the vector of random non-design variables; Z�  is 

the vector of deterministic parameters. The upper case notations represent stochastic 

quantities, whereas the lower case notations denote deterministic quantities. VWP  is the 

target reliability required for the TWX constraint; V6$W  and V-$W
 are the target reliabilities for 

the design variable bounds. An alternate formulation for the inequality/bound constraints 

using the concept of feasibility robustness involves narrowing the constraint boundaries by 

a multiple of their respective standard deviations [91]. 
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Evaluation of the objective and constraints for Eq. (4.2) can be done through Monte 

Carlo sampling, but it is computationally intensive to implement when the original code is 

time-consuming. Efficient reliability approaches such as FORM and SORM can significantly 

reduce the effort, yet still need dozens of function evaluations for a given design value. The 

total number of function evaluations will accumulate as the number of design cycles 

increases. Therefore, surrogate modeling techniques are usually pursued to replace the 

original model with computationally inexpensive models for the objective and constraints 

estimation.  

Based on the single objective optimization formulations, the multi-objective 

problems are formulated in Section 4.2.2. 

 

4.2.2. MULTI-OBJECTIVE OPTIMIZATION 

 

 

A generic formulation of deterministic multi-objective optimization for R#$K 

objectives may be written as:  

 min� æ����, Z�, … , �Cçèé��, Z�ê 

s.t.            �P��, Z� ≤ 0, T = 1 … R3#C 

áâ� ≤ � ≤ �â� 

(4.3) 

where � and Z are the design and non-design variables, and �P	�T = 1 … R3#C� are the R3#C 

deterministic constraints. áâ� and �â� represent the upper and lower bounds for the 

design variables �. The Pareto front for such a problem indicates the tradeoff between the 

function values of objectives �P, T = 1 … R#$K. 
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In the presence of input variability, data uncertainty, and model uncertainty, the 

outputs become random variables, which result in stochastic objectives and constraints. In 

this scenario, the mean values c �́ , … , c Ốçèé  are often considered as the objectives. In the 

context of RBDO, deterministic constraints ��, …	, �CëçÔ  are rewritten with desired 

probabilities of satisfaction. Therefore, MOO with probabilistic constraints can be 

formulated as: 

 min�F,Ù ì c �́�F, \, Ù, ZÙ�∶îc Ốçèé�F, \, Ù, ZÙ� 

s.t.         !op=��P�F, \, Ù, ZÙ� ≤ �PW� ≥ !W �ï�W, T = 1 … R3#C 

áâF ≤ �F ≤ 	�âF áâÙ ≤ Ù ≤ �âÙ 

 (4.4) 

The joint probability of satisfying all the constraints may also be added as a constraint 

as: 

 	!op= ðñ��P�F, \, Ù, ZÙ� ≤ �PW�
CëçÔ

PO� ò ≥ !KW  (4.5) 

Estimating the joint probability of multiple events using first-order approximation 

was proposed in [92] and improved in [93, 94]. The first-order approximation was used in 

[86] to estimate the joint probability distribution of the objectives in MOO. The first-order 

approximation could become inadequate in the presence of nonlinear objectives and 

constraints, and when the number of objectives and constraints is large. On the other hand, 

Monte Carlo sampling can be accurate, but very expensive. Therefore, a surrogate modeling 
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strategy combining Bayesian network and copula sampling is developed in the next section, 

to achieve both the desired accuracy and efficiency.   

 

4.3. BAYESIAN NETWORK AND COPULA-BASED SAMPLING 

 

 

Details of the BNC approach are provided in Appendix II. This section introduces its 

application as a surrogate modeling tool. For the purpose of illustration, the proposed use 

of the Bayesian network is shown for a simple optimization problem in Figure 4.1. Figure 

4.1(a) shows a simple model with 2 input variables (a design variable DV, and an uncertain 

variable UV) and 2 output variables (constraint variable Constr, and objective variable Obj).  

Figure 4.1(b) shows a slightly different case with 3 design variables (Dw1, Dw2, and Dw3), 

which are shown in the top row of the BN. Each design variable is associated with 

variability (i.e., �w1, �w2 and �w3) shown in the second row. This is the variability 

introduced in realizing the values of the design variables in the actual system (due to 

manufacturing factors, for example). The second row also includes two additional 

uncertain input variables �w4 and �w5 that are not design variables. The outputs are 

shown in the 3rd (npRB¨o1 and	npRB¨o2) and 4th rows (ó=Â1 and ó=Â2).  
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In the proposed method, the Bayesian network is used as a probabilistic surrogate 

model that connects the input and output variables through a joint distribution. 

(Commonly used surrogate models seek to predict output values given input values, 

whereas the BN surrogate model provides the probability distribution of the output given 

input values).  

In each optimization iteration, the design variables are conditioned at the design 

values, and the posterior joint distribution of the output variables. 

��ó=Â1, ó=Â2, npRB¨o1, npRB¨o2|	DwP = ,£BT�R	®<¤�£B� is estimated. Note that usually the 

nodes in a BN represent random variables. However, in the context of design optimization, 

the design variable nodes (DwB, dashed rectangle) are conditioned at specific design values 

in each iteration, and are therefore deterministic quantities. Once the BN is constructed, it 

is used for generating conditional samples for both the forward and inverse problems. A 

vine copula-based strategy is proposed, as explained next. The uncertainty propagation 

procedure during each design iteration is demonstrated in Section 4 using parallel 

coordinate plots.  

DV1 DV2 DV3 

Input 

Output 

DV UV 

Constr Obj 

(a) BN for a simple I/O model      (b) BN for a model with more variables 

Figure 4.1  Bayesian network representation of optimization under uncertainty 
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4.3.1 UNCERTAINTY PROPAGATION USING VINE COPULA-BASED SAMPLING 

 

 

Forward conditioning will be implemented in each optimization iteration, which are 

illustrated in Figure 4.2. During each optimization iteration, the outputs will be 

conditioned on the values of DVs (circles in both figures), then the network is updated 

using Gaussian copula-based sampling. Samples from the conditional distribution (dashed 

square on the right figure) are used to estimate the mean of the objectives and the 

reliability constraints. 

 

 

Figure 4.2. Parallel coordinate representation of the model dependencies 

 

 

4.3.2 TRAINING POINT SELECTION FOR PARETO SURFACE CONSTRUCTION 

 

Based on the performance of the surrogate model, training points can be selectively 

added to improve the Pareto surface. In MOUU problems, the mean values of several 

objectives need to be optimized simultaneously. As mentioned in Section 4.1, training point 

ôâ�� ôâ�� ÄõØ� ÄõØ� �¬� �¬� ôâ�� ôâ�� ÄõØ� ÄõØ� �¬� �¬� 
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selection methods in surrogate-based optimization (e.g., EGO) mostly focus on considering 

a single objective, and little work has been done on multiple objectives simultaneously. In 

the current section, the Bayesian network is exploited in an inverse way through a sample-

based strategy for the purpose of Pareto surface construction. Figure 4.3 demonstrates the 

basic concept of this sample-based strategy, which may be referred to as ‘sculpting’ [90].  

 

 

 

 

 

The proposed strategy for Pareto surface improvement using the Bayesian network-

based sculpting is as follows. An initial Bayesian network is first constructed using an initial 

set of training points (i.e., values of input variables – both design variables and uncertain 

inputs). Using samples from this BN, the range of values of the objectives in the desired 

region (often the highest or the lowest values as shown in Figure 4.3 (a)) are identified, 

and the corresponding input variable samples are as shown in Figure 4.3 (b). Then, the 

input samples identified from Figure 4.3 (b) can be used as the new training points and 

ôâ�� ôâ�� ÄõØ� ÄõØ� �¬� �¬� ôâ�� ôâ�� ÄõØ� ÄõØ� �¬� �¬� 

Figure 4.3. Sculpting for training points 

selection 

(a) Select samples of the objectives from the 

desired region 

(b)   Collect the corresponding samples of the 

design variables 
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the corresponding objectives and constraints can be calculated with the original model. 

Next, a new Bayesian network is built with both the original and additional samples, and 

the improved Pareto surface is constructed. This ‘sculpting strategy’ is both efficient and 

preserves the dependence among different objectives, since the new training points 

correspond to output samples in the desired region for all objectives simultaneously.  

The outcome of the sculpting strategy proposed here is a little different from that described 

in Ref [90]. In Ref. [90], sculpting is used to identify regions of optimum solution among the 

available samples generated from the BN. Whereas in this chapter, sculpting is used to 

identify additional training samples to improve the BN, so that new regions of optimum 

solutions may be identified. The training point selection and multi-objective optimization 

processes are summarized in the flowchart as shown in Figure 4.4. 
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Figure 4.4.  Flowchart for the training point selection and multi-objective 

optimization scheme 

 

 

4.4. NUMERICAL EXAMPLE 

 

 

A vehicle side impact model is used to demonstrate the proposed methodology. The 

model is shown in Figure 4.5. A list of input and output variables is provided in Table 1. 

The uncertainty sources (input variability) are listed in Table 2. 

 

Uniformly generate samples of the 
design variables �¬ , and 

randomly generate samples of the 
uncertain variables (�¬) as initial 

training points

Propagate each sample through the 
computational model to estimate 
the values for the objective and 

constraint functions

Build BN as shown in Fig. 4.1(b), 
and generate a large amount of 

samples using copula-based 
sampling approach

Select additional training points as 
explained in Section 4.3.2, and 

estimate the corresponding 
objective and constraint values

Rebuild BN with the initial and 
additional training points, and 

perform multi-objective 
optimization as illustrated in 

Section 4.3
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Figure 4.5. Vehicle side impact model [95] 

 

 

Table 4.1.Input and output variables of the side impact model 

No.  Input  Design space No.  Output 

1 B-pillar inner: Y� [0.5 , 1.5] 1 Weight 

2 B-pillar reinforce: Y� [0.5 , 1.5] 2 Abdomen load: ' $ 

3 Floor side inner: Y� [0.5 , 1.5] 3 Upper rib deflection: öT=- 

4 Cross member: Y� [0.5 , 1.5] 4 Middle rib deflection: öT=@ 

5 Door beam: Y� [0.5 , 1.5] 5 Lower rib deflection: öT=6 
6 Door belt line: Y� [0.5 , 1.5] 6 Upper viscous criteria: wn- 

7 Roof rail: Y÷ [0.5 , 1.5] 7 Middle viscous criteria: wn@ 

8 Mat. of B-pillar inner: Yø [0.192 , 0.345] 8 Lower viscous criteria: wn6 
9 Mat. of floor side inner: Yù [0.192 , 0.345] 9 Pubic force: 4Æ$ 

 

Table 4.2. Uncertainty sources of the model 

No. Input  Uncertainty Type 

1 B-pillar inner e�0, 0.03� 

2 B-pillar reinforce e�0, 0.03� 

3 Floor side inner e�0, 0.03� 

4 Cross member e�0, 0.03� 

5 Door beam e�0, 0.03� 

6 Door belt line e�0, 0.03� 

7 Roof rail e�0, 0.03� 

8 Mat. of B-pillar inner e�0, 0.03� 

9 Mat. of floor side inner e�0, 0.03� 

10 Barrier height Data: 4, -8, 3.5, -0.7, 0.1, 12,[-25,20] [-30,22][-15,31] [-28,28] 

11 Barrier hitting Data: 3, -2, 1, 0, -0.5, 0.3,[-4,5][-8,10][-10,7] [-0.1,1] 
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The variables listed in Table 4.1 are used as design variables. Due to variability in the 

manufacturing process, variability is also assumed for each design variable as shown in 

Table 4.2. (This situation corresponds to the case shown in Figure 4.1(b)). Note that input 

variables 10 and 11 were treated as design variables in [34]. In this chapter, they are 

assumed as uncertain variables, for which sparse observations plus expert-specified ranges 

are assumed to be available for the sake of illustrating the use of non-parametric empirical 

distributions in the proposed methodology. The likelihood-based approach introduced in 

Section 2.3 is used to construct non-parametric PDFs for both variables as shown in Figure 

4.6.  

 

 

 

 

 

An adequate number of training points first needs to be generated in order to 

construct the Bayesian network. For the side impact problem, a stepwise regression (SR) 

model is provided in [95], but the original data used to train the SR model are not available. 

Figure 4.6. Non-parametric PDFs for uncertain parameters 
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Therefore, in this research, the SR model is treated as the “original” model for the sake of 

illustration, from which input samples are generated to calculate the output. And then the 

input, uncertain and output variable values are used to train the BN.  

The connections (topology) between the nodes can be inferred from the SR model, 

whereas the required number of samples is identified by the verification technique 

explained in Appendix II. At first, 100 samples are generated using Latin Hypercube 

sampling to train the BN. The determinant of the correlation coefficient matrix calculated 

based on the training samples is ,£¨W�C�ÐÐ = 2.07 ∗ 100��. After the BN is trained, 100 sets of 

samples are generated using Guassian copula, the determinants of their correlation 

coefficient matrices are calculated. The mean and standard deviation of the determinants 

are: 4.81 ∗ 100�� and 7.35 ∗ 100��. Thus ,£¨W�C falls outside the 90% bounds, implying that 

the number of training samples is not sufficient. Therefore, 15 additional samples are 

generated and added to the original training samples to build a new BN. The same 

verification process is implemented, the determinant calculated from the 115 training 

samples is ,£¨W�C��� = 3.14 ∗ 100�� , while the mean and standard deviation of the 

determinants, which are calculated based on the copula-generated samples, is 1.80 ∗ 100�� 

and 2.17 ∗ 100��. Since ,£¨W�C��� lands in the 90% bounds, the new BN and the Gaussian 

copula assumption is therefore valid. 

Next, the 115 samples of the design variables, combined with other uncertain 

variables, are propagated through the SR model. Samples of the inputs and outputs are 

then used to build the Bayesian network as shown in Figure 4.7. This BN is a probabilistic 

surrogate model of the side impact problem, i.e., for given values of some variables, it 

provides the joint probability distribution of the other variables. 
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Three optimization cases are analyzed. Case I is a single objective optimization 

problem. Its purpose is to verify the accuracy of the proposed BNC approach with the 

original SR model. The other two cases consider multi-objective optimization. 
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Figure 4.7. Optimization with BN 
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Table 4.3. Correlations between output variables 

 

 

Table 4.3 shows the correlation coefficients between the output variables. It can be 

seen that the correlation coefficient between the first two objectives (i.e., weight and door 

velocity) is -0.34, which indicates a competing relationship between the two variables. To 

simultaneously optimize these two competing quantities, a multi-objective optimization 

formulation from [86] is adopted, in which car weight and the door velocity are minimized 

simultaneously. The Pareto front needs to be created to address this relationship. 

Specifications of different cases are provided as follows:  

Case I: Single objective RBDO. In this case, the car weight is used as the sole objective. 

The probabilities of all other 10 outputs being greater than 0.99 individually are used as 

the reliability constraints. This is the ü-constraint approach. The optimization is solved 

with both the original SR model and the proposed BNC approach. The purpose of 

conducting this case is to compare the BNC method with the SR model and study the extent 

of agreement between the two approaches.  

  Weight w��	 ' $	 4Æ$	 öT=-	 öT=@	 öT=6	 wn-	 wn@	 wn6	 wýÆ	
Weight 1.00 -0.34 -0.74 -0.71 -0.38 -0.54 -0.67 -0.58 -0.37 -0.67 -0.62 w�� -0.34 1.00 0.07 0.13 -0.14 0.02 0.01 -0.17 -0.24 0.13 0.01 ' $ -0.74 0.07 1.00 0.86 0.35 0.49 0.64 0.35 0.26 0.67 0.60 4Æ$ -0.71 0.13 0.86 1.00 0.04 0.16 0.31 0.16 0.01 0.40 0.27 öT=- -0.38 -0.14 0.35 0.04 1.00 0.95 0.80 0.85 0.94 0.56 0.87 öT=@ -0.54 0.02 0.49 0.16 0.95 1.00 0.93 0.84 0.85 0.74 0.96 öT=6 -0.67 0.01 0.64 0.31 0.80 0.93 1.00 0.77 0.72 0.87 0.96 wn- -0.58 -0.17 0.35 0.16 0.85 0.84 0.77 1.00 0.92 0.53 0.79 wn@ -0.37 -0.24 0.26 0.01 0.94 0.85 0.72 0.92 1.00 0.43 0.78 wn6 -0.67 0.13 0.67 0.40 0.56 0.74 0.87 0.53 0.43 1.00 0.77 wýÆ -0.62 0.01 0.60 0.27 0.87 0.96 0.96 0.79 0.78 0.77 1.00 
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Case II: Multi-objective optimization (RBDO formulation) with 2 objectives and 9 

individual probability constraints. 

Case III: Multi-objective optimization (RBDO formulation) with 2 objectives, 9 

individual probability constraints and an additional joint probability constraint of the 9 

outputs. 

Case I: Single Objective RBDO 

The problem is formulated as: 

 

min�³ þ£T�ℎ¨�Dw, RpRDw� 

                          s.t.              !P�npRP < noT¨P� ≥ 0.99 

0.5 ≤ YP ≤ 1.5, T = 1 … 9 

(4.6) 

The DIviding RECTangles (DIRECT) algorithm, which is a gradient-free global 

optimizer, is adopted to solve the optimization problem. The optimum obtained from the 

BNC approach is compared against the solution of the SR model. The optimization history is 

shown in Figure 4.8, and the optimal solution is listed in  Table 4.4. The objectives and 

constraints using the two models are listed in  

 

 

 
Figure 4.8  Single objective RBDO history for SR and BNC 
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 Table 4.4. Comparison of optimal solutions using SR and BNC 

 

 

Table 4.5. Performance comparison of the optimal solutions using SR and BNC 

 

 

It can be seen from  Table 4.4 and  

 

Table 4.5 that the overall performances of the SR and BN approaches are quite 

similar. The differences between the BN and SR results for objective, constraints and most 

  Design Variables RBDO with SR 
RBDO 

with BNC 

Difference 

(%) 

Design 

Variables 

B-pillar inner 0.96 1 4 

B-pillar reinforce 1.18 1.33 13 

Floor side inner 0.63 0.65 3 

Cross member 1.30 1.33 2 

Door beam 0.89 0.85 4 

Door belt line 1.44 0.96 33 

Roof rail 0.89 0.84 6 

Mat. of B-pillar inner 0.34 0.32 6 

Mat. of floor side inner 0.27 0.32 19 

 
Output Variables 

(a) 

RBDO 

with SR 

(b) 

RBDO 

with BNC 

(c) 

Evaluation of 

BNC with SR 

(d) 

Difference between 

(b) and (d) 

% 

Objective Weight 28.20 29.11 29.49 5 

Probabilistic 

Constraints 

Abdomen load 1 1 1 0 

Upper rib deflection 1 0.99 1 0 

Middle rib deflection 1 1 1 0 

Lower rib deflection 0.99 1 1 1 

Upper viscous criteria 1 0.99 1 0 

Middle viscous criteria 1 1 1 0 

Lower viscous criteria 1 1 1 0 

Pubic force 0.99 1 0.97 2 

B-pillar velocity 1 1 1 0 

Door velocity 1 0.99 0.97 3 
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of the design variables are 5% or less. The probabilistic constraints for pubic symphysis 

force and door velocity (bold in red) are slightly violated, which may be due to the lack of 

sufficient samples in training the BN, which will be analyzed later when discussing Pareto 

surface improvement. Having verified the accuracy of the BNC approach, the next two cases 

are implemented for multi-objective RBDO. 

 

Cases II/III: Multi-objective RBDO with Individual/Joint Probability Constraints 

 

The optimization with two competing objectives and 9 individual probability 

constraints (and one additional joint probability constraint for case III) is formulated as 

shown in Eq. (4.7). 

The NSGA-II algorithm is applied to construct the Pareto front. The population size in 

this genetic algorithm implementation is chosen as 150, probability of crossover is 1 and 

probability of mutation is 0.15. The total number of iterations is 20. MOO with the SR 

model is first implemented to identify the effect of the additional joint probability 

constraint.  

 

 

 min�� c��PïXW 	&	c³�6�çç�  

0.5 ≤ YP ≤ 1.5, T = 1 … 7	0.192 ≤ YK ≤ 0.345, Â = 8 … 9 

s.t.                          !P�npRP < noT¨P� ≥ 0.99 

!�⋂ �npRP < noT¨P�ùPO� � ≥ 0.99  (case III only) (4.7) 
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Figure 4.9. Comparison of Pareto fronts with/without joint probability constraints 

 

 

It can be concluded from Figure 4.9 that, with the consideration of the joint 

probability constraint, the designs along the Pareto front with joint probability are 

generally above those without the joint probability constraint, especially in the region of 

low weight and high velocity. This is intuitively correct since the objectives are minimized; 

with an additional constraint, both objectives have higher values.  

The proposed BNC approach is next used to construct the Pareto fronts for Cases II 

and III. At each point of the BNC Pareto front, the objectives are re-evaluated using the SR 

model. Figure 4.10 compares the BNC solutions (circles), the BNC solutions re-evaluated 

using SR (squares) and the SR solutions (triangles) with and without the joint probability 

constraint. 
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(a) Without joint probability constraint          (b) With joint probability constraint 

Figure 4.10. Pareto fronts with BNC, and SR solutions 

 

 

It can be observed from both figures that the BNC Pareto surfaces are more optimistic 

compared to the SR solution, whereas the re-evaluated results using SR (square marks) are 

more conservative. The figures also show that the initial BNC approach cannot identify 

solutions at the high weight (greater than 30), low velocity (less than 14) region.  

To investigate this issue, scatter plots that characterize the dependence of weight and 

door velocity samples from the initial 115 training samples (left) and the samples 

generated from the Gaussian copula (right) are shown in Figure 4.11. The dashed squares 

cover the region which BNC could not detect in Figure 4.11.  It can be observed from 

Figure 4.11(a) that only 3 of the initial samples land within the dashed area. The Bayesian 

network will only generate samples based on the training points available; in other words, 

the training points indicate the joint probability distribution of the variables, and therefore 

further samples generated by the Bayesian network also reflect this joint distribution. Thus 

the Bayesian network generates very few samples in the dashed area and is unable to find 

Pareto solutions in this area.  

BNC Pareto 

Re-evaluated with SR 

SR Pareto 

BNC Pareto 

Re-evaluated with SR 

SR Pareto 
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(a) Scatter plots from the original samples   (b) Scatter plots from the copula-generated samples 

Figure 4.11.  Scatter plots of weight and door velocity 
 

 

To overcome this issue, the training point selection technique proposed in Section 

4.3.2 is applied: 20 additional samples of the design variables are generated selectively 

based on the sculpting strategy. To evaluate this method, Latin Hypercube sampling (LHS) 

is also used to generate 20 samples of the design variables from uniform distributions 

based on Tables 1 and 2, and propagated to estimate the outputs. The values of the 

objectives generated by the two approaches are compared by the scatter plot in Figure 

4.12.  
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Figure 4.12. Comparison of the outputs from different resampling approaches 

 

 

 

 

 

It can be seen from Figure 4.12 that, the selectively generated samples (squares) 

focus more on the desired/rectangular region compared with the LHS approach. The 

additional 20 samples generated in different methods combined with the 115 initial 

samples are used to build new BN models for Case III (with the joint probability constraint). 

Figure 4.13. Comparison of the results between the two resampling 

approach 
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(b) Approach II: selectively generated samples (a) Approach I: uniformly generated samples 
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The objectives are re-evaluated using the SR model. All results are compared in Figure 

4.13. 

In Figure 4.13 (a), the LHS-based solution does not have much improvement 

compared to Figure 4.13(b). The low door velocity, high weight region is still not covered 

by the additional uniform samples. However, in Figure 4.13(b), due to the selective 

resampling based on sculpting, the improved BNC is able to construct the Pareto surface in 

the high weight and low door velocity region which could not be reached by the original 

BNC. And the resulting Pareto surface is very close to the SR solution. This shows that the 

sculpting strategy can be effectively used to improve the Bayesian network model and the 

Pareto surface. 

 

4.5. SUMMARY 

 

 

This chapter explored the BNC approach as a probabilistic surrogate model for multi-

objective optimization under uncertainty. The Bayesian network is constructed based on 

input-output samples from the original model, and the vine copula-based sampling 

technique is generate samples of the outputs conditioned on the design values.   

A novel training point selection technique is proposed to further refine the BN model 

and improve the Pareto surface. Additional samples of training points are generated 

through a sculpting strategy, which exploits the dependence relations among the inputs 

and outputs, and the inverse propagation capability of the Bayesian network through 

conditional sampling.   
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A vehicle side impact problem is used to demonstrate the proposed methodology. 

The joint probability of multiple constraints and objectives are efficiently estimated using 

the proposed BNC approach, by exploiting the forward propagation capability of the 

Bayesian network. Since the proposed methodology is capable of modeling dependence 

among large number variables, its application on larger scale problems is very promising.  

In the next chapter, both BNC-MDA proposed in Chapter 3 and the BNC surrogate-

based optimization addressed in this chapter are combined to formulate an efficient 

framework for MDO under uncertainty.  
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CHAPTER 5  

MULTIDISCIPLINARY OPTIMIZATION UNDER UNCERTAINTY 

 

 

 

5.1. INTRODUCTION 

 

 

As mentioned in Section 1.1, existing methods for MDA and MDO under uncertainty 

either require considerable computational effort or introduce several approximations to 

reduce the computational effort. When high-fidelity models are used for each individual 

disciplinary analysis of the MDA, all the existing approaches are potentially expensive, 

even for deterministic analysis. In the presence of uncertainty sources, stochastic MDA can 

become computationally unaffordable. Further, when MDO under uncertainty is 

considered, stochastic MDA is required during each design iteration in order to evaluate 

the probabilistic objectives and constraints, which further magnifies the computational 

cost. Therefore, the central motivation of this chapter is to reduce the computational 

burden of MDO under uncertainty.   

When high-fidelity models are used for individual disciplinary analyses, typically a 

large number of coupling variables are present, such as the nodal pressures and 

displacements in the aeroelasticity example in Section 3.4.2. Existing methods for MDA 

under uncertainty (such as SOFPI and LAMDA described below) become unaffordable in 

the presence of high-dimensional coupling. Meanwhile, when the number of input and 



113 

 

output variables of the model becomes larger, training the surrogate model for MDA and 

MDO requires a large number of training samples, which will also greatly increase the need 

for computational resources. Therefore this chapter proposes a framework for efficient 

MDO under uncertainty using the Bayesian network, which is found to be effective for both 

low and high dimensional problems.  The abilities of the BN in both inverse problem 

(Bayesian inference) and forward problem (uncertainty propagation) are exploited in this 

chapter.  

The forward uncertainty propagation property of the BN is first exploited to 

consider a novel surrogate modeling technique for efficient optimization under 

uncertainty. This is similar to the use of BN in Section 4. The ability to obtain the 

probability distribution of the output for a given specific value of the input makes the BN a 

probabilistic surrogate model, as opposed to deterministic surrogate models that seek to 

estimate a single value of the output for a given value of the input. Note that algebraic 

surrogate models such as regression and Kriging models do provide an estimate of the 

uncertainty in the output for a given input; but this uncertainty is only due to sparse or 

noisy training data. The central aim in such models is to estimate a single value of the 

output. As the training data becomes more abundant and less noisy, the uncertainty in the 

output of such algebraic surrogate models will decrease. The use of BN as a surrogate 

model is very different; its central aim is to provide the probability distribution of the 

output for a given value of the input, because the Bayesian network is a probabilistic 

graphical model that represents the joint probability distribution of the input and output 

variables.  
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The inversion capability of the Bayesian network is also exploited to enforce the 

interdisciplinary compatibility condition in feedback-coupled MDA by setting the 

difference between the values of the same coupling variable from two successive iterations 

to zero (as explained in Section 3.3). This approach only requires a few iterations of the 

feedback coupled analysis (usually 2 to 4 iterations), thus achieving great computational 

savings by not performing the fully converged physics analysis.   

An RBDO formulation is adopted to demonstrate the proposed approach, which can 

be extended to solve RDO problems as well. In each design iteration, the optimizer 

generates a new set of design values and sends them to the Bayesian network. Given the 

value of the design variables, the uncertainty in the outputs can be estimated by forward 

propagating the uncertain variables through the BN. The resulting output is essentially the 

conditional probability distribution of the outputs given the design variable values of the 

inputs. For feedback coupled analysis, the compatibility is enforced as mentioned above.  

Thus, once the BN is built as a surrogate model, both MDA and design evaluation are 

achieved simultaneously during each call to the BN by the optimizer, providing 

tremendous computational advantage. The conditional sampling is achieved using the vine 

copula-based sampling approach, which further enhances the computational efficiency. 

Note that the Bayesian network can incorporate different types of random variables.  

The proposed methodology can include both aleatory and epistemic uncertainty. 

The inclusion of aleatory uncertainty is straightforward, since this type of uncertainty can 

be represented by a random variable node in a BN with known distribution type and 

parameter. Inclusion of sparse and interval data can also be achieved by using the 

likelihood-based method in Section 2.3 to construct a non-parametric distribution. The 
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inclusion of stochastic model error can be accomplished through the auxiliary variable 

method. Since the auxiliary variable method represents the stochastic model error as a 

uniformly distributed random variable, it can be denoted as a random node in a BN as well. 

The inclusion of epistemic uncertainty is not the focus of this chapter, but its inclusion in 

the proposed methodology is briefly discussed in the electronic packaging example in 

Section 5.5.2. 

The contributions of this chapter are as follows: 

(1) The probabilistic surrogate modeling technique based on the Bayesian network and 

vine copula-based sampling is pursued in order to consider large numbers of input 

variables and accurately represent the stochastic dependence among the inputs, 

outputs and coupling variables. 

(2) The BNC approach is used to formulate a Bayesian network for efficient and accurate 

MDO under uncertainty, which simultaneously enforces interdisciplinary compatibility 

and evaluates the optimization objectives and constraints, without any further 

evaluations of the original physics models, thus significantly reducing the 

computational effort in MDO. 

The rest of the chapter is organized as follows: Section 5.2 formulates MDO under 

uncertainty using the RBDO format. Section 5.3 introduces the BNC-MDO approach, which 

is composed of BNC surrogate modeling and BNC-MDA. Section 5.4 emphasize on the 

treatment of high-dimensional coupling within BNC-MDO. A mathematical example, an 

electronic packaging design problem, and an aeroelastic wing design problem are used to 

illustrate the methodology in Section 5.5. Section 5.6 provides concluding remarks.  
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5.2. MULTIDISCIPLINARY OPTIMIZATION UNDER UNCERTAINTY 

 

 

A typical deterministic MDO problem statement is provided in [96] and as shown in 

Eq. (5.1).  

 QTR� ����  

s.t. 

 �P��, ����, ­���� 	≤ 	0	T	 = 	 {1, . . . , R×} (5.1) 

 ℎ���, �, ­� = 	0  

 ℎ���, �, ­� = 	0  

where f is the performance function or objective to be minimized; � is the vector of design 

variables. ���� and ­��� are coupling variables, and the interdisciplinary compatibility is 

defined by ℎ� and ℎ�. 

Therefore, if ���� and ­��� satisfy Eq. (5.1) simultaneously, then they are said to be 

compatible, and in practical engineering applications, ℎ� and ℎ� are implicit functions. For 

example, in the two disciplinary example shown in Figure 2.1, ℎ� and ℎ� can be written as: 

 �R<¤"BTB	1��, ���� − ��� = 	0 
(5.2) 

 �R<¤"BTB	2��, ���� − ��� = 	0 

When uncertainty is considered in the MDO formulation above, the probabilistic 

variation can be written as: 

 QTR�� c´���  

s.t. 

 !��P ��, ��, �J�, ��M, ­J�, ��M� ≥ 	0� ≤ 	P (5.3) 
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ℎ���, 
, �, ­� = 0 

 ℎ���, 
, �, ­� = 0  

 				T	 = 	 {1, . . . , R×}  

In Eq. (5.3), �� is a vector of random variables ���, … , ��� , that model the uncertainty in 

the system, whereas 
 is one realization of the random variable  
�. 	P represents the 

desired reliability level for the probabilistic constraint of �P. It can be seen from the 

equation that, the MDO under uncertainty requires the interdisciplinary compatibility 

being satisfied for each realization of the random variable, which can be expensive if the 

uncertainty assessment is performed with the feedback-coupled iterative analysis.  

Therefore, surrogate modeling techniques are usually pursued to replace the original 

model with computationally economic models for the objective and constraints estimation. 

For feedback coupled MDA, a sufficient number of training samples need to be obtained by 

running the fixed-point-iteration method. As the number of model inputs and outputs goes 

up, the number of training samples needed also increases, and consequently generates a lot 

of computational burden. Further, when the coupling variables between individual 

disciplines are large in number, characterizing the dependence among input, coupling and 

output variables can be very complicated for most of the existing surrogate modeling 

techniques. To overcome these challenges, a comprehensive framework that combines 

BNC-MDA and BNC surrogate modeling is proposed for the purpose of efficient MDO under 

uncertainty. This methodology contains four essential elements: (1) probabilistic graphical 

surrogate modeling; (2) vine copula-based sampling; (3) interdisciplinary compatibility 

enforcement; and (4) multidisciplinary design optimization under uncertainty. The 

proposed methodology is referred to as BNC-MDO. Details of the four elements have been 
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provided in the previous chapters, thus will not be repeated. Then next section will explain 

BNC-MDO using an RBDO formulation. 

 

5.3. BNC-MDO WITH LOW-DIMENSIONAL COUPLING 

 

 

The key idea of the proposed BNC-MDO is as follows: The optimizer calls BNC-MDA 

at each iteration of the optimization, with specific values of the decision variables; BNC-

MDA enforces interdisciplinary compatibility and computes the objectives and constraints 

simultaneously through conditional sampling, and returns the objective and constraint 

values to the optimizer. 

A simple Bayesian network for both design assessment and enforcing 

interdisciplinary compatibility is shown in Figure 5.1. 

 

 

 

Dw �w 

� � 

Input 

Output npRB¨o ó=Â 

BNC-MDA 

 DT�� 

Figure 5.1  A general Bayesian network for MDO 
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The network contains the design variable (Dw), an uncertain variable (�w), coupling 

variable � from the �T − 1�WX  and � from the TWX iterations of the feedback coupled analysis, 

and the difference between the values of from the two iterations is denoted by the node 

DT��. The model outputs are ó=Â and npRB¨o, which represent the objective and constraint 

respectively. For MDA, DT�� is conditioned to zero, which enforces the interdisciplinary 

compatibility. Note that usually the nodes in a BN represent random variables. However, in 

the optimization, the input variable nodes (Y�, Y�) in the BN are conditioned at specific 

values, and DV are therefore deterministic quantities.  

Note that BNC-MDO is composed of two components: (1) BN surrogate modeling, 

which replaces the computational model with a Bayesian network shown in Figure 5.1, 

and (2) BNC-MDA, which is only part of the MDO and is identified in Figure 5.1  with the 

dashed rectangle. 

The optimization procedure can be demonstrated using the parallel coordinate plot 

shown in Figure 5.2. In each design iteration, a new value of the design variable (,®) will 

be generated and passed to the Bayesian network. The distribution of the output variables 

npRB¨o and ó=Â will be conditioned given both Dw = ,® (dashed circle) and DT�� = 0 

(solid circle) simultaneously. The resulting conditional samples of the output variables 

(dashed rectangle) are subsequently delivered to the optimizer for further iteration. 
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�½�� ôâ� ÄõØ� ÄõØ� �¬ �¬ ÄõØ� 

(a) Samples of an unconditioned BN             (b) Conditional samples from the BN 

Figure 5.2  Parallel coordinate representation of MDO 

�½�� ôâ� ÄõØ� ÄõØ� �¬ �¬ ÄõØ� 
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5.4. BNC-MDO WITH HIGH-DIMENSIONAL COUPLING 

 

 

The size of the Bayesian network (specifically the BNC-MDA component in dashed 

rectangle) becomes large for a high-dimensional coupled analysis (i.e., a large number of 

coupling variables between the disciplines). Including all coupling variables in one BN 

makes the network quite large and unwieldy for training and sampling. Therefore, the 

dimension reduction of the Bayesian network proposed in Section 3.3.2 can be applied to 

improve the efficiency of BNC-MDO. 

 

 

 

 

 

��� ��� ��� Analysis2 ¯�(���, �¬, �¬) 

Analysis 1 ¯�(���, �¬,�¬) 

�� �� 

�¬, �¬ 

 

� 

Figure 5.3. One iteration of feedback coupled analysis with high-dimensional 

coupling 
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Consider one iteration of the feedback coupled analysis in Figure 5.3 and assume 

the coupling variable ��� and ��� are large vectors of the coupling variable. Given samples 

of the inputs, the one iteration analysis is executed for each realization of the input, 

therefore, each coupling variable becomes a random variable, and the corresponding 

realizations of ��� and ��� can be organized into matrices. PCA is applied to map the 

matrices ��� and ��� into the principal component space. Let ¤ denote the selected number 

of principal components (PC), then the first ¤ principal components for the inputs and 

outputs are represented by !n���K
 and !n���K , Â = 1 … ¤. The differences between !n���K

 and 

!n���K
 are calculated as: 

 Ã\Ä� = \Ä���� − \Ä����
 (5.4) 

Given the samples of the design variables, uncertain variables, the coupling 

variables in the principal component space, and the corresponding difference terms Ã, a 

Bayesian network is built as shown in Figure 5.4. In each design iteration, Dw is 

conditioned on the design value, whereas the interdisciplinary compatibility is enforced 

by imposing Ã\Ä� = 
	�po	� = � … á	.	 Samples of the objective and constraints are then used 

for further optimization.    
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It can be seen from Figure 5.4 that without PCA, there would have been one BN for 

the entire problem containing all the correlated coupling variables in one direction. After 

applying PCA, we have a few principal components that are uncorrelated. As a result, we 

have a much smaller BN with all the principal components in one network. Thus in the 

example in Section 5.5.3, if 20 or 30 principal components are used to implement the 

proposed methodology, the BN with 774 coupling variables and difference nodes is 

reduced to a smaller size BN with 60 or 90 nodes for the coupling variables and differences, 

while the nodes of Dw, �w, npRB¨o and ó=Â remain the same. Therefore, by using PCA we 

can reduce a large BN and drastically improve the efficiency in solving high-dimensional 

problems.  The BNC-MDO approach can be summarized in the flowchart shown in Figure 

5.5. 

 

Dw �w 

npRB¨o ó=Â 

!n���P
 !n-��P

 

±ÆÇP
 

!n����
 !n-���

 

±ÆÇP
 

!n���6
 !n-��6

 

±ÆÇP
 

Figure 5.4. Bayesian network with reduced coupling variables 
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5.5. NUMERICAL EXAMPLES 

 

 

In this section, the proposed BNC-MDO methodology is illustrated using a 

mathematical example, an electronic packaging design problem, and an aero-elastic wing 

Uniformly generate samples 
of the design variables �¬ , 

and randomly generate 
samples of the uncertain 
variables (�¬) as initial 

training points

Propagate each sample 
through the feedback 
coupled analysis for a 

few iterations (3-4)

Collect samples of the 
objective and constraint 
functions, as well as the 

coupling variables from the 
last two consequtive 
iterations ��	and ��

High 
Dimensional

?

Apply PCA to reduce the 
dimensions into a 

smaller number of PCs �\Ä�	and \Ä��

Taking the differences 
between the samples of �	and � (\Ä�	and \Ä�), 

denoted by Ã
Build BN using the 

samples of  �, � and Ã as 
shown in Fig. 3.2 (\Ä�,\Ä� and Ã\Ä in Fig. 3.4)

In each BN evaluation, 
the BN is  conditioned 

on �¬ = Ù­, Ã = 
 and 
updated.

Collect the updated 
samples to estimate the 
objective and constraint 

functions for further 
decision making

Figure 5.5.  Flowchart for BNC-MDO 

Yes 

No 
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design problem, all through RBDO formulations. The optimization algorithm Dividing 

RECTangles (DIRECT) [97] is used as the optimizer in all three problems. 

 

5.5.1 MATHEMATICAL EXAMPLE 

 

 

The mathematical example in Section 3.4.1 is modified by adding analyses and 

system level outputs and is shown in Figure 5.6. A feedback coupling exists between 

“Analysis 1” and “Analysis 2”, and the coupling variables are denoted as ��� and ���. Then 

the subsystem output �� and �� are calculated and used as the inputs to analysis 3 to 

compute the system level output �. The bounds for the design variables Y� to Y� are 

;0.8, 1.2>. For the sake of illustration, input variability as normal distribution e�0, 0.02� is 

assumed for all design variables. 
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���, ®�� 

���, ®�� 

��� = Y�Y� + Y�� + Y� + ��� + 0.1�®�� ®�� = Y�Y� + Y�Y� + Y� + 0.15	��� − 0.3®�� �� = ��� ∗ ®�� 

Analysis 2 

Y� , Y� Y� 

��� = Y�� + 2Y� − Y� + 2���� − 0.22®�� 

®�� = 2Y� + Y�Y� − 0.31���� + 0.2®�� �� = ��� ∗ ®�� 

Analysis 1 

� = ��	 − �� 

Y� , Y� 

Figure 5.6 Functional relations of the mathematical MDA model 
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In the context of deterministic optimization, the system level output  is used as 

the objective, whereas the disciplinary outputs   and  are adopted as constraints. Due 

to the input variability, the objective and constraints are stochastic quantities. Therefore, 

an RBDO formulation is constructed as shown in Eq. (5.5):  

   

s.t. 

minf�x c´ 

        !��� < 24.6� ≥ 0.9 !��� < 48.2� ≥ 0.9 0.8 ≤ cax 	 ≤ 1.2 !�YP ≥ 0.8� ≥ 0.9 !�YP ≤ 1.2� ≥ 0.9 T = 1, … ,5 

�����, ���, ®���– 	��� = 0 w����, ���, ®���– 	��� = 0 �����, ���, ®���– 	��� = 0 w����, ���, ®���– 	®�� = 0 

(5.5) 

 

where the last four equation indicates the interdisciplinary compatibility being satisfied 

for each realization of �. The upper-case letters denote the functions that compute the 

coupling variables, whereas the lower-cases represent a realization of the corresponding 

variable. 200 samples of Y� to Y� are uniformly generated from their design spaces using 

Latin Hypercube sampling method. For each realization of �, one iteration of the analysis 

as shown in Figure 5.7 is executed to calculate samples of the coupling variables �12,	®12,	
�21,	w21 and output variables ,	�1,	�1 and �.   
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The differences between ���, w�� and ���, ®�� are then computed and denoted as 

,T�����  and ,T��³�� . Samples of the input, coupling and output variables together with 

,T�����  and ,T��³��  are used to build the Bayesian network as explained in Section 5.3. 

Figure 5.8 shows the Bayesian network built using these samples. 

After the BN is constructed, the optimization framework is applied on top of the BN, 

and the DIRECT algorithm is employed as mentioned earlier. The maximum number of 

iterations for DIRECT is set to be 15. In each design cycle, the optimizer delivers a design 

value to the network. Y� … Y� are conditionalized at the design values. Meanwhile, ,T��-��  

and ,T��²�� need to be enforced as 0 such that the interdisciplinary compatibility condition 

is satisfied. Update the network using vine copula-based sampling and obtain the posterior 

distribution of ��, �� and �, based on which the objective and constraints in Eq. (5.5) are 

calculated. 

���, w�� ���, ®�� ���, ®�� Analysis2 ¯�(���, ­��, x) 

Analysis 1 ¯�(���, 	­��, x) 

�� �� 

�  

� 

Figure 5.7. One iteration of feedback coupled analysis 
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An optimization using the SOFPI (Monte Carlo sampling outside fixed point iteration) 

approach is also implemented, and the results are used as the benchmark solution. 10,000 

samples are used to estimate the objective and constraint in each design cycle. A total of 

6,260,000 function evaluations is required, which is much more beyond the 400 function 

evaluations that required by BNC-MDO. Figure 5.9 compares the optimization histories of 

the two approaches, which agree well with each other. 

  

  

Design 

variables 

Variability 

Coupling 

variables 

Compatibility 

conditions 

Disciplinary 

output 

System 

output 

*a� *a� *a� *a� *a� 

Y� Y� Y� Y� Y� 

��� 

®�� 

��� 

®�� 

��� 

w�� 

�� �� 

� 

,T����� 

,T��³�� 

Figure 5.8  BN based on the samples from Fig. 5.7 
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Table 5.1 compares the RBDO result of SOFPI (column 3, benchmark) and the 

proposed BNC-MDO approach (column 4). The optimal solution obtained by BNC-MDO 

(merged column 4 and 5) is also evaluated by SOFPI (column 5) to check its accuracy. 

 

 

Table 5.1. Comparison of the optimization results using SOFPI and BNC-MDO 

 

 

 

 

 

 

 

100 

Samples 
Variable RBDO using 

SOFPI 
BNC-MDO Re-evaluated 

Design 

Variables 

Y� 1 0.87 Y� 0.82 0.80 Y� 0.82 0.84 Y� 1.19 1.18 Y� 1 1.15 
Objective �� -27.52 -26.60 -25.48 

Constraint 
!��� < 24.6� 1.00 1.00 1.00 !��� < 48.2� 0.93 0.90 1.00 

Iteration number 

BNC-MDO 

Figure 5.9  Optimization histories of SOFPI and BNC-MDO 
Iteration number 

� � � � 
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It can be observed from Table 5.1 that the difference between the optimal 

objectives obtained by the two methods is only 7.4%, which is quite small considering only 

400 function evaluations (i.e., 200 each for Analysis 1 and Analysis 2) are required for the 

proposed BNC-MDO approach compared to SOFPI which needs more than 6 million.  

Also, the differences for Y�, Y� and Y� are also very small (less than 5%), but the 

differences between values for Y�  and Y�  are comparably larger (13% and 15% 

respectively). This is because optimization with SOFPI uses the fully converged analysis for 

each design evaluation, whereas the BNC-MDO is trained using only partially converged 

samples. Next, two engineering examples are used to demonstrate the proposed BNC-MDO 

approach. 

 

5.5.2 ELECTRONIC PACKAGING DESIGN 

 

 

The electronic packaging problem [61] described in Section 2.6.2 is used in this sub-

section as a design problem to demonstrate the BNC-MDO approach. Coupling variables are 

heat generated by the electrical analysis, and the heatsink temperature calculated by the 

thermal analysis. A detailed problem description can be found in Section 2.6.2. 

In this chapter, geometric parameters Y�, Y�, Y� and Y� are considered as the design 

variables, of which the upper and lower bounds are ub = [0.15, 0.15, 0.08, 0.05] and lb = 

[0.05, 0.05, 0.02, 0.01]. The design variables are assumed to have variability as given in 

where "� is the resistance of the resistor at temperature t�, which is a constant.	"� and "� 

are the coupling variables between the two analyses.  "� is the component heat and "� is 
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the heatsink temperature. The design variables are assumed to have variability as given in 

Table 5.2. Y� and Y� are additional uncertain variables the same as provided in Table 2.5.  

The goal of optimization is to maximize the mean power density of the heatsink 

(ratio between the heat dissipation and the volume of the heat sink) while maintaining the 

size and working temperature of the heatsink at low values. Therefore, the RBDO 

formulation is constructed as below: 

 

s.t.  

 

YP∗ = <o�Q<Y	c���YP� 

 !�t£QV < 56#n ∩ wp¤�Q£ < 6 × 100�	Q�� ≥ 0.95 ¤=P ≤ YP ≤ �=P,  T = 1, … ,4 

(5.6) 

 tℎ£oQ<¤�"�, �� −	"� = 0 "�"��– 	"� = 0 
 

   

where "� is the resistance of the resistor at temperature t�, which is a constant.	"� and "� 

are the coupling variables between the two analyses.  "� is the component heat and "� is 

the heatsink temperature. 

 

 

Table 5.2: Parameters of the electronic packaging system 

   

 

 
   Physical meaning Uncertainty 

 Y�	 Heat sink width (m)    e�0, 0.01� 

 Y� Heat sink length (m)   'p�e�0, 0.01� 

 Y� Fin length (m)              e�0, 0.005� 

 Y� Fin width (m)               e�0, 0.0025� 
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The coupling variable heatsink temperatures (Temp in Figure 5.10) from two 

consecutive iterations are computed to implement the BNC-MDO approach. For the sake of 

comparison, the numbers of the input samples are chosen as 800, 1000 and 1200. Thus, the 

total number of function evaluations required are 1600, 2000 and 2400 respectively. A 

Bayesian network is built as shown in Figure 5.10. 

 

 

 

Figure 5.10  BBN for the electronic packaging problem 

  

 

Optimization with SOFPI is also implemented, and the results are used as the 

benchmark solution. 10,000 samples are used to estimate the objective and constraint in 

each design cycle. Fixed-point-iteration (FPI) takes an average of 5 iterations to converge. 

DIRECT optimization algorithm is applied, and due to the limited computational resource, 

only 10 iterations is implemented. A total of 6,950,000 function evaluations is required for 

Design 

variables 

Uncertain 

variables 

Coupling 

variables using 

first and second 

iteration results 

System 

output 

Compatibility 

condition 
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optimization with the SOFPI approach, which takes about 4 hours to accomplish on a 

desktop computer. Whereas once the BN is built with the training samples (obtained from 

the 1st and 2nd iterations, takes 5 seconds for 800 samples), the average time for the 

optimization process is less than 5 minutes. 

Rows 1- 5 in Table 5.3 compare the RBDO results with SOFPI (column 2), and with 

the proposed BNC-MDO approach with different numbers of BN training samples (column 

3,4 and 5). Rows 6-7 list the re-evaluation of BNC-MDO result using SOFPI. 

 

 

Table 5.3. Comparison of the optimization results using SOFPI and BNC-MDO with 

different number of training samples 

 Benchmark Number of training points for BN 

800 1000 1200 �� 0.056 0.052 0.056 0.051 �� 0.056 0.052 0.052 0.051 �� 0.021 0.021 0.021 0.020 �
 0.039 0.024 0.048 0.037 

Objective: �¿� 73172 73781 78600 70000 

re-evaluate 

with SOFPI 

objective 
N/A 

84997 78749 93131 

constraint 0.962 0.965 0.984 

 

 

It can be observed from Table 5.3 that although the optimal values of Y� to Y� and 

the optimum obtained by the proposed BNC-MDO approach with different numbers of 

training samples are close to the benchmark solution (differences mostly less than 10%), 

the re-evaluation results shows that the proposed methodology is able to find higher values 

of the power density (objective is maximized) than the SOFPI approach. Based on the 
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optimal solutions, it can be seen that the objective values are very sensitive to all four 

design variables. Therefore, the ‘benchmark’ solution may be suboptimal due to insufficient 

number of samples used in the Monte Carlo sampling, and/or insufficient number of 

optimization iterations, since only 10 iterations of the optimization algorithm are 

performed, and the number of samples for reliability assessment is only 10,000 as 

mentioned above. 

Inclusion of model error 

The solution above already includes data uncertainty (sparse and interval data of 

Y�). The proposed methodology can also incorporate stochastic model error, through the 

auxiliary variable method described in Section 2.4.2. The same electronic packaging 

problem is solved again considering the discretization error (and the stochastic Gaussian 

process model output as mentioned in Section 2.6.2) as described below. 

(1) Generate samples of inputs and initial values of temperature and run through 

one iteration analysis as in Figure 5.3.  

(2) For each input realization, the finite difference analysis code (for thermal 

analysis) with different mesh sizes is executed, and the GP extrapolation 

technique is used with the three solutions to estimate the ‘correct’ value (i.e., 

corrected for discretization error). The output temperature is a normal random 

variable, of which the mean is the GP estimate of the correct value, and the 

variance represents the uncertainty associated with this estimate. 

(3) To account for the stochastic GP output, an auxiliary variable !X is introduced. 

For each normal distribution of the GP prediction, one realization of !X is 

randomly generated from a uniform distribution �;0, 1>. Take the inverse CDF 
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of the normal distribution with respect to !X to get a realization of the 

prediction (temperature). 

(4) Use the samples for input, output, coupling and the auxiliary variables to build a 

BN as shown in Figure 5.11.  

 

 

 

 

 

Then BNC-MDO is implemented with this BN, and the result is shown in  Table 5.4. 

When the stochastic model output is considered, the fixed-point-iteration method can 

barely converge. Therefore, the benchmark solution with SOFPI is unaffordable for this 

problem. This further shows the advantage of the proposed BNC-MDO approach, which 

does not required any fully converged analysis from the physics codes. 

Design 

variables 

Uncertain 

variables 

(including \
) 

Coupling 

variables 

System 

output 

Compatibility 

condition 

Figure 5.11  BN for MDA with stochastic model error 
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Thus it can be seen that the BNC-MDO is capable of incorporating stochastic model 

error since the auxiliary variable method represents the model error as an additional 

random variable. 

 

 

 Table 5.4  Optimization results considering discretization error and stochastic GP 

output 

 

 

 

 

 

 

5.5.3 AERO-ELASTIC WING DESIGN 

 

 

The design optimization of a three-dimensional aeroelastic wing described in 

Section 3.4.2 is performed here using the proposed BNC-MDO approach. The backsweep 

angle is appointed as the design variable with design bounds as [0, 0.5]. The mesh size is 

chosen such that the total number of nodes on the surface of the structure is 258. 200 

realizations of the backsweep angle are uniformly sampled to perform the fluid-structure 

interaction analysis using the CFD and FEA analyses. For full convergence analysis using 

fixed point iteration (FPI), the average number of iterations is 8, and the total time for 

running the converged aeroelastic analyses for all 200 input realizations is 8.5 hours. 

�� �� �� �
 �¿� 

0.077 0.149 0.021 0.010 11,170 
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Since the values of nodal pressure oscillate drastically in the first and second 

iterations, in order to balance the solution accuracy and the computational efficiency, the 

Bayesian network is built with the nodal pressure results of the 3rd and 4th iterations. (This 

means that in the BNC-MDO approach, the FSI analysis is terminated after 4 iterations).  

For 200 samples, a total of 5.5 hours is needed, which is 3 hours less and 1600 function 

evaluations (i.e., 800 each of FEA and CFD analyses) fewer than the performing the full 

convergence analysis with fixed point iteration. Note that this is the time required for 

collecting training samples for the BN. Once the samples are collected, the Bayesian 

network can be built within 10-15 seconds; thus the time for stochastic analysis is 

negligible compared to the time required for the aeroelastic analysis. 

The design optimization problem is to maximize the lift subject to a stress constraint. 

The backsweep angle is assumed to have variability described by a Gaussian distribution 

with zero mean and a standard deviation of 0.03 radians. The optimization problem (RBDO) 

is given in Eq. (5.7). 

where =§ is the backsweep angle. To apply the proposed BNC-MDO approach, two 

successive iteration values of the coupling variables ‘Nodal Pressures’ are used to build the 

BN, along with the design and uncertain variables and the objective and constraint. Because 

the coupling variables are large in number (258 nodal pressures), building the Bayesian 

network with such data will be problematic. Therefore, the dimension reduction strategy 

 Q<Yfè� y;'> 
(5.7) 

s.t  

 !;v	 ≥ 	3 ∗ 10�	!<> 	≤ 	 100� 

 0	 ≤ 	μ$¡ 	≤ 	0.5	 
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using PCA introduced is implemented to reduce the dimension of the Bayesian network, 

such that the building and sampling of the BN is affordable. The PCA is applied on the nodal 

pressures after 3rd  and 4th  iterations (denoted by e!� and e!�), and the first 30 principal 

components are selected since 99.6% of the total variance from the original samples can be 

covered by them. The BN is built with the input, output and the coupling variables 

represented by the 30 principal component following the strategy in Figure 5.4, and the 

resulting BN is as shown in Figure 5.12.  

 

 

 

Figure 5.12. BN of the aeroelastic wing with reduced coupling variables 

 

 

�\� after PCA �\
 after PCA 

Input and output 

variables 

Difference = 0 
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The RBDO is then performed using the BN above. The DIRECT algorithm stops after 

10 iterations, requiring 67 calls to the BN surrogate model and 547 seconds of 

computational time. The BNC-MDO results are shown in Table 5.5. 

 

 

 

Table 5.5. Optimal solution of the aero-elastic wing design 

  
BNC-MDO 

Design variable c$¡ 0.405 

Objective c6P´W 1707.5 

Constraint !�B¨o£BB� 0.998 

 

 

No benchmark solution is provided for this problem since SOFPI is unaffordable to 

implement using the aeroelastic codes. Note that MDO can also be performed using other 

surrogate models, such as Kriging, neural network, regression models, etc. However, the 

training samples for the other surrogate models require fully converged physics analyses, 

whereas the training samples for the BN surrogate model only require a few iterations of 

the feedback-coupled analysis; thus the BN surrogate model approach based on the LAMDA 

concept achieves much more computational savings. Moreover, as mentioned earlier, the 

savings will become more prominent when higher fidelity models are used for the 

individual disciplinary analyses, and when more iterations are needed for MDA 

convergence. 
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5.6. SUMMARY 

 

 

This chapter proposed a novel Bayesian network-based approach for 

multidisciplinary design optimization under uncertainty. The Bayesian network is 

constructed for two purposes: (1) as a probabilistic surrogate model based on input-output 

samples from a few iterations of the original disciplinary analyses, and (2) to perform 

design evaluation and enforce interdisciplinary compatibility simultaneously using 

conditional sampling. Once the BN is built as a surrogate model, both MDA and design 

evaluation are achieved simultaneously during each time the BN is called by the optimizer. 

The proposed methodology only requires a few iterations of the coupled analysis from the 

physics codes, instead of the full convergence analysis, thus providing tremendous 

computational advantage 

Further computational efficiency is achieved through the vine copula-based 

sampling technique and the Bayesian network dimension reduction using principal 

component analysis. A mathematical RBDO example, an electronic packaging design 

problem, and an aeroelastic wing design problem were used to demonstrate the proposed 

methodology.  
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CHAPTER 6  

CONCLUSION 

 

 

The central goal of this dissertation was to develop novel strategies for reducing the 

computational effort while maintaining accuracy in multidisciplinary analysis and design 

optimization under uncertainty. To achieve this goal, four objectives were pursued: (1) 

propagation of epistemic uncertainty — data uncertainty and model error — through 

multidisciplinary analysis; (2) Investigation of a methodology for uncertainty propagation 

in a high-dimensional coupled system; (3) Development of a framework to incorporate 

different sources of uncertainty in single disciplinary design optimization, considering 

multiple objectives; and (4) Investigation of a Bayesian methodology for the design 

optimization of multidisciplinary systems with feedback coupled analyses. The main 

accomplishments are summarized below. 

 

6.1. ACCOMPLISHMENTS 

 

 

6.1.1 MDA UNDER EPISTEMIC UNCERTAINTY 

 

 

Chapter 2 presented a new methodology to systematically include both aleatory and 

epistemic uncertainty in the input variables, and the epistemic uncertainty due to model 
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errors, within feedback-coupled MDA. This methodology offers a comprehensive 

framework for the representation and propagation of multiple sources of uncertainty 

within MDA, using the LAMDA concept, which estimates the probability of the the 

interdisciplinary compatibility condition being satisfied given a value of the coupling 

variable. 

First, a likelihood-based approach is employed to represent both variability and 

data uncertainty in the input random variables (due to sparse and/or imprecise data) 

through non-parametric distributions, which is consequently propagated within the MDA 

framework using methods such as Monte Carlo sampling, FORM and SORM. 

Then, an auxiliary variable method based on the probability integral transform is 

proposed to include the effect of stochastic model error in coupled MDA. This method 

brings the epistemic uncertainty to the same level of analysis as input variability such that 

the propagation of both aleatory and epistemic uncertainty can be implemented in a single 

loop manner. The proposed methodology provides a general formulation to include both 

model form error and numerical errors (e.g., discretization error, surrogate model error, 

etc.) within feedback coupled MDA. A mathematical problem and an electronic packaging 

application were used to illustrate the proposed methodology. 

The auxiliary variable approach also provides a breakthrough in global sensitivity 

analysis, which previously was only used in the context of aleatory uncertainty and for 

feed-forward problems.  
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6.1.2 MDA WITH HIGH-DIMENSIONAL FEEDBACK COUPLING 

 

 

The original LAMDA approach was implemented using FORM (first-order reliability 

method), and has difficulty in solving high-dimensional problems, since the accuracy and 

computational efficiency deteriorate as the number of the coupling variables increases. 

Therefore, Chapter 3 proposed an efficient implementation of the LAMDA concept using 

Bayesian network and copula sampling for high-dimensional MDA, in the presence of a 

large number of coupling variables. 

The Bayesian network is adopted to estimate the joint probability distribution of the 

coupling variables given interdisciplinary compatibility. This is similar to the concept of 

Bayesian updating, and a Gaussian copula-based sampling technique is adopted to generate 

samples from the conditioned Bayesian network (i.e., conditioned on zero difference 

between two successive iteration values of the coupling variables) and to estimate the 

conditional joint distribution of the coupling variables.  

When the dimension of the coupling is so large that incorporating all the coupling 

variables in one Bayesian network becomes computationally cumbersome, principal 

component analysis is adopted to decrease the dimensionality of the Bayesian network. A 

mathematical MDA example and an aeroelastic wing analysis example were used to 

demonstrate the efficiency and accuracy of this BNC-MDA approach.  It can be seen from 

the example that, the PCA compresses a BN with hundreds or thousands of nodes into a BN 

with 30 to 60 nodes (i.e., using 10 to 20 principal components) without sacrificing too 

much accuracy.  
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In the proposed methodology, each sample only requires a few iterations of the 

coupled physics analysis instead of a fully converged solution as in fixed point iteration. 

Thus the proposed BNC-MDA approach is promising for high-dimensional problems.  

 

6.1.3 MULTI-OBJECTIVE OPTIMIZATION UNDER UNCERTAINTY 

 

 

Chapter 4 further develops the use of Bayesian network and vine copula sampling as 

a probabilistic surrogate model for multi-objective optimization under uncertainty and BN 

training point selection.  

The first innovation is to construct the Bayesian network as a probabilistic 

surrogate model based on input-output samples from the original model. A vine copula-

based sampling technique is used for efficient uncertainty propagation. A vehicle side 

impact problem is used to demonstrate the proposed methodology. For a given set of 

design values, the joint probability of multiple constraints and objectives are efficiently 

estimated using the proposed BNC approach, by exploiting the forward propagation 

capability of the Bayesian network.  

The second novelty is the training point selection technique to construct the 

Bayesian network. Additional training points are generated in the desired region based on 

sculpting, which exploits the dependence relations among the inputs and outputs, and the 

inverse propagation capability of the Bayesian network. This sculpting further refines the 

BN model and improves the Pareto surface for multi-objective optimization. 
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6.1.4 MULTIDISCIPLINARY OPTIMIZATION UNDER UNCERTAINTY 

 

 

Chapter 5 developed a comprehensive framework for multidisciplinary design 

optimization under uncertainty. The BNC-MDA technique proposed in Chapter 3 and 

probabilistic graphical surrogate modeling introduced in Chapter 4 were integrated for the 

optimization of feedback coupled MDA under uncertainty. 

In this framework, the Bayesian network is pursued for two purposes: (1) as a 

probabilistic surrogate model based on the dependence relations among the input, output 

and the coupling variables, and (2) to perform stochastic MDA/MDO with samples from 

only a few iterations of the feedback coupled analysis, without the fully converged physics 

analysis. The BNC approach simultaneously enforces interdisciplinary compatibility and 

evaluates the optimization objectives and constraints through conditional sampling, 

without any further evaluations of the original physics models. Further efficiency is 

achieved by adopting the vine copula-based technique for generating samples from the 

conditioned Bayesian network efficiently. A mathematical RBDO example, an electronic 

packaging design problem and an aeroelastic wing design problem were used to 

demonstrate the proposed methodology. 
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6.2. LIMITATIONS OF THE RESEARCH 

 

 

In this research, the Bayesian network with Gaussian copula-based sampling is 

heavily used. The Gaussian copula adopts a linear correlation assumption for the CDFs of 

different random variables. However, since correlation does not imply causation, the 

proposed approach has confronted challenges especially when dealing with non-monotonic 

function analysis.  To overcome such challenge, different copula assumptions may need to 

be applied on different correlations among each pair of the random variables, and the vine-

based strategy needs to be investigated for the purpose of efficient sampling. 

 

6.3. FUTURE WORK 

 

 

Future research based on this dissertation can be pursued in the following 

directions: 

(1) The performance of the BNC-MDA approach for realistic problems with higher 

dimensions needs to be evaluated. The proposed approach has been shown effective for 

the aero-elastic wing example with 1218 nodes; however, in reality, the dimension of 

the coupling variables can be of the order of several thousands. The scalability of the 

proposed methodology thus needs to be investigated by solving larger problems.  

(2) The extension of the BNC-MDA methodology needs to be investigated for multi-level 

analyses, and multi-disciplinary feedback coupled analyses for more than two 
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disciplines. The adaptability of the proposed methodology for more complex 

configurations of coupled systems also needs to be investigated.  

(3) More sources of uncertainty should be included in the proposed methodology. The 

probabilistic graphical model estimates the distribution with the marginal distributions 

of variables, and the correlations between them. The marginal distributions can be 

discrete, continuous and empirical distributions. This means that the graphical model is 

capable of incorporating different forms of uncertainty. Therefore, future study should 

extend the proposed methodology to incorporate model and data uncertainty sources. 

(4) The optimization methods explored in this dissertation used a reliability-based 

formulation (RBDO). The extension of the Bayesian network-based approach to 

robustness-based design optimization under both aleatory and epistemic uncertainty 

also needs to be explored in the future. 

(5) In the optimization problems, sample-based strategy was used to compute the 

constraint probabilities (for RBDO problems). Future work can incorporate analytical 

multi-normal integration of the Gaussian copula instead of the sampling-based strategy, 

thus further improving the efficiency of reliability assessment and optimization.  

(6) The proposed methods have been currently implemented using the Gaussian copula 

assumption. If the Gaussian copula assumption is not justified, then non-Gaussian 

copulas need to be used. Efficiency improvements in the presence of non-Gaussian 

copulas need to be studied, since sampling with non-Gaussian copula is very time-

consuming.  
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(7) All the problems considered in this dissertation were time-independent. Future work 

needs to investigate the extension of the proposed techniques to time-dependent 

problems. 
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APPENDIX I.  GAUSSIAN PROCESS SURROGATE MODEL 

 

 

The GP modeling technique has been used in a wide range of applications such as 

data regression and model calibration. A GP regression or interpolation models the 

underlying covariance within the data instead of the actual function form. With a set of 

training points F¼ = {Y�, Y�, … YC} and the corresponding model outputs: 	� = {"�, "�, … "C}, 

it is assumed that the true response function is modeled by function: 

 ���� = 
���¼� + ���� 
(A1.1) 

where 
 is a trend of the model, � is the vector of trend coefficients, and � is a stationary 

Gaussian process with zero mean, which indicates the deviation of the model from the 

trend. The trend function is usually assumed as a constant, and � is taken as the mean of 

the training data 	¼. The covariance between outputs of the GP � at two points Ý and â  is 

defined as: 

 np®;��Ý�,���â�> = *����Ý, â� 
(A1.2) 

where *�� is the process variance and � is the correlation function. A squared-exponential 

function is commonly chosen as the correlation function as below. 

where , represents the number of the input variables, and &P  is a length scale parameter 

that implies the correlation between the points in the TWXdimension. A large &P  value 

 ��Ý, â� = £YV �− Í &P�<P − =P���
PO� � 

(A1.3) 
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indicates a stronger correlation. The GP model estimates the mean and variance at point � 

as: 

 c���� = 
���¼� + Ú���¼�0��	¼ − ��� (A1.4) 

 *����� = *�� − ;
���¼ Ú����> �
 �¼� � �0� �
���Ú����  (A1.5) 

where � is the ¨ × ¨ matrix of the covariances between F� ; � are the V × ¨  matrix of 

covariances between FÆ and F�  and its transpose.  

The parameters *�� and E are calculated using the maximum likelihood estimation in 

a log-likelihood format as below: 

 log;V�	�|��> = 	− 1R log�|�|� − log	�*!��� (A1.6) 

where |�| is the determinant of � and *!�� is calculated as: 

  *!�� =	 �C �	¼ − �����0��	¼ − ���   (A1.7) 

Function evaluations with the GP surrogate model are inexpensive; therefore it can 

be used to replace an expensive high-fidelity computational model in activities such as 

model calibration [47] and optimization [98].  
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APPENDIX II. PROBABILISTIC SURROGATE MODELING WITH BAYESIAN NETWORKS 

 

Bayesian network 

A Bayesian network is a directed acyclic graph that represents a multivariate joint 

probability distribution of random variables using their marginal distributions (nodes) and 

the conditional probabilities (arrows). The Bayesian network is capable of incorporating 

heterogeneous marginal distributions (e.g., continuous, discrete, binomial and empirical), 

and is also able to include functional relationships between the nodes if available. A 

common usage of the Bayesian network is to infer the posterior distribution of the 

parameters E, given the measurement data D, which depends on the parameters E. The 

posterior probability of E given data D could be evaluated using Bayes’ theorem as: 

where �′�E� and �′′�E� denote the prior and posterior distributions of E, whereas ℒ�E� 

represents the likelihood function of E, which is proportional to !�D|E�. 

In this research, the Bayesian network is used as a probabilistic surrogate model that 

connects the input and output variables through a joint distribution. A simple model shown 

in Figure A2. 1(a) is used to illustrate the proposed approach. The model � has 2 input 

variables: b� and b�; and 2 output variables:	u� and u�.  Assume that there is correlation 

between inputs b� and b�, and the outputs u� and u� are correlated as well. Based on the 

model in Figure A2. 1(a), a Bayesian network is built as shown in Figure A2. 1(b). Each 

node represents a variable, and the edges denote the dependence relations. 

 

 

 �′′�E� = ℒ�E��k�E�:ℒ�E��k�E�,E (A2.1) 



160 

 

 
 

 

In forward uncertainty propagation, for a given realization of the input values �Y�, Y��, 

the conditional joint distribution of the output variables: ��u�, u�|	b� = Y�, b� = Y�� is 

estimated. This joint distribution is often evaluated using sampling approaches such as 

MCMC, slice sampling, etc. as mentioned in the introduction. These sampling approaches 

may be time consuming or even fail to converge when the Bayesian network contains a 

large number of variables. A vine copula-based strategy is therefore adopted to efficiently 

generate conditional samples.  

 

Vine copula-based sampling 

 

The vine approach is a way to identify a set of conditional bivariate joint distributions 

that represent the joint distribution of all the variables in the problem. Detailed theory on 

vines can be found in [74, 99, 100, 101]. Consider the model shown in Figure A2. 1(a), and 

assume that samples of  b�, b�, u� and u� are available. A vine structure can be constructed 

as shown in Figure A2. 2. 

M 
b� 

Yb� 

u� 

u� 

Y� 

"� "� 

Y� 

(a) Two-input-two-output model M                  (b) BN representation of the model 

Figure A2. 1  Bayesian network representation of a model with input and output variables 
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where oPK represent the rank correlations and conditional rank correlations between two 

variables. The rank correlations represented by the 6 edges in the BN in Figure A2. 1(b) 

are mapped to three non-partial bivariate correlations (solid lines) and three conditional 

bivariate correlations (dashed lines) in the vine structure. It has been proved that these 6 

correlations along with the marginal distributions are able to uniquely define the joint 

distribution of all the variables in the BN in Figure A2. 1(b) [101].  

Since the vine approach uniquely represents the multivariate joint distribution using 

the marginal distributions of the variables and the six correlation terms shown in Figure 

A2. 2, only a bivariate copula function n needs to be assumed for each of the bivariate 

distributions. Note that the choice of copula can be different for different edges in a vine 

structure. Now, suppose we generate samples of 4 independent uniform random variables 

��, ��, �� and �� from the interval [0,1]. The CDF values of each variable in the BN, which 

are correlated, can be obtained using Eq. A2.2  [74]. 

 �a� = �� (A2.2.1) 

 �a�|-�� = n�i��i�|-��0� ���� 
     

( A2.2.2) 

 ���|-��-�� =	n����i�|-��0� #n����i�|-��-��0� ����$ ( A2.2.3) 

o����  

o
oI�I�  

o
oI���  

ooI���|I�  

o oI���|I���  

o

b� 

Y
u� b� u� 

oI���|��  

Figure A2. 2 Vine representation of the BN shown in Figure A2. 1 
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where n are bivariate copula functions between the CDF of two variables. Given a 

realization of �P , nPK|K0�  computes the CDF of TWX  variable given the CDF(s) of ÂWX variable(s). 

For the sake of illustration, consider the copula function between b� and b� in Eq. A2.3: 

Given a realization of ��, and the value of �I�  already generated in Eq. A2.2.1, the 

CDF of b� can be calculated as 

Similarly, the CDF values of  u� and u�, namely ���  and ��� , can be generated using 

the bi-variate copulas in Eqs.  A2.2.3 and A2.2.4. Once the correlated CDF values are 

generated, the inverse CDF estimation is subsequently taken to obtain the samples of the 

corresponding variables, as shown in Eq. A2.5. 

When the number of variables within the BN (hence the vine structure) is large, this 

series of inverse copula estimations can be computationally intensive.  The assumption of a 

Gaussian copula provides an analytical solution and avoids the sequential bivariate 

 
���|-%�-��-��=	n0�������|-%� æn����i�|-%�-���0� &n����i�|-%�-��0� ����'ê ( A2.2.4) 

n�i��i� = 	!��I� ≤ ��, �I� ≤ ��� (A2.3) 

�I� = n�i��i�|-i�0� ���� (A2.4) 

Y� = 4I�0�J�a�M (A2.5.1) Y� = 4I�0���a�|-��� ( A2.5.2) "� = 4��0�����|-��-��� ( A2.5.3) "� = 4��0�����|-%�-��-��� ( A2.5.4) 
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estimation, thus making the sampling inexpensive. A Gaussian copula represents the joint 

CDF of all marginal CDFs using a multivariate Gaussian distribution.  

To apply the Gaussian copula, the Spearman’s rank correlations between all the pairs 

of variables are first computed, denoted as oPK. Then, a Pearson’s transform is applied to get 

the conditional linear product moment correlations: 

As mentioned earlier, the vine structure is a saturated graph, which is not necessarily 

true for BN. A missing link in the BN can be expressed in a vine structure by setting the 

corresponding rank correlation (conditional or unconditional) as zero. Subsequently, the 

conditional product moment É also equal to zero. Therefore, the bivariate unconditional 

linear correlations need to be recalculated with the recursive formula [102]: 

 É��;�…C =	É��;�…,C0� − É�C;�,…,C0� ∗ É�C;�,…,C0�
Ñ1 − É�C;�,…,C0�� Ñ1 − É�C;�,…,C0��  (A2.7) 

A Gaussian copula representing the relationships in Fig. A.1 can be written as: 

 

)¢��� = 1�det�ö� exp
,
--.− 12,

-.
Φ0�����Φ0�����Φ0�����Φ0�����/

01 ∙ �ö0� − 3� ∙
,
-.

Φ0�����Φ0�����Φ0�����Φ0�����/
01
/
001 (A2.8) 

where Φ0� represents the inverse CDF of a standard normal random variable. � are 

independent uniform random variables from the interval [0,1].	3 is an identity matrix. � is 

the covariance matrix of the four variables, and since the marginals of the Gaussian copula 

 ÉPK = 2sin	�oPK56 � 
(A2.6) 
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are standard normals, � is essentially the correlation coefficient matrix composed of  the 

unconditional product moment correlations ÉPK .  

The multivariate Gaussian distribution in Eq. A2.8 can be used to rapidly generate a 

large number of samples of correlated normal random variables. In this case, samples of 4 

variables from this joint normal distribution are generated and denoted as b�k , b�k , u�k, u�k. For 

each sample of the variables, compute the CDF with respect to the marginal distributions of 

standard normal distribution, and denote the CDF values as �I� , �I� , ���  and ��� . Samples of 

b�, b�, u� and u� are then obtained by taking the inverse CDFs of �I� , �I� , ���  and ���  with 

respect to their marginal distributions as shown in Eq. A2.5. 

 

Conditional sampling 

 

The combination of Bayesian network and vine copula-based sampling technique 

(BNC) helps to formulate a methodology for efficient modeling and sampling of a 

multivariate joint distribution. To use this framework as a surrogate model, the conditional 

distributions of outputs 	 for given values of input � needs to be estimated. Conditionally 

sampling with the Gaussian copula assumption is very easy to implement since Eq. A2.8	can 

be converted to conditional Gaussian copula analytically. The procedure is as follows: 

For example, the conditional samples of 	u� and u� need to be generated given 

b� = Y�, b� = Y� . The equivalent normals corresponding to b� = Y�, b� = Y�  are first 

calculated as Y�k = Φ0� �4I�	�Y���,	Y�k = Φ0� �4I�	�Y���. 

Let c  be the mean vector of b�, b�, u�  and u�  in the equivalent normal space 

;b�k , b�k , u�k, u�k>; c is a vector of zeros with 4 entries, and � is the covariance matrix: 
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 � =	 7 1 É��1 É��É��1

É��É��É��1 8 

 

(A2.9) 

Then the conditional joint distribution of u�k and u�k given b�k = Y�k , b�k = Y�k  is denoted 

as: ��u�k, u�k|b�k = Y�k , b�k = Y�k �~	e��9	, ¹Á� , where the conditioned mean vector �9  and 

covariance matrix ¹Á are 

 �9 = º�º�0� ∗ �Y�kY�k � (A2.10.1) 

 ºÁ = º� − º�º�0�º�: (A2.10.2) 

Samples u�k and u�k are jointly generated from a multivariate normal distribution, of 

which the mean and covariance matrix are calculated as in Eq. A2.10. The CDF values of 

each u�k  and u�k  sample with respect to the standard normal distribution ���� , ����	are 

computed, and the inverse CDF is taken to obtained the conditional samples of u� and u� as 

shown in Eq. A2.5. Thus sampling from the Gaussian copula avoids the evaluation of the 

series of inverse copula functions in Eq. A2.2, and is very efficient. 

Note that the Gaussian copula assumption is only for connecting the CDFs of the 

random variables, which is less restrictive than assuming a joint Gaussian distribution for 

the variables themselves. The individual variables can have any arbitrary distribution. 

Connections between the nodes (i.e. network topology) could be based on the analyst’s 

underlying knowledge of the analysis flow of the model, whereas marginal and conditional 

probability distributions (and unknown connections) could be learned from data (samples). 

Therefore, the number of samples needs to be sufficient for an accurate BN model.  

º� 

º� 

º� 
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A verification approach has been proposed in [101] to test the Gaussian copula 

assumption. In this verification, samples from the Gaussian copula are generated 100 times. 

The determinant of the normal rank correlation coefficient matrix is calculated for each set 

of samples, and the determinants are denoted as ,£¨Q<¨P, T = 1 …100	. If the determinant 

based on the original training samples ,£¨Q<¨#�P lands within 90% of the probability 

bounds of ,£¨Q<¨P, T = 1 … 100, the Gaussian copula is assumed valid. Otherwise, the 

Gaussian copula does not hold, and other copulas need to be investigated. However, if other 

copulas are chosen, the sampling efficiency of the stochastic analysis will be downgraded 

since the inverse bivariate copula needs to be evaluated for each sample, and thus the vine 

approach will become much less efficient. In Chapters 3 to 5, Gaussian copula is adopted in 

the BNC approach but verified for each numerical example. 


