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Chapter 1 

 

Introduction 

 

1.1 – DNA damage response and repair 

Prevention of modifications to our genetic code from spontaneous and 

environmental modifiers is a constant battle facing all cells. Current estimations suggest 

that each cell could face up to 105 lesions per day from spontaneous errors. The 

spontaneous errors are the result of mismatching of bases during DNA replication, 

interconversion of bases by deamination, and modification by alkylation. Additionally, 

reactive oxygen species (ROS) derived from normal cellular metabolic processes can 

oxidize DNA bases and create breaks in the DNA backbone. Environmental 

modifications to the DNA are produced by chemical and physical sources. Examples of 

these include ultraviolet radiation (UV) and ionization radiation (IR). Ultraviolet 

radiation from sunlight exposure can induce pyrimidine dimers and 6-4 photoproducts 

resulting in 105
 lesions per cell per day1,2.  Exposure to ionization radiation from cosmic 

radiation, chemical agents used in cancer chemotherapeutics, and medical treatments 

using X-ray or radiotherapy can cause DNA bases to be oxidized resulting in the 

formation of single-strand and double-strand DNA breaks (SSBs and DSBs), as well as 

interstrand cross-links.  
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ATR and CHK1 Activation  

 

The major regulators of the DNA-damage response (DDR) are the 

phosphoinositide 3-kinase (P3IK)-related protein kinases (PIKK’s), including the ataxia-

telangiectasia mutated (ATM) and RAD3 related kinase (ATR).  ATR is a large kinase 

with a strong preference for phosphorylating serine or threonine residues that follow a 

glutamine residue. ATR activation occurs every S phase to regulate the firing of 

replication origins, the repair of damaged replication forks, and to prevent premature 

mitosis.3 

Although ATR is activated in response to many different types of DNA damage, 

there is evidence that a single structure may be responsible for this activation. When a 

cell undergoes replication stress, stalling or collapsing of the fork, there is an uncoupling 

of the DNA helicase from the DNA polymerase. This uncoupling result in long stretches 

of single stranded DNA (ssDNA) that becomes coated with replication protein A (RPA). 

The RPA coated ssDNA serves as the initial recognition factor for ATR signaling.4-6  

During DNA repair and replication, stretches of single-strand DNA (ssDNA) are 

formed as the DNA is unwound. Left unprotected, this ssDNA is susceptible to 

modifications that could lead to mutations in the genome. Replication protein A is the 

eukaryotic ssDNA binding protein and by binding to the ssDNA, protects it from 

modification during repair.7,8 The RPA-ssDNA complex is required for localization of 

ATR to sites of damage. The localization occurs through a direct interaction of the RPA-

ssDNA complex with ATR-interacting protein (ATRIP). Although ATRIP is a separate 

protein from ATR, it can be considered an obligate subunit of ATR as the stabilities of 

ATR and ATRIP are linked, their association is unregulated, and there is no known 
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difference in phenotypes from the loss of ATRIP or ATR.3,6 The binding of ATRIP to 

RPA involves an acidic alpha helix in ATRIP that binds to a basic cleft in the N-terminal 

domain of the RPA70 subunit (RPA70N).9  

Although localization of the ATR-ATRIP complex can be attributed to the 

interaction with the RPA-ssDNA complex, the activation of ATR cannot. Activation of 

ATR requires the co-localization of the ATR-ATRIP complex with the RAD9-RAD1-

HUS1 (9-1-1) complex. The 9-1-1 complex is a heterotrimeric ring-shaped molecule that 

is homologous in sequence to the replicative sliding clamp proliferating cell nuclear 

antigen (PCNA). The 9-1-1 complex is loaded onto a stretch of DNA adjacent to the 

RPA-ssDNA complex, in an ATR-dependent reaction involving the clamp loader 

RAD17.10 RPA is also crucial for the loading of the 9-1-1 complex, as it imparts 

specificity to the loading of the 9-1-1 complex to the 5’ primer end. This 5’-junction 

substrate containing the RPA-ssDNA complex, is the structure that normally results in 

the activation of ATR as it is the resulting DNA structure when a polymerase stalls and is 

uncoupled during DNA replication.11 The Rad 9 protein possesses a 120 amino acid c-

terminal “tail” containing at least ten serine and threonine phosphorylation sites, in which 

one of these sites is phosphorylated by ATR but is not required for CHK1 activation. The 

other sites are phosphorylated by unknown kinases and at least one other site is essential 

for the activation of CHK1.12,13 

In Saccharomyces cerevisiae it is reported that the 9-1-1 complex is responsible 

for directly activating ATR but there is no evidence that this occurs in other organisms. In 

humans there are two mediator proteins, Topoisomerase Binding Protein 1 (TopBP1) and 

Claspin, which are responsible for the activation of the CHK1.13 The 9-1-1 complex 
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recruits through RAD9 the topoisomerase-binding protein-1 (TOPBP1). TOPBP1 

contains multiple BRCA1 C-terminal (BRCT) domains and is required for ATR 

activation in vivo. Recruitment of TOPBP1 requires that the C-terminal tail of RAD9 be 

phosphorylated at serine 387. Phosphorylation of Ser387, creates a recognition site for 

the BRCT I and II domains of TOPBP1, which recruits TOPBP1 to ATR. TOPBP1 also 

contains an ATR activation domain, located between BRCT domains VI and VII, which 

interacts and activates the ATR-ATRIP complex in vitro. The mechanism by which 

TOPBP1 activates the ATR-ATRIP complex remains poorly understood as the primary 

binding site for the activation domain of TOPBP1 is located on ATRIP and mutation to 

this region block activation.14,15 Claspin is thought to already be present at active 

replication forks during replication and is phosphorylated in an ATR dependent manner. 

Once Claspin is modified it binds to CHK1, recruiting CHK1 to sites of RPA-coated 

ssDNA. This brings CHK1 in close proximity to active ATR, where it can then be 

phosphorylated by CHK1 rendering it active.16,17 Recent studies have found that TopBP1 

and Claspin are enough to activate CHK1 in the absence of RPA-coated ssDNA in 

vitro.18 

 Additional mediator proteins have been found to be involved in the activation of 

CHK1 in response to replication stress, including Timeless, Tipin (Timeless-interacting 

protein) and RHINO (Rad9-Rad1-Hus1 interacting nuclear orphan). Timeless is known to 

bind both ATR and CHK1 whereas Tipin is known to interact with RPA32 and is 

required for stable interactions of Claspin with stretches of RPA-coated ssDNA. RHINO 

was recently identified based on its interactions with 9-1-1 complex. The interaction 
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maps to the N-terminal portion of RHINO, and depletion of RHINO was shown to lead to 

a reduction of CHK1 phosphorylation. 19-21  

 

 

 

Figure 1. Major players in the CHK1 phosphorylation signaling cascade. 

 

DNA Repair Pathways 

To defend our genome against the hundreds of thousands of DNA lesions, our 

cells have developed multiple repair pathways; each specialized in repairing a different 

type of damage. Errors in replication that result in the mismatching of bases or 

insertion/deletion of bases are corrected by mismatch repair (MMR). Sites of dinucleotide 

repeats are unstable in some human cancers and display a “microsatellite instability” that 

is the result of defects in MMR. These defects are commonly seen in hereditary 

nonpolyposis colorectal cancer (HMPCC). The process of MMR can be broken down 
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into four steps: (1) recognition of the mismatch (2) recruitment of additional MMR 

factors (3) exonucelase degradation past the mismatch (4) re-synthesis of the excised 

tract.  

Ultraviolet radiation resulting in the formation of 6-4 photoproducts and 

pyrimidine dimers, as well as bulky lesions like the polycyclic aromatic hydrocarbon 

benzo[a]pyrene are repaired by nucleotide excision repair (NER). Distortions in duplex 

DNA are recognized by XPC. The duplex DNA is unwound by two helicases, XPD and 

XPF, in TFIIH and signals for the formation of the pre-incision complex. Two 

endonucleases, XPF and XPG, cut the duplex and a 24-32 bp fragment containing the 

lesion is excised from the DNA. The resulting gap is filled by gap-filling replication 

machinery.  

Ionizing radiation from X-rays, alkylating agents, and reactive oxygen species 

that induce the formation of abasic sites, 8-oxoguanine bases, and single-strand breaks 

are repaired through base excision repair (BER). The modified bases are flipped out of 

the duplex by a DNA glycosylase. The base is then excised from the DNA resulting in an 

abasic site. Incision of the DNA occurs at the abasic site, allowing for the 5’-baseless 

sugar to be removed and single base gap filling synthesis. The resulting nick is sealed 

completing the repair. 

Double strand breaks (DSBs) and interstand cross-links arising from X-ray 

irradiation and anti-tumor agents such as cis-platin and mitomycin C (MMC) are repaired 

by the two branches of recombinational repair, homologous recombination (HR) and non-

homologous end joining (NHEJ). HR is preferred and utilizes sister chromatids as 
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templates to precisely repair the genomic sequence, while NHEJ is an error-prone 

approach that links the two ends of a DSB together when HR is not possible.1,2  

 

Figure 2. DNA Damage repair pathways specialized in repairing specific types of damage. 

 

1.2 – DDR role in cancer progression 

Over time, errors occur during replication and unrepaired damage builds up, 

which can lead to mutations in the genetic code. These mutations can disrupt the 

regulation of gene expression, resulting in uncontrolled cell proliferation and cancer. In 

2005, two papers were published that brought forth a new model of how the DDR was 

involved in tumorigenesis in which DNA damage checkpoints become active in the early 

stages of tumorigenesis, providing a barrier to early tumor progression and directing cells 

to apoptosis. These studies reported evidence of an activated DDR response, noticeably 

phosphorylation of histone H2AX, ATM activation, RAD17 phosphorylation, CHK1 

phosphorylation, and localization of oncogene binding proteins, from precancerous and 

cancerous lesions and tumor tissue. The authors proposed a mechanism leading to 
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genomic instability in early development: aberrant stimulation of cell proliferation leads 

to replication stress, which can activate the DNA damage checkpoint(s). The activation of 

the checkpoint(s) induces cell cycle arrest or apoptosis, which functions as a tumor 

suppressor.22,23  

The following year two more studies were reported with evidence that the DDR 

was involved in cellular senescence. Oncogene-induced senescence was found to result 

from a robust DNA damage response (DDR) to replication stress and double strand 

breaks. The results, from cells and cancerous tissues, suggested that oncogene expression 

leads to an increase in DNA replication events, DDR activation, and genome activation. 

These findings led the authors to suggest a model in which oncogene expression leads to 

hyper-proliferation and DNA hyper-replication leading to an accumulation of DNA 

damage and sparking activation of S-phase specific DDR. The DDR proficient cells in 

turn undergo cellular senescence. Cells with an ineffective DDR undergo unrestrained 

proliferation fueled by oncogene expression. These reports suggest that senescence, 

which, like apoptosis, functions as a barrier to tumorigenesis.24,25  

 

1.3 – Replication Protein A (RPA) 

Replication Protein A (RPA) is a modular, heterotrimeric single-strand DNA 

(ssDNA) binding protein essential for replication, damage response and repair, which 

was first identified as an essential factor for replication of simian virus 40 DNA. RPA is 

composed of three conserved subunits: RPA70, RPA32, and RPA14. The RPA70 subunit 

is composed of four oligonucleotide/oligosaccharide binding fold (OB-fold) domains, 

termed 70N, 70A, 70B, and 70C. The DNA binding domains, 70A, 70B, and 70C are 
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connected by short 10 and 15 residue linkers, while the protein interaction module 70N is 

connected to 70A by a long (~70 residue) linker. The RPA32 subunit has three domains: 

the disordered 32N, an OB-fold domain 32D, and a winged-helix domain 32C. RPA32 

participates both in protein interactions and binding ssDNA as the 32C domain is the 

other primary protein interaction domain of RPA, while 32D is involved binding to 

ssDNA. RPA32N is the site of poly-phosphorylation at seven sites within the first 32 

residues, which occurs in response to cell cycle progression or DNA damaging agents. 

Phosphorylation of RPA70 has also been observed in vitro and in vivo. RPA70C, 

RPA32D, and RPA14 form the timerization core of the three RPA subunits. RPA binds 

DNA in a 5’ → 3’ direction with decreasing affinity from 70A to 32D.7,8  

 

 

Figure 3. Domain mapping of Replication Protein A. 70N, A, B, C and 32D are all OB fold domains, 32C 
is unstructured and the n-terminus of RPA32 is unstructured. 

 

DNA processing proteins like RPA are thought to utilize a common set of features 

to drive the progression of processing by “handing-off” of DNA: modular organization, 

multiple interaction sites, modest affinity, versatile structural modules, and a 

competition-based mechanism to promote hand-off. Most, if not all binding partners of 
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RPA interact through multiple contact points. Although each individual interaction is 

only of modest affinity, generally high micromolar, the total affinity of the interaction is 

approximately the product of the individual interactions due to the linkage effect. The use 

of multiple, modest affinity interactions helps drive the progression of DNA processing 

as proteins can be shuttled in and out in a sequential order based on their respective 

affinity. The OB-fold domains of RPA serve as a platform for interactions with both 

ssDNA and proteins. RPA70N contains an OB fold that does not bind to ssDNA but 

instead binds a number of proteins including ATRIP, RAD9, RAD17, MRE11, and 

p53.9,26 RPA70A and 70B are used primarily for binding to ssDNA, but interactions with 

SV40 T-antigen helicase, XPA and DNA polymerase alpha-primase have also been 

mapped to these domains.27 

 

Figure 4. Electrostatic mapping of surface residues of RPA70N. The OB fold contains a large amount of 
basic residues, referred to as the basic cleft. 

 

The structures of all of the globular domains of RPA and of the multi-domain 

constructs such as the trimer core have been determined by x-ray crystallography or 
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NMR, but the knowledge of the organization of the quaternary structure of RPA is 

scarce.28-33 Thus our understanding of the global architectural changes that RPA 

undergoes has been limited. Recently the structure of the DNA binding core, RPA70ABC 

and 32D, of RPA from Ustilago maydis bound to a 32-mer DNA substrate was 

determined by the Palvetich group using X-ray crystallography. This represented the first 

view of the quaternary structure of the full ssDNA binding core of RPA engaged on 

ssDNA. The authors propose a key role for the linker between domains 70B and 70C, 

which has a central role in a four-way interface between 70B, 70C, and the intervening 

ssDNA between these domains that are not engaged in the binding pockets. They suggest 

that the engagement of the BC linker would serve as the key step in transitioning between 

the three different ssDNA binding modes of RPA.34 However, no supporting evidence 

was provided in support of this proposal. Moreover, the crystal structure has an 

extraordinarily high degree of packing contacts and the solution-based study described 

below shows that this architecture represents an extreme that cannot be highly populated 

in solution.  

Our lab has completed an in-depth study of the architecture of RPA alone and as 

it engages ssDNA using a combination of small angle x-ray and neutron scattering 

(SAXS and SANS) with molecular dynamics simulations. The authors report that: 1) the 

apo protein is somewhat less extended than anticipated; 2) upon binding to a 10-mer 

ssDNA substrate, RPA shifts to a more compact arrangement with both 70A and 70B 

engaging the DNA. At this point the trimer core still retains some flexibility. Upon 

binding longer ssDNA, which engages 70C and 32D from the trimer core, RPA 

transitions to a slightly more compact form and the flexibility between RPA70AB and the 
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trimer core is further reduced. The Rg value for the 30-nt binding mode is only 2 Å 

smaller than the 10-nt binding, suggesting relatively small global architectural 

rearrangements when the 70C and 32D in the trimer core are engaged. These results 

contrast with the widely accepted model in which RPA has three modes of binding 

ssDNA: there is no evidence for a distinct intermediate DNA binding model.35 Overall, 

these studies presented new insights on the remodeling of RPA architecture and how this 

drives the progression of the DNA processing machinery. 

 

1.4 – Inhibiting the DDR  

The key development in understanding DDR was the discovery of its role in 

creating a barrier to tumorigenesis through apoptosis and senescence. This, along with 

additional research that has shown initial lesion generation by oncogenes is due to 

replication stress, has led to efforts to develop small molecule inhibitors (SMIs) of the 

DDR as a cancer therapeutic. Some success has already been seen with poly ADP-Ribose 

polymerase (PARP) inhibitors and their involvement in BRCA mutation-associated 

breast cancer.36,37 Many groups have also looked into inhibiting key members of the ATR 

signaling cascade, including ATR, RPA, and CHK1. 

ATR signaling inhibitors are expected to sensitize cells to DNA-damaging agents. 

Thus, cancer cells may be more dependent on replication stress responses than normal 

cells to complete replication and remain viable. Replication in the presence of DNA 

damage may lead to mitotic catastrophe, an event in which a cell is destroyed during 

mitosis because of aberrant chromosome segregation or DNA damage.9 Current cancer 

treatments involve chemo- and radio- based therapies that induce DNA damage, resulting 
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in signaling for repair and/or apoptosis. If this is combined with potential inhibitors of the 

DDR proteins such as CHK1 or ATR, this could prevent repair of the cancer cells, 

making them more toxic and ideally signaling them for apoptosis.38 

 

Inhibiting ATR 

In 1999, caffeine was identified to be an inhibitor of ATR and ATM.39 Caffeine 

had previously been known to sensitize cells. Although the concentrations that were 

determined to inhibit ATR are well above the acceptable concentration for therapeutic 

use, it serves as good inhibitor for biochemical studies of understanding ATR signaling 

and CHK1 activation. Recently a group has developed a high throughput cellular assay 

system to identify ATR inhibitors. Their system used a fusion of the ATR activation 

domain of TopBP1 with a fragment of the estrogen receptor, TopBP1ER to activate ATR. 

This screen captures molecule that inactive the ATR response. ATRi only inhibits CHK1 

phosphorylation, while DDRi was found to inhibit ATR as well as ATM, CHK2, and 

DNA-PKcs. DDRi is a previously identified compound as a dual PI3K and mTOR 

inhibitor with strong anticancer activity.40  

 

Inhibiting CHK1 

Development of small molecule inhibitors for CHK1 has been under investigation 

for over a decade. Biochemical studies showed that inhibition of CHK1 results in a rapid 

and strong phosphorylation of ATR targets in S-phase cells. This is accompanied with an 

increase in firing of DNA replication origins, massive induction of ssDNA, generation of 

double strand breaks, resulting in a destabilization of the genome. These observations 
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suggest that CHK1 mediates control of the initiation of DNA synthesis required for 

normal progression though S-phase in human cells. Additionally, it is thought that CHK1 

inhibition causes DNA breaks and activation of ATR due to lack of CHK1-mediated 

maintenance of stalled replication forks. CHK1 and ATR are both required to prevent the 

collapse of these stalled replication forks after treatment with replication inhibitors. ATR 

is required to prevent fork collapse during normal S-phase and avoid chromosomal break 

during mitosis. It is possible that CHK1 is required to prevent fork collapse during 

normal S-phase progression based on the results.38   

Several CHK1 inhibitors have been tested in pre-clinical and trials as potential 

cancer therapeutics. Early preclinical trials with UCN-01 were promising but phase 1 

clinical trials were unsuccessful as UCN-01 had a small volume of distribution, low 

systemic clearance, and a prolonged half-life, both due to its high binding affinity to α1-

acid glycoprotein (AAG) in human plasma.41-43 AZD772 is a urea-based inhibitor that is 

potent for CHK2 but is >10 fold more selective for CHK1, which was optimized from a 

high-throughput screening hit. It enhances the antitumor activity and abrogates S- and/or 

G2-phase checkpoints mediated by both antimetabolites and DNA-damaging agents. 

Results from phase 1 clinical trials have yet to be published.44-46 PF477736 is a 

diazepinoindolone-based inhibitor of CHK1 but also significantly inhibits CHK2, 

although this inhibitor is 100-fold more selective for CHK1. This inhibitor abrogates the 

induction of cell cycle checkpoints and potentiates the activity of several DNA-damaging 

agents across a broad spectrum of p53-deficient human cancer preclinical models. This 

inhibitor was discontinued as of September 2010.47-49 SCH900776 is an ATP-competitive 

inhibitor of CHK1. Unlike the previous two inhibitors it does not have affinity for CHK2; 
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however, it does have activity towards CDK2. This off-targeting effect on CDK2 could 

reduce the efficacy of this inhibitor as inhibition of CDK2 could induce cell cycle arrest 

and prevent checkpoint bypass in response to CHK1 inhibition. Phase 1 trials are ongoing 

with the goal of determining dosing for phase II trials.50,51  

 

Inhibiting RPA 

Inhibition of RPA has becoming an increasing popular target due to its many roles 

in DDR and repair. The N-terminal OB-fold domain of the RPA70 subunit (RPA70N) is 

known to interact with RAD9, RAD17, and ATRIP, all of which are involved in CHK1 

activation. Studies from the Turchi group have identified multiple small molecule 

inhibitors of RPA using an electromobility shift assay (EMSA). They found compounds 

that inhibit the RPA70AB OB fold domains, which are the initial, high affinity ssDNA 

binding domains, as well as two compounds that inhibit RPA but not via RPA70AB. 

Similar to caffeine inhibition of ATR, these inhibitors are very weak (high micromolar) 

binders that are not potent enough to be used as a therapeutic but have some potential for 

use in biological assays.52-54  

Other groups found small molecules that bind to the RPA70N domain, in the 

basic cleft that is the primary interaction surface with ATRIP and other DDR proteins. 

One group has identified a compound using an ELISA-like high throughput assay. The 

compound was selected based on its ability to inhibit the RAD9-RPA70N interaction, a 

known interaction during ATR signaling. Molecular modeling suggested that it mode of 

action was by binding to and competing for the RPA70N basic cleft though no direct 

evidence has been obtained. However, in agreement with the modeling, the compound 
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was also found to have no effect on the binding of ssDNA, suggesting it does not interact 

with any of the four domains involved (RPA70A, B, C and RPA32D), leaving RPA70N 

and RPA32C as prime targets.55 

Work from a collaboration the Chazin and Fesik laboratories has produced a high-

throughput fluorescence polarization assay to identify small molecules that bind to 

RPA70N. Compounds are selected based on their ability to displace a FITC-labeled 

ATRIP peptide from the basic cleft of RPA70N. This assay was tested using the 

compound identified by the ELISA-like technique and a similar binding affinity was 

obtained. Multiple small molecules have been identified using this fluorescence 

polarization assay of varying affinity.56 This thesis presents studies that are part of the 

effort to identify potent inhibitors of RPA70N protein interactions.  

 

1.5 – Methods to identify small molecule inhibitors of protein-protein interactions 

Fragment-based drug discovery (FBDD) has become an increasingly popular 

route to the development of potent small molecule inhibitors. The approach is based on 

the identification of multiple low mass, weakly binding fragments that are linked together 

to generate high overall affinity. FBDD is applicable to high throughput screening, which 

allows for large fragment libraries typically containing thousands of molecules to be 

screened in a rather short time frame. Constructing suitable libraries can be a difficult 

task as fragments for protein-protein interactions tend to be more hydrophobic and 

heavier than fragments for other applications such as targeting kinases. Since the each 

fragment could potentially be a scaffold for a future compound, it is important to avoid 

reactive, toxic, and unstable fragments containing alkylating or acylating groups, as these 
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can lead to unwanted products. Fragments libraries are typically used in medium or high-

throughput screening, which can involve a wide variety of different techniques.57 

  Fluorescence-based thermal shift (TS) detects compounds that increase the 

unfolding temperature of the target protein by binding to and stabilizing the folded state 

of the protein. This technique should be seen as an enrichment screening of the target 

library, as a hit is usually measured a ΔT = 1 oC, these results are not always highly 

reproducible.57,58 

Fluorescence anisotropy has been used frequently because it can be easily adapted 

to high throughput screening. A fluorophore is attached to a small molecule tumbling fast 

in solution. When the small molecule becomes bound to the target biomolecule the 

tumbling rate slows down dramatically and a difference in anisotropy can be measured. 

The major challenge in this approach is the need to label each fragment molecule with a 

fluorophore. It is much more common to use a displacement assay where a fluorescently 

labeled ligand is pre-bound to the protein and screening is made to find molecules that 

displace the probe.56 

 Nuclear Magnetic Resonance (NMR) Spectroscopy has been used extensively in 

identification of small molecules. A wide range of approaches have been developed. 

Typically in 1D experiments (STD, WaterLOGSY, TINS) protein or ligand signals are 

monitored, with attenuation of intensity indicating the presence of a binder.57,59-62 In 

strategies that use 2-dimensional (2D) NMR like SAR by NMR, target molecules are 

titrated with ligands and chemical shifts are monitored and perturbations of select shifts 

indicate the presence of a binder.63 If assignments are available, 2D experiments can give 

information on the location of the ligand.  
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X-ray crystallography provides validation of hits and structural binding 

information in one step. If crystallization conditions are known then a crystallographic 

approach can be robust; as synchrotron collection and molecular replacement allow for 

quick, high resolution structures. Direct screening of compounds has been utilized in 

certain applications where the libraries are limited and high through-put crystallography 

systems are available.57,64,65 

Surface plasma resonance (SPR) has also been used for screening. SPR requires 

the target protein to be covalently linked to gold clusters on the SPR biosensor chip and 

fragment solutions are passed over the chip. As fragments bind the change in mass is 

measured in real time. From the time dependent association-dissociation events, binding 

kinetics and affinities can be calculated.57,66,67  

Computation-based virtual screening is another widely used approach. It typically 

involves one of two strategies: (i) produce a structural model of the binding mode of a 

known hit fragment when no structural data is available; (ii) in silico screening. For 

docking of ligands to be useful for screening, it must not only produce the correct binding 

mode but must take in to account free energy change of the ligand in solvent binding to 

the protein.57,68,69  

In FBDD, after a hit or hits from a fragment are verified, generally the fragment is 

elaborated to produce analogs that bind tighter, have more drug-like properties, and help 

selectivity. Elaboration is usually achieved by one or a combination of different 

techniques. Merging is the incorporation of structural portions of overlapping molecules 

into a fragment, using structural information of other known fragments, substrates, and 

ligands in complex with the protein. Linking is the efficient “linking” of two fragments 



19 

 

that are known to bind in non-overlapping sites. A set of fragments that bind at a single 

site are discovered and “grown” through chemical synthesis to explore further 

interactions. Typically a common chemical scaffold is found and modifications are grown 

off of the scaffold.57
 

A paper by Shuker et al, highlights many of the strategies discussed above and 

introduces the methodology for a technique designed to obtaining structure-activity 

relationships of small molecules with proteins using NMR. Selected small molecules can 

then be linked together using synthetic chemistry to obtain high-affinity ligands. This 

approach, commonly referred to as SAR by NMR (Structure-Activity Relationships by 

Nuclear Magnetic Resonance), allows the user to obtain the structure-activity 

relationship by monitoring chemical shift perturbations of 15N heteronuclear single 

quantum coherence spectra (HSQC). The process involves screening against a library for 

identification of a fragment molecule that binds to a specific site of the protein. This 

molecule is then optimized to obtain a higher affinity analog. The second fragment 

molecule is identified by performing the screens with saturating amounts of the first 

fragment molecule. This helps ensure that the second fragment binds in a different 

location than the first. Once a second site binder is identified, the molecule is optimized 

and then is attached to the first fragment molecule by building a carbon linker using 

synthetic chemistry. These linked fragments should yield a high-affinity compound as the 

binding affinity of the compound is the product of the two fragment molecules plus a 

term that accounts for changes in binding affinity due to linkage.63 The compounds 

investigated here were generated using the SAR by NMR approach. 
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Figure 5. Overview of Structure-activity relationships (SAR) by NMR. 



21 

 

Chapter 2 

 

Evaluation of the Accuracy of Autodock Vina for Modeling the Binding to RPA70N 

of Molecular Fragments from the Vanderbilt SAR-by-NMR Library 

 

2.1 – Introduction and background 

Previous work on the project to discover high affinity inhibitors of RPA70N 

protein interactions involved SAR by NMR screening of a curated 15,000-member 

fragment library. Two dimensional (2D) 15N-1H heteronuclear signal quantum coherence 

(HSQC) NMR spectroscopy was used to identify fragments that interact with the basic 

cleft of RPA70N. Fragments that were determined to interact by monitoring chemical 

shift perturbations, were then further classified based on whether their primary interaction 

site was S55 (site 1) or T60 (site 2). Identification of promising fragments were chosen as 

leads. These leads were optimized, leading to the production of analogs and the synthesis 

of potent compounds from these analogs. The binding affinities of the compounds were 

tested using a high throughput fluorescence anisotropy binding assay. Affinities were 

measured based on the ability of compounds to displace a FITC-labeled ATRIP peptide 

from the basic cleft of RPA70N.56 A select number of compounds of interest were chosen 

for crystallization.  

Initial crystallization attempts of wild-type (WT) RPA70N were successful in 

crystallizing the protein but the crystal packing was not ideal for co-crystallization with 

ligands as access to the basic cleft is blocked by an interaction with the C-terminus of a 

symmetry mate in the unit cell. This prompted Dr. Michael Feldkamp to re-engineer 

RPA70N by introducing charge reversal E-R point mutations at E7 and E100. Both single 
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mutations and the double mutant were prepared and all resulted in a change in crystal 

packing. Instead of the basic cleft being occluded, the mutations caused the protein to 

pack in a way that the basic cleft of symmetry mates forms an open channel. This channel 

allows for full access to the basic cleft for solvent and ligands. All of the structures 

discussed here were determined with the E7R mutant. For convenience, the E7R mutation 

will not be stated each time the structure of RPA70N is mentioned. 

In the present study, we were interested is the applicability of Autodock Vina as a 

virtual screening tool.70 In order to assess the applicability of this approach, six 

compounds were studied that were first selected from the original SAR by NMR screen 

and then elaborated. Four of the compounds have been co-crystallized with RPA70N and 

the other two have no structural data available. For the compounds that were not 

crystallized, two sets of runs were performed using different RPA70N structures. One 

was crystal structure of the protein alone (2B29) and the other is the RPA70N structure 

extracted from the co-crystal structure of the complex with an ATRIP peptide (2B3G).26 

By using a free and bound state of the protein, different binding sites may be revealed 

and information can be inferred about what residues are involved in binding of the ligand. 

 

2.2 – Experimental methods 

Molecular models were generated using Autodock Vina version 1.1.2. A series of 

comparisons were made for models generated for different exhaustiveness values. The 

exhaustiveness is a function that controls how “exhaustive” a search the program 

performs to find a global minimum. Default setting have an exhaustiveness value = 8. 

Other values tested in this study are 64, 128, 512, and 2048 for select compounds. 
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Exhaustiveness values between 8 and 64 represent values that would be ideal for 

screening, as they provide rapid results. Higher exhaustiveness values perform more 

extensive search but are inefficient time wise for screening. A test was also made to 

compare free docking to anywhere on the target molecule to guided docking in which a 

region of the target is specified as containing the binding surface. The results from these 

studies are presented below for each compound. 

To validate that all compounds bound as expected in the basic cleft of RPA70N, 

NMR chemical shift perturbations induced in the protein were measured for each of the 

six compounds. Samples of 15N-enriched RPA70N were prepared using standard 

methods. Solutions of the labeled protein at 130 M concentration were prepared in a 

buffer containing, 10 mM Tris pH 7.5, 250 mM NaCl, and 10% 2H2O. 15N-1H SO-fast 

HSQC NMR spectra were acquired for each sample in the absence and presence of the 

compound, which was added as a 10 M solution in 13 L of DMSO. Using the 

assignments of the RPA70N of 15N and 1H backbone resonances, the location of the 

binding site was extracted based on the residues whose chemical shifts were perturbed by 

addition of the compound. The NMR spectral overlays are shown in Figure 6. 
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Figure 6. 
15

N-
1
H HSQC overlays of compounds used in this study with black as the free protein and red as 

the final titration point. (a-VU0467976, b-VU0468049, c-cVU0085636, d-VU0466242, e-VU0469701, f-
VU0100560) 

 

A 
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2.3 – Results 

VU0467976 

Guided dock experiments resulted in placement of the phenyl furan 2-carboxylic 

acid portion of the compound in the correct orientation using the default settings 

(exhaustiveness = 8). Increasing the exhaustiveness to 64 generated a model that closely 

mimics the position in the crystal structure as seen in Figure 7. Further increasing the 

exhaustiveness resulted in similar models as seen previously.  The lowest energy model 

generated had an affinity = -10.6 kcal/mol.  

F 
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Allowing the program to search the entire molecule yielded results similar to what 

was seen when the search space was restricted to the basic cleft. Default settings were 

able to place the phenyl furan 2-carboxylic acid in the “correct” location. Increasing the 

exhaustiveness gave similar results as the program was able to orient the molecule in the 

same space as seen in the crystal structure, also shown in Figure 7. The lowest energy 

model had an affinity = -10.6 kcal/mol. This value is the same as what was seen for the 

guided model. Overlaying both generated lowest energy structures onto the crystal 

structure, good agreement of the placement and orientation of the compound is observed. 

NMR titrations show perturbations of residues in expected localized areas.  

 

 

 
Figure 7. Lowest energy models from guided (left, blue) and unguided (right, blue) overlaid on the crystal 
structure (red). 
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VU0468049   

For this compound, guided docking with default settings were sufficient to 

correctly orient the phenyl furan 2-carboxylic acid portion of the compound at site 2. 

Increasing the exhaustiveness to 128 generated a low energy model (affinity = -8.4 

kcal/mol) that recapitulated the crystal structure as seen in Figure 8. NMR titration 

experiments found a subset of chemical shift perturbations that have were mapped onto 

the surface of the protein. These perturbations are localized to the basic cleft where the 

compound was bound in the crystal structure. 

Unguided docking generated a model of equal predicted affinity as the guided 

model, but the site found was outside of the basic cleft. The compound was docked to a 

patch on the backside of RPA70N shown in Figure 8. The carboxylic acid off of the 

phenyl furan constituent is stabilized by positive charge from L104 and the amine groups 

are stabilized by negative charge from E98 and E100. No compounds were observed in 

the basic cleft in the unguided experiments even though model from the guided 

experiments had a predicted affinity equal or weaker than all complexes generated in the 

unguided experiments. 
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Figure 8. Lowest energy models from guided (left, blue) and unguided (right, blue) of VU0468049 
overlaid on the crystal structure (red). 

 

VU0085636   

For this compound, guided docking with default settings were sufficient to model 

the compound in the basic cleft but unable to align the model with the crystal structure. 

Increasing the exhaustiveness did not generate a lower energy model, all of the lowest 

energy models from each different exhaustiveness value had an affinity = -7.7 kcal/mol. 

Additionally none of these models correctly aligned with the structure showing; variation 

in the linkers between each of the phenyl rings was observed as shown in Figure 9. 

Unguided docking did not reproduce what was seen in the guided experiments. 

Unguided models favored a slightly basic and hydrophobic pocket formed on the back 

side of RPA involving the –SH of the GSH tag, resides 3-5 of the N-terminus, V76, 

L102, and K103. The lowest energy model (affinity = -8.7 kcal/mol) derived from 

unguided searches was positioned in this pocket on the backside of RPA and was 1 

kcal/mol lower than the guided model. This model is shown in Figure 9.  
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Figure 9. Lowest energy models from guided (left, blue) and unguided (right, blue) of VU0085636 
overlaid on the crystal structure (red). 

  

VU0466242  

For this compound, guided docking with default settings generated models with 

the compound at site 2. Increasing the exhaustiveness to 128 generated a model with 

similar orientation but the sulfur adopts a different conformation. A low energy model 

(affinity = -6.7 kcal/mol) with good agreement with the crystal structure was generated 

with an exhaustiveness = 2048, shown in Figure 10.  Values this high allow for much 

greater sampling of the space and lower energy models at the cost of time.   

Unguided experiments did not yield any models with the compound bound to the 

basic cleft (Figure 10). The majority of the unguided models were on the backside of the 

protein in small pockets. These pockets are composed of mainly hydrophobic residues 

with one or two charged residues to bind the carboxylic acid or amine groups of the 

compound. The lowest energy model (affinity = -6.5 kcal/mol) docked to the backside of 

S55 away from the basic cleft.  
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Figure 10. Lowest energy models of VU0466242 from guided (left, blue) and unguided (right, blue) 
experiments overlaid on the crystal structure (red). 

 

VU0469701 

This compound was docked to two different structures of RPA70N (PDB id: 

2B29 and 2B3G) because no structural data exists for the complex of this compound with 

RPA70N. Guided docking using the structure of RPA70N alone (2B29) identified a 

surface on the basic cleft that was favored for most models, including the lowest energy 

model (Figure 11). Residues I33, S38, P39, P40, R41, R43, and M57 form a basic and 

hydrophobic surface on loop 12(L12). Docking to this surface using the default 

parameters produced a low energy model and exhaustiveness did not further refine this 

model. 

Unguided docking produced a low energy model that binds in a hydrophobic and 

basic pocket behind the basic cleft. Residues T52, L53, S54, S55, R91, Y118, N119, and 

E120 form the pocket and are shown in Figure 11. The unguided model had an affinity = 

-6.0 kcal/mol compared to -5.0 kcal/mol for the guided model.  
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Figure 11. Lowest energy model of VU0469701 from guided (left) and unguided (right) experiments with 
pdb 2B29. 

 

 Guided docking using the structure of RPA70N from its complex with an ATRIP 

peptide (2B3G) provided a slightly lower energy model than with docking to the free 

RPA70N domain, -5.2 kcal/mol versus -5.0 kcal/mol, respectively. The compound was 

positioned in a small hydrophobic and basic pocket involving residues R43, S55, M57, 

L87, R91, and V93 (Figure 12). Use of the default settings did not identify the lowest 

energy model but as the exhaustiveness of the search was increased, the same location 

was targeted in all successive runs. Rearrangements in the orientation of the compound 

account for the changes seen in the affinity for each run.  

Unguided docking using structure 2B3G yielded models that were similar to the 

models produced with 2B29 (Figure 12). The compound was positioned in a basic and 

hydrophobic pocket formed by residues R43, L45, T52, L53, S54, S55, R91, and E120. 

Docking to 2B3G produced a model that was of higher energy than the 2B29 model, e.g. 
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when exhaustiveness is set to 512, values of -5.7 kcal/mol and -6kcal/mol, respectively, 

were produced. 

 

Figure 12. Lowest energy model of VU0469701 from guided (left) and unguided (right) experiments with 
pdb 2B3G. 

 

VU0100560 

This compound was also docked onto two different structures of RPA70N (PDB 

id: 2B29 and 2B3G) because no co-crystal structure of this complex with RPA70N has 

been determined. Guided docking using the structure of RPA70N alone (2B29) with 

Wednesday default settings place the compound on a hydrophobic and basic surface on 

L12. This surface is comprised of residues I33, T35, S38, R41, and R43 and is 

highlighted in cyan in Figure 13. Increasing the exhaustiveness did not yield a lower 

energy model as the affinity remained -5.5 kcal/mol.  

Unguided docking experiments did not generate any models with the compound 

bound to the basic cleft. Using default parameters, models with lower energy than the 

guided docking model were obtained. The lowest energy model had an affinity = -6.4 
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kcal/mol and was docked to a hydrophobic pocket comprised of residues L62, P64, L65, 

and L99 (Figure 13).  

 
Figure 13. Lowest energy model of VU0100560 from guided (left) and unguided (right) experiments with 

pdb 2B29. 

 

Guided docking experiments using the structure of RPA70N in complex with an 

ATRIP peptide (2B3G) yielded lower energy models than the docking experiments 

performed using the structure of free RPA70N, -6.2 kcal/mol versus -5.5 kcal/mol, 

respectively. With the default settings, the compound was positioned in a basic and 

hydrophobic pocket formed by residues R43, S55, M57, N85, L87, R91, and V93 (Figure 

14). Increasing the exhaustiveness function from 8 to 512 resulted in a slightly lower 

energy model, -5.9 kcal/mol versus -6.2 kcal/mol.  

Unguided docking experiments generated models with the compound positioned 

in a patch of hydrophobic residues including I30, V66, E69, L71, S72, and S73 (Figure 

14). This model had an affinity = -6.5 kcal/mol. Additionally, two models were generated 

with the compound docked to the basic pocket as seen in the guided search, but these had 
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higher energies than the best model with the ligand positioned outside the RPA70N basic 

cleft.   

 
Figure 14. Lowest energy model of VU0100560 from guided (left) and unguided (right) experiments with pdb 2B3G. 

 

 

2.4 – Summary of findings 

 

Guided docking experiments were successful in recapitulating the position and 

orientation for the compounds that have previously been crystallized. All compounds 

with crystal structures of their complex with RPA70N overlay nicely with the position 

observed in the crystal structure except for VU0085636. The lowest energy model of 

VU0085636 provided the correct relative positions of the phenyl rings but did not match 

the orientation seen in the crystal structure. A general trend in the results was that the 

accuracy of the prediction correlated with the affinity of the compounds.  Moreover, the 

compounds with highest affinity (lower Kd values) required less exhaustive searches to 

recreate the structure observed in the crystal structure. VU0467976 was the tightest 

binder tested with a Kd of 8 µM. It also had the lowest energy model from all the 
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compounds tested, -10.6 kcal/mol. VU0468049 was the next tightest binder and produced 

the second lowest energy model, -8.4 kcal/mol. These two compounds were both 

successful in generating models that mimic the respective crystal structures in less 

exhaustive searches (64 and 128 respectively). VU0466242 a smaller compound and 

weaker binder (KD=164 µM) produced a higher energy “best” model, -6.7 kcal/mol and 

required a more exhaustive search (2048) to obtain that model. This correlation between 

the affinity of the compound and relative values of the energies reported is interesting, 

and presumably arises because the structure of the protein does not vary and the energy is 

dominated by the number of stabilizing contacts made by the compound. 

 Unguided docking experiments allowed for the entire surface of the protein to be 

sampled as opposed to be optimized to only sample the basic cleft of RPA70N, which 

serves as the binding site for target proteins. However, these unguided experiments were 

largely unsuccessful in regenerating the position of the compound in the crystal structure. 

In many cases, the pockets in which the compound was positioned was away from the 

basic cleft, i.e. lower energy models were generated with the compound docked outside 

versus in the basic cleft. Additionally, these experiments take a substantially longer time 

to run, as expected, since a higher exhaustiveness value is needed to adequately sample 

all of the space. The problem is made even more challenging when a smaller compound 

or fragment is investigated, as its small size allows for more binding sites to be sampled. 

Given the higher computational cost and uncertainty in the result, spending larger 

amounts of time modeling does seem to be advantageous. This is particularly true in the 

light of the availability of very rapid screening methods. The development of NMR pulse 

sequences allowing for collection of complete HSQC spectra in 15 minutes for well-
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behaved proteins at reasonably low concentrations is especially valuable in this context 

because it would allow at least a direct albeit coarse mapping of the ligand binding site. 

Overall, unguided docking does not appear to currently lend itself to be a valuable 

approach for screening. 
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Chapter 3 

 

Conclusion and Future Directions 

 

3.1 – Evaluation of overall performance of Autodock Vina  

This study evaluated the ability of Autodock Vina to serve as a tool in the 

development of small molecule inhibitors of RPA70N. Given the lack of success in 

recapitulating the crystal structure and the need for long, exhaustive unguided searches to 

adequately sample the space proved to be inefficient and unable to adequately predict the 

correct binding site. On the other hand, with some knowledge of the binding site on the 

target, the program did a remarkably good job at predicting the binding site. Additionally, 

we found a correlation between the accuracy of the prediction and the size of the 

compound: larger compounds like VU0467976 worked better. We attribute this 

observation to the fact that as the molecule gets larger the number of potential binding 

sites is reduced compared to small fragments like VU0466242. An inverse correlation 

between exhaustiveness and the Kd was observed for the tight binders in this group. 

These compounds required less exhaustive searches and produced lower energy models. 

Overall, my results suggest that Autodock Vina is not an efficient tool for 

screening large libraries of fragments but has the potential to be useful for rational drug 

design. Analogs of lead compounds can quickly be designed and prepared for docking as 

compared to synthesizing all of the compounds. Importantly, large number of analogs can 

be designed and efficiently modeled in one day. Given the correlations seen in this study, 

relative binding affinity between the compound and protein can be assessed from the 
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calculated energies. In particular, the lower the energy is, the tighter the binding. This 

will allow for the synthesis and testing of only those compounds that are highly likely to 

bind more tightly to the target. Should Autodock Vina program prove generally 

applicable, it would enhance the overall efficiency of the compound optimization 

process.  

 

3.2 – Future directions  

In efforts to continue evaluating the role of virtual screening and molecular 

docking in drug discovery, additional steps could be implemented for further evaluation 

of Autodock Vina. All of the experiments that were performed in this study kept the 

protein as a rigid body and only allowed certain bonds in the compounds to rotate in the 

docking. Autodock Vina allows for residues to set as flexible. Allowing residues in the 

basic cleft to retain flexibility should allow for better models. RPA70N was identified as 

having two discrete ligand binding sites in the basic cleft, centered on S55 and T60. 

Additionally, the side chains of residues R41, R43, and M57 were consistently identified 

as key contributors to the binding of the six compounds tested here. Allowing flexibility 

of these key residues alone may be a good compromise to obtain additional information 

about the targeted binding site without having as high of a computational cost as allowing 

flexibility to all side chains.  

If structural information is available on the target binding site, it would be worth 

evaluating the use of the program as a virtual screening tool. Fragments would be 

screened in a defined target area and could be separated based on their binding location. 

By performing this virtual screening, a chemist could see orientations and positions for 
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each fragment at a targeted binding site. Distances can be measured and the chemist can 

rationally design a linker to connect the fragments based on the set of models generated 

by the program. This approach would be beneficial in situations where complexes do not 

readily crystallize and no additional structural data is available.  

Additional testing should be performed to see if the correlation between tighter 

binding of the protein-ligand complexes and lower energies in Autodock Vina models. 

This study examined compounds with affinities between 8 µM and 170 µM. If this trend 

was to continue in to the nanomolar range, this approach would be an ideal method to 

predict which compounds and future analogs are worth pursuing synthetically. Ideally, 

this particular step would come later in the process, well after screening. However, as we 

have noted above, the use of computational evaluation of binding of ligands to a target 

protein can be useful at multiple stages of the compound optimization process. With the 

continual development of Autodock Vina and many other computational approaches, the 

future of drug discovery will very likely see an increase in overall efficiency as a result of 

these developments. 
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Appendix A 

 

Compounds used in study 
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Appendix B 

 

Energy values for all models 

 

 

VU0467976 Guided Ex = 8 VU0467976 Unguided Ex = 8 

Model Position Affinity (kcal/mol) Model Position Affinity (kcal/mol) 

1 -9.1 1 -8.1 

2 -8.9 2 -7.8 

3 -8.5 3 -7.5 

4 -8.4 4 -7.4 

5 -8.3 5 -7.4 

6 -8.2 6 -7.3 

7 -8.1 7 -7.3 

8 -8.0 8 -7.3 

9 -7.9 9 -7.2 

  

  

VU0467976 Guided Ex = 64 VU0467976 Unguided Ex = 64 

Model Position Affinity (kcal/mol) Model Position Affinity (kcal/mol) 

1 -10.6 1 -10.4 

2 -9.3 2 -9.8 

3 -9.3 3 -9.3 

4 -9.3 4 -9.2 

5 -9.3 5 -9.1 

6 -9.0 6 -9.1 

7 -9.0 7 -9.1 

8 -8.8 8 -8.7 

9 -8.8 9 -8.7 

  

  

VU0467976 Guided Ex = 128 VU0467976 Unguided Ex = 128 

Model Position Affinity (kcal/mol) Model Position Affinity (kcal/mol) 

1 -10.4 1 -10.6 

2 -9.4 2 -9.7 

3 -9.2 3 -9.4 

4 -9.2 4 -9.1 

5 -9.1 5 -9.1 

6 -9.1 6 -8.7 

7 -9.0 7 -8.6 

8 -8.8 8 -8.6 

9 -8.7 9 -8.5 
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VU0468049 Guided Ex = 8 

 

VU0468049 Unguided Ex = 8 

Model Position Affinity (kcal/mol) 

 

Model Position Affinity (kcal/mol) 

1 -7.5 

 

1 -6.8 

2 -7.3 

 

2 -6.7 

3 -7.2 

 

3 -6.5 

4 -7.1 

 

4 -6.5 

5 -7.0 

 

5 -6.5 

6 -7.0 

 

6 -6.4 

7 -6.8 

 

7 -6.4 

8 -6.6 

 

8 -6.2 

9 -6.5 

 

9 -6.0 

     VU0468049 Guided Ex = 64 

 

VU0468049 Unguided Ex = 64 

Model Position Affinity (kcal/mol) 

 

Model Position Affinity (kcal/mol) 

1 -7.9 

 

1 -8.4 

2 -7.8 

 

2 -8.3 

3 -7.8 

 

3 -8.2 

4 -7.8 

 

4 -8.1 

5 -7.7 

 

5 -8.1 

6 -7.7 

 

6 -8.1 

7 -7.6 

 

7 -7.9 

8 -7.4 

 

8 -7.8 

9 -7.4 

 

9 -7.8 

     VU0468049 Guided Ex = 128 

 

VU0468049 Unguided Ex = 128 

Model Position Affinity (kcal/mol) 

 

Model Position Affinity (kcal/mol) 

1 -8.4 

 

1 -8.3 

2 -8.1 

 

2 -8.2 

3 -8.0 

 

3 -8.2 

4 -8.0 

 

4 -8.2 

5 -8.0 

 

5 -8.1 

6 -7.9 

 

6 -8.0 

7 -7.8 

 

7 -8.0 

8 -7.8 

 

8 -7.9 

9 -7.8 

 

9 -7.9 

 

VU0085636 Guided Ex = 8 

 

VU0085636 Unguided Ex = 8 

Model Position Affinity (kcal/mol) 

 

Model Position Affinity (kcal/mol) 

1 -7.7 

 

1 -8.4 

2 -7.6 

 

2 -8.3 

3 -7.6 

 

3 -8.3 

4 -7.3 

 

4 -8.1 

5 -7.3 

 

5 -8.1 

6 -7.3 

 

6 -8.0 

7 -7.1 

 

7 -8.0 
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8 -7.1 

 

8 -8.0 

9 -7.0 

 

9 -8.0 

     VU0085636 Guided Ex = 64 

 

VU0085636 Unguided Ex = 64 

Model Position Affinity (kcal/mol) 

 

Model Position Affinity (kcal/mol) 

1 -7.6 

 

1 -8.7 

2 -7.6 

 

2 -8.4 

3 -7.5 

 

3 -8.4 

4 -7.5 

 

4 -8.3 

5 -7.3 

 

5 -8.3 

6 -7.3 

 

6 -8.3 

7 -7.3 

 

7 -8.2 

8 -7.2 

 

8 -8.2 

9 -7.2 

 

9 -8.2 

     VU0085636 Guided Ex = 128 

 

VU0085636 Unguided Ex = 128 

Model Position Affinity (kcal/mol) 

 

Model Position Affinity (kcal/mol) 

1 -7.6 

 

1 -8.7 

2 -7.6 

 

2 -8.5 

3 -7.5 

 

3 -8.4 

4 -7.5 

 

4 -8.4 

5 -7.4 

 

5 -8.3 

6 -7.3 

 

6 -8.3 

7 -7.3 

 

7 -8.2 

8 -7.3 

 

8 -8.2 

9 -7.3 

 

9 -8.2 

     VU0085636 Guided Ex = 512 

 

VU0085636 Unguided Ex = 512 

Model Position Affinity (kcal/mol) 

 

Model Position Affinity (kcal/mol) 

1 -7.7 

 

1 -8.7 

2 -7.6 

 

2 -8.5 

3 -7.5 

 

3 -8.5 

4 -7.5 

 

4 -8.4 

5 -7.4 

 

5 -8.3 

6 -7.3 

 

6 -8.3 

7 -7.3 

 

7 -8.2 

8 -7.3 

 

8 -8.2 

9 -7.3 

 

9 -8.2 

 

VU0466242 Guided Ex = 8 

 

VU0466242 Unguided Ex = 8 

Model Position Affinity (kcal/mol) 

 

Model Position Affinity (kcal/mol) 

1 -5.4 

 

1 -5.6 

2 -5.2 

 

2 -5.5 

3 -5.2 

 

3 -5.4 

4 -5.2 

 

4 -5.3 
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5 -5.0 

 

5 -5.3 

6 -4.9 

 

6 -5.3 

7 -4.8 

 

7 -5.1 

8 -4.8 

 

8 -5.1 

9 -4.7 

 

9 -5.1 

     VU0466242 Guided Ex = 64 

 

VU0466242 Unguided Ex = 64 

Model Position Affinity (kcal/mol) 

 

Model Position Affinity (kcal/mol) 

1 -5.8 

 

1 -6.2 

2 -5.8 

 

2 -5.9 

3 -5.7 

 

3 -5.8 

4 -5.7 

 

4 -5.7 

5 -5.6 

 

5 -5.7 

6 -5.6 

 

6 -5.7 

7 -5.6 

 

7 -5.7 

8 -5.5 

 

8 -5.7 

9 -5.4 

 

9 -5.7 

     VU0466242 Guided Ex = 128 

 

VU0466242 Unguided Ex = 128 

Model Position Affinity (kcal/mol) 

 

Model Position Affinity (kcal/mol) 

1 -6.2 

 

1 -6.2 

2 -6.1 

 

2 -5.6 

3 -6.0 

 

3 -5.6 

4 -5.9 

 

4 -5.6 

5 -5.7 

 

5 -5.5 

6 -5.7 

 

6 -5.5 

7 -5.7 

 

7 -5.5 

8 -5.7 

 

8 -5.5 

9 -5.7 

 

9 -5.5 

     VU0466242 Guided Ex = 512 

 

VU0466242 Unguided Ex = 512 

Model Position 

  

Model Position Affinity (kcal/mol) 

1 -5.8 

 

1 -6.5 

2 -5.8 

 

2 -6.4 

3 -5.7 

 

3 -6.0 

4 -5.7 

 

4 -6.0 

5 -5.7 

 

5 -5.9 

6 -5.6 

 

6 -5.9 

7 -5.6 

 

7 -5.9 

8 -5.6 

 

8 -5.8 

9 -5.5 

 

9 -5.8 

     VU0466242 Guided Ex = 2048 

 

VU0466242 Unguided Ex = 2048 

Model Position Affinity (kcal/mol) 

 

Model Position Affinity (kcal/mol) 

1 -6.7 

 

1 -6.6 
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2 -6.4 

 

2 -6.5 

3 -6.3 

 

3 -6.4 

4 -6.2 

 

4 -6.3 

5 -6.2 

 

5 -6.3 

6 -6.1 

 

6 -6.1 

7 -6.1 

 

7 -6.1 

8 -6.1 

 

8 -6.1 

9 -6.1 

 

9 -6.0 

 

VU0469701 - 2B29 Guided Ex = 8 

 

VU0469701 - 2B29 Unguided Ex = 8 

Model Position Affinity (kcal/mol) 

 

Model Position Affinity kcal/mol) 

1 -4.9 

 

1 -6.0 

2 -4.7 

 

2 -5.6 

3 -4.6 

 

3 -5.4 

4 -4.6 

 

4 -5.4 

5 -4.5 

 

5 -5.1 

6 -4.5 

 

6 -5.1 

7 -4.5 

 

7 -5.0 

8 -4.5 

 

8 -4.9 

9 -4.3 

 

9 -4.9 

     VU0469701 - 2B29 Guided Ex = 64 

 

VU0469701 - 2B29 Unguided Ex = 64 

Model Position Affinity (kcal/mol) 

 

Model Position Affinity (kcal/mol) 

1 -5.0 

 

1 -6.0 

2 -4.8 

 

2 -5.8 

3 -4.7 

 

3 -5.5 

4 -4.7 

 

4 -5.4 

5 -4.6 

 

5 -5.3 

6 -4.6 

 

6 -5.2 

7 -4.6 

 

7 -5.2 

8 -4.5 

 

8 -5.1 

9 -4.5 

 

9 -5.1 

     VU0469701 - 2B29 Guided Ex = 128 

 

VU0469701 - 2B29 Unguided Ex = 128 

Model Position Affinity (kcal/mol) 

 

Model Position Affinity (kcal/mol) 

1 -5.0 

 

1 -6.0 

2 -4.8 

 

2 -5.8 

3 -4.7 

 

3 -5.6 

4 -4.7 

 

4 -5.5 

5 -4.7 

 

5 -5.4 

6 -4.6 

 

6 -5.4 

7 -4.6 

 

7 -5.4 

8 -4.6 

 

8 -5.3 

9 -4.6 

 

9 -5.2 
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VU0469701 - 2B29 Guided Ex = 512 

 

VU0469701 - 2B29 Unguided Ex = 512 

Model Position Affinity (kcal/mol) 

 

Model Position Affinity (kcal/mol) 

1 -5.0 

 

1 -6.0 

2 -4.8 

 

2 -5.7 

3 -4.8 

 

3 -5.5 

4 -4.7 

 

4 -5.5 

5 -4.7 

 

5 -5.5 

6 -4.7 

 

6 -5.4 

7 -4.7 

 

7 -5.3 

8 -4.6 

 

8 -5.2 

9 -4.6 

 

9 -5.2 

     

VU0469701 - 2B3G Guided Ex = 8  VU0469701 - 2B3G Unguided Ex = 8 

Model Position Affinity (kcal/mol)  Model Position Affinity (kcal/mol) 

1 -5.2  1 -5.4 

2 -4.7  2 -5.4 

3 -4.5  3 -5.4 

4 -4.5  4 -5.3 

5 -4.5  5 -5.1 

6 -4.4  6 -4.9 

7 -4.4  7 -4.9 

8 -4.2  8 -4.8 

9 -4.1  9 -4.8 

     

VU0469701 - 2B3G Guided Ex = 64  VU0469701 - 2B3G Unguided Ex = 64 

Model Position Affinity (kcal/mol)  Model Position Affinity (kcal/mol) 

1 -5.2  1 -5.7 

2 -4.9  2 -5.6 

3 -4.8  3 -5.6 

4 -4.6  4 -5.6 

5 -4.6  5 -5.5 

6 -4.6  6 -5.4 

7 -4.6  7 -5.4 

8 -4.6  8 -5.4 

9 -4.5  9 -5.3 

     

VU0469701 - 2B3G Guided Ex = 128  VU0469701 - 2B3G Unguided Ex = 128 

Model Position Affinity (kcal/mol)  Model Position Affinity (kcal/mol) 

1 -5.3  1 -5.7 

2 -4.7  2 -5.7 

3 -4.7  3 -5.6 

4 -4.6  4 -5.6 

5 -4.6  5 -5.6 

6 -4.6  6 -5.5 

7 -4.6  7 -5.5 
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8 -4.5  8 -5.4 

9 -4.5  9 -5.4 

     

VU0469701 - 2B3G Guided Ex = 512  VU0469701 - 2B3G Unguided Ex = 512 

Model Position Affinity (kcal/mol)  Model Position Affinity (kcal/mol) 

1 -5.2  1 -5.7 

2 -4.9  2 -5.7 

3 -4.8  3 -5.6 

4 -4.7  4 -5.6 

5 -4.6  5 -5.6 

6 -4.6  6 -5.5 

7 -4.6  7 -5.5 

8 -4.6  8 -5.5 

9 -4.6  9 -5.5 

 

VU0100560 - 2B29 Guided Ex = 8 

 

VU0100560 - 2B29 Unguided Ex = 8 

Model Position Affinity (kcal/mol) 

 

Model Position Affinity (kcal/mol) 

1 -5.5 

 

1 -6.4 

2 -5.4 

 

2 -6.2 

3 -5.3 

 

3 -6.0 

4 -5.1 

 

4 -6.0 

5 -5.1 

 

5 -6.0 

6 -5 

 

6 -5.9 

7 -5 

 

7 -5.9 

8 -4.8 

 

8 -5.9 

9 -4.8 

 

9 -5.8 

     VU0100560 - 2B29 Guided Ex = 64 

 

VU0100560 - 2B29 Unguided Ex = 64 

Model Position Affinity (kcal/mol) 

 

Model Position Affinity (kcal/mol) 

1 -5.5 

 

1 -6.4 

2 -5.4 

 

2 -6.2 

3 -5.3 

 

3 -6.0 

4 -5.3 

 

4 -6.0 

5 -5.2 

 

5 -6.0 

6 -5.1 

 

6 -6.0 

7 -5.1 

 

7 -6.0 

8 -5.1 

 

8 -5.9 

9 -5 

 

9 -5.9 

     VU0100560 - 2B29 Guided Ex = 128 

 

VU0100560 - 2B29 Unguided Ex = 128 

Model Position Affinity (kcal/mol) 

 

Model Position Affinity (kcal/mol) 

1 -5.5 

 

1 -6.4 

2 -5.4 

 

2 -6.2 

3 -5.3 

 

3 -6.1 

4 -5.3 

 

4 -6.1 
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5 -5.2 

 

5 -6.0 

6 -5.1 

 

6 -6.0 

7 -5.1 

 

7 -6.0 

8 -5.1 

 

8 -5.9 

9 -5 

 

9 -5.9 

     VU0100560 - 2B29 Guided Ex = 512 

 

VU0100560 - 2B29 Unguided Ex = 512 

Model Position Affinity (kcal/mol) 

 

Model Position Affinity (kcal/mol) 

1 -5.5 

 

1 -6.4 

2 -5.4 

 

2 -6.2 

3 -5.3 

 

3 -6.1 

4 -5.3 

 

4 -6.1 

5 -5.2 

 

5 -6.0 

6 -5.1 

 

6 -6.0 

7 -5.1 

 

7 -6.0 

8 -5.1 

 

8 -5.9 

9 -5.1 

 

9 -5.9 

VU0100560 - 2B3G Guided Ex = 8 

 

VU0100560 - 2B3G Unguided Ex = 8 

Model Position Affinity (kcal/mol) 

 

Model Position Affinity (kcal/mol) 

1 -5.9 

 

1 -6.5 

2 -5.9 

 

2 -6.2 

3 -5.7 

 

3 -6.2 

4 -5.6 

 

4 -6.2 

5 -5.5 

 

5 -6.2 

6 -5.3 

 

6 -6.0 

7 -5.2 

 

7 -5.8 

8 -5.1 

 

8 -5.7 

9 -5.1 

 

9 -5.7 

     VU0100560 - 2B3G Guided Ex = 64 

 

VU0100560 - 2B3G Unguided Ex = 64 

Model Position Affinity (kcal/mol) 

 

Model Position Affinity (kcal/mol) 

1 -5.9 

 

1 -6.5 

2 -5.9 

 

2 -6.2 

3 -5.8 

 

3 -6.2 

4 -5.6 

 

4 -6.2 

5 -5.6 

 

5 -6.2 

6 -5.6 

 

6 -6.0 

7 -5.5 

 

7 -6.0 

8 -5.5 

 

8 -6.0 

9 -5.4 

 

9 -5.9 

     VU0100560 - 2B3G Guided Ex = 128 

 

VU0100560 - 2B3G Unguided Ex = 128 

Model Position Affinity (kcal/mol) 

 

Model Position Affinity (kcal/mol) 

1 -6.2 

 

1 -6.5 

2 -6.1 

 

2 -6.3 
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3 -6.1 

 

3 -6.2 

4 -5.8 

 

4 -6.2 

5 -5.8 

 

5 -6.2 

6 -5.8 

 

6 -6.0 

7 -5.7 

 

7 -6.0 

8 -5.7 

 

8 -6.0 

9 -5.5 

 

9 -5.9 

     VU0100560 - 2B3G Guided Ex = 512 

 

VU0100560 - 2B3G Unguided Ex = 512 

Model Position Affinity (kcal/mol) 

 

Model Position Affinity (kcal/mol) 

1 -6.2 

 

1 -6.5 

2 -6.1 

 

2 -6.2 

3 -6.1 

 

3 -6.2 

4 -5.8 

 

4 -6.2 

5 -5.8 

 

5 -6.2 

6 -5.8 

 

6 -6.0 

7 -5.8 

 

7 -6.0 

8 -5.7 

 

8 -6.0 

9 -5.7 

 

9 -6.0 
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