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CHAPTER I 

 

INTRODUCTION AND RESEARCH AIMS 

 

 

The Threat of Fungal Disease 

Fungal diseases are an important contributor to declines in wildlife populations and have 

the potential to cause extinction of many species (Daszak & Cunningham, 2000). Fungi are 

common pathogens of plants, but only recently has the threat of fungal diseases in animals been 

appreciated (Fisher et al., 2012). Corals (Rosenberg & Ben-Haim, 2002), crayfish (Daszak & 

Cunningham, 2000), snails (Cunningham & Daszak, 1998), sea turtles (Sarmiento-Ramírez et al., 

2010), platypuses (Obendor et al., 1993), bats (Foley et al., 2011), and amphibians (Daszak & 

Cunningham, 2000) are all threatened by fungal diseases.  Fungal pathogens may have even 

contributed to the extinction of the dinosaurs (Casadevall, 2012). The most widespread and 

ecologically destructive fungal diseases have been Pseudogymnoascus (previously Geomyces) 

destructans (Minnis & Lindner, 2013) and Batrachochytrium dendrobatidis (Daszac & 

Cunningham, 2000) causing white-nose syndrome in bats (Foley et al., 2011) and 

chytridiomycosis in amphibians, respectively.  

The chytrid fungus Batrachochytrium dendrobatidis is an emergent fungal disease 

pathogen of amphibians. One-third of all amphibian species are currently threatened with 

extinction (Stuart et al, 2004), and the loss of amphibians represents a large proportion of the 

current sixth historical mass extinction event (Wake & Vredenburg, 2008). Infectious diseases 

have greatly contributed to amphibian declines, and chytridiomycosis is the primary pathogenic 
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contributor (Rachowicz et al., 2006; Voyles et al., 2012). B. dendrobatidis infects amphibians on 

all six continents where amphibians are present (Speare & Berger, 2000) and is believed to be 

responsible for at least 90 extinction events (Pennisi, 2009). 

This review highlights the immune defenses, both characterized and theoretical, which 

could protect amphibians from chytridiomycosis. Jawed vertebrates, especially tetrapods, share 

an overwhelmingly similar immune system allowing for comparative studies (Robert & Ohta, 

2009; Robert & Cohen, 2011). Of fungal diseases in animals, those that infect humans and 

mouse models of fungal diseases have been well characterized in both host and pathogen. Some 

themes of pathogen recognition, immune response, and immune evasion are recurrent in fungal 

diseases and may be applicable to chytridiomycosis. Despite the overwhelming greater 

understanding of human mycoses, relatively little is understood about fungal diseases in animals 

compared to bacterial and viral diseases (Casadevall, 2013), and only about 2% of the funding 

for research on infectious diseases in the United States and United Kingdom are dedicated to 

studying fungal pathogenesis (Brown et al., 2012). A much greater focus on the interactions 

between vertebrate hosts and fungal pathogens will be necessary to find to find cures for current 

and future mycoses.  

 

Chytridiomycosis, a Major Contributor to Amphibian Declines 

Nearly a third of all amphibian species are considered threatened, endangered, or 

critically endangered (Houlahan et al., 2000; Stuart et al., 2004; Wake & Vredenburg, 2008). 

Amphibian declines have been linked to various factors (reviewed in Collins, 2010) including 

habitat loss (Collins & Storfer, 2003), climate change (Pounds et al., 2006), chemicals and 

pesticides present in the environment (Davidson et al., 2002; Blaustein et al., 2006), introduction 
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of exotic species (Vredenburg, 2004), and infectious diseases (Carey et al., 1999; Daszac et al., 

2003; Rachowicz et al., 2006). The emerging fungal disease chytridiomycosis, caused by B. 

dendrobatidis, is the most serious infectious disease of amphibians and is implicated in mass 

mortality events in more than 200 species (Wake & Vredenburg, 2008). 

 Batrachochytrium dendrobatidis was characterized as a new species in 1999 and 

identified as the suspect causative agent of several amphibian population declines (Berger et al., 

1998; Longcore et al., 1999; Pessier et al., 1999). Batrachochytrium dendrobatidis is a member 

of the Chytridiomycota, a paraphyletic, basal group of fungi defined by a motile zoospore life 

stage (Longcore et al., 1999, James et al., 2006). Chytrid fungi are largely saphrophytic but can 

be parasitic on phytoplankton, zooplankton, fungi, plants and invertebrate animals.  Only B. 

dendrobatidis and Batrachochytrium salamandrivorans, another amphibian pathogen (Martel et 

al., 2013), infect vertebrates (Gleason et al., 2008). The life cycle of B. dendrobatidis (Fig. 1-1) 

begins as a free-living zoospore containing a single flagellum (Longcore et al., 1999; Berger et 

al., 2005a). At the surface of the skin, a zoospore encysts and forces a germination tube into the 

skin so that it can infect an immature keratinocyte inside the stratum granulosum (Van Rooij et 

al., 2012; Greenspan et al., 2012). As the host cells keratinize and move toward the stratum 

corneum, B. dendrobatidis cells mature into zoosporangia filled with many zoospores (Longcore 

et al., 1999; Berger et al., 2005a). Once fully matured, zoosporangia will form a discharge tube at 

the top of the epithelium to release zoospores into the surrounding environment (Berger et al., 

2005a). Zoospores released from the discharge tube can re-infect the same host or be transmitted 

to a nearby host. 

 Chytridiomycosis has caused amphibian declines globally. Large population declines in 

Australia, Central America, the western United States, Europe, and Africa have been linked to  
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Fig. 1-1. Immune defenses to chytridiomycosis; see following page for details. 
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Fig 1-1. The immune defenses present in amphibian skin against B. dendrobatidis (Bd) infection.  

The life-cycle of Bd: (1) Bd zoospores from the environment enter the mucus layer 

covering the skin.  (2) Bd zoospores encyst on the surface of the skin and form a cell wall.  (3) The 

encysted cell forms a germinal tube which pushes into the epithelium.  (4) Bd injects itself into a 

living epithelial cell via the germ-tube.  (5) Bd cells grow and develop inside host cells as the host 

cell is pushed superficially. Root-like rhizoids form on these growing Bd germlings and thalli.  (6) 

The matured Bd cells, now zoosporangia, become filled with zoospores.  (7) The host cell is 

pushed to the surface of the skin and zoosporangia form discharge papillae which allow for the 

release of zoospores.  (8) Zoospores pass again through the mucus to re-infect the same individual 

or to infect another individual.  

The surface of the skin is coated in mucin-rich mucus which is secreted from dermal 

mucus glands. The skin mucus contains symbiotic bacteria; some amphibians have skin bacteria 

that secrete antifungal metabolites. Antibodies are also present in the mucus; mucosal antibodies 

from X. laevis have been found to be specific against Bd. Dermal granular glands release 

antimicrobial peptides (AMPs) into the mucus; mucosal AMPs from many amphibian species have 

been shown to inhibit Bd growth and survival.  

The epidermis likely contains a variety of immune cells that promote and coordinate 

immune response. Dendritic cells (DC), especially those resembling Langerhans cells (LC), have 

been identified in the skin of amphibians; dendritic cells are important for recognizing foreign 

antigens and presenting these to lymphocytes. Macrophages (MΦ) and neutrophils 

(polymorphonuclear cells, PMN) infiltrate tissue during infection and kill pathogens. B cells 

secrete antibodies that opsonize and neutralize pathogens; mucosal antibodies are probably 

produced by B cells in the skin. T cells are important at mediating immune responses by producing 

cytokines and interacting with other immune cells. T cells expressing the γδ T-cell receptor are 

typically associated with mucosal epithelia and have been identified in amphibian skin. CD8
+
 T 

cells do infiltrate amphibian skin during rejection of a skin transplant, so it is likely that more than 

just γδ T cells are important effectors in the skin. Helper T cells (TH) produce cytokines that 

promote phagocyte and other innate immune responses to clear infections. Cytotoxic lymphocytes 

(CTL) such as CD8
+
 T cells and natural killer cells kill host cells infected with pathogens by 

activating cell death receptors and releasing perforin and granzyme; these cells could limit Bd 

infection by killing infected epithelial cells.  Granulocytes (GC) likely contribute to skin immunity, 

playing roles in alarming the immune system and pathogen destruction. 
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B. dendrobatidis (Berger et al., 1998; Speare & Berger, 2000; Skerratt et al., 2007). 

Chytridiomycosis is defined by excessive skin sloughing, thickening and discoloration of the 

skin, and hyperkeratosis (Berger et al., 1998; Nichols et al., 2001). Amphibian skin is an 

important surface for the exchange of gases, water, and ions (Evans, 2009), and chytridiomycosis 

disrupts this normal function of amphibian skin (Voyles et al., 2009). The disruption of the skin 

is the most likely cause of death from chytridiomycosis due to electrolyte depletion and 

dehydration resulting in cardiac arrest (Voyles et al., 2009; Marcum et al., 2010; Voyles et al., 

2012). 

 

 

Amphibian Immune Defenses 

The role of immune defenses and symbiotic skin bacteria in protection against 

chytridiomycosis is not well understood, but the current state of knowledge has been previously 

reviewed (Rollins-Smith et al., 2009; Richmond et al., 2009; Voyles et al., 2011; Rollins-Smith 

et al., 2011).  In adult amphibians, B. dendrobatidis invades host epithelial cells in the skin 

epithelium and develops inside host keratinocytes as these move toward the more superficial 

layer of the skin (Berger et al., 2005a). Before infecting host cells, B. dendrobatidis must first 

pass through a layer of mucus on top of the skin, and then project a germ-tube into the tissue so 

as to insert itself into a host cell (Van Rooij et al., 2012; Greenspan et al., 2012). Thus, B. 

dendrobatidis must survive in the two different environments of the mucus and the skin 

epithelium. The defenses present in these two locations are very different, and pathogenesis 

studies should recognize that both B. dendrobatidis virulence features and host adaptive 

responses are likely to be site-specific (Fig. 1-1). 
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Recognition of B. dendrobatidis by the immune system 

Recognition of B. dendrobatidis is likely to be mediated by pathogen recognition 

receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs). PRRs are 

expressed typically by phagocytes and epithelial cells to recognize pathogens and promote an 

immune response. The most important PRR families for recognizing fungal PAMPs are Toll-like 

receptors (TLRs) and C-type lectin receptors (CLRs) (reviewed by Brown, 2011).  

Xenopus expresses 20 TLRs sharing homology with mammalian and other vertebrate 

TLRs (Ishii et al., 2007). TLRs 1, 2, 3, 4, 6, and 9 have been shown to be important in 

mammalian recognition of fungal pathogens (Garcia-Vidal et al., 2013), and orthologues of all of 

these TLRs are present in amphibians (Ishii et al., 2007). Although the general structure of 

amphibian TLRs are conserved (Roach et al., 2005), PAMP recognition may not necessarily be 

shared between mammals and amphibians. For example amphibians have minimal responses to 

the TLR4-ligand lipopolysaccharide (LPS) (Bleicher et al., 1983), but still have strong phagocyte 

and B-cell responses to Gram-negative bacteria (Morales et al., 2003; Nedelkovska et al., 2010; 

Chapter II and III).  

CLRs are essential for immune activation against fungal pathogens in mammals 

(Hardison & Brown, 2012). The Xenopus tropicalis genome, the only completed amphibian 

genome, has at least 200 genes with C-type lectin homology (Joint Genome Institute, KOG 

classification, http://genome.jgi-psf.org/cgi-bin/kogBrowser?db=Xentr4), and a specific CLEC 

orthologue has been identified as well (Robert & Ohta, 2009). The C-type lectin receptor Dectin-

1 (CLEC7a) recognizes β-1,3-glucan in fungal cell walls and aids in signaling immune responses 

against fungi (Hardison & Brown, 2012). Batrachochytrium dendrobatidis lacks the fungal genes 

to synthesize β-1,3-glucan and has been proposed to lack this cell wall component (Ruiz-Herrera 
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& Ortiz-Castellanos, 2010). The B. dendrobatidis cell wall has chitin (Ruiz-Herrera & Ortiz-

Castellanos, 2010; Holden et al., 2013), but it is still uncertain which PRRs, if any, recognize 

chitin (Brown, 2011). Mannose and mannans are important components of fungal cell walls, as 

well, and are recognized by several PRRs including the mannose receptor, Decitn-2, and Mincle 

(Hardison & Brown, 2011). Mannan structures are thought to be present in the B. dendrobatidis 

cell wall, and likely are important in the interaction between B. dendrobatidis and the amphibian 

immune system. 

Recognition of intracellular fungi can activate the inflammasome to induce release of 

active pro-inflammatory cytokines such as interleukin (IL)-1 and IL-18 (Romani, 2011; Garcia-

Vidal et al., 2013). Nod-like receptors (NLRs) are important activators of the inflammasome, and 

some evidence suggests that NLRs recognize fungal PAMPs because fungal pathogens can 

activate the NLRP3 inflammasome (Saïd-Sadier et al., 2010; Mao et al., 2013; Pietrella et al., 

2013; Tavares et al., 2013). Because of its intracellular location, B. dendrobatidis would be 

expected to activate the inflammasome of host epithelial cells. Increased expression of IL-1β in 

B. dendrobatidis-infected skin (Rosenblum et al., 2012a) suggests that B. dendrobatidis might 

activate the inflammasome or other intracellular pathogen recognition signaling pathways.  

Damage-associated (or danger-associated) molecular patterns (DAMPs) are also 

important in pathogen recognition and activation of immune responses (Bianchi, 2007; Zitvogel 

et al., 2010). DAMPs are released due to damage to cells or cellular structures that is often 

correlated with virulence, especially during fungal infection (Romani, 2011). B. dendrobatidis 

enters skin epithelial cells via a germination tube that grows into the epidermis (Van Rooij et al., 

2012; Greenspan et al., 2012); the ensuing damage from germination tube protrusion may 

produce DAMPs that would activate immune signaling pathways. Protease-activated receptors 
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(PARs) are activated by protease released from host or pathogen cells during pathogenesis 

(Romani, 2011). Batrachochytrium dendrobatidis has genomic expansions in proteases that 

likely contribute to virulence (Joneson et al., 2011; Sun et al., 2011); these proteases likely 

activate PARs in amphibian skin and may activate immune responses. 

  

Defenses within the mucus 

The mucus covering amphibian skin provides the first barrier to invading zoospores. This 

mucus provides both a chemical and physical barrier. Mucus is mainly composed of highly-

glycosylated mucins (Schumacher et al., 1994) released by dermal mucus glands (Fig. 1-1). The 

network of mucins provides a matrix for chemical defenses (Antoni et al., 2013) and has been 

shown to promote tolerance in gut epithelia (Shan et al., 2013). The mucus layer also contains 

antimicrobial peptides (Rollins-Smith and Conlon, 2005; Rollins-Smith, 2009), symbiotic 

bacteria (Bletz et al., 2013), and antibodies (Ramsey et al., 2010) (Fig. 1-1).  Antimicrobial 

peptides (AMPs) are amphipathic peptides produced by granular glands in amphibian skin 

(reviewed by Rollins-Smith and Conlon, 2005; Rollins-Smith, 2009). Many AMPs secreted by 

amphibian species are very effective against B. dendrobatidis in vitro (Rollins-Smith & Conlon, 

2005). The in vitro inhibitory properties of AMPs against B. dendrobatidis have also been 

correlated with host resistance (Woodhams et al., 2006; Woodhams et al., 2007a).  

In 1965, Farquhar and Palade identified bacteria in close association with amphibian skin 

in electron micrographs. Only recently have studies begun to identify and characterize these 

symbiotic bacteria (Harris et al., 2006, Lauer et al., 2007). Some of the  bacteria living in the 

mucus layer of the skin have been shown to produce metabolites that inhibit B. dendrobatidis 

growth (Harris et al., 2006; Woodhams et al, 2007b; Lauer et al., 2008; Becker & Harris, 2010; 
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Lam et al., 2010). Probiotic skin bacteria and their potential use in bioaugmentation have 

recently been reviewed by Bletz et al. (2013). Bacteria in the mucus may create a hostile 

environment to invading B. dendrobatidis zoospores, and conservation efforts may one day 

incorporate cutaneous symbionts to limit chytridiomycosis in maintenance and repopulation 

strategies.  

Antibodies of the three main amphibian classes have been identified in the mucus of 

Xenopus laevis. When exposed to B. dendrobatidis, X. laevis have B. dendrobatidis-specific 

mucosal antibodies (Ramsey et al., 2010). How these antibodies are transported into the skin 

mucus is not known. In the mammalian gut, epithelial cells transcytose antibodies into the gut 

mucosa (Lamm, 1997). B cells producing IgX, analogous to mammalian secretory IgA, and IgM 

have been identified along intestinal mucosal surfaces in X. laevis (Mussman et al., 1996). 

Mucosal antibodies probably are produced by B cells present in the skin. Cutaneous antibodies 

may protect against B. dendrobatidis by neutralization of virulence factors, by potentially 

inhibiting zoospore adherence, or by blocking germination tube formation. Mucosal antibodies 

may also opsonize B. dendrobatidis cells and activate killing by complement (Ogundele et al., 

2001).  The protective role of B. dendrobatidis-specific mucosal antibodies remains to be 

determined.  

B. dendrobatidis probably only spends a small portion of its lifecycle in the mucus. 

Greenspan et al. noted that infection of epidermal cells can occur as soon as 12 hours after 

inoculation with zoospores (2011).  Van Rooij et al. (2011) shown even more rapid initiation of 

the germ tube formation at 2 hours after exposure to amphibian skin in vitro. In this time, 

zoospores must survive any onslaught by AMPs, bacterial metabolites, complement, antibodies, 

and any other molecules that may inhibit or kill the zoospores (Fig. 1-1).  Some evidence 
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suggests that zoospores can move away from high concentrations of these inhibitory molecules 

(Lam et al., 2011), but it is likely that the presence of these defenses is important for ceasing or 

delaying colonization of the epithelium by B. dendrobatidis.   

 

 Defenses within the skin 

Very little is known about how the amphibian host responds to B. dendrobatidis infection 

of epithelial cells. The first stage of infection is when the encysted zoospore invades an immature 

keratinocyte in the stratum granulosum via a germination tube that penetrates the stratum 

corneum (Van Rooij et al., 2012; Greenspan et al., 2012). Batrachochytrium dendrobatidis is an 

intracellular pathogen (Berger et al., 2005a) but does not appear to be quite like typical 

intracellular bacteria or viruses. Much damage occurs to the infected host cell and the B. 

dendrobatidis cell or cells can occupy a large amount of the cytoplasm (Berger et al., 1998; 

Berger et al., 2005). Between the germ tube puncture and any rhizoids extending out of the host 

cell (Pessier et al., 1999), it is possible that the host cell is necrotic having lost membrane 

integrity and simply provides space and nutrients for the pathogen.  

Keratinocytes are capable of mounting innate responses to pathogens. Human 

keratinocytes are known to express PRRs and can respond to cutaneous pathogens by producing 

AMPs and inflammatory cytokines (Hau et al., 2011; Gallo & Nakatsuji, 2011). Some evidence 

suggests that a single family of AMPs and inflammatory cytokines are up-regulated in B. 

dendrobatidis-infected skin (Rosenblum et al., 2012a). Skin sloughing may be another 

mechanism to protect against cutaneous pathogens. In cane toads, skin sloughing decreases the 

amount of cutaneous bacteria (Meyer et al., 2012). Increased skin sloughing, a symptom of 

chytridiomycosis (Berger et al., 1998), either may be a defense mechanism to remove infected 
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cells from the epithelium before B. dendrobatidis can complete its lifecycle (Berger et al., 

2005b) or could simply be a result of the damage caused by B. dendrobatidis infection. 

All exterior surfaces of vertebrates (the gastrointestinal tract, respiratory tract, skin, ect.) 

have associated immune cells to maintain these barriers and prevent microbial invasion. All the 

major leukocyte populations present in mammals have been identified in the amphibian 

immunological model X. laevis (Robert & Ohta, 2009) and many types of leukocytes are present 

in amphibian skin. Skin-associated lymphatic tissue (SALT) has been described in fish and 

mammals and has been shown to be important in interactions with skin symbionts (Xu et al., 

2013; Egawa & Kabashima, 2011). Components of SALT have been identified in amphibians as 

well (Carrillo-Farga et al., 1990; Castel-Rodriguez et al. 1999; Mescher et al., 2007).  Thus, 

immune cells are normally present in amphibian skin and will infiltrate the skin when foreign 

antigens are detected (Fig. 1-1).  

Phagocytes are an important component of immune surveillance along mucosal surfaces. 

Phagocytic leukocytes—dendritic cells, macrophages, and neutrophils—are important in killing 

fungal pathogens via phagocytosis, reactive oxygen and nitrogen production, release of 

antimicrobial peptides and enzymes, and nutritional immunity (Brown, 2011). Phagocytes are 

likely the first leukocyte responders in the skin responding to a foreign allograft. In X. laevis, 

skin allografts are infiltrated by MHC class II-expressing cells, many of which are probably 

phagocytes, likely macrophages, Langerhans cells, or dendritic cells (Ramanayake et al., 2007). 

During chytridiomycosis, phagocytes likely play a role in recognition, immune activation, and 

antigen presentation after recognizing PAMPs from B. dendrobatidis or after engulfing dead 

cells infected with B. dendrobatidis. Macrophages are likely important in immunity to B. 

dendrobatidis.  Macrophages, with T cell assistance, can activate protective killing mechanisms 
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shown to be important during fungal pathogenesis (Romani, 2011). Macrophages are an 

important component of the amphibian immune system important for pathogen clearance (Chen 

& Robert, 2011), and are also likely important in immunity to chytridiomycosis. Amphibian 

macrophages engulf B. dendrobatidis cells in vitro (Chapter III) and may play a similar role in 

vivo to kill B. dendrobatidis cells and activate immune responses. 

Dendritic cells (DCs) are sentinel cells that both detect pathogens and activate adaptive 

immunity (Banchereau & Steinman, 1998). Langerhans cells (LCs) are a type of DC present in 

the skin and play a major role in skin immunity (Igyáró & Kaplan, 2013). DCs and LCs are 

important for recognition and presentation of fungal antigens to T cells to promote antifungal 

immunity in mammalian systems (Roy & Klein, 2012; Wüthrich et al., 2012a).  Both DCs and 

LCs have been identified in histological studies of Xenopus and Rana skin (Carrillo-Farga et al., 

1990; Castel-Rodriguez et al. 1999; Mescher et al., 2007). DCs are likely to be important for 

recognition of B. dendrobatidis infections, but their role has not yet been studied.  

Neutrophils are important mediators of pathogen killing, especially during fungal 

infections. Along with typical phagocytic killing mechanisms, neutrophils can also kill fungi 

through extracellular chromatin traps (neutrophil extracellular traps) (Brinkmann et al., 2004; 

Brinkman and Zychlinsky, 2007). Neutrophils promote epithelial barrier maintenance by 

producing IL-22 which promotes AMP production by epithelial cells in mammals (Zindl, et al., 

2013). T helper 17 (Th17) responses typically are protective against fungal pathogens, and 

neutrophil recruitment is an important component of the Th17 response (Wüthrich et al., 2012a). 

Much less is known, but neutrophils are also important in the immune responses of amphibians 

(Robert & Ohta, 2009). Although little is known about what the role neutrophils play in 

chytridiomycosis, amphibian neutrophils can engulf B. dendrobatidis cells in vitro (Chapter III). 
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T cells are important in regulating and coordinating immunity in the skin. Humans have 

about 20 billion T cells in the skin, substantially more than the number in blood circulation 

(Egawa & Kabashima, 2011). T cells are also present in amphibian skin. T cells expressing the 

γδ T cell receptor, important for mucosal immunity (Ismail et al., 2011), have been identified in 

X. laevis skin (Mescher et al., 2007). Cytotoxic (CD8
+
) T cells infiltrate X. laevis skin allografts 

to reject the foreign tissue (Ramanayake et al., 2007). CD4, the marker for helper T cells, is well 

conserved in structure and function between amphibians and mammals (Chida et al., 2011); 

however, because no amphibian CD4-specific antibodies are available (Robert & Cohen, 2011), 

the presence of helper T cells in amphibian skin is still hypothetical. Invariant T cells have 

recently been described in X. laevis; these cells have been proposed to recognize MHC class Ib 

and be important for larval immunity against viruses (Edholm et al., 2013).  Clearance of B. 

dendrobatidis from amphibian skin would be expected to require robust T cell responses. Th1 

and Th17 responses, although not fully characterized in amphibians, are typically protective 

against fungal pathogens (Romani, 2011; Wüthrich et al., 2012a). The important cytokines for 

these responses appear to be conserved among vertebrates (Kaiser et al., 2004; Qi & Nie, 2008; 

Savan et al., 2009). Cytotoxic T cells may also contribute to protection against chytridiomycosis, 

especially if these cells are capable of killing B. dendrobatidis-infected epithelial cells. 

Successful strategies attempting to induce immunity and protection from B. dendrobatidis 

infection will probably require activation of T cell-mediated responses.  

Amphibian B cells produce antibodies of three main immunoglobulin classes: IgM, IgY 

(IgG homologue) and IgX (IgA analogue) and two other recently identified classes of IgD and 

IgF (Robert & Ohta, 2009). Amphibians have many Fc receptors to recognize these antibodies 

that have targeted pathogens for destruction (Guselnikov et al., 2003). The presence of B cells in 
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the skin of amphibians has not been determined, but populations of B cells have been identified 

in the skin of fish (Xu et al., 2013) and mammals (Geherin et al., 2012). IgX-producing plasma 

cells are present in the gut of X. laevis (Mussman et al., 1996), and similar cutaneous B cells 

probably are secreting IgM, IgY, and IgX due to the presence of these antibodies in the skin 

mucus (Ramsey et al., 2010). 

Natural killer (NK) cells have been described in X. laevis (Horton et al., 2000). Although 

NK cells have not been identified in the skin, they have been identified in amphibian intestinal 

epithelia (Horton et al., 2000).  NK cells are functionally conserved between amphibians and 

mammals releasing interferon γ (IFN-γ) and cytotoxic mediators to promote immune response 

and kill tumorigenic or infected cells (Robert & Ohta, 2009; Chen & Robert, 2011). NK cells 

have not been identified in the skin of amphibians, but putatively may act to kill B. 

dendrobatidis-infected cells or augment a Th1-type response by producing IFN-γ. 

Granulocytes play an important role in initiating and promoting immune responses in all 

vertebrates. Granulocytes are innate immune cells with granules that can release immune 

activators, like histamine, or pathogen-killing molecules (Rothenberg & Hogan, 2006; Perrigoue 

et al., 2009; Urb & Sheppard, 2012). Mast cells are granulocytes that occupy barrier tissues like 

skin and gut mucosal epithelia and typically act as alarms for immune activation. Although 

poorly understood, mast cells can recognize fungi via PRRs and potentially coordinate a 

response against fungal pathogens (Urb & Sheppard, 2012). In amphibians, mast cells have been 

found in many tissues including along the gastrointestinal tract (Baccari et al., 1998). Basophils 

and eosionophils are other types of granulocytes important for anti-parasitic defense and allergic 

responses (Rothenberg & Hogan, 2006; Perrgoue et al., 2009). Basophils may counteract an 

immune response to fungi due to their involvement in Th2 responses (Perrgoue et al., 2009; 
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Yoshimoto et al., 2009) which typically are not protective against fungal infections (Szymczak & 

Deepe, 2009; Wüthrich et al., 2012a). Basophils and eosinophils have been identified in the 

blood and peritoneum of X. laevis (Hadji-Azimi et al., 1990; Robert & Ohta, 2009). The presence 

of granulocytes in amphibian skin is unknown, but it is possible that such cells may help initiate 

or mediate a response against B. dendrobatidis.  

 

Immune responses against B. dendrobatidis in the skin 

Several studies have investigated the cutaneous immune responses in the skin of B. 

dendrobatidis-infected frogs (Table 1-1). Early histology studies of chytridiomycosis noted a 

mild infiltration of leukocytes into infected skin (Pessier et al., 1999; Berger et al., 2005b). Later 

microarray studies of B. dendrobatidis-infected skin noted very little up-regulation of cytokines 

and immune related genes especially those related to a robust lymphocyte-mediate response 

(Rosenblum et al., 2009; Rosenblum et al., 2012a). These studies provide insights into some of 

the skin responses, but changes in immune cell expression would probably be indistinguishable 

over the noise from transcripts of other epidermal and dermal cells. Some attempts have been 

made to immunize frogs to protect them from subsequent infections with B. dendrobatidis. An 

immunization protocol that induced strong antibody responses in X. laevis was unable to protect 

boreal toads from lethal infections (Rollins-Smith et al., 2009).  Immunization of mountain 

yellow legged frogs with formalin-fixed B. dendrobatidis also failed to protect this species from 

a subsequent B. dendrobatidis infection ( Stice & Briggs, 2010). The failure to immunize and 

induce a protective response in amphibians against B. dendrobatidis results from an incomplete 

understanding of the pathogenesis of B. dendrobatidis and amphibian immune responses. 

Immunization protocols using killed fungi have been mostly unsuccessful in mammals (Cassone  
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No Clearance Clearance 

Very little leukocyte infiltration in the skin of 

infected individuals (Pessier et al., 1999; 

Berger et al., 2005b). 

Temporarily knocking out adaptive immunity 

with X-irradiation prior to infection increases B. 

dendrobatidis load (Ramsey et al., 2010). 

Prior exposure and clearance in some instances 

is not protective (Cashins et al., 2013) and 

immunization attempts have not been 

protective (Rollins-Smith et al., 2009; Stice & 

Briggs, 2010) 

Instances where previous exposure to B. 

dendrobatidis with clearance aided in later 

resistance (Richmond et al., 2009; Bishop et al., 

2009; McMahon et al., submitted). 

Little transcriptional evidence of an immune 

response (Rosenblum et al., 2009; Rosenblum 

et al., 2012a) 

MHC class II alleles correlated with survival of 

one species (Savage & Zamudio, 2011). 

Lymphocytes from B. dendrobatidis-

immunized frogs do not respond to the fungus 

in vitro (Rollins-Smith et al., 2009). 

Mucosal antibodies are produced by individuals 

exposed to B. dendrobatidis (Ramsey et al., 

2010). 

Difficult to clear infection without treatment, 

even in resistant species (Mazzoni et al., 2003; 
Ramsey et al., 2010) 

B. dendrobatidis does not appear to inhibit 

phagocyte functions (Chapter III of this thesis). 

B. dendrobatidis inhibits lymphocytes 

responses (Chapter II of this thesis). 

 

 

 

  

Table 1-1. Evidence for and against the capability of the amphibian 

immune system to clear B. dendrobatidis infection. Likely, the response is 

multifactorial where low infection loads that are maintained by innate 

immune defenses will lead to clearance or at least survival. When B. 

dendrobatidis loads are high, virulence factors may inhibit lymphocyte-

mediated responses preventing robust immune responses against B. 

dendrobatidis. 



18 
 

& Casadevall, 2012; Wüthrich et al., 2013). Similar immunizations using killed B. dendrobatidis 

will likely fail. Development of a systemic antibody response to B. dendrobatidis may not be 

protective unless defenses are activated in the skin. 

Despite the fairly consistent observation of very limited immune responses during 

chytridiomycosis, several studies do suggest that adaptive immune responses are present and can 

be important in survival and decreasing pathogen burden. Temporarily impairing lymphocyte  

populations with sub-lethal X-irradiation in X. laevis greatly increased B. dendrobatidis infection 

loads (Ramsey et al., 2010). Frogs that have survived B. dendrobatidis infection can mount better 

immune responses likely mediated by adaptive immunity (Richmond et al., 2009; McMahon et 

al., submitted). X. laevis previously exposed to B. dendrobatidis produce more B. dendrobatidis-

specific mucosal antibodies than unexposed controls suggesting that lymphocyte responses may 

mediate protection (Ramsey et al., 2010). Also MHC class II alleles, important for antigen 

presentation to T cells, have been correlated with surviving chytridiomycosis (Savage and 

Zamudio, 2011).  

Although amphibians appear to be capable of mounting adaptive immune responses 

against B. dendrobatidis, infection continues to persist even in highly resistant species such as X. 

laevis and Rana catesbeiana (Ramsey et al., 2010; Mazzoni et al., 2003). Studies investigating 

whether prior B. dendrobatidis exposure and clearance provides protection from 

chytridiomycosis show mixed results (Table 1-1) (Bishop et al., 2009; Cashins, et al., 2013).  

The best hypothesis to explain why amphibians can only mount a minimal or inconsistent 

response is that B. dendrobatidis is able to inhibit development of an effective immune response. 

Batrachochytrium dendrobatidis appears to inhibit adaptive immune responses by inducing 

apoptosis in lymphocytes (Chapter II). Interestingly, B. dendrobatidis does not appear to impair 
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phagocyte activities suggesting that by targeting lymphocyte responses, B. dendrobatidis is able 

to persist in the skin of its hosts. B. dendrobatidis likely evades detection by phagocytes in the 

skin by being an intracellular pathogen (Berger et al., 2005a) subtly injecting itself into 

epidermal cells via a germ tube (Van Rooij et al., 2012; Greenspan et al., 2012). Responses 

against an intracellular fungus typically require T cell responses in order to clear the infection 

(Romani, 2011; Wüthrich et al., 2012a). Occupying an epithelial cell may be sufficient to evade 

some detection and destruction by phagocytes but would not be protective once the adaptive arm 

was activated; therefore, inhibiting lymphocytes is quite necessary for B. dendrobatidis to 

continue colonization of the skin epithelium. 

 

IV. Vertebrate Immune Responses against Fungi 

 The best studies of immune responses against fungal diseases have been those directed at 

human mycoses and using murine models of fungal diseases.  The conservation of pathogen 

recognition systems and immune responses among vertebrates allows for speculation about how 

the amphibian immune system might respond to chytridiomycosis based on what is known about 

how mice and humans respond to fungal pathogens. Each fungal disease seems to vary in the 

way it is manifested and the way the immune system responds and clears the fungal burden. Of 

the well-studied fungal diseases, the majority are caused by higher fungi in the Ascomycota and 

Basidiomycota phyla (James et al., 2006). Batrachochytrium dendrobatidis, as a chytrid fungus, 

is very distantly related to the fungi known to cause disease in humans. Batrachochytrium 

species are the only known members of the Chytridiomycota to infect vertebrates, but other 

chytrids are known to be pathogens of plants and arthropods (Gleason et al., 2008; Martel et al., 

2013). The way a vertebrate immune system recognizes and responds to a chytrid fungus is 
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likely to be very different from a response to higher fungi. Another major difference between the 

response of mammalian species and those of amphibians is that amphibians are “cold-blooded”, 

and body temperature fluctuate with environmental temperature, but generally are well below 37 

C.  Thus, differences between immunity to chytridiomycosis and immunity to human mycoses 

are likely due to differences in the fungal pathogen, and differences in the temperature-limited 

host response. Despite these differences, the similarities in fungal pathogenesis and common 

features of all vertebrate immune defenses may provide some new insight into host-pathogen 

interactions during chytridiomycosis.  

 

 Fungal diseases in humans 

 The occurrence of fungal disease in humans is on the rise due to an increased number of 

immunocompromised persons and invasive therapies (Cassone & Casadevall, 2012). Also the 

threat of endemic fungal disease may be increasing due to climatic shifts causing ambient 

temperatures to approach the human body temperature (Garcia-Solache & Casadevall, 2010). 

The most common fungal pathogen of humans is Candida, most typically C. albicans, typically 

causing mucocutaneous or vulvovaginal candidiasis (Cassone & Casadevall, 2012). Candidemia 

is a common hospital-acquired infection and has become the second most common infection in 

premature infant deaths and the fourth most common bloodstream infection in hospital patients 

(Spellberg, 2011; Roy & Klein, 2012). Candida typically exists as a human commensal in the 

yeast-like form, but becomes pathogenic in a transition to hyphae or pseudohyphae as it invades 

host tissue (Romani, 2004; Filler & Sheppard, 2006). Aspergillus species are the next most 

important fungal pathogen of humans followed by Cryptococcus species and endemic mycoses 

such as Histoplasma capsulatum, Coccidioides immitus, Blastomyces dermatitidis, and 
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Paracoccidioides brasiliensis (Spellberg, 2011; Romani, 2004; Romani, 2011).  Other frequent 

fungal pathogens, Malasezia species, are human skin commensals that can cause skin infections 

(Romani, 2011). Typically individuals who are immunocompromised develop severe mycoses; 

the exception being candidiasis where only a small percentage of Candida infections can be 

directly linked with immune deficiencies (Spellberg, 2011; Iannitti et al., 2012).  

 

 Fungal recognition and immune activation 

 Studies of human mycoses using murine models suggest the use of certain common PRRs 

and activation signals in responses to several fungal diseases (Brown, 2011; Romani, 2011; 

Wüthrich et al., 2012a). Variations in host responses may result from evasion strategies 

employed by the pathogen. Common themes are also noted in immune evasion strategies among 

fungal pathogens (Table 1-2). In general, inflammatory immune responses are typically 

protective against fungal pathogens; however, these inflammatory responses can lead to 

immunopathology (Romani, 2011; Wüthrich et al., 2012a). In fungal disease, an in all infectious 

disease, a delicate balance exists such that the immune response must be strong enough to 

remove the pathogen without causing too much damage to the host. 

 Immune recognition of fungi typically occurs via PRRs on or inside of host cells, usually 

epithelial or phagocytic cells. Most fungal PAMPs are located in the fungal cell wall. The fungal 

cell walls are structurally supported by a fibrillar structure typically composed of chitin at the 

base, an intermediate layer of β-1,3-glucans with differing β-1,6-branching, and a superficial 

layer of mannosylated proteins (Yin et al., 2005; Latgé et al., 2010; Hardison & Brown, 2012). 

Many fungi also have a layer superficial to this fibrillar cell wall. Cryptococcus fungi form 

polysaccharide capsules mainly composed of glucuronoxylomannan (GXM) and 
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Table 1-2: Immune evasion strategies employed by fungi to suppress vertebrate immune defenses (1/4). 

Evasion 

Strategy 

Pathogen Mechanism of Evasion Reference 

Preventing 

detection of 

PAMPs 

B. dendrobatidis Appears to lack β-1,3- or β-1,6-glucan in 

its cell wall (although dectin-1 

homologue yet to be identified in 

amphibians or fish). 

Ruiz-Herra & 

Ortiz-

Castellanos, 

2010; Aoki et 

al., 2008 

Candida albicans Hyphal β-glucan in cell wall is masked 

preventing detection by dectin-1.  

Gantner et al., 

2005 

Aspergillus 

fumigatus 

Galactosaminogalactan on hyphae mask 

β-glucan exposure.  

Gravelat et al., 

2013 

A. fumigatus Hydrophobin on conidia mask cell wall 

PAMPs especially β-glucan. 

Aimanianda et 

al., 2009 

Cryptococcus 

neoformans 

Produces a capsule which covers cell-

wall PAMPs (capsule components are 

also PAMPs but tend to not be as 

immunogenic) 

Zaragoza et al., 

2009 

Histoplasma 

capsulatum, 

Paracoccidioides 

species  

α-1,3-glucan in the cell wall masks β-

1,3-glucan in cell wall.  

Rappleye et al., 

2007; Puccia et 

al., 2011 

 

Fonsecaea pedrosoi Infection does not activate TLR 

signaling likely due to the lack of TLR-

agonist PAMPs. 

Sousa et al., 

2011. 

Pneumocystis 

carinii 

Glycoproteins on surface block mannose 

receptor recognition. 

Pop et al., 2006 

Inhibition of 

phagocyte 

killing 

Candida species Catalase, superoxide dismutase, 

thioredoxin proteins, glutaredoxin 

proteins.  

Brown et al., 

2009 

C. neoformans Have superoxide dismutase, thioredoxin 

proteins and up-regulate anti-oxidants, 

like melanin, to protect against ROS and 

RNS.  

Brown et al., 

2009; Coelho et 

al., 2013 

C. neoformans Capsule protects against ROS and RNS. Zaragoza et al., 

2009 

H. capsulatum Catalases and superoxide dismutase 

target ROS. Flavoproteins resist RNS. 

Holbrook et al., 

2013; 

Subramanian 

Vignesh et al., 

2013 

 

Blastomyces 

dermatitidis 

Yeasts inhibit inducible nitric oxide 

synthase activity in alveolar 

macrophages. 

Rocco et al., 

2011 
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Table 1-2 Continued: Fungal immune evasion strategies (2/4). 

Evasion 

Strategy 

Pathogen Mechanism of Evasion Reference 

Evasion of 

phagocytosis or 

escape from 

phagocytes 

B. dendrobatidis Infects keratinocytes from the surface 

via germ-tubes potentially evading 

phagocyte recognition. 

Van Rooij et al., 

2012; Greenspan 

et al., 2012 

C. albicans, 

A. fumigatus, 

C. neoformans, 

H. capsulatum, 

Paracoccidioides 

brasiliensis, 

Sporothriz 

schenckii, 

Rhizopus oryzae 

Can invade epithelial or endothelial cells 

where phagocytic recognition would not 

occur. 

Filler & 

Sheppard, 2006 

C. albicans Induces the cycling of phagosomal 

maturation markers out of the 

phagosome. 

Fernandez-

Arenas, 2009 

C. albicans, 

A. fumigatus 

Growing hyphae can break out of 

phagosomes (hyphal growth is inhibited 

by neutrophils). 

Brown, 2011  

H. capsulatum Inhibits phagosome-lysosome fushion. Woods, 2003 

C. neoformans Large cell phenotype (up to 100 μm in 

diameter) prevents phagocyte 

engulfment.  

Zaragoza & 

Nielsen, 2013 

Cryptococcus 

species 

Produce a polysaccharide capsule to 

prevent phagocytosis. 

Zaragoza et al., 

2009 

C. neoformans Phagosomes in infected macrophages 

tend to be ‘leaky.’  

Tucker & 

Casadevall, 2002 

C. neoformans Nonlytic exocytosis from phagocytes. Coelho et al., 

2013 

Destruction/ 

evasion of 

chemical 

defenses 

B. dendrobatidis 

 

Genome expansion in proteases. Some 

of these proteases have been shown to 

degrade amphibian antimicrobial 

peptides. 

Joneson et al., 

2011; 

Thekkiniath et 

al., 2013 

B. dendrobatidis Zoospores evade antifungal metabolites 

in mucus. 

Lam et al., 2011. 

Candida species Secrete a variety of proteases and other 

enzymes linked with virulence including 

degradation of complement and 

antimicrobial peptides 

Garcia-Vidal, et 

al., 2013; Speth 

et al., 2008; 

Meiller et al., 

2009 

Candida species Produce regulatory proteins that inhibit 

complement activation 

Speth et al., 

2008; Luo et al., 

2009 

Aspergillus species Secretes proteases that degrade 

complement. 

Rambach et al., 

2010 
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Table 1-2 Continued: Fungal immune evasion strategies (3/4). 

Evasion 

Strategy 

Pathogen Mechanism of Evasion Reference 

Decreasing 

inflammatory 

responses 

A. fumigatus Gliotoxin inhibits activation of NF-κB. Ben-Ami et al., 

2010 

C. albicans, 

A. fumigatus 

Hyphae promote a Th2 (less 

inflammatory) response. However, this 

may be an appropriate response to 

filamentous fungi. 

d’Ostiani  et al., 

2000; Netea et 

al., 2003; Chai et 

al., 2011 

C. albicans Modification of tryptophan metabolism 

by virulence factors inhibits IL-17 

production. 

Cheng et al., 

2010 

C. albicans Natural tolerance to commensal yeast 

could reduce responses to invasive 

hyphae or pseudohyphae. 

Romani, 2011 

C. neoformans Capsular polysaccharide GXM induces 

production of IL-10 and TGF-β while 

decreasing TNF-α, IL-1 and IL-12 and 

generally inhibits leukocyte infiltration. 

Dong & 

Murphy, 1995; 

Vecchiarelli & 

Monari, 2012 

B. dermatitidis BAD-1 on surface activates signal in 

macrophages to decrease TNF-α 

production. 

Finkel-Jimenez 

et al., 2002. 

B. dermatitidis Chemokines are impaired preventing 

recruitment of inflammatory monocytes. 

Wüthrich et al., 

2012b. 

P. brasiliensis Soluble factors drive IL-4 production to 

dampen inflammatory response. 

Cavassani et al., 

2011 

Induction of 

phagocyte 

apoptosis 

A. fumigatus Galactosaminogalactan on hyphae 

induces apoptosis of neutrophils and 

dendritic cells 

Fontaine et al., 

2011; Lee et al., 

2013 

A. fumigatus Gliotoxin has toxic effects on 

phagocytes. 

Ben-Ami et al., 

2010. 

C. neoformans Capsular polysaccharide GXM induces 

phagocyte apoptosis. 

Villena et al., 

2008 

Evasion of 

nutritional 

immunity 

A. fumigatus, 

H. capsulatum 

B. dermatitidis 

Secrete siderophores to scavenge metal 

nutrients (mainly iron). 

Kornitzer, 2009; 

Gauthier et al., 

2010 

C. albicans, 

C. neoformans 

Can obtain iron from host iron binding 

proteins (hemoglobin, ferritin, 

transferrin) 

Kornitzer, 2009 
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Table 1-2 Continued: Fungal immune evasion strategies (4/4). 

Evasion 

Strategy 

Pathogen Mechanism of Evasion Reference 

Impairment of 

lymphocytes 

B. dendrobatidis Soluble molecules induce apoptosis in 

lymphocytes. 

Chapter II this 

thesis. 

C. neoformans Capsule polysaccharide GXM induces 

FasL expression on macrophages and 

dendritic cells. 

Monari et al., 

2005; Piccioni et 

al., 2011 

C. neoformans Capsule polysaccharide GalXM directly 

induces apoptosis in lymphocytes. 

De Jesus et al., 

2009  

Pericolini et al., 

2009 

B. dermatitidis  BAD-1 (adherence factor) inhibits T-cell 

activation through interactions with 

CD47 

Brandhorst et al., 

2013. 

A. fumigatus Produces gliotoxin which activates 

apoptosis in lymphocytes. 

Fox & Howlett, 

2008; Ben-Ami 

et al., 2010 

P. brasiliensis Produces prostaglandins suspected to 

suppress lymphocyte immunity in 

paracoccidiomycosis.  

Campanelli et 

al., 2003; 

Bordon et al., 

2007 
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galactoxylomannan (GalXM) (De Jesus et al., 2010). Aspergillus species produce 

exopolysaccharides on the cell wall surface such as galactomannan, α-1,3-glucan, and 

galactosaminogalactan (Latgé, 2010). The glucans and mannans of fungal cell walls are typically 

recognized by PRRs to activate downstream immune responses (reviewed by Brown, 2011). C-

type lectin receptors (CLRs) are very important for recognizing carbohydrate structures of fungal 

cell walls. CLRs involved in fungal recognition include Dectin-1 which recognizes β-1,3-glucan, 

Dectin-2 which recognizes α-mannan, the mannose receptor (MR) which recognize mannans, 

Mincle which recognizes mannose, and DC-SIGN which recognizes mannans (Hardison & 

Brown, 2012). 

Toll-like receptors (TLRs) are also important for recognizing fungal PAMPs. Several 

TLRs recognize mannan structures present on fungal surfaces. TLR2 binds to 

phospholipomannan and GXM ligands, and TLR4 recognizes O-linked mannans and GXM as 

well (Brown, 2011). TLRs 1 and 6 are also important in fungal recognition and often form 

heterodimers with TLR2 (Garcia-Vidal et al., 2013). PAMPs outside of the fungal cell wall can 

also be detected by PRRs.  For example, TLR9 has been shown to recognize DNA from 

Aspergillus fumigatus and C. albicans but may be dispensable for protection (Ramirez-Ortiz et 

al., 2008; van de Veerdonk, 2008). TLR3 and TLR7, which typically recognize foreign RNA, 

also appear to be important for detection of fungal pathogens (LeibundGut-Landmann et al., 

2012; Garcia-Vidal et al., 2013).  

Chitin is an important component of the fungal cell wall, yet a PRR for chitin has not 

been determined (Hardison & Brown, 2012). Chitin elicits an allergic response promoting C3a 

and CCL2 production in the lungs of mice (Roy et al., 2012; Roy et al., 2013). TLR2 and Dectin-

1 appear to play a role in recognition of chitin (Da Silva et al., 2008; Da Silva et al., 2009). Other 
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putative receptors for chitin are FIBCD1 (fibrinogen C domain-containing 1) and galectins 

because the ligands for these receptors are acetylated structures such as N-acetylglucosamine, the 

repeating component of chitin (Roy & Klein, 2013). The down-stream activation of immune 

responses are greatly dependent on the size of chitin polymers.  Very large chitin polymers have 

no immune effect; intermediate fragments activate inflammatory cytokine production; and small 

fragments promote anti-inflammatory responses (Da Silva et al., 2008; Da Silva et al., 2009). 

The fragmentation of chitin may serve as monitoring system for the immune system to determine 

whether or not fungal pathogens have been destroyed (Lee et al., 2008). 

 Once a fungus is recognized by PRRs, signaling induces cytokine production to promote 

innate responses and cue adaptive immune responses to promote pathogen clearance. Dectin-1 

activation typically activates protective immune responses by inducing production of tumor 

necrosis factor α (TNFα) and pathogen-killing by phagocytes (Goodridge et al., 2009; Kerrigan 

& Brown, 2010). Dectin-1 signaling also up-regulates production of IL-1β, IL-12, IL-6, and IL-

23, which promote protective inflammatory Th1 and Th17 responses (Wüthrich et al., 2012a). 

Many fungal pathogens evade Dectin-1 detection by masking β-glucans on their surface (Table 

1-2). There is some variability in the role of Dectin-1 in resistance to fungal infection.  For 

example, vaccine protection by Th17 in B. dermatitidis and similar endemic fungi is independent 

of Dectin-1 signaling (Wüthrich et al., 2011), and the protection given by Dectin-1 varies greatly 

among C. albicans strains (Marakalala et al., 2013). The role of Dectin-1 in protection is likely to 

vary depending on fungal cell wall composition and architecture and whether or not other PRR 

signals can convey protection independent of Dectin-1.  

 CLRs other than Dectin-1 have not been investigated as thoroughly, but they are 

important for activating protective immunity against fungi. Mincle and Dectin-2 bind to 
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mannose-containing PAMPs and require FcRγ for intracellular signaling (Hardison & Brown, 

2012). Both Mincle and Dectin-2 have been shown to promote immune responses against C. 

albicans in mice (Wells et al., 2008; Saijo et al., 2010). Dectin-2 is also important in activating 

protective inflammation during Candida glabrata infection (Ifrim et al., 2013). The MR is 

another important CLR recognizing terminal mannose in fungal PAMPs that activates production 

of inflammatory cytokines (Hardison & Brown, 2012; Wüthrich et al., 2012a). The MR is 

important for inducing Th17 responses to C. albicans in human lymphocytes (van de Veerdonk 

et al., 2009). 

 TLR signaling plays an important role in activation of immune responses against fungal 

pathogens. Deficiency in MyD88, the down-stream adaptor protein for most TLRs, greatly 

increases fungal burden in mice, but it does not appear to factor into human fungal disease 

(Bellocchio et al., 2004; Brown, 2011). Single nucleotide polymorphisms in human TLRs 1, 4, 6 

and 9 are linked with increased susceptibility to aspergillosis, and polymorphisms in TLRs 1 and 

4 are linked with increased susceptibility to candidiasis (Romani, 2011; LeibundGut-Landmann 

et al., 2012).  The majority of studies investigating the role of TLRs in mouse models of fungal 

disease have focused on TLR2, TLR4, and TLR9. These TLRs are important in Th1 immunity, 

but it is not well understood what role these or other TLRs play in activating or repressing Th17 

responses (Bellocchio et al., 2004; Wüthrich et al., 2012a). Both TLR2 and TLR4 recognize 

mannan structures but have different ligands, typically phospholipomannan and O-linked 

mannans, respectively (Brown, 2011). TLR2 appears to have a contradictory role in 

inflammatory responses against fungi. In response to fungi, TLR2 can induce TNFα and IL-10; 

thus, TLR2 can either promote or dampen inflammatory responses (Bellocchio et al., 2004; 

Netea et al., 2004). TLR2 can promote regulatory T cell responses, which in some instances may 
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decrease resistance and in other cases may convey protection against immunopathology in fungal 

disease (Netea et al., 2004; Sutmuller et al., 2006). TLR4 has a more inflammatory and 

protective role in fungal diseases. TLR4 is important for resistance in mouse models of C. 

albicans and A. fumigatus (Bellocchio et al., 2004). Fungal PAMP activation of TLR4 induces 

production of TNFα (Tada et al., 2004) and appears to be necessary for Th1 immunity against 

these fungi (Bellocchio et al., 2004; Wüthrich et al., 2012a). TLR9 likely activates immune 

responses by recognizing fungal DNA.  A. fumigatus, Cryptococcus neoformans, C. albicans, 

and Saccharomyces cerevisieae DNA activate TLR9 in vitro (Ramirez-Ortiz et al., 2008 

Nakamura et al., 2008; Kasperkovitz et al., 2011).  Although, fungal DNA promotes 

inflammatory responses via TLR9, TLR9 deficient mice do not have reduced resistance to A. 

fumigatus or C. albicans (Bellocchio et al., 2004). Differential TLR activation can be a 

mechanism used by the pathogen to evade immunity or by the host to differentiate different 

fungal forms. A. fumigatus and C. albicans have more surface expression of TLR2 ligands in the 

pathogenic filamentous form and more TLR4 ligands on the surface of conidia and yeast 

(d’Ostiani et al., 2000; Netea et al., 2003). TLR signaling is essential for activating immune 

responses against fungi, but much is still unknown about how TLR signaling promotes antifungal 

responses and how a combined signal from multiple PRRs cues downstream cytokine expression 

across fungal diseases. 

 

Cell populations involved in fungal responses 

 Activation of immune responses is typically initiated by resident phagocytes or epithelial 

cells in infected tissue. However, other innate immune cells can detect fungi and activate 

immune responses. Induced natural killer T (iNKT) cells are activated by fungi and promote 
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immune responses through the production of IFN-γ. The glycolipids α-galactosylceramide and 

asperamide B from C. neoformans and A. fumigatus, respectively, are known to be recognized by 

iNKT cells to activate immune responses (Kawakami et al., 2001; Albacker et al., 2013). 

Antigen presenting cells (APCs) exposed to fungal β-glucan can also activate iNKT cells to 

produce IFN-γ (Cohen et al., 2011).  Mast cells also may play a role in fungal detection (Urb & 

Sheppard, 2012). Dectin-1 activation on mast cells induces production of leukotriene C4, an 

eicosanoid inflammatory mediator (Olynych et al., 2006), and A. fumigatus induces mast cell 

degranulation in vitro (Urb et al., 2009). 

 

Activation of adaptive immunity against fungi 

 Activation of PRRs on APCs, particularly dendritic cells (DCs), promote T cell 

responses.  Resident DCs, such as Langerhans cells (LCs) in the skin, recognize fungal PAMPs. 

After phagocytosis of fungal cells, DCs are activated and begin to move toward secondary 

lymphoid organs, typically lymph nodes (Roy & Klein, 2012). In the lymph node, DCs bring 

fungal antigens and present them to T cells. During presentation, signals from DCs polarize 

CD4
+
 T cells to activate different Th responses. DCs can also present antigen to CD8

+
 T cells to 

promote cytotoxic T lymphocyte (CTL) responses.  

 DCs can prime diverse T cell responses depending on their origin and which PRR signals 

have been activated in the DC. Activation of Dectin-1, Dectin-2, MR, TLR4 and TLR9 typically 

promote the production of Th1 or Th17 polarizing cytokines to promote inflammatory responses 

(Brown, 2011; Wüthrich et al., 2012a). In a model of cutaneous candidiasis, different DC subsets 

activate different T cell responses. For example, LCs prime Th17 but not Th1 or CTL responses, 
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and dermal DCs (Langerin
+
 subset) instead promote Th1 and CTL responses producing very 

little IL-6 and IL-23 that cue Th17 polarization (Igyártó et al., 2011). 

 Inflammatory monocytes, typically classified by high expression of Ly6C, are very 

important in immune responses against many fungi (Ersland et al., 2010; Wüthrich et al., 2012a). 

These cells express CCR2 and are recruited by chemokines CCL2 and CCL7 to sites of infection 

to promote inflammatory responses of T cells (Tsou et al., 2007; Jia et al., 2008). Loss of CCR2 

by deficiency or fungal immunomodulation greatly impairs protective immune responses to 

fungal pathogens in the lungs (Osterholzer et al., 2008; Szymczak & Deepe, 2009; Wüthrich et 

al., 2012b). CCR2-deficient mice tend to have greater Th2 responses and decreased Th1 

responses to fungal pathogens in the lungs suggesting that inflammatory monocytes are 

important in promoting Th1 activation (Hohl et al., 2009; Szymczak & Deepe, 2010). 

Inflammatory monocytes are important in the skin as well, but the activities of inflammatory 

monocyte-derived DCs can be replaced by other DCs in the skin of mouse infection models 

(Ersland et al., 2010). 

 

Lymphocytes responses mediating protection 

 The most important determinant of protection from fungal pathogens is thought to be the 

activation of Th1-type immunity, which is characterized mainly by the production of IFNγ by T 

cells (Romani, 2011; LeibundGut-Landmann et al., 2012; Wüthrich et al., 2012a). Defects in Th1 

cells or production of IL-12 or IFNγ increase susceptibility to fungal disease (Brown, 2011). Th1 

cytokines activate phagocytes to promote pathogen killing. IFNγ is an important inducer of 

reactive oxygen species (ROS) and reactive nitrogen species (RNS) that kill pathogens. Th1-type 

responses also promote “nutritional immunity”. For example, granulocyte macrophage-colony 
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stimulating factor (GM-CSF) activated during a Th1 response promotes zinc sequestration that 

can, in turn, inhibit a pathogen’s defenses to ROS and RNS (Subramanian Vignesh et al., 2013). 

IFNγ promoting Th1-like responses can also come from CD8
+
 T cells and from iNKT cells 

(Wüthrich et al., 2003; Lin et al., 2005; Cohen et al., 2011). Infiltration of inflammatory 

monocytes is an important determinant in promoting Th1-mediated fungal resistance particularly 

in the lungs (Blease et al., 2000; Szymczak & Deepe, 2009; Hohl et al., 2009; Ersland et al., 

2010). CCR2 is necessary to recruit inflammatory monocytes to sites of infection and prime Th1;  

mice deficient in CCR2 are more susceptible to pulmonary change by fungal pathogens. Absence 

of Th1-promoting DCs, especially inflammatory monocytes, tends to allow for more Th2 

responses and decrease resistance to fungi (Szymczak & Deepe, 2009; Hohl et al., 2009; 

Wüthrich et al., 2012b). 

 Th17 cells, mainly producing IL-17A, IL-17F and IL-22, are important in resistance to 

multiple fungal pathogens (LeibundGut-Landmann et al., 2012). IL-17A and IL-17F recruit and 

activate neutrophils and other phagocytic leukocytes to mediate fungal killing (Romani, 2011). 

For mouse models of C. albicans, C. neoformans, B. dermatitidis, C. immitis, H. capsulatum, and 

Pneumocystis carinii infection, IL-17 production and signaling are necessary for resistance 

(Conti et al., 2009; Wozniak et al., 2011; Wüthrich et al., 2011; Rudner et al., 2007). However, 

there are instances of fungal disease in which induction of Th17 is not protective (Zelante et al., 

2007). In humans, deficiencies in receptors, signaling pathways, and cytokines involved in Th17-

type immunity are linked with susceptibility to candidiasis, but not necessarily other fungal 

infections (Romani, 2011; Lilic, 2012; LeibundGut-Landmann et al., 2012).  IL-17 canonically is 

produced by effector CD4
+
 T cells but can be produced by myeloid cells, γδ T cells, CD8

+
 T 

cells, and innate lymphocytes (LeibundGut-Landmann et al., 2012). In mice with helper T cell 
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defects, CD8
+
 T cells can produce IL-17, promoting resistance to H. capsulatum and B. 

dermatitidis (Nanjappa et al., 2012). Innate lymphoid cells (ILCs) also play an important role in 

IL-17-mediated protection against fungi.  For example, in a mouse model of oropharyngeal 

candidiasis, ILCs have been shown to be the main producers of IL-17 (Gladiator et al., 2012). In 

type-17 immune responses, IL-22 from T cells or neutrophils activates AMP production by 

leukocytes and epithelial cells to promote epithelial barrier function (Wüthrich et al., 2012a, 

Zindl, et al., 2013). IL-17 can also be inflammatory, often causing immunopathology, but in the 

instance of fungal infection, this inflammation tends to limit fungal growth and promote disease 

resolution.  

 Unlike Th1 and Th-17 immune responses, Th2 responses are not generally protective 

against fungal pathogens. Th2 cytokines, IL-4, IL-13, and IL-33, promote alternative activation 

of macrophages and antagonize Th1-type responses typically decreasing resistance to fungi 

(Szymczak & Deepe, 2009; Wüthrich et al., 2012a). Th2 responses can, however, promote 

resistance to Pneumocystis murina, potentially by driving production of protective antibodies to 

this fungus (Nelson et al., 2011).  Alternative activation of macrophages down-regulates 

antimicrobials and nutritional sequestration necessary for fungal killing (Szymczak & Deepe, 

2009; Subramanian Vignesh et al., 2013). Th2 responses typically impair Th1 responses and 

decrease resistance in C. albicans (Cenci et al., 1993), A. fumigatus (Cenci et al., 1999), B. 

dermatitidis (Wüthrich et al., 2007; Wüthrich et al., 2012), H. capsulatum (Szymczak & Deepe, 

2009), and C. neoformans (Jain et al., 2009) infection models.  

 Regulatory T cells (Tregs) play an important role in preventing immunopathology by 

producing anti-inflammatory cytokines, IL-10 and transforming growth factor-β (TGF-β) (Dario 

et al., 2008). The general trend of inflammation-mediated resistance to fungi suggests that Tregs 
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would suppress protective immunity in most fungal diseases. TNF-α antagonism, used frequently 

to treat rheumatoid arthritis, puts human patients at risk for developing fungal diseases, 

particularly histoplasmosis (Wood et al., 2003). Antagonizing TNF-α elevates Treg populations 

which dampen protective immune responses to H. capsulatum (Deepe & Gibbons, 2008).   

CCR5 deficient mice have decreased recruitment of natural Tregs to the lungs and have 

increased resistance to histoplasmosis (Kroetz & Deepe, 2011). Deficiency of CCR5 in mice 

reverses the negative effects of TNF-α antagonism and increases resistance to histoplasmosis 

(Kroetz & Deepe, 2012). Tregs in TNF-α targeted therapy likely differ greatly from the normal 

Tregs present during an infection in the absence of anti-inflammatory therapies. Thus, Tregs may 

not necessarily play a negative role in resistance to fungal pathogens. In a natural infection, 

Tregs may play a coordinated role in immunity to fungi.  For example, in A. fumigatus infection, 

Tregs can moderate inflammation and prevent allergy to limit pathology (Montagnoli et al. 

2006). The role of Tregs in fungal disease is a delicate balance such that too great a Treg 

presence promotes fungal pathogenesis and an absence of Tregs leads to immunopathology.  

 CD8
+
 T cells may play an important role in resistance to fungi. Pro-inflammatory 

cytokines can be produced by CD8
+
 T cells to promote Th1 and Th17-like responses. In 

blastomycosis, mice deficient in CD4
+
 T cells have protective responses due to production of 

IFNγ and IL-17 by CD8
+
 T cells (Wüthrich et al., 2003; Nanjappa et al., 2012). In 

histoplasmosis, CD8
+
 T cells also seem to play a protective role by producing IFNγ and targeting 

cells infected with H. capsulatum (Lin et al., 2005). DC phagocytosis of apoptotic cells infected 

with H. capsulatum engage in cross-presenting antigen to CD8
+
 T cells and lead to increased 

resistance (Hsieh et al., 2011). The cytotoxic activities of CD8
+
 T cells are important in viral 

immunity but may not be very important in fungal immunity. Most fungal pathogens can and do 
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persist outside of host cells, so for these fungi, killing the host cell would have little or no effect 

on the pathogen. Fungi with mainly intracellular niches may be more susceptible to cytotoxic 

killing by CD8
+
 T cells. For example, perforin is important for some killing of H. capsulatum by 

T cells (Lin et al., 2005). However, lysing or killing host cells may have a more pathogenic 

effect by causing the release and dissemination of intracellular fungi.  

 Antibody responses have not been overwhelmingly tied to resistance to fungi. The trend 

of Th2 responses impairing antifungal immunity suggests that T-dependent antibody responses 

might be more harmful than protective, except in cases such as P. murina in which Th2 can be 

protective (Nelson et al., 2011). Resistance to P. carinii appears to require protective antibodies 

(Zheng et al., 2001), but resistance to most other fungal diseases are typically independent of 

antibody production. Antibodies directed to virulence features or surface structures can be 

protective. Such protective antibodies have been identified for candidiasis (Cassone & 

Casadevall, 2012). Two C. albicans proteins associated with virulence, Als3 and Sap2, have 

been selected for vaccine therapy because antibodies against these antigens have been shown to 

be protective (De Bernardis et al., 2012; Ibrahim et al., 2013). Some antibodies against the 

Cryptococcus capsule have been shown to confer protection (Mukherjee et al., 1995); such 

antibodies could act to promote opsonization and complement activation but may also promote 

mechanical changes in the capsule to inhibit yeast growth and dissemination (Taborda & 

Casadevall, 2002; Cordero et al., 2013). Antibodies bound to C. neoformans can change gene 

expression and metabolic activity of the yeast (McClelland et al., 2010). Protective antibodies 

against H. capsulatum have also been identified (Nosanchuk et al., 2003; Guimarães et al., 

2011).  In aspergillosis, however, antibodies have not been found to play a protective role (Diaz-

Arevalo et al., 2011; Cassone & Casadevall, 2012). Despite the potential for antibody protection, 
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resistance to most fungal infections is more dependent on inflammatory T-cell response than 

antibodies. 

 The studies of adaptive immunity to fungi have led the way to developing vaccination 

strategies for fungal diseases. Successful fungal vaccines will require activating protective 

immune responses: mostly Th1- and Th17-type responses, potentially with antibody or CD8
+
 

protection as well. Mice have been immunized against various fungi, but the most effective 

methods require the use of attenuated fungal strains such as the BAD1 mutant of B. dermatitidis, 

but these would be incredibly difficult to develop as commercial vaccines (Brandhorst et al., 

1999; Cassone & Casadevall, 2012; Wüthrich et al., 2013). Use of specific antigens or peptides 

that activate protective immunity would be more sensible because such immunizations would not 

require exposure to a live fungus. Two transgenic T cell lines have been discovered that have 

TCRs that recognize fungal epitopes. One of these recognizes a shared antigen for several 

endemic fungi and has been shown to be protective in mouse models of B. dermatitidis, C. 

immitis, and H. capsulatum (Wüthrich et al., 2003; Wüthrich et al., 2007). Another TCR has 

been identified that in transgenic mice protects against aspergillosis (Rivera et al., 2006; Rivera 

et al., 2011). The antigens recognized by these TCRs, once identified, may be used to immunize 

humans to multiple mycoses. Currently, no commercially-available vaccine exists for human 

mycoses. However, two C. albicans vaccines are currently undergoing clinical trials (Cassone & 

Casadevall, 2012).   One of these, PEV7 is a virosome coated with Sap2, a secreted protease 

linked with transition to pathogenic hyphae (De Bernardis et al., 2012).  The second is NDV-3 

delivered with alum and the N-terminus of Als-3, a surface adhesin (Ibrahim et al., 2013).   

 Immunity to fungal infections varies greatly among pathogens, pathogen strains, hosts, 

and sites of infection. However, resistance to fungal pathogens requires proper coordination 
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between the innate and adaptive immune system to overcome fungal evasion mechanisms and 

remove the fungus from host tissue. General trends suggest that inflammatory processes promote 

the clearance of fungal pathogens by recruiting phagocytic cells and priming Th1 and Th17 

immunity. Continued research in immunity to fungal pathogens will aid in future treatments and 

vaccinations to reduce fungal pathogenesis in humans and susceptible animal populations. 

 

 

Research Aims 

 Batrachochytrium dendrobatidis is well adapted to living in keratinized epithelia of 

amphibians. As a successful pathogen, B. dendrobatidis must have acquired mechanisms to 

inhibit amphibian immunity. Amphibians have an arsenal of innate and adaptive immune 

defenses in and on the skin to protect against an epidermal pathogen (Rollins-Smith et al., 2009); 

however, B. dendrobatidis continues to infect even mostly resistant amphibian species (Mazzoni 

et al., 2003; Ramsey et al., 2010). The role of defenses against B. dendrobatidis in the skin 

mucus has been greatly investigated in recent years (Rollins-Smith, 2009; Bletz et al., 2013), but 

the role of immunity inside the skin where B. dendrobatidis causes pathology is still poorly 

understood. Xenopus laevis has been developed as a model of of amphibian immunology (Robert 

& Cohen, 2011). Xenopus laevis provides a model to understand immune responses against B. 

dendrobatidis at the molecular, cellular, and organismal level.  

 Some characterization of the immune responses to chytridiomycosis has been 

investigated in X. laevis that confirm the importance of adaptive immunity in chytridiomycosis 

(Ramsey et al., 2010). Despite adaptive immune responses playing a role, much evidence 

suggests that immune responses to chytridiomycosis are not robust enough to clear infection 
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(Pessier et al., 1999; Berger et al., 2005b; Rosenblum et al., 2009; Stice & Briggs, 2010; 

Rosenblum et al., 2012a; Cashins et al., 2013). Rollins-Smith et al. (2009) noted that B. 

dendrobatidis-immunized X. laevis lymphocytes do not proliferate in the presence of dead B. 

dendrobatidis cells. These studies combined suggest that B. dendrobatidis inhibits amphibian 

immune responses in the skin. Immune evasion strategies are necessary for B. dendrobatidis to 

persist in the skin without being cleared by the normally robust immune responses that 

amphibians possess.  

 The first goal of this study was to investigate why amphibian lymphocytes do not respond 

to B. dendrobatidis in vitro. B. dendrobatidis inhibits mitogen-induced lymphocyte proliferation 

in vitro suggesting that B. dendrobatidis can impair adaptive immune responses. This 

impairment is mediated by soluble factors collected in B. dendrobatidis supernatants. Soluble 

factors released by B. dendrobatidis induce apoptosis in amphibian lymphocytes and inhibit both 

B and T lymphocytes. B. dendrobatidis supernatants also impaired human and mouse 

lymphocytes suggesting that the mechanism of inhibition targets a conserved pathway in 

vertebrate lymphocytes.  

 The effects of B. dendrobatidis on innate phagocytic leukocytes were also investigated. 

Phagocytes are important components of immune responses to fungal pathogens (Brown, 2011) 

and are likely targets of B. dendrobatidis immune evasion.  Xenopus laevis macrophages and 

neutrophils were obtained by peritoneal lavage. Phagocytes were incubated with B. 

dendrobatidis cells and supernatants.  Despite the capacity of B. dendrobatidis to greatly impair 

lymphocytes, no impairment of amphibian phagocytes was observed.  

 To confirm the effects of B. dendrobatidis on amphibian leukocytes in vitro, immune 

responses were investigated in vivo in X. laevis. A modified protocol to induce inflammatory 
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swelling in X. laevis feet was developed to quantify the effects of B. dendrobatidis factors on 

innate and adaptive immune responses. Induction of innate immune responses was not decreased 

by B. dendrobatidis factors in vivo, but adaptive immune responses were decreased. Thus, the in 

vitro effects of B. dendrobatidis on immune responses were reproduced in vivo in X. laevis. 

 To fully understand the mechanism of lymphocyte impairment, the factors responsible for 

inhibition of adaptive immune responses must be identified. The lymphotoxins are likely 

associated with the B. dendrobatidis cells wall. B. dendrobatidis zoospores which lack cell walls 

(Loncore et al., 1999; Berger et al., 2005a) do not inhibit lymphocyte proliferation. Also, 

nikkomycin Z, a chitin synthase inhibitor (Cohen 1987; Hector 1993) which disrupts the B. 

dendrobatidis cell wall, decreases B. dendrobatidis impairment of lymphocytes. The 

lymphotoxic factors do not appear to be RNA, lipid, or protein due to the fact that they are water 

soluble and are resistant to heat, acid, RNase, and proteases. The inhibitory B. dendrobatidis 

factors separate into two size classes of less than 10 kDa and greater than 50 kDa. Therefore, the 

lymphotoxic factors are likely to be small molecules and polysaccharides, respectively. 

 The specific goal of this study was to investigate immune evasion by B. dendrobatidis. A 

mechanism was identified where B. dendrobatidis produces soluble molecules that impair 

lymphocyte responses. The primary focus of this study was to characterize the effects of these 

factors on host cells and to determine the nature of these factors. 
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CHAPTER II 

 

BATRACHOCHYTRIUM DENDROBATIDIS PRODUCES FACTORS THAT 

IMPAIR AND KILL LYMPHOCYTES
1
 

 

Abstract 

 Although amphibians have robust immune defenses, clearance of Batrachochytrium 

dendrobatidis is impaired. Because inhibition of host immunity is a common survival strategy of 

pathogenic fungi, it is likely that B. dendrobatidis evades clearance by inhibiting immune 

functions. B. dendrobatidis cells and supernatants impaired Xenopus laevis lymphocyte 

proliferation suggesting that B. dendrobatidis produces soluble factors to modulate host 

immunity. Lymphocytes from another anuran species, Rana pipiens, and from humans and mice 

also were impaired by B. dendrobatidis cells or supernatants. Epithelial cell lines of Chinese 

hamster ovary and HeLa cells were also inhibited in the presence of the B. dendrobatidis 

supernatant factors suggesting that the effects of the soluble mediators are not limited to 

lymphoid cells and may be responsible for some disease symptoms of chytridiomycosis. The 

mechanism of inhibition of amphibian lymphocytes is the induction of apoptosis, and soluble B. 

dendrobatidis factors activate both intrinsic and extrinsic caspases signaling pathways. A closely 

related non-pathogenic chytrid fungus, Homolaphlyctis polyrhiza, does not inhibit lymphocytes 

or epithelial cells suggesting that the toxic factors produced by B. dendrobatidis may have been 

important in the transition from a non-pathogenic saprobe or commensal to a pathogenic 

lifestyle.  An immortal human T lymphocyte cell line (Jurkat), was also inhibited by B. 

dendrobatidis toxic factors providing a reproducible assay system for the characterization of the 

                                                           
1
 Most of the data shown in this chapter is published in Fites et al., 2013. 
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toxic factors.  Evasion of host immunity may explain why B. dendrobatidis has devastated 

amphibian populations worldwide. 

 

Introduction 

 Amphibians have several natural defenses against B. dendrobatidis that may affect 

survival from chytridiomycosis. Amphibian skin epithelium is covered in a layer of mucous 

which may contain chemical defenses that kill or inhibit invading zoospores (Fig. 1-1). 

Antimicrobial peptides (AMPs) are released from dermal granular glands into the mucous of 

many amphibian species (Gammill et al., 2012). Amphibians have also been shown to secreted 

B. dendrobatidis-specific antibodies into the mucous (Ramsey et al., 2010). Several amphibian 

species are also known to have symbiotic skin bacteria that produce antifungal metabolites with 

activity against B. dendrobatidis (Harris et al., 2006; Woodhams et al, 2007b; Lauer et al., 2008; 

Becker & Harris, 2010; Lam et al., 2010). Both AMPs and beneficial bacteria have been 

proposed as protective in amphibian populations that possess these defenses (reviewed in 

Rollins-Smith, 2009).  

Once B. dendrobatidis forces itself into the skin via a germ tube (Van Rooij et al., 2012; 

Greenspan et al., 2012), the interaction between the host’s immune system and the pathogen is 

not well understood. Amphibians have a functional immune system present in the skin that 

should be able to mount an adaptive immune response against B. dendrobatidis within the skin 

(Ramanayake et al., 2007; Robert & Ohta, 2009; Rollins-Smith et al., 2009). Inactivating 

adaptive immune responses with sub-lethal irradiation impairs clearance of B. dendrobatidis 

(Ramsey et al., 2010). Survival from chytridiomycosis is linked with MHC class II alleles 

(Savage & Zamudio, 2011), and multiple exposures to B. dendrobatidis infection limits pathogen 
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burden following a subsequent infection (Richmond et al., 2009; McMahon et al., submitted). 

Despite the capacity of amphibians to mount an immune response against B. dendrobatidis, 

complete clearance of the pathogen is rare (Mazzoni et al., 2003; Ramsey et al., 2010) suggesting 

that B. dendrobatidis inhibits immune responses in the skin epithelium.  

Batrachochytrium dendrobatidis likely evades immune responses in a variety of ways. 

By quickly invading keratinocytes via a germ tube (Van Rooij et al., 2012; Greenspan et al., 

2012), B. dendrobatidis can avoid detection by phagocytes. Also, B. dendrobatidis appears to 

inhibit leukocyte migration as suggested by early histological studies that report no significant 

leukocyte infiltration in infected skin (Pessier et al., 1999; Berger et al., 2005b). My study 

provides the first evidence of direct inhibition of immune responses by B. dendrobatidis.  

Soluble factors released by B. dendrobatidis inhibit lymphocyte proliferation in vitro. 

The lack of robust immune responses observed during chytridiomycosis may explain why so 

many amphibians die from B. dendrobatidis infections.  

 

 

Materials and Methods 

Animals  

Outbred Xenopus laevis ranging in size from 35 to 200 g were purchased from Xenopus I 

(Dexter, MI) or Nasco (Fort Atkinson, WI, USA) and held in polystyrene containers at a density 

of about 10 frogs per 16 liters of de-chlorinated tap water.  Outbred Rana (Lithobates) pipiens 

ranging in size from approximately 20 to 40 g were purchased from Connecticut Valley 

Biological (Southampton, MA, USA) and held in polystyrene containers at a density of about 5 

frogs per tank.  Containers for R. pipiens were inclined to provide a wet or dry area.  Room 
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temperature was maintained between 20 to 24°C.  Sixty-one of the X. laevis used to obtain 

splenocytes were tested for the presence of B. dendrobatidis as described by Boyle et al. (2004) 

and Hyatt et al. (2007). Only 11 individuals (18%) tested positive for B. dendrobatidis; these B. 

dendrobatidis positive individuals had very low pathogen load of 17.84 ± 0.91 (± SEM) 

zoospore equivalents.  BALB/c-J mice were bred in the Vanderbilt University animal facilities.  

Research using mice complied with all relevant institutional and federal guidelines and policies.  

All animal procedures were approved by the Institutional Animal Care and Use Committee of 

Vanderbilt University School of Medicine. 

 

Batrachochytrium dendrobatidis and Homolaphlyctis polyrhiza culture 

Batrachochytrium dendrobatidis isolates JEL197 (Loncore et al., 1999) and JEL275 

(Carey et al., 2006) were cultured and maintained as previously described in 1% tryptone broth 

(T-broth) (Rollins-Smith et al., 2006). The non-pathogenic chytrid fungus Homolaphlyctis 

polyrhiza (isolate JEL142) is closely related to B. dendrobatidis (Joneson et al., 2011) and was 

cultured in medium containing 0.1% peptonized milk, 0.1% tryptone, and 0.5% glucose.  

Cultures were incubated at 20-21°C and sub-cultured twice weekly.  Mixed cultures (zoospores 

and maturing cells) or purified zoospores (Rollins-Smith et al., 2002) were counted using a 

hemocytometer slide.  Unless specified, JEL197 was the B. dendrobatidis isolate used for all 

experiments. Unless specified otherwise, B. dendrobatidis, was killed by treatment at 60°C for 

10 minutes (Rollins-Smith et al., 2006).  Chytrid cells were centrifuged to remove growth 

medium and re-suspended in Leibovitz (L-15) medium before being incubated with leukocytes. 
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Batrachochytrium dendrobatidis and H. polyrhiza supernatant preparation 

After 6-7 days of culture in T-broth, B. dendrobatidis or H. polyrhiza cells were 

centrifuged, washed with sterile glass distilled water, re-suspended at 10
7
 matured cells (all cells 

beyond zoospore stage) per mL in sterile distilled water, and incubated at 21°C for 24 hours in 

large flasks.  Cells were centrifuged, and supernatants were passed through 0.2 µm filters 

(Fisher, Waltham, MA USA) to remove any cells.  Supernatants were then frozen and 

lyophilized.  Lyophilized supernatants were re-suspended at 2/5 to 1/20 of the original volume to 

reconstitute at 2.5X to 20X concentration above the original concentration in either Leibovitz (L-

15) medium or sterile glass-distilled water.  Some B. dendrobatidis supernatants were re-

suspended in L-15 and mixed 1:1 with splenocytes in L-15 for proliferation or apoptosis assays.  

Other supernatants were re-suspended in water and mixed 1:1 with splenocytes in 2X L-15.  All 

re-suspended supernatants were filter-sterilized through 0.2 µm syringe filters (VWR, Radnor, 

PA, USA) just before being added to cell culture.  Pellets containing B. dendrobatidis cells after 

removal of supernatants were tested for viability by re-culture in T-broth.  Except when B. 

dendrobatidis was killed prior to supernatant preparation, B. dendrobatidis cells in the pellet 

were viable.  H. polyrhiza supernatants were lyophilized and re-suspended in L-15 to be 

incubated with splenocytes or mammalian cell lines at concentrations ranging between 1.25X 

and 10X the original concentration. 

 

Preparation of killed B. dendrobatidis  

Batrachochytrium dendrobatidis cells were killed as described above by a single 60°C 

incubation or by four consecutive freeze-thaw cycles in which B. dendrobatidis cells were frozen 

at -20°C and then brought to room temperature until thawed before re-freezing.  The procedure 



45 
 

for freezing and thawing B. dendrobatidis cells lasted four days.  In experiments using dead B. 

dendrobatidis cells, live control cells from the same culture were incubated at 4°C for the 

duration of the killing procedure.  After treatments, a subset of B. dendrobatidis cells was 

incubated in 1% T-broth; lack of growth confirmed that cells were no longer viable.  

Supernatants from dead B. dendrobatidis were prepared as described above at 21°C for 24 hours. 

 

Splenocyte culture 

Spleens from X. laevis or R. pipiens were dissociated between two frosted glass slides 

that were sterilized with 70% ethanol, and lymphocytes were enriched by centrifugation over a 

Ficoll-Hypaque cushion ( = 1.119; Sigma, St. Louis, MO, USA).  This enriched lymphocyte 

fraction was used for all splenocyte culture assays.  Splenocytes were cultured as previously 

described (Rollins-Smith et al., 1984) in L-15 culture medium (Sigma, St. Louis, MO, USA) 

diluted to amphibian tonicity and supplemented with 100 I.U./mL penicillin, 100 g/mL 

streptomycin, 12.5 mM sodium bicarbonate, 50 µM 2-mercaptoethanol, 2 mM L-glutamine, and 

1% heat-inactivated fetal calf serum (Life Technologies, Grand Island, NY, USA).  X. laevis 

splenocytes were cultured at a density of 5 x 10
5
/mL (10

5
 per well) in proliferation assays.  R. 

pipiens splenocytes were cultured at 3.75-5.0 x 10
5
/mL (0.75-1.0 x 10

5
 per well).  

Phytohemagglutinin (PHA) was used at a final concentration of 2 µg/mL to induce T-cell 

proliferation.  Phorbol-12-myristate 13-acetate (PMA) (Hsu et al., 1985) was used at a final 

concentration of 5 ng/mL to induce lymphocyte proliferation.  Heat-killed Aeromonas 

hydrophila originally isolated from a diseased Wyoming toad (Taylor et al., 1999) was used at a 

concentration of 10
6
 bacteria per well (5 x 10

6
/mL) to induce B-cell proliferation (Morales et al., 

2003).  Allogeneic lymphocytes from unrelated outbred frogs were also used for induction of a 
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mixed leukocyte reaction (MLR) (Du Pasquier & Horton, 1976). B. dendrobatidis or H. 

polyrhiza cultures containing both sporangia and zoospores, purified zoospores alone (Rollins-

Smith et al., 2002), or supernatants prepared as described above were added to the splenocyte 

population simultaneously with the lymphocyte activator in all experiments unless described 

otherwise.  For assays in  which proliferation was induced by PHA, PMA, or in MLR, 

splenocytes were incubated at 26°C in an atmosphere of 5% CO2 and 95% air for three days 

before harvesting as previously described (Rollins-Smith et al., 1984). All wells were pulsed 

with 0.5 µCi 
3
H-thymidine (5 µCi/mL, specific activity 2 Ci/mmole) (Perkin Elmer, Waltham, 

MA, USA) during the last 24 hours prior to harvesting.  Splenocytes stimulated with A. 

hydrophila were incubated an extra day (four days in total) and pulsed with 
3
H-thymidine 24 

hours prior to harvesting.  Overall proliferation, measured as 
3
H-thymidine uptake, was 

quantified as counts per minute (CPM) using a Wallac 1205 Betaplate Beta Liquid Scintillation 

Counter (Perkin Elmer, Waltham, MA, USA).  Data shown for representative proliferation 

assays were the mean CPM ± SEM of at least five replicates for each treatment using splenocytes 

from a single individual.  Experiments were repeated using splenocytes obtained from different 

individuals to verify the reproducibility of the results. 

 

Transwell cell culture of splenocytes and B. dendrobatidis 

Splenocytes from X. laevis (5 x 10
5
 cells per well) were cultured in a 24-well plate with 

0.4 µm pore-size transwell inserts (Corning, Corning, NY, USA) at a final density of 8.3 x 10
5
 

cells per mL.  PHA was added to achieve a final concentration of 2 µg/mL.  Mixed cultures of B. 

dendrobatidis sporangia and zoospores (5 x 10
5
 cells per well) or zoospores alone (2 x 10

6
 

zoospores per well) were added above the transwell inserts.  For co-culture, B. dendrobatidis 
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cells were added directly to splenocytes, and medium was added above the insert.  In one 

experiment, 5 x 10
5
 splenocytes were cultured adjacent to zoospores above the insert to 

determine whether cell contact was necessary for zoospore production of an inhibitory factor.   

Plates were incubated at 26°C for 3 days and pulsed with 
3
H-thymidine during the last 24 hours 

of culture before harvesting.  Immediately before harvesting, transwell inserts were removed, 

and lymphocytes were mixed and transferred to multiple wells of a 96-well plate to allow for 

harvesting and scintillation counting, as described above.  

 

Flow cytometry of apoptotic splenocytes 

Amphibian splenocytes prepared as described were analyzed by flow cytometry in the 

Vanderbilt University Flow Cytometry Core using a 5-laser BD LSRII flow cytometer (BD, San 

Jose, CA, USA).  Flow cytometry events were analyzed and gated using BD FACSDiva 

Software (BD, San Jose, CA, USA).  For analysis of apoptosis, splenocytes from X. laevis were 

cultured in 24-well plates at 10
6
 cells per well (1.7 x 10

7
/mL).  When B. dendrobatidis cells were 

added, the fungal cells were separated by a transwell insert as described above at 2 x 10
7
 cells 

per well.  When B. dendrobatidis supernatants were added, splenocytes were cultured with a 10X 

concentrated B. dendrobatidis supernatant.  Cultures were incubated for 24, 48, 72, or 96 hours 

at 26°C before analysis.  To quantify apoptosis, cells were stained with the fluorescein 

isothiocyanate (FITC)-conjugated Annexin V Apoptosis Detection Kit according to 

manufacturer’s instructions (BD Pharmingen, San Diego, CA, USA).  Briefly, lymphocytes were 

washed with amphibian phosphate buffered saline (APBS), re-suspended in  binding buffer 

(modified for amphibian tonicity) at 10
6
 cells/mL, and stained with 5 µL Annexin V-FITC and 1 

µL propidium iodide (PI) (50 µg/mL).  Control preparations of cells were left unstained, stained 
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with Annexin V only, or stained with PI only.  Cells were gated based on PI and FITC positivity 

determined by the staining of untreated control preparations.  Cells that were PI
-
 /FITC

+
 were 

considered to be undergoing early events of apoptosis (Vermes et al., 1995; Vermes et al., 2000). 

For each sample, 10,000 events fitting within normal forward and side scatter parameters for 

lymphocyte populations were collected.  From these events, relative percentages were 

determined for cell populations positive or negative for PI and FITC.  Mean percent of PI
-

/Annexin V
+
 cells were reported for multiple experiments using splenocytes from different 

individuals.  Each experiment used splenocytes from a single individual, and therefore paired 

Student’s t-tests were used to compare treatments.  

 

Cell death inhibitors 

All inhibitors were mixed with splenocytes and activators of proliferation or inducers of 

apoptosis at the initiation of culture.  The pan-caspase inhibitor Z-VAD-FMK (BD Pharmingen, 

San Diego, CA, USA) was incubated with splenocytes at a concentration of 100 µM. This 

optimal concentration was determined by titration of the ability of Z-VAD-FMK to decrease 

apoptosis induced by anti-Fas (CD95) mAb (Southern Biotech, Birmingham, AL, USA) 

(Mangurian et al., 1998).  Necrostatin-1 (Santa Cruz Biotechnology, Santa Cruz, CA, USA), an 

inhibitor of programmed necrosis (Degterev, 2005), was incubated with lymphocytes at 

concentrations between 20 to 60 µM. Cells incubated with these inhibitors were assayed for 

interference with induction of cell death using flow cytometry and/or proliferation assays as 

described above.  
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Caspase activity assay  

Caspase-Glo® luminescence assay kits (Promega, Madison, WI, USA) for caspase-3/7, -8, and -

9 were used to quantify caspase activation by B. dendrobatidis supernatants.  Splenocytes (5 x 

10
4
 cells per well = 10

6
/mL) were incubated for 24 hours at 26°C in sterile, white-walled, 96-

well plates (BD Falcon, Franklin Lakes, NJ, USA) with L-15 alone, B. dendrobatidis  

supernatant, anti-Fas mAb, or corticosterone.  The anti-Fas (CD95) mAb from clone DX2 

(Southern Biotech, Birmingham, AL, USA) was added to cells at a final concentration of 2.5 

µg/mL (Mangurian et al., 1998).  Corticosterone (Sigma, St. Louis, MO, USA) was added to 

cells at a final concentration of 10 nM (Rollins-Smith et al., 1997). After the initial incubation, 

Caspase-Glo® reagents were added to each well according to the manufacturer’s instructions and 

incubated at room temperature.  Luminescence was recorded every 30 minutes over three hours 

using a Synergy HT Multi-Mode Microplate Reader (Bio Tek, Winooski, VT, USA), and 

luminescence sensitivity was set to positive controls.  Relative light units (RLU) for samples did 

not vary greatly between 30 and 120 minutes of incubation with luminescence reagents.  

Therefore, 90 minutes of incubation was chosen as a representative endpoint for all assays.  Anti-

Fas mAb was used to induce apoptosis in assays detecting caspase-3/7 and caspase-8 activity 

because this antibody triggers extrinsic apoptosis pathways (Mangurian et al., 1998; Rathmell & 

Thompson, 2002).  Corticosterone (10 nM) was used to induce apoptosis in assays detecting 

caspase-9 activity because corticosterone triggers intrinsic apoptosis pathways (Garvey et al., 

1993; Laakko & Fraker, 2002).  Lyophilized B. dendrobatidis supernatants were mixed into 

splenocyte cultures at 10X concentration.  Each treatment was replicated in at least four wells for 

each experiment, and experiments were repeated four times using lymphocytes from different 

individuals. 
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Magnetic separation of lymphocytes 

B or T lymphocytes were isolated from enriched X. laevis spleen populations using 

magnetic anti-mouse IgG1-coated microbeads (Miltenyi, Auburn, CA, USA).  To label B cells, 

anti-IgM mAb 6.16 (Bleicher & Cohen, 1981) was used at a concentration of 10 μg/mL in APBS 

containing 0.5% bovine serum albumin (BSA) and 2 mM EDTA.  The anti-CD5 mAb 2B1 

(Jürgens et al., 1995) used to label T cells was a hybridoma supernatant, and it was used at an 

approximate concentration of 100 μg/mL.  Anti-Xenopus antibodies were obtained from the 

Xenopus laevis Research Resource for Immunobiology at the University of Rochester Medical 

Center.  The respective antibodies were incubated with enriched splenic lymphocytes for 10 

minutes at 4°C and washed with APBS/BSA/EDTA buffer.  Labeled T and B lymphocytes were 

then incubated with magnetic anti-IgG1 microbeads in APBS/BSA/EDTA buffer for 15 minutes 

at 4° C and washed.  Lymphocytes were re-suspended in 500 μL APBS/BSA/EDTA buffer and 

separated using an AutoMACS® magnetic cell sorter (Miltenyi, Auburn, CA, USA) in the 

Vanderbilt Flow Cytometry Core.  After cell sorting, isolated B or T cells were counted and re-

suspended at a known concentration in L-15.  Cells from sorted populations were cultured with 

PHA or heat-killed A. hydrophila in a proliferation assay, as described above, in order to confirm 

whether B. dendrobatidis inhibits B- or T-cell proliferation.  The B-cell isolation protocol 

selected about 20% of the cells in the splenocyte population.  The T-cell isolation protocol 

selected about 65% of the cells in the splenocyte population. 
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Mouse splenocyte culture 

Splenocytes from 6 to 8 week-old BALB/c-J mice were obtained from Dr. Thomas 

Aune’s laboratory at Vanderbilt University.  Splenocytes were isolated and cultured, as described 

previously (Collier et al., 2012).  Briefly, splenocytes were isolated by mechanical disruption, 

and erythrocytes were removed by standard water lysis. Total splenocytes were re-suspended at 

5.6 x 10
5
 cells per mL in complete RPMI medium with 50 ng of PMA per mL and 1 µM of 

ionomycin (iono).  Control cultures were left unstimulated.  In a 96-well plate format, 180 µL of 

splenocyte suspensions with or without PMA/iono were mixed with 20 µL of phosphate buffered 

saline (PBS) or lyophilized B. dendrobatidis supernatants, re-suspended in PBS in increasing 

doses to achieve a final concentration of 1.25 to 10 times the original concentration.  

Supernatants from either B. dendrobatidis (JEL 197) or H. polyrhiza (JEL 142) were prepared as 

described above and filter sterilized by passing through 0.2 µm syringe filters (VWR, Radnor, 

PA, USA) before addition to the splenocyte culture.  Splenocytes were incubated for 48 hours 

before being pulsed with 0.5 µCi 
3
H-thymidine (5 µCi/mL, specific activity 2 Ci/mmole) (Perkin 

Elmer, Waltham, MA, USA).  Six hours after being pulsed, splenocytes were harvested and 

proliferation was quantified as described above. 

 

Human CD4
+
 T cell isolation and culture 

Peripheral blood was processed as previously described (Oswald-Richter et al., 2009; 

Oswald-Richter, 2010).  Resting CD4
+
 T cells were purified from fresh or cryopreserved 

peripheral blood mononuclear cells (PBMC) by magnetic separation using a Dynal CD4 

Positive Isolation Kit (Invitrogen, Carlsbad, CA, USA).  Purified resting CD4
+
 T cells were 

incubated with increasing doses of B. dendrobatidis supernatant for 30 minutes.  After this 
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incubation, cells were maintained in media containing B. dendrobatidis supernatant and were 

also activated by cross-linking with plate-bound anti-CD3 antibody (OKT-3; American Type 

Culture Collection) and soluble anti-CD28 antibody at 1 μg/mL (BD Biosciences, San Jose, 

CA, USA) as previously described (Oswald-Richter et al., 2010).  

To analyze activation markers on T cells, cells were stained with the relevant antibody 

on ice for 30 minutes in PBS containing 2% fetal calf serum and 0.1% sodium azide.  Cells 

were then washed twice, fixed with 1% paraformaldehyde, and analyzed with a LSR-II flow 

cytometer (BD Biosciences, San Jose, CA, USA).  Live cells were gated based on forward- and 

side-scatter properties, and analysis was performed using FlowJo software (Tree Star, Ashland, 

Oregon, USA).  The following anti-human antibodies were used for surface staining: CD3, 

CD4, CD62L, and HLA-DR, all obtained from BD Biosciences.  A minimum of 30,000 events 

were acquired per sample.  To determine proliferation and quantify cell division, purified CD4
+
 

T cells were labeled with carboxyfluorescein succinimidyl ester (CFSE) (Molecular Probes, 

Invitrogen, Carlsbad, CA, USA).  Purified cells were first washed and re-suspended in PBS.  

While
 
vortexing the cells, CFSE was added at a final concentration

 
of 5 µM.  The mixture was 

vortexed for an additional 15
 
seconds and incubated at 37°C for 3 minutes.  Labeling was 

quenched
 
by the addition of 50% FCS in PBS.  Cells were washed once more with

 
50% serum 

PBS, followed by two washes with RPMI supplemented
 
medium.  CFSE-labeled CD4

+
 T cells 

were TCR-stimulated in RPMI supplemented medium, using anti-CD3 and anti-CD28 

antibodies. At day 5 post-activation, cells were fixed and analyzed for CFSE expression and 

cell size by flow cytometry as described above in this section. 

Supernatants were collected from T cell receptor (TCR) stimulated cells at 24 hours and 

analyzed for extracellular IL-2 and IFN-γ by cytokine bead array (CBA) according to the 
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manufacturer’s instructions (BD Biosciences, San Jose, CA, USA).  For TCR stimulation, 2 x 

10
5
 CD4

+
 T cells were stimulated through the TCR by plate-bound anti-CD3 and soluble anti-

CD28 antibodies. 

 

Pre-treatment of frog lymphocytes with B. dendrobatidis supernatant 

Splenocytes (10
5
 cells per well = 5 x 10

5
 cells per mL) were pre-treated with B. 

dendrobatidis supernatant re-suspended in L-15 for 48 hours without stimulation.  Control 

splenocytes were incubated in L-15 alone.  Plates were centrifuged to pellet cells, and media was 

removed.  After washing once with fresh L-15, cells on these plates were re-suspended in 200 µL 

L-15 with or without 2 µg/mL PHA.  The splenocytes were cultured for another 3 days before 

harvesting (pulsed with 
3
H-thymidine 24 hours prior to harvesting).  This experiment was 

repeated three times using splenocytes from different X. laevis individuals. 

 

Delayed addition of B. dendrobatidis supernatant after frog lymphocyte stimulation 

Splenocytes (10
5
 cells per well) were incubated in 100 µL of L-15 medium containing 2 

µg/mL PHA for 24 hours.  After the initial 24 hour incubation, 100 µL of L-15 or B. 

dendrobatidis supernatants (re-suspended in L-15 at 2.5X to 20X the original supernatant 

concentration) were added to wells and incubated for two more days.  Splenocytes were pulsed 

with 
3
H-thymidine 24 hours after the addition of B. dendrobatidis supernatant and harvested 24 

hours later. This experiment was repeated three times using splenocytes from three different X. 

laevis. 
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Chinese hamster ovary and HeLa cell culture 

Chinese hamster ovary (CHO) cells were maintained in Ham’s F-12 medium 

supplemented to contain 10% fetal calf serum, 2 mM L-glutamine, 100 μg/mL streptomycin, 100 

I.U./mL penicillin (Invitrogen, Carlsbad, CA, USA), and 25 ng/mL of amphotericin B (Sigma-

Aldrich, St. Louis,  MO, USA).  HeLa-CCL2 cells (obtained from Carolyn Coyne, University of 

Pittsburgh) were grown in Dulbecco's Modified Eagle Medium (Invitrogen) with the same 

supplementation.  CHO and HeLa cells were seeded in 12-well plates (Costar, Tewksbury, MA, 

USA) at 10
4
 cells per well in a 1 mL volume. CHO cells were seeded 13 hours pre-treatment 

(h.p.t), and HeLa cells were seeded 5 h.p.t. Wells were treated in triplicate with either 100 µL of 

PBS, G418 sulfate (Mediatech, Manassas, VA, USA) diluted in PBS, or lyophilized supernatant 

from B. dendrobatidis (JEL197) or H. polyrhiza (JEL142) re-suspended in PBS.  

Batrachochytrium dendrobatidis supernatants used to treat CHO or HeLa cells were incubated in 

a 100°C water bath for 30 minutes before lyophilization to denature any potentially active 

proteins.  All treatments were filter-sterilized before addition by passage through 0.2 µm syringe 

filters (VWR, Radnor, PA, USA).  G418 sulfate is generally toxic to eukaryotic cells (Mingeot-

Leclercq et al., 1999) and was used as a cell proliferation control at a final concentration of 500 

µg/mL.  The approximate final concentrations of supernatants in cell culture wells were 10X, 

5X, 2.5X, and 1.25X the pre-lyophilization concentration.  CHO and HeLa cells were treated for 

0, 24, 48, or 72 hours before being harvested for counting.  Cells were rinsed with PBS and 

dissociated using 0.5% trypsin-EDTA (Invitrogen). Trypsin-treated wells were neutralized with 

an equal volume of complete Ham’s F-12 medium, and the total volume was transferred to 

microcentrifuge tubes.  Cells were centrifuged at 2000 RPM for 5 minutes in a Beckman TJ-6 

Centrifuge (Bria, CA, USA). Media was removed from the cell pellets, and cells were re-
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suspended in a known volume (50-500 µl) of PBS supplemented with 2% fetal calf serum.  A 

small volume of re-suspended cells was mixed with an equal volume of 0.4% trypan-blue 

viability stain (Invitrogen).  Cells were counted either using a hemocytometer slide or using a 

Countess® Automated Cell Counter (Invitrogen).  The numbers of both living and dead cells 

were recorded. 

 

Flow cytometric analysis of apoptosis in B and T lymphocytes incubated with B. 

dendrobatidis cells 

Splenocytes were plated in 24-well plates at 1.7 x 10
6
 cells per well.  Batrachochytrium 

dendrobatidis cells were heat-killed and mixed with splenocytes at 1.7 x 10
7
 cells per well.  

Plates were incubated for 48 hours at 26°C before use in flow cytometry.  The mixed cell 

population was stained with anti-Xenopus monoclonal antibodies specific for MHC class II 

(14A2) (Flajnik et al., 1990), followed by polyvalent allophycocyanin (APC)-conjugated goat 

anti-mouse IgG2a antibodies (0.5 mg/mL).  [All lymphocytes are MHC class II positive in adults 

of this species (Flajnik et al., 1990; Du Pasquier & Flajnik, 1990; Rollins-Smith & Blair, 1990).]  

This allowed for the selection of splenocytes while gating out B. dendrobatidis cells.  After 

washing, the cells were divided and stained either with monoclonal antibodies specific for IgM 

(6.16) (Bleicher & Cohen, 1981) to identify IgM
+
 B cells or with monoclonal antibodies specific 

for CD5 (2B1) (Jürgens et al., 1995) to identify T cells.  Both populations were further stained 

with polyvalent phycoerythrin (PE)-conjugated goat anti-mouse IgG1 antibodies (0.5 mg/mL) 

and 7-Aminoactinomycin D (7-AAD, Sigma, St. Louis, MO, USA) (24 µg/mL).  The IgM
+
 

fraction and the CD5
+
 fraction were washed and stained with FITC-conjugated Annexin V as 

described above.  Control populations of splenocytes were unstained, stained with 7-AAD only 
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(24 µg/mL), with APC only (0.5 mg/mL), with PE only (0.5 mg/mL), or with Annexin-FITC 

only (5 µL).  Cells were analyzed by flow cytometry with the assistance of the Vanderbilt Flow 

Cytometry core.  Splenocytes were gated by MHC class II (APC) positivity.  The fraction of 

cells stained with anti-IgM (6.16) was gated to determine the IgM-PE positive population of B 

cells. The fraction of cells stained with anti-CD5 (2B1) was gated to determine the CD5-PE 

positive population of T cells.  Both B and T cells were then analyzed for dual staining for 

Annexin V-FITC and 7-AAD, and those cells that were 7AAD
-
/Annexin V

+ 
were considered to 

be undergoing early events of apoptosis (Vermes et al., 1995; Vermes et al., 2000).  To 

determine the extent of apoptosis in all lymphoid cells, the cell population was also gated on 

MHC II
+
 cells before being analyzed for Annexin V-FITC and 7-AAD fluorescence. 

 

 

Flow cytometric analysis of apoptosis by enumeration of cells with hypodiploid DNA 

content 

Splenocytes or peritoneal leukocytes (PLs) from X. laevis were cultured in 24-well plates 

at 10
6
 cells/well (1.0-1.7 x 10

6
 cells per mL) with B. dendrobatidis supernatants, H. polyrhiza 

supernatants, or known inducers of apoptosis [10 nM corticosterone (Sigma, St. Louis, MO) 

(Rollins-Smith et al., 1997) or 2.5 µg/mL anti-Fas mAb (Southern Biotech, Birmingham, AL) 

(Mangurian et al., 1998)].  Lyophilized B. dendrobatidis and H. polyrhiza supernatants, at a final 

concentration of 10X, were mixed with splenocytes or PLs in L-15.  Cultures were incubated for 

24 or 48 hours at 26°C before fixation and nuclear staining with PI as described by Hotz et al. 

(1994) and modified for use in amphibian lymphocytes as described by Rollins-Smith et al. 

(1997). Ten thousand events were collected, gated within normal forward and side scatter 
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parameters for the population.  Those displaying less than a normal diploid DNA content were 

considered to be undergoing cell death (Hotz et al., 1994). 

 

Culture of Jurkat cells 

  The Jurkat cell line used was the Jurkat-E6 T-lymphoid-cell line obtained from the lab of 

Christopher Aiken at Vanderbilt University. This strain was donated by A. Weiss and obtained 

from the AIDS Research and Reference Program, National Institute of Allergy and Infectious 

Diseases, National Institutes of Health. Jurkat cells were cultured in RPMI with 100 I.U./mL 

penicillin, 100 g/mL streptomycin, 2 mM L-glutamine, and 10% heat-inactivated FCS. When 

Jurkat cells were cultured with B. dendrobatidis or H. polyrhiza supernatants (prepared as 

described above), lyophilized supernatants were re-suspended in complete RPMI and filter 

sterilized. Supernatants were diluted to final concentrations as indicated, in cell culture with 

Jurkat cells.  

For proliferation assays 10
4
 Jurkat cells were incubated with chytrid supernatants for 

three days at 37° C. When Jurkat cells were cultured at 26° C, they were seeded at 10
5
 cells per 

well. Proliferation assays using 
3
H -thymine uptake assays were completed as described above 

for amphibian lymphocytes except 
3
H-thymidine was diluted in PBS instead of APBS.   

The effects of chytrid supernatants on Jurkat cells were also assayed using the 3-(4,5-

dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) assay (van Meerloo et al., 2011).  

MTT (Sigma, St. Louis, MO, USA) was re-suspended to 500 μg/ml in PBS and added at an 

equal volume to cultures of Jurkat after the culture incubation was completed. The MTT reagent 

was incubated with Jurkat cells for approximately three hours at 37°C. Volumes were removed 
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from cells after incubation, and cells were lysed in DMSO to release the reduced formazan 

crystal. Absorbance of plate wells was quantified at 570 nm.  

 

 

Results 

Batrachochytrium dendrobatidis produces soluble factors that impair X. laevis lymphocytes. 

 A previous study showed that lymphocytes from X. laevis immunized with killed B. 

dendrobatidis did not respond to killed B. dendrobatidis in vitro suggesting that B. dendrobatidis 

inhibits lymphocyte activation (Rollins-Smith et al., 2009). To test this hypothesis, both living 

and heat killed B. dendrobatidis were co-cultured with X. laevis splenocytes in the presence of 

PHA, a T-cell mitogen. The cellular proliferation induced by PHA was significantly decreased as 

both living and killed B. dendrobatidis cells were titrated into the lymphocyte culture (Fig. 2-1 

A, B). To determine if this was mediated by soluble factors, B. dendrobatidis cells were 

separated from lymphocytes by a cell-impermeable membrane in a transwell culture system. B. 

dendrobatidis cells were not as inhibitory when separated in a transwell, but they could still 

inhibit lymphocyte proliferation suggesting that B. dendrobatidis produces soluble factors that 

impair lymphocytes (Fig. 2-1 C). Supernatants from B. dendrobatidis cultures placed in sterile 

water for 24 hours were added to lymphocyte culture as well, and concentrated B. dendrobatidis 

supernatants inhibited PHA-induced lymphocyte proliferation in a dose-dependent manner (Fig 

2-1 D). Supernatants from B. dendrobatidis that was killed either by heat or consecutive freeze-

thaw cycles were also inhibitory to lymphocyte proliferation (Fig. 2-2). The fact that dead B. 

dendrobatidis can inhibit lymphocyte proliferation suggests that the soluble factors are shed from 

B. dendrobatidis. The decrease in inhibition by dead B. dendrobatidis cells and supernatants  
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Fig. 2-1. Inhibition of lymphocyte 

proliferation by B. dendrobatidis (Bd). 

Splenocytes (Spl) from X. laevis were 

cultured alone or with phytohemagglutinin 

(PHA).  PHA-stimulated Spl were cultured 

alone or with increasing numbers of live (A) 

or heat-killed (B) Bd cells from two 

pathogenic isolates JEL197 or JEL275.  (C) 

Spl were cultured as in A, and PHA-

stimulated Spl were co-cultured (Co-cult) 

with or separated from live Bd cells by a 0.4 

µm pore filter in transwell (Transw). (D) 

Lymphocytes were cultured as in A except 

that live Bd cells were replaced by Bd 

supernatants (Sup) at increasing 

concentrations. Significantly reduced 
3
H-

thymidine uptake detected as counts per 

minute (CPM) using a scintillation counter 

compared to the control treatment, *p<0.05, 

**p<0.01 (ANOVA with post hoc test).  

CPM data in each panel are averages ± SEM 

of five or more replicate wells and represent 

three or more similar experiments. Unless 

noted, JEL197 was the Bd isolate used for all 

cell culture and supernatant experiments. 

(Panel A completed with Laura Reinert; panel 

C completed by Jeremy Ramsey.) 
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Fig. 2-2. Effects of by B. dendrobatidis (Bd) supernatants prepared from heat-killed or freeze-killed 

cultures.  Bd isolate JEL197 was killed by treatment at 60°C for 10 min (A) or by four consecutive 

freeze-thaw cycles (B). An aliquot of the treated Bd cells was placed in 1% tryptone broth to 

confirm the loss of viability. Supernatants (Sup) from these killed Bd cells were prepared as 

described in the methods.  Live Bd cells used for preparation of control supernatants were incubated 

at 4°C while the heat or freeze-thaw treatment occurred.  For A-B, splenocytes were cultured with or 

without PHA, and PHA-stimulated cells were incubated with increasing concentrations of each 

supernatant in L-15 medium. *Significantly reduced 
3
H-thymidine uptake compared to the control 

treatment by ANOVA with post hoc test, *p<0.05, **p<0.01. CPM data are averages ± SEM of six 

replicates. The panels are representative of four similar experiments. 
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compared to living B. dendrobatidis may be due to the decrease in production once B. 

dendrobatidis cells are killed. The B. dendrobatidis cell population used for supernatants and co-

culture contained cells of all stages (zoospore, encysted cells, germlings, thalli, and 

zoosporangia), and killing B. dendrobatidis may prevent transition events that occur during 

culture with splenocytes or during supernatant preparation. 

Proliferation induced by other mitogenic stimulators was also inhibited by both B. dendrobatidis 

cells in co-culture and B. dendrobatidis supernatants (Fig 2-3). Killed bacteria induce 

proliferation of amphibian B cells (Morales et al., 2003), so killed A. hydrophila was used to 

induce B lymphocyte proliferation which was also inhibited by B. dendrobatidis cells and 

supernatants (Fig. 2-3 A, B). Phorbol-12-myristate 13-acetate (PMA) induces lymphocyte 

proliferation by activating PKCθ, an important signaling kinase downstream of the TCR and 

BCR (Niedel et al., 1983). PMA-induced proliferation of X. laevis lymphocytes was inhibited by 

B. dendrobatidis cells and supernatants (Fig. 2-3 C, D). Lymphocyte proliferation can also be 

induced by a mixed leukocyte reaction (MLR) where splenocyte from allogenic individuals are 

mixed in culture (Du Pasquier & Horton, 1976). When splenocytes from different X. laevis were 

combined in a MLR, the cellular proliferation was significantly greater than when splenocytes 

were not mixed; MLR proliferation was significantly inhibited by B. dendrobatidis cells in co-

culture and by B. dendrobatidis supernatants (Fig 2-3 E, F). 

The closest non-pathogenic relative of B. dendrobatidis is H. polyrhiza (Joneson et al., 

2011).  Because H. polyrhiza is a saprobe and does not infect amphibians, it should lack 

virulence features that B. dendrobatidis has adapted to infect and persist in host tissue.  H. 

polyrhiza cells and supernatants only inhibit lymphocytes at very high concentrations, and 

relative to B. dendrobatidis, H. polyrhiza does not inhibit lymphocyte proliferation (Fig. 2-4).  
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  Fig. 2-3. Effects by B. dendrobatidis (Bd) cells or supernatants (Sup) on T- or B-cell proliferation. 

Splenocytes (Spl) from X. laevis, stimulated with heat-killed A. hydrophila (Ah) (A, B) or with 

phorbol-12-myristate 13-acetate (PMA) (C, D) or by allogeneic cells in a mixed-leukocyte reaction 

(MLR) (E, F), were incubated with increasing numbers of live Bd cells (A, C, E) or Bd Sup (B, D, F).  

For MLR, a total of 10
5
 Spl from two unrelated frogs were mixed 1:1 with each other.  Controls for the 

MLR experiments contained 10
5
 Spl from each individual which contributed cells to the MLR (#1, 

#2).  Significantly reduced 
3
H-thymidine uptake compared to the control, *p<0.05, **p<0.01 

(ANOVA with post hoc test).  CPM data in each panel are averages ± SEM of five or more replicate 

wells.  Panels are representative of at least three similar experiments. (Panel A completed by Whitney 

Holden.) 
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The inhibition by H. polyrhiza at very high concentrations may be due to the presence of 

proteases or other molecules that may have negative effects on lymphocytes but are not virulence 

factors. Alternatively, some or all of the B. dendrobatidis virulence factors may be present in 

chytrids as a structural components or metabolites, and B. dendrobatidis may have evolved to 

produce more potent or greater amounts of these factors. 

  

Toxic factors from B. dendrobatidis inhibit lymphocytes from other species including 

humans. 

 To confirm that lymphocyte inhibition driven by B. dendrobatidis was not limited to X. 

laevis splenocytes, splenocytes from another frog, R. pipiens, were incubated in co-culture with 

B. dendrobatidis cells. The inhibition of B- and T-cell proliferation was replicated with R. 

pipiens splenocytes (Fig. 2-5).  Although killed A. hydrophila did not induce strong proliferation 

response in R. pipiens lymphocytes, the 
3
H-thymidine incorporation of lymphocytes was 

significantly increased in the presence of killed bacteria and significantly reduced in the presence 

of B. dendrobatidis.  X. laevis and R. pipiens are distantly related frogs (Hay et al., 1995), so the 

molecular or cellular target of B. dendrobatidis factors is shared at least among anurans and 

likely among amphibians. Because the lymphocyte responses of another amphibian are impaired 

by B. dendrobatidis, this immune evasion strategy is likely important for B. dendrobatidis 

infection across amphibians.  

 In a similar investigation of mouse lymphocytes, mouse splenocytes were stimulated with 

PMA and ionomycin and mixed with B. dendrobatidis or H. polyrhiza supernatants.  Mouse 

lymphocyte proliferation was inhibited by B. dendrobatidis supernatants at even lower   
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Fig. 2-4. Effects of non-pathogenic Homolaphlyctis polyrhiza (isolate JEL142) and pathogenic B. 

dendrobatidis (Bd) (isolate JEL197) on PHA-induced splenocyte proliferation.  X. laevis 

splenocytes were cultured with or without PHA, and PHA-stimulated splenocytes were cultured 

alone or with living cells (A) or with concentrated supernatants (Sup) (B) from Bd (JEL197) or 

H. polyrhiza (JEL142).  *Significantly reduced 
3
H-thymidine uptake compared to the control 

treatment by ANOVA with post hoc test, *p<0.05, **p<0.01. CPM data are averages ± SEM of 

six replicates. Panels are representative of four similar experiments. 
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Fig. 2-5. Effects of B. dendrobatidis (Bd) cells on proliferation of splenocytes from a second frog 

species (Rana pipiens). (A) Splenocytes (10
5
/well; 5 x 10

5
/mL) were cultured alone or with PHA, 

and PHA-stimulated cells were co-cultured with or without live Bd cells. (B) Splenocytes (7.5 x 

10
4
/well;

 
3.75 x 10

5
/mL) were cultured alone or with heat-killed A. hydrophila (Ah), and Ah-

stimulated populations were co-cultured with or without live Bd cells. **Significantly different 

3
H-thymidine uptake between treatments by Student’s t-test with correction for multiple tests, 

p<0.01.  Panels are representative of two similar experiments showing the average CPM ± SEM 

of four or more replicate wells. (Experiments completed with Whitney Holden.) 
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concentrations than those that inhibited X. laevis splenocytes (Fig 2-6 A). Higher concentrations 

of H. polyrhiza supernatants actually increased the amount of proliferation. Viability of resting 

mouse splenocytes was also quantified using an Annexin V and PI flow cytometric assay. 

Unstimulated mouse splenocytes were induced to die very rapidly in the presence of B. 

dendrobatidis supernatants (Fig 2-6 B). B. dendrobatidis supernatants induced a significant 

decrease in splenocyte viability by six hours post-treatment and killed the entire population after 

16 hours.  Because B. dendrobatidis supernatants also reduce the viability of mouse 

lymphocytes, the mechanism of inhibition is likely to target a conserved signaling or metabolic 

pathway shared among vertebrate, or at least tetrapod, lymphocytes. 

 Batrachochytrium dendrobatidis supernatants were also tested on purified CD4
+
 T cell 

population obtained from human PBMCs (Fig. 2-7). Proliferation of human CD4
+
 T cells 

stimulated by anti-CD3 and anti-CD28 was inhibited in a dose-dependent manner by B. 

dendrobatidis supernatants (Fig. 2-7 A). During activation, human T cells increased expression 

of CD25 (IL-2 receptor) and CD62L (L-selectin) and decreased expression of HLR-DR (Caruso 

et al., 1997). The expression of these markers by T cells treated with B. dendrobatidis 

supernatants show that B. dendrobatidis factors inhibit activation of CD4
+
 T cells (Fig. 2-7 B). B. 

dendrobatidis supernatants also inhibited production of IL-2 and IFNγ by T cells (Fig. 2-7 C, D). 

The lack of cytokine production is likely a result of the lack of activation by T cells which is 

necessary to promote production of IL-2, IFNγ, and other cytokines. The results from human 

CD4
+
 T cells show that factors can directly impair T cells and suggests the target of the factors is 

shared by amphibian and mammalian lymphocytes. 
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Fig. 2-6. B. dendrobatidis (Bd) supernatants inhibit mouse splenocytes; see next page for details. 
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Fig. 2-6. B. dendrobatidis (Bd) supernatants inhibit mouse splenocytes.  (A) Mouse splenocytes 

were cultured alone or with PMA/iono. Stimulated cells were cultured alone or with increasing 

concentrations of Bd (JEL197) or H. polyrhiza (JEL142) supernatants (Sup). Significance was 

determined by a single-factor ANOVA with Tukey post-hoc: **p < 0.01 significantly less 

proliferation compared to the supernatant-free control; 
†
p < 0.01 significantly greater 

proliferation compared to the supernatant-free control. CPM data are averages ± SEM of at 

least seven replicates.  This experiment is representative of three similar experiments. (B-C) 

Resting mouse splenocytes were cultured alone (Control) or with Bd supernatant (Supernatant) 

and were assayed for cell death by flow cytometry after staining with Annexin V and PI at 0, 2, 

6, 12, and 16 h.p.t.  Cells negative for Annexin V and PI staining were considered to be living. 

Data show mean (±SEM) percentage of living cells (Annexin V
-
/PI

-
) (B) or representative flow 

cytometry plots at 6 and 12 h.p.t. (C) of splenocytes from three mice. Significance was 

determined by a two-tailed, paired t-test comparing supernatant and control treatments at each 

time point: *p<0.05, **p<0.01. Inset numbers on plots are percentage of cells in each quadrant. 

(Experiments completed with Sarah Parker Collier.) 
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  Fig. 2-7. Human helper T cells are inhibited by B. dendrobatidis (Bd) supernatants. (A) 

Proliferation of human CD4
+
 T cells stimulated with anti-CD3 and anti-CD28 (after 5 days) was 

impaired by increasing concentrations of Bd supernatants as shown by reduced CFSE dilution.  

(B) Up-regulated markers in anti-CD3/anti-CD28-activated T cells (CD25 and CD62L) were 

decreased in cells treated with Bd supernatant (Sup); HLA-DR is a down-regulated marker in 

activated human T cells, but was up-regulated in cells treated with Bd supernatants.  (C-D) 

Supernatants from Bd cultures inhibited secretion of IL-2 (C) and IFN-γ (D) by purified human 

CD4
+
 T cells.  CD4

+
 T cells were stimulated with anti-CD3 and anti-CD28 and treated with Bd 

supernatants at the fold concentrations shown for 24 hours. Culture medium was assayed for 

cytokines by CBA. These experiments are representative of two replicate experiments. 

(Experiments completed by Kyra Oswald-Richter.) 

 



70 
 

Batrachochytrium dendrobatidis inhibits the growth of non-lymphoid cell lines. 

 To determine if soluble factors may have negative impacts on non-lymphoid cells, 

mammalian cell lines with epithelial origin were incubated with supernatants from B. 

dendrobatidis and H. polyrhiza.  Chinese hamster ovary cells and HeLa cells (human cervical 

cancer cells) were incubated in culture with or without chytrid supernatants for up to three days, 

and cells were harvested and counted each day. CHO cells were greatly impaired by B. 

dendrobatidis supernatants but not H. polyrhiza supernatants (Fig. 2-8 A, B). Lower 

concentrations of B. dendrobatidis supernatant inhibited proliferation of CHO cells, and higher 

concentrations appeared to kill CHO cells. Proliferation of HeLa cells were inhibited by B. 

dendrobatidis supernatants and not affected by H. polyrhiza supernatants (Fig. 2-8 C, D). Due to 

the crude preparation of supernatants containing many different molecules, the factors 

responsible for CHO and HeLa cell inhibition may be different from the factors that inhibit 

lymphocytes. Supernatants used to treat CHO and HeLa cells were boiled before lyophilizing, 

decreasing the likelihood that proteins are responsible for this inhibition.  The factors responsible 

for lymphocyte inhibition are also heat resistant, so soluble factors produced by B. dendrobatidis 

may impair all rapidly dividing cells.  

 

Batrachochytrium dendrobatidis induces apoptosis in lymphocytes. 

 To determine the effect of B. dendrobatidis on X. laevis lymphocytes, splenocytes were 

treated with B. dendrobatidis supernatants both before and after PHA stimulation.  Splenocytes 

were treated with B. dendrobatidis supernatants for 48 hours in the absence of mitogenic 

stimulation and were then centrifuged and re-suspended in fresh media with PHA and without B. 

dendrobatidis supernatant. Pre-treatment of splenocytes with B. dendrobatidis factors caused a 

significant decrease in PHA-induced proliferation (Fig. 2-9 A). B. dendrobatidis factors can also  
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Fig. 2-8. Batrachochytrium dendrobatidis (Bd) supernatants (boiled prior to lyophilization) 

inhibit proliferation of Chinese hamster ovary (CHO) and HeLa cells, while H. polyrhiza 

supernatants weakly inhibit CHO cells but do not inhibit HeLa cells. CHO (A, B) or HeLa (C, 

D) cells were incubated with different concentrations of supernatant (Sup) from Bd (JEL197, 

black filled columns) or H. polyrhiza (JEL142, open columns) or 500 µg/mL G418 or PBS (gray 

filled columns). Cells were counted at 48 (A, C) or 72 (B, D) h.p.t. (total cell numbers in each 

well were multiplied by 10
-4

 or 10
-5

). At the time of the treatment (0 h.p.t., 24 hrs after seeding 

wells), CHO cells numbered 6.0 x 10
3
 ± 1.0 x 10

3
 (± SEM) cells in each well, and HeLa cells 

numbered 1.9 x 10
4
 ± 1.9 x 10

3
 (± SEM) cells in each well. Data show means ± standard error of 

three treatment wells. Significantly fewer cells than the PBS control by a single-factor ANOVA 

with Tukey post-hoc test, *p < 0.05, **p < 0.01. Panels are representative of two separate 

experiments. (Experiments completed with Danica Sutherland.) 
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Fig. 2-9. Effects of pre-treatment or delayed addition of B. dendrobatidis (Bd) supernatants on 

splenocyte proliferation induced by PHA.  (A) Unstimulated X. laevis splenocytes were cultured 

with increasing concentrations of Bd supernatants (Sup) or no Sup (-) for 48 hours.  Plates were 

centrifuged to pellet cells, and the media was removed and replaced with fresh L-15.  

Splenocytes not treated with Bd Sup were cultured with or without PHA, and splenocytes 

previously treated with Bd Sup were stimulated with PHA. (B) Splenocytes were cultured with 

or without PHA, and after 24 hours, B. dendrobatidis supernatants were added to the PHA-

stimulated cells at increasing concentrations.  **Significantly reduced 
3
H-thymidine uptake 

compared to the control treatment, p<0.01 (ANOVA with Tukey post hoc test). CPM data are 

averages ± SEM of six replicates. Panels are representative of three similar experiments. 



73 
 

inhibit lymphocyte proliferation when added to splenocytes after 24 hours of PHA-stimulation 

(Fig. 2-9 B). These results indicate that the effect of B. dendrobatidis on lymphocytes is not 

reversible once factors are removed from culture, and the factors can still impair activated 

lymphocytes. 

 Because B. dendrobatidis supernatant can inhibit lymphocytes both before and after 

stimulation, a likely mechanism of inhibition is induction of cell death in lymphocytes.  Resting 

mouse splenocytes and CHO had a decreased viability when incubated with B. dendrobatidis 

supernatants (Figs. 2-6, 2-8). Viability of X. laevis splenocytes in the presence of B. 

dendrobatidis supernatants was determined by nuclear staining with PI following the degradation 

of DNA which occurs during cell death (Hotz et al., 1994).  Batrachochytrium dendrobatidis 

supernatant treatment significantly increased the number of hypodiploid splenocytes (undergoing 

cell death) within 24 hours with an even greater increase in cell death at 48 hours (Fig. 2-10).  At 

24 hours, the amount of cell death induced by B. dendrobatidis supernatants was comparable to 

other known inducers of amphibian lymphocyte apoptosis, corticosterone and anti-Fas antibodies 

(Rollins-Smith et al., 1997; Mangurian et al., 1998). At 48 hours, B. dendrobatidis supernatants 

induced much greater cell death than both corticosterone and anti-Fas antibodies. 

 I hypothesized that one mechanism of cell death induced by B. dendrobatidis factors is 

would be apoptosis. During the early stages of apoptosis, the composition of the outer leaflet of 

the cellular membrane changes increasing the amount of phosphatidylserine (PS).  PS is 

recognized by receptors on macrophages to engulf and clear apoptotic cells (Fadok et al., 1992).  

Annexin V binds to PS and can be used to determine cells undergoing the early stages of 

apoptosis with flow cytometry (Vermes et al., 1995; Vermes et al., 2000). In such a flow   
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Fig. 2-10. Batrachochytrium dendrobatidis (Bd) 

supernatant induces X. laevis splenocyte death. 

X. laevis splenocytes were incubated for 24 or 48 

hours with 10X Bd supernatants (Sup), 

corticosterone, or anti-Fas (CD95) (α-Fas) mAb.  

Apoptosis was quantified using flow cytometry 

as the percentage of cells with hypodiploid DNA 

content determined by PI nuclear staining. Mean 

percent undergoing apoptosis ± SEM  (A) and 

representative histograms (B) are shown for 

three to six replicate experiments. Histograms 

shown represent 10
4
 events.  For panel A, 

significantly increased percent hypodiploid cells 

compared to the control at each time point, 

*p<0.05, **p<0.01 by paired Student’s t-tests. 



75 
 

cytometric assay, Annexin V can be used in conjunction with PI, as a viability stain, to 

differentiate the stages and types of cell death. Cells positive for PI have lost cell membrane 

integrity either late in apoptosis or during necrotic cell death. In following a population 

undergoing cell death, the population only staining positive for Annexin V are most likely 

undergoing early stages of apoptosis, so the Annexin V
+
/PI

-
 population was chosen to quantify 

apoptosis in this assay. A caveat to this assay is that apoptosis can only be detected at its early 

stages; if apoptosis death is rapid or if cells in the population are undergoing apoptosis at 

different times, then the early stages of apoptosis may be entirely missed. 

 Apoptosis of resting X. laevis splenocytes cultured across a transwell from B. 

dendrobatidis cells was determined with Annexin V and PI staining by flow cytometry over 96 

hours. By 48 hours, there was a significant increase in Annexin V
+
/PI

-
 cells in the splenocyte 

population cultured in transwell with B. dendrobatidis (Fig. 2-11). Batrachochytrium 

dendrobatidis induced an elevated amount of apoptosis through 72 hours, but the background 

apoptosis in control cells increased at 96 hours indicating that the resting splenocyte were 

naturally dying in the absence of survival or stimulation factors. B. dendrobatidis supernatants 

also induced apoptosis, a significant increase in Annexin V
+
/PI

-
 cells, in resting X. laevis 

splenocytes (Fig. 2-12). Because factors were immediately mixed with splenocytes it appears 

that the kinetics of apoptosis was a little faster and more robust. At 24 hours, B. dendrobatidis 

supernatants had increased apoptosis nearly significantly (p=0.07) compared to no difference yet 

in the transwell assay. B. dendrobatidis supernatants also induced apoptosis in many more cells 

indicated by a greater loss of viability after 48 hours. 

 The Annexin V/PI assay is beneficial for following cell death in cells across a population 

but does not necessarily distinguish apoptosis from other forms of cell death. Necroptosis is a   
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Fig. 2-11. Batrachochytrium dendrobatidis (Bd) cells release factors that induce apoptosis in X. 

laevis splenocytes. (A) Average percent apoptosis ± SEM of splenocytes cultured with or 

without Bd cells separated by a 0.4 µm filter (20:1 Bd to splenocytes) in transwell. (B) 

Representative flow cytometry plots from the experiments show 10
4
 events and inset percentages 

in quadrants. Data show the mean or representative plots from three experiment. Percent 

apoptosis in the presence of Bd cells was significantly greater than that observed for splenocytes 

alone by a paired Student’s t-test; *p<0.05, **p<0.01. (Experiments completed by Jeremy 

Ramsey.) 
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Fig. 2-12. Batrachochytrium dendrobatidis (Bd) supernatants (Sup) induce apoptosis in resting X. 

laevis splenocytes. (A) Average percent apoptosis ± SEM of splenocytes cultured with or without 

Bd supernatants (10X concentration). (B) Representative flow cytometry plots from the 

experiments show 2 x 10
4
 events and inset percentages in quadrants. Data show the mean or 

representative plots from four experiments. Percent apoptosis in the presence of Bd Sup was 

significantly greater than that observed for splenocytes alone by a paired Student’s t-test; 

**p<0.01. 
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form of programmed necrosis mediated by signaling pathways which cannot always be 

distinguished from apoptosis (Han et al., 2011). Two kinases, RIP1 and RIP3 mediate 

programmed necrosis at TNF receptors. Necrostatin-1 (Nec-1) inhibits RIP signaling to prevent 

necroptosis (Degterev, 2005). To determine if the cell death was mediated through programmed 

necrosis, X. laevis splenocytes were cultured with Nec-1 in the presence and absence of B. 

dendrobatidis supernatants.  Nec-1 did not reverse the effects of B. dendrobatidis factors and 

actually appeared to enhance killing (Fig. 2-13). The presence of Nec-1 slightly decreased 

lymphocyte proliferation in the absence of B. dendrobatidis supernatants and caused greater 

inhibition by B. dendrobatidis factors when supernatants were present (Fig. 2-13 A). Nec-1 had 

no impact on the viability of resting splenocytes but had a synergistic effect on induction of cell 

death when lymphocytes were treated with both Nec-1 and B. dendrobatidis supernatants (Fig. 2-

13 B). The RIP1/3 complex that induces necrosis contains several components of apoptosis 

signaling pathways, and the necroptosis and apoptosis signaling pathways are interlinked (Han et 

al., 2011). When the RIP1/3 complex is inhibited by Nec-1, cells are more susceptible to 

apoptotic cell death. The results suggest that B. dendrobatidis factors induce apoptosis, and when 

Nec-1 is present, apoptosis signaling is more effective at killing splenocytes. 

Apoptosis is mediated through the cleavage and activation of caspases. Typically, apoptosis is 

either induced extrinsically through TNF receptors such as Fas or intrinsically activated by the 

release of cytochrome c from the mitochondrion (Rathmell & Thompson, 2002). TNF receptors 

canonically activate caspase-8 by forming activation complexes at the intracellular domain, and 

cytochrome c promotes formation of the apoptosome complex which activates caspase-9 (Siegel, 

2006). Caspases recognize and cleave specific peptide sequences which can be inhibited by  
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Fig. 2-13. Necrostatin-1 (Nec-1) does not reduce the cell death induced by B. dendrobatidis (Bd) 

upernatants. (A) X. laevis splenocytes were cultured for three days in the presence or absence of 

PHA, Bd Sup, and 30 µM Nec-1.  Significantly decreased CPM for  PHA-induced cells treated with 

Bd Sup alone in comparison with Bd Sup with Nec-1, *p<0.05, **p<0.01 by Student’s t-test with a 

correction for multiple t-tests.  CPM  are averages ± SEM of six replicate wells and represent two 

similar experiments. (B) Lymphocytes were cultured for 48 hours in the presence or absence of Bd 

Sup and Nec-1; cell death was quantified by flow cytometry (PI and Annexin V-FITC). 

Splenocytes that were PI
-
 /Annexin V

+
 were considered to be undergoing early apoptosis.  Inset 

numbers indicate percent of cells in each quadrant.  Each panel shows 10
4
 events analyzed and 

represents one experiment two replicated experiments. 
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peptides which cannot be cleaved. One such inhibitor Z-VAD is recognized by all caspases and 

is a pan-caspase inhibitor. Due to the conservation of the active site and recognition sequence of 

caspases, peptide inhibitors used to inhibit mammalian caspases also inhibit amphibian caspases 

(Du Pasquier et al., 2006).  Z-VAD treatment of X. laevis splenocytes significantly reduced the 

amount of apoptosis induced by B. dendrobatidis supernatants (Fig. 2-14 A, B) suggesting that 

cell death is mediated through caspases. Caspase activity of upstream caspase-8 and caspase-9 

and downstream caspase-3 and caspase-7 was quantified using a luminescence detection assay. 

Caspase activity of extrinsic, intrinsic, and downstream caspases was significantly increased in 

splenocyte treated with B. dendrobatidis supernatant (Fig. 2-14 C-E). Batrachochytrium 

dendrobatidis supernatants induced significantly greater proliferation in splenocytes than known 

inducers of amphibian lymphocyte apoptosis (Rollins-Smith et al., 1997; Mangurian et al., 

1998). Fas-specific antibodies activate the Fas receptor which induces apoptosis through the 

extrinsic pathway (Mangurian et al., 1998; Rathmell & Thompson, 2002). Corticosterone 

induces lymphocyte death by promoting intrinsic apoptotic pathway induction (Garvey et al., 

1993; Rollins-Smith et al., 1997; Laakko & Fraker, 2002).  Batrachochytrium dendrobatidis 

supernatants activated both caspase-8 and caspase-9 greater than no treatment and positive 

controls suggesting that factors induce both extrinsic and intrinsic apoptotic pathways. Caspase-8 

can activate the intrinsic pathway by cleaving BID which then promotes cytochrome c release 

from the mitochondrion (Du Pasquier et al., 2006; Siegel, 2006). One factor present in B. 

dendrobatidis supernatants may activate caspase-8 in splenocytes which then can activate the 

intrinsic pathway and caspase-9 activation. Alternatively, multiple targets of either a single factor 

or multiple factors may induce apoptosis through both the intrinsic and extrinsic pathways.  
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Fig. 2-14. Batrachochytrium dendrobatidis (Bd) supernatants activate caspases to induce apoptosis in 

splenocytes. (A-B) X. laevis splenocytes were cultured for 48 hours with or without Bd supernatant 

(Sup) and with or without Z-VAD-FMK (five experiments) and apoptosis was quantified by flow 

cytometry.  Splenocytes that were PI
-
 /Annexin V

+
 were considered to be undergoing early apoptosis. 

Mean percentage of apopototic cells (A) and representative flow plots from five experiments are 

shown. The apoptosis induced by Bd supernatant was significantly reduced by Z-VAD-FMK, *p< 

0.05 by a paired Student’s t-test.  (C-E) Caspase activity assays for caspase-3/7 (D), caspase-8 (E), 

and caspase-9 (F) induced by Bd Sup, anti-Fas (α-Fas) mAb, or corticosterone (Cort) (representative 

of four experiments). Bd Sup treatments induced significantly greater caspase activity than that of 

splenocytes alone and of positive controls, **p<0.01 (ANOVA with post hoc test). 
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Both B and T cells are impaired by B. dendrobatidis. 

 In all lymphocyte proliferation assays except for the human CD4
+
 T cell experiments, B. 

dendrobatidis cells or supernatants were cultured with a splenocyte population which mostly 

consisted of B and T lymphocytes but also contaieds accessory myeloid cells. Interactions among 

splenocytes may be responsible for the inhibition of B- and T-cell proliferation. To determine if 

B. dendrobatidis factors directly impact lymphocytes, B and T cells were isolated using magnetic 

beads coated in anti-IgM to bind to B cells or anti-CD5 to bind to T cells. Enriched B cells were 

stimulated with killed A. hydrophila, and enriched T cells were stimulated with PHA. The 

enriched B cell population did not proliferate in the presence of PHA, and the enriched T cell 

population did not proliferate in the presence of killed A. hydrophila (data not shown).  When B. 

dendrobatidis cells were placed in co-culture with enriched B cells, there was a significant 

decrease in cellular proliferation (Fig. 2-15 A). The enrichment of B cells via the BCR induced B 

cell proliferation in the absence of killed A. hydrophila, and this activation before culture with B. 

dendrobatidis cells was significantly inhibited by B. dendrobatidis. Enriched T cells alone did 

not proliferate but had great proliferation in the presence of PHA; the PHA-induced proliferation 

of T cells was significantly inhibited by B. dendrobatidis in co-culture (Fig. 2-15 B). These data 

suggest that B. dendrobatidis factors directly interact with lymphocytes to inhibit activation.  

To confirm whether B. dendrobatidis induces apoptosis in lymphocytes and determine 

differential effects on B and T cells, B and T cells were gated before quantifying apoptosis with 

flow cytometry. Batrachochytrium dendrobatidis cells in co-culture induced apoptosis in both B 

and T cells at 48 hours (Fig. 2-15 C). A large portion of T cells (CD5 positive splenocytes) 

underwent apoptosis in the presence of B. dendrobatidis cells. Batrachochytrium dendrobatidis 

induced an increased number of B cells to undergo apoptosis, but to a lesser degree  
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Fig. 2-15. Batrachochytrium dendrobatidis (Bd) inhibits B and T cells.  (A) Enriched B cells were 

incubated with or without A. hydrophila (Ah) and with or without Bd cells. Note that B-cell 

proliferation without A. hydrophila was likely a result of activation due to engagement of the IgM 

receptors during purification. (B) Enriched T cells were incubated with or without PHA and with or 

without Bd cells. (A-B) Significant differences by Student’s t-test comparing treatments grouped under 

brackets, **p<0.0001; p-values were multiplied by two to correct for multiple tests within the same 

experiment. CPM data are averages ± SEM of five or more replicate wells. (C) Splenocytes were 

cultured alone or co-cultured for 48 hours with heat-killed Bd. B and T cells were gated based on MHC 

class II, IgM, and CD5 positivity. Cells were also stained with 7-AAD, a viability stain, and Annexin 

V-FITC to determine apoptotic cells.  Lymphocytes that were 7-AAD
-
 /Annexin V

+
 were considered to 

be apoptotic.  Inset numbers indicate percent of cells in each quadrant. All panels are representative of 

two independent experiments. (Panel C completed by Jeremy Ramsey.) 
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compared to T cells. The target of B. dendrobatidis factors to induce B and T cell apoptosis may 

be different, or T cells may simply be more susceptible to the B. dendrobatidis factors. 

  

Jurkat cells provide an in vitro system for studying B. dendrobatidis effects on lymphocytes. 

 Jurkat cells are a cell line derived from a human T lymphoma and act much like activated 

T cells (Schneider et al., 1977). The effect of chytrid supernatants on Jurkat cells was very 

similar to what was observed for amphibian and mouse lymphocytes (Fig. 2-16). 

Batrachochytrium dendrobatidis supernatants greatly inhibited Jurkat cell proliferation at even 

lower concentrations than those that inhibited amphibian lymphocytes (Fig. 2-16 A). H. 

polyrhiza supernatants only inhibited Jurkat cells at higher concentrations needing to be 

concentrated about 8 to 10-fold compared to B. dendrobatidis supernatants to see the same effect 

(Fig. 2-16 B). Jurkat cells offer a faster and cheaper way to assay the virulence of B. 

dendrobatidis on lymphocytes that does not require obtaining lymphocytes from a live animal.  

 An important application of using Jurkat cells to assay B. dendrobatidis virulence is to 

compare the relative virulence of different B. dendrobatidis isolates. Infection studies have 

demonstrated that B. dendrobatidis virulence is highly variable among isolates (Berger et al., 

2005c, Retallick & Miera, 2007; Fisher et al., 2009). Much of the variation can be caused by 

genetic and species differences in the host, but there also appear to be differences in ability of 

different isolates to cause disease. Some of the variability in isolate virulence may be attributed 

to the capacity of an isolate to produce lymphotoxic factors. Two isolates that have been cultured 

in lab extensively, JEL197 and JEL275, show similar inhibition of X. laevis lymphocytes (Fig. 2-

1). Determining the relative potency of this virulence feature of B. dendrobatidis will require 

many lymphocyte assays, too many to use amphibian splenocytes, so Jurkat cells would provide  
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Fig. 2-16. Jurkat cells are inhibited by B. dendrobatidis (Bd) supernatants but not H. polyrhiza (Hp) 

supernatants. Jurkat cells were cultured for three days or without Bd (JEL197) or Hp (JEL142) 

supernatants (Sup) in a 
3
H-thymidined proliferation assay at 37°C (A-B) or 26°C (C). (A) Bd Sup or 

water controls were either boiled or not, lyophilized, and re-suspended in RPMI to be mixed with 

Jurkat cells in a proliferation assay.  (B) Hp Sup or water controls were either boiled or not, 

lyophilized, and re-suspended in RPMI to be mixed with Jurkat cells in a proliferation assay. (C) 

Jurkat cells were cultured at 26°C either alone (control) or in the presence of Bd Sup (not boiled) or 2 

mg/ml G418. (A-B) There was no significant difference between boiled and not boiled supernatants, 

and significant inhibition of proliferation compared to the boiled water control is indicated, **p<0.01.  

(C) All treatments had significantly decreased proliferation compared to the untreated control, 

**p<0.01. For all panels, a one-way ANOVA was used for statistical comparisons, individual 

treatment comparisons were analyzed by Tukey post-hoc tests. Each panel is representative of three 

similar experiments.  
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a way to assay multiple isolates. Supernatants from various isolates can be obtained, but this is 

time consuming and may not fully reflect the ability of each isolate. To determine relative 

inhibition, B. dendrobatidis cells may need to be co-cultured with Jurkat cells. Despite the low 

thermal maximum of B. dendrobatidis (Woodhams et al., 2003), co-culture assays can be 

conducted with Jurkat and living B. dendrobatidis cells at 26° C. Proliferation of Jurkat cells and 

inhibition by B. dendrobatidis supernatants at 26° C reflected the results at 37° C (Fig. 2-16 C) 

suggesting that assays co-culturing Jurkat with living B. dendrobatidis cells are possible. Some 

work has begun to test the effects of various B. dendrobatidis isolates on Jurkat cells, and we 

have observed significant variation in the capacity of isolates to impair lymphocytes (data not 

shown). 

If a high through-put assay were developed to analyze inhibition by various B. 

dendrobatidis isolates, treatments of B. dendrobatidis, or even B. dendrobatidis mutants, it 

would need to be consistent, fast, and inexpensive. Jurkat cells provide a good system for high 

through-put analysis, but the proliferation assay using 
3
H-thymidine can be expensive. An 

alternative assay is the MTT assay which uses the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl 

tetrazolium bromide (MTT) that is reduced to a purple crystal by reducing enzymes present in 

the mitochondria of active cells (van Meerloo et al., 2011). The MTT assay is a simple and 

inexpensive method for quantifying the number of viable cells. Inhibition of Jurkat cells by B. 

dendrobatidis and H. polyrhiza supernatants was quantified using the MTT assay, and a nearly 

identical dose response was observed in the MTT assay as was observed with the 
3
H-thymidine 

proliferation assay (Fig. 2-17). 
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  Fig. 2-17. The MTT assay functions to assay inhibition of Jurkat cells by chytrid supernatants. 

Supernatants (not boiled) from Batrachochytrium dendrobatidis (Bd, JEL197) or Hp (JEL142) were 

re-suspended at different concentrations and incubated with Jurkat cells. After three days of 

incubation at 37°C Viability of Jurkat was quantified by the MTT assay reading absorbance at 570 

nm. Wells not receiving supernatant (gray bars) either received RPMI alone (Control) or 12.5 μg/ml 

etoposide (as a negative control). Bd supernatants at all concentrations were significantly more 

inhibitory than Hp supernatants, 
#
p<0.01. Supernatants that significantly inhibited Jurkat cells are 

indicated, **p<0.01, one-way ANOVA with Tukey post-hoc tests for individual comparisons. Data 

are representative three similar experiments.  
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Discussion 

Batrachochytrium dendrobatidis has evolved a mechanism to inhibit host lymphocyte 

responses 

 Many studies have observed poor immune responses against B. dendrobatidis by 

amphibians (Pessier et al., 1999; Berger et al., 2005b; Rosenblum et al., 2009; Rollins-Smith et 

al., 2009; Stice & Briggs, 2010; Rosenblum et al., 2012a). Because amphibians have a well-

equipped adaptive immune system that is also present in the skin (Ramanayake et al., 2007; 

Robert & Ohta, 2009; Rollins-Smith et al., 2009), B. dendrobatidis seems to have developed 

ways to inhibit protective immune responses in the skin. Lymphocyte responses, particularly T 

cell responses, are essential for clearance of fungal infections (Wüthrich et al., 2012a). An 

evasion strategy that impairs and kills lymphocytes would promote colonization and replication 

of a fungal pathogen. Data in this chapter characterize such a mechanism by B. dendrobatidis to 

inhibit host adaptive immune responses by inhibiting proliferation and inducing apoptosis in 

lymphocytes. Defects in lymphocyte function are mediated by soluble factors released by B. 

dendrobatidis which may be shed by B. dendrobatidis during infection to prevent robust immune 

clearance. 

 Several fungi are known to produce molecules that inhibit lymphocyte responses (see 

Table 1-2).  Gliotoxin is released by Aspergillus fumigatus and kills lymphocytes by activating 

the intrinsic apoptosis pathway (Fox & Howlett, 2008; Ben-Ami et al., 2010). Cryptococcus 

species have two immunomodulatory polysaccharides in the capsule: glucuronoxylomannan 

(GXM) and galactoxylomannan (GalXM) (De Jesus et al., 2010). Phagocytosis of GXM by 

macrophages and dendritic cells impairs inflammatory responses and promotes expression of Fas 

ligand which can induce apoptosis in lymphocytes (Monari et al., 2005; Piccioni et al., 2011). 
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GalXM directly induces apoptosis in lymphocytes (De Jesus et al., 2009; Pericolini et al., 2009). 

The Blastomyces dermatitidis adhesion factor, BAD-1, necessary for much of the virulence of 

the fungus has recently been shown to also impair T cell activation (Brandhorst et al., 2013). 

Some evidence also suggests that Paracoccidioides brasiliensis can suppress lymphocytes 

(Campanelli et al., 2003; Bordon et al., 2007).  

 Like other pathogenic fungi, B. dendrobatidis has evolved mechanisms to inhibit 

lymphocytes. This adaptation was probably important in the transition to be an amphibian 

pathogen. B. dendrobatidis infects an entire class of vertebrates.  It is known to infect several 

hundred species of amphibians including frogs, salamander, and caecelians (Olson et al., 2013; 

Doherty-Bone et al., 2013). B. dendrobatidis has the capacity to infect many hosts because the 

shared adaptive defenses are impaired during infection. The inhibition of lymphocytes by B. 

dendrobatidis explains why resistant species still do not clear infection (Ramsey et al., 2010; 

Mazzoni et al., 2003) and why certain innate immune defense are so important in resistance to 

chytridiomycosis (Rollins-Smith et al. 2011). 

 The presence of inhibitory factors even on killed B. dendrobatidis cells may explain the 

absence of protection in amphibians immunized with killed B. dendrobatidis (Rollins-Smith et 

al., 2009; Stice & Briggs, 2010). During these immunizations there may be some adaptive 

response to B. dendrobatidis antigens, but the responses may be dampened by the lymphotoxic 

factors released by B. dendrobatidis. Immunization may be a useful strategy to protect highly 

susceptible amphibian populations, but a successful vaccine must be developed. Killed fungi 

have not been successful vaccines in mouse models (Cassone & Casadevall, 2012), but this may 

be overcome with appropriate adjuvants (Wüthrich et al., 2013). An attenuated B. dendrobatidis 
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that does not produce these lymphotoxic factors could be used to promote long-lasting immunity 

in amphibians without causing disease. 

 The use of Jurkat cells will simplify and hasten the investigation of the B. dendrobatidis 

inhibitory factors. Analysis of various B. dendrobatidis isolates from around the world is 

currently proceeding. Isolates from the CH (or Swiss) strain of B. dendrobatidis will be tested on 

Jurkat cells to determine if this strain can inhibit lymphocytes as robustly as B. dendrobatidis 

from the global panzootic lineage (GPL). The GPL B. dendrobatidis has been proposed to be 

highly virulent compared to other isolates declared as enzootic that have been found in 

Switzerland, Brazil, South Africa, and east Asia (Farrer et al. 2011; Bai et al., 2012; Farrer et al., 

2013; Rosenblum et al., 2013). Falling outside of the GPL, CH B. dendrobatidis isolates are 

proposed to lack much virulence; therefore, these isolates may have decreased production of 

lymphotoxic factors. If isolates outside of the GPL had decreases capacity to inhibit 

lymphocytes, then genetic analysis may provide insight to the genes responsible for synthesis 

and release of these factors. Enzootic isolates are also good candidates for attenuated vaccination 

strategies.  

 

Possible use of B. dendrobatidis factors for human therapies and medical research 

 I observed that B. dendrobatidis factors impair mammalian lymphocytes and immortal 

cell lines. Although the factors responsible have not been identified yet and there may be 

different factors responsible for different aspects of cellular inhibition, these factors appear to 

inhibit and potentially kill proliferating cells. If proliferating cells are the target, then these 

factors would be beneficial for treating or at least studying diseases of cellular proliferation such 

as cancer and autoimmunity. Because the B. dendrobatidis supernatants are a crude mixture of 
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anything shed from B. dendrobatidis in a 24-hour time period, there are probably multiple factors 

that may have differential effects separately inhibiting cellular proliferation, targeting 

lymphocytes, and inducing apoptosis. If specific factors only target lymphocytes inhibiting 

activation or inducing apoptosis, then these factors would definitely be useful for preventing 

transplant rejection and limiting autoimmunity. Polysaccharide factors from Cryptococcus, GXM 

and GalXM, have been proposed for use in treating autoimmune disorders (Vecchiarelli & 

Monari, 2012). GalXM, in particular, appears to have great potential in treating rheumatoid 

arthritis (Pericolini et al., 2013). Once the B. dendrobatidis factors are identified and the 

mechanism of action clarified, they may be important drugs used to study or treat human 

diseases.  
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CHAPTER III 

 

FACTORS FROM BATRACHOCHYTRIUM DENDROBATIDIS IMPAIR 

ADAPTIVE IMMUNITY BUT NOT INNATE IMMUNITY IN VITRO AND 

IN VIVO
2
 

 

Abstract 

 Innate immune cells, especially phagocytes, play an important role in detection, antigen 

presentation, and pathogen clearance during a fungal infection. In order for Batrachochytrium 

dendrobatidis to avoid being cleared, it may evade phagocyte recognition. B. dendrobatidis 

produces soluble factors that impairing lymphocytes in vitro (Chapter II of this thesis). Inhibition 

of lymphocytes would significantly decrease the robust phagocyte response mediated mostly by 

T cell cytokines but would not prevent early innate recognition by phagocytes. If the B. 

dendrobatidis inhibitory factors broadly impair leukocytes, then B. dendrobatidis would 

essentially prevent any protective immune response inside the skin. B. dendrobatidis, however, 

does not appear to impair phagocytosis, viability, or accessory activities of amphibian 

macrophages and neutrophils in vitro. This suggests that the soluble factors released by B. 

dendrobatidis are directed to inhibiting lymphocyte-mediated responses and do not have an 

effect on phagocytes. To confirm this hypothesis, B. dendrobatidis supernatants were injected 

into Xenopus laevis to determine the effects of the soluble factors on immune responses. 

Inducers of inflammation such as killed bacteria and phytohemagglutinin (PHA) can be used to 

follow inflammatory responses in vivo. Here, a modified protocol for injection of PHA or killed 

bacteria was developed employing intramuscular injection into the foot region of X. laevis.  This 

                                                           
2
 Some of the data in this chapter is published in Fites et al., 2013. 
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protocol induced much greater swelling than previous studies using subcutaneous injection of 

PHA into amphibians. Using this new protocol, we tested whether B. dendrobatidis supernatants 

would alter innate and adaptive immune responses induced by injection of killed bacteria or 

PHA. As previously described in vitro, factors from B. dendrobatidis inhibited lymphocyte-

mediated swelling (a delayed-type hypersensitivity response) induced by PHA but not swelling 

caused by killed bacteria.  Investigation of the systemic effects of B. dendrobatidis suggest that 

infection does not cause general immune suppression but rather inhibits lymphocytes in a 

localized fashion to prevent adaptive immune responses in the skin. 

 

 

Introduction 

 Adaptive immune responses, particularly mediated by T lymphocytes, are essential for 

the clearance of fungal pathogens (Wüthrich et al., 2012a).  Immunity to the lethal amphibian-

infecting chytrid fungus, Batrachochytrium dendrobatidis (Bd), also appears to require 

lymphocyte responses (Ramsey et al., 2010; Savage and Zamudio, 2011).  B. dendrobatidis 

appears to overcome host immunity in the skin by producing inhibitory factors that impair 

lymphocytes (Chpater II). This immune evasion strategy employed allows B. dendrobatidis to 

infect immunocompetent hosts and explains why species lacking innate mucosal immune 

defenses are so susceptible to chytridiomycosis (Rollins-Smith et al., 2011).  

 Innate leukocytes play an important role in immunity to fungi (Brown, 2011; Roy & 

Klein, 2012). Dendritic cells (DCs) are essential for presenting antigen to activate lymphocyte 

responses. Macrophages and neutrophils play an important role in killing fungi to clear infection. 

Other innate leukocytes play important roles in activating inflammatory responses and promoting 
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immune responses by producing cytokines (Kawakami et al., 2001; Cohen et al., 2011; Urb & 

Sheppard, 2012), but phagocytes are the most important leukocytes to both promote 

inflammation and clear fungal infection. In mammals, protective T cell responses (typically Th1 

and Th17) require priming by DCs and then activate and recruit macrophages and neutrophils to 

the sites of infection to resolve fungal infection (Wüthrich et al., 2012a). 

 During fungal infections of the skin, DCs play an essential role in promoting immune 

responses and presenting antigen to T cells (Ersland et al., 2010; Igyártó et al., 2011). The 

presence of certain populations of DCs also determines the type of response against the fungal 

infection. In particularly monocyte-derived DCs classified as ‘inflammatory’ play an essential 

role in promoting inflammatory immune responses in infected tissues (Hohl et al., 2009; 

Wüthrich et al., 2012b). 

 Macrophages and neutrophils are typically very important in clearing fungal infections. 

When supported by helper T cell responses, these phagocytes are heavily recruited and are 

activated to kill fungal pathogens. Th1 responses promote classical activation of macrophages 

which promote antimicrobial killing inside of phagosomes and “nutritional immunity” (Brown, 

2011; Subramanian Vignesh et al., 2013). Th17 responses promote recruitment of neutrophils 

and macrophages and activate production of antimicrobials by both phagocytes and epithelial 

cells (Romani, 2011; LeibundGut-Landmann et al., 2012; Wüthrich et al., 2012a).  

 Unlike lymphocytes, phagocytic immune cells are present in animals outside of jawed 

vertebrates and are important components of arthropod immunity (Stuart & Ezekowitz, 2008; 

Grigorian & Hartenstein, 2013). Amphibians are known to possess cells morphologically and 

functionally identical to the macrophages, neutrophils, and DCs present in the mammalian 

immune system (Robert & Ohta, 2009; Rollins-Smith et al., 2009). Phagocytes are also known to 
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be an important component of amphibian skin immunity. Langerhans cells (LCs) are a DC subset 

important in skin immunity and present in amphibian skin (Carrillo-Farga et al., 1990; Castel-

Rodriguez et al. 1999; Mescher et al., 2007). Also, histological analysis of immune responses in 

amphibian skin has identified infiltration of cells with phagocyte features (Ramanayake et al., 

2007). The role of phagocytic leukocytes in chytridiomycosis is poorly understood. Very little 

infiltration of leukocytes occurs into the skin during B. dendrobatidis infection (Pessier et al., 

1999; Berger et al., 2005b). The absence of phagocytic cells likely decreases clearance of B. 

dendrobatidis, but B. dendrobatidis also avoids phagocytic detection by direct infection of 

keratinocytes (Berger et al., 2005b). B. dendrobatidis enters host cell via germination tubes (Van 

Rooij et al., 2012; Greenspan et al., 2012) which likely minimize recognition by phagocytes in 

the skin. Phagocytes may play important roles in recognizing and clearing B. dendrobatidis, but 

it is possible that B. dendrobatidis completely avoids phagocytes inside of host epithelial cells.  

 Due to the current lack of molecular tools in amphibian immunology and the absence of 

genetic manipulation in B. dendrobatidis, the in vivo interactions between B. dendrobatidis and 

host cells are difficult to investigate.  Xenopus laevis is one of the best vertebrate models of 

immunology yet lacks many of the antibodies to follow cell populations and cytokines that are 

likely to be important in immunity to chytridiomycosis (Robert & Cohen, 2011). Therefore, 

investigations of amphibian immunity, particularly outside of the model Xenopus species, must 

rely on primitive immunological techniques. Amphibian leukocytes respond to chemical and 

cellular reagents similar to other vertebrates. Intraperitoneal injection of killed Escherichia coli 

into X. laevis induces infiltration of phagocytes into the peritoneum (Nedelkovska et al., 2010). 

Phytohemagglutinin, phorbol-12-myristate 13-acetate, concanavalin A, and killed bacteria also 
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have mitogenic effects on amphibian B and T cells (Rollins-Smith et al., 1984; Hsu et al., 1985; 

Morales et al., 2003; Chapter II of this thesis).  

 Phytohemagglutinin (PHA) injection is a common method used to investigate 

immunocompetence in non-model vertebrates. This technique is frequently used in birds. PHA is 

injected subcutaneously in avian patagia (wing-webs), and inflammation is measured by swelling 

at the site of injection (Martin et al., 2006). PHA induces robust T cell proliferation in vitro in 

amphibians (Rollins-Smith et al., 1984; Chapter II), and can also induce in vivo inflammatory 

swelling in adults, metamorphs, and tadpoles (Gilbertson et al., 2003; Gervasi & Foufopoulos, 

2008; Brown et al., 2011; Venesky et al., 2012). In vivo, PHA induces swelling through the 

recruitment of many different cell types including granulocytes, phagocytes, thrombocytes, and 

lymphocytes (Martin et al., 2006; Brown et al., 2011). The kinetics of leukocyte recruitment 

typically begins with infiltration of neutrophil/heterophils and macrophages and is later followed 

by lymphocyte infiltration. Significant lymphocyte, primarily T cell, recruitment and activation 

induced by PHA typically requires a second injection of PHA (Tella et al., 2008; Brown et al., 

2011). Evaluation of T cell responses using PHA injection likely requires priming because the 

inflammation of the primary response is overwhelmingly comprised of innate phagocytes and 

granulocytes. 

 In amphibians, studies have used different PHA injection sites including the toe 

(Gilbertson et al., 2003), the thigh (Gervasi & Foufopoulos, 2008), and toe webbing (Brown et 

al., 2011). Subcutaneous injection of PHA into amphibians induces less than a millimeter of 

swelling compared to buffer controls with most recording differences of near 0.1 mm. Such 

measurements require very precise tools and handling and may not represent a biologically 

significant response. In pilot experiments with large X. laevis, no noticeable or measurable 
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difference in swelling occurred after PHA injection, so a new technique using PHA injected 

intramuscularly into the foot was adopted. The middle of the foot was chosen for injection 

because it was easiest to measure with a caliper and showed the greatest inflammatory swelling 

compared to sites on the toes and ankle.  

 To determine the effects of B. dendrobatidis on amphibian immune responses in vivo, the 

foot injection method was developed to follow immune responses. Primarily innate responses 

were induced with killed E. coli which is known to induce phagocyte infiltration (Nedelkovska et 

al., 2010). PHA was used to follow a mixed response characterized by induction of a primarily 

phagocyte response following a single injection and induction of a mixed lymphocyte and 

phagocyte response following a second injection (Tella et al., 2008; Brown et al., 2011).  B. 

dendrobatidis supernatants were injected into X. laevis with PHA or killed E. coli to determine if 

inhibition of amphibian immunity also occurred in vivo.  

 Data in this chapter show that B. dendrobatidis does not inhibit amphibian phagocytes 

obtained from the peritoneum of X. laevis. The viability and function of theses phagocytes, 

determined to be mostly macrophages and neutrophils, were not impaired by B. dendrobatidis 

cells or supernatant. This suggests that the B. dendrobatidis factors responsible for lymphocyte 

impairment have no negative effect on innate immunity. The observation of inhibition of 

adaptive but not innate immunity in vitro was replicated in vivo by injecting PHA or killed 

bacteria to induce inflammatory swelling. The in vivo experiments suggest that B. dendrobatidis 

inhibits adaptive immune responses in a local manner. To determine the systemic effects of B. 

dendrobatidis on immunity, the effect of infection or intraperitoneal injection of B. dendrobatidis 

supernatant was investigated on splenocyte cell numbers. At least in these preliminary 

experiments in X. laevis, B. dendrobatidis does not appear to impair immunity systemically. 
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Materials and Methods 

Obtaining leukocytes from the X. laevis peritoneum 

Peritoneal leukocytes (PLs) were obtained via peritoneal lavage as described previously 

(Morales et al., 2010; Nedelkovska et al., 2010). Briefly, Escherichia coli (strain DH 5α) was 

grown to a concentration of approximately 5.7 x 10
8
 colony forming units (CFUs)/mL.  E. coli 

was boiled for one hour in a water bath, washed twice, and re-suspended in sterile APBS to 3.2 x 

10
10

 killed CFUs/mL.  Re-suspended E. coli (300 μL, 9.7 x 10
9
 killed CFUs) were injected 

intraperitoneally (i.p.) into X. laevis individuals ranging in mass between 35-70 g. Three days 

later, the same individuals were anesthetized, and 10 mL of APBS were injected into the 

peritoneum. This volume was drained from the peritoneum using an 18G needle. PLs were 

centrifuged and re-suspended at 2.0 to 4.0 x 10
6
 in complete L-15. To determine relative 

numbers of leukocytes present, subsets of PLs were cytocentrifuged onto glass slides and stained 

with either Hema 3 manual staining kit (Fisher, Waltham, MA, USA) or Accustain Wright-

Giemsa stain (Sigma, St. Louis, MO, USA). Leukocytes were viewed and photographed with a 

Nikon Eclipse 90i microscope with a Nikon DS-Fi camera (Nikon Instruments, Melville, NY, 

USA). 

 

Treating PLs with supernatants from B. dendrobatidis and H. polyrhiza 

PLs were incubated overnight at 26°C in 24-well plates at 10
6
 cells/mL (in volumes of 

1.0 to 1.4 mL) in L-15 alone or L-15 containing B. dendrobatidis (JEL197) or H. polyrhiza 

(JEL142) supernatant at 10X concentration (see Chapter II Materials and Methods). After 

incubation PLs were either prepared for mixing with lymphocytes or for flow cytometry to 

quantify cell death by PI nuclear staining as described in Chapter II Materials and Methods. 
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Mixing supernatant-treated PLs with enriched lymphocytes 

One day following peritoneal lavage, the same X. laevis individuals were euthanized in 

order to obtain splenocytes as described above.  Accessory splenocytes (macrophages or 

dendritic cells) were removed from the splenocyte population by glass adherence. Briefly, 

splenocytes in warm L-15 were incubated on pre-warmed glass Petri dishes for one hour at 26°C. 

Cells not adhering to glass were pipetted off and saved.  PLs treated with B. dendrobatidis 

supernatant or cultured in L-15 alone overnight were washed in L-15 and mixed with enriched 

lymphocytes in 96-well plates. Wells contained 5 to 7.5 x 10
4
 lymphocytes alone or lymphocytes 

plus 2.5 x 10
4
 PLs from the same X. laevis individual.  Wells receiving PHA to stimulate 

lymphocyte proliferation contained a sub-optimal concentration of 100 ng/mL PHA.  

Lymphocytes and PLs were incubated for three days at 26° C and pulsed with 
3
H-thymidine one 

day before harvesting as described in Chapter II Materials and Methods.  

 

Measuring phagocytosis in PLs treated with supernatant 

Phagocytosis in PLs was followed using pHrodo Green™ Zymosan Bioparticles 

(Molecular Probes, Life Technologies Corporation, Carlsbad, CA, USA).  Zymosan is a 

particulate form of the cell wall of Saccharomyces cerevisiae and mimics a fungal cell for 

phagocytic recognition (Goodridge et al., 2011; Elsori et al., 2011).  Zymosan was conjugated to 

pHrodo™ green fluorescent dye which has peak fluorescence at about pH 4.0 and thus only 

fluoresces within phagosomes/endosomes (Neaga et al., 2013).  PLs at 2.0 x 10
6
 cells/mL (50μl, 

1.0 x 10
5
 cells/well) were incubated at 26° C with or without B. dendrobatidis supernatant at 

10X concentration for 2 or 24 hours. After incubation, pHrodo Green™ Zymosan Bioparticles 

(50 μl of 500 μg/mL in APBS) were added to PLs or cultured in L-15 alone and incubated for 
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two hours at 26°C.  Fluorescence in wells was quantified using a Synergy 2 Multi-Mode 

Micoroplate Reader (BioTek, Winooski, VT, USA) with excitation wavelength of 485 nm and 

emission spectrum measured at 528 nm. Control wells receiving APBS alone were used to 

subtract out background fluorescence of L-15 media and autofluorescence of cells.  After 

quantifying fluorescence, PLs were allowed to adhere to glass slides, fixed with 4% 

formaldehyde in APBS, and stained with Hoechst 33342 (Molecular Probes, Life Technologies 

Corporation) (King & Hillyer, 2013).  Cells were viewed using a Nikon Eclipse 90i microscope 

(Nikon Instruments, Melville, NY, USA) and photographed using a CoolSNAP HQ
2
 camera 

(Photometrics, Tucson, AZ, USA). 

 

In vitro phagocytosis of B. dendrobatidis cells by X. laevis PLs 

B. dendrobatidis was cultured for 3-4 days at 21°C on 1% tryptone agar plates.  These 

plates were flooded with 1% tryptone broth for 20 minutes to promote the release of zoospores 

from sporangia adherent to the agar (Rollins-Smith et al., 2002).  Liquid broth was removed from 

plates, and B. dendrobatidis cells were re-suspended at 5.0 x 10
5
 cells per mL (this population 

had about 70% zoospore purity with many germlings and some thalli, see Appendix) and moved 

to culture flasks containing tryptone broth for three days at 21°C.  The B. dendrobatidis obtained 

after this second incubation contained a balanced mixture of B. dendrobatidis cell types 

containing zoospores, germlings, thalli, and sporangia (Longcore et al., 1999; Berger et al., 

2005a). These cells were centrifuged and re-suspended at a known concentration in L-15; a 

subset of B. dendrobatidis was incubated at 60°C to kill the cells.  X. laevis PLs were obtained as 

described above and mixed with B. dendrobatidis cells at a ratio of either 2:1 or 1:1 PLs to B. 

dendrobatidis cells in L-15.  PLs were incubated with B. dendrobatidis for either 2 or 24 hours at 
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26°C.  To visualize phagocytosis, PLs mixed with B. dendrobatidis were cytocentrifuged onto 

glass slides and stained with either Hema 3 (Fisher, Waltham, MA, USA) or Wright-Giemsa 

(Sigma, St. Louis, MO) stains and examined by microscopy. 

 

Foot injection and measurement 

Female X. laevis ranging in size between 110-225 g were used for foot injection 

experiments. During injection experiments, frogs were housed individually in polystyrene 

containers so that the foot swelling could be measured in a blinded fashion. Before foot injection 

and measurements, frogs were anesthetized in ethyl-m-aminobenzoate methanesulfonate salt 

(MS-222) (Biomedicals, Solon, OH, USA) at 5 g/L until all movement ceased and then 

immediately placed in de-chlorinated water to wash off anesthetic. After measurements were 

taken, frogs were carefully observed in fresh de-chlorinated water until able to make voluntary 

motion. Due to the toxic effects of prolonged exposure to MS-222 causing skin peeling and 

discoloration and eventually death, individuals were only anesthetized up to three times. Animal 

procedures were approved by the Institutional Animal Care and Use Committee of Vanderbilt 

University School of Medicine. The site and depth of injection were determined based on pilot 

injections of PHA and killed bacteria into sites in the foot from the ankle to the toes. 

Subcutaneous injection yielded insignificant swelling and intramuscular injection of the foot 

caused more swelling than injection in to the ankle or toes. Following this optimization, 

injections were made intramuscularly into the feet of X. laevis in the middle of the plantar side of 

the foot (Fig. 3-1) using 1 cc syringes with 25 or 30 gauge needles. Dimensions of the foot were  
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Fig. 3-1. Xenopus laevis feet were injected intramuscularly in the middle of the foot on the 

plantar side (arrow). Measurements of the foot thickness (bracket) and width (perpendicular 

to the thickness) were recorded with a caliper. 
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measured to the nearest 0.1 mm using a Mitutoyo plastic digital , model 4LB11 (Mitutoyo USA, 

Morgan Precision Tools, Aurora, IL, USA). Foot width (in the plane of the foot) and foot 

thickness (perpendicular to the plane of the foot) were measured (Fig 3-1).  The peak time of 

inflammatory swelling induced by PHA in amphibians is typically around 24 hours (Gilbertson 

et al., 2003; Gervasi & Foufopoulos, 2008; Brown et al., 2011); therefore, foot dimensions were 

measured before injection and 24 hours after injection for all experiments.  Before injection, the 

average foot width was 11.69 ± 0.08 mm (mean ± SEM), and the average foot thickness was 

11.24 ± 0.08 mm (mean ± SEM). Foot dimensions were also measured at 48 hours to follow the 

kinetics of PHA-induced swelling. 

 

Blinded, randomized experimental design for foot injections 

Injection treatments were randomly assigned by a coin flip to the right or left foot after 

the initial measurements were taken. Based on the coin flip, one foot received the control 

treatment and the other received the experimental treatment. Before measurements were taken at 

24 and 48 hours post-injection, frogs were randomly reassigned new identification so that the 

person measuring the foot dimensions was blinded to the injection treatment.  

 

Injection of PHA into feet 

To determine if PHA induces inflammatory swelling in feet, 100 µL PHA-P (Sigma, St. 

Louis, MO, USA) at a concentration of 2 mg/mL in APBS or APBS alone was injected into the 

right or left foot of six individual X. laevis. Seven days before foot injection with PHA and B. 

dendrobatidis supernatant, X. laevis were or were not primed with 100 µL of 1 mg/mL PHA in 

APBS by intra-peritoneal (i.p.) injection. When PHA (1 mg/mL) was injected with B. 
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dendrobatidis supernatants (10X), 200 µL of either PHA alone or PHA with B. dendrobatidis 

supernatant (10X) diluted in APBS were injected into the feet of 6 (no PHA priming) or 12 

(PHA priming) individual X. laevis. 

 

Injection of killed Escherichia coli into feet 

E. coli was prepared as previously described above. Bacteria were grown to a known 

concentration overnight, boiled for one hour, washed and re-suspended in APBS. To verify that 

injection of heat-killed E. coli induces inflammatory swelling, 200 µL of either APBS or E. coli 

in APBS were injected into the feet of six individual X. laevis. When heat-killed E. coli was 

injected with B. dendrobatidis supernatants, 200 µL of either killed E. coli alone or killed E. coli 

with B. dendrobatidis supernatant were injected into feet of 12 individual X. laevis. The 

concentration of E. coli in injections was 10
10

 killed colony forming units per mL. The 

concentration of B. dendrobatidis supernatant in the injections was ten times the concentration 

before lyophilization, 10X. 

 

Correlating B. dendrobatidis infection with spleen size 

 Spleens were harvested from X. laevis to obtain a lymphocyte population to investigate 

the effects of B. dendrobatidis on amphibian lymphocytes (see Chapter II). The number of 

splenocytes from each individual’s spleen was counted and recorded after spleens were 

dissociated and splenocytes were enriched by centrifugation over a Ficoll gradient.  To normalize 

the number of splenocytes among frogs of different sizes, the total number of splenocytes was 

divided by the mass, in mg, of the frog. 

To keep track of the B. dendrobatidis infection status in the colony, a number of these 

frogs were swabbed before euthanasia (Ramsey et al., 2010).  DNA was extracted from these 
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swabs to determine the number of zoospore equivalents on the skin according to the methods of 

Boyle et al. (2004) and Hyatt et al. (2007) by quantitative PCR. PCR conditions and standard 

curves were as described by Ramsey et al. (2010). 

 

Intraperitoneal injection of B. dendrobatidis supernatants 

 To determine whether or not B. dendrobatidis can systemically inhibit amphibian 

immunity, a pilot experiment was developed in which B. dendrobatidis supernatant suspended in 

APBS or APBS alone was injected i.p. into X. laevis. For this pilot, each experimental treatment 

group had three individuals ranging in size between 33.9 and 76.1 g. The treatment groups each 

had two males and one female of approximately the same size. Each individual was either 

injected i.p. with 10 μL per gram body mass of APBS or 5X B. dendrobatidis supernatant in 

APBS at day 0, 3, and 5. The supernatants were boiled before lyophilization (see Chapter II 

Materials and Methods) and filter sterilized after re-suspending in APBS. Individuals were fed 

and then weighed before each injection. At day 7, individuals were weighed and then euthanized 

to obtain spleens.  

 Before euthanizing, frogs were randomly assigned new identification so that all 

measurements of the spleen were done in a blinded fashion as to treatment. The diameter of 

spleens was recorded before spleens were dissociated (see Chapter II Materials and Methods). A 

subset of dissociated spleens was placed on a hemocytometer to count splenocytes and 

erythrocytes.  
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Equations 

Relative proliferation (proliferation index) was calculated from 
3
H-thymidine uptake 

(CPM) of splenocytes. The proliferation of stimulated splenocytes was divided by the value for 

unstimulated splenocytes: 

                       
                      

                        
 

 

Foot perimeter (P) was calculated using the width and thickness measurements to 

calculate the perimeter of and ellipse where a is one-half the foot width and b is one-half the foot 

thickness. 

    √
     

 
 

 

 Zoospore equivalents (z) determined by qPCR were Log transformed to calculate B. 

dendrobatidis infection load (B. dendrobatidis Load) using the equation: 

                   

   

 X. laevis spleens are spherical so spleen volumes were calculated by measuring the 

diameter (d) to the nearest mm using the equation for the volume (V) of a sphere (X. laevis 

spleens are spherical): 
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Statistics 

For experiments with PLs, statistical comparisons were made using a single factor 

ANOVA. Individual comparisons among treatments were analyzed post-hoc using a Tukey test. 

The limit for statistical significance was p < 0.05.   

The increase in size due to inflammatory swelling from the two compared treatments in 

foot injection experiments was analyzed using a two-tailed, paired Student’s t-test because each 

individual received both treatments but in different feet. A Bonferroni correction was made 

because each experiment contained three measurements from the feet, so the alpha for statistical 

significance was set to 0.017. All statistical comparisons with p-values under 0.05 are noted; 

comparisons without asterisks were not significant. Comparisons were made between left and 

right feet irrespective of treatment, and there was no significant difference between the left feet 

and right feet for any experiment at any time point. Also, foot sizes were not significantly 

different before injection.  

To determine if there was a correlation between infection load and spleen size (relative 

number of splenocytes) a regression analysis was used of the Log transformed zoospore 

equivalents and the normalized splenocyte number. A p-value less than 0.05 was considered 

statistically significant.  For comparisons made in the pilot experiment between X. laevis injected 

with B. dendrobatidis supernatant or APBS, Student’s t-tests were used to compare each 

measurement; due to the low number of individuals of this experiment and to determine which 

measurements were relevant, no Bonferoni correction was applied for multiple measures within 

the same experiment. 
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Results 

B. dendrobatidis supernatants do not affect the viability of peritoneal leukocytes (PLs) 

 A population of mostly phagocytic leukocytes can be obtained from the peritoneum of X. 

laevis by a lavage of the peritoneum. To obtain a larger population of phagocytes, individuals 

can be primed by i.p. injection of killed bacteria three days before lavage (Nedelkovska et al., 

2010). The population obtained from the peritoneum after bacterial stimulation is composed 

almost entirely of macrophages and neutrophils. Cells were characterized by morphology and 

staining in PL populations obtained from X. laevis. Macrophages composed about 71% of the PL 

population, and about 26% of cells were neutrophils (Fig. 3-2 A). Lymphocytes made up most of 

the remaining population, and a few granulocytes (basophils and eosinophils) were present in 

some samples. 

This population of PLs was treated with B. dendrobatidis or H. polyrhiza supernatants for 

24 hours and the cell viability was determined by either counting cells after trypan-blue staining 

or by flow cytometry quantifying PI nuclear staining. The number of PLs decreased somewhat 

even when not treated with supernatant likely due to the short lifespan of neutrophils especially 

outside the host (Pillay et al., 2010; Tofts et al., 2011), but no difference was observed among 

treatments, suggesting that B. dendrobatidis soluble factors have no effect on phagocyte viability 

after 24 hours (Fig. 3-2 B). B. dendrobatidis supernatant also had no significant effect on the 

number of PLs undergoing cell death (Fig. 3-2 C-F).  

  

Batrachochytrium dendrobatidis does not appear to impair phagocytosis 

 PLs were co-cultured with living and killed B. dendrobatidis cells to determine whether 

PLs could engulf B. dendrobatidis cells at different stages. Both living and killed B.  



109 
 

  

 

 

 

 

 

 

 

 

  

Fig. 3-2. Batrachochytrium dendrobatidis (Bd)  supernatants (Sup) do not impair PL viability. (A) 

The PL population obtained from X. laevis was primarily macrophages (Mφ) and neutrophils (PMN); 

lymphocytes (Lymph.) and other granulocytes (Other) comprised a small minority of cells.  Shown 

are the mean relative percentages (± SEM) of total PLs from nine frogs. (B-F) PLs were incubated 

with or without Bd (isolate JEL197) or H. polyrhiza (isolate JEL142) Sup.  These cells were either 

counted manually (B), or nuclei were stained with propidium iodide (PI) and analyzed by flow 

cytometry (C-F).  (B) Relative number of PLs remaining after an overnight treatment with or without 

each Sup and stained with trypan-blue to determine numbers and viability. The number of leukocytes 

counted after incubation was compared to the number of leukocytes originally added to wells for 

each treatment.  There was no significant difference among treatments (single factor ANOVA with 

repeated measures, p = 0.5). Data shown represent the mean percent of PLs recovered from wells (± 

SEM) in replicate experiments using PLs from six individuals. (C) The mean percentage of 

hypodiploid PLs (cells undergoing apoptosis) (± SEM) from five individual frogs treated with or 

without Bd or H. polyrhiza Sup for 24 hours.  There was no significant difference among treatments 

(single factor ANOVA with repeated measures, p = 0.16).  (D-F) Data from a single experiment 

showing percent of hypodiploid cells (inset numbers) of untreated cells (D), B. dendrobatidis 

(JEL197) Sup-treated cells (E), or H. polyrhiza (JEL142) Sup-treated cells (F). The diploid peak was 

set to a mean PI fluorescence intensity of 100 (x 1000). 

 



110 
 

dendrobatidis cells were visualized inside of phagosomes inside of both macrophages and 

neutrophils after two hours of co-incubation (Fig. 3-3). To determine if B. dendrobatidis may 

have mechanisms to escape phagosomes, live B. dendrobatidis cells were incubated with PLs for 

24 hours. At 24 hours, B. dendrobatidis cells were still visible inside of phagosomes and no 

visual evidence suggested that B. dendrobatidis was escaping after phagocytosis (Fig. 3-4). The 

B. dendrobatidis cells phagocytized by PLs appeared to be mostly germlings and thalli. 

Zoospores may be phagocytized as well, but are either quickly degraded or indistinguishable 

from small germlings inside of phagosomes. Zoosporangia appear to be too large for phagocytes 

to engulf (Fig. 3-4 C); some clumps of PLs were noted to surround but not phagocytize 

zoosporangia (data not shown).  These data suggest that B. dendrobatidis does not resist 

phagocytosis and may not have any evasion strategies to prevent being phagocytized or to escape 

killing inside the phagosome. The intracellular niche of B. dendrobatidis inside of epithelia cells 

may limit phagocytosis during infection, but phagocytes are likely to contribute to a protective 

immune response against B. dendrobatidis. To determine if B. dendrobatidis might inhibit 

phagocytosis, PLs were exposed to B. dendrobatidis supernatants for 2 or 24 hours and 

phagocytosis of pHrodo Green
TM

 zymosan Bioparticles® was quantified. Zymosan is a 

particulate form of fungal PAMPs derived from yeast cell walls and mimics a fungal cell (Elsori 

et al., 2010; Goodridge et al., 2011).  The zymosan used for to quantify phagocytosis was 

conjugated to a pH-sensitive fluorophore, pHrodo Green
TM

, which fluoresces at pH 4 inside of 

endosomes and phagosomes but not outside of cells (Neaga et al., 2013).  The uptake of zymosan 

by X. laevis PLs, quantified by fluorescence, was minimally affected by treatment with B. 

dendrobatidis supernatants (Fig. 3-5). When PLs were treated with B. dendrobatidis supernatants  
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Fig. 3-3. Batrachochytrium dendrobatidis (Bd) cells are engulfed by amphibian phagocytes. Live (A) 

or heat-killed (B) Bd cells were mixed with PLs at a ratio of 1 or 2 fungal cells per phagocyte and 

incubated for 2 hours at 26° C. After incubation, cells were cytocentrifuged onto glass slides, stained 

with Hema 3 stain, and viewed with a Nikon Eclipse 90i microscope under differential interference 

contrast at 100X magnification.  Bd cells inside of phagosomes are marked with arrows. Scale bars 

indicate 10 μm. Images are representative of slides prepared from two experiments using PLs from 

two individual frogs.  
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Fig. 3-4. Batrachochytrium dendrobatidis (Bd) cells do not appear to escape from phagosomes. 

Live Bd cells were mixed with PLs at at a ratio of 0.5 or 1 fungal cells per phagocyte and were 

incubated for 2 (A) or 24 (B) hours at 26° C. After incubation, cells were cytocentrifuged onto 

glass slides and stained with Wright-Giesma. Arrows indicate Bd cells inside phagosomes of X. 

laevis macrophages. (C) Representative Bd cells not engulfed by PLs and stained with Wright-

Giemsa are shown; the top panel shows a germling stage with well-defined rhizoids, and the 

bottom panel shows a zoosporangium with a visible discharge tube. Scale bars indicate 10 μm. 

Images are representative of slides prepared from four experiments (using PLs from four different 

X. laevis). 
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for two hours before incubation with zymosan, a B. dendrobatidis supernatant caused a decrease 

in phagocytosis in four out of five experiments (Fig. 3-5 A-D).  However, when PLs were treated 

with B. dendrobatidis supernatant for 24 hours before incubation with zymosan, the supernatant-

treated PLs had an increase in phagocytosis in all experiments (Fig. 3-5 A, B, E, F). Although a 

significant difference in phagocytosis (fluorescence) between treatments occurred in most 

experiments, there was no significant effect in relative phagocytosis (compared to the untreated 

control) across experiments for either incubation period (Fig. 3-5 B). PLs were observed with 

differential interference contrast (DIC) and fluorescence microscopy (Fig. 3-5 C-F). Zymosan 

particles were visible under DIC (left panels) both inside and outside of PLs but only fluoresced 

inside of cells (right panels). Hoechst 33342 was used to stain nuclei. Zymosan particle 

fluorescence was localized outside of nuclei and inside of what appeared to be phagosomes. 

Nuclear staining also allowed for some morphological distinction of PLs. Both neutrophils and 

macrophages phagocytized zymosan particles. A few lymphocytes were also visible on slides but 

did not engulf zymosan (data not shown). 

 

Phagocytes exposed to B. dendrobatidis supernatants can promote adaptive immune 

responses 

Phagocytes play an important role in killing of fungal pathogens and also interact with 

the adaptive immune system to promote immune responses (Brown, 2011; Roy & Klein, 2012; 

Wüthrich et al., 2012a). After pathogen phagocytosis, phagocytes are induced to produce 

cytokines which have effects on other leukocytes including lymphocytes. Another important task 

of phagocytes is to present antigen to lymphocytes. Phagocytes loaded with antigen can activate 

lymphocytes through both antigen-presentation and secretion of cytokines. 
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Fig. 3-5. Batrachochytrium dendrobatidis (Bd) supernatants (Sup) have minimal impact on the 

capacity of PLs to engulf zymosan.  PLs were incubated with Bd Sup for either 2 or 24 hours at 26°C 

and then pHrodo Green™ Zymosan Bioparticles were added to PLs and incubated another two 

hours (A) A representative experiment investigating phagocytosis by differentially treated PLs from a 

single X. laevis individual.  Phagocytosis was quantified as relative fluorescence units (RFU) of 

zymosan Bioparticles inside PLs.  Zymosan Bioparticles without PLs were used as a control to show 

background fluorescence of non-phagocytized particles (No PLs).  RFU was significantly different in 

treatment groups, **p<0.01 single-factor ANOVA with Tukey test. (B) Combined results from 

multiple experiments where PLs from four (24 hrs) or five (2 hrs) frogs where phagocytosis was 

normalized among experiments to the fluorescence of control (no Bd Sup) treated PLs. There was no 

significant effect of Bd Sup across experiments, p>0.05 by paired t-test. (D-G) Images of PL 

phagocytosis of pHrodo zymosan from a single representative individual.  PLs were pre-incubated 

without (D, F) or with (E, G) Bd Sup for either 2 (D, E) or 24 hrs (F, G) before zymosan Bioparticles 

were added to PLs.  Nuclei were labeled with Hoechst 33342.  Images were obtained by DIC 

microscopy (left) or by merging fluorescence of pHrodo zymosan and Hoechst 33342 (right). Scale 

bars indicate 10 μm. 
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To investigate the ability of phagocytes exposed to B. dendrobatidis antigens and soluble 

inhibitory factors, PLs were exposed to B. dendrobatidis supernatant, washed, and then 

incubated with enriched lymphocytes from the same individual X. laevis. Splenocytes were 

depleted of macrophages and dendritic cells by glass adherence to limit accessory functions of 

these cells to promote lymphocyte proliferation. PLs were incubated alone or with B. 

dendrobatidis supernatant overnight and then were washed to remove supernatant before being 

mixed with enriched lymphocytes to aid in cell proliferation. These cell mixtures received no 

stimulus or a sub-optimal concentration of PHA. Although control PLs added to lymphocytes did 

not promote greater proliferation than lymphocytes cultured alone, PLs exposed to B. 

dendrobatidis supernatants induced significantly greater lymphocyte proliferation with and 

without PHA stimulation (Fig. 3-6). The lack of increase in proliferation induced by the addition 

of untreated PLs was probably because the PLs were placed in an environment free of 

stimulation before being added to lymphocytes; when PLs were freshly added to lymphocytes, 

there was an augmentation of proliferation (data not shown). The increase in proliferation when 

B. dendrobatidis supernatant-treated PLs were added suggests that components of B. 

dendrobatidis supernatant activate phagocytes to produce cytokines and potentially engage in 

antigen-presentation. The proliferation quantified was completely from lymphocytes because 

PLs had background CPM levels no greater than empty wells. These data suggests that the 

soluble factors from B. dendrobatidis do not inhibit accessory functions of phagocytes for 

lymphocyte proliferation and actually appear to activate phagocytes to support lymphocyte 

proliferation. 
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Fig. 3-6. Batrachochytrium dendrobatidis (Bd) supernatants (Sup) induce PLs accessory function to 

promote lymphocyte proliferation. PLs were treated overnight with or without Bd Sup and then 

washed and re-suspended in fresh L-15.  An enriched lymphocyte population from the same frog was 

incubated alone, or with untreated PLs (Control), or with Bd Sup-treated PLs.  (A-B) Combined 

proliferation data for cells treated with no PHA (A) or a sub-optimal concentration (100 ng/mL) of 

PHA (B).  Proliferation was normalized by dividing the mean CPM of each treatment by the mean 

CPM of lymphocytes without PLs.  Data show mean proliferation index (± SEM) from nine (A) or 

seven (B) experiments. Lymphocytes mixed with PLs that had been treated with Bd Sup showed 

significantly greater proliferation than lymphocytes alone or lymphocytes mixed with control PLs; *p 

< 0.05, **p < 0.01 by repeated measures ANOVA with Tukey post hoc test. (C) One representative 

experiment showing mean 
3
H-thymidine uptake (± SEM) of enriched lymphocytes (Lymph.) 

incubated alone or with untreated PLs (Con) or with Bd Sup-treated PLs (Sup).  PLs by themselves 

showed very little 
3
H-thymidine uptake, suggesting that the increase in proliferation was due to PL 

support and not PL mitosis. Treatments with significantly different 
3
H-thymidine uptake, p < 0.05, are 

indicated with different letters determined by ANOVA with post hoc tests. 
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Injection of PHA or killed E. coli induces inflammatory swelling in the foot 

 Intramuscular PHA injection into the foot area caused significantly greater swelling in 

feet in all dimensions compared with injection of APBS (Fig. 3-7 A, C). Swelling induced by 

PHA increased the width of the foot by about 5% and the thickness by about 20% (Fig. 3-7 B, 

C). PHA induced a large increase in the foot size 24 hours after injection (Fig. 3-7 A-B) which 

was not significantly reduce after 48 hours (Fig. 3-7 C-D); however the difference in swelling 

between PHA and APBS treatments were more significant at 48 hours than at 24 hours. Feet 

injected with PHA were visibly larger than feet injected with APBS for all individuals (Fig. 3-7 

E-F). 

X. laevis feet injected with heat-killed E. coli also had profound swelling 24 hours after 

injection, but control feet injected with APBS buffer did not have a significant change in foot 

size (Fig. 3-8).  Injection of killed E. coli caused a significant increase in the size of both foot 

dimensions leading to a large increase in the overall perimeter of the foot (Fig. 3-8 A). This 

increase represented an approximate 10-20% increase in the foot size after E. coli injection (Fig. 

3-8 B). As with injection with PHA, E. coli induced a visible increase in foot size compared to 

the APBS control (Fig. 3-8 C). 

 

Batrachochytrium dendrobatidis supernatants diminish lymphocyte-mediated inflammation 

in vivo  

 Batrachochytrium dendrobatidis supernatant was also injected with PHA to determine if 

inhibitory factors decreased the swelling caused by innate and adaptive leukocytes activated by 

PHA.  Presence of B. dendrobatidis supernatant had no significant impact on the increase of foot 

size for a single PHA injection (Fig.3-9). A single PHA injection typically promotes a more 
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  Fig. 3-7. Intramuscular injection of phytohemagglutinin (PHA) into X. laevis feet induces inflammatory 

swelling after 24 hours (A, B, E) and 48 hours (C, D, F). PHA injections induced significantly greater 

swelling than buffer (APBS) controls *p<0.01, **p<0.001, paired Student’s t-test (alpha set to 0.017 for 

multiple tests). Data show mean (±SEM) increase in actual size (A, C) or percent increase (B, D) in foot 

size compared to each foot’s measurement before injection from both feet of six frogs. (E-F) 

Representative photographs of individuals 24 hours (E) or 48 hours (F) after injection of APBS in the 

left foot and PHA into the left foot (pictures shows ventral side of frog).  
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Fig. 3-8. Intramuscular injection of killed E. coli into X. laevis feet induces inflammatory 

swelling after 24 hours. E. coli injections induced significantly greater swelling than buffer 

(APBS) controls *p<0.01, **p<0.001, paired Student’s t-test (alpha set to 0.017 for multiple 

tests). Data show mean (±SEM) increase in actual size (A) or percent increase (B) in foot size 

compared to each foot’s measurement before injection from both feet of six frogs. (C) 

Representative photograph of an individual 24 hours after injection of APBS in the right foot 

and killed E. coli into the left foot (picture shows ventral side of frog). 

 

 

 



120 
 

robust innate leukocyte response, and a second PHA injection promotes recruitment of 

phagocytes again, but with greater activation and presence of lymphocytes (Tella et al., 2008; 

Brown et al., 2011).  To investigate whether B. dendrobatidis factors impair adaptive immune 

responses in vivo, X. laevis were primed with a single intraperitoneal PHA injection before 

receiving injections of PHA alone or PHA and B. dendrobatidis supernatants in the feet. After 

PHA priming, B. dendrobatidis supernatants did cause a significant reduction in foot swelling 

caused by PHA (Fig. 3-10). At 24 hours after injection, the difference in swelling was substantial 

but not significant (Fig. 3-10 A-B). By 48 hours, the swelling of feet receiving B. dendrobatidis 

supernatants with PHA was significantly diminished compared to the feet receiving PHA alone 

(Fig. 3-10 C-D).  In some individuals, the decrease in swelling caused by B. dendrobatidis 

supernatants was visible at both 24 and 48 hours (Fig. 3-10 E-F).  

B. dendrobatidis supernatant was injected with heat-killed E. coli to determine if factors 

present in the supernatant decreased inflammatory swelling caused by infiltrating phagocytes 

activated by dead bacteria. Injection with B. dendrobatidis supernatant had no significant effect 

on the increase in foot size caused by injection with killed E. coli, and foot sizes were not 

different between feet receiving E. coli alone and those receiving both E. coli and B. 

dendrobatidis supernatant (Fig. 3-11). The increase in foot size in this experiment was 

comparable to what was observed when only one foot received killed E. coli injection. A single 

injection of PHA or killed E. coli induces infiltration of innate leukocytes to cause swelling, and 

a second injection of PHA induces a mixed response of innate and adaptive immune response 

(Tella et al., 2008; Nedelkovska et al., 2010; Brown et al., 2011). When innate immune 

responses are activated (by the first injection of PHA), co-injection with B. dendrobatidis  
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Fig. 3-8. Bd supernatant (Sup) does not impair inflammatory swelling induced by a single PHA 

injection (frogs were not primed with PHA).  X. laevis feet were injected with PHA alone or with 

PHA and Bd supernatant. Feet were measured before injection, 24 hours (A, B), and 48 hours (C, 

D) after injection. Data show mean (±SEM) increase in actual size (A, C) or percent increase (B, D) 

in foot size compared to each foot’s measurement before injection from both feet of six frogs. 

Swelling was not significantly different between treatments (paired Student’s t-test). 
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Fig. 3-10. Bd supernatant (Sup) reduces inflammatory swelling induced by a second PHA injection. X. 

laevis feet were injected with PHA alone or with PHA and Bd supernatant 7 days after priming with i.p. 

injection of PHA. Feet were measured before injection, 24 hours (A, B, E), and 48 hours (C, D, F) after 

injection. Data show mean (±SEM) increase in actual size (A, C) or percent increase (B, D) in foot size 

compared to each foot’s measurement before injection from both feet 12 frogs. Swelling was only 

significantly different between treatments in feet 48 hours after injection, 
#
p<0.05, *p<0.01, **p<0.001, 

paired Student’s t-test (alpha set to 0.017 for multiple tests). (E, F) Representative photographs of an 

individual 24 hours (E) and 48 hours (F) after injection of PHA and Bd Sup in the left foot and PHA 

alone into the left foot (pictures shows ventral side of frog). 
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Fig. 3-11. Bd supernatant (Sup) does not impair inflammatory swelling induced by 

killed E. coli. X. laevis feet were injected with either killed E. coli alone or E. coli with 

Bd Sup. Feet were measured before injection and 24 hours after injection. Data show 

mean (±SEM) increase in actual size (A) or percent increase (B) in foot size compared 

to each foot’s measurement before injection from both feet of 12 frogs. Swelling was not 

significantly different between treatments (paired Student’s t-test). 
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supernatants had no effect on foot swelling (Figs. 3-9, 3-11). However, when more lymphocytes 

were recruited by a second PHA injection, B. dendrobatidis supernatants significantly decreased 

swelling (Fig 3-10). These data replicate, in vivo, the observed results seen in vitro where B. 

dendrobatidis factors impair lymphocytes but do not appear to inhibit innate phagocyte 

functions. 

 

Batrachochytrium dendrobatidis appears to impair adaptive immunity in a local area but 

not systemically 

 High levels of B. dendrobatidis infection are lethal for most amphibians. The skin loses 

complete integrity, and amphibians die of complications due to loss of electrolyte balance and 

dehydration (Berger et al., 2005a; Voyles et al., 2009; Marcum et al., 2010; Voyles et al., 2012). 

The release of toxins from B. dendrobatidis may also contribute to death, although some 

evidence suggests that no great accumulation of toxins occurs in the blood (Voyles et al., 2009). 

The lymphotoxic factors may be shed from the skin in sufficient concentrations to inflict 

systemic immune impairment. A couple of infection studies have noted that infected frogs tend 

to have smaller spleens (Rosenblum et al., 2009; Rosenblum et al., 2012) suggesting that B. 

dendrobatidis can induce systemic effects on the host immune system. If enough factors were 

released during infection in the skin and these factors entered the blood at a high enough 

concentration, then B. dendrobatidis infection could impair amphibian immunity systemically.  

To begin to examine this question, B. dendrobatidis infection loads were quantified on 

several X. laevis individuals used to obtain splenocytes for other experiments (Chapter II). The 

data obtained from these frogs was used to look for a relationship between the total splenocyte 

number and the infection load on X. laevis. The majority of frogs tested, 82%, did not have 
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detectable B. dendrobatidis infections. The mean infection load (±SEM) for infected individuals 

was 17.8 ± 0.9 zoospore equivalents. All but one individual had infection loads of less than 40 

zoospore equivalents. This one individual had an infection load of 1524 zoospore equivalents. 

The B. dendrobatidis infection status and zoospore burden of X. laevis were used to determine 

whether there was an effect on splenocyte number. No significant correlation exists between 

infection load and relative splenocyte number in either infected individuals or all individuals (Fig 

3-12A). The infection status of X. laevis (infected or not) also had no significant effect on the 

relative number of splenocytes (Fig 3-12B).  

To investigate directly whether the soluble factors released by B. dendrobatidis can 

actually have a negative impact on the spleen and splenic lymphocytes, B. dendrobatidis 

supernatants were injected i.p. into X. laevis in attempt to mimic release of factors during 

infection. Because in vitro and in vivo the peak of inhibition of lymphocytes was about 48 hours, 

injections were given two to three days apart. Control individuals received an APBS buffer 

control while experimental individuals received B. dendrobatidis supernatant containing factors 

from approximately 5 x 10
7
 mature B. dendrobatidis cells per mL injected. The amount of cells 

from which the supernatants were prepared was equal to the number of killed cells injected in a 

previous study used to immunize X. laevis (Ramsey et al., 2010). Some studies have defined the 

lethal threshold of B. dendrobatidis as 10
5
 zoospore equivalents (Briggs et al., 2010; Vredenburg 

et al., 2010; Kinney et al., 2011), so the amount of B. dendrobatidis factors injected i.p. likely 

represents as much or more of the factor present outside of the skin during a lethal infection. 

Amphibians do not tend to survive long after B. dendrobatidis loads exceed the lethal maximum. 

Xenopus (Silurana) tropicalis show symptoms of severe chytridiomycosis 10-21 days post-  

  

 



126 
 

 

 

 

  

Fig. 3-12. Batrachochytrium dendrobatidis (Bd) infection does not affect the number 

of leukocytes present in the spleen (splenocytes) of X. laevis. (A) No significant 

relationship exists between the infection load and relative number of splenocytes by 

regression analysis (all: p=0.64; infected: p=0.99). (B) There is also no significant 

difference in the mean number of splenocytes (±SEM) between individuals that were 

or were not infected with B. dendrobatidis by a two-tailed Student’s t-test (p=0.37). 

The number of splenocytes was normalized to the size of each individual by dividing 

the total splenocytes by the mass in mg of the frog. Bd load was determined by qPCR 

using zoospore equivalent standards and Log transformed. N=50 for individuals that 

were not infected. N=11 for infected individuals. (Experiment completed with Laura 

Reinert.) 
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infection when individuals have average infection loads of 50,000 zoospore equivalents 

(Rosenblum et al., 2009), so a week of B. dendrobatidis supernatant injections probably is the 

longest length of time an amphibian would survive during exposure to similar levels of B. 

dendrobatidis factors. 

During the pilot experiment using intraperitoneal injection of B. dendrobatidis 

supernatants, no significant differences were observed between B. dendrobatidis supernatant-

treated and APBS-treated control frogs in any trait measured (Fig. 3-13). All individuals lost 

weight over the course of the experiment, and the weight loss of supernatant-treated frogs was 

not significantly greater than that of control frogs (Fig. 3-13 A). However, the weight loss was 

not significant in the APBS controls, but the mass of frogs treated with B. dendrobatidis 

supernatant had significantly decreased by Day 5. Spleen size was measured, and no significant 

difference was observed between spleen volumes in relation to body size between treatments 

(Fig. 3-13 B). The number of splenocytes both in relation to body size (Fig. 3-13 C) and number 

of splenic erythrocytes (Fig 3-13 D) also was not significantly different between treatments. In 

this was a pilot experiment, significant differences were not observed, and the only visible trend 

was weight loss. Weight loss is a symptom of chytridiomycosis (Retallick & Miera, 1997; 

Ramsey et al., 2010), and injection of B. dendrobatidis supernatants may have an impact on the 

general health of individuals. The absence of any apparent effect on splenic leukocytes suggests 

that the soluble factors from B. dendrobatidis supernatants do not impair lymphocytes in the 

spleen during infection. 
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Fig. 3-13. Multiple injections of B. dendrobatidis supernatants (Bd Sup) into the peritoneum of 

X. laevis have no effect on splenocytes.  Bd supernatants or APBS were injected three times 

(arrows) over the course of a week. (A) The relative decrease in mass of individuals was not 

significantly different between APBS and Bd supernatant treatments at any time point, p>0.05; 

however, at Day 5 and 7 the relative mass had significantly decrease compared to Day 0, p<0.01, 

single factor ANOVA with Tukey post-hoc test. (B) The spleen volume relative to the total mass 

of the individual also did not significantly different between treatments, p=0.61 by two-tailed 

Student’s t-test. (C-D) The number of splenic leukocytes relative to body mass and splenic 

erythrocytes was not significantly different between treatment groups, p=0.54 and p=0.49, 

respectively, by two-tailed Student’s t-test. Data are from a pilot experiment where with three 

individuals in each treatment group. 
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Discussion 

 Amphibian and mammalian lymphocytes are impaired by factors released by B. 

dendrobatidis (Chapter II).  Although soluble factors from B. dendrobatidis also impair dividing 

epithelial cells, the effect on the immune system appears to be limited to lymphocytes. Phagocyte 

viability and function was not decreased in the presence of B. dendrobatidis supernatants. In 

vivo, B. dendrobatidis supernatants only inhibited local swelling mediated by lymphocytes and  

not innate leukocytes which supports my in vitro observations. Investigation of the effects of B. 

dendrobatidis infection and supernatant on splenocytes in vivo suggest that the impairment of is 

not systemic. 

 

X. laevis phagocytes are not impaired by B. dendrobatidis 

 Amphibian lymphocytes undergo apoptosis in the presence of B. dendrobatidis factors, 

but phagocytes obtained from the peritoneum of X. laevis did not have decreased viability when treated 

with B. dendrobatidis supernatants. There was a non-significant increase in cell death determined by PI 

staining suggesting that the factors may not induce apoptosis in phagocytes. If B. dendrobatidis does 

induce apoptosis in phagocytes, the kinetics of cell death may be different than observed with 

lymphocytes. Neutrophils are relatively short lived cells (Pillay et al., 2010; Tofts et al., 2011). The 

neutrophils in the PL population likely die within hours in culture, so any death mediated by B. 

dendrobatidis supernatant on neutrophils may be difficult to determine. Aspergillus fumigatus 

produces an exopolysaccharide that induced apoptosis in mouse neutrophils (Fontaine et al., 

2011), and factors released from B. dendrobatidis, potentially exopolysaccharides (see Chapter 

IV), could induce apoptosis in amphibian neutrophils as well. Macrophages may be induced to 

die, but because there was no significant effect in vitro, B. dendrobatidis is not likely to kill 

macrophages in vivo.  
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Phagocytosis by amphibian macrophages and neutrophils was not impaired by B. 

dendrobatidis. When PLs and B. dendrobatidis cells were mixed in vitro, B. dendrobatidis was 

readily engulfed by phagocytes. B. dendrobatidis also did not appear to be capable of exiting 

phagocytes. Soluble factors in B. dendrobatidis supernatants do not impair amphibian 

phagocytes from engulfing zymosan, a fungal particle. Together these data suggest that B. 

dendrobatidis lacks the ability to evade phagocytosis and phagocytic killing that most other 

pathogenic fungi possess (see Table 1-2). Because B. dendrobatidis is an intracellular pathogen 

of epithelial cells (Berger et al. 2005a), phagocytes may not encounter B. dendrobatidis. If 

phagocytes never encounter B. dendrobatidis free from a host cell, then B. dendrobatidis would 

not need any strategies to evade phagocytosis. 

 Prior to my studies, we hypothesized that B. dendrobatidis factors may impair the 

accessory functions of phagocytes to dampen inflammation. Antigen presentation is very 

important for cueing the correct adaptive immune responses that promote fungal clearance in 

mammals (Roy & Klein, 2012; Wüthrich et al., 2012a). Appropriate antigen presentation also 

appears to be important for resistance to chytridiomycosis as well (Savage & Zamudio, 2011). 

Soluble B. dendrobatidis factors could prevent appropriate antigen presentation to diminish 

immune responses. This would be accomplished by simply preventing activation of phagocytes 

or by inducing inappropriate responses. For example, the capsular polysaccharide GXM from 

Cryptococcus neoformans induces expression of Fas ligand on macrophages and DCs to induce 

apoptosis in T cells (Monari et al., 2005; Piccioni et al., 2011). Another evasion mechanism used 

by Candida albicans and A. fumigatus is to express more TLR2 ligands on the surface of 

invasive hyphae which typically promotes more of a Th2 response over a protective Th1 

response (d’Ostiani et al., 2000; Netea et al., 2003). Unlike these pathogenic fungi, B. 
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dendrobatidis does not appear to inhibit accessory functions of amphibian phagocytes. PLs 

exposed to B. dendrobatidis supernatant actually promote greater lymphocyte proliferation than 

PLs in medium alone. The results from this experiment suggest that amphibian phagocytes are 

not impaired by B. dendrobatidis factors but instead are activated by B. dendrobatidis PAMPs 

present in supernatants.   

A caveat to this experimental design was that in order to obtain enough PLs to complete 

experiments ex vivo, X. laevis were primed with killed bacteria. The PLs obtained from X. laevis 

were activated by Gram negative bacterial PAMPs and thus were already activated against a 

pathogen. In B. dendrobatidis-infected skin, phagocytes need to be activated by B. dendrobatidis 

PAMPs or inflammatory signals from epithelial cells. If B. dendrobatidis prevents this initial 

activation or activates inappropriate immune responses, these effects may not occur with 

phagocytes that were already activated with bacterial PAMPs.  

Because the PL population obtained from X. laevis was primarily macrophages and 

neutrophils, the effect on other innate leukocytes was not determined. Innate lymphoid cells 

(ILCs) are likely to be inhibited by B. dendrobatidis factors, and because there are antibodies to 

NK cell and T cell markers, some populations of amphibian ILCs may be obtained to be treated 

with B. dendrobatidis factors (Robert & Cohen, 2011; Edholm et al., 2013) in future 

experiments. Analysis of the any effects of B. dendrobatidis factors on innate leukocytes would 

likely be more successful using mouse models that have better defined cell populations. 

 

A revised method for eliciting immune responses in amphibians 

PHA injection is a common method to measure immune responses in vertebrates. In birds 

a consensus protocol of injecting patagia has been developed (Martin et al., 2006), but no such 
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site has been determined for amphibians or anurans. In amphibians, many of the sites chosen for 

injection have a very small amount of swelling induced by PHA (Gervasi & Foufopoulos, 2008; 

Brown et al., 2011). Such small differences in sizes require very precise tools and a large number 

of replicates to obtain statistical significance. For our experimental design in which factors from 

B. dermatitidis were expected to decrease swelling, more inflammatory swelling was necessary 

to determine significant inhibition of inflammatory processes. Therefore, a modified protocol in 

which PHA was injected intramuscularly into the feet of X. laevis was developed. The amount of 

swelling observed was between 3 to 20 times greater than previously recorded with subcutaneous 

injection in frogs (Gilbertson et al., 2003; Gervasi & Foufopoulos, 2008; Brown et al., 2011; 

Venesky et al., 2012). The amount of inflammatory swelling induced by intramuscular injection 

was so great that a noticeable difference could be seen between PHA and buffer injections and 

feet could be measured with a caliper. This method was also suitable for measuring swelling 

induced by killed bacteria. 

Intramuscular foot injection of PHA or other inducers of inflammation may be a better 

method for investigating immune responses in amphibians. Injection into the foot requires less 

precision decreasing experimental error and decreasing the need for many experimental 

replicates. The simplicity of the method may also make it preferable for complex studies. The 

increase in swelling did not appear to negatively affect X. laevis, but greater foot swelling may 

be restricting for non-aquatic anurans.   

 

B. dendrobatidis inhibition of adaptive immunity in vivo 

Early studies of chytridiomycosis noted minimal leukocyte infiltration into B. 

dendrobatidis-infected skin (Pessier et al., 1999; Berger et al., 2005).  Transcriptional studies 
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also found little activation of immune gene expression during chytridiomycosis (Rosenblum et 

al., 2009; Rosenblum et al., 2012). The absence of robust immune responses to B. dendrobatidis 

is not likely due to the incapacity of amphibian immunity; adaptive immunity appears to be 

capable of promoting resistance to chytridiomycosis (Richmond et al., 2009; Ramsey et al., 

2010; Savage & Zamudio, 2011).  The ineffective clearance of B. dendrobatidis is most likely 

due to immune evasion. B. dendrobatidis impairs lymphocytes in vitro, which may explain the 

lack of robust immunity (Chapter II). 

 The factors that impair and kill amphibian lymphocytes in vitro do not appear to inhibit 

amphibian phagocytes suggesting that the target of evasion is the adaptive immune response. The 

current study reproduces these in vitro observations in vivo using a modified protocol to induce 

inflammatory swelling in the feet of X. laevis. Primary injection with PHA or killed E. coli 

induce a primarily innate immune response causing a major infiltration of phagocytic leukocytes 

(Tella et al., 2008; Nedelkovska et al., 2010; Brown et al., 2011). The inflammatory swelling 

induced by these injections was not significantly affected when B. dendrobatidis supernatant was 

simultaneously injected suggesting no impairment of innate immune responses. Amphibian 

macrophages and neutrophils are not impaired in vitro by B. dendrobatidis supernatants, and it 

appears that soluble B. dendrobatidis factors also neither kill nor impair recruitment of innate 

leukocytes in vivo.  

A single injection of PHA does appear to activate a small amount of lymphocyte 

recruitment in amphibians, but this is likely to be a minor component of the inflammatory 

response causing swelling (Brown et al., 2011).  A second PHA injection promotes a more robust 

lymphocyte response in birds (Tella et al. 2008) and induces greater swelling in amphibians 

(Brown et al., 2011).  In our experimental design, X. laevis was primed with an intraperitoneal 
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injection of PHA a week before feet were injected with either PHA alone or PHA and B. 

dendrobatidis supernatant. The priming injection of PHA allowed for a greater lymphocyte 

response during the second injection.  Unlike the single PHA injection, the inflammatory 

swelling induced by the second injection was significantly reduced by factors present in B. 

dendrobatidis supernatants suggesting that lymphocytes are impaired by B. dendrobatidis factors 

in vivo as previously characterized in vitro. Swelling still occurred when B. dendrobatidis 

supernatants were injected with PHA, but the swelling that had occurred was probably caused by 

infiltration of innate leukocytes. The full effect of B. dendrobatidis supernatant did not become 

significant until 48 hours after injection. This correlates well with the observed peak of B. 

dendrobatidis induced amphibian lymphocyte apoptosis (Fites et al., 2013). The delayed effect 

of B. dendrobatidis supernatant may be also explained by the later recruitment of lymphocytes 

during PHA injection compared to innate leukocytes (Brown et al., 2011).  

B. dendrobatidis likely evades many components of the amphibian host immune 

response. Because B. dendrobatidis factors inhibit activation and induce apoptosis in 

lymphocytes, the mechanism of decreased swelling induced by a secondary PHA injection is 

likely also mediate by lack of lymphocyte proliferation and induction of lymphocyte apoptosis 

after recruitment. However, B. dendrobatidis supernatants may also inhibit recruitment of 

lymphocytes by disrupting or damping chemokine signaling. 

 

A localized effect of B. dendrobatidis lymphotoxic factors 

 The in vivo experiments demonstrated that soluble factors from B. dendrobatidis 

inhibited adaptive immune responses at the sites of lymphocyte recruitment and activation in 

living X. laevis. The decrease in inflammation caused by B. dendrobatidis factors only appeared 
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to affect the site where supernatants were injected; the amount of inflammation in feet injected 

with PHA resembled the amount of inflammation caused by PHA when no B. dendrobatidis 

supernatant was injected. However, a systemic inhibition of immunity may be possible during an 

infection which typically last longer than the duration of the foot injection experiment. The 

lymphotoxic factors released by B. dendrobatidis in the skin may be released into the blood 

stream at a high enough concentration to have an impact on lymphocytes away from the sites of 

infection.  

  The spleen is the only organized secondary lymphoid organ in amphibians, and the 

leukocyte population in the spleen is largely composed of lymphocytes (Manning & Horton, 

1982). Therefore, the spleen is the best location to investigate the systemic impairment of 

adaptive immunity. Some infection studies have noted that the spleen is negatively affected 

during chytridiomycosis and that infection appears to shrink the size of the spleen (Rosenblum et 

al., 2009; Rosenblum et al., 2012). To further investigate whether B. dendrobatidis may impair 

adaptive immunity systemically, infection loads were compared to the number of leukocytes 

present in the spleen. This study found no correlation between B. dendrobatidis infection and 

number of splenocytes in X. laevis suggesting that immune impairment is localized near the sites 

of infection. However, X. laevis show very little susceptibility to chytridiomycosis and infection 

loads present on X. laevis in this study were very low.  An infection threshold may exist where 

only high B. dendrobatidis loads produce enough of the lymphotoxic factor to actually impair 

and kill lymphocytes in the spleen.  

 To test whether lymphotoxic factors could induce systemic lymphocyte impairment, B. 

dendrobatidis supernatants were injected into the peritoneum of X. laevis. The amount of factors 

shed from the skin into the blood or lymph would not likely be any greater than the amount 
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injected. Also, intraperitoneal injection would allow the factors to be spread throughout the frog, 

and more of the factors would enter the spleen. If the soluble factors shown to impair 

lymphocytes in vitro and adaptive immunity in vivo do cause a systemic impairment of 

lymphocytes, then the number of splenocytes would decrease after treatment with B. 

dendrobatidis supernatants. In a pilot experiment, injection of B. dendrobatidis supernatants had 

no effect on spleen size or the number of splenic leukocytes present in the spleen. The lack of 

correlation between infection load and splenocytes in X. laevis could be explained by low 

infection intensities, but the amount of B. dendrobatidis supernatant injected probably is equal to 

or greater than the concentration of factors entering the blood during severe infection.  

 Although injection of B. dendrobatidis supernatants appeared to have no effect on 

spleens, the results suggest that B. dendrobatidis supernatants do negatively impact the health of 

X. laevis. Treatment with B. dendrobatidis supernatants caused a trend toward greater weight 

loss which is a symptom of chytridiomycosis in some amphibians (Retallick & Miera, 1997; 

Ramsey et al., 2010). B. dendrobatidis supernatants have negative effects on some non-lymphoid 

cell lines (Chapter II); factors released by B. dendrobatidis, possibly different from the 

lymphotoxic factors, are likely to cause pathogenic damage to tissues which can lead to 

morbidity. 

At this time, evidence only supports a local inhibition of adaptive immunity during 

chytridiomycosis and does not suggest that amphibians infected with B. dendrobatidis can 

become immunocompromised. The observed decrease in spleen size could as easily be explained 

by disease progression and not a systemic release of toxic factors. The skin destruction caused by 

B. dendrobatidis infection causes dehydration and disruption of electrolyte homeostasis in later 

stages of severe chytridiomycosis (Voyles et al., 2009; Marcum et al., 2010; Voyles et al., 2012). 
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Dehydration and general dysregulation caused by heavy B. dendrobatidis infection may decrease 

spleen size more than toxic factors that originating from the skin. 
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CHAPTER IV 

 

PARTIAL CHARACTERIZATION OF BATRACHOCHYTRIUM 

DENDROBATIDIS INHIBITORY FACTORS
3
 

 

Abstract 

 The soluble factors released by Batrachochytrium dendrobatidis impair adaptive immune 

responses in vitro and in vivo. The supernatant from B. dendrobatidis used to characterize this 

inhibition of immune cells is a complex mixture of all the molecules released by the fungus over 

a 24-hour period. To understand the evasion of adaptive immune responses by B. dendrobatidis, 

the inhibitory components of supernatants must be identified. The inhibitory factors appear to be 

associated with the B. dendrobatidis cell wall because: 1) only cells with cell walls produce 

inhibitory factors; 2) cells with cell walls continue to release inhibitory factor after being killed; 

3) treatment of B. dendrobatidis cells with nikkomycin Z, a cell-wall synthesis inhibitor, 

decreases the inhibitory effects on lymphocytes by B. dendrobatidis. The inhibitory factors 

which appear to be associated with the B. dendrobatidis cell wall are resistant to heat, acid, 

proteases, and RNase suggesting that the factors are not protein or RNA. The factors are soluble 

in water and separate into two main size classes: less than 10 kDa and greater than 50 kDa, 

suggesting that the factors may be small molecules and/or carbohydrates. Small molecule 

analysis of B. dendrobatidis supernatants provides a short list of candidate compounds based on 

mass spectrometry or HPLC analysis. Several of the identified small metabolites produced by B. 

dendrobatidis were assayed on lymphocytes, but none were shown to be responsible for 

lymphocyte inhibition.  The large molecule factors are most likely carbohydrate based on process 

                                                           
3
 Some of data shown in this chapter is published in Fites et al., 2013. Data present in two figures were also 

published in Holden et al., 2014. 
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of elimination. Fractionation of B. dendrobatidis supernatants over solid-phase extraction matrix 

enriched carbohydrate into certain fraction that also had greater inhibition of lymphocytes. This 

correlative data suggest that carbohydrates are likely responsible for lymphocyte inhibition by B. 

dendrobatidis. Fungal cell walls are primarily composed of carbohydrates, and several 

polysaccharides associated with fungal cell walls are known to impair leukocyte functions and 

induce apoptosis. Polysaccharides may also be active when broken into smaller components 

suggesting that both large and small molecule inhibitors could be part of the same carbohydrate 

complex. The data in this chapter characterize the nature of the B. dendrobatidis lymphotoxic 

factors; these data suggest that B. dendrobatidis has carbohydrates associated with its cell wall 

that act as immunomodulators to impair host lymphocytes. 

 

 

Introduction 

 The two previous chapters (Chapters II and III) characterized the effects of the soluble 

factors released by B. dendrobatidis on hosts and host cells. Batrachochytrium dendrobatidis 

supernatants impaired lymphocyte proliferation and induced apoptosis in lymphocytes. Factors 

in B. dendrobatidis supernatants also reduced proliferation of non-lymphoid cell lines. However, 

B. dendrobatidis did not inhibit function of phagocytes and did not kill phagocytic leukocytes. 

The in vitro experiments suggested that B. dendrobatidis produces soluble factors that impair 

adaptive immune responses but not innate leukocyte responses.  These data were confirmed in 

vivo by injecting B. dendrobatidis supernatants into Xenopus laevis feet, which inhibited 

induction of inflammation.  



140 
 

All of the characterization of the effects of B. dendrobatidis on host cells was completed 

either with B. dendrobatidis cells or supernatants. Batrachochytrium dendrobatidis supernatants 

contain all of the molecules that are secreted, shed, or discharged by B. dendrobatidis into water 

over 24 hours. Data in Chapter II showed that dead B. dendrobatidis cells continued to release 

factors even after being killed and washed, suggesting that the factors did not need to be actively 

secreted to be released. The soluble factors in B. dendrobatidis supernatants are likely to be a 

complex mixture of macromolecules and metabolites that may have different effects on host 

cells. Therefore, the components most responsible for impairing lymphocytes need to be isolated 

and identified to tease apart the contributions of each component. Also, identification of the 

lymphotoxic factors would allow for more direct investigation of the mechanism of inhibition 

and induction of apoptosis.  

Depending on the nature and effects of the identified factor or factors, these molecules 

may be developed into drugs to treat human disease. Batrachochytrium dendrobatidis 

supernatants effectively inhibit human and mouse lymphocytes (Chapter II).  If the isolated 

factors are specific to lymphocytes, these molecules could be used to treat autoimmune disorders 

or graft-versus-host disease that are typically mediated by lymphocyte responses (Kahan, 2003; 

Penn, 2006; Vecchiarelli & Monari, 2010). Batrachochytrium dendrobatidis supernatants also 

inhibited proliferation of CHO and HeLa cells (Chapter II) which are continuously proliferating, 

epithelial-derived cells. If more than one factor produced by B. dendrobatidis is responsible for 

inhibition of epithelial-like cells distinct from the effects on lymphoid cells, a separate 

investigation should determine what these independent factors are. However, if the factors 

responsible for lymphocyte impairment also inhibit cell proliferation in other cells, these factors 

likely kill or slow proliferation of dividing cells. This effect is desirable to treat diseases of 
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cellular proliferation. Autoimmune diseases may be treated by such a drug, but the broader effect 

would make it more suitable for killing tumorigenic cells. 

To characterize the inhibitory factors present in B. dendrobatidis supernatants, different 

approaches were taken to understand how B. dendrobatidis produces these factors and what the 

chemical nature of the factors may be. Batrachochytrium dendrobatidis cells were incubated at 

different temperatures to determine how and when B. dendrobatidis might release the factors. A 

chitin synthesis-inhibiting drug, nikkomycin Z, was used to treat B. dendrobatidis cells to 

determine the importance of the cell wall on the release of inhibitory factors.  Batrachochytrium 

dendrobatidis supernatants were treated under different conditions or with lysing enzymes to 

understand the general chemical properties of inhibitory factors. Treatments of heat, acid, 

protease, RNase, and a cocktail of cell wall-digesting enzymes were applied to B. dendrobatidis 

supernatants. Batrachochytrium dendrobatidis supernatants were also fractionated using several 

techniques. Some spectrometric analysis was also used to attempt to identify components of B. 

dendrobatidis supernatants. The results from these analyses suggests that B. dendrobatidis sheds 

soluble lymphotoxic factors from its cell wall that are likely to be carbohydrates and small 

molecule metabolites. 

 

 

Materials and Methods 

Zoospore isolation and preparation of zoospore supernatants 

Batrachochytrium dendrobatidis isolate JEL197 was cultured as described in Chapter II. 

Zoospores were purified as previously described (Rollins-Smith et al ., 2002) by twice flooding 

the agar surface of seven-day old cultures of B. dendrobatidis growing on 1% tryptone agar 
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using 3 to 5 mL of sterile 1% T-broth.  The broth containing zoospores was passed over sterile 

nylon spectra/mesh filters (Spectrum Laboratories, Rancho Dominguez, CA, USA) of several 

mesh opening sizes to remove mature cells.  Zoospores used for co-culture experiments were 

enriched by passage through 3 µm mesh opening filters (about 99% purity, see Appendix A).  

Zoospores used for transwell experiments were enriched by passage through 20 µm mesh 

opening filters (about 80% purity).  Zoospores used for supernatant experiments were enriched 

by passage through 5 µm mesh opening filters (about 93% purity).  To prepare supernatants, 

zoospores were isolated, centrifuged to remove tryptone growth medium, washed with sterile 

distilled water, re-suspended at 2 x 10
7
 zoospores per mL (twice the cellular concentration 

compared to supernatants prepared with mixed cultures of mature cells) in sterile distilled water, 

and incubated at 21°C for 24 or 48 hours.  After incubation, zoospores were centrifuged, and 

supernatants were passed through 0.2 µm filters (Fisher, Waltham, MA, USA) to remove any 

cells, frozen, and lyophilized.  Lyophilized supernatants were re-suspended in L-15 and mixed 

with X. laevis splenocytes (as described in Chapter II Materials and Methods) at 1.25X to 10X 

concentration. 

 

Calcofluor White staining of B. dendrobatidis cell walls 

  Calcofluor White Stain (Sigma, St. Louis, MO) was used to stain B. dendrobatidis cells 

walls. Calcofluor white is a non-specific fluorochrome that binds to cell wall cellulose and chitin 

(Herth & Schnepf, 1980; Monheit et al. 1984).  Batrachochytrium dendrobatidis cells were 

added to a clean glass slide and mixed with one drop of calcofluor white stain followed by a drop 

of 10% potassium hydroxide.  Photographs were obtained using an excitation wavelength of 365 

nm with an Olympus BX41 microscope and an Olympus DP71 camera with DP Controller 



143 
 

software, v.3.1.1.267 (Olympus Corporation).  Excitation of calcofluor white at this wavelength 

results in an emission wavelength of 435 nm, by calcofluor white associated with chitin 

producing a blue color (Herman 2001; Henry-Stanley et al. 2004).   

 

Nikkomycin Z treatments 

Nikkomycin Z-HCl (NZ) was obtained for research purposes from Dr. John Galgiani, 

Director of the Valley Fever Center for Excellence of the University of Arizona.  For 

experiments in which B. dendrobatidis was pretreated with NZ before addition to lymphocytes, 

mixed zoospores and sporangia were split, and half of the cells were treated with 20 µM NZ in 

1% T-broth.  After incubation at 21°C for 3 days, B. dendrobatidis was centrifuged to remove 

NZ, washed, and re-suspended in complete L-15 medium.  Batrachochytrium dendrobatidis cells 

treated or untreated with NZ were incubated with splenocytes at 10
5 

cells per mL.  For 

experiments in which B. dendrobatidis supernatants were prepared from NZ-treated B. 

dendrobatidis, B. dendrobatidis cells were treated with 10 μM NZ for 24 hours.  The NZ was 

removed and washed of the cells, and supernatants were prepared as previously described.  

Supernatants from NZ-treated B. dendrobatidis were incubated with X. laevis splenocytes at 5X 

concentration. 

The effect of NZ on B. dendrobatidis growth and replication was quantified by an optical 

density as described by Rollins-Smith et al. (2002). Zoospores (5×10
4
 per well) in tryptone broth 

were added to the wells of a 96-well flat-bottom microtiter plate (BD Falcon, Franklin Lakes, 

NJ) along with serial dilutions of NZ in HPLC-grade water (Fisher Scientific, Pittsburgh, PA) to 

achieve final concentrations of 0.02 to 2000 µM.  Positive and negative control wells received 

HPLC-grade water alone. Zoospores in negative control wells were heat-killed as previously 
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described (Chapter II). The total volume of every well was 100 µl.  The assay plates were 

incubated for seven days at 21°C.  Growth of B. dendrobatidis during this time period was 

measured as the change in optical density measured at 490 nm (OD490) with an MRS Microplate 

Reader (Dynex Technologies, Inc., Chantilly, VA). 

Maturation of enriched zoospores treated with NZ was determined morphologically under 

a light microscope. Cells were either characterized as zoospore or mature cell. Mature cells were 

grouped as B. dendrobatidis cells that have a cell wall; mature cells include the stages of 

encysted zoospore, germling, thallus, and zoosporangium (Berger et al., 2005a). The total 

number of each cell type was divided by the original number of zoospores to assess the ability of 

zoospores to mature in the presence of NZ. 

Batrachochytrium dendrobatidis cells were stained with calcofluor white to determine the 

cell diameter of mature cells. B. dendrobatidis zoospores were incubated for three or seven days 

in 1% tryptone broth with or without NZ and then stained, as described above, with calcofluor 

white. Cell diameters of mature cells were measured to the nearest µm in images using a 

computer-calibrated scale bar. 

 

Treating supernatants with Glucanex™
 

Batrachochytrium dendrobatidis supernatants were treated with a cocktail of lysing 

enzymes from Trichoderma harzianum (Sigma, St. Louis, MO, USA), also known as 

Glucanex
™

, which contains β-glucanases, chitinases, cellulases, and proteases.  

Batrachochytrium dendrobatidis supernatants boiled prior to lyophilization were re-suspended in 

50 mM sodium citrate, pH 5.5, at 100 times the original concentration before lyophilization.  

Supernatants and buffer controls were incubated with 0 or 2 mg/mL Glucanex at 37°C for 24 
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hours.  After this digest, enzymes were inactivated by incubation in 100°C water bath for 30 

minutes. All treatments were lyophilized and re-suspended in L-15 to be incubated with 

splenocytes in a proliferation assay as described above.  Because the buffer used for the 

Glucanex treatment had a lower pH than L-15, a small amount of 0.5 M NaOH was added to re-

suspended samples to achieve a pH of about 7.5.  To determine if carbohydrates (β-glucans and 

potentially chitin) were being hydrolyzed by enzymes in the Glucanex cocktail, reducing sugar 

was quantified before and after incubation using the Dinitrosalicylic Acid (DNSA) method with 

a glucose standard (Miller, 1959; Rana et al., 2003).  Briefly, a DNSA reagent [10 mg/mL 3,5-

dinitrosalicylic acid (Sigma), 300 mg/mL sodium potassium tartrate tetrahydrate (Sigma), 0.5 M 

NaOH] was added to an equal volume of sample or glucose standard (ranging in concentration 

from 0.1 to 8 mg/mL) and boiled for 10 minutes. After boiling with the DNSA reagent, samples 

were diluted ten-fold in water and absorbance was read at 530 nm. As a positive control, 

laminarin (Sigma) at a concentration of 10 mg/mL was also treated with 2 mg/mL Glucanex and 

assayed using the DNSA method.  Because Glucanex produced a background color change with 

the DNSA reagent, absorbance at 530 nm was measured for samples at the beginning and end of 

incubation with Glucanex. 

 

Treating splenocytes with laminarin 

Laminarin, a soluble form of β-1,3-glucan with some β-1,6 branching (Rioux et al., 2010; 

Elsori et al., 2011), from Laminarina digitata (Sigma, St. Louis, MO, USA) was used to 

determine if one of the soluble factors that inhibit lymphocytes could be β-1,3 or β-1,6-glucan,  

major cell wall components in higher fungi (Klis et al., 2002).  X. laevis splenocytes, prepared as 

described previously (Chapter II) and stimulated with 2 μg/mL PHA, were incubated with 
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laminarin at concentrations between 25 and 400 μg/mL [the approximate concentrations at which 

soluble β-1,3-glucan blocks the pattern recognition receptor Dectin-1 in mammalian phagocytes 

(Elsori et al., 2011; Goodridge et al., 2011)]. Proliferation of lymphocytes was quantified by 
3
H-

thymidine uptake as described in Chapter II. 

 

Heat treatment of supernatants  

Batrachochytrium dendrobatidis supernatants were prepared as described in Chapter II. 

Heat treatment of B. dendrobatidis supernatants occurred either before or after lyophilization. 

When heating occurred before lyophilization, freshly prepared supernatants were placed in glass 

tubes and incubated for 30 minutes in a 100°C water bath.  When heating occurred after 

lyophilization, lyophilized supernatants were re-suspended at one-tenth their original volume in 

distilled water and placed in glass vessels in 100°C water baths for 30 minutes.  Distilled water 

controls were also boiled to ascertain that there were no artifacts from the heating process. If 

concentrated supernatants were boiled right before adding to lymphocytes, the boiled samples 

were cooled to 4°C before being mixed with X. laevis splenocytes in 2X L-15.  Untreated B. 

dendrobatidis supernatants or water controls were incubated at 4°C during the period of heat-

treatment. 

 

Trifluoroacetic acid treatment of supernatants 

Lyophilized B. dendrobatidis supernatants were re-suspended in sterile distilled water, 

mixed with an equal volume of 4% trifluoroacetic acid (TFA), and incubated at 37°C for 30 

minutes.  A control containing water with TFA only and a control containing untreated B. 

dendrobatidis supernatant were also incubated at 37°C for 30 minutes.  The TFA-treated B. 
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dendrobatidis supernatant and the TFA-treated water control were diluted with an equal volume 

of sterile distilled water and placed in dialysis tubes (8 kDa cut-off) (BioDesign, Carmel, NY, 

USA) and dialyzed against distilled water for 24 hours at 4°C to remove TFA.  After dialysis, the 

samples were lyophilized again and added to X. laevis splenocyte cultures at 10X concentration. 

 

RNase A treatment of supernatants 

 Lyophilized B. dendrobatidis supernatants were re-suspended to 100X concentration in 

PBS. RNase A stock was prepared at 4.39 mg/mL (250 Kunitz units/mL) in 1.12% sodium 

citrate at pH 8.2 (see PI nuclear staining method in Chapter II). Supernatant at 100X or PBS 

control (160 μL) was added to 40 μL of RNase A stock or sodium citrate buffer control. These 

treatments were incubated overnight at room temperature. After incubation, all samples were 

diluted ten-fold in complete RPMI medium and serially diluted with equal volumes of RPMI. 

Samples were incubated with Jurkat cells in a 96-well plate, and Jurkat cells were assayed with 

the MTT method viability as previously described (Chapter II). The final concentrations of 

supernatant in Jurkat cell cultures was 4X, 2X, and 1X.  RNase A was diluted out in Jurkat cell 

cultures to 0.25, 0.125, and 0.0625 Kunitz units per well; at these concentrations RNase A had 

no effect on Jurkat cells. 

 

Protein concentration of B. dendrobatidis supernatants 

 The protein concentration of B. dendrobatidis supernatants was determined by the 

colorimetric MicroBCA
TM

 (bicinchoninic acid) using bovine serum albumin protein standards, as 

previously described (Smith et al., 1985; Gammill et al., 2012). Fresh and lyophilized 
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supernatants were diluted to various concentrations in HPLC-grade water before BCA reagents 

were added to determine protein concentration. 

 

Proteinase K treatment of B. dendrobatidis supernatants 

To test whether inhibitory factors were protein in nature, B. dendrobatidis supernatants 

were digested with proteinase K-conjugated to agarose beads (Sigma, St. Louis, MO, USA).  

Because this insoluble proteinase K only efficiently digests protein in a buffered calcium 

solution, supernatants were re-suspended at 100X in a solution containing 40 mM Tris-HCl and 

4 mM CaCl2 at pH 7.8.  Controls lacking supernatants consisted of this buffer alone.  

Batrachochytrium dendrobatidis supernatant or buffer alone, as a control, was mixed with 10 mg 

of proteinase K-agarose beads and incubated at 37°C overnight.  Supernatants and buffer 

controls, with and without proteinase K, were also incubated at 37°C overnight.  Proteinase K 

was removed by centrifuging the agarose beads and collecting the remaining liquid.  The 

remaining liquid from each treatment was diluted ten-fold in distilled water to decrease the 

concentration of the calcium buffer.  Supernatants and buffer controls were mixed 1:1 with 

lymphocytes in 2X L-15 so the final concentration of supernatants was 5X.  Supernatants treated 

or not with proteinase K beads and buffer-only controls were resolved on a 12% polyacrylamide 

electrophoresis gel which was silver stained (Blum et al., 1987) to visualize the proteins.  

 

Crude size separation of B. dendrobatidis supernatants 

 Freshly prepared supernatants were size fractionated by molecular weight using Amicon 

Ultra centrifugal filter columns (Millipore, Billerica, MA, USA) with size cut-offs at 10, 30, 50, 

and 100 kDa. Fractions at the top or bottom of columns were mixed into X. laevis splenocyte 
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culture with an equal volume of 2X L-15. In some instances fractions were lyophilized to be 

tested on lymphocytes. To investigate whether small or large molecular components are heat 

sensitive, fractions greater than and less than 10 kDa were boiled after size separation. 

 

Mass spectrometry analysis of supernatants 

 Chytrid supernatant samples were analyzed by matrix-assisted laser desorption/ionization 

mass spectrometry (MALDI/MS) in the Vanderbilt University Mass Spectrometry Core by Dr. 

Michelle Reyzer. Matrices employed for MALDI/MS were α-cyano-4-hydroxycinnamic acid 

(CHCA) and 2,5-dihydroxybenzoic acid (DHB). Data was acquired in positive and negative ion 

mode. Mass-to-charge ratios (m/z) were determined by time-of-flight (TOF), linear trap 

quadrupole (LTQ), and Fourier transform (FT) ion cyclotron resonance. Accurate masses were 

obtained when possible by (FT). Fragmentation of peaks was noted when available. Three 

different supernatants were tested: B. dendrobatidis supernatants, B. dendrobatidis supernatants 

boiled before lyophilization, and H. polyrhiza supernatants.  Lyophilized supernatants were 

diluted to 100X, 10X, and 1X before mixing with an equal volume of matrix. Better spectra were 

obtained from the 10X concentrated supernatants, so this concentration was used for all 

MALDI/MS. 

 Analysis of B. dendrobatidis supernatants for the presence of lipids was completed by Dr. 

Pavlina Ivanova in the laboratory of Dr. Alex Brown at Vanderbilt University. Lyophilized B. 

dendrobatidis and H. polyrhiza supernatants were re-suspended to 100X in HPLC-grade water 

(100X concentration had better spectra than 10X and 1X). Supernatants were also re-suspended 

in 90% methanol, 10% chloroform. Samples were analyzed by liquid chromatography mass 

spectrometry (LC/MS). Unique peaks present in B. dendrobatidis supernatants and absent or 
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diminished in H. polyrhiza supernatants were analyzed with tandem mass spectrometry to 

determine if these components had any fragments corresponding to lipid components. 

 

Small molecule analysis of supernatants 

 Small molecule analysis of B. dendrobatidis samples was completed by Dr. Thomas 

Umile in the laboratory of Dr. Kevin Minbiole at Villanova University. Batrachochytrium 

dendrobatidis supernatants or ethyl acetate extractions from B. dendrobatidis were analyzed by 

HPLC through a C18 column with a UV detector. Fractions with peak UV absorbance were 

analyzed by 
1
H-NMR at Princeton University by Dr. Thomas Umile to identify the structures of 

metabolites. 

 

Testing small molecule candidates on lymphocytes 

 Several peaks were visible on spectra from B. dendrobatidis supernatants and ethyl 

acetate extracts. Some of these compounds were isolated for further analysis by 
1
H-NMR by Dr. 

Thomas Umile.  The structure of a few of these compounds was identified. Identified compounds 

available for purchase were tested on X. laevis splenocytes to determine inhibition of lymphocyte 

proliferation.   

Cyclo-L-phenylanalanyl-L-proline (cyclo[Phe-Pro]) is a metabolite produced by bacteria 

and fungi (Trigos et al., 1997; Stöm et al., 2002). Cyclo(Phe-Pro) (Chem-Impex International, 

Wood Dale, IL, USA) was re-suspended in isopropanol and added to splenocytes culture at final 

concentrations ranging between 0.5 and 20 mM. Isopropanol controls were also tested on 

splenocytes. 



151 
 

Cyclo-L-histidyl-L-proline (cyclo[His-Pro]) is an endogenous diketopiperazine present in 

various human tissues (Prasad, 1988). Cyclo(His-Pro) (Chem-Impex International, Wood Dale, 

IL, USA) was re-suspended in DMSO and added to splenocytes culture at final concentrations 

ranging between 50 μM and 10 mM. DMSO controls were also tested on splenocytes. 

L-kynurenine is an oxidation product of L-tryptophan (Mellor, 2004; Belladonna et al. 

2007). In humans and mice serum concentrations of L-kynurenine range between 2-8 μM, but 

can reach 1 mM concentration in the coronary lumen (Widner et al., 1997; Wang et al., 2010). A 

large concentration range of L-kynurenine (Sigma, St. Louis, MO, USA) was tested on Jurkat 

cells from 10 nM to 500 μM to determine the concentrations at which lymphocyte proliferation 

may be affected. L-kynurenine was later mixed in X. laevis splenocyte culture at final 

concentrations ranging between 1-100 μM. 

 

Phenol sulfuric acid  

 The phenol-sulfuric acid (P-S) method was used to determine the presence of 

carbohydrate in B. dendrobatidis supernatants and fractions of B. dendrobatidis supernatant 

obtained by solid phase extraction. The P-S method is a colorimetric assay that quantifies the 

number of hexose and pentose carbohydrates present in a sample (Nielsen, 2010). In the P-S 

method, concentrated sulfuric acid (18 M) was added to sample at a ratio of 1:4, sample:sulfuric 

acid. Immediately after adding sulfuric acid, 5% phenol was added at one-fifth the volume of 

sulfuric acid. When the assay was completed in wells of a 96-well plate, 50 μL of sample was 

added to wells, followed by 150 μL of 18M sulfuric acid, and finally 30 μL of 5% phenol. 

Heating of samples, often present in protocols of this method, was not necessary for a color 

change. Absorbance of samples was quantified at 490 nm. To determine the relative amount of 
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hexose present in B. dendrobatidis supernatant samples, glucose standards were used to generate 

a standard curve. 

 

Solid phase extraction 

 Solid phase extraction (SPE) of B. dendrobatidis supernatants was completed with C18, 

SAX, and CN columns. C18 separation was completed at Vanderbilt University by Scott Fites 

using C18 Sep-Pak cartridges (Waters Corporation, Milford, MA, USA): supernatant volumes 

were pushed through columns using a peristaltic pump. C18 columns were eluted with increasing 

concentrations of acetonitrile (ACN), whereas the flow through fraction contained no ACN. SPE 

with SAX and CN was completed at James Cook University, Townsville, Australia by Dr. 

Alexandra Roberts. SAX was eluted with decreasing pH starting with 10 mM NaOH and then 

eluting with increasing concentrations of HCl. CN was eluted with increasing concentrations of 

methanol or ACN. Fractions obtained by SPE were dried to remove solvent. Dry samples were 

re-suspended in L-15 or RPMI media and added to X. laevis splenocytes (C18) or Jurkat cell 

(SAX and CN). Concentrations of samples were determined based on the volume of the original 

supernatant sample loaded into columns. Final concentrations of samples were between 5X and 

10X indicating that the volume that fractions were re-suspended in was one-fifth or one-tenth the 

volume of the 1X B. dendrobatidis supernatant used to load columns. 
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Results 

The B. dendrobatidis lymphotoxic factors are produced by cells after maturing past the 

zoospore stage 

 Batrachochytrium dendrobatidis is generally defined as having two developmental 

stages: a free-living motile zoospore and a host-associated zoosporangium (Longcore et al., 

1999). Several morphological changes occur during the transition from the zoospore to a large 

zoosporangium filled with zoospores. The first transition occurs as the zoospore first settles on 

the surface of the skin of amphibian hosts. At this point zoospores encyst, absorbing their 

flagella and forming a cell wall (Berger et al., 2005a). At this stage, the encysted cell forms a 

germination tube to infect host keratinocytes deep inside the host epithelium (Van Rooij et al., 

2012; Greenspan et al., 2012). Observation of germination tubes developing from B. 

dendrobatidis zoospores in culture has not been published, but electron microscopy of 

Batrachochytrium salamandrivorans suggests that this chytrid can form germination tubes in 

culture media (Martel et al., 2013). I have observed that B. dendrobatidis does form germination 

tubes in culture, and these germination tubes appear to be covered with a cell wall because they 

stain with calcofluor-white, a chitin stain (Fig. 4-1). These structures are likely germination tubes 

because they are too large to be flagella and are not branched like rhizoids. 

 Soon after the encystment stage, B. dendrobatidis cells develop into a form called a 

germling, which are not much larger than zoospores but have a cell wall and rhizoid structures 

(Berger et al., 2005a). Germlings develop into a stage called a thallus which eventually becomes 

a mature zoosporangium filled with zoospores. The mature stages of B. dendrobatidis are 

somewhat difficult to distinguish among each other and even more difficult to isolate, but 

zoospores can be enriched by passing over mesh filters (Rollins-Smith et al., 2002; also see  
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Fig. 4-1. Batrachochytrium dendrobatidis (Bd) cells produce germination tubes in vitro. Bd 

cells from cultures were stained with (A) Wright-Giemsa, (B) trypan-blue, or (C) calcofluor 

white. Projections off of cells are most likely germination tubes because they are larger in 

diameter and, in most cases, longer than flagella. Projections are not branched like rhizoids. 

Projections stain with calcofluor white suggesting that they are coated with cell wall. Cells 

in panels A and B were incubated in L-15 for 1-2 days and cells in panel A were in culture 

with X. laevis peritoneal leukocytes during this time. Panel C was an image captured of one 

of the cells treated in 1% tryptone alone (no nikkomycin Z) from the experiment shown in 

Fig. 4-5. 
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Appendix A). Enriched zoospores were obtained to investigate when B. dendrobatidis produces 

inhibitory factors.  

To identify the life stages that inhibit lymphocytes, zoospores were purified and mixed 

directly with PHA-stimulated splenocytes. Living zoospores from two B. dendrobatidis isolates 

inhibited the PHA-induced proliferation of X. laevis lymphocytes (Fig. 4-2 A). Because 

zoospores can mature rapidly at 26C, we tested whether heat-killed zoospores also inhibit 

splenocytes (Fig. 4-2 B). During three days of incubation, zoospores matured as indicated by the 

development of rhizoid structures (Fig. 4-2 C). The living zoospores that had matured into 

germlings inhibited lymphocyte proliferation (Fig. 4-2 B, solid bars).  Heat-killed zoospores did 

not mature (Fig. 4-2 D). In contrast to live zoospores or freshly killed mature cells (Chapter II), 

heat-killed zoospores were incapable of inhibiting lymphocyte proliferation (Fig. 4-2 B, open 

bars).  Live zoospores did not inhibit lymphocyte proliferation when physically separated from 

lymphocytes in a transwell, but reduced proliferation when in direct co-culture with lymphocytes 

(Fig. 4-2 E).  Even when zoospores were placed with splenocytes in the top chamber of a 

transwell, proliferation was not inhibited in the bottom chamber (Fig. 4-2 F) suggesting that 

release of inhibitory factors is not induced by the presence of host cells.  

 Supernatants were also prepared from B. dendrobatidis zoospores. Unlike the 

supernatants from mixed cultures containing mature B. dendrobatidis cells, 24 hour supernatants 

from zoospores highly enriched over 5 μm pore-sized filters (93% zoospore purity, Appendix A) 

did not inhibit X. laevis lymphocyte proliferation (Fig. 4-3 A). If zoospores were enriched with a 

filter with lager pores (20 μm), the purity of zoospores was greatly decreased (83% purity, 

Appendix A). Supernatants from populations of B. dendrobatidis zoospores that were not as 

highly enriched did inhibit lymphocyte proliferation at higher supernatant concentrations  
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Fig. 4-2. Batrachochytrium dendrobatidis (Bd)  zoospores do not inhibit lymphocyte 

proliferation of X. laevis splenocytes until they mature; see following page for details. 
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Fig. 4-2. Batrachochytrium dendrobatidis (Bd) zoospores (Zsp) do not inhibit lymphocyte 

proliferation of X. laevis splenocytes until they mature. (A) X. laevis splenocytes were cultured 

alone or with PHA, and PHA-stimulated cells were cultured with increasing numbers of living 

zoospores of Bd isolate JEL197 or JEL275. (B) Splenocytes (Spl) were cultured alone or with 

PHA. PHA-stimulated Spl were incubated with increasing numbers of live or heat-killed Bd 

(JEL197) zoospores. Live zoospores (C) developed into germlings during the 3-day culture as 

shown by the formation of rhizoids (arrow); dead zoopores (D) failed to develop (bar: 5 μm). 

(E) Splenocytes were cultured as in (A), and PHA-stimulated splenocytes were co-cultured 

(Co-cult) with or separated from live zoospores by a 0.4-mm filter in transwell (Transw). (F) 

Splenocytes were cultured as in (D) in the bottom chambers of a transwell plate at 5 x 10
5
.  

PHA-stimulated Spl were cultured directly with Zsp (bottom chamber), or Zsp were placed in 

the top chamber of a transwell culture separate from Spl stimulated with PHA.  In some wells, 

Spl were cultured along with Zsp in the upper chamber to determine whether the interaction 

would result in inhibition of PHA-stimulated lymphocyte proliferation in the bottom chamber. 

Significantly reduced 
3
H-thymidine uptake compared to the control treatment, *p<0.05, 

**p<0.01 (ANOVA with Tukey post hoc test).  CPM are averages ± SEM of at least three 

replicate wells and are representative at least two similar experiments. (Experiments in panels 

E and F were completed by Jeremy Ramsey and Sophia Gayek.) 
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Fig. 4-3. Batrachochytrium dendrobatidis (Bd) 

zoospores do not release inhibitory factors 

until they begin to mature and form a cell wall. 

Supernatants from Bd populations were 

lyophilized and re-suspended into culture with 

PHA-stimulated X. laevis splenocytes (Spl) 

(A-B) Supernatant from whole Bd cultures 

containing both zoospores and sporangia (Spor 

Sup), from enriched zoospores (Zsp Sup) were 

incubated with splenocytes. Zoospores were 

either more enriched (A, 93% zoospores) or 

less enriched (B, 83% zoospores) before 

incubated in water for 24 hours.  (C) 

Zoospores were  highly enriched as in (A) but 

incubated in water for 48 hours to allow cells 

to mature; supernatants were lyophilized and 

re-suspended into splenocyte culture. 

Significantly reduced 
3
H-thymidine uptake 

compared to the no supernatant (or no cell) 

control treatment, **p<0.01 (ANOVA with 

post hoc test).  CPM in each panel are 

averages ± SEM of five or more replicate 

wells and represent three similar experiments. 
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(Fig. 4-3 B). Also when the highly enriched zoospore population was incubated an extra 24 

hours to allow for maturation of zoospores, the supernatants were inhibitory to lymphocyte 

proliferation (Fig. 4-3 C). The inhibition by 20 μm-pore filter enriched zoospores and by 2-day 

zoospore supernatants was still greatly reduced compared to mixed B. dendrobatidis cultures 

containing many matured B. dendrobatidis cells. These data suggest that B. dendrobatidis begins 

to release factors soon after maturation and cell wall development, but the peak of the release of 

the lymphotoxic factors is delayed until later maturation steps. 

  

The lymphotoxic factors appear to be associated with the B. dendrobatidis cell wall. 

One major difference between B. dendrobatidis zoospores and mature B. dendrobatidis 

cells is that zoospores lack a cell wall (Longcore, et al. 1999; Berger et al., 2005a). Because 

zoospores do not produce lymphotoxic factors but appear to begin to produce them during early 

stages of maturation, I hypothesized that the lymphotoxic factors are associated with the B. 

dendrobatidis cell wall. Several other pathogenic fungi have immunomodulatory molecules 

associated with their cell walls (Rappleye et al., 2007; De Jesus et al., 2010; Gravelat et al., 

2013). The cell wall is at the interface of host and pathogen encounters; therefore, possessing 

immunomodulatory factors on the cell wall would be beneficial for B. dendrobatidis to resist 

immune clearance. 

To test whether the lymphotoxic factors were associated with the B. dendrobatidis cell 

wall, nikkomycin Z (NZ) was used to inhibit the B. dendrobatidis cell wall development. NZ is a 

competitive inhibitor of chitin synthase (Cohen 1987; Hector 1993). Chitin is an important 

component of the B. dendrobatidis cell wall, especially because B. dendrobatidis cell walls 

appear to lack the β-1,3-glucan component that is present in the cell walls of higher fungi (Ruiz-
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Herrera & Ortiz-Castellanos, 2010). Treatment of B. dendrobatidis with NZ significantly 

impaired the B. dendrobatidis cell wall (Holden et al., 2014). Batrachochytrium dendrobatidis 

growth was inhibited by NZ at concentrations above 300 nM (Fig. 4-4 A). The decrease in 

growth is likely due to a decrease in B. dendrobatidis proliferation (Fig. 4-4 B) and a decrease in 

the number of cells that survive to maturity (Fig. 4-4 C). To investigate the effects on B. 

dendrobatidis cell morphology, enriched zoospore populations were treated with different 

concentrations of NZ for three or seven days. Batrachochytrium dendrobatidis cells treated with 

NZ were stained with calcofluor white and viewed by fluorescent microscopy. After three days, 

NZ treatment appeared to cause swelling in B. dendrobatidis cells (Fig. 4-5 A, B). Compared to 

untreated cells, the diameters of cells treated with 20 μM of NZ had significantly increased the 

diameter of the maturing cells, most of which were in the germling or thallus stage (Fig. 4-5 C, 

D). The population of NZ- treated cells appear to fall into three main populations based on size: a 

population with the same diameter as the mode of the control (6 μm), a population with a 

diameter of about 10 μm, and a population with a diameter of about 14 μm (Fig. 4-5 C). The 

distribution of B. dendrobatidis cell sizes suggests that the effect of NZ on B. dendrobatidis cells 

was variable among B. dendrobatidis cells. 

After seven days, there was a much greater effect on the cell diameter of B. dendrobatidis 

cells treated with NZ; even cells treated with 3 μM NZ had significantly greater cell diameters 

than untreated control cells (Fig. 4-6). Cell diameters were visibly larger in NZ-treated 

populations (Fig. 4-6 A-E). Cell viability was greatly reduced in NZ-treated cells, and an extra 

experiment had to be completed to obtain a substantial number of cells treated with 200 μM NZ. 

The cells treated with NZ for seven days were very heterogeneous in cell size as they were at  
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Fig. 4-4. Nikkomycin Z (NZ) inhibits B. 

dendrobatidis (Bd) in tryptone culture. (A) Bd 

was cultured with different concentrations of 

NZ ranging from 20 nM to 200 μM 

(Bd+Nikkomycin Z). Living (Bd only) and 

killed (Heat-Killed Bd) Bd were cultured in the 

absence of NZ. Symbols indicate the mean 

OD490 (±SEM) of five replicate wells in a 

representative experiment. NZ concentrations 

at or greater than 300 nM significantly 

decrease Bd growth, **p<0.01, one-way 

ANOVA with post-hoc test. (B) Whole 

cultures of Bd cells were treated for three days 

without NZ or with 20 μM NZ. The total cell 

number of Bd cells in culture was determined 

before and after incubation. NZ significantly 

reduce the proliferation of Bd cells (fold 

change), **p<0.001 by a two-tailed paired t-

test. Mean fold change (±SEM) is shown from 

three experimental repeats. (C) Enriched 

zoospores were incubated with or without 20 

μM NZ for three days. After incubation the 

relative number of zoospores that had matured 

was determined by microscopy. The relative 

number of cells that had matured significantly 

decreased when Bd was treated with NZ, 

**p=0.017 by a two-tailed paired t-test. Mean 

percent (±SEM) of the original zoospores that 

had matured is shown from four experimental 

repeats. (The experiment in panel A was 

completed by Whitney Holden.) Data 

published in Holden et al., 2014. 
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Fig. 4-5. NZ causes B. dendrobatidis (Bd) cells to swell, but the effect appears to be variable 

among Bd cells after three days. An enriched zoospore population was treated with 20 μM 

NZ for three days and cells were analyzed by fluorescent microscopy after being stained 

with calcofluor white. Representative images of cells not treated (A) or treated (B) with NZ 

are shown, scale bars indicate 20 μm. (C) The distribution of the size of Bd cells between 

treated and untreated was different. (D) The diameter of Bd cells were significantly greater 

in NZ-treated cells, **p=0.002 by two-tailed Student’s t-test. Mean diameters (±SEM) are 

shown.  N=126 for the no NZ control, N=121 for the 20 μM NZ treatment. 
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Fig. 4-6. NZ has causes B. dendrobatidis (Bd) cells to swell, and the effect still is variable among Bd 

cells after seven days. An enriched zoospore population was treated with 3-200 μM NZ for seven days 

and cells were analyzed by fluorescent microscopy after being stained with calcofluor white. 

Representative images show cells not treated with NZ (A) or treated with NZ at 3 μM (B), 6 μM (C), 

100 μM (D), and 3 μM (E), scale bars indicate 20 μm. (F) The distribution of the size of Bd cells in NZ 

treated population was heterogeneous. (D) The diameter of Bd cells were significantly greater in NZ-

treated cells than untreated cells, and the 100 μM NZ treatment had the greatest effect on size; 

ANOVA with Tukey post-hoc test, different letters indicate groups that with significantly different cell 

diameters: p<0.01. Mean diameters (±SEM) are shown.  N=365 for the no NZ control, N=54 for the 

200 μM NZ treatment, N=34 for the 100 μM NZ treatment, N=48 for the 6 μM NZ treatment, N=54 

for the 3 μM NZ treatment. (Bd cells came from assays to determine the effects NZ on Bd growth as in 

Fig. 4-4A run by Whitney Holden.) Data published in Holden et al., 2014. 
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three days, but the sizes of the cells became much larger reaching up to 40 μm in diameter (Fig. 

4-6 F). The cell diameters were the largest in the 100 μM NZ treatment (Fig. 4-6 G), but this was 

likely due to increased cell lysis at the highest concentration.  

 Batrachochytrium dendrobatidis possesses at least 8 chitin synthases (Rosenblum et al., 

2008) which probably help to limit the effects of NZ (Gaughran et al., 1994). Despite being able 

to still synthesize some chitin, B. dendrobatidis growth is inhibited by NZ.  NZ-treatment causes 

B. dendrobatidis cells to enlarge suggesting that cell-wall integrity is lost allowing osmotic 

pressure to cause cells to swell. NZ-treated B. dendrobatidis cells are more susceptible to 

osmotic lysis (Holden et al., 2014). Batrachochytrium dendrobatidis cells in a culture with NZ 

appear to have different sensitivities to the drug suggesting that B. dendrobatidis has some 

resistance to NZ. Some of this resistance may come from expressing chitin synthases with less 

NZ sensitivity (Gaughran et al., 1994). Batrachochytrium dendrobatidis cells treated with NZ 

also tended to clump together in culture. The colonial formations of B. dendrobatidis may help 

resist NZ by providing greater structural support and potentially limiting local concentrations of 

NZ. 

To test the hypothesis that lymphotoxic factors are components of the B. dendrobatidis 

cell wall, NZ was used to disrupt cell walls, and the inhibition of lymphocytes by NZ-treated B. 

dendrobatidis was assayed.  Batrachochytrium dendrobatidis cells were treated with sub-lethal 

concentrations of NZ (10 and 20 μM) before mixing with X. laevis splenocytes or preparing 

supernatants. Batrachochytrium dendrobatidis cells pre-treated with NZ before co-culturing with 

splenocytes were much less inhibitory than B. dendrobatidis cells not treated with NZ (Fig. 4-7 

A). Supernatants from B. dendrobatidis that had been pre-treated with NZ were also significantly 

less inhibitory than supernatants from B. dendrobatidis that had not received NZ treatment (Fig.  
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Fig. 4-7. NZ treatment of B. dendrobatidis (Bd) cells reduces the capacity of Bd to inhibit 

lymphocyte proliferation. Splenocytes were cultured alone or stimulated with PHA. PHA-

stimulated splenocytes were mixed with (+) or without (-) 10
5 
Bd cells (A) or 5X Bd Sup (B) 

that had (+) or had not (-) been pre-treated with 20 µM (A) or 5 µM (B) NZ. Proliferation was 

quantified by 
3
H-thymidine uptake and CPM were averages ± SEM of five or more replicate 

wells per treatment.  Significant differences between treatments grouped by bars using a 

Student’s t-test (with correction for multiple tests in the same experiment), **p<0.01.  Panels 

are representative of three similar experiments. 
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4-7 B). The significant decrease in impairment by NZ-treated B. dendrobatidis cells in co-culture 

compared to supernatants from NZ-treated supernatants was likely due to differences in NZ 

treatment.  Batrachochytrium dendrobatidis cells that were co-cultured with splenocytes were 

pre-treated for three days with 20 μM NZ. Because of the large volumes necessary for 

supernatant preparation, B. dendrobatidis cells were treated with 10 μM NZ and only for 24 

hours.  The higher concentration and duration of treatment on B. dendrobatidis cells co-cultured 

with splenocytes explains the difference in the lymphocyte effects between B. dendrobatidis 

cells and B. dendrobatidis supernatants. Because NZ disrupted the cell wall and reduced the 

capacity of B. dendrobatidis to inhibit lymphocytes, these data further suggest that the 

lymphotoxic factors are associated with the B. dendrobatidis cell wall. 

The major components of most fungal cell walls are carbohydrates (Klis et al., 2002; 

Hardinson & Brown, 2012). The base of the fungal cell wall is chitin. Most fungi have an 

intermediate layer of β-glucan composed of β-1,3-glucan with β-1,6 branches. Covering this β- 

glucan layer is a complex network of highly mannosylated proteins. Some fungi even have a 

polysaccharide coating to this classical cell wall. Aspergillus species have exopolysaccharides on 

the surface of cell walls (Latgé, 2012). Several Cryptococcus species secrete a capsule which 

surrounds the pathogenic yeasts (De Jesus et al., 2010). Histoplasma capsulatum and 

Paracoccidioides brasiliensis can coat their cell walls with α-glucan to mask β-glucan PAMPs 

(Rappleye et al., 2007; Puccia et al., 2011).  

To investigate whether common components of fungal cell walls do contribute to the 

inhibition of lymphocyte proliferation, B. dendrobatidis supernatants were digested with a 

cocktail of lysing enzymes from Trichoderma harzianum, called Glucanex
TM

.   Glucanex
TM

 is 

frequently used to digest yeast cell walls and contains β-glucanases, chitinases, and proteases to 
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digest the major components of fungal cell walls (Lorito et al., 1993; Rana et al., 2003). 

Digestion of carbohydrates was quantified by the DNSA method (Miller, 1959) using laminarin, 

a soluble β-glucan (Rioux et al., 2010), as a positive control for digestion with Glucanex
TM

. 

Digestion of laminarin caused a very large increase in the reducing sugars (digested from the 

polysaccharide), but Glucanex
TM

 did not digest much carbohydrate in B. dendrobatidis 

supernatants (Fig. 4-8 A). Not surprisingly, Glucanex
TM

-treated supernatants were still very 

inhibitory to lymphocyte proliferation (Fig. 4-8 B, C). Because Glucanex
TM

 digestion had little to 

no effect on B. dendrobatidis supernatants, this suggests that the common carbohydrate 

components of fungal cell walls, chitin and β-glucan, are not responsible for lymphocyte toxicity. 

Chitin and β-glucan are probably not even present in B. dendrobatidis supernatants because there 

was so little reducing sugar after digestion. Also, β-glucans are not predicted to be present in B. 

dendrobatidis cell walls because the B. dendrobatidis genome lacks genes with homology to 

fungal β-1,3 and β-1,6-glucan synthases (Ruiz-Herrera & Ortiz-Castellanos, 2010). Also, chitin 

is not likely to be present in supernatants because chitin is very insoluble in water (Pillai et al., 

2009), and the components of the B. dendrobatidis supernatants are quite soluble. 

 Glucanex
TM

 also contains proteases, suggesting that the inhibitory factors present in B. 

dendrobatidis supernatants are not proteins. The protease activity of Glucanex
TM

 was not tested, 

and the exact protease composition of Glucanex
TM

 is not defined. Therefore, this is not definitive 

evidence that the factors are not protein, but this question is addressed later in this chapter. 

Even though B. dendrobatidis lacks genes with homology to β-glucan synthases in higher 

fungi (Ruiz-Herrera & Ortiz-Castellanos, 2010), β-glucans may still be present in the B. 

dendrobatidis cell wall. If β-glucans were present in the B. dendrobatidis cell wall, they would 

likely activate immune responses via the recognition by Dectin-1 (Hardinson & Brown, 2012).  
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  Fig. 4-8. Treating B. dendrobatidis (Bd) supernatants (Sup) with lysing enzymes (β-glucanases, 

chitinases, and other enzymes) from Trichoderma harzianum (Glucanex
™

) does not reduce inhibition 

of lymphocyte proliferation; laminarin also does not reduce lymphocyte proliferation. (A) Bd Sup 

(100X) or the soluble β-glucan laminarin (10 mg/mL) were treated with 2 mg/mL of Glucanex
™

 for 24 

hours and reducing sugars were quantified using the DNSA method. **Significantly less reducing 

sugar by two-tailed, paired t-test p<0.01. Data show mean reducing sugar (± SEM) from four 

independent experiments. (B-C) Bd Sup or control buffer was incubated with or without Glucanex
™

 

for 24 hours, boiled, and lyophilized. These samples were re-suspended in L-15 to achieve a final 

concentration of 5X (B) or 2.5X (C) and mixed with X. laevis lymphocytes stimulated with PHA. 

**Significantly reduced 
3
H-thymidine uptake compared to the corresponding control (no supernatant) 

treatment by p<0.01 (ANOVA with Tukey test). There was no significant difference in lymphocyte 

proliferation (n. s.) between the Glucanex™ and no Glucanex™ treatments.  (D) Laminarin does not 

inhibit X. laevis lymphocytes. Laminarin (0-400 μg/ml) was re-suspended and mixed with X. laevis 

splenocytes stimulated with PHA. None of the laminarin treatments showed significantly different 
3
H-

thymidine uptake from the no laminarin control (ANOVA with Tukey test). (B-D)Proliferation was 

quantified by 
3
H-thymidine uptake, and CPM are averages ± SEM of a least five replicate wells and 

representative of three (D) or four (B-C) replicate experiments. 
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However, Dectin-1 requires recognition of particulate β-glucan for downstream signaling, and 

soluble β-glucan blocks Dectin-1 receptors (Goodridge et al., 2011). Although Dectin-1 is 

primarily expressed on phagocytes (Goodridge et al., 2009), soluble β-glucan could possibly 

interfere with amphibian lymphocyte proliferation. To test whether soluble β-glucan does 

interfere with lymphocyte proliferation, laminarin was incubated with PHA-stimulated X. laevis 

splenocytes. Laminarin is a soluble β-1,3-glucan with some β-1,6 branching produced by the 

algae Laminarina digitata (Rioux et al., 2010). Laminarin does not inhibit proliferation of X. 

laevis lymphocytes (Fig. 4-8 D). The β-glucans in laminarin are very similar to the β-glucans 

present in fungal cell walls (Klis et al., 2002), so this potential, but unlikely, component of the B. 

dendrobatidis cell wall does not appear to inhibit lymphocyte responses. Components of B. 

dendrobatidis supernatants appear to be water soluble, so chitin which is not water soluble (Pillai 

et al., 2009) was not investigated in a similar manner.  

 

Batrachochytrium dendrobatidis factors are resistant to high heat and strong acid 

conditions. 

 In order to better define the nature of the lymphotoxic B. dendrobatidis factors, B. 

dendrobatidis supernatants were treated in ways designed to inactivate the factors. B. 

dendrobatidis supernatants were incubated at 100° C for 30 minutes. Boiling of B. dendrobatidis 

supernatants did not reduce the inhibition of lymphocyte proliferation (Fig. 4-9 A, B). Heating 

the supernatant either after (Fig. 4-9 A) or before (Fig. 4-9 B) lyophilization appeared to have the 

same effect. There was a slight increase in inhibition by boiled supernatants potentially 

indicating that heating may induce a conformational or chemical change in the inhibitory factors 

to become better inhibitors. This effect, however, was not seen when boiled supernatants were 



170 
 

exposed to Jurkat cells (see Fig. 2-16 in Chapter II). Supernatants were also treated with a strong 

acid (2% TFA). After the acid was dialyzed out of samples, the supernatants still inhibited 

lymphocyte proliferation (Fig. 4-9 C). These experiments show that the lymphotoxic factors are 

resistant to high heat and acid, suggesting that they are very stable and not likely to be proteins, 

which typically are denatured by heat and acid. 

 Batrachochytrium dendrobatidis cells were also treated under various temperature 

conditions to better understand the nature of the lymphotoxic factors and how they might be 

released. Batrachochytrium dendrobatidis supernatants were prepared at 21° (optimal growth 

temperature of B. dendrobatidis), 4°, 26°, and 37° C. Viability of B. dendrobatidis was 

determined by culturing a subset of cells after incubation, and B. dendrobatidis cells survived all 

treatments except for 37° C.  Batrachochytrium dendrobatidis has a low thermal maximum 

temperature and can be cleared from amphibians at 37° C (Woodhams et al., 2003), so this 

temperature was the highest temperature at which B. dendrobatidis was incubated. Incubation at 

4° C greatly decreased the amount of factor shed from B. dendrobatidis cells into supernatants 

(Fig. 4-10 A). Supernatants incubated at 26° C, the optimal temperature for X. laevis splenocytes, 

were significantly more inhibitory than supernatants incubated at 21° C (Fig. 4-10 A, B). 

Incubating B. dendrobatidis cells at 37° C killed the B. dendrobatidis (determined by culturing 

after supernatant preparation) and still caused greater release of inhibitory factors compared to 

incubation at 21° C (Fig. 4-10 A). These results indicate that release of factors from B. 

dendrobatidis is temperature dependent but not necessarily dependent on viable cells. If the 

lymphotoxic factors are associated with the B. dendrobatidis cell wall, as hypothesized, then 

higher temperatures may promote the deterioration of the cell wall causing more lymphotoxic 

factors to shed from the wall. 
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Fig. 4-9.  Bd factors are resistant to heat and 

acid. Bd supernatants (Sup) were incubated at 

100° C for 30 minutes either after (A) or before 

(B) lyophilization. X. laevis splenocytes were 

cultured alone or stimulated with PHA.  (A) 

Splenocytes were exposed to water only (w) or 

concentrated Bd Sup (5X) that had (+) or had 

not (-) been boiled. Significant differences 

between supernatant and control treatment by 

Student’s t-test (with correction for multiple 

tests in the same experiment), **p<0.01. (B) 

Sup that had or had not been boiled and a water 

control that had been boiled were re-suspended 

into splenocyte culture at different 

concentration. Sup significantly decreased 

proliferation, but heat treatment did not 

significantly affect the capacity of Sup to 

inhibit proliferation. (C) Lyophilized Bd Sup 

and a water control (H2O) containing no Bd 

factors were mixed with 2% TFA and 

incubated at 37°C for 30 minutes.  Control 

water and supernatant lacking TFA were also 

incubated at 37°C for 30 minutes.  Following 

this treatment, the TFA-treated Sup and the 

TFA-treated water control were dialyzed to 

remove TFA. Samples were lyophilized again 

and re-suspended in L-15 before being mixed 

with splenocytes stimulated with PHA.  Both 

treated and untreated Bd Sup decreased cell 

proliferation significantly compared to 

controls, **p<0.001 by a Student’s t-test with 

correction for multiple tests. 



172 
 

 

 

  

Fig. 4-10. Temperature greatly impacts the release of lymphotoxic factors from B. dendrobatidis (Bd). 

(A) Bd supernatants (Sup) were prepared at different temperatures and tested on PHA-stimulated X. 

laevis splenocytes at 5X. Mean relative inhibition (±SEM) of proliferation from three or more 

experiments is shown. The 4° C incubated Sup was significantly less inhibitory than the supernatants 

prepared at warmer temperatures. (B) A representative experiment from (A) comparing supernatants 

prepared at 21° or 26°. (C) Boiled extracts of mixed Bd culutures (Spor Extract) are much more 

inhibitory on X. laevis lymphocyte proliferation than supernatants prepared from the same culture 

(Spor Sup). Extracts from zoospores (Zsp) did not significantly inhibit proliferation. Control treatment 

was a boiled water control. (D) Extracts and Sup from Bd or H. polyrhiza (Hp) were mixed in culture 

with Jurkat cells in a proliferation assay. The control treatment was Jurkat cells in RPMI. (B-D) 

Statistical comparisons analyzed with ANOVA with Tukey post-hoc test: **p<0.01, significantly 

decreased proliferation compared to the control (no chytrid Sup or extract); 
##

p<0.01, significant 

difference between treatments under brackets. 
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An alternative hypothesis to explain why higher temperatures increase the release of inhibitory 

factors is that the lymphotoxic factors are produced under stress conditions. To test this 

hypothesis, B. dendrobatidis cells were washed, re-suspended in water, and boiled for two hours. 

Placing B. dendrobatidis cells into a boiling water bath would limit the capacity of a stress 

response to activate the production or release of lymphotoxic factors. The cell-free factors from 

this boiled extraction of B. dendrobatidis cells was collected, lyophilized, and incubated with 

lymphocytes. Boiled extracts from mature B. dendrobatidis cells were significantly better 

inhibitors of X. laevis lymphocyte proliferation than the 21° C supernatants (Fig. 4-10 C). Boiled 

B. dendrobatidis extracts also inhibited Jurkat cell proliferation better than B. dendrobatidis 

supernatants (Fig. 4-10 D). These data provide further evidence to suggest that the lymphotoxic 

factors are components of the B. dendrobatidis cell wall and that they are very stable. H. 

polyrhiza cells were also boiled to prepare extracts. The extracts from H. polyrhiza were not as 

inhibitory as B. dendrobatidis extracts but were still very inhibitory (Fig. 4-10 D). Boiling cells 

may release more than just the lymphotoxic factors from B. dendrobatidis and H. polyrhiza cells 

causing both to be inhibitory to lymphocytes. H. polyrhiza may also produce the same 

lymphotoxic factors as common cell wall components, but these factors do not appear to be 

released unless the cell wall is completely dissociated by heat treatment. 

Because the factors responsible for inhibition of lymphocytes are very stable, they are not 

likely to be RNA. RNA is typically very unstable (Grunbert-Manago, 1999). To confirm that 

RNA is not responsible for lymphocyte inhibition, B. dendrobatidis supernatants were digested 

with RNase A, an endoribonuclease (Raines, 1998). As expected, RNase A had no effect on the 

capacity of B. dendrobatidis supernatants to inhibit Jurkat cells (Fig. 4-11); therefore, the 

inhibitory factors are not RNA. 
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The lymphotoxic factors do not appear to be proteins. 

 The lymphotoxic factors are resistant to up to two hours of  high heat and are resistant to 

acid treatment. Most proteins would be denatured under these conditions of extreme heat and 

acid, but very stable proteins might be able to resist these conditions. Batrachochytrium 

dendrobatidis supernatants contain a substantial amount of protein. A B. dendrobatidis 

supernatant from JEL197 has about 265 (±9.3, SEM) μg/mL of protein at 1X concentration, as 

determined by MicroBCA. Resolution of B. dendrobatidis supernatants by polyacrylamide gel 

electrophoresis (PAGE) indicated that there are many proteins of various sizes (Fig. 4-12 A). To 

determine whether stable proteins could be the lymphotoxic factors, B. dendrobatidis 

supernatants were digested with proteinase K conjugated to agarose beads (Fig. 4-12). By 

conjugating proteinase K to beads, the protease can be removed before incubating supernatants 

with X. laevis splenocytes. Proteinase K digested all the proteins visible by silver stain of a 

PAGE gel (Fig. 4-12 A), yet the supernatants retained inhibitory activity (Fig. 4-12 B). Oddly, 

both the supernatants and buffer controls treated with proteinase K beads increased in their 

capacity to inhibit lymphocyte proliferation. Because the relative inhibition by B. dendrobatidis 

supernatants was the same this does not suggest that there is a protein component of the 

inhibitory factors. The best explanation for this effect was that the calcium buffer needed for 

proteinase K to digest protein was somewhat inhibitory to lymphocyte proliferation. Proteinase 

K uses calcium as a cofactor, so it is likely that when the beads were removed from samples 

calcium was also removed from the medium. When supernatants were later digested at higher 

concentrations and lyophilized, this effect was no longer present probably due to the dilution 

effect of the buffer. 
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  Fig. 4-11. The B. dendrobatidis (Bd) lymphotoxic factors are not RNA. Bd supernatants (Sup) 

or buffer controls (No Sup) either received RNase A or buffer (no RNase) treatment 

overnight. Samples were diluted in complete RPMI in Jurkat cell culture at final 

concentration between 1X and 8X. After three days in culture, Jurkat cell growth and viability 

was assayed by the MTT assay. “Control” treatment was Jurkat cells without any treatment in 

RPMI. A negative control treatment of 12.5 μg/ml etoposide was used to kill Jurkat cells. Bd 

Sup significantly inhibited Jurkat cells compared to the “No Sup” control, **p<0.01. There 

was no significant effect of RNase A on the inhibition of Sup. ANOVA with Tukey post-hoc. 

Data show the mean absorbance reading at 570 nm (±SEM) of six replicate wells. The data 

shown is representative of three experiments. 
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Fig. 4-12. B. dendrobatidis (Bd) lymphotoxic factors are resistant to proteases. (A) Bd 

supernatants were incubated at 4°C alone (Normal Sup), 37°C alone (Control Sup), or 37°C 

with proteinase K conjugated to agarose beads (Prot. K Sup).  Proteinase K-conjugated 

beads were also incubated in buffer as an added control (Prot. K control).  Beads were 

removed by centrifugation.  Supernatant treatments and controls were resolved by SDS-

PAGE and visualized by silver stain.  Molecular weight standards are indicated on the left 

side of the gel image. The silver stain is representative of three independent experiments.   

(B) PHA-stimulated X. laevis splenocytes were incubated with control buffer (b) or with Bd 

Sup (5X) previously treated with (+) or without (-) proteinase K-conjugated agarose beads 

(Prot. K). 
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Size fractionation of B. dendrobatidis supernatants 

 Crude size separation using centrifugal columns was used to determine the approximate 

molecular size of B. dendrobatidis factors. This technique was originally used to concentrate B. 

dendrobatidis supernatants and investigate the approximate size of factors. Using columns with 

differential size cut-offs of 10, 30, 50, and 100 kDa, the inhibitory activity of supernatants was 

found in two size classes: less than 10 kDa and greater than 50 kDa (Fig. 4-13 A). Both fractions 

50-100 kDa in size and >100 kDa in size were very inhibitory to lymphocyte proliferation. This 

result could indicate that a single factor is present near 100 kDa and was split between fractions 

or that there are multiple factors in the two fractions. Because the fractions were concentrated 

differently, the relative inhibition could not be compared easily among fractions. The large and 

small fractions (using a 10 kDa separation) were lyophilized and re-suspended in volumes 

relative to the original volume sent through the column to compare the relative inhibition of the 

smaller and larger molecules. X. laevis lymphocytes were inhibited by both the large and small 

molecular weight fractions, but the large molecular weight fraction showed greater inhibition 

(Fig. 4-13 B). The factors present in the small fraction may be fragments of the same inhibitory 

factors present in the larger molecular weight fraction. The factors could exist in a large complex 

and be inhibitory whether or not the complex is still intact. A large molecule inhibitory factor 

may also be fragmented into smaller molecules that have the same effect. Whether there are two 

different groups of inhibitory factors or there is a single factor remains to be determined. 
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Fig. 4-13. Crude size separation of B. dendrobatidis (Bd) supernatants (Sup) with centrifugal 

columns indicates two size classes of inhibitory factors. (A) Bd Sup was passed through 

centrifugal columns to separate into fractions of different molecular size. Components in each 

size fraction were concentrated, so these samples were not lyophilized before mixing with 2X L-

15 into culture with PHA-stimulated X. laevis splenocytes. Relative inhibition (±SEM) of 

lymphocyte proliferation from each fraction is shown. (B) Bd Sup was passed through a 10 kDa 

cut-off centrifugal column, and fractions were lyophilized. Fractions were re-suspended in L-15 

in one-tenth or one-fifth of the volume of the Sup originally placed in the column for final 

concentration of 10X and 5X in X. laevis splenocyte culture (with PHA stimulation). Data show 

mean CPM (±SEM). Supernatant fractions at both concentrations were significantly more 

inhibitory to lymphocyte proliferation than water controls fractionated with 10 kDa cut-off 

columns, **p<0.01. At 5X concentration, the greater than (>) 10 kDa fraction was significantly 

more inhibitory than the less than (<) 10 kDa fraction, **p<0.01. Statistical comparisons among 

treatments were made by a single-factor ANOVA with Tukey post-hoc test.  
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Mass spectrometry analysis of supernatants 

 Batrachochytrium dendrobatidis and H. polyrhiza supernatants were analyzed by 

MALDI/MS. Unique peaks within the B. dendrobatidis spectra were noted as potential 

candidates for the lymphotoxic factor. Both boiled and control B. dendrobatidis supernatants 

were analyzed by MALDI/MS. Thirty-one unique peaks for B. dendrobatidis supernatants were 

identified by MALDI/MS. In positive ion mode, 19 unique peaks to B. dendrobatidis were 

identified (Table 4-1). Fourteen of these were in both boiled and unboiled B. dendrobatidis 

supernatants, but three were unique to the normal supernatant, and two were unique to the boiled 

supernatant. In negative ion mode, 11 unique peaks for B. dendrobatidis supernatants were 

identified (Table 4-2). Six of these peaks were in both B. dendrobatidis supernatants, and five 

were unique to the B. dendrobatidis supernatant that had not been boiled. Fragmentation spectra 

were obtained from four of the unique peaks. The fragmentation patterns could only predict 

identity of one of the peaks. In negative ion mode, one of the peaks (m/z 506.2) most likely 

represents ATP (Horai et al., 2010). These spectra may help identify the lymphotoxic factors, but 

also would be beneficial for understanding unique molecules released by B. dendrobatidis.  

 Supernatants were also analyzed by LC/MS to identify unique components from B. 

dendrobatidis supernatants, and to attempt to discern whether or not unique lipid components are 

present in B. dendrobatidis supernatant. LC/MS identified three unique peaks in positive ion 

mode and two unique peaks in negative ion mode present in B. dendrobatidis supernatants and 

absent or diminished in H. polyrhiza supernatants (Fig. 4-14). Of the unique peaks, only one (m/z 

345) was found by MALDI/MS. Certain components of B. dendrobatidis supernatants may be 

only detectable with different mass spectrometry techniques. More unique B. dendrobatidis   
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 Unique to 

unboiled Bd Sup 

spectra 

Unique to boiled 

Bd Sup spectra 

Unique to Bd Sup 

spectra  

(boiled or not) 

  

m/z TOF LTQ FT TOF LTQ FT TOF LTQ FT accurate mass fragment ions 

172.6         x 172.63965  

250.3 x x x       250.09115  

254.3       x x x 254.15880  

294.1         x 294.16567  

298.3  x x       298.09529  

300.2         x 300.22661  

302.2         x 302.24228  

304.2         x 304.17533  

313.2         x 313.20820  

314.1      x    314.09055  

345.7       x x x 345.28536 189, 286, 130, 

175, 314 

399.3 x x x       399.14506 250, 298 

443.2      x    443.20547  

473.4         x 473.38299  

542.1         x 542.07145  

738.8       x x   474, 721, 456, 

500, 482, 584, 

679, 708 

3538.1        x    

3812.8       x x    

8542.3       x     

 

 

 

 

 

Table 4-1. Unique peaks to B. dendrobatidis (Bd) supernatant spectra from MALDI/MS in 

positive ion mode. Bd and H. polyrhiza supernatants were analyzed with time-of-flight 

(TOF), linear trap quadrupole (LTQ), or Fourier transformation ion cyclotron resonance (FT) 

MALDI/MS. Accurate masses were obtained with FT. Fragmentation spectra obtained are 

noted.  (MALDI/MS was completed by Michelle Reyzer in the Vanderbilt Mass 

Spectrometry core.) 
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 Unique to unboiled 

Bd Sup spectra 

Unique to boiled 

Bd Sup spectra 

Unique to Bd Sup 

spectra (boiled or not) 

  

m/z LTQ FT LTQ FT LTQ FT accurate mass fragment ions 

286.1     x    

426.0  x     426.01976  

465.5     x    

506.2     x   408 

540.0  x     540.04995  

648.2     x    

650.0  x     650.10013  

707.3     x    

729.1  x     729.09261  

783.0  x     783.01101  

784.1      x 784.14594  

 

  

Table 4-2. Unique peaks to B. dendrobatidis (Bd) supernatant spectra from MALDI/MS 

in negative ion mode. Bd and H. polyrhiza supernatants were analyzed with linear trap 

quadrupole (LTQ) or Fourier transformation ion cyclotron resonance (FT) MALDI/MS. 

Accurate masses were obtained with FT. Fragmentation spectra obtained are noted. 

(MALDI/MS was completed by Michelle Reyzer in the Vanderbilt Mass Spectrometry 

core.) 
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supernatant peaks were found with MALDI/MS than LC/MS probably because additional 

techniques were used to analyze supernatants with MALDI/MS in comparison with LC/MS. The 

major peak unique to B. dendrobatidis spectra and absent from H. polyrhiza spectra in LC/MS 

analysis was m/z 489. It was suggested that this peak may correspond to the T2 mycotoxin 

(Lattanzio et al., 2012). The T2 mycotoxin is a lipid toxin produced by Fusarium species that 

induces apoptosis of leukocytes (Li et al., 2011). To determine if the m/z 489 component was T2, 

it was subjected to tandem mass spectrometry (Fig. 4-15). Fragmentation analysis of m/z 489 did 

not correspond to the fragmentation of T2, and the fragmentation spectra did not reveal the 

chemical structure of this compound. LC/MS analysis and tandem mass spectrometry did not 

indicate presence of any lipid fragments, suggesting an absence of lipids from B. dendrobatidis 

supernatants.  

 

Small molecule analysis of B. dendrobatidis supernatants 

 Thomas Umile and Kevin Minbiole at Villanova University identified several small 

metabolite components present in B. dendrobatidis cultures extracted with ethyl acetate (Fig. 4-

16 A). Two of these metabolites were identified by NMR as cyclo-L-phenylanalanyl-L-proline 

[cyclo(Phe-Pro)] and cyclo-L-histidyl-L-proline [cyclo(His-Pro)]. Both of these are in a class of 

molecules called diketopiperazines which are cyclized dipeptides (Martins & Carvalho, 2007).  

Cyclo(Phe-Pro) is a metabolite produced by fungi and bacteria (Trigos et al., 1997; Stöm 

et al., 2002) and has been shown to have antibiotic effects on various bacteria. Cyclo (Phe-Pro) 

induces apoptosis in human colon cancer cells at 5-10 mM (Brauns et al., 2005). Cyclo(Phe-Pro) 

inhibited X. laevis splenocyte proliferation at 50 μM and completely inhibited proliferation at 

10mM (Fig. 4-16 B). Because the inhibitory concentrations of cyclo(Phe-Pro) are near   
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Fig. 4-14. LC/MS analysis of 

H. polyrhiza (Hp) and B. 

dendrobatidis (Bd) 

supernatants (Sup).  

Lyophilized Hp and Bd Sups 

were re-suspend in water or 

90% methanol/10% 

chloroform and analyzed by 

LC/MS in positive (A) or 

negative (B) ion modes. Peaks 

present Bd spectra in both 

solvents and absent or greatly 

diminished in Hp spectra are 

indicated with red arrows. 

(Analysis completed by 

Pavlina Ivanova.) 
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NL: 3.54E7

bd 100x H2O MeOH 489 
frag pos#2-75  RT: 
0.02-0.77  AV: 74 T: + p 
Full ms2 489.20@-10.00 [ 
50.00-500.00] 

NL: 5.87E7

11-19 bd 100x MeOH H2O 
CE 20#2-94  RT: 0.01-0.96 
AV: 93 T: + p Full ms2 
489.20@-20.00 [ 
50.00-489.00] 
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CE 50#2-94  RT: 0.01-0.96 
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Fig. 4-15. Tandem mass spectrometry analysis of m/z 489 present in B. dendrobatidis (Bd) 

supernatants. The compound corresponding to m/z 489 on LC/MS spectra of Bd 

supernatants (Fig. 4-14) was exposed to different collision energies (CE, in electron volts) to 

view the fragmentation. (Analysis completed by Pavlina Ivanova.) 
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Fig. 4-16. Small molecule analysis of B. dendrobatidis (Bd).  (A) HPLC analysis by C18 of ethyl 

acetate Bd extracts. Two metabolites isolated by HPLC were identified structurally by NMR as 

cyclo(Phe-Pro) and cyclo(His-Pro). (B-C) X. laevis splenocytes (Spl) were cultured alone or with 

PHA. PHA-stimulated Spl were incubated with increasing numbers of cyclo(Phe-Pro) (B) or 

cyclo(His-Pro) (C). Data show mean CPM (±SEM) of at least five replicate wells and are 

representative of at least two experiments. Significantly decreased proliferation compared to the 

PHA-stimulated splenocytes without treatment, **p<0.01 by ANOVA with Tukey post-hoc test.  

(Data in panel A was obtained from Thomas Umile at Villanova University.) 
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concentrations known to inhibit cancer cells, it is a candidate to be the molecule responsible for 

lymphocyte impairment in B. dendrobatidis supernatants.  

Cyclo(His-Pro) is a small molecule found to be present in many tissues in humans and 

mice (Prosada, 1988; Minelli et al., 2012). Some evidence suggests that cyclo(His-Pro) is 

protective to oxidative stress by activating Nrf2 which promotes antioxidant responses (Minelli 

et al., 2009; Ma, 2013). Cyclo(His-Pro) may have effects on immune responses as well because 

Nrf2 activation by cyclo(His-Pro) inhibits NF-κB (Minelli et al., 2012). The physiological 

concentration of cyclo(His-Pro) is near 50 μM in human tissue (Prasad, 1988), and this 

concentration of cyclo(His-Pro) inhibited NF-κB nuclear accumulation and decreased 

inflammation in mice (Minelli et al., 2012). Due to the importance of NF- κB to lymphocyte 

activation (Sun & Andersson, 2002), cyclo(His-Pro) was also a candidate as the factor that 

impaired lymphocytes. Cyclo(His-Pro), however, did not have a significant impact on X. laevis 

lymphocyte proliferation at relevant concentrations (Fig. 4-16 C). Cyclo(His-Pro) did inhibit 

lymphocyte proliferation at concentrations greater than 5 mM, but these concentration are too 

high to implicate cyclo(His-Pro) as one of the B. dendrobatidis lymphotoxic factors. 

 A similar C18 HPLC analysis was performed on supernatants from H. polyrhiza, B. 

dendrobatidis whole cultures, and B. dendrobatidis zoospores. The B. dendrobatidis supernatant 

only appeared to share one of the components found in the ethyl acetate extracts (Fig. 4-17 A). 

Neither cyclo(Phe-Pro) nor cyclo(His-Pro) appear to be present in B. dendrobatidis supernatants. 

The single peak shared between B. dendrobatidis supernatant and ethyl acetate extract was eluted 

at 8.8 minutes and was called Bd1. This molecule was present in H. polyrhiza supernatants as 

well, but at about one-fourth the intensity as indicated by lower UV absorbance (Fig. 4-17 B). 

Some evidence indicates that H. polyrhiza releases some inhibitory components which need to be  
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Fig. 4-17. Small molecule analysis of B. dendrobatidis (Bd) supernatants.  (A-C) HPLC analysis 

by C18 of supernatants from Bd whole cultures (A), H. polyrhiza whole cultures (B), or enriched 

Bd zoospores. The largest peak in (A) and (B) at 8.8 minutes, Bd1, was identified as L-

tryptophan. The next peak at 8.9 minutes was named Bd1’. (D) One of the components of Bd 

supernatant is an oxidized form of tryptophan, L-kynurenine. X. laevis splenocytes (Spl) were 

cultured alone or with PHA. PHA-stimulated splenocytes were incubated with physiologically 

relevant concentrations of L-kynurenine. Data show mean CPM (±SEM) of at least five replicate 

wells and are representative of at three experiments. L-kynurenine did not inhibit PHA-induced 

lymphocyte proliferation, p>0.05, single factor ANOVA. (Experiments in panels A-C were 

completed by Thomas Umile.) 
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concentrated between four and five-fold to inhibit lymphocytes to the same degree as B. 

dendrobatidis supernatants. Therefore, H. polyrhiza may produce lymphotoxic factors as well 

but at a much lower concentration. A second component eluting nearly immediately after Bd1, at 

about 8.9 minutes, was present in B. dendrobatidis supernatant with a very small peak in the H. 

polyrhiza supernatant (Fig. 4-17 A, B). This molecule was named Bd1’. Supernatants from B. 

dendrobatidis zoospores were also analyzed (Fig. 4-18 C). Two peaks with elution times similar 

to Bd1 and Bd1’ were present in the zoospore supernatant but the UV-visual spectra of these 

components did not match Bd1 or Bd1’. The zoospore supernatant did have a component elute at 

16.1 minutes that was not present in supernatants from mature B. dendrobatidis or H. polyrhiza.  

 The component of the B. dendrobatidis and H. polyrhiza supernatants termed Bd1 was 

identified as the amino acid L-tryptophan. Tryptophan by itself is not likely to impair 

lymphocytes, but different oxidation and metabolic products of tryptophan are known to 

decrease inflammatory responses (Cheng et al., 2010). Interestingly, boiling B. dendrobatidis 

supernatants causes a shift in the relative abundance of Bd1 (tryptophan) and Bd1’ suggesting 

that Bd1’ is a modified form of tryptophan. Work is continuing to attempt to identify Bd1’. 

 One of the metabolic products in tryptophan metabolism is L-kynurenine. L-kynurenine 

is an oxidation product of L-tryptophan that is naturally produced in eukaryotes from tryptophan 

by the enzyme indoleamine 2,3-dioxygenase (Mellor, 2004; Belladonna et al. 2007). L-

kynurenine is an important inflammatory suppressor and may contribute to tolerance of fungi 

along mucosal surfaces to prevent immunopathology (Romani, 2011). Batrachochytrium 

dendrobatidis may have adapted to use tryptophan metabolism to dampen amphibian immune 

responses. L-kynurenine was identified as one of the small molecule metabolites present in B. 

dendrobatidis supernatants but is not Bd1’. The concentration of L-kynurenine in B. 
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dendrobatidis supernatant was low, about 60 ppb in 1X supernatant, but was about 10-fold more 

concentrated in B. dendrobatidis supernatants than H. polyrhiza supernatants.  In human serum, 

L-kynurenine concentrations range between 2.1 and 7.6 μM (Widner et al., 1997), and serum 

concentration of L-kynurenine are elevated in patients with ovarian cancer (de Jong et al., 2011). 

In mice, typical serum concentrations of L-kynurenine range between 2 and 3 μM but increase to 

6 μM when mice are injected with LPS (Wang et al., 2010). Xenopus laevis splenocytes were 

treated with the same physiological range of L-kynurenine without an effect on PHA-induced 

proliferation (Fig. 4-17 D). L-kynurenine is present at low concentrations in B. dendrobatidis 

supernatants and does not impair lymphocyte proliferation at greater than 20-fold normal human 

and murine serum concentrations; therefore, L-kynurenine in B. dendrobatidis supernatants is 

probably not a lymphotoxic factor. L-kynurenine may play a role in promoting Treg responses 

over inflammatory Th17 responses in chytridiomycosis, but it does not impair lymphocyte 

proliferation. 

 

Analysis of B. dendrobatidis supernatants with solid phase extraction chromatography 

 The components of B. dendrobatidis supernatants appear to be polar. The manner in 

which supernatants are prepared tends to enrich for soluble factors present in the water removed 

from B. dendrobatidis cells. Lyophilized supernatants re-suspend easily in water or media also 

suggesting that they are composed mostly of polar molecules. Culture supernatants were also 

mixed with organic solvents to obtain components of different polarity from B. dendrobatidis, 

and the organic phase of this extraction did not contain molecules that inhibited lymphocyte 

proliferation (data not shown). To further analyze the polarity of lymphotoxic factors, B. 

dendrobatidis supernatants were fractionated by C18 chromatography.  
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C18 chromatography is reverse-chromatography meaning that components are eluted off 

of C18 columns by polarity where the least polar compounds are retained the longest. C18 

columns are often eluted with increasing concentrations of acetonitrile (ACN) to elute fractions 

by polarity. Fractionation of B. dendrobatidis supernatant revealed that much of the inhibitory 

components of B. dendrobatidis supernatants eluted without any ACN suggesting that most of 

the inhibitory components are very polar (Fig. 4-18 A). All of the inhibitory components in the 

supernatant eluded with up to 60% ACN suggesting that there are some moderately polar 

inhibitory components of the B. dendrobatidis supernatants (Fig. 4-18 A, B). Most of the activity 

still eluted from the C18 column with 50% ACN, but some activity was still eluted with 60% 

ACN after 50% ACN elution (Fig. 4-18 C). Together these data indicate that the majority of 

inhibitory factors were very hydrophilic and some were moderately hydrophilic, but no 

hydrophobic molecules in B. dendrobatidis supernatants were inhibitory to lymphocyte 

proliferation (Fig. 4-19). 

 Based on the polarity of the B. dendrobatidis inhibitory factors along with the 

observations that lymphocyte inhibition is not reduced by acid, heat, or proteases, the larger 

molecular weight lymphotoxic factors are probably carbohydrates. Fungal polysaccharides, 

especially those associated with the cell wall, have been shown to modulate immunity (De Jesus 

et al., 2010; Gravelat et al., 2013). Analysis of supernatants by the phenol-sulfuric acid (P-S) 

method indicates that there is approximately 60 μg of hexose sugar per mL of 1X B. 

dendrobatidis supernatant. Therefore, the search for the identity of the lymphotoxic factors will 

focus on carbohydrates, along with small molecules as described in the previous section.  

Batrachochytrium dendrobatidis supernatants were also fractionated by solid phase extraction 

(SPE) using strong anion exchange (SAX) and cyano (CN) chromatography. Fractions 
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Fig. 4-18. B. dendrobatidis (Bd) 

lymphotoxic factors are mostly polar. Bd 

supernatants (Sup) or water controls were 

added into C18 columns. C18 columns 

were eluted with different dilutions of 

acetonitrile (ACN) mixed in water in an 

increasing gradient. (A) Bd Sup or water 

control was eluted with 0% (water), 60%, 

and 70% ACN in that order.  (B) Bd Sup 

or water control was eluted with 0%, 

10%, 60%, and 100% ACN in that order. 

(C) Bd Sup or water control was eluted 

with 0%, 50%, and 60% ACN in that 

order. Samples were dried after elution 

and re-suspended to be concentrated 5-

fold from the original supernatant in X. 

laevis splenocyte culture with PHA 

stimulation. All fractionations were eluted 

with 0% ACN because of the nature of the 

column setup, but the effect of this 

fraction on lymphocyte proliferation is 

only shown in (A). Bd supernatant 

fractions that significantly inhibited 

lymphocyte proliferation compared to the 

water control are indicated: **p<0.01, 

ANOVA with Tukey post-hoc test. Data 

show mean CPM (±SEM) of at least five 

replicate wells and represent at least two 

experimental repeats. 
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Fig. 4-19. Summary of C18 chromatography separation of B. dendrobatidis (Bd) 

supernatant. The relative inhibition of X. laevis lymphocyte proliferation induced by PHA is 

indicated for the different fractions of Bd supernatants. Data from representative 

experiments are shown in Fig 4-18.  
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were assayed with the P-S method and then tested for inhibition of Jurkat cells. SAX 

chromatography separates samples by charge, eluting positively charged components first. Only 

the first fraction of B. dendrobatidis supernatant eluted from SAX was significantly more 

inhibitory than its water control (Fig. 4-20 A). Although the inhibitory factors may be spread 

among the SAX fractions, they were most concentrated in the first fraction suggesting that the 

lymphotoxic factors are positively charged. CN chromatography separates fractions by polarity 

in a similar manner as C18. Unlike C18 fractionation, CN fractionation concentrated all 

inhibitory activity into one fraction (Fig. 4-20 B). The fraction that impaired Jurkat cells was the 

most polar fraction, corroborating other observations of the polar nature of factors. Because CN 

fractionation successfully retained activity into a single fraction, this SPE method will likely be 

used for further investigation of the lymphotoxic factors. 

 Certain fractions of B. dendrobatidis supernatant obtained by SPE with SAX and CN 

were enriched for carbohydrates as indicated by the P-S method. Importantly, the fractions with 

the most carbohydrate from each SPE method were also the most inhibitory to Jurkat cells (Table 

4-3). CN chromatography enriched the carbohydrate content of the supernatant almost entirely 

into one fraction, and this fraction likely contained all of the lymphotoxic factors. These data 

highly suggest that carbohydrates are responsible for the impairment of lymphocytes by B. 

dendrobatidis. 
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Fig. 4-19. SAX and CN chromatography separation of B. dendrobatidis (Bd) supernatants. Bd 

supernatants or water (Control) were added into SAX (A) or CN (B) columns. Columns were eluted by 

decreasing polarity (A) or decreasing charge (B). Samples were dried after elution and re-suspended to 

be concentrated 5-fold from the original supernatant in Jurkat cell culture. Jurkat cell proliferation and 

viability was quantified by the MTT assay. Assay controls were Jurkat cells alone in RPMI (Positive 

control) and a negative control receiving 12.5 μg/mL etoposide. An unfractionated Bd supernatant 

(different from the supernatant used for SPE) was also mixed with Jurkat cells as an added control. 

Fractions that significantly inhibited Jurkat cells are indicated:  **p<0.01, ANOVA with Tukey post-

hoc test. (Experiments completed with Alex Roberts.) 
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Fraction 
Percent Inhibition 

(mean±SEM) 
Carbohydrate Content 

(P-S Abs at 490 nm) 

SAX1 *25.7±1.3% 0.344 

SAX2 16.6±1.4% 0 

SAX3 9.2±1.6% 0 

SAX4 19.2±0.9% 0.056 

SAX5 17.7±1.7% 0.14 

CN1 *69.3±3.3% 1.174 

CN2 11.6±2.4% 0 

CN3 12.4±1.6% 0.328 

CN4 11.6±1.3% 0 

CN5 22.9±1.3% 0 

 

 *p<0.01 compared to the no B. dendrobatidis supernatant water control. 

 

 

Table 4-3. The fractions from SAX and CN SPE enriched for carbohydrates had the 

greatest inhibition of Jurkat cells. The percent inhibition of Jurkat cell proliferation was 

calculated from the MTT assay relative to the Jurkat cells alone control. The 

carbohydrate content was determined by the P-S method displaying the absorbance 

(Abs) values of each fraction at 490 nm. (Experiments completed with AlexRoberts.) 



196 
 

Discussion 

Batrachochytrium dendrobatidis zoospores do not produce lymphotoxic factors 

Batrachochytrium dendrobatidis zoospores do not to inhibit lymphocyte proliferation 

unless they mature in co-culture with lymphocytes. Zoospores that were heat-killed to prevent 

maturation were not inhibitory to X. laevis splenocytes, but zoospores that were not heat-killed 

matured to germlings and inhibited lymphocyte proliferation. Living zoospores did not appear to 

release the inhibitory factors because zoospore supernatants were not inhibitory. When living 

zoospores were place in culture separate from lymphocytes in a transwell, these cells did not 

inhibit lymphocyte proliferation. The results from zoospore transwell assays suggested that 

during the early stages of maturation B. dendrobatidis can inhibit proliferation but only in close 

proximity to lymphocytes. When zoospores were not highly purified (containing many encysted 

zoospores and some germlings) or when a highly enriched zoospore population was given time 

to mature, B. dendrobatidis cells did produce some inhibitory factors, but not as much as a 

culture containing more mature cells. 

The fact that B. dendrobatidis zoospores did not inhibit lymphocytes but did soon after 

maturing is important for two reasons: zoospores are not present inside of host tissue and 

zoospores do not have cell walls. Zoospores are free from the host and never come in contact 

with immune cells (Berger et al., 2005a). The purpose of a zoospore is to move away from the 

parent zoosporangium to infect a new host or to infect the same host in a new location. 

Production of lymphotoxic factors would only be beneficial for the mature B. dendrobatidis cells 

present in the skin. One of the major differences between B. dendrobatidis zoospores and mature 

B. dendrobatidis cells is that zoospores do not form a cell wall until time at which they invade 

the host (Longcore et al., 1999; Van Rooij et al., 2012; Greenspan et al., 2012).  
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The lymphotoxic factors are associated with the B. dendrobatidis cell wall 

 Based on the results showing that B. dendrobatidis zoospores did not produce inhibitory 

factors, I hypothesized that the B. dendrobatidis lymphotoxic factors are components the B. 

dendrobatidis cell wall. This hypothesis was supported by several observations. 1) 

Batrachochytrium dendrobatidis cells are much more inhibitory when cultured in close 

proximity to lymphocytes than when separated in a transwell culture. If the lymphotoxic factors 

exist on the surface of B. dendrobatidis cells in or on the cell wall, they may be shed as soluble 

factors but would be more inhibitory to lymphocytes adjacent to B. dendrobatidis cells. This is 

probably why B. dendrobatidis supernatants have to be concentrated to impair lymphocytes. 2) 

Dead B. dendrobatidis cells with cell walls still inhibit lymphocyte proliferation. 

Batrachochytrium dendrobatidis cells even release lymphotoxic factors after being killed and 

washed. Although B. dendrobatidis could release cytosolic components after death, the cell walls 

of B. dendrobatidis are present after killing and would be a logical source of the lymphotoxic 

factors. 3) Heat appears to promote the release of lymphotoxic factors from B. dendrobatidis 

even when B. dendrobatidis cells have been killed. The rate of which components of the cell wall 

are shed probably increases with temperature because components of the cell wall are more 

likely to dissociate or denature at higher temperatures. Particularly interesting was the 

observation that more inhibitory factors were released at 26° C than near the optimal B. 

dendrobatidis growth temperature of 21° because 26° is closer to the optimal temperature for the 

amphibian immune response in X. laevis.  

 To test the hypothesis that the lymphotoxic factors are associated with the B. 

dendrobatidis cell wall, B. dendrobatidis cells were treated with a chitin synthesis inhibitor, 

nikkomycin Z (NZ). The effects of NZ have been characterized on many fungi, but never before 



198 
 

in B. dendrobatidis (Cohen 1987; Hector 1993, Gaughran et al., 1994). NZ was found to inhibit 

maturation and proliferation, cause large increases in cell diameter, and induce cell lysis in B. 

dendrobatidis cells (now published in Holden et al., 2014). The inhibitory effects of NZ on B. 

dendrobatidis greatly suggest that NZ weakens the B. dendrobatidis cell wall. NZ also decreases 

the capacity of B. dendrobatidis to impair lymphocytes, giving more support to the hypothesis 

that the lymphotoxic factors are present in the cell wall.  

 The data supporting the cell wall hypothesis so far are only correlative. To confirm 

whether or not B. dendrobatidis cell walls actually have lymphotoxic components, current work 

is focusing on isolating the B. dendrobatidis cell wall. Chytrid cell walls are likely very different 

from the cell walls of higher fungi (Ruiz-Herrera & Ortiz-Castellanos, 2010), so protocols used 

to isolate fungal cell walls may not be applicable for chytrid cell wall isolation. Also, because the 

components of the chytrid cell wall are almost entirely unknown, confirming isolation of the B. 

dendrobatidis cell wall will be difficult. 

 

Batrachochytrium dendrobatidis lymphotoxic factors may be small molecule metabolites 

 Crude size separation of B. dendrobatidis supernatants indicated that a small molecule of 

less than 10 kDa inhibits lymphocyte proliferation. The inhibitory molecule or molecules in this 

fraction may be a small macromolecule or could be a metabolite. Spectrometric analyses of B. 

dendrobatidis supernatants indicated that only a few dozen metabolites are present in B. 

dendrobatidis supernatants. Few of these metabolites have been identified, but the identified 

molecules did not inhibit lymphocyte proliferation. 

 Tryptophan was found to be present in high abundance in B. dendrobatidis supernatants. 

Although tryptophan is not an immunomodulatory molecule, tryptophan metabolism is important 
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in down-regulating inflammatory responses. Candida albicans can modify tryptophan 

metabolism to decrease inflammatory responses (Cheng et al., 2010). Tryptophan metabolism 

can cue tolerance to fungi which is important along epithelia where fungi are present but not 

necessarily pathogenic (Romani, 2011). Kynurenine is a metabolite product of tryptophan 

metabolism and is very important in down-regulating inflammation (Mellor, 2004; Belladonna et 

al. 2007). Kynurenine is a component of B. dendrobatidis supernatants but does not seem to play 

a role in impairing or killing lymphocytes in vitro. The kynurenine produced by B. dendrobatidis 

may play an important role in vivo to inhibit inflammatory responses that might clear the 

infection.  

The production of tryptophan by B. dendrobatidis may be important in the protection 

against chytridiomycosis. Tryptophan is necessary for the synthesis of the antifungal metabolite 

violacein (Durán et al, 2010; Hoshino, 2011). Violacein production by symbiotic skin bacteria, 

particularly by the bacterium Janthinobacterium lividum, has been correlated with protection 

from chytridiomycosis in amphibians (Brucker et al., 2008; Becker et al., 2009; Lam et al., 

2010). Tryptophan produced by B. dendrobatidis may be used subsequently by symbiotic 

bacteria to produce molecules that inhibit B. dendrobatidis.  However, current understanding of 

B. dendrobatidis pathogenesis is that B. dendrobatidis grows inside of host tissue and only exists 

on the surface of the skin as a zoospore or an encysted cell (Berger et al., 2005a; Van Rooij et al., 

2012; Greenspan et al., 2012). Zoospores do not release tryptophan into supernatants. If only 

zoospores are present at the skin surface where symbiotic bacteria are, then producing tryptophan 

is not likely to promote antifungal metabolite production by skin symbionts.  
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Batrachochytrium dendrobatidis lymphotoxic factors are likely to be carbohydrate in nature 

 Along with a small molecular component, B. dendrobatidis supernatants have a larger 

molecular component of at least 50 kDa that inhibited lymphocytes. Various treatments of B. 

dendrobatidis supernatants before mixing into lymphocyte culture limited most molecules in this 

size range. The lymphotoxic factors were resistant to high heat, acid, RNase, and proteases. The 

factors were polar in nature, and analysis of B. dendrobatidis supernatants by a lipidomics group 

found no evidence that the factors might be lipids. Although exceptions may exist where the 

lymphotoxic factors could be highly resistant proteins or unique lipids, the most likely 

explanation is that the large molecular weight component is a carbohydrate.  

 Fungal cell walls are primarily composed of carbohydrates (Klis et al., 2002; Nimrichter 

et al., 2005). Because the lymphotoxic factors appear to be associated with the B. dendrobatidis 

cell wall, they are likely to be one of the components present in the B. dendrobatidis cell wall. 

The lymphotoxic factors are not likely to be the common fungal cell wall carbohydrates β-1,3-

glucan and chitin. These carbohydrates are PAMPs and typically induce immune responses 

(Brown, 2011). B. dendrobatidis also lacks the genes to synthesize β-1,3 and β-1,6-glucans 

(Ruiz-Herrera & Ortiz-Castellanos, 2010), and analysis of B. dendrobatidis cell walls has not 

found these β-glucans (personal communication with Jason Stajich). B. dendrobatidis does have 

chitin in its cell wall, but chitin is probably not present in B. dendrobatidis supernatants. Chitin is 

insoluble in water (Pillai et al., 2009), and digestion of B. dendrobatidis supernatants with 

Glucanex
TM

 which contains chitinases (Lorito et al., 1993) did not greatly increase the amount of 

digested sugar. The B. dendrobatidis cell wall is mainly uncharacterized, and carbohydrates 

components of the B. dendrobatidis cell wall may have immunomodulatory effects. 
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 Batrachochytrium dendrobatidis supernatants have substantial amounts of carbohydrates. 

Solid phase extraction (SPE) of supernatants indicated that fractions enriched for carbohydrates 

inhibited lymphocytes to a greater extent than fractions with little to no carbohydrates. SPE 

fractionation also indicated other features of the lymphotoxic factors. Polar fractions of B. 

dendrobatidis supernatant were the most inhibitory. Anion exchange chromatography also 

suggested that the lymphotoxic factors were positively charged.  

 Fractionation of B. dendrobatidis supernatants, especially by size, suggested that multiple 

molecules present in B. dendrobatidis supernatants inhibit lymphocyte proliferation. However, a 

single factor may be present in the different fractions. If the effects on lymphocytes are only 

caused by a single molecule, this molecule is likely to be a carbohydrate. Lymphocyte 

impairment is associated with the B. dendrobatidis cell wall which is a large molecular complex. 

It is possible that a single lymphotoxic factor can be inhibitory to lymphocytes both in a large 

complex and as a monomer. Carbohydrates are present in the fungal cell wall complex, and large 

soluble complexes are likely shed from fungal cell walls during growth and normal remodeling.  

Also, a large polysaccharide would still likely have the same effect if broken into smaller 

carbohydrates because of the repetitive nature of most polysaccharides. An oligosaccharide 

containing up to 60 glucose residues is less than 10 kDa, and even larger carbohydrates may pass 

through a 10kDa centrifugal column depending on their structures. The wide array of polarities 

at which lymphotoxic factors were eluted from C18 may also be explained by a single 

carbohydrate factor as well. Large polysaccharides can be insoluble in water. 

Galactosaminogalactan, a polysaccharide present on the surface of Aspergillus fumigatus that 

induces apoptosis in neutrophils and dendritic cells, is very insoluble in water (Fontaine et al., 

2011; Lee et al., 2014). If lymphocyte inhibition were to be caused by a single carbohydrate, then 
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the carbohydrate may be less water-soluble in a complex or large polysaccharide and more 

water-soluble as a free carbohydrate or oligosaccharide.  

 Great progress has been made to better isolate and understand the lymphotoxic factors. 

Much evidence suggests that a carbohydrate is responsible for inhibition of lymphocytes. Future 

work will work to isolate inhibitory carbohydrates so that they may be analyzed and potentially 

identified. Also attempts have begun to study the relationship between carbohydrates present in 

supernatants from various B. dendrobatidis isolates and the relative inhibition these supernatant 

have on lymphocytes.  
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CHAPTER V 

 

CONCLUSIONS AND FUTURE PROGRESS 

 

 
Much research is still needed to identify the evasion tactics of B. dendrobatidis used to 

prevent immune clearance of infection. The research in this thesis characterized one evasion 

strategy employed by B. dendrobatidis to impair adaptive immune responses. The factors 

responsible for immune impairment have yet to be identified, and the exact mechanism of their 

effect is still unclear. Most of the interactions between B. dendrobatidis and host cells are 

completely unknown, especially the important interaction between B. dendrobatidis and the 

immune system. Knowledge obtained from investigations of immunity to fungi in humans and 

mice (Chapter I) can give insight into some of the host-pathogen interaction in chytridiomycosis. 

The future of treating and mitigating chytridiomycosis to protect threatened amphibian 

populations will require a more complete understanding of immunity to B. dendrobatidis. 

 

 

Future Progress Understanding the Lymphotoxic Factors 

 The most important step in understanding the role the B. dendrobatidis lymphotoxic 

factors play in chytridiomycosis is to identify these factors. Once identified, the mechanism of 

lymphocyte impairment and induction of apoptosis can be determined. At this point, it is possible 

that there are multiple factors present in B. dendrobatidis supernatant causing different effects on 

host cells. Only by isolating and testing each factor responsible will it be possible to determine 

the specificity of the effects on lymphocytes and other host cells.  
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 Identification of the lymphotoxic factors will allow for analysis of how these factors 

induce effects in host cells. Investigations can answer which receptors or host proteins are 

interacting partners, which signaling pathways are induced by factors, and what expression 

changes the factors induce. Determining the mechanism of cellular impairment will be important 

in understanding how adaptive immune responses are impaired. Identification of the inhibitory 

mechanism will also give insight to how these factors may be developed into drug therapies.  

 The relative presence of the lymphotoxic factors in non-pathogenic, hypovirulent, and 

hypervirulent chytrids will be essential to understand how B. dendrobatidis has acquired these 

virulence factors. Acquiring virulence factors to evade host immunity was probably a critical 

step for B. dendrobatidis to become a vertebrate pathogen. By identifying B. dendrobatidis 

lacking or with excess lymphotoxic factors, genomic or expressional analysis could determine 

the genes responsible for the synthesis and excretion of the factors. Such analysis could proceed 

before identification of the factors. For example, gene expression analysis of B. dendrobatidis 

has compared zoospores and mature cells (Rosenblum et al., 2008). Genes highly expressed in 

mature cells and weakly expressed in zoospores are good candidates for genes important in the 

production of lymphotoxic factors. Confirmation of each gene’s importance would still likely 

required identification of the lymphotoxic factors. Once the genetic components necessary for 

production of the B. dendrobatidis lymphotoxins have been identified, attenuated B. 

dendrobatidis strains could be created or found. An attenuated B. dendrobatidis strain would be 

very useful in understanding the pathogenesis of chytridiomycosis. Attenuated B. dendrobatidis 

could also be used to promote natural immunity in amphibian populations in the form of a 

vaccine.  
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A Protective Immune Response against Chytridiomycosis 

 Hypothetical protective immune responses against chytridiomycosis can be predicted 

based on the understanding of fungal diseases in humans and murine models. Immune receptors 

and signaling pathways are conserved among vertebrates (Roach et al., 2005; Ishii et al., 2007; 

Robert & Ohta, 2009). Adaptive immune responses in amphibians have not been as well 

described as those in humans and mice, but amphibians have B and T lymphocytes that share 

common receptors, origin, and function with mammalian lymphocytes (Robert & Ohta, 2009; 

Robert & Cohen, 2011). Immune responses that have been found to be protective against fungal 

diseases in mice and humans might be expected to be protective in amphibians against 

chytridiomycosis. Here we outline what would be expected in a protective immune response 

against chytridiomycosis in amphibians.  

 

Detection of B. dendrobatidis in the skin 

 Batrachochytrium dendrobatidis is an intracellular pathogen of amphibian keratinocytes 

(Loncore et al., 1999; Berger et al., 2005a). By entering keratinocytes via a germination tube 

(Van Rooij et al., 2012; Greenspan et al., 2012), B. dendrobatidis evades phagocytic detection. 

However, PAMPs from B. dendrobatidis may be exposed to resident DCs or LCs if rhizoids exit 

host cells or if PAMPs leak out of dead cells. Batrachochytrium dendrobatidis should be 

primarily recognized by host epithelial cells. Amphibian epithelial cells should express PRRs 

and have the capacity to alert the immune system when infected or damaged.  

Unless B. dendrobatidis masks all of its PAMPs, PRRs on epithelial cells or resident skin 

DCs are likely to recognize B. dendrobatidis infection. Twenty TLRs have been identified in 

Xenopus and share close homology with TLRs in mice and humans (Ishii et al., 2007). TLR2 and 
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TLR4 would likely play a role in detection of mannans in the B. dendrobatidis cell wall, 

although the exact composition of the B. dendrobatidis cell wall has not yet been determined.  X. 

laevis has two TLR2 genes with very close homology with mammalian TLR2, but TLR4 is much 

less conserved potentially explaining the minimal response of amphibian cells to LPS (Ishii et 

al., 2007, Bleicher et al., 1983). TLRs 3, 7, and 9 have been shown to be important in 

recognizing fungal nucleic acids (Garcia-Vidal et al., 2013), and this is probably true for these 

TLRs in amphibians as well. TLR7 is very well conserved among vertebrates, but TLRs 3 and 9 

are more divergent in amphibians. Xenopus TLR9 is even predicted to have an extra 

transmembrane domain near the N terminus (Ishii et al., 2007).  

Unlike TLRs, CLRs have not been characterized in amphibians, yet they would be 

expected to play an important role in recognizing B. dendrobatidis. Dectin-1 has been 

determined to be an important PRR activating antifungal inflammatory responses in mammals 

(Haridson & Brown, 2012). Because the primary ligand for Dectin-1, β-glucan, is not predicted 

to be present on B. dendrobatidis (Ruiz-Herrera & Ortiz-Castellanos, 2010), a β-glucan CLR is 

not likely to play any role in chytridiomycosis. However, other CLRs recognize other 

carbohydrate components of the fungal cell wall which probably are in chytrid cell walls as well. 

The outer mannoprotein layer of fungi is thought to be present in the chytrid cell wall (Ruiz-

Herrera & Ortiz-Castellanos, 2010) which is recognized by a variety of CLRs including Dectin-

2, Dectin-3, Minkle, and the MR (Haridson & Brown, 2012; Zhu et al., 2013).  

Chitin is an important component of the B. dendrobatidis cell wall and would be an 

important PAMP for the recognition of B. dendrobatidis (Ruiz-Herrera & Ortiz-Castellanos, 

2010; Holden et al., 2013). Although no definitive PRR has been identified for chitin 

recognition, chitin does activate immune responses in mice (Da Silva et al., 2008; Da Silva et al., 
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2009; Roy et al., 2012; Roy et al., 2013). Compared to other fungi, the B. dendrobatidis cell wall 

is probably composed of more chitin, so chitin should be an important target for recognition and 

destruction by the amphibian immune system. 

The presence of B. dendrobatidis within host cells and the damage caused by infection 

can also activate immune responses. The inflammasome is a cytosolic protein complex that is 

often activated by intracellular pathogens, often via recognition of NLRs (Lupfer & Kanneganti, 

2013). The inflammasome cleaves IL-1 and IL-18 into the active forms which activate 

inflammatory immune responses. The inflammasome appears to be important in immunity to 

several fungal pathogens (Roy & Klein, 2012; Garcia-Vidal et al., 2013; Mao et al., 2013; 

Tavares et al., 2013). Evidence that IL-1β expression is increased in B. dendrobatidis-infected 

skin (Rosenblum et al., 2012a) suggests that inflammasome activation may also be important in 

immunity to chytridiomycosis.  

Along with activation of the inflammasome, the damage B. dendrobatidis inflicts upon its 

host cell can promote immune activation by DAMPs (Bianchi, 2007). This is especially true if B. 

dendrobatidis disrupts the host plasma membrane. Rhizoid structures on B. dendrobatidis can 

protrude out of host cells (Pessier et al., 1999). The damage done by rhizoids and especially the 

leaking of the host cytosolic components are important DAMPs that may activate inflammatory 

responses. If B. dendrobatidis induces necrotic death in host cells, these necrotic cells can 

activate inflammation as well, by revealing or releasing DAMPs (Zitvogel et al., 2010). My 

studies suggest that B. dendrobatidis may induce apoptosis in non-lymphoid host cells which is a 

much less inflammatory process (Chapter II); however, apoptosis of host cells may lead to cross-

presentation of B. dendrobatidis antigens as noted for H. capsulatum (Hsieh et al., 2011).  
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Although, B. dendrobatidis is likely to have evasion strategies to avoid detection by the 

immune system, the vertebrate immune system has many safe-guards to promote pathogen 

recognition and clearance. The damage induced by B. dendrobatidis to host skin that eventually 

causes many hosts to die (Voyles et al., 2009) should be enough to cue recognition of DAMPs if 

B. dendrobatidis is not already recognized by its PAMPs.  

 

Activation of immune responses against B. dendrobatidis 

 Once a pathogen has been detected in tissue that has been breached by a pathogen, 

inflammatory cytokines are released to promote recruitment of phagocytic cells into the infected 

tissue. IL-1, IL-18, IL-8, and TNFα are important cytokines produced after pathogen recognition 

in mammalian hosts. These cytokines promote recruitment and activation of phagocytes and also 

can have an important role in priming Th1 and Th17 responses, all leading to sterilizing 

immunity of the fungal pathogen (Wüthrich et al., 2012a). Infiltration of inflammatory 

monocytes also is important in immunity to several fungal pathogens; these monocytes are 

recruited by CCL2 and CCL7 chemokines via the CCR2 receptor (Blease et al., 2000; Szymczak 

& Deepe, 2009; Hohl et al., 2009; Ersland et al., 2010).  IL-1, IL-18, IL-8 and TNFα homologues 

have been identified in amphibians (Huising et al., 2004; Morales et al., 2010; Cui et al., 2011); 

and CCL2 and CCL7 and their shared receptor CCR2 have been described in mammals yet not 

defined for amphibians (Laing & Secombes, 2004). The production, release, and effect of these 

early cytokines on the immune system during chytridiomycosis are not well understood. Some 

expressional analysis of B. dendrobatidis-infected skin has suggested an increase in expression 

of IL-1β but not any of these other early cytokines (Rosenblum et al., 2012a). Unfortunately, no 

commercially-available antibodies to amphibian cytokines exist, so it would be difficult to 
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determine if, where, and when these inflammatory mediators are produced to promote immunity 

to B. dendrobatidis. If leukocytes could be isolated from B. dendrobatidis-infected skin, 

expression of cytokines could be determined by PCR or RNAseq methods. Imaging mass 

spectrometry analysis (Schone et al., 2013) of infected tissue would also provide a method to 

follow all of the proteins, including cytokines, produced in B. dendrobatidis-infected skin. 

 Typically, innate immune responses alone are not sufficient for pathogen clearance, and 

robust inflammatory T-cell responses are essential for resistance to fungal pathogens (Romani, 

2011; Wüthrich et al., 2012a; Garcia-Vidal et al., 2013). T cells must first be activated and 

primed through the production of cytokines to promote immunity. In the skin of mice, fungal 

cells and antigens are typically carried to the nearest lymph nodes where they are presented to 

lymphocytes (Ersland et al., 2010; Igyártó et al., 2011). Amphibians do not have organized 

lymph nodes but appear to have lymphatic components associated with the skin described as 

SALT (skin-associated lymphatic tissue) (Robert & Ohta, 2009; Egawa & Kabashima, 2011; Xu 

et al., 2013). Once DCs, LCs, or macrophages engulf B. dendrobatidis cells, B. dendrobatidis 

antigens, or infected keratinocytes, antigens can be presented to lymphocytes most likely in the 

SALT. Amphibians do have a spleen that acts as a secondary lymphoid organ (Robert & Ohta, 

2009), but it is not known whether antigens can or need to be transported to the spleen to prime 

lymphocytes to respond in amphibian skin. Antigen presentation influences T-cell polarization 

through secondary signals outside of the TCR. With the correct co-stimulatory signals, T cells 

can be activated to produce the cytokines necessary to promote resistance to B. dendrobatidis, 

but the protective responses in chytridiomycosis remain unknown.  
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Which lymphocyte responses are protective in chytridiomycosis? 

 Some evidence suggests that lymphocyte-mediated responses are important for resistance 

to B. dendrobatidis (Table 1-1). The presence of virulence factors that target lymphocytes 

suggests that B. dendrobatidis can only persist in host skin when adaptive immune responses are 

impaired (Chapter II). Evidence is lacking to show which types of immune response are 

important for immunity to B. dendrobatidis.  Xenopus laevis exposed to or immunized against B. 

dendrobatidis produce antibodies against B. dendrobatidis antigens (Ramsey et al., 2010). 

However, B. dendrobatidis-specific antibodies have not been shown to be protective, and similar 

immunization protocols using Rana muscosa and Bufo boreas did not led to resistance to 

chytridiomycosis (Rollins-Smith et al., 2009; Stice & Briggs, 2010). T cell responses are thought 

to be more important than antibody responses in resistance to fungal infections. Major 

histocompatibility complex (MHC) class II alleles, important for presentation of antigens to 

CD4
+
 T cells, have been linked with survival in one amphibian population (Savage & Zamudio, 

2011). Also, lymphotoxic factors produced by B. dendrobatidis appear to be more effective 

against T cells than B cells (Chapter II) suggesting that B. dendrobatidis has adapted to evade T 

cell responses over B cell responses. Further investigation of the immune responses elicited or 

suppressed by B. dendrobatidis is needed to determine how an amphibian may resist 

chytridiomycosis. 

Based on what is known about mammalian immunity to fungi, Th1 and Th17 responses 

are likely to be very important in immunity to chytridiomycosis. During a Th1 response, the 

pathogen-killing capacity of phagocytes, particularly macrophages, is augmented by IFNγ, 

TNFα, and GM-CSF. Th1 responses have generally been shown to be important in immunity to 

fungi particularly with fungi that can reside inside of macrophages (Romani, 2011; Wüthrich et 
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al., 2012a; Garcia-Vidal et al., 2013). In Xenopus tropicalis, IFNγ exists in a locus with IL-22 

and IL-26, and all three cytokines are up-regulated when frogs are stimulated with PAMPs (Qi & 

Nie, 2008). Th1-type immune responses are likely to influence immunity to B. dendrobatidis if 

phagocytes actually play a prominent role. However, if B. dendrobatidis exists mostly or entirely 

as an intracellular pathogen of keratinocytes, then Th1 responses would not necessarily promote 

resistance.  

During a Th17 response, recruitment of phagocytes, primarily neutrophils, and the 

activation of AMP production is promoted by IL-17A, IL-17F, and IL-22. Protection by IL-17 

has been established in multiple mouse models of fungal infection (Rudner et al., 2007; Conti et 

al., 2009; Wozniak et al., 2011; Wüthrich et al., 2011). IL-17 genes are well conserved among 

most metazoans and even appear to mediate inflammation in invertebrates as well (Roberts et al., 

2008). The function of IL17A/F is conserved throughout vertebrates, promoting inflammation 

and AMP production in fish (Monte et al., 2013). Very little is known about the role of IL-17 in 

amphibians, but homologues of IL-17 genes are expressed in X. laevis γδ T cells (Jackson et al., 

2012). The γδ subset of T cells has been identified in the skin of amphibians (Mescher et al., 

2007) and may be capable of producing IL-17 to activate inflammation during chytridiomycosis. 

Also, the presence of IL-1 promotes Th17 polarization and activity (Wüthrich et al., 2013), and 

amphibian skin is known to increase the expression of IL-1β during B. dendrobatidis infection 

(Rosenblum et al., 2012a). Thus, Th17 immunity may be activated during chytridiomycosis. Due 

to the gap in knowledge about CD4
+
 T cells in amphibians, the presence of Th17 cells and their 

role immunity is unknown. However, due to the overall conservation of IL-17 and adaptive 

immunity, Th17 cells probably are present in amphibians and would play a protective role in 

chytridiomycosis if activated and recruited to the skin. 
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In many studies, Th2 responses have been shown to be ineffective in promoting 

resistance to fungal pathogens in mice and humans (Romani, 2011; Wüthrich et al., 2012a). 

However, resistance to P. murina and potentially other fungi may be mediated by Th2 responses 

(Nelson et al., 2011). Th2 cytokines promote alternative activation of macrophages which 

promotes fungal persistence inside of macrophages (Szymczak & Deepe, 2009; Wüthrich et al., 

2012a). The role of Th2 responses in chytridiomycosis may be protective if production of class-

switched antibodies promotes resistance and if the role of phagocytes is not important for 

resistance. The investigation of antibodies against B. dendrobatidis have not shown that these 

antibodies protect against B. dendrobatidis, and it is possible that IgM and IgX antibodies that 

are thymus-independent may provide enough protection without T cell help (Ramsey et al., 

2010). Phagocytosis may be important in resistance to B. dendrobatidis.  Xenopus laevis 

macrophages and neutrophils engulf B. dendrobatidis in vitro (Chapter III) When X. laevis 

peritoneal leukocytes were activated in vivo with killed bacteria to obtain these phagocytes, they 

behaved like “activated” cells suggesting that classical activation may be essential for phagocytic 

killing of B. dendrobatidis. Therefore, Th2-type responses are most likely not protective in 

chytridiomycosis.  

CD8
+
 T cells and other cytotoxic lymphocytes may play a much larger role in 

chytridiomycosis than in other fungal diseases because B. dendrobatidis is an intracellular 

pathogen of epithelial cells. Cytotoxic lymphocytes have been shown to promote resistance to 

fungi through the production of IFNγ and IL-17, but very little evidence suggests that the 

cytotoxic capacity of CD8
+
 T cells or other lymphocytes is important in fungal immunity 

(Wüthrich et al., 2003; Lin et al., 2005; Cohen et al., 2011; Nanjappa et al., 2012). MHC class I 

expression is increased in the skin during chytridiomycosis (Rosenblum et al., 2012a) which 
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could aid in presentation of B. dendrobatidis peptide antigens to CD8
+
 T cells.  If B. 

dendrobatidis is an obligate intracellular pathogen requiring the niche of a keratinocyte to 

develop and reproduce, killing host cells soon after infection would stop the life cycle and 

diminish B. dendrobatidis infection. However, if the keratinocyte is just a location for B. 

dendrobatidis cells to obtain nutrients and hide from phagocytes, killing host cells would not kill 

B. dendrobatidis but may make B. dendrobatidis more susceptible to phagocytes. In X. laevis 

skin allografts, CD8
+
 cells infiltrate into the skin to promote rejection (Ramanayake et al., 2007), 

so CD8
+
 T cells can theoretically infiltrate into sites of B. dendrobatidis infection where they 

may actually promote resistance to chytridiomycosis.  

B cells may also play a protective role in chytridiomycosis. Although B cells have not 

been identified in amphibian skin, the presence of skin mucosal antibodies suggests their 

presence in amphibian SALT (Ramsey et al., 2010). Antibodies directed against surface 

structures and virulence features can be protective in mouse models of fungal disease (Cassone 

& Casadevall, 2012). Antibodies produced in amphibian skin against B. dendrobatidis have not 

been shown to protect against chytridiomycosis, but these antibodies could inhibit B. 

dendrobatidis adhesion, invasion, or replication and could activate killing by complement-

mediated mechanisms. 

 

Amphibian resistance to chytridiomycosis 

 Unrestricted B. dendrobatidis infection of amphibian skin leads to skin disruption which 

causes electrolyte dysregulation and eventual death (Voyles et al., 2009). To survive 

chytridiomycosis, amphibians must slow B. dendrobatidis replication or kill B. dendrobatidis 

cells. Prevention of pathogen invasion in the mucus, inhibition of B. dendrobatidis growth in 
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host cells, and clearance of B. dendrobatidis by immune cells are all mechanisms to promote 

resistance to chytridiomycosis.  

The mucus covering the skin of amphibians may be the most important defense against 

chytridiomycosis. Certain AMPs or antifungal bacterial metabolites present in amphibian mucus 

have been shown to kill or at least inhibit the growth of B. dendrobatidis in vitro (Rollins-Smith 

& Conlon, 2005; Harris et al., 2006; Woodhams et al, 2007b; Lauer et al., 2008; Ramsey et al., 

2010). Bacterial and AMP defenses have also been correlated with survival from 

chytridiomycosis (Woodhams et al., 2005; Woodhams et al., 2007a; Becker & Harris, 2010; Lam 

et al., 2010). Antibodies in the mucus may also play an important role in limiting infection 

(Ramsey et al., 2010). Defenses in the mucus are likely to impair or kill invading zoospores 

preventing invasion of host epidermis. Amphibian AMPs can disrupt the cell membrane of 

zoospores (Daum et al., 2012), and because zoospores lack a cell wall (Longcore et al. 1999, 

Pessier et al. 1999, Berger et al. 2005a), AMPs in the mucus are probably more effective at 

impairing B. dendrobatidis than AMPs in the skin.  Several antifungal metabolites are known to 

be produced by skin symbionts on amphibian skin (Brucker et al., 2008a; Brucker et al., 2008b). 

Although the mechanism of B. dendrobatidis inhibition by these metabolites is unknown, growth 

of B. dendrobatidis is greatly impaired in the presence of these metabolites. Mucosal antibodies 

against B. dendrobatidis have not been shown to confer protection but theoretically could convey 

protection in various ways. Antibodies could target B. dendrobatidis for complement-mediated 

killing, prevent adhesion by zoospores, disrupt germination tube formation, or impair cell wall 

formation of encysted zoospores. Antibodies are known to affect the expression of metabolism of 

C. neoformans (McClelland et al., 2010); amphibian antibodies may have similar effects on B. 

dendrobatidis.  
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Once B. dendrobatidis enters the skin, the immune mechanisms that slow or stop the 

infection are completely unknown. Adaptive immune responses appear to be important because 

when lymphocytes are killed by sub-lethal X-irradiation, X. laevis attains higher B. dendrobatidis 

infection loads (Ramsey et al., 2010). T cell-mediated responses are likely to be the most 

important in promoting resistance to B. dendrobatidis, particularly the more inflammatory 

immune responses.  

IL-17 plays an important role to recruit phagocytes especially neutrophils. Neutrophils 

can mediate killing by phagocytosis, secretion of an arsenal of antimicrobials, or autolysis to 

produce extracellular chromatin traps (Gunzer, 2013). Infiltration of neutrophils would cause the 

localized destruction of tissue which might promote killing of B. dendrobatidis and would 

promote survival if immunopathology to the skin is limited. In amphibians IL-17 and IL-22 

should induce production of AMPs that may promote the killing of B. dendrobatidis both in and 

on the surface of the skin.  

IFNγ, GM-CSF, and TNFα are important in resistance to most pathogenic fungi 

(Wüthrich et al., 2012a). These Th1 cytokines may play an important role in activating 

phagocytic killing and antigen presentation during chytridiomycosis if B. dendrobatidis cells exit 

host keratinocytes. If B. dendrobatidis cells are engulfed by phagocytes in vivo, Th1 cytokines 

would be important in promoting killing of B. dendrobatidis cells in phagosomes and would 

limit any evasion mechanism B. dendrobatidis has to evade destruction.  

Antibodies, and potentially Th2-mediated activation of antibody production, may have 

protective roles in B. dendrobatidis-infected skin. Antibodies could opsonize B. dendrobatidis 

cells to allow for phagocytosis or complement activation and killing. NK-cell killing of infected 

host epithelial cells may also be mediated by antibody-dependent cell-mediated cytotoxicity. 
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Xenopus laevis splenocytes express Fc receptors for IgY and IgM (Coosmans & Hadji-Azimi, 

1988), so it is possible that antibodies may promote lymphocyte-mediated immunity to B. 

dendrobatidis.  

Killing of epithelial cells by cytotoxic lymphocytes might be protective against B. 

dendrobatidis. Host cell death at an appropriate time would prevent the replication of the 

resident B. dendrobatidis cell inside of the host cell. Even if B. dendrobatidis were resistant to 

killing of host cells, the induction of cell death would target host cells for removal by phagocytes 

which could promote immune activation after B. dendrobatidis is phagocytized with the 

apoptotic host cell. Because B. dendrobatidis can grow free of its host in nutrient media 

(Longcore et al., 1999), lymphocyte-mediated killing of host cells would probably release B. 

dendrobatidis into the extracellular space. Freed from host cells, B. dendrobatidis may be 

susceptible to phagocytosis and other killing mechanisms. Batrachochytrium dendrobatidis 

appears to be capable of moving from one epithelial cell to another (Van Rooij et al., 2012), but 

this appears to be a rare event (Berger et al., 2005a).  If host cells were targeted for destruction 

by cytotoxic lymphocytes, B. dendrobatidis might be able to use germination tubes to escape into 

other epithelial cells, although this has not been observed. 

The immune system has a variety of mechanisms to kill pathogens. Batrachochytrium 

dendrobatidis is likely susceptible to many of these mechanisms but appears to have several 

evasion strategies to either dampen or avoid immune defenses. The differential survival of 

amphibians when infected with B. dendrobatidis may entirely or partially be explained by the 

ability of the immune system to clear or deter infection. 
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Evasion of immunity by B. dendrobatidis 

 Batrachochytrium dendrobatidis is mostly, if not entirely, an obligate pathogen of 

amphibians. Some very fragmentary evidence suggests that B. dendrobatidis can infect 

arthropods (McMahon et al., 2013) and nematodes (Shepard et al., 2012). However, because B. 

dendrobatidis is known to infect over 500 species of amphibians (Olson et al., 2013) and the 

closest known relative to B. dendrobatidis, B. salamandrivorans, also infects salamanders 

(Martel et al., 2013), the likely niche of choice for B. dendrobatidis is the skin of amphibians. In 

order to complete its life cycle in an amphibian host, B. dendrobatidis must have adapted 

multiple strategies for inhibiting immune responses. Fungi have acquired many evasion tactics 

that B. dendrobatidis could also employ (Table 1-2). Several studies suggested that B. 

dendrobatidis impairs immune responses, but only recently has my work provided definitive 

evidence of evasion showing that B. dendrobatidis inhibits lymphocyte responses (Chapter II). 

My study only identifies one of the multitude of immune evasion strategies B. dendrobatidis may 

be able to use to avoid clearance by the normally effective vertebrate immune system. 

 Due to the low infiltration of leukocytes into B. dendrobatidis infected skin (Pessier et 

al., 1999; Berger et al., 2005b), B. dendrobatidis likely impairs cytokine signaling. The lack of 

significant leukocyte recruitment could be the result of impaired T cell responses which recruit 

neutrophils and macrophages (Chapter III). However, activation of immune responses in the 

absence of lymphocytes should still initiate some leukocyte infiltration and activation. If B. 

dendrobatidis were to interfere with cytokine and chemokine signaling during early immune 

activation, the observed modest leukocyte response would result.  Any number of the proteases 

produced by B. dendrobatidis could cleave and inactivate cytokines that activate and recruit 

leukocytes. Fungal proteases and host proteases activated by funi have been shown to diminish 
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immune responses by inactivating cytokines or complement (Speth et al., 2008; Rambach et al., 

2010; Wüthrich et al., 2012b). Proteases have also been shown to activate allergy responses in 

allergic bronchopulmonary aspergillosis (Denning et al., 2006) which may be a mechanism to 

promote non-protective Th2 responses. The B. dendrobatidis genome has extensive gene 

expansions in proteases compared to its closest non-pathogenic relative suggesting that these 

proteases have an important role in virulence (Joneson et al., 2011). Although most of these 

proteases probably play important roles in invasion, tissue disruption, and digestion of host cell 

components (Piotrowski et al., 2004; Moss et al., 2010; Brutyn et al., 2012), several may be 

essential for evasion of host immunity. Proteases from B. dendrobatidis have been shown to 

cleave amphibian AMPs (Thekkiniath et al., 2013). Some of the proteases produced by B. 

dendrobatidis should activate immune responses by producing DAMPs (Romani, 2011), but B. 

dendrobatidis may also have proteases that inactivate immune activation or down-stream 

cytokines. Future studies should further investigate whether B. dendrobatidis proteases inactivate 

cytokines, chemokines, complement, or immune receptors. 

 No direct evidence shows impairment of phagocytes by B. dendrobatidis, but production 

of cytokines and pathogen killing has not been investigated. B. dendrobatidis may completely 

evade phagocyte detection and phagocytosis inside of host keratinocytes. However, since B. 

dendrobatidis does appear to send rhizoids out of host cells and can live free of host cells in 

culture medium, phagocytes in the skin do have the chance to interact with B. dendrobatidis cells 

during infection. B. dendrobatidis does not appear to evade phagocytosis (Chapter III), but could 

inhibit killing mechanisms inside of the phagocyte much like other pathogenic fungi. 

Histoplasma capsulatum, C. albicans, and C. neoformans prevent maturation of the phagosome 

compartment (Woods, 2003; Fernandez-Arenas, 2009; Tucker & Casadevall, 2009). Aspergillus 
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fumigatus, C. albicans, and C. neoformans can escape out of phagosomes (Brown, 2011; Coelho 

et al., 2013), but B. dendrobatidis does not appear to be capable of similar phagosomal escaper 

(Chapter III). Most fungi can resist reactive oxygen and nitrogen with anti-oxidants, catalase, 

superoxide dismutase, or inhibitors of nitric oxide synthesis (Brown, 2011). Genes with putative 

catalase, peroxidase, and superoxide dismutase activities have been identified in the B. 

dendrobatidis genome (Joint Genome Institute, http://genome.jgi-psf.org/cgi-

bin/ToGo?species=Batde5). If B. dendrobatidis can inhibit robust inflammatory responses to 

prevent leukocyte infiltration, defensive strategies to prevent killing by phagocytes may not be 

necessary. The immune system is safe-guarded against pathogen evasion, so B. dendrobatidis is 

likely to encounter phagocytes during infection.  

 All living organisms require metal nutrients for the proper function of various proteins. 

The immune system utilizes this requirement of bacterial and eukaryotic pathogens by limiting 

the presence of metals such as iron, zinc, calcium, and manganese in the extracellular 

environment and inside of phagosomes. The sequestration of nutrients to limit the growth of 

pathogens is called “nutritional immunity” and is essential for limiting the growth of most 

microorganisms (Hood & Skaar, 2012). In order for a pathogen to survive in a nutrient depleted 

environment, it must obtain nutrients from the host. Fungal pathogens can scavenge metals with 

siderophores or by directly obtaining metals from host metal-binding proteins (Kornitzer, 2009; 

Gauthier et al., 2010). The metal nutrient requirements of B. dendrobatidis or chytrids are 

unknown, but B. dendrobatidis is likely to require metals and obtain them from the host. Like 

other fungal superoxide dismutases, the B. dendrobatidis superoxide dismutase is predicted to 

require metal cofactors to resist ROS (Subramanian Vignesh et al., 2013; Joint Genome Institute, 

http://genome.jgi-psf.org/cgi-bin/ToGo?species=Batde5). Batrachochytrium dendrobatidis may 
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use the intracellular environment of host epithelial cells to obtain metal nutrients along with the 

organic nutrients necessary for growth and replication. However, inside of phagocytes, B. 

dendrobatidis would be in metal-depleted conditions where, in order to survive, B. dendrobatidis 

would need to scavenge metals. Nutritional immunity may not play a role in chytridiomycosis, 

but further studies are needed to understand the nutritional needs of B. dendrobatidis and to 

determine the possible importance of metal sequestration in the skin. 

 The host epithelial cells infected by B. dendrobatidis should be the primary cells to detect 

the presence of B. dendrobatidis and activate the production of inflammatory cytokines and 

chemokines. Some transcriptional evidence suggests that a few cytokines are up-regulated in 

amphibian skin (Rosenblum et al., 2012a), but whether or not these cytokines are being released 

and subsequently are activating innate immune processes is unknown. The lack of any significant 

leukocyte infiltration (Pessier et al., 1999; Berger et al., 2005b) suggests that even the early, 

innate responses are being impaired. Unfortunately, transcriptional analysis, one of the few tools 

currently available to investigate the effect on host keratinocytes during chytridiomycosis, is not 

sufficient to answer these questions. More molecular tools in amphibians and in vitro systems 

that mimic B. dendrobatidis pathogenesis are still needed. Future studies will need to determine 

whether B. dendrobatidis activates the inflammasome or PRRs in host keratinocytes, if 

keratinocytes secrete active cytokines, and if these cytokines are degraded by B. dendrobatidis or 

host proteases.  

 Amphibians have a robust immune system that is present and active in the skin 

(Ramanayake et al., 2007; Robert & Ohta, 2009; Rollins-Smith et al., 2009). The only way B. 

dendrobatidis can persist and complete its replication in host skin is to inhibit inflammatory 

processes and immune defenses in the skin. Batrachochytrium dendrobatidis produces factors 
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that impair lymphocytes which would also diminish inflammatory processes mediated by Th1 

and Th17 cells. Pathogenic fungi are known to possess an array of evasion tactics (Table 1-2). As 

a deadly pathogen across an entire class of vertebrates, B. dendrobatidis is likely to employ a 

multitude of evasion strategies yet to be identified. 

 

 

Future Progress in Chytridiomycosis Research 

No successful mitigation strategy has yet been developed to aid populations of 

amphibians susceptible to chytridiomycosis (Woodhams et al., 2012). If declining populations 

are to be saved or if expatriated populations are to be reintroduced, these populations must be 

resistant to B. dendrobatidis now ubiquitous across most amphibian ecosystems. Various 

mitigation strategies have been suggested including providing probiotic bacteria (Bletz et al., 

2013), decreasing host density (Woodhams et al., 2011), directly treating infected amphibians to 

remove infection (Woodhams et al., 2012), modifying the ecosystem by diminishing canopy 

cover (Becker et al., 2012), and introducing zooplankton to prey on B. dendrobatidis (Searle et 

al., 2013). Strategies that have attempted to promote an amphibian’s natural immunity have been 

attempted as well but have not yet been successful. Immunizing X. laevis systemically against B. 

dendrobatidis did promote antibody production (Ramsey et al., 2010), but similar immunizations 

have not protected susceptible species (Rollins-Smith et al., 2009; Stice & Briggs, 2010). This 

method of immunization may not induce antibodies in the skin mucus where they would be the 

most effective against B. dendrobatidis. Also, exposing and clearing amphibians of B. 

dendrobatidis with antifungal drugs has not yet been shown to confer protection against 

chytridiomycosis (Cashins et al., 2013). The ability of B. dendrobatidis to inhibit lymphocytes 
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may prevent the development of long-term immunity to chytridiomycosis in these studies 

(Chapter II). Batrachochytrium dendrobatidis strains could be identified that lack this virulence 

feature, or genetic modification could attenuate B. dendrobatidis. Immunization with an 

attenuated B. dendrobatidis could be much more successful, as noted in several fungal 

vaccination studies (Cassone & Casadevall, 2012; Wüthrich et al., 2013). Before natural 

immunity can be induced to mitigate chytridiomycosis in natural populations, many additional 

questions about amphibian immunity and B. dendrobatidis pathogenesis must be answered so as 

to develop a method to promote appropriate antifungal responses with immunological memory. 

 

Outstanding questions in amphibian immunology 

 No studies have demonstrated how an amphibian can acquire and retain resistance to 

chytridiomycosis. Most of the evidence demonstrating resistance is correlated with AMPs or 

bacterial symbionts in the skin mucus (Woodhams et al., 2005; Woodhams et al., 2007a; Becker 

& Harris, 2010; Lam et al., 2010). The role of adaptive and innate immune defenses against B. 

dendrobatidis in the skin is still very poorly understood with some studies suggesting an absence 

of immune responses while others suggest a capacity of the immune system to respond and clear 

infection (Table 1-2). The differences in results likely originate from differences in choice of 

host species and the absence of an understanding of the kinetics of a protective immune response 

to chytridiomycosis. Future immunological studies must recognize that amphibian immune 

responses are much slower to develop than those of mammals, especially at cooler temperatures 

(Robert & Ohta, 2009), and a robust adaptive immune response in an amphibian may take 

multiple exposures to develop (Table 5-1; McMahon et al., submitted). 
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Response to: Peak of 

infiltration 

Days until 

clearance 

Type of 

response 

Reference 

MHC-class-I 

disparate skin 

transplant  

7 days  20 days at optimal 

temperature 

CTL Ramanayake 

et al., 2007 

Minor-H 

disparate skin 

transplant 

15 days  30-35 days, 

temperature 

dependent 

CTL Ramanayake 

et al., 2007 

Ranavirus Primary: 6 days; 

Secondary: 3 

days 

About 30 days (can 

be up to 60 days) 

CTL, 

Antibody, 

likely Th1 and 

Th2 responses 

Morales et 

al., 2010; 

Chen & 

Robert, 2011 

Bd infection  Unknown*  Infection peak at 30 

days; no complete 

clearance 

Unknown* Ramsey et 

al., 2010 

 

*Immunized X. laevis could produce antibodies against B. dendrobatidis but only after 49-56 

days and three immunizations. 

  

Table 5-1. Kinetics of immune responses of X. laevis to pathogens and allo-antigens. 
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The defenses against chytridiomycosis present in the skin mucus have been the best 

defined. However, much is still unknown about the environment of the mucus and how it may 

prevent B. dendrobatidis invasion. Potentially the most important contributors to the mucus are 

the mucosal antibodies. Ramsey et al. (2010) characterized antibodies of all three antibody 

classes in the mucus of X. laevis which also recognized B. dendrobatidis. No study has yet 

investigated what protective effect anti-B. dendrobatidis antibodies may have. In vivo studies  

investigating the role of amphibian antibodies may be difficult, but in vitro studies could 

investigate whether antibodies may neutralize adhesion, prevent germination tube formation, or 

impair cell wall development of zoospores. Antibodies may also activate complement-mediated 

killing of zoospores in the mucus. In the skin mucus, there is potential for interaction among 

AMPs, bacteria, and antibodies to either promote or impair resistance. AMPs and a single 

bacterial metabolite have been shown to act synergistically to inhibit B. dendrobatidis (Myers et 

al., 2012). AMPs and antibodies may also influence the skin flora, potentially to promote the 

growth of beneficial bacteria. AMPs inhibit the growth of bacteria on the skin, which may aid or 

hinder antifungal resistance. Human IgA appears to promote the formation of bacterial biofilms 

in the gut (Bollinger et al., 2003), and the amphibian analogue IgX may play a similar role on the 

skin. A core set of bacteria have been described for Pletodon cinereus (Loudon et al., 2013), and 

it is possible that these are maintained by the immune system. 

 One important unknown that will aid in understanding immunity to chytridiomycosis is 

how the amphibian immune system recognizes B. dendrobatidis. Several amphibian PRRs have 

been identified (Ishii et al., 2007; Robert & Ohta, 2009), but very little is known about the 

PAMPs on B. dendrobatidis that may activate immune responses. Also yet to be determined are 

the cells that recognize B. dendrobatidis. Are PRRs or the inflammasome activated in host 
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keratinocytes? Does B. dendrobatidis infection release DAMPs to activate immune responses? 

Do innate immune cells, particularly LCs resident to the epidermis, have a chance to recognize 

B. dendrobatidis PAMPs? 

 How the amphibian immune system may promote inflammatory responses in the skin is 

unknown. The cytokines involved in activation and inflammation are likely to be the same 

between amphibians and mammals, but certain cytokines may be more important or have slightly 

different effects in amphibians. Transcriptional evidence suggests that IL-1β is an important 

cytokine that is activated during chytridiomycosis (Rosenblum et al., 2012a), but the absence of 

clear immune gene expression changes, possibly caused by immune evasions mechanisms, 

prevents determining which immune responses may be beneficial for resistance. Transcriptional 

analysis probably overlooks the differential gene expression in leukocytes, but in vitro studies 

exposing phagocytes to B. dendrobatidis or B. dendrobatidis antigens could determine how 

leukocytes respond to the presence of B. dendrobatidis.  

 In the absence of lymph nodes, the migration of antigen presenting cells (APCs) and 

lymphocytes is very much unknown in amphibians. Amphibians have spleens to process antigen 

and activate lymphocytes, but the spleen may not process antigens from the skin. APCs in the 

skin may simply present antigen in the skin to promote adaptive immune responses. It will be 

important to determine where B. dendrobatidis antigens are transported by APCs and if B. 

dendrobatidis antigens do arrive in the spleen. In chytridiomycosis, antigen presentation is 

important because MHC class II alleles have been correlated with survival suggesting that 

effective antigen presentation can promote CD4
+
 T cell immunity (Savage & Zamudio, 2011). 

Also, amphibian phagocytes exposed to B. dendrobatidis soluble antigens can promote 

lymphocyte activation in vitro (Chapter III).  If certain alleles can promote survival, resistance to 
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chytridiomycosis may be dependent on the kinetics and repertoire of T cell priming to limit 

infection before B. dendrobatidis can inhibit lymphocyte responses.  

 The role of lymphocytes has been established during chytridiomycosis (Ramsey et al., 

2010), and it appears that impairing lymphocyte responses promotes B. dendrobatidis infection 

(Chapter II). However, whether B cell, T cells, or ILCs all contribute to resistance or only certain 

lymphocyte populations are important in immunity to B. dendrobatidis is not known. The role of 

T cells can be investigated in thymectomized X. laevis which lack T cells (Horton & Manning, 

1974; Du Pasquier & Horton, 1976), but more specific lymphocyte responses still need to be 

investigated in chytridiomycosis. 

Specific helper T cell responses have not been characterized in amphibians, but due to the 

conservation of the adaptive immune system and of T cell cytokines, these responses are likely to 

be very similar among vertebrates (Qi & Nie, 2008; Jackson et al., 2012; Monte et al., 2013). It 

would be important to characterize activities of CD4
+
 T cells in amphibians, so that the role 

helper T cells play in resistance to chytridiomycosis can be studied. The cytokines most 

important for Th1 and Th17 responses, IFNγ and IL-17, can be studied in amphibians by 

following the expression of these important cytokines by leukocytes. Th1 and Th17 are likely to 

be important in immunity to B. dendrobatidis, but until this can be demonstrated, it is possible 

that other cells or other responses may be more vital to resistance. Characterizing memory in 

amphibian lymphocytes would also allow for development of long term immunity. Determining 

which immune responses are important to activate sterilizing immunity in chytridiomycosis will 

be essential for immunization of susceptible amphibian populations. 

 Cytotoxic lymphocytes likely play an important role in immunity to chytridiomycosis. 

CD8
+
 T cells have been followed in rejection of skin transplants in X. laevis (Ramanayake et al., 
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2007), and it may be possible to investigate CD8
+
 T cells in a similar way during 

chytridiomycosis. Cytotoxic lymphocytes can produce cytokines to promote helper T cell 

responses during infection, so expression of IFNγ, IL-17, and other cytokines by CD8
+
 T cells 

and NK cells may be activated during chytridiomycosis.   

 

Outstanding questions in B. dendrobatidis pathogenesis 

 Despite over a decade of research, B. dendrobatidis is still a very mysterious pathogen. 

Less knowledge is generally available about chytrid fungi compared to higher fungi. For 

example, the chytrid cell wall, despite being predicted to be much different from higher fungi 

(Ruiz-Herrera & Ortiz-Castellanos, 2010), has not been characterized. The genome of B. 

dendrobatidis provides an added layer of complexity. Despite appearing to mostly, if not 

entirely, replicate asexually, the genome of B. dendrobatidis is highly unstable with much 

recombination and great variation in chromosomal copy number (Farrer et al., 2013; Rosenblum 

et al., 2013). Some of the more important questions about B. dendrobatidis pathogenesis have 

been addressed including how B. dendrobatidis develops in the skin (Berger et al., 2005a), how 

chytridiomycosis leads to death in amphibians (Voyles et al., 2009) and how B. dendrobatidis 

enters host cells from the skin surface (Van Rooij et al., 2012; Greenspan et al., 2012), but many 

questions still remain. 

 In vitro growth assays have attempted to reproduce components the environment of the 

skin mucus in culture with B. dendrobatidis cells (Rollins-Smith et al., 2002; Harris et al., 2006), 

but how B. dendrobatidis enters and exists in the mucus is still unknown. B. dendrobatidis is 

predicted to quickly pass through the mucus and may take only a few hours to pass through the 

mucus, encyst, and invade a host cell (Van Rooij et al., 2012; Greenspan et al., 2012). B. 
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dendrobatidis may grow as it does in culture media on the surface of the skin and also send 

germination tubes into the skin to infect more cells. Alternatively, B. dendrobatidis may spend so 

little time in the mucus that AMPs and bacterial metabolites may only have a short opportunity 

to paralyze or kill the invading zoospore. B. dendrobatidis zoospores may evade bacterial and 

host defenses in the mucus (Lam et al., 2011; Thekkiniath et al., 2013) suggesting that a very 

limited amount of time is spent by B. dendrobatidis in the mucus.  

 As a successful pathogen, B. dendrobatidis is likely to have many immune evasion 

strategies. Soluble factors from B. dendrobatidis impair lymphocytes by inducing apoptosis 

(Chapter II), but other evasion mechanisms to inhibit immune activation and pathogen clearance 

in the skin are still unknown. Several genomic studies have proposed various B. dendrobatidis 

virulence factors (Sun et al., 2011; Joneson et al., 2011; Abramyan & Stajich, 2012), but no 

direct evidence suggests which of these actually contributes to pathogenesis.  

Proteases are probably responsible for some of the pathogenesis and immune inactivation 

during chytridiomycosis. Batrachochytrium dendrobatidis has gene duplications in serine 

peptidases that likely arose from horizontal gene transfer from bacteria (Sun et al., 2011). Along 

with serine-type proteases, B. dendrobatidis also has genomic expansions in metalloproteases 

and aspartyl proteases (Joneson et al., 2011) that are highly expressed when B. dendrobatidis is 

cultured on amphibian skin (Rosenblum et al., 2012b). Also B. dendrobatidis has an elastase 

which likely plays a role in invasion and tissue destruction (Moss et al., 2010). Batrachochytrium 

dendrobatidis proteases are probably responsible for digestion of host cells, dissociation of  

epithelium, degradation of AMPs, inactivation of cytokines, and cleavage of host receptors. 

Serine proteases from Streptococcus can inactivate chemokines to dampen immune responses 

(Hildago-Grass et al., 2006; Bryan et al., 2009). Dipeptidyl peptidase 4, a host serine protease, 
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also has been shown to cleave chemokines (Zhong et al., 2013). Host metalloprotease can be 

activated by B. dermatitidis to inactivate chemokines to decrease inflammation (Wüthrich et al., 

2012b). Due to the noticeable lack of leukocyte infiltration, the B. dendrobatidis serine and 

metalloproteases probably inactivate cytokines and chemokines, as well, to prevent inflammatory 

responses. A subtilisin-like serine protease from B. dendrobatidis has been shown to cleave 

amphibian AMPs (Thekkiniath et al., 2013), but the majority of proteases and their effects still 

have not been characterized.  

Batrachochytrium dendrobatidis evades adaptive immunity by impairing lymphocytes. 

The soluble factors inhibit proliferation and induce apoptosis in amphibian lymphocytes and 

inhibit the production of IL-2 and IFNγ in human CD4
+
 T cells (Chapter II). The factors 

responsible for this inhibition have not been identified but appear to be carbohydrates associated 

with the B. dendrobatidis cell wall (Chapter IV). B. dendrobatidis induces more apoptosis in 

amphibian T cells than amphibian B cells (Chapter II), but the effect on other lymphocytes and 

subsets of T cells has not yet been investigated. The B. dendrobatidis factors responsible for 

lymphocyte impairment do not appear to negatively affect phagocytosis, viability, or accessory 

functions of amphibian phagocytes (Chapter III). However, B. dendrobatidis may still be able to 

endure phagocytosis by inhibiting phagosome maturation, resisting ROS and RNS, scavenging 

metals, or exiting the phagosome. The effect of B. dendrobatidis recognition and phagocytosis 

on the cytokine production of phagocytes has also not been investigated. The investigation of 

this evasion strategy has been in vitro, but in vivo experiments in X. laevis corroborate the in 

vitro observations (Chapter III). The inhibition of adaptive immune responses by B. 

dendrobatidis is an explanation of why amphibians are so susceptible to B. dendrobatidis when 

innate immune defenses are lacking (Rollins-Smith et al. 2011); why immunizations have not 
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promoted resistance to chytridiomycosis (Rollins-Smith et al., 2009; Stice & Briggs, 2010); and 

why highly resistant species continuously harbor infection (Mazzoni et al., 2003; Ramsey et al., 

2010). 

Further investigation of chytridiomycosis will require adapting B. dendrobatidis as a 

better organismal model. No genetic manipulation has been successful in B. dendrobatidis. 

Genomic and expressional analysis of B. dendrobatidis can pinpoint important virulence genes 

but only provide hypotheses. Finding and investigating the effects of virulence factors will be 

difficult unless genes for these can be knocked-down or knocked-out. Due to the absence of a 

single transfected or transformed B. dendrobatidis in the literature, simple transfection or 

transformation methods probably would not be successful with B. dendrobatidis. Transformation 

with Agrobacterium tumefaciens has been shown to transform dimorphic and filamentous fungi 

(Sullivan et al., 2002; Utermark & Karlovsky, 2008). Batrachochytrium dendrobatidis may be 

transformable with A. tumefaciens as well. Until B. dendrobatidis can be genetically 

manipulated, the various strains and isolates of B. dendrobatidis may be used to follow 

pathogenesis. Virulence of B. dendrobatidis varies greatly among isolates (Retallick & Miera, 

2007; Fisher et al., 2009). Outside of the global panzootic lineage of B. dendrobatidis, there are 

strains that have been identified which may be less pathogenic (Farrer et al. 2011; Farrer et al., 

2013; Rosenblum et al., 2013). Analysis of the virulence of these non-panzooitic B. 

dendrobatidis strains along with genomic investigation may lead to better understanding of the 

virulence features in B. dendrobatidis. The newly identified B. salamandrivorans may lack some 

of the virulence factors present in B. dendrobatidis especially because it does not cause 

chytridiomycosis in Alytes obstetricans, the midwife toad that is very susceptible to B. 

dendrobatidis (Martel et al., 2013). Investigation of B. salamandrivorans may provide great 
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insight into the transition of B. dendrobatidis to become an amphibian pathogen. Identification or 

generation of a B. dendrobatidis strain that lacks one or more virulence features will not only aid 

in understanding the pathology of chytridiomycosis but could be used as a live-attenuated 

inducer of natural immunity in susceptible amphibians. 

 

Future progress in treating and preventing chytridiomycosis 

 Treating individual amphibians to remove B. dendrobatidis infection is still a valuable 

way to limit chytridiomycosis. Although difficult and time consuming, treating individuals to 

protect wild populations may be effective at maintaining populations of susceptible species 

outside of captivity. Treatment of captive population is essential for limiting the movement of B. 

dendrobatidis around the globe and to maintain good health of zoo and lab amphibians. If 

restriction are made to prevent the movement of B. dendrobatidis in the trade of amphibians for 

food, pets, and scientific model organism (Kriger & Hero, 2009), then simple, effective, and 

inexpensive treatments need to be available to clear B. dendrobatidis from amphibians. 

Attempts to limit chytridiomycosis in wild populations with antifungal treatment have not 

been very successful, but most antifungal treatments consist of itraconazole which can be toxic 

to amphibians and may limit amphibians’ natural immune defenses (Jones et al., 2012; 

Woodhams et al., 2012). Improved antifungal therapies especially those that promote natural 

immunity are needed. Anti-B. dendrobatidis therapies cannot impair natural mucosal defenses 

and must leave the skin biota and mucosal AMPs intact. Many drugs also cause toxic side effects 

that impair adaptive immunity, so it is important to find drugs with limited effects on 

amphibians. Finding drugs that target proteins present in B. dendrobatidis that are not shared 

among fungi and animals is essential. Many antifungal drugs target cell wall or ergosterol 
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synthesis absent from animal metabolic pathways. These, including itraconazole, are effective at 

treating fungal pathogens in general, but targeting pathways and proteins specific to B. 

dendrobatidis pathogenesis may be more beneficial. For example, many serine proteases in the 

B. dendrobatidis genome share homology with similar proteases from bacteria (Sun et al., 2011); 

these proteases are probably virulence factors and may be different enough from host protease to 

be good drug targets. 

Nikkomycin Z (NZ) may be an effective drug to treat chytridiomycosis. NZ is a chitin 

synthase inhibitor (Gaughran et al., 1994) that greatly impairs the B. dendrobatidis cell wall 

(Holden et al., 2013). NZ also decreases the ability of B. dendrobatidis to impair lymphocytes 

(Chapter IV) and likely makes PAMPs available in the B. dendrobatidis cell wall to activate 

immunity (Goodridge et al., 2009). Treating chytridiomycosis with NZ should decrease fungal 

burden while promoting natural immunity. Clearing B. dendrobatidis with itraconazole does not 

appear to give protection to amphibians that are exposed to B. dendrobatidis again (Cashins et 

al., 2013). However, treating with NZ may actually support natural clearing of B. dendrobatidis 

by the immune system promoting immunological memory and long-term protection. 

 Instead of clearing an infection with drugs, long-term immunity may also be activated 

through immunization. Attempts to vaccinate amphibians against chytridiomycosis have failed to 

protect susceptible frogs (Rollins-Smith et al., 2009; Stice & Briggs, 2010), but this is not 

surprising because commercially-available antifungal vaccines are not available for humans 

(Cassone & Casadevall, 2012). Most vaccines have been discovered serendipitously without 

complete understanding of what immune responses are activated and how long-term immunity is 

actually achieved. Many vaccines that have succeeded, particularly for fungal pathogens in 

mouse models, have been live-attenuated pathogens that infect without causing disease usually 
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due to a lack of virulence factors (Cassone & Casadevall, 2012; Wüthrich et al., 2013). The 

vaccination attempts for chytridiomycosis have used dead B. dendrobatidis mixed with an 

adjuvant such as Freund’s complete adjuvant (Ramsey et al., 2010; Stice & Briggs, 2010). Dead 

B. dendrobatidis still possesses immunomodulatory factors (Chapter II) and may prevent a 

robust immune response. An appropriate adjuvant might increase the inflammatory response to 

killed B. dendrobatidis, but the adjuvant must activate the right immune responses to result in 

resistance. In a recent study, Wüthrich et al. (2013) investigated vaccination using killed B. 

dermatitidis with various adjuvants and found that Freund’s complete adjuvant and LPS were not 

adequate adjuvants to promote resistance to this fungal pathogen; however, IL-1 was a successful 

adjuvant and promoted Th17 immunity. Once more is known about which immune responses are 

protective in chytridiomycosis, a vaccine that actually promotes resistance can be developed.  

 Along with an appropriate vaccine unit and adjuvant, the location of vaccination may also 

be important to induce immunity in the skin. If vaccines are given at a mucosal surface, mucosal 

immunity may be more likely to respond to pathogen challenge. Oral immunization in X. laevis 

promotes the production of antigen-specific mucosal IgX production (Du et al., 2012). However, 

B. dendrobatidis may possess evasion mechanisms to inhibit immune response in the skin but 

not elsewhere. Attenuated B. dermatitidis can promote vaccine immunity when given 

subcutaneously but not through the normal route of infection in the lungs because infiltration of 

inflammatory monocytes is impaired by the yeast (Ersland et al., 2010; Wüthrich et al., 2012b). 

X. laevis can be immunized with killed B. dendrobatidis intraperitoneally to produce serum 

antibodies, but infection with B. dendrobatidis allows for B. dendrobatidis-specific mucosal 

antibody production (Ramsey et al., 2010). Immunization with killed B. dendrobatidis into the 

dorsal lymph sac in highly susceptible Rana muscosa has not been successful at conveying 
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resistance (Stice & Briggs, 2010), but this may be due more to the vaccine than mode of 

delivery. In order to promote long-term immunity to chytridiomycosis, the amphibian SALT will 

probably need to be exposed to B. dendrobatidis antigens with a live-attenuated B. dendrobatidis 

strain.  

 Vaccination protection of amphibians against chytridiomycosis would be an important 

mitigation strategy to maintain susceptible populations. Unfortunately, vaccines would only give 

resistance to vaccinated individuals, so vaccinations would have to be continuous to ascertain 

resistance in progeny. Vaccination of the majority of a population would promote herd 

immunity, so not all individuals would necessarily need to be immunized. Continuous 

immunization of individuals in a population would be very time-consuming but, compared to 

other mitigation strategies, would be less drastic and as easily administered. Also, once a 

vaccinated population has been established, these resistant individuals may be able to reproduce 

enough to maintain the population without continual mitigation. Vaccination could essentially 

allow for natural selection of resistant individuals without the threat of losing breeding 

individuals.  

 

Chytridiomycosis as a disease model  

 Aside from being important for the conservation of amphibians which are the most 

threatened group of vertebrates, chytridiomycosis provides an opportunity to study themes 

infectious disease.  Chytridiomycosis offers a chance to investigate a panzootic outbreak, a lethal 

fungal disease, a chytrid fungus, and mucosal interactions between host and microbiota. The 

disease progression of chytridiomycosis in susceptible populations has allowed for modeling of 

disease outbreaks and population declines due to infectious disease (Briggs et al., 2010). The 
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white-nose syndrome of bats is a cutaneous fungal disease of bats that, like B. dendrobatidis, has 

caused population declines in multiple species. Due to the similarities between the zootic 

diseases, lessons from chytridiomycosis can be applied to white-nose syndrome (Blehert, 2012). 

Another important aspect of chytridiomycosis is that, unlike fungal pathogens in humans, B. 

dendrobatidis is suited to infect a host to propagate itself. B. dendrobatidis provides a model of a 

fungal pathogen that is very transmissible and highly virulent that other fungal disease models do 

not offer.  

 

 

Concluding Remarks 

 Fungal pathogens are an increasingly important threat to human health and populations of 

plants and animals (Fisher et al., 2012). Many aspects of fungal pathogenesis and immunity to 

fungi are completely unknown making a shift to focusing on fungal pathogenesis necessary for 

medical and conservation research. Fungi are often devastating to hosts causing great damage in 

both tissue-specific and systemic infections. The tenacity of fungi to adapt to various 

environments and the shared biology of fungi and animals makes treating fungal diseases 

especially difficult. Typically robust host immunity and presence of protective microbiota hold 

fungi in check, so impairment of antifungal defenses often leads to resilient fungal infections. 

 Of fungal pathogens, maybe of pathogens in general, B. dendrobatidis has been the worst 

to infect vertebrates threatening species across an entire taxonomic class. Chytridiomycosis has 

caused hundreds of population declines in amphibians contributing to extinctions (Wake & 

Vredenburg, 2008). If species in the path of chytridiomycosis are to be preserved and if species 



236 
 

only saved from B. dendrobatidis in captivity are to be reintroduced, mitigation strategies 

inducing natural immunity to B. dendrobatidis are essential to save these amphibians. 
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APPENDIX A 

 

ANALYSIS OF ZOOSPORE ENRICHMENT 

 

 

 
Several recent studies have investigated B. dendrobatidis virulence features such as the 

production of proteases or inhibition of immune responses (Fisher et al. 2009, McMahon et al. 

2013, Thekkiniath et al. 2013, Chapter II). Some of these studies have been careful to examine 

the presence of these features in the different life stages of B. dendrobatidis, especially between 

the zoospore present on the host’s exterior and the more matured cells (germlings, thalli, and 

zoosporangia) present in the host epithelium (Berger et al., 2005).  Expression across the genome 

greatly differs between substrate-independent (zoospores) and substrate-dependent (germlings, 

thalli, and sporangia) (Rosenblum et al. 2008). The typical procedure for obtaining zoospores is 

to flood an agar-plate culture with water or medium to allow the release of zoospores from 

zoosporangia (Longcore et al. 1999). Several studies have added an enrichment step where this 

volume is passed through membrane filters which collect clumps and larger cells (Rollins-Smith 

et al. 2002a, Rosenblum et al., 2008; Gammill et al., 2012; Rosenblum et al., 2012b). It was 

previously stated that enrichment over a 20 μm pore filter enriches the zoospore purity to a 

greater than 99% (Rollins-Smith et al. 2002a), but it is likely that this study identified encysted 

cells that may have germ-tubes or newly sprouting rhizoids as zoospores. The substrate 

independent fraction obtained by flooding liquid over an agar culture likely contains mostly 

zoospores but should also contain encysted cells that have not adhered to the agar substrate. Also 

germlings, thalli, sporangia, and clumps of B. dendrobatidis can be dislodged when liquid is 

added or removed from agar plates. Filter-enrichment over 20 μm pore filter paper should 
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remove clumps of B. dendrobatidis cells and large sporangia but not most individual B. 

dendrobatidis cells that typically are less than 20 μm in diameter (Berger et al. 1999, 2005, 

Longcore et al. 1999). Because B. dendrobatidis zoospores are typically 3-5 μm in diameter 

(Berger et al., 2005), an optimal zoospore purification method would use a filter with pores 

between 3 and 5 μm.  

The data in this appendix shows that enrichment of zoospores is necessary to obtain a 

population with greater purity. The type of enrichment will depend on the need for pure cells in 

the study. For studies concerned about which life stage is present, filtering to enrich zoospores is 

essential for obtain a greater purity of zoospores. Certain studies although declaring they had a 

population of zoospores, did not to purify the zoospores (Brutyn et al., 2012; McMahon et al., 

2013). The results of these studies are greatly put into question when this method does not 

appear to produce a highly pure population of zoospores. 

Zoospores were enriched as described in Chapter III Materials and Methods. Unenriched 

fraction, that was not filter, was counted to determine purity without enrichment. Three different 

enrichment filters were used with pore sizes of 20, 5, and 3 μm. The purity of zoospores were 

determined by counting all cells and defining the cells which were zoospores, encysted 

zoospores, intermediate cells (cells with visible rhizoids termed germlings and thalli). To 

determine if the presence of matured cells, zoospore preparations were stained with calcofluor 

white (as in Chapter IV). Also, the zoospore yield for the 3 μm pore-filter enrichment was noted 

to be very low, so cells were counted before and after enrichment to determine yield loss. 

Zoospore purity significantly increased when filter-enriching the population (Fig A-1 A). 

Without enrichment, the zoospore purity was 70.4±2.0% (±SEM). The purity was significantly 

enriched when zoospore populations were filtered through filter of 20 μm pore-sizes to 
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83.3±1.4% purity. Zoospores were significantly more enriched with 5 μm pore-sizes filters to 

92.9±0.5% purity. Almost complete purity was achieved enriching the 3 μm pore-sizes filters, 

98.7±0.5%. Not only did filtering zoospores with smaller pore-sized filters increase zoospore 

purity; filter-enrichment greatly decreased the variability in populations obtained from different 

agar cultures on different days. Such population variability in the unenriched fractions would 

likely contribute to greater experimental variability. 

The high zoospore purity using 3 μm pore-sizes filters came at a high cost of yield. The 

mean percent of zoospore remaining after passing through the 3 μm filters was 12.4±3.7%, and 

the median percent yield was 9.3%. When higher yields at or near 100% were achieved, the 

zoospore yield was very low at 4.2±1.2%, but when purities were less than 99%, the zoospore 

yields were much greater at 20.7±5.1% (Fig. A-1 B). The decrease in purity and increase in yield 

are correlated; imperfections in the filter may have contributed to greater passage of zoospores 

and encysted cells through the filter.  

The majority of cells in zoospore populations which were not zoospore could best be 

defined as encysted cells. In other studies, these cells were likely classified as zoospore, but these 

should not be classified as zoospores. Encysted cells have a cell wall, as indicated by chitin cell 

wall staining (Fig. A-1 C, D). These cells often appear to have sprouting structures which may be 

either germinal tubes (Van Rooij et al., 2012; Greenspan et al., 2012) or very early rhizoids 

(Longcore et al., 1999; Berger et al., 2005a). A few cells in the unenriched population and 20 μm 

pore filter-enriched population had visible rhizoids (Fig. A-1 C, E). The cells possessing rhizoids 

were mostly germlings, but there were some which may be classified as thalli in the unenriched 

population. No germlings or thalli were present in the 3 and 5 μm pore filter-enriched 

populations. There were very few germlings present in the 20 μm pore filter-enriched population, 
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and the number of cells with rhizoids was significantly decreased by filtering with the 20 μm 

pore filter (Fig. A-1 E). 

The results presented in this appendix section indicate the importance of enriching B. 

dendrobatidis zoospore populations before experimental analysis. Enrichment method was 

important for preparation of zoospores in this study, because cells with cell walls inhibited 

lymphocyte proliferation (Chapter IV). Future studies investigating B. dendrobatidis need to be 

more careful about defining the population of cells they are using in studies, and better zoospore 

enrichment would better help obtaining a more homogenous B. dendrobatidis cell population.  
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Fig. A-1. Analysis of B.dendrobatidis zoospores after filter enrichment. (A) Zoospore purity was 

determined by counting cells of the enrichment Bd populations. Each symbol represents a single 

enriched population; lines indicate the mean zoospore purity. Zoospore purity was analyzed with 

an ANOVA with Tukey post-hoc, and different letters indicate groups with significantly different 

zoospore purities. More information on the following page.  
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 Fig. A-1. Analysis of B.dendrobatidis zoospores after filter enrichment (Continued).  (B) 

Analysis of the 3 μm pore filter enrichment zoospore yield. Each symbol indicates an experiment 

where the total number of zoospores was determined before and after enrichment. The equation 

for the best fit curve is shown with the R-square value. (C) Representative images of cells from 

an unenriched zoospore population stained with calcofluor white (a chitin [cell wall] fluorescent 

stain).  (D) Representative images of cells from a 20 μm pore filter enrichment zoospore 

population stained with calcofluor white.  (E) The relative number of rhizoid-bearing cells 

(germlings or thalli) present in enriched or unenriched zoospore populations. No germlings and 

thalli were seen after enrichment with 3 or 5 μm pore filters. 
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APPENDIX B 

 

INVESTIGATION OF THE INHIBITION OF LYMPHOCYTES BY 

INOCULA FROM BATRACHOCHYTRIUM DENDROBATIDIS 

 

A recent study investigated whether or not B. dendrobatidis infects arthropod hosts 

(McMahon et al., 2013). This study proposed that crayfish (Procambarus species) found in the 

same environment as amphibians could be reservoirs for B. dendrobatidis and showed some 

evidence that B. dendrobatidis could infect the gastrointestinal tract of crayfish. An interesting 

experiment in this paper was that the B. dendrobatidis zoospore inocula was filtered to remove 

cells and treated on crayfish. Procambarus alleni crayfish exposed to these cell-free inocula had 

significantly higher mortality and gill recession than a mock control without B. dendrobatidis 

cells. This experiment suggested that a soluble factor produced by B. dendrobatidis was causing 

pathology in crayfish. The inocula prepared in this study were made by washing B. dendrobatidis 

cultures growing on agar plates with sterile water similar to how zoospores were obtained as 

described in Chapter III and Appendix A. The inocula contain anything washed off the agar plate 

including both cells and any molecules secreted or released by B. dendrobatidis and any free 

components of the agar or medium. McMahon et al. (2013) removed the cells by filtering, so the 

components of the cell-free inocula would probably include all the soluble molecules present on 

a B. dendrobatidis agar culture.  

The cell-free inocula probably contain the lymphotoxic factors, so inocula were prepared 

as described by McMahon et al. (2013) to test on Jurkat cells. A mock control was also prepared 

in which 1% tryptone agar plates were seeded with 1% tryptone broth instead of 1 ml of liquid B. 
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dendrobatidis culture. Plates were washed with a smaller volume of water (6 mL) than described 

by McMahon et al. (7 mL) to have a higher concentration of soluble factors and cells. The 

inocula washed from plates were mostly zoospores, but contained a large number of matured B. 

dendrobatidis cells (see Appendix A). The inocula were diluted so that the final cellular 

concentration was 2 x 10
6
 cells/mL (cells included both zoospores and matured cells). The 

inocula were centrifuged and the supernatants were filtered through 0.2 μm pore filters and 

saved. Also to determine if any inhibitory factors were coming from the agar plate or cells in 

suspension, the cellular pellet was re-suspended in an equal amount of water and incubated for 

20 minutes at room temperature. These “washed” inocula were not prepared by McMahon et al. 

After the 20 minute incubation to allow for release of any soluble factors, the cells were 

centrifuged and the supernatants were filtered through 0.2 μm pore filters to remove any cells 

which may have been still in suspension. “Washed” and “unwashed” inocula from B. 

dendrobatidis and mock plates were lyophilized and re-suspended in RPMI medium to test on 

Jurkat cells. Inocula were re-suspended to final concentrations between 0.5X and 10X the 

original concentration before lyophilization. These concentrations were equivalent to inocula 

containing 10
6
 B. dendrobatidis cells/mL for the 0.5X treatment and 2 x 10

7
 B. dendrobatidis 

cells/mL for the 10X treatment. The effects of inocula were tested on Jurkat cells in a 
3
H-

thymidine assay as described in Chapter II. McMahon et al. (2013) tested cell-free inocula on P. 

alleni that originally contained between 10
2
 to 10

6
 B. dendrobatidis cells/mL seeing an effect at 

cellular concentrations greater than 10
5
 cells/mL. Three different inocula and mock controls were 

tested in three separate Jurkat assays.  

Unexpectedly, the inocula had no negative effect on Jurkat cells compared to mock 

controls. Oddly, the mock controls were more inhibitory to Jurkat cell proliferation than inocula 
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that had contained B. dendrobatidis (Fig. B-1 A). Mock controls were prepared alongside B. 

dendrobatidis inocula and did not have any cells suggesting that components of the tryptone 

broth are inhibitory to Jurkat cells. The inhibitory components of tryptone broth must be digested 

by B. dendrobatidis because the inocula from B. dendrobatidis culture were less inhibitory to 

Jurkat cell proliferation. Inocula prepared from “washed” B. dendrobatidis were not very 

inhibitory (Fig. B-1 B). “Washed” inocula had to be concentrated to 5X (equivalent of 10
7
 B. 

dendrobatidis cells/mL) to see a significant effect only minimally inhibiting Jurkat cells (Fig. B-

1 C). The concentration of “washed” inocula inhibitory to Jurkat cells was about 100 fold higher 

than the concentration shown to be pathogenic to crayfish (McMahon et al., 2013).  

The data from this experiment suggest that at the very least the soluble factors described 

to cause pathology in crayfish by McMahon et al. (2013) have no effect on lymphocytes. These 

data also call the results of the McMahon et al. study into question. McMahon et al. used inocula 

that did not contain B. dendrobatidis, but did not specially state that they used mock controls 

with tryptone broth. It is possible that the components of the B. dendrobatidis growth medium 

actually were responsible for mortality and gill recession in crayfish and not soluble factors 

released by B. dendrobatidis.  

The study by McMahon et al., (2013) showed that B. dendrobatidis could use infect an 

arthropod and that B. dendrobatidis is present at low prevalence in some crayfish populations. 

The presence of B. dendrobatidis inside of crayfish by PCR may not mean that B. dendrobatidis. 

Daphnia species, also crustaceans, have been shown to prey on B. dendrobatidis (Searle et al., 

2013). The presence of B. dendrobatidis DNA in crayfish may be due to crayfish predation on B. 

dendrobatidis instead of infection by B. dendrobatidis. McMahon et al. (2013) did show 

pathology by B. dendrobatidis on crayfish, but this may be caused by overloading the crayfish  
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Fig. B-1. Treatment of B. dendrobatidis 

(Bd) inocula on Jurkat cells. (A) Inocula 

from unwashed Bd cells or Bd-free 

mock controls were re-suspended into 

Jurkat cell culture. (B-C) Inocula from 

washed Bd cells or Bd-free mock 

controls were re-suspended into Jurkat 

cell culture at lower (B) and higher (C) 

concentrations. Jurkat proliferation was 

assayed by 
3
H-thymidine uptake. 

Control treatments (gray bars) 

containing no inoculum were treated 

with RPMI alone (Control) or G418 at 2 

mg/ml. Treatments with significantly 

decreased inhibition compared to Jurkat 

cells alone are indicated: 
#
p<0.01. 

Significant differences in proliferation 

between Bd and mock inocula are 

indicated under bars: *p<0.05, 

**p<0.01. Statistical comparisons were 

made with a two-tailed, single-factor 

ANOVA with Tukey tests for 

individual comparisons. Data are 

representative of three similar 

experiments. 
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with zoospores. An earlier study showed that B. dendrobatidis could “infect” Caenorhabditis 

elegans (Shapard et al., 2012), so it may be possible for B. dendrobatidis to grow on substrates 

other than amphibian keratinized tissue, but it still remains to be shown whether non-amphibian 

species actually are biologically significant reservoirs of B. dendrobatidis. 
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