
MINIMIZING SERVICE DISRUPTION

IN PEER-TO-PEER STREAMING

By

Yanchuan Cao

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

May, 2011

Nashville, Tennessee

Approved:

Professor Yi Cui

Professor Gautam Biswas

Professor Aniruddha Gokhale

Professor William Robinson

Professor Yuan Xue

TABLE OF CONTENTS

Page

LIST OF FIGURES . v

Chapter

I. INTRODUCTION . 1

Peer-to-peer Streaming . 1
Contributions in This Dissertation 2

A Optimization Framework to Maximize Resilient Through-
put . 2

A Peer Evaluation Metric to Minimize Service Disruption . 3
Dissertation Organization . 5

II. RELATED WORK . 7

P2P Overlay Structures . 7
P2P Fault Resilience . 8

Depth Minimizing . 8
Parent-Child Switching . 9
Optimal Parent Selecting 9

Generalized Flow Optimization Framework 11

III. FRAMEWORK OVERVIEW . 13

Network Model . 13
General Network . 13
Star Network . 13

Overlay Organization . 13
Resilience Factor and Generalized Flow 14

Concatenation Model . 14
Non-Concatenation Model 15

Summary of Contributions . 16

IV. GENERAL TOPOLOGY MODEL 18

Multiple Trees . 18
Single Tree . 22

V. STAR TOPOLOGY MODEL . 25

Multiple Trees . 25
Single Tree . 28
Discussions . 32

ii

VI. PERFORMANCE EVALUATIONS – OPTIMIZATION FRAMEWORK 33

Experimental Setup . 33
Generalized Throughput vs. Volume 34
Performance of Single Tree Algorithms 36

VII. PEER EVALUATION METRIC OVERVIEW 39

Network Model . 39
Resilience Factor of a Peer . 40
Resilience Index of P2P Distribution Structures 41

Single Tree . 41
Multiple Trees . 42
Mesh . 43

Optimization Framework based on the Generalized Flow Theory . 45
Problem Formulation . 45
Solution Methodology . 46

VIII. PEER EVALUATION METRIC . 49

Metric . 49
Peer Selection Algorithm . 51

Single Tree . 51
Multiple Trees . 52
Mesh . 52

Updating Overhead and Bootstrapping 53
Practical Issues . 55

Coordination with Other Metrics 55
Coexistence with Other Applications 56

IX. PERFORMANCE EVALUATION – PEER EVALUATION METRIC 58

Traces . 58
MSN Video . 58
PPLive . 59

Setup . 60
Other Algorithms . 60
Performance Metrics . 61

Results . 62
Single Tree . 62
Multi-tree . 63
Mesh . 63

X. CONCLUSION . 67

iii

XI. FUTURE WORK . 68

PRW -Aided Switching . 68
More Peer Evaluation Metrics . 69

Appendix

A. PROOF OF THEOREM 1 . 70

B. PROOF OF THEOREM 2 . 74

C. PROOF OF THEOREM 3 . 76

BIBLIOGRAPHY . 78

iv

LIST OF FIGURES

Figure Page

II.1. Research Category of This Dissertation 7

II.2. Age-first approach . 9

II.3. Bandwidth-first approach . 10

II.4. Hybrid approach . 10

II.5. ROST approach . 10

IV.1. General Topology Model . 18

V.1. Star Topology Model . 26

V.2. Illustration of MultiTrees-Star Algorithm 27

VI.1. MultiTrees-General under Non-Concatenation Model 35

VI.2. MultiTrees-Star and Two Heuristics under Concatenation Model
(Mean Lifetime = 1500s) . 35

VI.3. Performance Ratio of Heuristics to MultiTrees-Star under Con-
catenation Model . 36

VI.4. Sorted Nodes of MultiTrees-Star (Mean Outbound Bandwidth =
100Kbps) . 37

VI.5. Sorted Nodes of SingleTree-Star under Non-Concatenation Model
(Mean Outbound Bandwidth = 100Kbps) 37

VI.6. Sorted Nodes of Heuristics under Concatenation Model (Mean Out-
bound Bandwidth = 100Kbps) . 38

VII.1. P2P Distribution Structure . 41

IX.1. Peer Population of MSN Trace . 59

IX.2. Peer Population of PPLive Trace 59

v

IX.3. Single Tree . 64

IX.4. Multi-tree . 65

IX.5. Mesh . 66

B.1. Proof of Theorem 2 . 74

vi

CHAPTER I

INTRODUCTION

Peer-to-peer Streaming

When millions of people are cheering for the Super Bowl touchdowns, few may

wonder what makes the undisrupted video streaming possible. From the surface of

Mars to the bottom of Mexico gulf, live event broadcasting has changed the way

people interact with the world. 3D Movies nowadays only one-touch-away from your

smartphones, tablets or even live in the theater redefined the realm of video stream-

ing. Behind the scenes of these multimedia streaming applications lies a common

infrastructure, proven to be effective and scalable : the peer-to-peer (P2P) system.

In P2P systems, peers self-organize themselves into an overlay network and re-

lay data to each other, thus reducing server load. A key feature that distinguishes

the performance of one P2P solution to another is peer selection, the strategy a peer

employs to select other peer(s) as its parent(s) from which to receive data. Peer selec-

tion algorithms aggregate peers into multicast tree(s) spanning from the server, the

source of the data, to all peers. Given the data-intensive nature of P2P applications

(e.g., video streaming or bulk data distribution), a common objective of peer selection

optimization is to maximize the data throughput to all peers.

Already challenging in its static setup, the optimal peer selection problem is fur-

ther aggravated by the high volatility of the P2P network. Due to various reasons such

as user leaving or machine/network failure, unscheduled peer departure constantly

happens, which results in service disruptions or outages on all the downstream peers.

Therefore, we argue that when designing peer selection solutions, fault resilience de-

serves the same level of attention as first-class performance metrics, e.g. throughput,

1

delay, etc.

Contributions in This Dissertation

A significant amount of research has been conducted on this topic with different

emphasis. While important heuristics have been proposed such as bandwidth first,

age-first, or a hybrid of the two, some analytical works have tried to analyze and

compare their performances under stochastic framework or real-system traces. How-

ever, this domain has been rarely examined from the optimization perspective. If

we are able to model the fault-resilient peer selection problem under an optimiza-

tion framework which combines fault resilience with key performance metrics such as

throughput, then standard optimization techniques can be practiced to evaluate key

questions such as the solvability of the problem and the complexity of its optimal

solutions, if any. Also existing approaches could be quantitatively evaluated under

the same framework.

A Optimization Framework to Maximize Resilient Throughput

In this dissertation, we report our research towards this direction. Our optimiza-

tion framework is based on the generalized flow theory. It generalizes the classical

network flow problem by specifying a gain factor to each link in the network. As such,

the objective is to optimize the throughput of the generalized flow as the product of

raw flow and the gain factor on each link, while the traditional capacity and flow

conservation constraints still apply to the raw flow. Widely employed in operation

research to model the loss, theft, or interest rate in commodity transportation[1], we

find it a good match to the P2P domain. If we assign each peer a resilience factor

as the probabilistic measure of its chance of survival within a given time horizon,

this resilience factor could be considered as the gain factor in the generalized flow

2

setting. Under this framework, the problem of fault-resilient peer selection becomes

to maximize the aggregation of generalized flow received by each peer, which is the

product of the raw flow and resilience factors of peers it passes along.

We study this problem under a multitude of problem settings. Specifically,

• Regarding network model, we consider two types of topologies: the general

topology which models the underlying physical network as a graph, and the star

topology which assumes the bottleneck does not exist in the physical network,

but on peer’s access link.

• Regarding overlay organization, we consider cases where the number of trees

interconnecting peers is unlimited versus upper-bounded, e.g., single tree.

• Along the dimension of generalized flow definition, we consider the concate-

nation model where the generalized flow delivered to a peer depends on the

resilience of all its ancestors, and the non-concatenation model which only con-

siders the resilience of its immediate parent.

Along these dimensions, we explore the entire spectrum of this domain, and fo-

cus on studying problem complexity and finding the optimal solutions within each

subproblem.

A Peer Evaluation Metric to Minimize Service Disruption

After exploring the scalability and complexity of our optimization framework, we

went along this direction to find a practical solution to minimize service disruption

under this framework.

Any P2P streaming solution must have enough bandwidth and stability to support

various content-rich applications and satisfy ever-questing users. Bandwidth capacity

is needed to support high-quality streaming, while stability to minimize the service

disruption caused by premature peer-leaving. Achieving one goal is easy. There are

3

bandwidth-first policy to maximize achievable throughput[9] and age-first policy to

minimize occurrence of disruptions[5]. Reconciling both goals is hard. People may use

different terminals, from hand-held tablets to Internet TV. The various P2P accesses

render the uplink bandwidth heterogeneous and peer churning inherent, hence making

the problem more challenging.

To solve this problem, we designed an evaluation metric. The metric measures

the quality and readiness of a peer to serve other peers. Existing approaches in-

clude building core P2P infrastructure out of long-lived peers[31, 30] and Hybrid peer

selection policy[5]. Like existing approaches, our solution considers bandwidth and

lifetime. Distinguished from existing approaches, we designed our solution to fea-

ture easy measurement and limited overhead. To achieve this goal, we have three

design criteria: (1) Property Coverage, the metric should cover the two fundamental

properties of a peer: resource abundance and prospective longevity; (2) Simple Repre-

sentation, preferably a single scalar, against which, a group of peers can be compared

and sorted; (3) Effective Communication, it should be easily measured and commu-

nicated in a distributed fashion with limited overhead. Criteria (1) guaranteed our

method tackles the same bandwidth-lifetime optimization issue as other approaches

tried to do. Criteria (2) and (3) ensure the practical implementation of our solution.

Guided by the three design criteria, we propose the evaluation metric PRW (peer

resilient weight). The intuition of our design is straightforward. In order to have less

overhead, the metric should measure peer not tree. To cover the fundamental proper-

ties of a peer, the metric should involve available bandwidth and prospective lifetime.

For a peer, longer prospective life means it is more resilient, and smaller bandwidth

usage means more available uplink bandwidth. Therefore we have a prototype of the

metric:

w =
bandwidth usage

prospective lifetime

4

The question then becomes how to quantify the prospective lifetime, and formulate

a framework that incorporates both factors. In this dissertation, we measure a peer’s

prospective lifetime with the resilience factor, and derive the evaluation metric from

the generalized flow framework. Classic network flow maximizes flow under link

capacity constraints, while generalized flow optimizes the product of flow and gain,

subject to the constraints. We formulate our optimization framework to maximize

the aggregated generalized flow received by all peers, subject to the uplink capacity

constraints.

We tested the performance of PRW with two sets of real world traces in three P2P

overlay structures. The traces are PPLive[15] and MSN Video[16]. The P2P overlay

structures are tree, multi-tree, andmesh. We use two performance metrics, service dis-

ruption and rejection. Service disruption counts the number of disruptions a peer ex-

periences due to ancestor(s) leaving. Rejection measures number of peers rejected due

to insufficient uplink bandwidth. We compared the performance of our solution with

existing algorithms: age-first, bandwidth-first, hybrid and ROST(Reliability-Oriented

Switching Tree)[26]. The experiment results prove that PRW achieves both lower

service disruption and peer rejection.

Dissertation Organization

The remaining of this dissertation is organized as follows. We discuss related works

in Chapter II (Related Work). In Chapter III (Framework Overview), we introduce

our optimization framework and formally define key concepts such as generalized flow

and resilience index. In Chapter IV (General Topology Model), we study the opti-

mal peer selection problem under the general topology, and propose two algorithms

employing linear programming techniques. In Chapter V (Star Topology Model), we

study the same problem under the star topology, and propose two algorithms based

5

on combinatorial optimization techniques. Chapter VI (Performance Evaluations -

Optimization Framework) presents evaluation results. In Chapter VII (Peer Evalua-

tion Metric Overview), we present the optimization framework of the generalized flow

problem, from which PRW is derived. In Chapter VIII (Peer Evaluation Metric), we

discuss the computing, maintenance, and distribution of PRW, and related practical

issues. In Chapter IX (Performance Evaluation - Peer Evaluation Metric), we use

simulation to compare our algorithm with other algorithms and heuristics. We con-

clude our findings in Chapter X (Conclusion) and give future research suggestions in

Chapter XI (Future Work).

6

CHAPTER II

RELATED WORK

Our research falls into the category of Peer-to-peer streaming[19] of Overlay Mul-

ticast Networks. We focus on the Peer Selection algorithms of P2P fault resilience

research, than the other two major aspects of this domain: Depth Minimizing and

Parent-Child Switching (See Fig.II.1). Our approach tries to build an optimal parent

selection with a peer evaluation metric based on the generalized flow optimization

framework. In this section, we will introduce related research domains and back-

grounds of this dissertation.

Figure II.1: Research Category of This Dissertation

P2P Overlay Structures

Several evaluative works have been conducted to study the impact of different

overlay construction algorithms on the resilience of P2P network. Bishop et al. ex-

amines the effect of bandwidth- and age-priority heuristics on multicast tree reliability

7

using trace-based simulation[5]. Stochastic network analysis have been employed to

study the resilience of DHT-based (Distributed Hash Table) P2P network[26] and

decentralized P2P network[18] under given peer lifetime distribution. In contrast,

our work does not make a priori assumptions on peer characteristics, but focuses on

finding optimal peer selection algorithms that can take any input.

Numerous P2P streaming solutions have been proposed, where some representa-

tive works encompass the categories of single-tree[7], multi-tree[22, 6], mesh[17, 20],

or hybrid solutions[29, 31]. Each solution is designed in its own way to maintain

the P2P structure and handle peer churning. Although the algorithm presented here

deals with peer dynamics by attaching new peers to the existing P2P structure incre-

mentally, the central of focus of our work is the evaluation metric PRW, which can

be of reference value to other P2P streaming solutions too.

P2P Fault Resilience

Depth Minimizing

Fault resilience has been considered in many existing solutions in overlay and

P2P networks. An important approach is to reduce the tree depth to minimize

failure propagation and service delay. Algorithms bearing the flavor of “minimizing

depth” have been proposed in [14, 22]. Several well-known works, such as Bullet[17],

SplitStream[6], and CoopNet[23], also employs the multi-tree approach to reduce the

impact of peer failure, meanwhile increasing the aggregate throughput. In contrast

to the depth-optimizing approach, Sripanidkulchai et al.[25] propose the longest-first

algorithm which, by utilizing peers’ heavy tailed lifetime distribution, grants the

8

longest-lived peer with higher priority. These algorithms coincide with many findings

in our dissertation, such as the optimal tree structure exhibited in the multi-tree

setting under star network model.

Our approach is also closely related with the rich body of works to enhance sta-

bility of P2P systems[12, 30, 31, 5, 27], largely following two different strategies.

Parent-Child Switching

The first strategy is to gradually improve the stability of P2P structure by switch-

ing existing parent-child pairs to move up the stable peers. Existing algorithms in-

clude mtreebone[31], stable peers[30], and ROST[27].

Optimal Parent Selecting

The second strategy[5] tries to achieve the same goal by letting each joining peer

find the optimal existing peer as its parent, often with the aid of comparable metrics,

which our work follow as well. This type of solutions require a publish-subscribe

service to help bootstrap a new peer to find its ideal parent(s). Existing approaches

include age-first, bandwidth-first, and hybrid.

We compared the performance of our approach with age-first, bandwidth-first,

hybrid, and ROST.

Figure II.2: Age-first approach

9

With age-first approach(See Fig.II.2), no nodes are older than higher level nodes.

This may lead to total trees.

Figure II.3: Bandwidth-first approach

With bandwidth-first approach(See Fig.II.3), no nodes has larger bandwidth than

higher level nodes. This may cause frequent peer rejoining to satisfy the bandwidth

order.

Figure II.4: Hybrid approach

Hybrid (See Fig.II.4) introduced DegreeRatio and AgeRatio for peer comparison.

For two peers A and B, If their DegreeRatio > 1 and AgeRatio > 1, then peers

A is more favorable than B when chosen as parent by newly joining peers. If their

(DegreeRatio−1)(AgeRatio−1) < 0, then peers A is more favorable than B, only if

their DegreeRatio > AgeRatio−p, in which p being an integer.

Figure II.5: ROST approach

ROST (See Fig.II.5) introduced a metric called BTP (Bandwidth-Time Product)

for adjacent peer comparison. The parent-child pair will rotate when their BTP order

10

reverse.

Generalized Flow Optimization Framework

Optimization has long been practiced in network routing, primarily based on the

multi-commodity flow theory. The basic idea is to assign weights to links to reflect

their congestion conditions, and perform traffic routing based on the weights. In

particular, the work of [2] and [4] present the theoretical models for online unicast

routing. In the multicast domain, the work of [3] investigates the case of receivers

within a multicast session arriving in batch, and the work in [13] presents a solution

for receivers arriving separately. In the past, the multicommodity flow theory has

extended to maximize the throughput of overlay multicasting[9]. This dissertation

elaborates this effort to further incorporate fault resilience by introducing generalized

flow theory.

Generalized flow has many applications[1], where the gain factors can model phys-

ical transformations of a commodity due to leakage, evaporation, breeding, theft,

and transformations from one commodity into another as a result of manufactur-

ing, scheduling, or currency exchange. Existing works have been focused on unicast

routing[33, 28]. In particular, Wayne et al.[34] present a Dijkstra-variant shortest

path algorithm for minimum-cost unicast-based generalized flow problem if all gain

factors are below one. We find that when applying to multicasting, the difficulty of

the problem increases rapidly due to the complexity brought up by the exponential

cardinality of multicast tree set.

Finally, PRW is derived from the dual formulation of the generalized version of a

multi-commodity problem. This methodology has been widely adopted in the area of

traffic engineering[11], where a physical link is assigned a weight in reverse proportion

of the link capacity, on which a shortest-path algorithm runs to find the lightest-load

11

route. In our work, the weights (dual variables) apply to peers directly, since their

uplink capacities are the most precious resources in P2P streaming.

12

CHAPTER III

FRAMEWORK OVERVIEW

Network Model

We consider two kinds of network models: general model and star model.

General Network

We model the network as a graph G = (N , E), consisting of N nodes with capacity

ce on each physical edge e ∈ E . On top of G, an overlay network G = (s, V, L) exists,

where s is the server, and peers belong to the set V = {v}. Each overlay edge l ∈ L

connects two peers in V , and corresponds to the unicast route at the physical network

G.

Star Network

Many works have implicitly assumed that the bottleneck of a unicast path only

happens at either access link of its two end hosts. In this way, we can simplify the

general model into a star model. The central node of the star represents the Inter-

net cloud, which reaches out to every peer. In this model, we denote the outbound

bandwidth of peer v ∈ V as cv.

Overlay Organization

To transfer data among peers, the simplest and most straight forward strategy is a

single multicast tree spanning from the server s to all peers in V . Although simple to

13

manage, this solution has clear drawback since a peer departure can cause complete

disruption to all its descendants.

An alternative solution is the recently popular multi-tree or mesh solution, where

each peer schedules to receive data from multiple parents. Since the mesh structure

can be usually decomposed as the sum of multiple spanning trees, therefore will be

categorized as multi-tree solution1. We denote the tree set as T = {t}, where each

tree t ∈ T covers all peers and has a single rate f(t).

Resilience Factor and Generalized Flow

We assign a resilience factor rv (0 < rv ≤ 1) to each peer v ∈ V . Our model makes

no assumption on how rv is defined. For the purpose of illustration, we introduce one

way to define rv. Suppose v follows certain lifetime distribution with c.d.f. F (τ), and

T is a random variable denoting the time of departure, then the survival function of

v is 1 − F (τ) = Pr(T > τ), the probability that its time of departure is later than

time τ . If we denote rv = Pr(T > τ ∗), where τ ∗ is a fixed time point in the future,

then it represents the chance of survival for v until τ ∗.

Given the resilience factor of v, we consider two models to compute the rate of

generalized flow.

Concatenation Model

For each peer v in tree t, there is a path from the server s to v, denoted as

Pt(v) : s 7→ v1 7→ v2 7→ · · · 7→ vk 7→ v

1We note that such categorization does not apply to the management of P2P network, but only
suits the purpose of calculating throughput to each peer, which is the main focus of this research.

14

Given t’s flow rate f(t), the dependency model computes the generalized flow

delivered to v as f(t) timed by the concatenate product of rv1 through rvk . We define

such product as the resilience index of v in t:

Rt(v) =
k∏

i=1

rvi (III.1)

Based on this definition, f(t)Rt(v) is the generalized flow rate delivered to v in

tree t. We can further define the resilience index of tree t as

R(t) =
∑
v∈V

Rt(v) (III.2)

Since Rt(v) ≤ 1, it is obvious that R(t) ≤ |V |. Now we are able to define

generalized throughput of t, which is the sum of generalized flow rates to all peers.

fg(t) = f(t)R(t) (III.3)

This model computes a peer’s generalized flow by factoring in the resilience factors

of all its ancestors. It fits the live P2P streaming scenario where a peer failure can

cause disruptions on all its descendants. Also an implicit assumption in the definition

of Rt(v) is that the resilience factor of server s is 1, i.e., s will not departure.

Non-Concatenation Model

In this model, we define the generalized flow to a peer to be only dependent on

its immediate parent. Formally, in the same sample context of concatenation model,

we define the resilience index of peer v in tree t as follows.

Rt(v) = rvk (III.4)

15

This model fits better to P2P applications with no real time constraints. For

example, in some on-demand streaming and downloading applications, the parent

peer serves its children from its local cache. This gives its children buffering time to

find new parent(s) upon its own departure or failure, thus absorbing the impact of

cascading disruption.

Summary of Contributions

In Tab. III.1, we summarize findings when exploring along the three dimen-

sions(topology model, P2P structure, and concatenation model) outlined in this sec-

tion. Of the eight subproblems, we find four of them polynomially solvable and

present the optimal solutions. Of the four NP-hard problems, we are able to find a

O(log E)-approximation algorithm, and only find heuristics to the other three.

General Topology Star Topology
Multiple Trees
(Concatenation)

NP-hard (reduction to 3-
SAT)

MultiTrees-Star, O(n)

Multiple
Trees (Non-
Concatenation)

MultiTrees-General,
O(|E|

ϵ2
logU · Tmst)

MultiTrees-Star, O(n)

Single Tree
(Concatenation)

NP-hard (reduction to
MPSP[8])

NP-hard (reduction to
Hamilton Path[1])

Single
Tree (Non-
Concatenation)

NP-hard (linear-
programming-relaxation
is NP-hard)

SingleTree-Star, O(n3)

Table III.1: Summary of Findings

We summarize notations that appeared in this chapter in Tab. III.2.

16

Notation Definition

G = (N , E) Physical Network
G = (V, L) Overlay Network
s server node
E = {e} physical layer edges
L = {l} overlay layer links
V = {v} overlay nodes
r, R resilience index, e.g. rv, R(t), Rt(v)
T = {t} overlay multicast trees
f(t) data flow over tree t
fg(t) generalized flow over tree t
c bandwidth constraint, e.g. , cv, ce, cs
de price of edge e
Pt(v) overlay routing path between s and v in overlay tree t

Table III.2: Notations Table

17

CHAPTER IV

GENERAL TOPOLOGY MODEL

In this section, we present our study on optimal generalized throughput under the

general topology model(See Fig.IV.1).

Physical Network

Overlay Graph

s
v2

v1

v3

v5

v4

Peer

Router

Overlay Edge

v6

(s , v1)

Figure IV.1: General Topology Model

Multiple Trees

We start with the most basic setting, where an unlimited number of trees can

be constructed for the purpose of maximizing generalized throughput. With notions

introduced in Chapter III (Framework Overview), we formulate it into the following

linear programming (LP) problem.

18

maximize
∑
t∈T

f(t)R(t) (IV.1)

subject to
∑
t∈T

ne(t)f(t) ≤ ce, ∀e ∈ E (IV.2)

f(t) ≥ 0, t ∈ T

The objective of problem (IV.1) is to maximize the generalized throughput (de-

fined in Eq. (III.3)) of all trees. Inequality (IV.2) refers to the capacity constraint,

i.e., the aggregate raw flow of all trees cannot exceed any physical link e ∈ E . ne(t) is

an integer variable indicating the number of times tree t has passed through e. Note

since t is an overlay tree, ne(t) can be greater than 1.

The central difficulty of problem (IV.1) is that its number of variables is exponen-

tial to the size of the P2P network. Based on Cayley’s theorem[10], the number of

different spanning trees contained in T is |T | = (|V |+1)(|V |−1), |V | being the number

of peers in V .

On the other hand, the dimensionality of this problem, i.e., the number of con-

straints, is |E|, the number of physical links. This gives us a chance to solve this

problem via its dual presented as follows, which contains |E| variables but exponen-

tial constraints.

minimize
∑
e∈E

cede (IV.3)

subject to
∑
e∈E

ne(t)de ≥ R(t), ∀t ∈ T (IV.4)

de ≥ 0, e ∈ E

Problem (IV.3) refers to assigning each link e a length de, and minimize the sum

of de multiplied by the capacity ce, subject to inequality (IV.4), which states that

19

the length of any spanning tree must be greater than its own resilience index R(t),

defined in Eq. (III.2).

Although there exists exponential number of trees in T , if we can find a separation

oracle able to check whether constraint (IV.4) is met in polynomial time, then the

dual problem (IV.3) is solvable in polynomial time, hence the primal problem.

To find if such an oracle exists, we first adapt the definition of R(t) from peer-

based to link-based, to be consistent with the left side of constraint (IV.4). This can

be easily achieved as follows. We assign a resilience factor re to each link e ∈ E , and

define it as

re =

 rv if e exits from v

0 otherwise
(IV.5)

As articulated in Chapter III (Framework Overview), we have different definitions

on R(t) for concatenation and non-concatenation models. We start with the non-

concatenation model first.

Based on the definition on resilience index Rt(v) shown in Eq. (III.4), we can easily

observe that R(t) in this case is the sum of resilience factors of all non-leaf peers in

tree t. Translated into the link-based definition, it is the sum of resilience factors

of all links in t, i.e., R(t) =
∑

e∈E ne(t)re. This allows us to reformulate Inequality

(IV.4) into the following.

∑
e∈E

ne(t)de ≥
∑
e∈E

ne(t)re,∀t ∈ T

It is now clear that the separation oracle is a minimum spanning tree algorithm

that sees the cost on each link e as (de− re). Constraint (IV.4) will be satisfied if the

cost of the found minimum spanning tree is still greater than 0.

20

To this end, we present a fully polynomial time approximation scheme (FPTAS).

FPTAS is a family of algorithms which finds a ϵ-approximate solution returning a

result at least (1− ϵ) times the maximum value, for arbitrary error parameter ϵ > 0.

MultiTrees-General(E , T)
1 ∀e ∈ E , de ← β, le ← 0
2 f(t)← 0, t ∈ T
3 loop
4 t∗ ← minimum overlay spanning tree in T using (de − re)
5 minlen←

∑
e∈E ne(t

∗)(de − re)
6 if minlen ≥ 0
7 return
8 c← mine∈t∗

ce
ne(t)

9 f(t∗)← f(t∗) + c

10 ∀e ∈ t, de ← de(1 + ϵne(t)c
ce

),le ← le +
ne(t)
ce

11 end loop
12 lmax ← maxe∈t le
13 ∀t ∈ T ,f(t)← f(t)/lmax

Table IV.1: Finding Multiple Trees Under General Topology Model

Tab. IV.1 shows the MultiTrees-General algorithm. It solves the primal and

dual problems in an iterative fashion. It sets initial length to β all links in E . In

each iteration, it finds the minimum spanning tree t∗ based on the cost (de − re),

and route traffic over t∗. Based on the traffic increment, the length de is updated as

defined in line 10. Finally, the algorithm terminates when constraint (IV.4) is satis-

fied, i.e., when the cost of the minimum spanning tree is greater than 0. Note that

since the aggregated raw flow of all returned trees can exceed the capacity of certain

physical links, we introduce the index le to record the congestion ratio on each link

e. By scaling the rate of each tree with the maximum congestion noted by lmax, the

algorithm is guaranteed to return a feasible solution. We summarize the property of

this algorithm in Theorem 1. See proof of Theorem 1 in Appendix A.

21

Theorem 1: Under the non-concatenation model, when β = [(1+ϵ)|V |]1−1/ϵ

(|V |U)1/ϵ
, the

MultiTrees-General algorithm returns the solution at least (1− 2ϵ) times the op-

timal result of problem (IV.1), with running time O(|E|
ϵ2
[logU +2 log |V |] · Tmst). U is

the length of the longest unicast route and Tmst is the running time of the minimum

spanning tree algorithm.

Now we turn to the concatenation model, where the resilience index is defined in

Eq. (III.1). In this case, each peer’s resilience index is the product of resilience factors

of all its ancestors. Although we can perform logarithm operation on resilience factors

re and solve this problem using Dijkstra’s algorithm(shortest path tree algorithm),

it becomes extremely hard when combining with length assignment de, which needs

to be solved by a minimum spanning tree algorithm. In the following theorem, we

prove this problem to be NP-hard, by reducing its separation oracle to the problem

of 3-SAT. See proof of Theorem 2 in Appendix B.

Theorem 2: Under the concatenation model, the MultiTrees-General problem

(IV.1) is NP-hard.

Single Tree

A salient feature of the MultiTrees-General algorithm is that it reveals the

maximum generalized throughput a P2P network can achieve. However, given the

exponential selection space in tree set T , the algorithm often returns a high number

of trees, which are hardly manageable in practice. For practical purposes, we enforce

a limit on the number of trees we can construct. To achieve so, we modify problem

(IV.1) into the following integer programming problem.

22

maximize
∑
t∈T

f(t)R(t)x(t) (IV.6)

subject to
∑
t∈T

ne(t)f(t)x(t) ≤ ce,∀e ∈ E (IV.7)∑
t∈T

x(t) = k (IV.8)

f(t) ≥ 0, x(t) = {0, 1}, t ∈ T

Problem (IV.6) introduces a 0-1 variable x(t), and k, the upper limit on the

number of trees. This constraint is enforced by Eq. (IV.8). This problem is NP-hard

since its special case has been proved so. When k = 1 and resilience factor of all

peers are 1, this problem reduces to maximizing the throughput of a single overlay

multicast tree, which was shown NP-hard in [8] under the name MPSP (Multicast

Path Set Problem).

Following the same idea of the MultiTrees-General algorithm, we assign length

to each physical link to find minimum spanning tree, but only in an online fashion.

The algorithm runs k iterations, in each of which a tree is returned (See Tab.IV.2).

k−Tree(E , T)
1 ∀e ∈ E , de ← β/ce, le ← 0
3 for i = 1 to k do
4 ti ← minimum overlay spanning tree in T using (de − re)
5 f(ti)← 1

6 ∀e ∈ t, de ← de(1 + ρne(t)
ce

),le ← le +
ne(t)
ce

7 lmax ← maxe∈t le
8 for i = 1 to k do
9 f(ti)← f(ti)/lmax

Table IV.2: Finding k Trees Under General Topology Model

23

Finally, we note that the two algorithms presented in this section can be also

applied to the concatenation model. However, theorem 1 will not apply due to the

NP-hardness of separation oracle for problem (IV.1).

24

CHAPTER V

STAR TOPOLOGY MODEL

The algorithms presented in Chapter IV (General Topology Model) rely on linear

programming technique, and operate on both overlay network L and physical network

E . They require complete knowledge on both networks, i.e., the capacity of each link

e ∈ E and the underlying routing path that connects any overlay link l ∈ L.

Many P2P research works have chosen to rely on a simplified assumption, which

imposes an outgoing bandwidth constraint on each peer and allow it to parent other

peers until its outbound bandwidth depletes. In other words, the Internet cloud is

assumed to have enough capacity supporting all peers. This effectively transforms

the physical network E into a star network, whose central hub represents the Internet

cloud reaching out to all peers, as shown in Fig. V.1. A typical scenario that can

be best represented by this model is campus news video streaming system. Students

subscribe to the news, and watch the video with smart phones. The bottleneck of the

P2P system lies in the last hop connection (smart phone), rather than the internet

cloud (video server). In this section, we study the same set of problems under such a

special topology.

Multiple Trees

We again start with the case of multiple trees. To simplify the illustration, we

remove notations associated with the general network E . Instead, we introduce no-

tations cv to denote outbound bandwidth of peer v ∈ V , cs to denote outbound

25

v
1

S

v2

�

v
3

�

Figure V.1: Star Topology Model

bandwidth of the server s, and nv(t) or ns(t) to denote the number of children v or s

have in tree t. The problem formulation is as follows1.

maximize
∑
t∈T

f(t)R(t) (V.1)

subject to
∑
t∈T

nv(t)f(t) ≤ cv, v ∈ V (V.2)∑
t∈T

ns(t)f(t) ≤ cs (V.3)

f(t) ≥ 0, t ∈ T (V.4)

Inequalities (V.2) and (V.3) refer to the capacity constraint. In fact, problem

(V.1) is only a special case of the problem (IV.1), thus can be solved by algorithm

MultiTrees-General in the same linear programming fashion. However, given the

simplified topology, we are interested to find out if this problem can be simply ad-

dressed through combinatorial optimization techniques.

1We note that unless otherwise notified, our discussion in this section assumes that the inbound
bandwidth of each peer v is unbounded, thus removed from the problem formulation. By the end
of this section, we will introduce how our algorithms could be adapted to incorporate the inbound
bandwidth constraint.

26

MultiTrees-Star(s, V)
1 sort V into v1, . . . , vn in descending order of resilient index
2 for i = 1 to |V |
3 construct tree ti, where vi is the only child of s,

and vj (j ̸= i) are children of vi
4 f(ti)← min{ cvi

|V |−1
, cs}

5 cs ← cs −min{ cvi
|V |−1

, cs}
6 if cs > 0
7 construct tree t0, where s is the parent of vi (i = 1, . . . , |V |)
8 f(t0)← cs/|V |

Table V.1: Finding Multiple Trees Under Star Topology Model

Tab. V.1 shows the MultiTrees-Star algorithm. It construct at most |V | + 1

trees in the order shown in Fig. V.2.

s

v1

v2 v3 vn......

s

......

......

s

v1 v2 vn......

s

vn

......v1 v2 vn-1

Figure V.2: Illustration of MultiTrees-Star Algorithm

Starting from peer v1 with the maximum resilience factor, tree t1 is constructed,

which depletes the outbound bandwidth of v1. The process continues until v|V | or the

server bandwidth cs runs out. If there is still residue of cs after tree t|V | is finished,

we construct a special tree t0 to deplete cs. We show the optimality of this simple

algorithm as follows. See proof of Theorem 3 in Appendix C.

Theorem 3: MultiTrees-Star algorithm returns the optimal result of problem

(V.1).

27

It is easy to observe that this theorem applies to both non-concatenation and

concatenation models, since trees t0 through tn return the same resilience index under

either definition, i.e., Eq. (III.1) for concatenation model and Eq. (III.4) for non-

concatenation model.

The trees found by the MultiTrees-Star algorithm comply with many heuristics

practiced by existing works. In terms of tree structure, t0 through tn are “fat trees”

or “minimum-depth tree”. In terms of construction order, the algorithm starts from

the peer with maximum resilience factor, which suggests maximum lifetime. This

complies with the “longest-first” approach that assigns higher priority to peers with

longer expected lifetime.

Single Tree

The number of trees returned by the MultiTrees-Star algorithm scales up lin-

early with |V |, the size of the P2P network. Although more scalable than the

MultiTrees-General algorithm, the number of trees can be still too big as the

P2P network grows.

To limit the number of trees, we can impose an additional integer constraint

over problem (V.1) in the same fashion we defined problem (IV.6) under the general

topology model.

28

maximize
∑
t∈T

f(t)R(t)x(t) (V.5)

subject to
∑
t∈T

nv(t)f(t)x(t) ≤ cv, v ∈ V (V.6)∑
t∈T

ns(t)f(t)x(t) ≤ cs (V.7)∑
t∈T

x(t) = k (V.8)

f(t) ≥ 0, x(t) = {0, 1}, t ∈ T (V.9)

In particular, we are interested in the case when k = 1, i.e., when only one tree is

allowed.

We start with the non-concatenation model. Tab. V.2 shows the SingleTree-Star

algorithm, which further contains two sub-algorithms. MaxRate-Star finds out the

maximum rate a single tree can possibly afford. It works in a trial-and-error fashion

by proposing a rate f and learning the maximum outbound degree the server s and

each peer in V can support based on f . Starting from the server outbound bandwidth

cs, f keeps shrinking until the sum of outbound degrees exceeds or equals to |V |, the

number of peers. MostResilientTree-Star is a greedy algorithm constructing the

tree with the highest resilience index. Given rate f , it gives priority to peers with the

highest resilience factor and assign children to them up to their maximum outbound

degrees. The algorithm returns the generalized throughput, which according to the

definition in Eq. (III.3), is the product of f and the returned tree’s resilient index.

With these two sub-algorithms, The SingleTree-Star algorithm finds the opti-

mal tree by feeding different rates to MostResilientTree-Star and keeping track

the tree returning the maximum generalized throughput. The trial starts from the

maximum affordable rate found by MaxRate-Star, and ends when the outbound

degree of the server s becomes |V |. In this case, we can construct tree t0 shown in

29

MaxRate-Star(s, V)
1 sort V into v1, . . . , v|V | in descending order of bandwidth
2 f ← cs
3 find k such that cvk−1

≥ f > cvk
4 do
5 i← 0, sum← 0
6 while sum < |V | and i < |V |
7 sum← sum+ ⌊cvi/f⌋, i← i+ 1
8 if sum < |V |
9 f ← cvk ,k ← k + 1
10 while sum < |V |
10 return f

MostResilientTree-Star(f, s, V)
1 sort V into v1, . . . , v|V | in descending order of resilience
2 enqueue s, v1,. . .,v|V | into queue P
3 enqueue v1,. . .,vn into queue C
4 sum← 0
5 while C ̸= ϕ
6 dequeue vparent from P
6 repeat ⌊cvparent/f⌋ times
7 dequeue vchild from C
8 make vparent the parent of vchild
9 sum← sum+ rparent
10 return {f ∗ sum, resulting tree}

SingleTree-Star(s, V)
1 f ← MaxRate-Star(s, V)
2 {max, tree∗} ← MostResilientTree-Star(f, s, V)
3 while f ∗ |V | > cs
4 fnew ← cs/(⌊cs/f⌋+ 1)
5 for i = 1 to |V |
6 if fnew < cvi/(⌊cvi/f⌋+ 1)
7 fnew ← cvi/(⌊cvi/f⌋+ 1)
8 f ← fnew
9 {r, tree} ← MostResilientTree-Star(f, s, V)
10 if r > max
11 max← r, tree∗ ← tree
12 return tree∗

Table V.2: Finding Single Tree Under Star Topology

30

Fig. V.2, which has the maximum resilience index |V |. Since in each iteration of

SingleTree-Star, at least one peer’s outbound degree will increase by 1, the num-

ber of iterations is bounded by O(|V |2). Combined with the linear running time of

MostResilientTree-Star, its overall running time is O(|V |3). The following theo-

rem establishes the optimality of SingleTree-Star.

Theorem 4: Under the non-concatenation model, the SingleTree-Star algo-

rithm returns the optimal solution for problem (V.5) when k = 1, with running time

O(|V |3).

When applying the same algorithm to concatenation case, we find that the greedy

approach of MostResilientTree-Star does not fit the multiplicative definition of

resilience factor given in Eq. (III.1). Essentially, although finding the tree with the

maximum resilience index is solvable by a multiplicative-variant of Dijkstra’s algo-

rithm, it becomes hard when imposing degree constraints on the peers. To prove

NP-hardness of this problem, we consider its special case, the maximum multiplica-

tive cost path problem (MMCP), then reduce it to the Hamiltonian path problem

(finding a path in an undirected graph that visits each vertex exactly once).

Evidently, under the concatenation model, the intrinsic conflict between outbound

bandwidth and resilience factor poses great barrier to our effort to assign priority

in peer selection. On the other hand, the problem becomes polynomially solvable

under the same framework of SingleTree-Star if all peers are identical over either

of above metrics. For example, if all peers have the same resilience index, we only

need to modify MostResilientTree-Star to greedily choose peers with the highest

outbound bandwidth. If all peers have the same outbound bandwidth, the exact

algorithm in Tab. V.2 can be reused with no modification.

31

Finally, we note that algorithms listed in this section have assumed the inbound

bandwidth of all peers are unlimited. Nevertheless, they can be easily modified when

applying this constraint. Since our research studies single-rate multicast, i.e., the rate

of raw flow delivered to each peer is the same, we only consider cin, the minimum

inbound bandwidth of all peers. If cin ≥ cs, then one should not be concerned since

the raw flow delivered to a peer cannot exceed the outbound bandwidth of the server

s. Otherwise, cin replaces cs as the bottleneck. As such, we only need to replace cs

with min{cs, cin} in Tab. V.1 and V.2.

Discussions

We conclude the optimization framework section, by discussing the implementabil-

ity of algorithms presented so far. Given the unlimited number of trees theMultiTrees-

General algorithm can produce, its main purpose remains to provide the theoret-

ical optimal point against which other practical solutions can be measured. The

k-Tree algorithm avoids this pitfall by limiting the number of trees. However, its

functioning requires measurement overhead of the underlying physical network. The

MultiTrees-Star and SingleTree-Star algorithms address both of the above issues.

However, a centralized entity, e.g., the server s, needs to be in place. It collects uplink

bandwidth information and resilience factors from all peers, then runs the algorithm.

It is reasonable to expect the server to keep the up-to-date information of the peers

it serves, however, distributed versions of these algorithm would be more desirable,

we dedicate the following sections to a practical evaluation metric called PRW.

32

CHAPTER VI

PERFORMANCE EVALUATIONS – OPTIMIZATION FRAMEWORK

In this section, we present our evaluation study, which mainly carries two purposes.

First, we will evaluate the validity of the generalized flow optimization framework at

capturing the key characteristics of fault resilient peer selection problem. Second,

we will study the performance of the algorithms proposed in this paper, as well as

several well-known heuristics, at maximizing the generalized throughput and main-

taining fairness.

Experimental Setup

We use simulation to evaluate the performance of our algorithm. Two experimen-

tal topologies are chosen. The first one is a 1000-node router-level network (2000

edges) created with the Boston BRITE topology generator [21] using the Waxman

model [32]. Any pair of routers are connected by a pair of links with opposite direc-

tions. The bandwidth of physical links between routers, as well as peers’ access links,

are normally distributed from 100Kbps to 1000Kbps. The second topology follows

the star configuration outlined in Fig. V.1.

Under both topologies, we create 100 peers with unlimited inbound bandwidth.

Under the general topology, they are randomly attached to the routers in the network.

Each simulation run lasts a finite time period. Starting from time 0, each peer

is assigned a lifetime based on exponential and Pareto lifetime distributions with

mean lifetime varying from 1500 seconds to 3500 seconds. The simulation run expires

when the lifetime of the longest-lived peer expires. In our simulation, we assign

resilience factor to each peer based on its expected lifetime in each particular run.

33

Our algorithms are executed at the beginning of each run, taking the resilience factors

and outbound bandwidths of all peers as the input, and returning single or multiple

trees whose combined generalized throughput is maximized.

As time proceeds, peers expire one by one, which gradually tears down the tree(s)

constructed at the beginning of the simulation. To capture this effect, we accumula-

tively calculate the amount of data collected by each peer until its ancestor or itself

fails. We term this result as volume, which represents the capability of the constructed

tree(s) at collecting data for all peers before they demise.

Generalized Throughput vs. Volume

The objective of our algorithms is to maximize the generalized throughput, given

resilience factors of all peers. However, it merely represents the expected amount of

data the constructed tree(s) can possibly collect. Therefore, to test the fitness of our

model under simulated P2P network with peer dynamics, we need the volume as a

metric, which counts the total amount of data collected. If our experiment can estab-

lish a proportional relationship between generalized throughput and volume, then we

can claim with high confidence level that our optimization framework can effectively

model the dynamics of P2P network, and the developed optimization algorithms are

able to increase the resilient throughput under such dynamics. Based on this con-

sideration, our simulation does not include repairing mechanisms, i.e., a peer is not

allowed to reconnect to the P2P network once disconnected due to the departure of

either its ancestor or itself. This way, the recorded volume can more accurately reflect

the resilience of the tree(s) constructed by our algorithm.

In Fig. VI.1, we run the MultiTrees-General algorithm under the general topol-

ogy, and contrast the generalized throughput returned by the algorithm in (a), calcu-

lated volume in (b). We observe that the performance difference under two lifetime

34

1000 1500 2000 2500 3000 3500
0

2

4

6

8

10

12

14

16
x 10

9

mean lifetime (s)

Vo
lu

m
e

(K
b)

exponential, mean bandwidth 500
pareto, mean bandwidth 500
exponential, mean bandwidth 100
pareto, mean bandwidth 100

1000 1500 2000 2500 3000 3500
0

0. 5

1

1. 5

2

2. 5

3

3. 5
x 10

5

mean lifetim e (s)

g
e

n
e

ra
li

ze
d

 t
h

ro
u

g
h

p
u

t
(K

b
/s

)

exponential, bandwidth = 500

pareto, bandwidth = 500

exponential, bandwidth = 100

pareto, bandwidth = 100

(a) Volume (b) Generalized Throughput

Figure VI.1: MultiTrees-General under Non-Concatenation Model

100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9
x 10

7

mean node bandwidth (Kb/s)

vo
lu

m
e

(K
b)

single tree, heuristic A, exp
single tree, heuristic A, pareto
single tree, heuristic B, exp
single tree, heuristic B, pareto
multi tree, exp
multi tree, pareto

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3
x 10

4

mean node bandwidth (Kb/s)

ge
ne

ra
liz

ed
 th

ro
ug

hp
ut

 (
K

b/
s)

single tree, heuristic A, exp
single tree, heuristic A, pareto
single tree, heuristic B, exp
single tree, heuristic B, pareto
multi trees, exp
multi trees, pareto

(a) Volume (b) Generalized Throughput

Figure VI.2: MultiTrees-Star and Two Heuristics under Concatenation Model
(Mean Lifetime = 1500s)

distributions are consistently obeyed in both figures when varying the mean peer

lifetime.

We then run the MultiTrees-Star under the star topology, and contrast the

generalized throughput and volume by varying the mean outbound bandwidth. We

further introduce two heuristic single-tree algorithms. In both heuristics, we com-

pute the mean outbound bandwidth, and the mean resilience factors of all peers,

then assign rate of the tree as the ratio of the two. Heuristic A constructs the tree

by assigning priorities to peers with higher resilience factors, and heuristic B assign

35

100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

mean node bandwidth (Kb/s)

ge
ne

ra
liz

ed
 th

ro
ug

hp
ut

 r
at

io

single tree, heuristic A, exp
single tree, heuristic A, pareto
single tree, heuristic B, exp
single tree, heuristic B, pareto

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

mean node lifetime (s)

ge
ne

ra
liz

ed
 th

ro
ug

pu
t r

at
io

single tree, heuristic A, exp
single tree, heuristic A, pareto
single tree, heuristic B, exp
single tree, heuristic B, pareto

(a) Outbound Bandwidth (b) Lifetime
Mean Lifetime = 1500s Mean Outbound Bandwidth = 100Kbps

Figure VI.3: Performance Ratio of Heuristics to MultiTrees-Star under Concate-
nation Model

priorities to the ones with higher outbound bandwidth. In Fig. VI.2, we showed the

volume and generalized throughput of our MultiTrees-Star algorithm as well as the

two heuristics, under the same experiment settings. The generalized throughput is

the performance metrics we want to maximize under our optimization framework.

Intuitively, it should reflect the traditional throughput metric: the volume of data

delivered, which ultimately affect the viewer perception of video streaming quality.

Our purpose is simple: if algorithms not developed under our optimization framework

can still establish proportional relationship between generalized throughput and vol-

ume, then it becomes more convincing that the generalized flow model can effectively

capture the dynamic characteristics of P2P network. As shown in Fig. VI.2, perfor-

mance ordering of these algorithms under different lifetime distributions are consistent

in both figures.

Performance of Single Tree Algorithms

To evaluate the ability of single tree algorithms at maximizing the generalized

throughput, we run heuristics A and B, and SingleTree-Star algorithm under the

36

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

node order

vo
lu

m
e

(K
b)

mean lifetime = 1000
mean lifetime = 2000

0 20 40 60 80 100
40.5

41

41.5

42

42.5

43

43.5

44

node order

ge
ne

ra
liz

ed
 th

ro
ug

hp
ut

 (
K

b)

mean lifetime = 1000
mean lifetime = 2000

(a) Volume (b) Generalized Throughput

Figure VI.4: Sorted Nodes of MultiTrees-Star (Mean Outbound Bandwidth =
100Kbps)

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

node order

vo
lu

m
e

(K
b)

mean lifetime=1000s
mean lifetime=2000s

0 10 20 30 40 50 60 70 80 90 100
5

10

15

20

25

30

35

40

45

50

node order

ge
ne

ra
liz

ed
 th

ro
ug

hp
ut

 (
K

b)

mean lifetime=1000
mean lifetime=2000

(a) Volume (b) Generalized Throughput

Figure VI.5: Sorted Nodes of SingleTree-Star under Non-Concatenation Model
(Mean Outbound Bandwidth = 100Kbps)

star topology and concatenation model, and normalize their results with the one

achieved by the optimal MultiTree-Star algorithm. In Fig. VI.3, we observe that

all of them are able to maintain the performance ratio (The ratio of generalized

throughput of the heuristics to our MultiTrees-Star algorithm) from 0.1 to 0.6 un-

der different mean outbound bandwidths, mean lifetime, and lifetime distributions.

Which means, the performance of our algorithms are consistently better than the two

heuristics. Specifically, the two heuristics perform only up to 60 percent as good in

terms of generalized throughput.

37

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5
x 10

5

node order

vo
lu

m
e

(K
b)

mean lifetime = 1000, heuristic A
mean lifetime = 1000, heuristic B
mean lifetime = 2000, heuristic A
mean lifetime = 2000, heuristic B

0 20 40 60 80 100
0

5

10

15

20

25

node order

ge
ne

ra
liz

ed
 th

ro
ug

hp
ut

 (
K

b)

 lifetime = 1000, heuristic A
 lifetime = 1000, heuristic B
 lifetime = 2000, heuristic B
 lifetime = 2000, heuristic B

(a) Volume (b) Generalized Throughput

Figure VI.6: Sorted Nodes of Heuristics under Concatenation Model (Mean Outbound
Bandwidth = 100Kbps)

In Fig. VI.4, VI.5, and VI.6, we display the sorted per-node generalized through-

put and volume for MultiTrees-Star, SingleTree-Star, and the two heuristics.

We have showed the trend accordance of our optimization framework under vari-

ance mean lifetime and mean bandwidth in Fig. VI.1, VI.2, and VI.3, which reflect

generalized throughput’s lifetime-wise and bandwidth-wise capturing ability of the

volume. Fig. VI.4, VI.5, and VI.6 showed the corresponding volume and generalized

throughput of each node when using MultiTrees-Star, SingleTree-Star, and the

heuristics. They demonstrate the node-wise capturing ability of the volume using

generalized throughput.

38

CHAPTER VII

PEER EVALUATION METRIC OVERVIEW

Network Model

Similarly, we consider a server s and a set of peers v ∈ V . Each peer is associated

with downlink(download link) bandwidth and uplink(upload link) bandwidth. This

model also builds on the assumptions of many existing works that the bottleneck of

a unicast path only happens at either access link of its two end hosts. Therefore, this

assumption effectively simplifies the Internet to the star topology shown in Fig. V.1.

For simplicity purposes, we assume that the downlink bandwidth of a peer always

exceeds the streaming rate. Therefore, we only denote the uplink bandwidth of peer

v as b(v).

Assumption 1 : Network bottleneck in peer uplink

We further assume that in a P2P streaming system, the streaming rate is the same

across all peers. This is in accordance with the state of the art, where the content

is encoded by a non-scalable codec once (often at the server s) and distributed to

all peers. This choice is popular among existing P2P streaming systems due to its

codec-neutral feature, which regards the media streams as meaningless bit flows. In

order to support heterogeneous receiving rate, peer transcoding or scalable codec has

to be in place, neither of which has produced reliable solutions for the purpose of

large scale content distribution.

Assumption 2 : Same streaming rate for all peers

39

Resilience Factor of a Peer

We assign a resilience factor rv (0 < rv ≤ 1) to each peer v ∈ V . Our model makes

no assumption on how rv is defined. In this dissertation, we adopt a simple definition

of rv as follows.

rv =

2τv
Tv

if 2τv < Tv

1 otherwise
(VII.1)

where τv is the age of peer v, i.e., the amount of time elapsed since v joins. Tv is

the maximum lifetime of v. In video-on-demand applications, Tv can be denoted as

the length of the movie v joins to watch. In the live streaming scenario, Tv can be

the duration from v’s joining time to the time when the event terminates.

Eq. (VII.1) follows the definition of stability index in [30]. It is consistent with

the well-known observation that peers already living for an extended period of time

might as well continue to live. Intuitively, Eq. (VII.1) states that if v stays over half

of its maximum lifetime, it will stay until the application terminates.

Ways Resilience factor

performance rv =
∑N

i=1 air
i
v,
∑N

i=1 ai = 1, riv = aτ iv/T
i
v

voluntariness rv = a1rv + a2b
max
v /cv, a1 + a2 = 1

patience rv = a(τv − τ
′
v)/Tv

Table VII.1: Other Resilience Factor Definitions

Other resilience factor definitions could be, grading past performance, rewarding

voluntariness or monitoring patience. Grading past performance incorporates past

resilience factors (riv) by weighted summation. Rewarding voluntariness [24] factors

40

(a) Single Tree (b) Multiple Trees (c) Mesh

server
peer
new peer

1

0

1

2 1 1 2

3

2 3
3

5 5 5

5

4 4 4

4

6

6

8

7 6 8 9
10

11

12

7

0 0 0

Figure VII.1: P2P Distribution Structure

in the proportion of its uplink bandwidth capacity (cv) a peer sets as maximum up-

loading limit (bmax
v). Patience monitoring factors out the time duration a peer fast

forwards by dragging the seek bar (τ
′
v), from the actual watching time (τv).

Resilience Index of P2P Distribution Structures

We consider three distribution structures in P2P streaming, i.e., single overlay

tree, multiple trees, and mesh (See Fig. VII.1). All structures are rooted at the server

s.

Single Tree

Starting on the case of single overlay tree, consider a peer v in a tree t, there is a

path from the server s to v, denoted as

s 7→ v1 7→ v2 7→ · · · 7→ vk 7→ v

41

Given t’s flow rate f(t), we denote the generalized flow delivered to v as f(t)

timed by the concatenate product of rv1 through rvk . We define such product as the

resilience index of v in t:

Rt(v) =
k∏

i=1

rvi (VII.2)

In other words, let pt(v) denote the peer which is the parent of peer v in tree

t, then Eq. (VII.2) can be regarded as the product of resilience index and resilience

factor of pt(v):

Rt(v) = Rt(pt(v))rpt(v) (VII.3)

Based on this definition, we can further define the resilience index of tree t as

R(t) =
∑
v∈V

Rt(v) (VII.4)

This model computes a peer’s generalized flow by factoring in the resilience factors

of all its ancestors. Also an implicit assumption in the definition of Rt(v) is that the

resilience factor of server s is 1, i.e., s will not depart.

Multiple Trees

In the case of multiple trees, peers can organize themselves into different forms

of overlay trees, each carrying certain flow rate. Let T be the set containing all

possible trees. Based on Cayley’s theorem[10], the size of T is exponential, i.e.,

|T | = (|V| + 1)(|V|−1), |V| being the number of peers in V . However, any practical

multi-tree solution only assigns traffic to a handful of trees in T , and leaves the rates

of dominating majority of trees as 0.

42

Furthermore, the total rate received by a peer is the sum of rates it collects from

all trees it resides in. Formally, let f(T) be the total receiving rate of the multi-tree

structure, then we have:

f(T) =
∑
t∈T

f(t)x(t)

where x(t) is a 0-1 variable. x(t) = 1 if t is chosen to be constructed, and 0 otherwise.

Let ϕ(t) = f(t)/f(T) be the ratio of tree t’s contribution to the total rate, then

we have:

∑
t∈T

ϕ(t) = 1

Given the definition of ϕ(t), we define the resilience index of v in the tree set T

as follows.

RT (v) =
∑
t∈T

Rt(v)ϕ(t) (VII.5)

Accordingly, the resilience index of the multi-tree structure is

R(T) =
∑
v∈V

RT (v) =
∑
t∈T

ϕ(t)R(t) (VII.6)

Mesh

In mesh structure, each peer is allowed to have multiple parents, and each peer’s

receiving rate is the sum of the data rates it collects from all its parents. Since we

assume all peers in meshm to have the same receiving rate, thenm can be decomposed

into a set of trees, which degenerates itself to the case of multiple trees.

Nevertheless, the difference between these two structures is significant. In the

mesh structure, a peer can dynamically adjust the receiving rates from its parents on

43

the fly, whereas in the multi-tree structure, doing so will change the rate assignment

of the entire tree. Since each tree has a single receiving rate, such a change will force

all peers to readjust their receiving rates from their parents.

Under the mesh structure, the resilience index of a peer v can be calculated in

the similar fashion as the multi-tree structure. Let Pm(v) be the set of parents of v.

For each parent p ∈ Pm(v), we denote fp→v(m) as the flow rate from p to v, then the

total receiving rate of v, hence the total receiving rate of the mesh structure m, is

defined as:

f(m) =
∑

p∈Pm(v)

fp→v(m),∀v ∈ V

Let ϕp→v(m) = fp→v(m)/f(m) be the ratio of p’s contribution to the total receiv-

ing rate of v, then it is obvious that:

∑
p∈Pm(v)

ϕp→v(m) = 1,∀v ∈ V

Given the definition of ϕp→v(m), we define the resilience index of v in the mesh

structure m as the weighted sum of the products of its parents’ resilience index and

its own residence factor.

Rm(v) =
∑

p∈Pm(v)

Rm(p)rpϕp→v(m) (VII.7)

Then the resilience index of m is

R(m) =
∑
v∈V

Rm(v) (VII.8)

44

Optimization Framework based on the Generalized Flow Theory

Based on our optimization framework, we define the generalized flow of a P2P

distribution structure as the product of its total receiving rate and resilience index.

Specifically, the generalized flow is f(t)R(t) for the single-tree structure, f(T)R(T)

for the multi-tree structure, f(m)R(m) for the mesh structure.

Problem Formulation

In the following integer linear programming (ILP) problem, we define our goal

as to maximize the generalized flow. Note that we only present the formulation for

the multi-tree structure, since the mesh structure can be effectively reformulated as

a collection of trees, and the formulation of the single tree structure is only a special

case of the multi-tree structure.

maximize f(T)R(T) =
∑
t∈T

f(t)R(t)x(t) (VII.9)

subject to
∑
t∈T

nv(t)f(t)x(t) ≤ bv,∀v ∈ V (VII.10)∑
t∈T

ns(t)f(t)x(t) ≤ bs (VII.11)∑
t∈T

x(t) ≤ k (VII.12)

f(t) ≥ 0, x(t) = {0, 1}, t ∈ T

Here, Inequality (VII.10) and (VII.11) refer to the capacity constraint, i.e., the

aggregate flow of all trees cannot exceed the uplink capacity of all peers in V and the

server s. nv(t) and ns(t) are integer variables indicating the number of children that

v and s have in the tree t. Inequality (VII.12) is the integral constraint limiting the

number of trees to be no more than k. The single-tree structure can be enforced by

setting k = 1.

45

The central difficulty of problem (VII.9) is that its number of variables is expo-

nential to the size of the P2P network, i.e., there exist exponential number of trees in

T , as revealed in Chapter IV (General Topology Model). The existence of the integer

variables x(t) makes this problem more challenging.

Solution Methodology

In Chapter IV (General Topology Model), we examined the linear relaxation of

problem (VII.9), which allows unlimited number of trees to be constructed1. We

find the problem solvable in polynomial time for the following reason. Although

containing exponential number of variables, the dimensionality of this problem, i.e.,

the number of constraints, is |V|, the number of peers. This gives us a chance to solve

this problem via the dual of the linear relaxation of this problem as follows, which

contains |V| variables but exponential constraints.

minimize csds +
∑
v∈V

cvdv (VII.13)

subject to ns(t)ds +
∑
v∈V

nv(t)dv ≥ R(t),∀t ∈ T (VII.14)

ds ≥ 0, dv ≥ 0,∀v ∈ V

Problem (VII.13) refers to assigning the server s and each peer v a weight (ds and

dv), and minimizing the sum of dv and ds multiplied by their uplink capacities cv and

cs, subject to Inequality (VII.14), which states that the aggregate weight of any tree

t must be greater than its own resilience index R(t), defined in Eq. (VII.4).

1This can be achieved by setting k = |T | = (|V|+ 1)(|V|−1), the size of the set T

46

Although there exists exponential number of trees in T , if we can find a separation

oracle able to check whether constraint (VII.14) is met in polynomial time, then the

dual problem (VII.13) is solvable in polynomial time, hence the primal problem.

Recall that, we proposed a primal-dual algorithm whose idea is as follows. Initially,

we assign a weight to each peer v ∈ V , as well as the server s. In each iteration of the

algorithm, we find a tree violating constraint (VII.14), where its aggregate weight is

smaller than its resilience index, and assign traffic to this tree whose rate saturates

the peer with the bottleneck uplink capacity. Then we update the weight of the server

and peers based on the uplink bandwidth they contribute. The algorithm terminates

when all trees satisfy the constraint (VII.14).

The practicability of this algorithm is challenged in many fronts. It functions in

a centralized fashion, and requires traffic scaling to deliver a feasible rate assignment

to all peers. Furthermore, it is not designed to accommodate peer churning, as any

peer joining/leaving will cause the algorithm to tear down the existing distribution

structures and start from scratch again.

However, this algorithm constitutes the methodological foundation of our practical

solution. The weight of each peer is an asymptotic function of the uploading traffic it

carries. Therefore, choosing the tree with smaller aggregate weight equals to finding

the route with lighter traffic. The value comparison of the aggregate weight and

resilience index reflects the tradeoff between traffic load and resilience when choosing

the best tree. In what follows, we will show how PRW, the evaluation metric of a

peer, is derived from the weight update function, the key step of this algorithm.

We finally summarize notations appeared in this section of dissertation in Tab. VII.2.

47

Notation Definition

s server node
V = {v} peers
bv outbound bandwidth of peer v
τv age of v
Tv maximum lifetime of v
T = {t} set of overlay multicast trees
m mesh structure
r, R resilience index, e.g. rv, R(t), Rt(v), RT (v), Rm(v)
pt(v) the parent of v in the overlay tree t
f(t) data flow over tree t
x(t) 0-1 variable indicating the selection of t in multi-tree

structure
ϕ(t) ratio of t’s contribution to the receiving rate in the

multi-tree struture
Pm(v) set of parents of peer v in the mesh structure m
ϕp→v(m) ratio of p’s contribution to the receiving rate of v in

the mesh structure
ds, dv weight of server s and peer v

Table VII.2: Notations Table

48

CHAPTER VIII

PEER EVALUATION METRIC

In this section, we first present PRW, an evaluation metric to assess a peer’s health-

iness in terms of resource abundance and prospect longevity. We then introduce how

PRW can be used to guide peer selection in various P2P distribution structures, and

analyze the overhead involved. Finally, we discuss practical issues.

Metric

Given a peer v, we denote R(v) as the resilience index of v. Depending on the

type of P2P distribution structure v resides in, R(v) could be Rt(v) (Eq. (VII.3)) in

the single-tree structure, RT (v) (Eq. (VII.5)) in the multi-tree structure, and Rm(v)

(Eq. (VII.7)) in the mesh structure. Let C(v) be the set containing all children of v,

and fv→c the flow rate from v to each of its children c (c ∈ C(v)). Then we define the

PRW for peer v as follows:

wv =

∏
c∈C(v)(1 + ρfv→c

bv
)

R(v)
(VIII.1)

The numerator of Eq. (VIII.1) refers to dv, i.e., the weight of v defined in problem

(VII.13). Designed to reflect the availability of a peer’s uplink capacity, it increases

in a super-linear fashion as the traffic load of v increases. ρ is a step size controlling

the speed of growth. As such, when a new peer chooses among a group of old peers

as its parent and available uplink capacity is the sole concern, it should give priority

to the one with smaller weight.

49

Also in Eq. (VIII.1), this weight is normalized by R(v), the resilience index of

v. This is originated from Inequality (VII.14) (the necessary condition for problem

(VII.13) to reach optimality), which is the aggregate weight of any tree to be greater

than its own resilience index. Based on this idea, our primal-dual algorithm in Chap-

ter IV (General Topology Model) gradually reaches optimality by repeatedly feeding

traffic to the trees violating this constraint. Hence, the definition of wv can be re-

garded as our original algorithm decomposed from the level of a complete tree into

the level of a single peer. Intuitively, wv balances the factors of resource availabil-

ity and resilience. When the PRW of two candidate peers have the same numerator

(indicating the same resource availability), the one with the greater resilience index

produces smaller PRW, hence should be recommend. Likewise, when two peers have

the same resilience index, the one with the smaller numerator wins.

In addition, we introduce an auxiliary metric called congestion indicator defined

as follows.

σv =

∑
c∈C(v) fv→c

bv
(VIII.2)

Evidently, peer v still has uplink bandwidth available if σv < 1. Otherwise,

admission control will have to be enforced to reject new requests since v can no

longer serve another peer. Also it is easy to see that the definitions of wv and σv fit

the server s as well.

A notable characteristic of wv is that it best measures a peer already existing in

the P2P distribution structure. If v is an isolated peer with no parent(s) or children,

then according to Eq. (VIII.1), its PRW is merely 1/rv, which carries little meaning.

Therefore, we note that PRW fits best into the online peer selection algorithm, in

which a P2P distribution structure grows in an incremental fashion. In what follows,

we discuss how PRW coordinates and guides two key actions, peer joining and leaving.

50

Peer Selection Algorithm

We consider the set V which contains all existing peers. Together with the server s,

these peers form a P2P distribution structure in the form of single-tree t, or multi-tree

T , or mesh m shown in Fig. VII.1.

When a new peer vnew joins the P2P structure, vnew needs to choose its parent(s)

among all peers in V and the server s. In order to reach the best decision, vnew needs

the following information for a peer v ∈ V : its uplink capacity bv, resilience index

R(v), PRW wv, and congestion indicator σv. We also note that vnew treats server s

the same way as all peers in V . In other words, s is simply considered a peer whose

resilience index is always 1.

Single Tree

In the case of single tree t, vnew first filters out the peers whose remaining uplink

bandwidth is insufficient to support the streaming rate of t, i.e., (1 − σv)bv < f(t).

If no candidate peers remain after the filtering stage, then vnew has to be rejected.

Otherwise, the peer with the smallest PRW is chosen as the parent of vnew.

When an existing peer, say vold, leaves the tree, vold should notify its parent to

reduce its PRW and congestion indicator. vold should notify each of its children to

find new parent by rejoining the tree as a new peer, whose procedure is introduced

above. It is not unusual to witness sudden peer deaths due to machine failure or loss

of network connection. We note that the children of the failed peer can quickly detect

such events by noticing the disappeared data stream and start looking for new parent.

On the other hand, the parent of the failed peer must depend on other means, such

as the heartbeat messages from its children, to detect its failure.

51

Multiple Trees

In the case of multiple trees, vnew needs to join a group of existing trees, whose

rates add up to f(T), the streaming rate of the multi-tree structure T . In multi-tree

solution, the number of trees k is often predetermined (as outlined in the constraint

(VII.12) of problem (VII.9)), and so is the streaming rate of each tree, e.g., assigning

equal rate f(T)/k to all trees. Therefore, vnew needs to join these trees in the same

fashion as joining a single tree: filter out peer with insufficient uplink capacity, then

choose the one with the smallest PRW.

Another issue worth noting is that preferring small PRW promotes the choice of

resource-abundant peers, which often have enough uplink bandwidth to support vnew

in multiple trees. On the other hand, doing so might invalidate an initial design

objective of many multi-tree algorithms, which is to diversify parent selection for the

sake of reliability. Here, we stress that the main purpose of our study is to propose an

evaluation metric as a reference to serve the peer selection of existing algorithms, not

modify them. Therefore, we leave the decision to the algorithms using our metric.

Nevertheless, we introduce a simple solution, in which vnew chooses k parents in

an iterative fashion. In each round, it picks the peer whose PRW, upon selected

as parent, would introduce the minimum increment. According to Eq. (VIII.1), the

increment is wvρfv→c/bv. After updating the new parent’s PRW, vnew moves on to the

next round. This method guarantees parent selection which results in the minimum

aggregate increment of PRW across all peers. Also if during the streaming, a number

of v’s parents leave, say k′, then v will find another k′ parents following the same

procedure above.

Mesh

In mesh-based P2P streaming solutions, vnew usually connects to a limited number

of parents, and employs a receiver-driven approach to request different packets of the

52

stream from each of its parents. This approach enjoys a greater flexibility than the

multi-tree approach, since it only aims to make the total receiving rate of a peer

higher than or equal to the streaming rate f(m), whereas the flow rate of a specific

parent-child pair is allowed to change constantly. Under this circumstance, it is hard

and often unnecessary to find an optimal parent selection by any measure, such as

minimum aggregate increment of PRW.

Same to the multi-tree case, there exists many potential parent selection solutions

to which PRW can be of valuable assistance. Here, we propose a simple solution

which is to find the k feasible peers with the smallest PRW. This can be achieved

by sorting all peers by the ascending order of their PRW, then moving a window of

k peers from the leftmost position to the right one by one, until the k peers in the

current window have enough aggregate available uplink bandwidth to support the

streaming rate f(m). Also if during the streaming, a number of v’s parents leave,

say k′, then we will find another k′ parents with enough aggregate uplink bandwidth

available to make up for loss of v. The procedure is the same as above.

Updating Overhead and Bootstrapping

We now analyze the messaging overhead of our algorithm. Across all P2P distri-

bution structures, when vnew finds a parent p, changes occur to congestion indicator

and PRW of p, and resilience index and PRW of vnew. The same changes occur to p

when one of its children leaves. In the mesh structure, when a parent-chid pair p→ v

changes its flow rate, the same change happens as if v finds p as a new parent. Also

the resilience factor rv (Eq. (VII.1)), which basically reflects the age of peer v, keeps

growing as time proceeds. This causes change of the resilience index of v as well.

Furthermore, the above changes will propagate down to the descendants of p and v.

53

However, from the definitions of these values (Eq. (VII.7), (VIII.1) and (VIII.2)),

we can see that a peer can compute them by learning the congestion indicator and

resilience index from its own parent(s), and keeping updated of its own resilience

factor. Therefore, the updating overhead of these values can be all absorbed by

piggybacking on the data packets flown from parents to children.

What still remains a challenge is bootstrapping. As pointed out at the beginning

of section ”Peer Selection Algorithm” in this chapter, upon joining, vnew needs to

learn uplink capacity, congestion index, resilience index, and PRW of existing peers

before deciding which of them to be its parent(s). To acquire such knowledge, certain

form of publish-subscribe service must exist to assist vnew.

We now analyze the overhead of running such a publish-subscribe service. To

calculate the resilience factor of a peer (defined in Eq. (VII.1)), one only needs to

know the age of the peer and the lifetime of the P2P application itself. While the

application lifetime is often predetermined and easily accessible from the server, the

peer age is the difference of the current time and the joining time of the peer. Since

resilience factor is the foundation to calculate resilience index, we note that vnew can

recreate by itself the resilience index and PRW of each existing peer, should it obtain

information of their joining times, uplink capacities, and parent-child relations. The

first two pieces of information only need to be updated once upon peer joining. In

order to keep the up-to-date parent-child relations, a peer needs to update to the

publish-subscribe service each time it finds new parent(s), as well as the streaming

rates from their parents. In fact, under the single-tree and multi-tree structures,

the operation of streaming rate update can be avoided since the streaming rate (or

allocation of streaming rate among trees) is usually predetermined by the server.

We argue that it is reasonable to expect the publish-subscribe service of a P2P

streaming system to maintain above information. The updating overhead can be fur-

ther absorbed into the bootstrapping scheme which is the basic functionality of any

54

P2P system. One simple solution is to utilize server s as the centralized server for this

purpose. Keeping the complete parent-child relations of the entire P2P distribution

structure, s can send the above information to an inquiring peer in one condensed

message. Each peer notifies s when it changes to some new parent(s). Such updating

messages can be further merged with routine heartbeat messages if their scheduled

sending times are close enough. Other sophisticated techniques, e.g., DHT, can also

be employed, if it is adopted by the P2P application we serve.

Practical Issues

We now discuss various practical issues.

Coordination with Other Metrics

PRW is a single scalar value which is comparable and sortable. This property

allows it to easily blend with traditional metrics such as delay and bandwidth avail-

ability. We illustrate two ways for PRW to coordinate with other metrics.

First, PRW can serve as the tie breaker. Consider a delay-sensitive P2P appli-

cations which emphasizes on minimizing delay between a parent-child pair or overall

delay from server s to any peers. In this case, when multiple candidate peers qualify

to have the minimum delay range, we can choose the one with minimum PRW, which

not only satisfies the delay requirement of the application, but also offers potentially

stable service. In a different P2P application, PRW can serve as the primary metric

and delay as the tie breaker as well.

Second, PRW can appear with other metrics in the form of weighted summation,

which is often employed in multi-objective optimization techniques. In the above

example, we can assign weights to both delay and PRW of each peer, and have the

55

resulting weighted sum comparable and sortable. We can further normalize both

metrics by their maximum values to remove the unit difference.

Coexistence with Other Applications

So far, our discussion has been constrained to a single P2P application. However,

a peer v can be present at multiple P2P applications, or non-P2P application, all of

which share its uplink capacity. We here describe how to modify the definition of wv

to accommodate these situations.

By examining Eq. (VIII.1), we can see that the numerator of wv denotes the

resource availability of v, which applies to all P2P applications which can utilize

v’s uplink capacity. However, the denominator of wv is v’s resilience index, which

is defined individually by different P2P applications on v. As such, we can modify

the definition of wv as follows. Let X be the set of P2P applications run by v. We

denote C(v) as all children that v has across all applications in X , and Rx(v) as the

resilience index for v in the distribution structure belonging to the application x ∈ X .

Then we provide PRW for each P2P application x as below. With this definition, the

peer selection algorithm, as well as the updating and bootstrapping procedures stay

unchanged.

wx
v =

∏
c∈C(v)(1 + ρfv→c

bv
)

Rx(v)
, ∀x ∈ X (VIII.3)

However, this change does not apply to non-P2P applications, or P2P applications

which do not agree with the PRWmetric. The key issue is not how the resilience index

of v should be defined, but how applications compatible with PRW share the uplink

capacity of v with those not compatible with PRW. In this case, a straightforward and

realistic solution for v is to split its capacity between these two group of applications

and make each portion non-sharable by applications of another group. This can be

56

easily done by modifying the value of uplink capacity bv in Eq. (VIII.3). We note that

bv can be changed on the fly, when v changes the percentage of non-P2P applications.

Similar to what is discussed in section ”Updating Overhead and Bootstrapping” of

this chapter, this change will cause the cascading change of PRW for all descendants

of v, but can be absorbed into the data traffic flown from parents to children.

57

CHAPTER IX

PERFORMANCE EVALUATION – PEER EVALUATION METRIC

We also use simulation to evaluate the performance of PRW at assisting various

P2P algorithms. We start by introducing two traces we use to drive our simulation,

followed by the simulation setup, including performance metrics and existing algo-

rithms for the purpose of comparison. Finally, we present the performance results.

Traces

We use two traces, PPLive and MSN video, to drive our simulation. Both traces

measured highly popular systems providing live or on-demand video services. They

both provide the joining/leaving timestamps of each individual peer. The MSN traces

also provides the downlink bandwidth information of each peer.

MSN Video

This trace is provided by the seminal work[16], which studies the profitability of

peer-assisted VoD service using a nine-month trace from the MSN Video service. It

covers over 520 million streaming requests for more than 59,000 videos. We choose one

hour length trace each from two popular video files, msn-a which attracted 20, 245

unique peers during this period, and msn-b which attracted 165, 481 unique peers

during this period.

To infer the uplink capacity of each peer, we follow the strategy by [16], which

introduces mapping between measured downlink bandwidth and the uplink capacity

based on available DSL/Cable offerings listed in Tab. IX.1.

58

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

nu
m

be
r

of
 p

ee
rs

time(sec)

 peer #

Figure IX.1: Peer Population of MSN Trace

modem ISDN DSL1 DSL2 Cable Ethernet
downlink 64 256 768 1500 3000 > 3000
uplink 64 256 128 384 768/384 > 768

Table IX.1: Bandwidth Breakdown (kbps)

PPLive

PPLive is the largest commercial peer-to-peer live streaming system to date, which

attracts over 100,000 online users during peak times. Following the works by Wang

et al.[30], we use PPLive traces gathered by an online crawler[15] that continuously

collects information from each channel. We choose traces, pplive-cctv and pplive-ball,

from two popular PPLive channels CCTV3 and DragonBall, from Wednesday Nov

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600

nu
m

be
r

of
 p

ee
rs

time(min)

 peer #

Figure IX.2: Peer Population of PPLive Trace

59

22 17:40 2006 to Thursday Nov 23 21:30 2006. pplive-cctv and pplive-ball attracted

52, 126 and 50, 131 unique peers during this period correspondingly. The PPLive

traces do not contain any information regarding network bandwidth. So we assign

uplink bandwidth to each peer according to the uplink bandwidth proportionment

revealed in [16].

Fig. IX.1 and Fig. IX.2 illustrate the peer population of MSN and PPLive traces

respectively. They demonstrate the number of peers requesting admission over time.

Setup

Other Algorithms

In Chapter VIII, we introduce PRW and how it guides the peer selection algo-

rithms in single-tree, multi-tree, and mesh structures. We denote them as PRW-single,

PRW-multi, and PRW-mesh, respectively.

We compare our algorithms with several well-known heuristics and existing algo-

rithms. We consider two heuristics: age-first and bandwidth-first. They behave the

same way as our algorithms in the sense that they also rely on a single scalar value

(age or available uplink capacity) to guide the parent selection. As such, we apply the

same procedures outlined in Chapter VIII to these two heuristics, except that the

goal of minimum PRW is replaced by maximum age and maximum available uplink

bandwidth.

We also implement two existing algorithms, namely the hybrid algorithm pro-

posed in [5] and ROST proposed in [27]. In hybrid, peers A and B are compared by

DegreeRatio and AgeRatio as the ratio of uplink capacity and age of A and B. If

60

both ratios are above 1, A has higher priority. If only one of the ratios is above 1,

A has priority only if DegreeRatio > AgeRatio−p, where p is a parameter. We set

p = 1 in our experiment, such that bandwidth ratio and age ratio are treated with the

same weight. In ROST (Reliability-Oriented Switching Tree), peers are measured by

BTP (bandwidth-time product) defined as the product of its uplink capacity and age,

and those with higher BTPs are switched higher in the tree. We choose hybrid and

ROST among many existing P2P streaming solutions[29, 20, 31], primarily because

both of them simultaneously study the heterogeneity of peer age and uplink capacity,

and the tradeoff of the two, which are the focus of this dissertation as well.

Performance Metrics

We use two major performance metrics to evaluate the solutions mentioned above.

The first is service disruption, i.e., under a given streaming rate, the number of

disruptions a peer experiences during its lifetime due to the leaving of its ancestor.

It is straightforward to count the number of disruptions under the single-tree model.

When a peer has multiple parents, we modify it as the fractional loss of receiving

rate due to leaving of a an ancestor. This is the same as the definitions of ϕ(t) for

multi-tree structure and ϕp→v(m) for mesh structure introduced in Chapter III. In

our experiment, we deem all peer leaving events as disruptions to the descendants of

the leaving peer.

Derived from service disruption, we propose a related metric data loss ratio, which

is the percentage of data loss experienced by a peer due to service disruption. It is

calculated as the sum of each service disruption value multiplied by its duration,

then normalized by the peer’s lifetime. We set the duration of each disruption as

the unit time defined in the traces in which our algorithms run. In other words, we

assume that the disrupted peer is able to find itself a new parent within one time

61

unit. Specifically, the duration is 1 second for MSN video traces, and 1 minute for

PPLive traces.

The second major metric is rejection, i.e., the number of peers rejected due to

insufficient uplink bandwidth availability. The number of rejections can be increased

by unwise utilization of peer’s uplink bandwidth, which creates considerable remain-

ing bandwidth too fragmented to serve a peer.

Results

In this section, we first compare our algorithm with ROST and hybrid in single

tree case(ROST and hybrid are single tree algorithms). Then we compare our algo-

rithm with age-first and bandwidth-first heuristics in multi-tree and mesh cases. The

streaming rate in the simulations is 384Kbps, which is the same as the rate of most

of the video provided by today’s streaming service. The server’s bandwidth is set to

1Mbps.

Single Tree

We start by presenting the performance of various algorithms under the single-tree

structure. Fig. IX.3 (a) and (b) show the percentage of peers suffering disruptions in

the system over time. Since the numbers of rejected peers are different under different

algorithms, we use percentage of peers suffering disruptions instead of absolute value

of the number of disruptions. Fig. IX.3 (e) and (f) show the data loss ratio of each

algorithm as the sorted view by peer index(the unique sequence number assigned to

peers when they join the network). We notice that the curves in these figures do not

align well. The reason is revealed in Fig. IX.3 (c) and (d), which display the number

of peers rejected over time. Our experiment assumes that the rejected peers do not

try to rejoin, hence do not deserve a place in Fig. IX.3 (e) and (f).

62

From these figures, we find out that our PRW-based algorithm has the lowest

peer rejection rate among all algorithms due to its ability to efficiently allocate uplink

bandwidth of resource-abundant peers. Especially for the PPLive traces, our PRW-

based algorithm has no rejection. Also, our algorithm is able to achieve the lowest

disruption rate, hence better data loss ratio than other algorithms. This result comes

from the fact that PRW-based algorithm is able to select peers with high resilience

factor(abundant bandwidth resource and prospect longevity) as the parents of other

peers.

Multi-tree

Fig. IX.4 shows the performance of PRW-based, bandwidth-based and age-based

algorithms in multi-tree case. Similar to single tree case, our algorithm achieves the

lowest disruption rate. Age-based algorithm is able to achieve similar performance to

our algorithm. In multi-tree case, all of these algorithms have no rejection, which is

the reason why we do not plot the number of rejections in multi-tree case.

Mesh

Fig. IX.5 shows the performance of PRW-based, bandwidth-based and age-based

algorithms in mesh case. Again, our PRW-based algorithm achieves both the lowest

disruption rate and rejection rate. The only exception being bandwidth-based algo-

rithm performs better in MSN traces, while age-based algorithm performs better in

PPLive traces.

63

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

S
e

rv
ic

e
 D

is
ru

p
ti
o

n
 P

e
rc

e
n

ta
g

e

Time(sec)

PRW
hybrid

rost

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

S
e

rv
ic

e
 D

is
u

p
ti
o

n
 P

e
rc

e
n

ta
g

e

Time(min)

PRW
hybrid

rost

(a) Disruption (MSN) (b) Disruption (PPLive)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500 3000 3500 4000

N
u

m
b

e
r

o
f
R

e
je

c
ti
o

n
s

Time(sec)

PRW
hybrid

rost

0

10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000 1200 1400 1600 1800

N
u

m
b

e
r

o
f
R

e
je

c
ti
o

n
s

Time(min)

PRW
hybrid

rost

(c) Rejection (MSN) (d) Rejection (PPLive)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000 70000

D
a

ta
 L

o
s
s
 R

a
ti
o

Peer Index

PRW
hybrid

rost
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000

D
a

ta
 L

o
s
s
 R

a
ti
o

Peer Index

PRW
hybrid

rost

(e) Data Loss Ratio (MSN) (f) Data Loss Ratio (PPLive)

Figure IX.3: Single Tree

64

0 500 1000 1500 2000 2500 3000 3500 4000

S
e

rv
ic

e
 D

is
ru

p
ti
o

n
 P

e
rc

e
n

ta
g

e

Time(sec)

PRW
Bandwidth-based

Age-based

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0
-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 200 400 600 800 1000 1200 1400 1600 1800

S
e

rv
ic

e
 D

is
ru

p
ti
o

n
 P

e
rc

e
n

ta
g

e

Time(min)

PRW
Bandwidth-based

Age-based

(a) Disruption (MSN) (b) Disruption (PPLive)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000

D
a

ta
 L

o
s
s
 R

a
ti
o

Peer Index

PRW
Bandwidth-based

Age-based

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000

D
a

ta
 L

o
s
s
 R

a
ti
o

Peer Index

PRW
Bandwidth-based

Age-based

(c) Data Loss Ratio (MSN) (d) Data Loss Ratio (PPLive)

Figure IX.4: Multi-tree

65

 0 500 1000 1500 2000 2500 3000 3500 4000

S
e

rv
ic

e
 D

is
ru

p
ti
o

n
 P

e
rc

e
n

ta
g

e

Time(sec)

PRW
Bandwidth-based

Age-based

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 200 400 600 800 1000 1200 1400 1600 1800

S
e

rv
ic

e
 D

is
ru

p
ti
o

n
 P

e
rc

e
n

ta
g

e

Time(min)

PRW
Bandwidth-based

Age-based

(a) Disruption (MSN) (b) Disruption (PPLive)

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500 3000 3500 4000

N
u

m
b

e
r

o
f
R

e
je

c
ti
o

n
s

Time(sec)

PRW
Bandwidth-based

Age-based

0 200 400 600 800 1000 1200 1400 1600 1800

N
u

m
b

e
r

o
f
R

e
je

c
ti
o

n
s

Time(min)

PRW
Bandwidth-based

Age-based

 0

 10

 20

 30

 40

 50

 60

 70

(c) Rejection (MSN) (d) Rejection (PPLive)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000 120000 140000 160000

D
a

ta
 L

o
s
s
 R

a
ti
o

Peer Index

PRW
Bandwidth-based

Age-based

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000

D
a

ta
 L

o
s
s
 R

a
ti
o

Peer Index

PRW
Bandwidth-based

Age-based

(e) Data Loss Ratio (MSN) (f) Data Loss Ratio (PPLive)

Figure IX.5: Mesh

66

CHAPTER X

CONCLUSION

In this dissertation, we propose an optimization framework based on the gener-

alized flow theory. Utilizing the concept of gain factor in this theory, we introduce

the resilience factor of peer to model its chance of survival in a probabilistic measure.

Based on this idea, an optimization framework is constructed, whose objective is to

maximize the P2P network’s generalized throughput, the product of raw throughput

and combined resilience factors of all peers. We report our findings in this problem

domain along several dimensions including network topology, overlay organization,

etc.

Based on the optimization framework, we propose an evaluation metric called

PRW (peer resilient weight) to evaluate a peer’s resource and prospect longevity and

guide P2P streaming parent selection. Its theoretical background originates from

the optimization framework based on the generalized flow theory, which generalizes

the classical network flow problem by specifying a gain factor for each link in the

network. While the referenced solutions deliver highly varied performances under

different traces, solutions guided by PRW is able to maintain consistent performance

under all traces and achieve both low service disruption and low rejection.

67

CHAPTER XI

FUTURE WORK

There are two strategies for enhancing stability of P2P streaming system. One is

to gradually improve the stability of P2P structure by switching existing parent-child

pairs to move up the stable peers. The second strategy is to achieve the same goal

by letting each joining peer find the optimal existing peer as its parent, often with

the aid of comparable metrics, which this work follow as well. Possible future work

could be enhancing stability of P2P streaming system by merging the following two

strategies.

PRW -Aided Switching

Here we give an example, illustrating one possible research direction. By incor-

porating PRW -based peer selection with PRW -aided switching, we have a straight

forward merge of the two strategies. In ROST [27], a BTP-based switching was pro-

posed. BTP(Bandwidth-Time Product) is defined as the product of a nodes outbound

bandwidth and its age. When a new peer initially enters the network, its BTP is 0.

The server is preassigned an infinite BTP, and always remains at the top of the tree.

In most cases, the high layers of the tree are occupied and the new peer becomes a

low-layer node. As time goes on, a nodes BTP increases at a rate proportional to

its bandwidth. If its bandwidth is larger than its parent, then there must be some

time point in the future when its BTP exceeds its parent (if the parent does not leave

before itself). At that time the algorithm will exchange the roles of these two nodes.

Instead of switching based on a peer’s BTP, we can use its PRW as the metric for

68

switching criterion, hence we have a PRW -aided Switching.

More Peer Evaluation Metrics

Beside PRW, we will keep exploring other peer selection metrics and compare their

performance under service disruption, data loss ratio, and rejection. These metrics

should bear similar distributed features as PRW : light-weight, easy to track and easy

to update. Peer level is one of the candidates.

If consider PRW -aided switching as borrowing peer selection metric and used as

peer switching criterion. Inversely, we may consider the status changed with peer

switching, as one of the metric to guide peer selection. One goal of peer switching in

ROST is to move nodes with large BTPs higher in the tree. The level a peer resides in

tree can be measured by its distance to root(DTR) or distance to leaf(DTL). Length

of a single path(e.g. distance to root) in tree is measured in hops. Distance of a peer

to leaf can be obtained by averaging length of all its paths to leaf nodes. In case of

multi-tree or mesh, distance to root or leaf can be calculated using a flow rate based

weighted average of a peer’s paths in different trees.

69

APPENDIX A

PROOF OF THEOREM 1

The proof of Theorem 1 follows the proofs of the following lemmas. We denote

OPT as the optimal value of the problem (IV.1).

Lemma 1: MultiTrees-General terminates after at most |E| log1+ϵ
1+ϵ
β

iterations.

Proof 1 Let us consider any edge e ∈ E . Initially, de = β. The last time the

length of e is updated, it is on a overlay spanning tree t whose length is less than

R(t) =
∑

e∈E ne(t)re, and is increased by at most a factor of 1 + ϵ. Since every

augmentation increases the length of some edge by a factor of at least 1 + ϵ, and

R(t) ≤ |V |, the number of possible augmentations is at most |V | log1+ϵ
1+ϵ
β
.

Lemma 2: Scaling the final flow by log1+ϵ
(1+ϵ)|V |

β
yields a feasible primal solution.

Proof 2 In the ith iteration of the algorithm, the total flow on an edge e ∈ E increases

by a fraction 0 ≤ γ(i) ≤ 1 of its capacity. Its length de is multiplied by 1+ ϵγ(i). Since

(1+ ϵγ(i)) ≥ (1+ ϵ)γ
(i)

when 0 ≤ γ(i) ≤ 1, we have
∏

i(1+ ϵγ(i)) ≥ (1+ ϵ)
∑

i γ
(i)
. Thus,

every time the flow on e increases by its capacity, its length de increases by a factor

of at least (1 + ϵ). Since de is initialized as β, and ends up at most (1 + ϵ)|V |, its

total flow cannot exceed ce log1+ϵ
(1+ϵ)|V |

β
.

Lemma 3: When β = [(1+ϵ)|V |]1−1/ϵ

(|V |U)1/ϵ
, the final flow scaled by log1+ϵ

(1+ϵ)|V |
β

has a value

at least (1− 2ϵ) times OPT . U is the length of the longest unicast route.

Proof 3 We make the following denotations. Regarding a set of edge length assign-

ments de (e ∈ E), the objective function in problem (IV.3) is Lde ,
∑

e∈E ce · de.

tde is the minimum overlay spanning tree in terms of de − re. We denote d(tde) ,∑
e∈E ne(t

de) · de as the length of tde in terms of solely de.

70

The objective of problem (IV.3) is to minimize Lde, subject to the constraint that

d(tde) ≥ R(tde). This constraint can be easily satisfied if we scale the length of all edges

by R(tde)/d(tde). So problem (IV.3) is equivalent to finding a set of edge lengths, such

that LdeR(tde)
d(tde)

is minimized. Thus the optimal value of problem (IV.3) is OPT ,

minde
LdeR(tde)

d(tde)
.

In each iteration of the algorithm, the length of an edge is updated. We use d
(i)
e

to denote the length of e after the ith iteration. d
(0)
e = β is the initial weight of de.

Regarding d
(i)
e , we simplify the following denotations Ld

(i)
e , td

(i)
e and d(td

(i)
e), into L(i),

t(i) and d(t(i)). We also denote f (i) as the total flow that has been routed after the ith

iteration. Then based on the edge length update function (Line 10 in Tab. IV.1), we

have

L(i) =
∑
e∈E

d(i−1)
e · ce + ϵ

∑
e∈t(i−1)

ne(t
(i−1))d(i−1)

e (f (i) − f (i−1))

= L(i−1) + ϵ(f (i) − f (i−1))d(t(i−1))

which implies that

L(i) ≤ L(0) + ϵ
i∑

j=1

(f (j) − f (j−1))d(t(j−1)) (A.1)

Now let us consider the length function d(i)−(0), i.e., for each edge e ∈ E, its

length is d
(i)
e − d

(0)
e ≥ 0, since the length function is monotonically increasing. Thus,

we have L(i)−(0) = L(i) − L(0). Since d(i)−(0) and d(i) only differs by the constant β at

each edge, t(i)−(0) and t(i) are the same tree. In addition, the length of the tree using

d(i) versus d(i)−(0) differs by at most β|V |U , U being the length of the longest unicast

route. Hence

OPT ≤ L(i)−(0)R(t(i)−(0))

d(t(i)−(0))
≤ (L(i) − L(0))R(t(i))

d(t(i))− β|V |U

71

Substituting this bound on L(i) − L(0) in Eq. (A.1) gives

d(t(i))

R(t(i))
≤ β|V |U

R(t(i))
+

ϵ

OPT

i∑
j=1

(f (j) − f (j−1))d(t(j−1))

≤ β|V |U +
ϵ

OPT

i∑
j=1

(f (j) − f (j−1))d(t(j−1))

since R(t) ≥ 1.

Observe that, for fixed i, this right hand side is maximized by setting d(t(j)) to its

maximum possible value, for all 0 ≤ j < i. Let us call this maximum value d′(t(j)).

Hence

d(t(i))

R(t(i))
≤ d′(t(i))

R(t(i))

= β|V |U +
ϵ

OPT

i−1∑
j=1

(f (j) − f (j−1))d′(t(j−1))

+
ϵ|V |
OPT

(f (i) − f (i−1))d′(t(i−1))

=
d′(t(i−1))

R(t(i−1))
(1 +

ϵR(t(i))(f (i) − f (i−1))

OPT
)

≤ d′(t(i−1))

R(t(i−1))
e

ϵR(t(i))(f(i)−f(i−1))
OPT

Since d′(t(0))/R(t(0)) ≤ β|V |U , this implies that

d(t(i))

R(t(i))
≤ β|V |Ueϵf

∗/OPT

where f ∗ =
∑i

j=0 R(t(i))(f (i) − f (i−1)), the objective of problem (IV.3).

The algorithm stops when the value of d(t(i)) ≥ R(t(i)). Let f ∗ be the total flow

routed, we have,

1 ≤ β|V |Ueϵf
∗/OPT

72

Hence,

OPT

f ∗ ≤ ϵ

ln(1
β(|V |U)

By Lemma 2, f∗

log1+ϵ
(1+ϵ)|V |

β

is a feasible solution to problem (IV.3). Then the ratio

between the optimal value of problem (IV.3) and the result returned by our algorithm

is

OPT

f ∗ log1+ϵ

(1 + ϵ)|V |
β

≤
ϵ log1+ϵ

(1+ϵ)|V |
β

ln(1
β|V |U)

=
ϵ ln (1+ϵ)|V |

β

ln(1 + ϵ) ln(1
β|V |U)

(A.2)

When β = [(1+ϵ)|V |]1−1/ϵ

(|V |U)1/ϵ
, the above inequality becomes

(A.2) ≤ ϵ

(1− ϵ) ln(1 + ϵ)
≤ ϵ

(1− ϵ)(ϵ2 − ϵ/2)
≤ 1

(1− ϵ)2
≤ 1

1− 2ϵ

Now we are ready to proof Theorem 1 as follows.

Proof 4 By Lemma 1, the algorithm terminates after at most |E| log1+ϵ
1+ϵ
β

rounds,

each round containing a minimum spanning tree construction. When β = [(1+ϵ)|V |]1−1/ϵ

(|V |U)1/ϵ
,

the maximum number of the iterations needed by the algorithm is

|E| log1+ϵ[((1 + ϵ)U)1/ϵ|V |2/ϵ−1]

≤ |E|
ϵ
(1 + log1+ϵ U + log1+ϵ |V |2)

=
|E|
ϵ
(1 +

log(U |V |2)
log(1 + ϵ)

)

≤ |E|
ϵ

+
|E|
ϵ2

log(U |V |2)

Therefore, the running time is O(|E|
ϵ2
[logU + 2 log |V |] · Tmst).

73

APPENDIX B

PROOF OF THEOREM 2

Proof 5 We prove that problem (IV.3), the dual problem of (IV.1) is NP-complete.

The proof is by reduction from the 3-SAT problem. Let F be a 3-SAT for-

mula in conjunctive normal form, where each clause consists of three literals from

{v1, . . . , v|V |} and {v̄1, . . . , v̄|V |}. In Fig. B.1, we build an overlay network, in which

testing if constraint (IV.4) is violated, i.e., the separation oracle of problem (IV.1),

corresponds to satisfying assignment of F .

Besides server s, There are two types of peers in this graph. The first type of peers

correspond to literals vi and v̄i (i = 1, . . . , |V |). The second type of peers correspond

to clauses of F . All peers have the same resilience factor. The overlay network is a

complete graph, whose edges are grouped into two subsets, where edges in each subset

carry the same length. Fig. B.1 only shows all edges with smaller lengths: they direct

from s to all literal nodes, between each pair of literal nodes, and from each literal

node to each clause node it appears in.

S

V V

2

V
1

V
1

V
2

V
2 3 3

V
1

∨ V
2

∨ V
3 1

∨
2

∨
3 1

∨V VV V V V ∨
3

Figure B.1: Proof of Theorem 2

It is obvious that, in terms of the literal set size, there exist an exponential number

of minimum spanning trees in this graph, in which all edges have the same length.

74

However, among these trees, we can decide if there exists a tree with the maximum

resilience index only by solving the assignment F .

Since all peers have the same resilience factor, the greatest resilience index a peer

can get is via the shortest path from s to itself. This is straightforward for literal nodes

since s has a direct edge to each of them. A clause node will have to connect to s

either through a literal node directly (two-edge path), or through a pair of literal nodes

(three-edge path). Only if F is satisfied can we prove the existence of the minimum

spanning tree with the maximum resilience index, in which a two-edge path exists for

all clause nodes.

75

APPENDIX C

PROOF OF THEOREM 3

Proof 6 Our proof consists of two parts. In the first part, we show that any tree can

be reorganized into the collection of a subset of the |V | + 1 trees shown in Fig. V.2

with higher generalized throughput. In the second part, we prove that the tree selection

priority the MultiTrees-Star algorithm follows at choosing among these |V |+1 trees

guarantees optimality.

In the first part, we examine an arbitrary tree t, with data flow rate f(t) and

resilient index R(t). We introduce a set R(t), which consists of all non-leaf nodes

in t. It is obvious that S ∈ R(t). For each node v ∈ R(t), we denote ncv(t) as the

number of children v has in t. Then the bandwidth contribution by v is ncv(t)f(t).

The resilient throughput contributed by v is the summation of generalized flow received

by all its children. Under the non-concatenation model, this value is ncv(t)f(t)rv, the

product of v’s bandwidth contribution and its resilient factor. Under the concatena-

tion model, this value is ncv(t)f(t)rvRt(v), the product of v’s bandwidth contribution,

resilient factor, and resilient index. Under both models, the resilient throughput con-

tributed by the server s is ncs(t)f(t), since the resilience factor of s is 1. As such, t’s

resilient throughput f(t)R(t) can be considered as the summation of resilient through-

put contribution by all nodes in R(t).

We now reorganize t as follows. For each peer node v ∈ R(t), we select tree

tv in Fig. V.2, where v is the relaying node. The flow rate of the selected tree is

ncv(t)f(t)/(|V | − 1), such that the bandwidth contribution of v equals to its contribu-

tion in t. In this tree, the resilient throughput contributed by v is ncv(t)f(t)rv under

both concatenation and non-concatenation models. Compared to the same value in t,

v’s resilient throughput contribution in the new tree is higher in concatenation model,

76

and stays the same in non-concatenation model. After conducting the above step

for all peer nodes in R(t), the total bandwidth contribution by s would have reached

(|V |−ncs(t))f(t)/(|V |−1), which is also its resilient throughput contribution. To con-

sume the bandwidth still left at s, we construct tree t0, the last tree in Fig. V.2, with

rate (ncs(t)−1)f(t)/(|V |−1). Since s must have at least one child to ensure connec-

tivity, this value is no smaller than 0. Then s’s bandwidth contribution, as well as its

resilient throughput contribution, adding over all trees constructed, is ncs(t)f(t). This

value stays the same as in t under both concatenation and non-concatenation models.

Now we can claim that, with the above reorganization, the generalized throughput con-

tribution by each node in R(t) is greater or equal to its contribution in tree t. Hence

collectively, the aggregate generalized throughput of these trees is greater or equal to

the generalized throughput of t, with the same bandwidth contribution by each node in

R(t).

As it is now clear that the |V | + 1 trees shown in Fig. V.2 collectively achieve

higher generalized throughput than any other tree, we proceed to the second part of

our proof. Each tree tv except t0 only consumes the bandwidth of s and the relay-

ing peer v, and has its rate upper bounded by the minimum of cvi/(|V | − 1) and the

remaining bandwidth of s. t0 consumes solely the bandwidth of s. As such, the band-

width of s becomes bottleneck resource that all trees rely on. We introduce the “gain

ratio” for each tree, which is the ratio of its generalized throughput and the bandwidth

contribution by s. For all trees except t0, such value is 1 + rv(|V | − 1), where rv is

the resilience factor of the relaying peer v. For the last tree t0, such value is 1/|V |.

The tree selection of MultiTrees-Star is based on the descending order of their gain

ratios. It is now clear that the algorithm follows a greedy strategy, in each round the

tree with the highest gain ratio is chosen and fed with the maximum achievable rate,

until the bandwidth of s is depleted.

77

BIBLIOGRAPHY

[1] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows: Theory, Algorithms, and
Applications. Englewood Cliffss, NJ, 1993.

[2] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line routing of virtual
circuits with applications to load balancing and machine scheduling. Journal of
ACM, 44, 1997.

[3] B. Awerbuch, Y. Azar, and S. Plotkin. Throughput-competitive on-line routing.
In IEEE Conference on Foundation of Computer Science (FOCS), 1993.

[4] B. Awerbuch, Y. Azar, S. Plotkin, and O. Waarts. Competitive routing of vir-
tual circuits with unknown duration. In ACM-SIAM Symposium on Discrete
Algorithms (SODA), 1995.

[5] M. Bishop, S. Rao, and K. Sripanidkulchai. Considering priority in overlay
multicast protocols under heterogeneous environments. In Proc. of INFOCOM,
April 2006.

[6] M. Castro, P. Druschel, A. M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh.
Splitstream: High-bandwidth multicast in cooperative environments. In Proc. of
ACM Symposium on Operating Systems Principles (SOSP), October 2003.

[7] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang. A case for end system multicast.
IEEE Journal on Selected Areas in Communications, pages 1456–1471, October
2002.

[8] R. Cohen and G. Kaempfer. A unicast-based approach for streaming multicast.
In Proc. of IEEE INFOCOM, 2001.

[9] Y. Cui, B. Li, and K. Nahrstedt. On achieving optimized capacity utilization
in application overlahy networks with multiple competing sessions. In Proc. of
ACM Symposium on Parallel Algorithms and Architectures, 2004.

[10] N. Deo. Graph Theory with Applications to Engineering and Computer Science.
1994.

[11] B. Fortz and M. Thorup. Internet traffic engineering by optimizing ospf weights.
In in Proc. IEEE INFOCOM, pages 519–528, 2000.

[12] B. Godfrey, S. Shenker, and I. Stoica. Minimizing churn in distributed systems.
In SIGCOMM ’06: Proceedings of the 2006 conference on Applications, technolo-
gies, architectures, and protocols for computer communications, pages 147–158,
New York, NY, USA, 2006. ACM.

78

[13] A. Goel, M. Henzinger, and S. Plotkin. Online throughput-competitive algo-
rithm for multicast routing and admission control. In ACM-SIAM Symposium
on Discrete Algorithms (SODA), 1998.

[14] M. Guo and M. Ammar. Scalable live video streaming to cooperative clients
using time shifting and video patching. In IEEE INFOCOM, 2004.

[15] X. Hei, C. Liang, J. Liang, Y. Liu, and K. Ross. A measurement study of a
large-scale p2p iptv system. Multimedia, IEEE Transactions on, 2007.

[16] C. Huang, J. Li, and K. Ross. Can internet video-on-demand be profitable? In
SIGCOMM ’07: Proceedings of the 2007 conference on Applications, technolo-
gies, architectures, and protocols for computer communications, pages 133–144,
New York, NY, USA, 2007. ACM.

[17] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: High bandwidth
data dissemination using an overlay mesh. In Proc. of ACM Symposium on
Operating Systems Principles (SOSP), 2003.

[18] D. Leonard, Z. Yao, V. Rai, and D. Loguinov. On lifetime-based node failure
and stochastic resilience of decentralized peer-to-peer networks. IEEE/ACM
Transactions on Networking, 15(3), 2007.

[19] Y. Liu, Y. Guo, and C. Liang. A survey on peer-to-peer video streaming systems.
Peer-to-Peer Networking and Applications, pages 18–28, 2008.

[20] N. Magharei and R. Rejaie. Prime: Peer-to-peer receiver-driven mesh-based
streaming. In INFOCOM 2007. 26th IEEE International Conference on Com-
puter Communications. IEEE, pages 1415–1423, 2007.

[21] A. Medina, A. Lakhina, I. Matta, and J. Byers. Brite: An approach to univer-
sal topology generation. In International Workshop on Modeling, Analysis and
Simulation of Computer and Telecommunications System, 2001.

[22] V. Padmanabhan, H. Wang, and P. Chou. Resilient peer-to-peer streaming. In
IEEE International Conference on Networking Protocols (ICNP), 2003.

[23] V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai. Distributing
streaming media content using cooperative networking. In NOSSDAV ’02: Pro-
ceedings of the 12th international workshop on Network and operating systems
support for digital audio and video, pages 177–186, New York, NY, USA, 2002.
ACM Press.

[24] R. Rahman, M. Meulpolder, D. Hales, J. Pouwelse, and H. Sips. Improving effi-
ciency and fairness in p2p systems with effort-based incentives. In In Proceedings
of ICC, page 10, 2010.

79

[25] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang. The feasibility of
supporting large-scale live streaming applications with dynamic application end-
points. In SIGCOMM ’04: Proceedings of the 2004 conference on Applications,
technologies, architectures, and protocols for computer communications, pages
107–120, New York, NY, USA, 2004. ACM Press.

[26] G. Tan and S. Jarvis. On the reliability of dht-based multicast. In Proc. of
INFOCOM, 2007.

[27] G. Tan, S. Jarvis, and D. Spooner. Improving the fault resilience of overlay mul-
ticast for media streaming. In DSN ’06: Proceedings of the International Con-
ference on Dependable Systems and Networks (DSN’06), pages 558–567, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[28] E. Tardos and K. Wayne. Simple generalized maximum flow algorithm. In Inte-
ger Programming and Combinatorial Optimization, Lecture Notes in Computer
Science, volume 1412, 1998.

[29] V. Venkataraman, K. Yoshida, and P. Francis. Chunkyspread: Heterogeneous
unstructured tree-based peer-to-peer multicast. In ICNP ’06: Proceedings of the
Proceedings of the 2006 IEEE International Conference on Network Protocols,
pages 2–11, Washington, DC, USA, 2006. IEEE Computer Society.

[30] F. Wang, J. Liu, and Y. Xiong. Stable peers: Existence, importance, and ap-
plication in peer-to-peer live video streaming. In INFOCOM 2008. The 27th
Conference on Computer Communications. IEEE, pages 1364–1372, 2008.

[31] F. Wang, Y. Xiong, and J. Liu. mtreebone: A hybrid tree/mesh overlay for
application-layer live video multicast. In ICDCS ’07: Proceedings of the 27th In-
ternational Conference on Distributed Computing Systems, page 49, Washington,
DC, USA, 2007. IEEE Computer Society.

[32] B. Waxman. Routing of multipoint connections. IEEE Journal on Selected Areas
in Communications, 6(9):1617–1622, December 1988.

[33] K. Wayne. A polynomial combinatorial algorithm for generalized minimum cost
flow. In ACM Symposium on Theory of Computing, 1999.

[34] K. Wayne and L. Fleischer. Faster approximation algorithms for generalized flow.
In ACM-SIAM symposium on Discrete algorithms, 1999.

80

