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Chapter 1

INTRODUCTION

1.1 Background and Motivation

1.1.1 Band gap phenomenon and classical modeling approaches

Periodic composites with tailored microstructures and material properties such as

phononic crystals [124, 106] and acoustic metamaterials [82, 36] exhibit extraordinary

capability in controlling elastic waves by manipulating band gaps that forbid waves

to propagate within targeted frequency ranges. Unique wave phenomenon can be

achieved in these composites by tailoring the microstructures, enabling remarkable

novel applications, such as elastic cloak [120], seismic wave mitigation [19, 25] and

acoustic superlens [79, 71]. The majority of the effort in this area so far focused

on elastic materials as composite constituents. It has been recently recognized that

employing viscoelastic materials could significantly expand the possibilities for these

materials by leveraging the interactions between material damping and heterogeneity

induced dispersion, such as shifting the stop band to lower frequencies and enhancing

wave attenuation [89, 90, 67].

Band gap phenomenon, i.e., complete attenuation of waves within certain fre-

quency ranges, has been extensively investigated for composite materials with peri-

odic microstructures. Two mechanisms contribute to its formation, Bragg scattering

in phononic crystals and local resonance in acoustic metamaterials. Bragg scattering

occurs when the wavelength is of the same order of the size of microstructure, where

destructive interference of the scattered waves leads to strong attenuation. Local res-

onance, on the other hand, can be activated at much lower frequency, by embedding

microstructures that are soft and dense. As a result, attenuation can be achieved

for long wave with microstructures that are orders of smaller than it is required for
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Bragg scattering. The existence of band gaps depends strongly on the properties of

the constituent materials, the geometry of the microstructures and volume fraction,

etc.

Numerical simulations typically used in design and analysis of dynamic behaviors

of periodic composites can be classified as: unit cell band structure characterization

and structure-scale wave propagation simulation. The former approach characterizes

the band gaps of the unit cells of composites based on the Floquet-Bloch theorem,

which assumes periodicity of the unit cells in an infinite domain. Significant advances

have been made in efficiently calculating the dispersion band structures [66, 73]. While

this approach provides salient information about the wave velocity, location and size

of the band gaps in the frequency domain, macroscopic phenomenon, such as wave-

boundary interaction and wave-wave interaction, is not captured. The structure-scale

simulation of wave propagation, either finite element time domain or finite difference

time domain, is typically employed as the ”first-principle approach” in design and

analysis of these architectured composites [72, 120, 97]. However, resolution of the

microstructures along with the requirement of time step size leads to prohibitive

computational cost. This motivates the development of multiscale methods over the

past decade towards modeling periodic composites in a more efficient manner.

1.1.2 Existing multiscale approaches

Multiscale models for heterogeneous materials are broadly classified in two cate-

gories: (1) scale separation assumption dependent and (2) scale separation assump-

tion independent. The scale separation assumption assumes that the deformation

wavelength is much larger than the size of microstructures. Based on this assump-

tion, various homogenization models have been developed in the literature, which

upscale the microstructural information in the form of effective material properties

at the macroscopic scale. This type of homogenization models are valid only up to
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the scale separation assumption, and is not accurate for modeling short waves. The

latter group of multiscale models do not make this assumption, therefore, can be

applied to a broader range of wave frequencies. However, few works in this category

have been proposed for wave propagation in composite materials with demonstrated

computational efficiency.

Generalized continuum theories, pioneered by Mindlin [94], Suhubi and Eringen

[121] and others were developed to describe the macroscopic phenomena accounting

for the microstructural effects without the need to resolve them. Gradient elasticity

modeling, a special class of the generalized theories, introduces higher order gradients

in the governing equation in addition to the terms that pertain to the classical contin-

uum theory. The resulting equations of motion capture the dispersive and attenuative

behavior induced by the material heterogeneity. The fourth order gradient elasticity

model (with fourth order spatial, fourth order temporal and mixed spatial-temporal

derivative terms) has been investigated by Askes et al. [7], Metrikine [91], Pichugin

et al. [109] and others. Dontsov et al. [33] demonstrated the capability of this model

in predicting the dispersion relation of one-dimensional elastic layered composites up

to the second pass band, provided that the length-scale parameters associated with

the higher order gradients are appropriately calibrated. However, the identification

of these parameters in multidimensional problems is an outstanding issue [6].

Based on the scale separation assumption, asymptotic homogenization, pioneered

by Bensoussan et al. [13] and Sanchez-Palencia [114], is frequently employed to com-

pute the effective material properties of complex heterogeneous materials [105, 135,

136]. In the context of dynamics, Boutin and Auriault [15] first investigated the

role of higher order expansions in capturing wave dispersion. Fish et al. [42, 43]

proposed a spatial nonlocal homogenization model that incorporates a fourth order

spatial derivative term in addition to the terms that pertain to the classical local

homogenization model. The spatial nonlocal model was shown to capture wave dis-
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persion in the long-wavelength regime [4]. By deriving a homogenization model that

employed a mixed spatial-temporal nonlocal term, Hui and Oskay [64] studied the

dispersion and attenuation of transient waves in elastic composites. More recently,

Wautier and Guzina [125] extended the spatial nonlocal homogenization model by

incorporating the temporal and mixed spatial-temporal nonlocal terms using the ar-

gument of asymptotic equivalence [109]. With appropriately calibrated parameters

associated with the nonlocal terms, this model was shown to capture the onset and

size of the first stop band in the context of dispersion analysis for anti-plane shear

waves.

Computational homogenization [96, 92, 37] is a well established technique in

modeling complex material behaviors across multiple scales. It poses nested initial-

boundary value problems at the macroscale and microscale, which are related by the

Hill-Mandel energy consistency condition. At the macroscale, the constitutive be-

havior at a material point is obtained through numerical evaluation of a microscale

problem defined over a unit cell. This approach has been demonstrated to suc-

cessfully capture the band gaps due to local resonance within acoustic metamateri-

als [107, 116, 80, 81, 112, 113], which occur when the separation of scales is still strictly

satisfied. In phononic crystals, band gaps occur when the macroscopic wavelength is

on the same order of the unit cell size. Computational homogenization models have

not demonstrated their capabilities in capturing band gaps in this regime.

When the wavelength is approaching the size of microstructures, the assumption

of scale separation is no longer valid. The concept of effective material properties

becomes ambiguous and the upscaling of the microscale information is not straight-

forward. Multiscale methods independent of this assumption may be promising in

modeling wave propagation in this regime, such as the elastodynamic homogenization

models based on Willis’ theory [127, 93, 101, 100, 117, 88], multiscale finite element

method [53, 20, 21] and the method of computational continua [41, 35, 38]. However,
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transient wave propagation beyond the acoustic regime has not been demonstrated

using these approaches.

While the approaches mentioned above account for wave dispersion due to material

heterogeneity in elastic composites, the effects of material damping were typically not

considered. In contrast, among many homogenization models developed to capture

the wave attenuation due to material damping in viscoelastic composites [51, 128,

129], few investigated the dispersion due to material heterogeneity. Hui and Oskay

[63, 65] investigated transient wave propagation in viscoelastic composites using the

spatial nonlocal homogenization model which accurately captures wave dispersion

induced by material heterogeneity in the long wavelength regime.

This dissertation is dedicated to the development of multiscale computational

methods to efficiently model wave propagation in phononic crystals and acoustic

metamaterials. In particular, it is focused on wave dispersion and the band gap

phenomenon. Multiscale methods in both of the two categories (scale separation as-

sumption dependent and independent) are proposed. Wave propagation in phononic

crystals and acoustic metamaterials are investigated in two-dimensional domain. Vis-

coelastic materials are considered and the effect of viscoelasticity is investigated.

The specific research objectives and associated tasks are summarized below.

Objective 1 Develop a homogenization framework for wave dispersion and attenu-

ation in periodic composites under the scale separation assumption.

Task 1.1: Formulate a 1D homogenization model that is nonlocal in both space

and time based on asymptotic expansions for elastic and viscoelastic composites.

Task 1.2: Extend the spatial-temporal nonlocal homogenization model to 2D

anti-plane shear wave for elastic and viscoelastic composites.

Task 1.3: Further develop the homogenization model for in-plane wave in elastic

composites.

Objective 2 Develop a multiscale method for phononic crystals and acoustic meta-
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materials independent of the scale separation assumption.

Task 2.1: Formulate a spectral multiscale method for 2D in-plane elastic wave

in phononic crystals and acoustic metamaterials.

Task 2.2: Propose a model order reduction strategy for computational efficiency.

1.2 Dissertation Organization

The remainder of this dissertation is organized to present the efforts conducted in

achieving the objectives listed above:

• Chapter 2 details the development of the spatial-temporal nonlocal homogeniza-

tion model in 1D for elastic and viscoelastic composites. This chapter covers

the work published in Ref. [54].

• Chapter 3 extends the developed nonlocal homogenization model to 2D anti-

plane shear wave in elastic and viscoelastic composites. This chapter covers the

work published in Ref. [55].

• Chapter 4 further develops the homogenization model for 2D in-plane wave in

elastic composites. This chapter includes the work published in Ref. [56].

• Chapter 5 develops a spectral multiscale method for wave propagation in phononic

crystals and acoustic metamaterials.

• Chapter 6 summarizes the research work and the overall contribution of this

dissertation. Future work that builds upon this dissertation is also discussed.
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Chapter 2

SPATIAL-TEMPORAL NONLOCAL HOMOGENIZATION MODEL FOR

TRANSIENT WAVE PROPAGATION IN PERIODIC VISCOELASTIC

COMPOSITES: ONE-DIMENSIONAL CASE

2.1 Introduction

In this chapter, we formulate a spatial-temporal nonlocal homogenization model

that considers the asymptotic expansions of up to eighth order for wave propagation

in periodic layered composites with elastic and viscoelastic phases. The resulting

macroscopic momentum balance equation of the proposed model is of the same struc-

ture as gradient elasticity models (e.g. [91, 7, 33]), yet all the model parameters are

computed directly from the microscale equilibrium equations and dependent on the

microstructural material properties and geometry.

The two essential ingredients in developing the spatial-temporal nonlocal homog-

enization model are: (1) asymptotic expansions with high order corrections; (2) con-

struction of the gradient-type spatial-temporal nonlocal governing equation. In the

context of statics, the role of high order corrections in asymptotic expansion has been

investigated by Gambin and Kröner [45] and Ameen et al. [1]. For wave propaga-

tion problems, it is demonstrated that the first few orders introduce wave dispersion,

which is accurate in the long wavelength regime [15, 4, 42, 43, 63, 64, 65]. Higher

order expansions for wave propagation problems have not been incorporated in the

literature. The spatial-temporal nonlocal governing equation is constructed directly

from the momentum balance equations of successive asymptotic orders, where the

accuracy is controlled by the asymptotic residual term. Through minimizing the

asymptotic residual, the optimal set of model parameters are determined. The nonlo-

cal homogenization model is then employed to formulate an effective medium model
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Figure 2.1: Two-scale problem description at multiscales.

that retains the nonlocal features in the form of a nonlocal effective modulus. It is

second order in space, therefore does not require high order boundary conditions for

transient simulations.

2.2 Multiscale Problem Setting

Consider a one-dimensional heterogeneous body with layered microstructure (e.g.,

1D phononic crystal) as illustrated in Fig. 2.1. The domain of the body, Ω = [0, L]

is formed by repetition of m locally periodic microstructures, Θ, with size l = L/m.

The unit cell of the microstructure domain consists of N material phases, with the

domain of phase j denoted by Θj. x and y indicate the position coordinates at macro-

and micro- scales, respectively, where the two coordinates are related to each other

by y = x/ζ, and 0 < ζ � 1 is the small scaling parameter. In the context of dynamic

analysis, the scaling parameter is defined as the ratio between the microstructure unit

cell size and the length of deformation wave (i.e., ζ = l/λ, where λ is the deformation

wavelength).

Consider an arbitrary response field, f ζ(x, t), which oscillates in space due to
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fluctuations induced by material heterogeneity. A two scale spatial decomposition

is applied to express the response field in terms of both macroscale and microscale

coordinates, f ζ(x, t) = f(x, y(x), t), where superscript ζ indicates the dependence

of the response field on the microstructural heterogeneity. The spatial derivative of

f ζ is obtained by applying the chain rule, f ζ,x(x, t) = f,x(x, y, t) + 1
ζ
f,y(x, y, t), where

subscript comma followed by x and y denote the spatial derivative with respect to the

macroscale and microscale coordinates, respectively. The response fields are assumed

to be spatially periodic, f(x, y, t) = f(x, y + l̂, t), where l̂ denotes the period of the

microstructure in the microscale coordinate (i.e., l̂ = l/ζ). The response field of the

heterogeneous body subjected to dynamic load is governed by the momentum balance

equation:

σζ,x(x, t) = ρζ(x)uζ,tt(x, t) (2.1)

in which, σζ and uζ are the stress and displacement fields, respectively; and ρζ denotes

density.

The constitutive response is described by a generalized linear viscoelastic model:

σζ(x, t) =

∫ t

0

gζ(x, t− τ)εζ,τ (x, τ)dτ (2.2)

where, gζ is the modulus function and εζ(x, t) = uζ,x(x, t) is the strain. The dissipative

process within viscoelastic constituents may lead to localized heating, which in turn

changes the constitutive behavior [57]. This thermal effect is not considered in the

current work. Elastic behavior can be recovered by setting gζ(x, t) = Eζ , where Eζ

denotes the elastic modulus. We assume the material properties of each constituent

are of the same order of magnitude.

The dynamic load is applied in the form of prescribed displacement at the bound-

aries:

uζ(0, t) = 0; uζ(L, t) = ũ(t) (2.3)
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where, ũ(t) is the prescribed boundary data. The initial conditions are:

uζ(x, 0) = u0(x); uζ,t(x, 0) = v0(x) (2.4)

where, u0(x) and v0(x) are the prescribed data.

The particular forms of the generalized viscoelastic constitutive model and the

momentum balance equation (Eq. 2.1) permit a simpler description of the governing

boundary value problem in the Laplace domain. We introduce the key characteris-

tics of the Laplace transform, recast the governing system of equations, and derive

the nonlocal homogenization model in the Laplace domain. By this approach, the

convolution integral form of the viscoelastic constitutive relation is transformed to

multiplication of strain and modulus function, which is dependent on the Laplace

variable.

The Laplace transform of an arbitrary, real valued, time varying function, f , is

defined as:

F (s) ≡ L
(
f(t)

)
=

∫ ∞
0

e−stf(t)dt (2.5)

where, the Laplace variable, s = σ + iω, and the transformed function in Laplace

domain, F , are complex valued (i.e., s ∈ C and F : C→ C). The derivative rule for

the Laplace transform is given as:

L (f, tt . . . t︸ ︷︷ ︸
n times

(t)) = snF (s)− sn−1f(0)− . . .− f, tt . . . t︸ ︷︷ ︸
n−1 times

(0) (2.6)

For simplicity of the derivation in Laplace domain, statically undeformed initial condi-

tion is assumed, i.e., any field variables (displacement and its derivatives) are initially

zeros, u0(x) = 0 and v0(x) = 0, thus:

L (f, tt . . . t︸ ︷︷ ︸
n times

(t)) = snF (s) (2.7)
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The convolution integral rule is given as:

L

(∫ t

0

f1(t− ξ)f2(ξ)dξ

)
= L (f1)L (f2) (2.8)

The momentum balance equation, Eq. 2.1, in the Laplace domain is:

σζ,x(x, s) = ρζ(x)s2uζ(x, s) (2.9)

Applying the convolution integral rule (Eq. 2.8) and derivative rule (Eq. 2.7) to the

generalized linear viscoelastic model (Eq. 2.2), the viscoelastic constitutive relation

in the Laplace domain is written as:

σζ(x, s) = Eζ(x, s)εζ(x, s) (2.10)

where, the modulus function, Eζ(x, s), in the Laplace domain is related to the mod-

ulus function in the time domain, gζ , as Eζ(x, s) = sL
(
gζ(x, t)

)
.

The boundary conditions in the Laplace domain are transformed from Eq. 2.3,

and written as:

uζ(0, s) = 0; uζ(L, s) = û(s) (2.11)

2.3 Two-Scale Asymptotic Analysis

Based on the two-scale description, the displacement is approximated by the fol-

lowing asymptotic expansion:

uζ(x, s)≡u(x, y, s) = u0(x, s) +
8∑
i=1

ζ iui(x, y, s) +O(ζ9) (2.12)

where, u0 denotes the macroscopic displacement field and is dependent on the macroscale

coordinate only; and ui are high order displacement fields which are functions of both
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macroscale and microscale coordinates. The macroscopic nature of u0 is not an as-

sumption, but a well-known consequence of the asymptotic analysis [42]. The strain

field at any order is obtained as:

O(ζ i) : εi(x, y, s) = ui,x + ui+1,y; i = 0, 1, ... (2.13)

Employing Eq. 2.13 along with the constitutive relation (Eq. 2.10), the stress field

at each order is obtained as:

O(ζ i) : σi(x, y, s) = E(y, s)(ui,x + ui+1,y); i = 0, 1, ... (2.14)

Substituting the expanded displacement field (Eq. 2.12) and the constitutive equa-

tions at various orders (Eq. 2.14) into the momentum balance equation (Eq. 2.9), and

collecting terms with equal orders yield the equilibrium equations at each order of ζ:

O(ζ−1) : σ0,y(x, y, s) = 0 (2.15a)

O(ζ i) : σi,x(x, y, s) + σi+1,y(x, y, s) = ρ(y)s2ui(x, y, s), i = 0, 1, ... (2.15b)

The classical homogenization models consider the two lowest order equilibrium

equations (Eq. 2.15a and Eq. 2.15b with i = 0), resulting in a local macroscopic

description that does not capture wave dispersion or attenuation. This model is valid

only when the deformation wavelength is large enough that the local dispersion due to

material heterogeneities is negligible. Considering additional two equations at O(ζ1)

and O(ζ2), it is possible to capture dispersive effects and wave propagation in shorter

deformation wavelength scenarios [42, 4, 63].

The equilibrium equations (Eq. 2.15a, b) are evaluated sequentially by the decom-

position of the corresponding displacement fields into macroscale components, which

are independent of the microscale coordinate, and influence functions that incorpo-
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rate the effect of microstructures. The following asymptotic procedure is well known

and briefly explained herein since it sets the stage for the proposed nonlocal model.

We start by considering the following decomposition:

u1(x, y, s) = U1(x, s) +H1(y)U0,x(x, s) (2.16)

where, H1(y) denotes the first order microscopic influence function, and U1(x, s)

is the first order macroscale displacement, and U0(x, s) = u0(x, s). Combining

Eqs. 2.14, 2.15a and 2.16 results in the linear equilibrium equation for the micro-

scopic influence function at O(ζ−1):

{E(y, s)(1 +H1,y)},y = 0 (2.17)

Considering the N -layered unit cell illustrated in Fig. 2.1, the equilibrium equation

is evaluated uniquely by imposing the following constraints [63]:

Periodicity : u1(y = 0) = u1(y = l̂); σ0(y = 0) = σ0(y = l̂) (2.18a)

Continuity : Ju1(y =
n∑
j=1

l̂j)K = 0; Jσ0(y =
n∑
j=1

l̂j)K = 0; n = 1, 2, ..., N − 1

(2.18b)

Normalization : 〈u1(x, y, t)〉 = U1(x, t)→〈H1(y)〉 = 0 (2.18c)

where, l̂j = lj/ζ denotes the length of jth layer in microscale coordinate. lj is the

physical length of the jth layer. J·K denotes the jump operator and y =
∑n

j=1 l̂j is

the location of the constituent interfaces; and 〈·〉 is defined as a spatial averaging

operator over the unit cell:

〈f〉 =
1

l̂

∫ l̂

0

f(x, y, s)dy (2.19)
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The O(1) momentum balance equation is obtained by applying the averaging

operator (i.e., Eq. 2.19) to the corresponding equilibrium equation (Eq. 2.15b with

i = 0) and considering the local periodicity of σ1(x, y, s):

ρ0s
2U0 − E0(s)U0,xx = 0 (2.20)

where, ρ0 and E0(s) are the homogenized density and O(1) homogenized modulus,

respectively:

ρ0≡〈ρ〉 =
1

l̂

N∑
j=1

l̂jρj (2.21)

E0(s) = 〈E(y, s)(1 +H1,y)〉 (2.22)

The procedure to evaluate influence functions and derive momentum balance equa-

tions presented above can be generalized for arbitrary orders. The recursive influence

function generation process is defined in Fig. 2.2. This process decomposes the mi-

croscale dependent displacement ui(x, y, s) into macroscale displacements and associ-

ated influence functions, and substitutes the decomposed displacements into equilib-

rium equation at O(ζ i−2). Considering the macroscale momentum balance equations

and equilibrium equations for the influence functions derived from lower orders, an

equilibrium equation for influence function at O(ζ i−2) is obtained. By evaluating

this equation with periodicity, continuity and normalization conditions, the influence

function Hi is calculated. The macroscale momentum balance equation at O(ζ i−1) is

then determined by applying the averaging operator and considering the periodicity

condition of σi. Examples of deriving the influence functions and momentum balance

equations can be found in [40, 42, 63].
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Figure 2.2: Recursive influence function generation procedure.

2.4 Spatial-Temporal Nonlocal Homogenization Model

2.4.1 Higher order gradient formulation

In this section, a novel nonlocal homogenization model is proposed for elastic and

viscoelastic periodic layered media. A major contribution of this model is that we

explore homogenization considering high order contributions, and the proposed model

is derived such that the momentum balance equation shares the same structure as

the gradient elasticity models [91, 7, 33]:

u,tt − c2
0u,xx + c2

0l
2
1u,xxxx − l22u,xxtt +

l23
c2

0

u,tttt = 0 (2.23)

where c2
0 = E0/ρ0. This equation has been shown to accurately capture the location

and width of the first stop band, when the length scale parameters (l21, l22, l23) are

calibrated against the analytical solution [33]. In contrast to the gradient elasticity

models, the parameters of the nonlocal homogenization model are derived directly
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from the microstructural equilibrium.

As a result of the asymptotic analysis, the macroscale momentum balance equa-

tions are obtained up to O(ζ7):

O(1) : ρ0s
2U0 − E0(s)U0,xx = 0 (2.24a)

O(ζ1) : ρ0s
2U1 − E0(s)U1,xx = 0 (2.24b)

O(ζ2) : ρ0s
2U2 − E0(s)U2,xx = Êd(s)U0,xxxx (2.24c)

O(ζ3) : ρ0s
2U3 − E0(s)U3,xx = Êd(s)U1,xxxx (2.24d)

O(ζ4) : ρ0s
2U4 − E0(s)U4,xx = Êd(s)U2,xxxx + Êh(s)U0,xxxxxx (2.24e)

O(ζ5) : ρ0s
2U5 − E0(s)U5,xx = Êd(s)U3,xxxx + Êh(s)U1,xxxxxx (2.24f)

O(ζ6) : ρ0s
2U6 − E0(s)U6,xx = Êd(s)U4,xxxx + Êh(s)U2,xxxxxx + Êk(s)U0,xxxxxxxx

(2.24g)

O(ζ7) : ρ0s
2U7 − E0(s)U7,xx = Êd(s)U5,xxxx + Êh(s)U3,xxxxxx + Êk(s)U1,xxxxxxxx

(2.24h)

where, Ui (i = 0, 1, ..., 7) is the macroscale displacement atO(ζ i); and, Êd(s), Êh(s), Êk(s)

are the homogenized moduli at O(ζ2), O(ζ4), O(ζ6), respectively:

Êd(s) = 〈E(y, s)(H2 +H3,y)〉 − 〈θ(y)E0(s)H2〉 (2.25a)

Êh(s) = 〈E(y, s)(H4 +H5,y)〉 − 〈θ(y)Êd(s)H2〉 − 〈θ(y)E0(s)H4〉 (2.25b)

Êk(s) = 〈E(y, s)(H6 +H7,y)〉 − 〈θ(y)Êh(s)H2〉 − 〈θ(y)Êd(s)H4〉 − 〈θ(y)E0(s)H6〉

(2.25c)

For bilayer unit cell, the analytical expressions for E0, Êd and Êh can be found in

[40] and we provide Êk in Appendix A.

It is well known that solving Eqs. 2.24a-h sequentially at each order leads to sec-

ular solutions [40, 23]. The secularity can be eliminated by either introducing a slow
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temporal scale to the asymptotic analysis [23] or combining macroscale momentum

balance equations at different orders into a single nonlocal homogenized momen-

tum balance equation by considering the average of the heterogeneous displacement,

Eq. 2.12:

U (n)(x, s) =
n∑
i=0

ζ iUi(x, s) +O(ζn+1) (2.26)

where, U (n) denotes the approximation to the macroscale displacement of O(ζn+1)

accuracy. However, a direct weighted summation of Eqs. 2.24a-h will result in higher

order spatial gradient terms (i.e., Êh(s)U,xxxxxx and Êk(s)U,xxxxxxxx) in addition to the

fourth-order spatial gradient term (i.e., Êd(s)U,xxxx). In what follows, we transform

the higher order spatial gradient terms in Eqs. 2.24a-h to the fourth order gradient

terms (i.e., spatial nonlocal, temporal nonlocal and mixed spatial -temporal nonlocal)

based on the momentum balance of lower orders. Eqs. 2.24a-h are then combined to

construct a homogenized momentum balance equation of the same form of Eq. 2.23.

It is observed that Eqs. 2.24a, c, e, g and Eqs. 2.24b, d, f, h have identical equation

form and coefficients. Therefore, all derivations on the former equations directly

applies to the latter ones. Only the derivations on the even orders are presented in

the remainder of this section.

Taking four spatial derivatives of Eq. 2.24a and substituting the resulting expres-

sion into Eq. 2.24e yields:

ρ0s
2U4 − E0U4,xx = ÊdU2,xxxx +

Êh
E0

ρ0s
2U0,xxxx (2.27)

Inserting Eq. 2.24c into Eq. 2.27:

ρ0s
2U4 − E0U4,xx = ÊdU2,xxxx +

Êhρ0s
2

E0Êd
(ρ0s

2U2 − E0U2,xx) (2.28)

Premultiplying Eq. 2.24a by Êhρ0s
2/ÊdE0, and adding the resulting expression to the
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right hand side of Eq. 2.24c:

ρ0s
2U2 − E0U2,xx = ÊdU0,xxxx +

Êhρ0s
2

E0Êd
(ρ0s

2U0 − E0U0,xx) (2.29)

Applying the same operations of Eqs. 2.24c and e to Eqs. 2.24d and f, respectively,

premultiplying the resulting equations by ζ3 and ζ5, and Eqs. 2.29 and 2.28 by ζ2

and ζ4, respectively, adding the resulting equations with Eq. 2.24b multiplied by ζ

and Eq. 2.24a, and considering Eq. 2.26 result in:

ρ0s
2U (5) − E0U

(5)
,xx − EdU (5)

,xxxx+
Eh
Ed
ρ0s

2U (5)
,xx −

Eh
E0Ed

ρ2
0s

4U (5) = O(ζ6) (2.30)

where, Ed = ζ2Êd and Eh = ζ4Êh contain length scales l2 and l4, respectively, and

are computed with the physical length of the unit cell. By truncating the O(ζ6)

perturbations in Eq. 2.30, we obtain the spatial-temporal nonlocal homogenization

model of order O(ζ6):

STNHM6: ρ0s
2U − E0U,xx − EdU,xxxx +

Eh
Ed
ρ0s

2U,xx −
Eh
E0Ed

ρ2
0s

4U = 0 (2.31)

The superscript (5) is dropped hereafter. The spatial nonlocal homogenization model

[63] (SNHM) and classical local homogenization model (LHM) are recovered by ne-

glecting the last two terms and last three terms on the left hand side of Eq. 2.31,

respectively.

In order to achieve higher accuracy for shorter wave lengths, we add higher order

corrections by employing Eqs. 2.24a-h. The procedure to obtain the higher order

equation is similar to above and aimed at achieving the structure of Eq. 2.23 through

analysis of higher order momentum balance equations. Consider the following de-
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composition of Eq. 2.24g:

ρ0s
2U6 − E0U6,xx = ÊdU4,xxxx + ÊhU2,xxxxxx + νÊkU0,xxxxxxxx

+ (1− ν) ÊkU0,xxxxxxxx

(2.32)

in which ν is the high order correction parameter. Taking two spatial derivatives of

Eq. 2.24e, and substituting the resulting expression for U0,xxxxxxxx in the third term

of the right hand side of Eq. 2.32:

ρ0s
2U6 − E0U6,xx =

(
Êd − νE0

Êk

Êh

)
U4,xxxx + ν

Êk

Êh
ρ0s

2U4,xx

+

(
Êh

Êd
− ν Êk

Êh

)
ÊdU2,xxxxxx + (1− ν)ÊkU0,xxxxxxxx

(2.33)

Taking four spatial derivatives of Eq. 2.24c and substituting the resulting expression

for U2,xxxxxx in Eq. 2.33:

ρ0s
2U6 − E0U6,xx =(
Êd − νE0

Êk

Êh

)
U4,xxxx + ν

Êk

Êh
ρ0s

2U4,xx +

(
Êh

Êd
− ν Êk

Êh

)
Êd
E0

ρ0s
2U2,xxxx

+

(1− ν)Êk −

(
Êh

Êd
− ν Êk

Êh

)
Ê2
d

E0

U0,xxxxxxxx

(2.34)

Substituting Eq. 2.24e for U2,xxxx in Eq. 2.34, and taking six spatial derivatives of
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Eq. 2.24a and inserting the resulting expression for s2U0,xxxxxx:

ρ0s
2U6 − E0U6,xx =(
Êd − νE0

Êk

Êh

)
U4,xxxx +

(
2ν
Êk

Êh
− Êh

Êd

)
ρ0s

2U4,xx +

(
Êh

E0Êd
− ν Êk

E0Êh

)
ρ2

0s
4U4

+

(1− ν)Êk −

(
Êh

E0Êd
− ν Êk

E0Êh

)
(Ê2

d + E0Êh)

U0,xxxxxxxx

(2.35)

Equation 2.24e is rewritten in the following form:

ρ0s
2U4 − E0U4,xx =

(
Êd − νE0

Êk

Êh

)
U2,xxxx + ν

Êk

Êh
ρ0s

2U2,xx + νE0
Êk

Êh
U2,xxxx

− ν Êk
Êh

ρ0s
2U2,xx + ÊhU0,xxxxxx

(2.36)

Premultiplying Eq. 2.24c by s2, replacing the resulting s2U0,xxxx by the expression re-

sulting from taking four spatial derivatives of Eq. 2.24a, and substituting the resulting

expression for U0,xxxxxx into Eq. 2.36:

ρ0s
2U4 − E0U4,xx =

(
Êd − νE0

Êk

Êh

)
U2,xxxx +

(
ν
Êk

Êh
− Êh

Êd

)
ρ0s

2U2,xx

+
Êh

E0Êd
ρ2

0s
4U2 + ν

Êk

Êh

(
E0U2,xxxx − ρ0s

2U2,xx

) (2.37)

In view of Eq. 2.24a and Eq. 2.24c, we have:

E0U2,xxxx − ρ0s
2U2,xx = −ÊdU0,xxxxxx = −Êd

ρ0

E0

s2U0,xxxx =
ρ0

E0

s2(E0U2,xx − ρ0s
2U2)

(2.38)
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Substituting Eq. 2.38 into Eq. 2.37:

ρ0s
2U4 − E0U4,xx =(
Êd − νE0

Êk

Êh

)
U2,xxxx +

(
2ν
Êk

Êh
− Êh

Êd

)
ρ0s

2U2,xx +

(
Êh

E0Êd
− ν Êk

E0Êh

)
ρ2

0s
4U2

(2.39)

Considering Eq. 2.24a, we rewrite Eq. 2.24c as:

ρ0s
2U2 − E0U2,xx =(
Êd − νE0

Êk

Êh

)
U0,xxxx +

(
2ν
Êk

Êh
− Êh

Êd

)
ρ0s

2U0,xx +

(
Êh

E0Êd
− ν Êk

E0Êh

)
ρ2

0s
4U0

(2.40)

Applying the same operations of Eqs. 2.24c, e and g to Eqs. 2.24d, f and h, respec-

tively, premultiplying the resulting equations by ζ3, ζ5 and ζ7, and Eqs. 2.40, 2.39, 2.35

by ζ2, ζ4 and ζ6, respectively, adding the resulting equations with Eq. 2.24b multiplied

by ζ and Eq. 2.24a, and considering Eq. 2.26:

ρ0s
2U (7) − E0U

(7)
,xx −

(
Ed − νE0

Ek
Eh

)
U (7)
,xxxx −

(
2ν
Ek
Eh
− Eh
Ed

)
ρ0s

2U (7)
,xx−(

Eh
E0Ed

− ν Ek
E0Eh

)
ρ2

0s
4U (7) = ζ6ErrU0,xxxxxxxx + ζ7ErrU1,xxxxxxxx +O(ζ8)

(2.41)

where Err is expressed as:

Err = (1− ν)Êk −

(
Êh

E0Êd
− ν Êk

E0Êh

)
(Ê2

d + E0Êh) (2.42)

Ek = ζ6Êk has length scale l6 and is computed with physical length of the unit cell.

We note that Eq. 2.41 has the same asymptotic accuracy as Eq. 2.31 for an arbitrarily

chosen ν, due to the presence of O(ζ6) term on the right-hand side. In particular,

when ν = 0, the left-hand side of Eq. 2.41 recovers Eq. 2.31. Therefore, Eq. 2.41
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represents a one-parameter family of nonlocal homogenization models as a function

of ν. O(ζ8) accuracy could be achieved by setting ν such that the coefficient of O(ζ6)

and O(ζ7) terms vanishes. The expression for the correction parameter is obtained

as:

ν =
Êh

(
Ê2
hE0 + Ê2

dÊh − E0ÊdÊk

)
Ê3
dÊk

(2.43)

By truncating the O(ζ8) perturbations in Eq. 2.41, we obtain the spatial-temporal

nonlocal homogenization model of order O(ζ8):

STNHM8: ρ0s
2U−E0U,xx −

(
Ed − νE0

Ek
Eh

)
U,xxxx

−
(

2ν
Ek
Eh
− Eh
Ed

)
ρ0s

2U,xx −
(

Eh
E0Ed

− ν Ek
E0Eh

)
ρ2

0s
4U = 0

(2.44)

The superscript (7) is dropped hereafter.

The Laplace domain derivation presented above applies to both elastic and vis-

coelastic layered composites. For composites that only consist elastic phases, momen-

tum balance equations, STNHM6 and STNHM8, can also be derived in time domain

following a similar procedure and result in:

STNHM6: ρ0U,tt − E0U,xx − EdU,xxxx +
Eh
Ed
ρ0U,xxtt −

Eh
E0Ed

ρ2
0U,tttt = 0 (2.45)

STNHM8: ρ0Utt − E0U,xx −
(
Ed − νE0

Ek
Eh

)
U,xxxx

−
(

2ν
Ek
Eh
− Eh
Ed

)
ρ0U,xxtt −

(
Eh
E0Ed

− ν Ek
E0Eh

)
ρ2

0U,tttt = 0

(2.46)

The nonlocal homogenization model, STNHM8, possesses the same equation struc-

ture as the nonlocal equation (Eq. 2.23) of gradient elasticity models. One can easily

observe the corresponding relation of −
(
Ed
E0
− ν Ek

Eh

)
and l21,

(
2ν Ek

Eh
− Eh

Ed

)
and l22,
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−
(
Eh
Ed
− ν Ek

Eh

)
and l23, respectively. While the latter parameters have to be calibrated

in the gradient elasticity models, the former ones are fully determined through the

homogenization process.

2.4.2 Nonlocal effective medium model

Substituting a harmonic wave U = U0(s)eikx into Eq. 2.44, the dispersion relation

in terms of Laplace variable is obtained:

(Ed−νE0
Ek
Eh

)k4−
[
(2ν

Ek
Eh
−Eh
Ed

)ρ0s
2+E0

]
k2+(

Eh
E0Ed

−ν Ek
E0Eh

)ρ2
0s

4−ρ0s
2 = 0 (2.47)

In general, the fourth order polynomial equation has four roots. Considering wave

propagating in the positive direction:

k{1} =

√
−B −

√
B2 − 4AC

2A
; k{2} =

√
−B +

√
B2 − 4AC

2A

A = Ed − νE0
Ek
Eh

B = −
[
(2ν

Ek
Eh
− Eh
Ed

)ρ0s
2 + E0

]
C = (

Eh
E0Ed

− ν Ek
E0Eh

)ρ2
0s

4 − ρ0s
2

(2.48)

To seek the mathematical description of attenuation in stop bands, we rewrite the

wavenumber k in the complex form, k = kre + ikim, where kre and kim are the real

and imaginary part of wavenumber, respectively. Applying the complex wavenumber

expression to the harmonic displacement solution, the displacement reads:

U(x, s) = U0(s)eikrexe−kimx (2.49)

in which, U0(s)eikrex contains the oscillatory feature of the displacement, while e−kimx

determines the solution to be attenuating or amplifying depending on whether kim is
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positive or negative. The physically meaningful wavenumber is taken as the one that

has non-negative imaginary part:

k̄2(s) =


(
k{1}

)2

, ω ≤ ωc(
k{2}

)2

, ω > ωc

(2.50a)

(2.50b)

where the switch, ωc, between the two branches is the imaginary part of the critical

Laplace variable, sc = σ + iωc. In order to ensure that the continuity of the physical

wavenumber at the switch,
(
k{1}(s)

)2

=
(
k{2}(s)

)2

is satisfied:

−
√
B2(s)− 4A(s)C(s) =

√
B2(s)− 4A(s)C(s) (2.51)

The complex-valued equation above is equivalent to the constrained system of equa-

tions:

Im
[
B2(s)− 4A(s)C(s)

]
= 0 (2.52a)

Re
[
B2(s)− 4A(s)C(s)

]
≤ 0 (2.52b)

Substituting the expressions for A(s), B(s) and C(s) in Eq. 2.48 into Eq. 2.52a

results in an equation from which ωc is obtained. ωc is evaluated analytically for

elastic composites. For viscoelastic composites, ωc is solved numerically, since the

model parameters are dependent on the Laplace variable, resulting in a nonlinear

equation. The inequality condition in Eq. 2.52b provides the criterion to choose the

appropriate ωc among the multiple solutions of Eq. 2.52a.

Selecting only the physical wavenumber for the solution of Eq. 2.47 is captured

by the following dispersion equation:

k2 − k̄2(s) = 0 (2.53)
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multiplying Eq. 2.53 with −ρ0s
2/k̄2(s), the dispersion relation becomes:

φ(s)E0k
2 + ρ0s

2 = 0 (2.54)

where,

φ(s) =
−ρ0s

2

k̄2(s)E0

(2.55)

Eq. 2.54 resembles the dispersion relation of the first two terms of Eq. 2.44 except the

factor φ(s), as a result of the nonlocal terms in the higher order gradient formulation.

Therefore, the nonlocal effective medium model may be expressed as:

ρ0s
2U − Ee(s)U,xx = 0 (2.56)

in which, Ee(s) = φ(s)E0(s).

2.5 Model Verification

In this section, two examples, elastic bilayer and viscoelastic four-layered mi-

crostructures are investigated to demonstrate the capability of the proposed nonlocal

homogenization model in capturing the characteristics of dispersion and transient

wave propagation in periodic layered media.

2.5.1 Elastic bilayer microstructure

Consider a bilayer unit cell as illustrated in Fig. 2.3(a). The phases within the unit

cell, Θ, are characterized by the density, Young’s modulus and length. The volume

fraction of phase Θ1 is taken as 0.5. Aluminum and steel are used for phases 1 and 2,

respectively. The elastic modulus and density are 210 GPa and 7900 kg/m3 for steel,

and 68 GPa and 2700 kg/m3 for aluminum, respectively.

The influence functions are obtained using the procedure shown in Fig. 2.2. Fig-

ure 2.4 shows the seven normalized influence functions that are used to compute the
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Figure 2.3: Unit cell of the microstructure: (a) elastic bilayer, (b) viscoelastic four-layered.

homogenized moduli. The first order influence function, H1(y) is piecewise linear. The

high order influence functions are piecewise polynomials with progressively increas-

ing polynomial order (e.g. H2(y) piecewise quadratic, etc.), satisfying the periodicity,

continuity and normalization conditions. The influence functions are continuous in

the entire unit cell domain, whereas their first derivatives are continuous only within

each material phase. With the influence functions, the homogenized elastic moduli

are obtained from Eqs. 2.25a-c.
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Figure 2.4: Normalized influence function associated with displacement field
in each order,

f = H1(y), H2(y), ...,H7(y); f0 = max|f |.
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2.5.1.1 Dispersion relation

Figure 2.5 shows the dispersion relation of STNHM8 (Eq. 2.47) and the refer-

ence dispersion relation (real part of the wavenumber solution is plotted). The hor-

izontal and vertical axes are the normalized wavenumber and normalized frequency,

respectively, and c0 is the homogenized wave speed (i.e., c0 =
√
E0/ρ0). The refer-

ence dispersion relation is plotted following Bedford and Drumheller [12]. The two

physical wavenumber solutions of STNHM8, k1 and k2, match with the analytical

wavenumber solutions in the first pass band and second pass band, respectively. The

non-physical solutions lead to negative group velocity, therefore not characteristic of

wave propagation in the homogenized medium. STNHM8 captures the dispersion

behavior accurately in the first pass band, and the initiation and end of the first stop

band, where kl/(2π) = l/λ = ζ = 0.5, the limit of the first Brillouin zone [18]. The

model starts to deviate from the reference solution as the frequency further increases

and kl/(2π) approaches 1, where the second stop band initiates. As the scaling ratio

reaches unity, the fundamental assumption of scale separation in homogenization is

no longer valid [40, 14].

0 0.5 1.5

0.4

0.8

1.2

1.6

2.0

1.0

Reference stop band
STNHM8 stop band

kl/(2π)

ω
l/(

2�
c 0
)

k1 physical
k2 physical

k1 non-physical
k2 non-physical

Reference

Figure 2.5: Dispersion relation of STNHM8 and the reference
solution for bilayer microstructure.
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2.5.1.2 Effect of material property contrast on model accuracy

A parametric study on the prediction error of STNHM8 in terms of capturing

the initiation and end of the first stop band is conducted with a large number of

constituent material property combinations for the unit cell. With the material phase

1 chosen as aluminum, the material property for phase 2 is sampled in two families

of materials, i.e., metals and polymers, with the material property domains Ωm =

{(E2, ρ2) ∈ R | 100 ≤ E2 ≤ 400 and 4000 ≤ ρ2 ≤ 10000} and Ωp = {(E2, ρ2) ∈

R | 1 ≤ E2 ≤ 10 and 1000 ≤ ρ2 ≤ 2000}, respectively. In each of the material

property domain, 100 samples are generated for E2 and ρ2, and the prediction error

is computed as |ωSTNHM8−ωref |/ωref at the stop band initiation and end frequencies

for each sample. Figure 2.6 shows the prediction error of STNHM8 for the two sets

of constituent material combinations. Solid dots are the sampling points and the

surface is created by quadratic fitting to the points to enhance visualization. The

maximum error for stop band initiation prediction is approximately 2.5% for both

Al-metal and Al-polymer microstructures. The error of stop band end prediction is

relatively high compared to the initiation. In Figs. 2.6(b) and (d), it is noticeable

that error grows as the Young’s modulus ratio increases, especially for the cases

which have low density ratio. The general trend of error indicates that STNHM8

accurately captures the initiation of stop band for a large range of constituent material

combinations. It predicts the end of the stop band reasonably well for low stiffness

contrast combinations, and starts to lose accuracy for high stiffness contrast cases.

2.5.1.3 Models comparison

The capability of STNHM in capturing the dispersion and band gap formation is

due to the presence of high order terms. In order to further study the effects of the

high order terms, we compare the dispersion curves of STNHM8 (Eq. 2.44), STNHM6

(Eq. 2.31), SNHM and LHM in Fig. 2.7. While all models capture the non-dispersive
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Figure 2.6: Error in the prediction of the stop band. (a) Al-metal stop band
initiation, (b) Al-metal stop band end, (c) Al-polymer stop band initiation,

(d) Al-polymer stop band end.

wave propagation characteristics at normalized frequency of less than 0.2, LHM and

SNHM deviate from the reference dispersion relation and do not capture the band

gap. STNHM6 captures the dispersion up to the onset of the first stop band, but not

the bandwidth. By incorporating the high order correction, STNHM8 predicts the

dispersion in the first and second pass band, as well as the onset and the width of

the first stop band.

The dispersion relations of Eq. 2.46 and the gradient elasticity model in Eq. 2.23

are shown in Fig. 2.8 using material parameters provided in [33]. The two dispersion

curves overlap with each other except the minor difference at the end of the stop band.

In addition, O
(
Ed
E0
− ν Ek

Eh

)
= O(l21) = O(10−4), O

(
2ν Ek

Eh
− Eh

Ed

)
= O(l22) = O(10−5)

and O
(
Eh
Ed
− ν Ek

Eh

)
= O(l23) = O(10−4). The close match between the dispersion

curves and the length-scale parameters indicates that the proposed model could serve

as an alternative method for gradient elasticity models to determine the length-scale

parameters directly from material properties and microstructures, without calibra-

tion against the analytical solution, which may not be available in multidimensional

problems or in the presence of viscoelastic constituents.
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Figure 2.7: Dispersion curves of SNHM, STNHM6 and STNHM8
compared to the reference model.

2.5.1.4 Transient wave propagation

We consider the transient response of a composite structure with aluminum-steel

bilayer microstructure (see Fig. 2.3(a)) subjected dynamic loads. The overall length

of the structure is taken to be L = 0.5 m. The unit cell is taken to have l = 0.01 m.

Two dynamic loads are considered, i.e., ramp load (Fig. 2.9(a)) and sinusoidal load

(Fig. 2.9(b)). The study compares the responses computed by the nonlocal effective

medium (NEM) model , LHM and the direct solution (DS) of the original problem,

where each unit cell is resolved throughout the problem domain. Figure 2.10 shows

the normalized displacement along the layered composite at T = 0.05 ms and T = 0.1

ms. The responses obtained from NEM and DS both show dispersion induced phase

distortion, manifested by the oscillatory behavior behind the ramp wave front. Due

to the presence of dispersion, both NEM and DS have peak amplitude of 1.1M0. NEM

shows good agreement with DS in terms of capturing the dispersive response under

the prescribed ramp load.

Figure 2.11 shows the displacement histories of x = 0.9L for 0.15 ms, with the
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Figure 2.8: Dispersion curve of STNHM8 compared to the gradient elasticity model.
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Figure 2.9: Applied loads: (a) ramp load, (b) sinusoidal load.

structure subjected to sinusoidal loads at frequencies 132.71 kHz and 221.18 kHz, cor-

responding to the normalized frequencies (ωl/(2πc0)) of 0.3 and 0.5, respectively. At

ωl/(2πc0) = 0.3, the response is in the first pass band where dispersion occurs. NEM

predicts the displacement time history accurately compared to DS. The dispersion

is manifested by the distorted phase shape of the first two cycles and slight phase

shift of the dispersive models (NEM and DS) compared to LHM. As the frequency is

increased to 221.18 kHz, the response resides in the first stop band. At this frequency,

the displacement response is significantly attenuated with peak normalized amplitude

of 0.25, which asymptotes to complete attenuation in time.

Figure 2.12 shows the maximum transmitted wave amplitude at x = 0.9L within
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Figure 2.10: Responses at two time instances under
step loading: (a) t=0.05 ms, (b) t=0.1 ms.
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Figure 2.11: Displacement histories at x=0.9L under sinusoidal loading
at frequencies: (a) 132.71 kHz, (b) 221.18 kHz.

t/T ∈ [0.5, 1] for sinusoidal loads at a range of frequencies f ∈ [10, 442.4] kHz.

Solution of NEM is compared to DS. NEM leads to accurate wave amplitude for

frequencies within the first pass band and stop band. It starts to over predict the

amplitude in the second pass band due to the increasingly poor separation of scales

at high frequencies.

2.5.2 Viscoelastic four-layered microstructure

In this section, the proposed model is assessed in the context of a four-layered mi-

crostructure (see Fig. 2.3(b)) with both elastic and viscoelastic phases. The unit cell

is composed of elastic layers, epoxy (phase 1) and rubber (phase 3), with viscoelastic

layers (phase 2) inserted in between. The volume fractions of phase 1 and phase 2 are

2α and 2β. In the following discussion, the volume fractions for phase 1 and phase 2
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Figure 2.12: Transmitted wave amplitude at x=0.9L at frequency between 10
kHz and 442.4 kHz

are taken as α = 0.3 and β = 0.1.

The constitutive relation of the viscoelastic phase is given by Eq. 2.2, where the

modulus function is expressed with Prony series in time domain. After Laplace trans-

formation, the modulus function is expressed as:

E2(s) = E2(0)

1−
n∑
i=1

pi

(
1− s

s+ 1/qi

) (2.57)

where, the material properties of the viscoelastic phase [2] is provided in Table 3.1.

Table 2.1: Material properties for elastic and viscoelastic phases.

Elastic phases

E1 [GPa] ρ1 [kg/m3] E3 [GPa] ρ3 [kg/m3]

1.0 1200 0.1 1100

Viscoelastic phase

E2(0) [MPa] ρ2 [kg/m3]

770.6 1070

p1 p2 p3 p4

0.074 0.147 0.313 0.379

q1 [ms] q2 [ms] q3 [ms] q4 [ms]
463.4 0.06407 1.163× 10−4 7.321× 10−7

The sizes of the macro- and micro- structures are identical to the example for the
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bilayer microstructure.
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Figure 2.13: Transmitted wave amplitude at x = 0.9L for the four-layered
viscoelastic composite at frequency between 1 kHz and 50 kHz.

Figure 2.13 shows the transmitted wave amplitude at x = 0.9L for the four-layered

viscoelastic composite structure under sinusoidal load (see Fig. 2.9(b)). Loading fre-

quency ranges from 1 to 50 kHz. Solution obtained by NEM is compared to DS and

LHM. The wave amplitude reduction in the first pass band caused by viscoelastic

dissipation, which increases monotonically as the loading frequency increases, is ob-

served in all models. As is for elastic composite, LHM does not predict dispersion and

band gap formation of viscoelastic composite. NEM captures wave attenuation due

to both viscoelastic dissipation and stop band formation. The phase distortion and

phase shift of the dispersive models (NEM and DS) in the first pass band are observed

in Fig. 2.14(a). Within the stop band, near complete wave attenuation is present due

to the combination of viscoelastic dissipation and destructive wave interactions, as is

shown in Fig. 2.14(b).

The effect of viscoelasticity is investigated by comparing the transmitted wave

amplitude for the viscoelastic composite to an elastic counterpart where the modulus

function of the viscoelastic phase is replaced by its instantaneous modulus, E2(0). As

is shown in Fig. 2.15, viscoelastic dissipation results in enhanced wave attenuation

within the stop band, compared to the elastic case. Moreover, the first stop band of
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Figure 2.14: Displacement histories of viscoelastic composite at x=0.9L
under sinusoidal loading at frequencies: (a) 15 kHz, (b) 25 kHz.

the viscoelastic composite is shifted towards lower frequency and its width becomes

narrower. Similar observation was reported in [137] for one-dimensional bilayer vis-

coelastic phononic crystals using the plane wave expansion method. As a simple

parametric study, we multiply a factor of 0.2 to qi in Table 3.1, while keeping pi

unchanged, which corresponds to a viscoelastic material that has the same instanta-

neous modulus but takes 5 times shorter time for the stress to relax to quasi-static

state in the relaxation test. It is observed that the viscoelastic composite with re-

duced parameters qi results in more severe viscoelastic dissipation, featured by the

more pronounced amplitude reduction in the pass bands. However, the location and

size of the first stop band does not vary.
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Figure 2.15: Transmitted wave amplitude of elastic and viscoelastic
composite computed by NEM.
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2.6 Summary

This chapter presented the spatial-temporal nonlocal homogenization model for

transient wave propagation in periodic viscoelastic composite in one-dimensional set-

ting. The proposed model is derived based on asymptotic expansions of up to the

eighth order. By introducing high order corrections, a momentum balance equation

that is nonlocal in both space and time is derived. The proposed model shares the

same differential equation structure as the gradient elasticity models, whereas all pa-

rameters are computed directly from the microscale boundary value problems and

dependent on the material properties and microstructure only.

The performance of the proposed model is assessed by investigating the wave

propagation characteristics in elastic bilayer and viscoelastic four-layered composite

structures, and verified against analytical solutions and direct numerical simulations.

The spatial-temporal nonlocal homogenization model is accurate in predicting the

dispersion relation of elastic wave propagation within the first pass band and the ini-

tiation and end of the first stop band for moderate material contrasts. The accuracy

of predicting the end of the stop band decreases as the contrasts become high. In

addition, the proposed model captures the transient wave dispersion and attenuation

within the first pass band and stop band for elastic and viscoelastic composites. The

effect of viscoelasticity is observed to introduce viscoelastic dissipation that mono-

tonically intensifies as the frequency increases, shift the first stop band towards lower

frequency, enhance wave attenuation within it and reduce its width.

The extension of the spatial-temporal nonlocal homogenization model to multidi-

mensional problems is presented in the following chapters.
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Chapter 3

SPATIAL-TEMPORAL NONLOCAL HOMOGENIZATION MODEL FOR

TRANSIENT WAVE PROPAGATION IN PERIODIC VISCOELASTIC

COMPOSITES: TWO-DIMENSIONAL ANTI-PLANE SHEAR WAVE

3.1 Introduction

In this chapter, we extend the spatial-temporal nonlocal homogenization model for

transient anti-plane shear wave propagation in viscoelastic composites. The spatial-

temporal nonlocal equation for anti-plane shear wave propagation in elastic com-

posites has been analyzed by Wautier and Guzina [125] with calibrated length-scale

parameters, a novelty of the proposed model in this regard is that it provides a con-

sistent recipe for computing all model parameters including the high order ones, and

extends the approach to viscoelastic composites. In addition, we propose a nonlocal

effective medium model for transient wave propagation, which enables the character-

ization of wave dispersion and attenuation in the presence of structural effects, such

as geometry and boundary conditions.

3.2 Multiscale Problem Setting

Let Ω ∈ R2 denote the domain of a body constructed by periodic unit cells com-

posed of two or more constituents. Ω is described using the Cartesian coordinate,

x. The momentum balance equation that governs wave propagation in this heteroge-

neous body is expressed as:

∇x.σ
ζ(x, t) = ρζ(x)üζ(x, t) (3.1)

where, σζ denotes the stress tensor; ρζ the density; and uζ the displacement vector.

∇x. is the divergence operator and superimposed dot denotes derivative with respect
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to time. The superscript, ζ, indicates that the response fields oscillate spatially due

to the microstructural heterogeneity.

Considering anti-plane shear deformation, the displacement field is expressed over

the two-dimensional problem domain, whereas the displacement vector is normal to

the plane:

uζ(x, t) = uζ(x, t)ê3 (3.2)

where, x = {x1, x2} denotes the position vector of the material point and êj is the

unit vector in the xj direction. ê3 is taken to be the normal to the plane of the

problem domain. Under the assumption of small deformation, the engineering shear

strain is expressed in vector form after degeneration by contraction with ê3:

γζ(x, t) =
[
∇xu

ζ + (∇xu
ζ)T
]
.ê3 = uζ,xj(x, t)êj (3.3)

in which, the subscript dot denotes single contraction and subscript comma the spatial

derivative. ∇x = ∂(·)/∂xj êj is the gradient operator.

The constitutive behavior at a material point is taken to be linear viscoelastic,

expressed using the hereditary integral:

τ ζ(x, t) =

∫ t

0

Gζ(x, t− t′)γ̇ζ(x, t′)dt′ (3.4)

where, τ ζ(x, t) is the shear stress vector and Gζ(x, t′) is the time-varying relaxation

modulus. Elastic behavior is recovered by takingGζ as constant in time. The densities

and relaxation moduli of all constituents forming the composite are assumed of the

same order of magnitude.

Under the anti-plane shear wave propagation condition, the momentum balance

equation (Eq. 5.1) reduces to:

∇x.τ
ζ(x, t) = ρζ(x)üζ(x, t) (3.5)
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The boundary conditions are:

uζ(x, t) = ũ(x, t); x ∈ Γu (3.6a)

τ ζ(x, t).n = t̃(x, t); x ∈ Γt (3.6b)

where, n denotes the outward unit normal vector along the traction boundaries;

ũ(x, t) and t̃(x, t) are the displacement and traction data prescribed on Γu and Γt,

respectively, and ∂Ω = Γu ∪ Γt; Γu ∩ Γt = ∅. Homogeneous initial displacement and

velocity conditions are assumed:

uζ(x, 0) = 0; x ∈ Ω (3.7a)

u̇ζ(x, 0) = 0; x ∈ Ω (3.7b)

Equations 3.4-3.7 define the initial-boundary value problem in the time domain. The

convolutional form of the hereditary integral that describe the viscoelastic behavior

allows a simpler formulation of the problem when posed in the Laplace domain [64, 54].

The momentum balance equation, Eq. 3.5, expressed in the Laplace domain is:

∇x.τ
ζ(x, s) = ρζ(x)s2uζ(x, s) (3.8)

where, s = σ+iw is the Laplace variable, s ∈ C. In the Laplace domain, the response

variable uζ is complex valued and the viscoelastic constitutive relation is written in

the proportional form:

τ ζ(x, s) = Gζ(x, s)γζ(x, s) (3.9)

where Gζ(x, s) = sL
(
Gζ(x, t)

)
is the shear modulus function in the Laplace domain.
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The boundary conditions in the Laplace domain are written as:

uζ(x, s) = ũ(x, s); x ∈ Γu (3.10a)

τ ζ(x, s).n = t̃(x, s); x ∈ Γt (3.10b)

The domain of the canonical unit cell is denoted as Θ ∈ R2 expressed using the

Cartesian coordinate, y, which is related to the macroscale coordinate by y = x/ζ,

where 0 < ζ � 1 is the small scaling parameter. In the context of wave propagation,

the scaling parameter is defined as the ratio between the size of microstructure and the

characteristic length of deformation wave (i.e., ζ = l/λ, where λ is the characteristic

deformation wavelength).

Consider an arbitrary response function, f ζ(x, s), which oscillates in space due

to fluctuations induced by material heterogeneity. The response field is assumed to

allow a two-scale separation in terms of macroscale and microscale coordinates:

f ζ(x, s) = f(x,y(x), s) (3.11)

The shear modulus and material density are taken to depend on the microscale coor-

dinate only, i.e., Gζ(x, s) = G(y, s) and ρζ(x) = ρ(y). The spatial derivative of f ζ is

obtained by applying the chain rule:

f ζ,x(x, s) = f,x(x,y, s) +
1

ζ
f,y(x,y, s) (3.12)

where, subscript comma followed by x and y denote the spatial derivative with respect

to the macroscale and microscale coordinates, respectively. All response fields are

assumed to be locally periodic:

f(x,y, s) = f(x,y + Nl̂, s) (3.13)
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where, l̂ = [l̂1, l̂2]T denotes the period of the microstructure in the microscale coordi-

nates, i.e., l̂ = l/ζ, l is the period of the microstructure in the physical (macroscale)

coordinates, and N is a 2× 2 diagonal matrix with integer components.

3.3 Two-Scale Asymptotic Analysis

Based on the two-scale setting described above, the displacement is approximated

by the asymptotic expansion of up to the eighth order:

uζ(x, s)≡u(x,y, s) = u(0)(x, s) +
8∑
i=1

ζ iu(i)(x,y, s) +O(ζ9) (3.14)

where, u(0) denotes the macroscopic displacement field and is dependent on the

macroscale coordinate only [42]; and u(i) are high order displacement fields which

depend on both macroscale and microscale coordinates. We note that u(0) depends

only on x if the assumption of moderate material property contrast between the com-

posite constituents is satisfied. For composites with highly contrasted constituents,

u(0) depends on both micro- and macroscale coordinates [115, 9]. The shear strain

field is obtained as:

γζ(x, s) ≡ γ(x,y, s) =
7∑

α=0

ζαγ(α)(x,y, s) (3.15)

where,

γ(α)(x,y, s) =
(
u(α)
,xj

+ u(α+1)
,yj

)
êj (3.16)

(·),xj = ∂(·)/∂xj and (·),yj = ∂(·)/∂yj.

Employing Eq. 3.16 along with the constitutive relation (Eq. 3.9), the shear stress

field at order O(ζα) is obtained as:

τ (α)(x,y, s) = G(y, s)γ(α)(x,y, s) (3.17)
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Substituting Eqs. 3.9, 3.14-3.17 into the momentum balance equation (Eq. 3.8), and

collecting terms with equal orders yield the balance equations at each order of ζ:

O(ζ−1) : ∇y.τ
(0)(x,y, s) = 0 (3.18a)

O(ζα) : ∇x.τ
(α)(x,y, s) + ∇y.τ

(α+1)(x,y, s) = ρ(y)s2u(α)(x,y, s) (3.18b)

We start by additively decomposing the displacement field at each order of the

asymptotic expansion. Following the procedure proposed in [15], the displacement

field at each order is expressed in terms of a macroscopically constant displacement

field and series of locally varying fields which have zero average over the unit cell:

u(i)(x,y, s) = U (i)(x, s) +
i−1∑
k=0

Ũ (i,k)(x,y, s) (3.19)

where, Ũ (i,k)(x,y, s) is the kth locally varying field of u(i)(x,y, s) and it is associated

with the successive gradients of macroscopic strain of an inferior order by a locally

periodic influence function that is defined over the unit cell:

Ũ (i,k)(x,y, s) = H(k+1)(y, s)(.∇x)
k+1U (i−k−1)(x, s) (3.20)

where, H(k+1) is the microstructural influence function at order (k+1), and (.∇x)
k+1

is the (k + 1)th gradient with respect to the macroscale coordinate, x, with k + 1

contractions to the microstructural influence function (e.g., Ũ (3,2) = H(3)(.∇x)
3U (0)

is written as H
(3)
ijkU

(0)
,xijk in indicial notation). The microstructural influence function,

H(k+1), is an order (k + 1) tensor and has (k + 2) independent components.

Remark 1. For a kth order tensor H contracting k times with ∇kU , only the sym-

metric part of H affects the result of contraction, i.e., H(.∇)kU = Sym (H) (.∇)kU .
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This can be shown by defining the symmetric part of H as [26]:

Sym(H) =
1

k!

∑
σ∈S

σ(H) (3.21)

for all permutations σ ∈ S, and S denotes the symmetric group of permutations on

{1, ..., k}. The linear operator σ is defined as: σ(vi1 ⊗ · · · ⊗ vik) := viσ(1) ⊗ · · · ⊗ viσ(k)
for vi1 ⊗ · · · ⊗ vik ∈ Hk(C2), where [i1, · · · , ik] ∈ {1, 2}. Hk(C2) is the set of all

kth order tensors. Because the sequence of differentiation is interchangable, ∇kU is

invariant under the permutation operation. Since the symmetric part of a scalar is

the scalar itself, we have:

H(.∇)kU = Sym
(
H(.∇)kU

)
= Sym (H) (.∇)kU (3.22)

Substitution of Eqs. 3.16, 3.19 and 3.20 into 3.17 leads to the expression for the

stress field at O(ζα):

τ (α)(x,y, s) =
α∑
k=0

G(k)(y, s).(.∇x)
k∇xU

(α−k)(x, s) (3.23)

in which, G(k)(y, s) is an order (k + 2) tensor and written as:

G(k)(y, s) = G(y, s)
[
H(k)(y, s)⊗ I + ∇yH

(k+1)(y, s)
]

(3.24)

where, ⊗ and I are the dyadic product and second order identity tensor, respec-

tively, and H(0) = 1. Substituting Eqs. 3.23 and 3.24 into Eq. 3.18a, we obtain the

equilibrium equation for H(1)(y, s):

∇y.

{
G(y, s)

[
I + ∇yH

(1)(y, s)
]}

= 0 (3.25)
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which is defined over the unit cell domain. H(1)(y, s) is unique when the local peri-

odicity condition is applied and average is set to vanish, i.e.,
〈
H(1)(y, s)

〉
= 0, where

the averaging operator 〈·〉 is defined as:

〈·〉 =
1

|Θ|

∫
Θ

(·) dy (3.26)

where |Θ| is the area of the unit cell. The O(1) macroscale balance equation is

obtained by applying the averaging operator to Eq. 3.18b (with α = 0) and considering

Eqs. 3.19 and 3.23:

Ḡ(0)..∇2
xU

(0)(x, s) = ρ0s
2U (0)(x, s) (3.27)

where, Ḡ(0)(s) =
〈
G(0)(y, s)

〉
is theO(1) homogenized shear moduli, and ρ0 =

〈
ρ(y)

〉
is the homogenized density. Overbar denotes the homogenized value throughout this

chapter.

The procedure to evaluate influence functions and derive momentum balance equa-

tions presented above can be generalized for higher orders, i.e., α ≥ 0. At order O(ζα),

the equilibrium equation for the influence function, H(α+2), is derived by substitut-

ing Eqs. 3.19, 3.20, 3.23, 3.24 and lower order equilibrium equations for the influ-

ence functions (e.g., Eq. 3.25) and macroscale balance equations up to order O(ζα)

(e.g., Eq. 3.27) into Eq. 3.18b. The macroscale balance equation at order O(ζα+1) is

then obtained by substituting Eqs. 3.19, 3.20, 3.23, 3.24 and lower order equilibrium

equations for influence functions and macroscale balance equations into Eq. 3.18b

at O(ζα+1) and applying the averaging operator. The equilibrium equation for the

influence function, H(α+2), is derived as:

G(α)(y, s) + ∇y.G
(α+1)(y, s) = θ(y)

α∑
j=0

H(j)(y, s)⊗D(α−j)(s) (3.28)
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Figure 3.1: Boundary value problems for the evaluation of the influence
functions and computation of the homogenized shear moduli.

where, D(α−j)(s) is the O(ζα−j) homogenized shear moduli expressed as:

D(α−j)(s) = Ḡ(α−j)(s)−
α−j∑
m=1

θ(y)H(m)(y, s)⊗D(α−j−m)(s) (3.29)

for α− j ≥ 1 and D(0)(s) = Ḡ(0)(s). The macroscale balance equation at O(ζα+1) is

obtained as:
α∑
n=0

D(n)(.∇)n+2
x U (α−n)(x, s) = ρ0s

2U (α)(x, s) (3.30)

The boundary value problems to evaluate the influence functions and compute the

homogenized shear moduli are summarized in Fig. 3.1.
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3.4 Spatial-Temporal Nonlocal Homogenization Model

3.4.1 Higher order gradient formulation

In this section, we propose a novel spatial-temporal nonlocal homogenization

model for anti-plane shear wave propagation in viscoelastic composites. The non-

local model is of gradient type with fourth order spatial, fourth order temporal and

mixed spatial-temporal gradient terms to capture wave dispersion and attenuation

beyond the long wavelength regime.

Remark 2. For macroscopically orthotropic composites, the homogenized shear mod-

uli at odd and even orders have the following characteristics: (1) D(i) = 0, i is odd;

(2) The components of D(0), D(2), D(4), D(6) with odd number of repeated indices

are zero (e.g., D
(0)
12 =D

(2)
1112=D

(4)
111112=D

(6)
11111112 = 0).

This can be shown by considering the two planes of material symmetry that have

unit normals, ê1 and ê2. The corresponding transformation matrix for reflection with

respect to the two planes are:

R̄ =

−1 0

0 1

 , ¯̄R =

1 0

0 −1


The orthotropy condition requires the shear moduli is invariant under reflection

[75], i.e., D(i) = R̄TD(i)R̄ = ¯̄RTD(i) ¯̄R, which implies that the components of

the moduli tensor with odd number of repeated index have to be 0. For exam-

ple, D
(1)
111 = R̄11R̄11R̄11D

(1)
111 and D

(2)
1112 = R̄11R̄11R̄11R̄22D

(1)
1112, indicating D

(1)
111 = 0 and

D
(2)
1112 = 0, respectively.

Considering that the macroscopic behavior of the composite is orthotropic and

using Remark 2, the macroscale momentum balance equations are written in indicial
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notation as:

O(1) : ρ0s
2U (0)(x, s)−D(0)

kl (s)U
(0)
,kl = 0 (3.31a)

O(ζ1) : ρ0s
2U (1)(x, s)−D(0)

kl (s)U
(1)
,kl = 0 (3.31b)

O(ζ2) : ρ0s
2U (2)(x, s)−D(0)

kl (s)U
(2)
,kl = D

(2)
klmn(s)U

(0)
,klmn (3.31c)

O(ζ3) : ρ0s
2U (3)(x, s)−D(0)

kl (s)U
(3)
,kl = D

(2)
klmn(s)U

(1)
,klmn (3.31d)

O(ζ4) : ρ0s
2U (4)(x, s)−D(0)

kl (s)U
(4)
,kl = D

(2)
klmn(s)U

(2)
,klmn +D

(4)
klmnpq(s)U

(0)
,klmnpq

(3.31e)

O(ζ5) : ρ0s
2U (5)(x, s)−D(0)

kl (s)U
(5)
,kl = D

(2)
klmn(s)U

(3)
,klmn +D

(4)
klmnpq(s)U

(1)
,klmnpq

(3.31f)

O(ζ6) : ρ0s
2U (6)(x, s)−D(0)

kl (s)U
(6)
,kl = D

(2)
klmn(s)U

(4)
,klmn +D

(4)
klmnpq(s)U

(2)
,klmnpq

+D
(6)
klmnpqrs(s)U

(0)
,klmnpqrs (3.31g)

O(ζ7) : ρ0s
2U (7)(x, s)−D(0)

kl (s)U
(7)
,kl = D

(2)
klmn(s)U

(5)
,klmn +D

(4)
klmnpq(s)U

(3)
,klmnpq

+D
(6)
klmnpqrs(s)U

(1)
,klmnpqrs (3.31h)

where, D(0), D(2), D(4), D(6) have 2, 8, 32, 128 non-zero components, respectively.

Moreover, only the symmetric parts of these tensors affect the solution, as a con-

sequence of Remark 1. The number of non-zero independent components in the

symmetric part, Sym(D(0)), Sym(D(2)), Sym(D(4)), Sym(D(6)) are, 2, 3, 4, 5, re-

spectively. Sym(D(0)) = D(0).

Equations 3.31a-h are combined into a single homogenized momentum balance

equation by averaging the displacement field (Eq. 3.14) at each scale:

U(x, s) =
7∑
i=0

ζ iU (i)(x, s) +O(ζ8) (3.32)

where, U(x, s) denotes the homogenized displacement field of O(ζ8) accuracy. Com-
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bining the two lowest order balance equations (Eq. 3.31a and Eq. 3.31b) leads to the

classical local homogenization model which is valid in the absence of wave disper-

sion (i.e., when the wavelength is much larger than the microstructure). The spatial

nonlocal homogenization model previously studied in Refs. [42, 4, 63] incorporates

additional two equations (Eq. 3.31c and Eq. 3.31d). It predicts wave dispersion in the

long-wavelength regime in the first pass band. The prediction error increases as the

wavelength becomes shorter, therefore, the initiation of the stop band and beyond is

not well captured. Following the line of increasing asymptotic accuracy by incorporat-

ing higher order momentum balance equations, Eqs. 3.31a-h are combined to construct

the proposed spatial-temporal nonlocal homogenization model. The direct weighted

summation of Eqs. 3.31a-h results in a spatial nonlocal homogenization model with

higher order spatial gradient terms (D(4)(.∇x)
6U andD(6)(.∇x)

8U) in addition to the

fourth order spatial gradient term (D(2)(.∇x)
4U). While it is interesting to probe the

role of D(4)(.∇x)
6U and D(6)(.∇x)

8U terms in capturing wave dispersion, we limit

our scope to the fourth order gradient nonlocal equation based on the observation that

it captures wave dispersion and attenuation beyond the long-wavelength regime [54].

In what follows, we transform the higher order spatial gradient terms in Eqs. 3.31a-h

to fourth order gradient terms (i.e., spatial nonlocal, temporal nonlocal, and mixed

spatial-temporal nonlocal). It is observed that Eqs. 3.31a, c, e, g and Eqs. 3.31b, d,

f, h, have identical equation form and coefficients. Therefore, all derivations on the

former equations directly applies to the latter ones. Only the derivations on the even

orders (i.e., Eqs. 3.31a, c, e, g) are presented in the remainder of this section.

Considering Remark 1 and without loss of generality, Eq. 3.31g is expressed as:

ρ0s
2U (6)(x, s)−D(0)

kl (s)U
(6)
,kl = D

(2)
(klmn)(s)U

(4)
,klmn +D

(4)
(klmnpq)(s)U

(2)
,klmnpq

+ ν(s)D
(6)
(klmnpqrs)(s)U

(0)
,klmnpqrs + (1− ν(s))D

(6)
(klmnpqrs)(s)U

(0)
,klmnpqrs

(3.33)

where, ν(s) is a scalar parameter. Sym(D(6)) in the third term on the right side of
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Eq. 3.33 is approximated as:

D
(6)
(klmnpqrs)(s) ≈ A(1)(s)Sym

(
D

(0)
kl (s)D

(4)
(mnpqrs)(s)

)
(3.34)

where, A(1)(s) is a complex valued scalar that minimizes the discrepancy between

the non-zero independent components of Sym(D(6)) and Sym
(
D(0) ⊗ Sym(D(4))

)
in the Euclidean norm, and it is computed by the Moore-Penrose pseudo-inverse.

Substituting Eq. 3.34 and Eq. 3.31e into the third term on the right side of Eq. 3.33

and considering Remark 1:

ν(s)D
(6)
(klmnpqrs)(s)U

(0)
,klmnpqrs ≈ ν(s)A(1)(s)Sym

(
D

(0)
kl (s)D

(4)
(mnpqrs)(s)

)
U

(0)
,klmnpqrs =

ν(s)A(1)(s)D
(0)
kl (s)D

(4)
(mnpqrs)(s)U

(0)
,klmnpqrs =

ν(s)A(1)(s)D
(0)
kl (s)

[
ρ0s

2U (4)(x, s)−D(0)
mn(s)U (4)

,mn −D
(2)
(mnpq)(s)U

(2)
,mnpq

]
,kl

(3.35)

Substituting Eq. 3.35 for the the third term on the right side of Eq. 3.33:

ρ0s
2U (6)(x, s)−D(0)

kl (s)U
(6)
,kl =

(
D

(2)
(klmn)(s)− ν(s)A(1)(s)D

(0)
kl (s)D(0)

mn(s)
)
U

(4)
,klmn+

ν(s)A(1)(s)ρ0s
2D

(0)
kl (s)U

(4)
,kl +

(
D

(4)
(klmnpq)(s)− ν(s)A(1)(s)D

(0)
kl (s)D

(2)
(mnpq)(s)

)
U

(2)
,klmnpq+

(1− ν(s))D
(6)
(klmnpqrs)(s)U

(0)
,klmnpqrs

(3.36)

Similar to Eq. 3.34, the non-zero independent components of Sym(D(4)) is approxi-

mated as:

D
(4)
(klmnpq)(s) ≈ A(2)(s)Sym

(
D

(2)
(klmn)(s)D

(0)
pq (s)

)
(3.37)

whereA(2)(s) is computed by the Moore-Penrose pseudo-inverse. Substituting Eq. 3.37

into Eq. 3.36, considering Remark 1 and substituting Eq. 3.31c into the resulting

equation for D
(0)
pq (s)U

(2)
,pq , we obtain:
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ρ0s
2U (6)(x, s)−D(0)

kl (s)U
(6)
,kl =

(
D

(2)
(klmn)(s)− ν(s)A(1)(s)D

(0)
kl (s)D(0)

mn(s)
)
U

(4)
,klmn+

ν(s)A(1)(s)ρ0s
2D

(0)
kl (s)U

(4)
,kl +

(
A(2)(s)− ν(s)A(1)(s)

)
D

(2)
(klmn)ρ0s

2U
(2)
,klmn+[

(1− ν(s))D
(6)
(klmnpqrs)(s)−

(
A(2)(s)− ν(s)A(1)(s)

)
D

(2)
(klmn)D

(2)
(pqrs)

]
U

(0)
,klmnpqrs

(3.38)

By substituting Eq. 3.31e into Eq. 3.38 and considering Remark 1 and Eq. 3.31a, we

arrive at the macroscale momentum balance equation at O(ζ6):

ρ0s
2U (6)(x, s)−D(0)

kl (s)U
(6)
,kl =

(
D

(2)
(klmn)(s)− ν(s)A(1)(s)D

(0)
kl (s)D(0)

mn(s)
)
U

(4)
,klmn+(

2ν(s)A(1)(s)− A(2)(s)
)
ρ0s

2D
(0)
kl (s)U

(4)
,kl +

(
A(2)(s)− ν(s)A(1)(s)

)
ρ2

0s
4U (4)+

E(klmnpqrs)(ν(s), s)U
(0)
,klmnpqrs

(3.39)

where the last term is denoted as the error term and E is expressed as:

E(klmnpqrs)(ν(s), s) =
[
(1− ν(s))D

(6)
(klmnpqrs)(s)−(

A(2)(s)− ν(s)A(1)(s)
)

Sym
(
D

(2)
(klmn)(s)D

(2)
(pqrs)(s) +D

(4)
(klmnpq)(s)D

(0)
rs (s)

)] (3.40)

The momentum balance equations at O(ζ4) and O(ζ2) are obtained similarly and

detailed derivations are provided in Appendix B. The momentum balance equations

at O(ζ7), O(ζ5), O(ζ3) are derived by the same procedure as O(ζ6), O(ζ4), O(ζ2),

respectively. The resulting macroscale momentum balance equation at order O(ζk)
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are summarized as follows:

ρ0s
2U (k)(x, s)−D(0)

kl (s)U
(k)
,kl = 0; k = 0, 1 (3.41a)

ρ0s
2U (k)(x, s)−D(0)

kl (s)U
(k)
,kl =

(
D

(2)
(klmn)(s)− ν(s)A(1)(s)D

(0)
kl (s)D(0)

mn(s)
)
U

(k−2)
,klmn

+
(

2ν(s)A(1)(s)− A(2)(s)
)
ρ0s

2D
(0)
kl (s)U

(k−2)
,kl +

(
A(2)(s)− ν(s)A(1)(s)

)
ρ2

0s
4U (k−2);

k = 2, 3, 4, 5 (3.41b)

ρ0s
2U (k)(x, s)−D(0)

kl (s)U
(k)
,kl =

(
D

(2)
(klmn)(s)− ν(s)A(1)(s)D

(0)
kl (s)D(0)

mn(s)
)
U

(k−2)
,klmn

+
(

2ν(s)A(1)(s)− A(2)(s)
)
ρ0s

2D
(0)
kl (s)U

(k−2)
,kl +

(
A(2)(s)− ν(s)A(1)(s)

)
ρ2

0s
4U (k−2)

+ E(klmnpqrs)(ν(s), s)U
(k−6)
,klmnpqrs;

k = 6, 7 (3.41c)

Considering the definition for the homogenized displacement field (Eq. 3.32) and the

summation of momentum balance equation at order O(ζk) multiplied by ζk, result in

the homogenized momentum balance equation:

ρ0s
2U(x, s)−D(0)

kl (s)U,kl =
(
D

(2)
(klmn)(s)− ν(s)A(1)(s)D

(0)
kl (s)D(0)

mn(s)
)
U,klmn+(

2ν(s)A(1)(s)− A(2)(s)
)
ρ0s

2D
(0)
kl (s)U,kl +

(
A(2)(s)− ν(s)A(1)(s)

)
ρ2

0s
4U+

ζ6E(klmnpqrs)(ν(s), s)U
(0)
,klmnpqrs + ζ7E(klmnpqrs)(ν(s), s)U

(1)
,klmnpqrs +O(ζ8)

(3.42)

Equation 3.42 represents a one-parameter family of nonlocal homogenization models

as a function of ν(s). For arbitrarily chosen ν(s), these models achieve O(ζ6) asymp-

totic accuracy. The detailed procedure for choosing ν(s) and obtaining a unique

nonlocal model is provided in the next section.

We note that Eq. 3.42 is formally similar to the gradient elasticity models [91,

7, 109, 33] and the homogenization model [125], where spatial nonlocal, temporal

nonlocal and mixed spatial-temporal nonlocal terms are present, and the length-scale
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parameters associated with these terms are calibrated. The proposed model is unique

in that all the model parameters are consistently derived from the homogenization

process and it applies to viscoelastic composites.

3.4.2 Identification of ν(s)

It is observed in Eq. 3.42 that the asymptotic error term depends on ν(s). We

therefore seek to set ν(s) such that the error term is minimized. This requires

knowledge of U
(0)
,klmnpqrs which is not available a-priori. As an alternative, we pur-

sue ν(s) such that all the independent components of the coefficient tensor of the

error term (i.e., E) are minimized. To be explicit, they are written in vector form:

e = [E(1×8) E(1×62×2) E(1×42×4) E(1×22×6) E(2×8)]
T , where the subscript (m×n) denotes

index m repeated n times. In addition, the dynamic stability of the general fourth

order governing equation imposes constraints to the model parameters associated

with the nonlocal terms. This poses a constrained minimization problem for the

identification of ν(s).

Neglecting the O(ζ6) and higher order error terms, Eq. 3.42 is rewritten as:

ρ0s
2U(x, s)−D(0)

kl (s)U,kl = α
(1)
(klmn)(s)U,klmn + ρ0s

2α
(2)
kl (s)U,kl + ρ2

0s
4α(3)(s)U (3.43)

where,

α
(1)
(klmn)(s) =Sym

(
D

(2)
klmn(s)− ν(s)A(1)(s)D

(0)
kl (s)D(0)

mn(s)
)

(3.44a)

α
(2)
kl (s) =

(
2ν(s)A(1)(s)− A(2)(s)

)
D

(0)
kl (s) (3.44b)

α(3)(s) =A(2)(s)− ν(s)A(1)(s) (3.44c)

For elastic composites, D(0), α(1), α(2) and α(3) are real-valued constant parameters.

For viscoelastic composites, they are complex-valued and functions of the Laplace
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variable. Substituting a harmonic wave solution, U = U0(s)ei(k1x1+k2x2), into Eq. 3.43,

the resulting equation is expressed in polar coordinate system for the wave vector,

k1 = k(s, θ) cos θ and k2 = k(s, θ) sin θ. In this study, the imaginary and real parts

of the wave vector are assumed to be co-linear, thus θ is taken as real-valued. The

co-linearity assumption has been previously employed in the dispersion analysis of

viscoelastic materials [24, 3]. The dispersion relation in terms of the Laplace variable

is obtained as:

A(s, θ)k4 +B(s, θ)k2 + C(s, θ) = 0 (3.45)

where,

A(s, θ) =α
(1)
(1111)(s) cos4 θ + α

(1)
(2222)(s) sin4 θ + 6α

(1)
(1122)(s) cos2 θ sin2 θ (3.46a)

B(s, θ) =−
(
α

(2)
11 (s)ρ0s

2 +D
(0)
11 (s)

)
cos2 θ −

(
α

(2)
22 (s)ρ0s

2 +D
(0)
22 (s)

)
sin2 θ (3.46b)

C(s, θ) =α(3)(s)ρ2
0s

4 − ρ0s
2 (3.46c)

The solution of Eq. 3.45, k(s, θ), relates the wavenumber, the Laplace variable and

the direction of wave vector as:

(
k{1,2}(s, θ)

)2

=
−B(s, θ)−

√
B2(s, θ)− 4A(s, θ)C(s, θ)

2A(s, θ)
(3.47a)(

k{3,4}(s, θ)
)2

=
−B(s, θ) +

√
B2(s, θ)− 4A(s, θ)C(s, θ)

2A(s, θ)
(3.47b)

For elastic composites, the dynamic stability of Eq. 3.43 in terms of the constant

model parameters is analyzed by the limit analysis in the frequency domain [91, 109].

Replacing s in Eq. 3.45 with iω, the dispersion relation in terms of frequency is

obtained. Consider the limiting scenarios: 1) quasi-static (i.e., ω → 0); and 2)
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infinitely long wave (i.e., k → 0), which respectively leads to the solutions:

k{1,2} = 0, k{3,4} = ±

√√√√(D(0)
11 cos2 θ +D

(0)
22 sin2 θ

)
A(θ)

(3.48a)

ω{1,2} = 0, ω{3,4} = ±
√
− 1

α(3)ρ0

(3.48b)

In view of the harmonic wave solution in the frequency domain, U = U0e
i(k1x1+k2x2−ωt),

the stability of wave propagation in the quasi-static limit requires that k is real; and

infinitely long wave limit requires that ω is real. These are achieved by the following

constraints:

A(θ) > 0, α(3) < 0 (3.49)

In order to generalize these ideas to viscoelastic composites, the following con-

straints on the model parameters are proposed:

Re
[
A(s, θ)

]
> 0 (3.50a)

Re
[
α(3)(s)

]
< 0, Im

[
α(3)(s)

]
= 0 (3.50b)

In the quasi-static limit, viscoelastic phases within the composites behave as elastic

ones, the parameters are independent of the Laplace variable s. Equation 3.50a

therefore recovers the constraint for elastic composites. In the infinitely long wave

limit, Eq. 3.50b is derived by analyzing the response of governing equation (Eq. 3.43)

under an impulse load and examining the location of poles of the transfer function,

as a common approach to analyze the system stability in the Laplace domain [49].

The detailed derivation is provided in Appendix C.

Employing the stability constraints introduced above and using the Euclidean

norm of e as the objective function, the identification problem for ν(s) is stated in

Fig. 3.2.
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Figure 3.2: Summary of the constrained minimization problem for the
identification of ν(s).

3.4.3 Nonlocal effective medium model

Straightforward implementation of the proposed fourth order PDE to simulate

transient wave propagation is problematic since the numerical solution contains both

the physical and non-physical wavenumber solutions. Furthermore, the evaluation of

the fourth order governing equation requires setting high order boundary conditions,

which is usually not trivial to obtain. In this section, we propose a nonlocal effective

medium model (i.e., second order) based on the spatial-temporal nonlocal homoge-

nization model to simulate the transient behavior of the composite. This is achieved

by identifying and retaining the physical wavenumber solutions of the original fourth

order PDE, while eliminating the non-physical branches.

The identification and selection of the physical wavenumber is critical in obtaining

stable and physically meaningful dynamics [109, 54]. Considering the harmonic solu-

tion form, U = U0(s)ei(k1x1+k2x2), negative imaginary part of the wavenumber results

in exponentially amplifying harmonic wave. The physically meaningful wavenumber

is therefore identified as the one that has non-negative imaginary part. Examining

Eq. 3.47 indicates that the physically meaningful wavenumber is:

k̄2(s, θ) =


(
k{1,2}

)2

, ω ≤ ωc(
k{3,4}

)2

, ω > ωc

(3.51)
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where the switch, ωc, between the two branches of the solutions is the imaginary part

of the critical Laplace variable, sc = σ+ iωc. In order to ensure that the continuity of

the physical wavenumber at the switch,
(
k{1,2}(s, θ)

)2

=
(
k{3,4}(s, θ)

)2

is satisfied:

−
√
B2(s, θ)− 4A(s, θ)C(s, θ) =

√
B2(s, θ)− 4A(s, θ)C(s, θ) (3.52)

The complex-valued equation above is equivalent to the constrained system of equa-

tions:

Im
[
B2(s, θ)− 4A(s, θ)C(s, θ)

]
= 0 (3.53a)

Re
[
B2(s, θ)− 4A(s, θ)C(s, θ)

]
≤ 0 (3.53b)

Substituting Eq. 3.46 and sc into Eq. 3.53a results in an equation from which ωc is ob-

tained. ωc is evaluated analytically for elastic composites. For viscoelastic composites,

ωc is solved numerically, since the model parameters are dependent on the Laplace

variable, resulting in a nonlinear equation. The inequality condition in Eq. 3.53b

provides the criterion to choose the appropriate ωc among the multiple solutions of

Eq. 3.53a.

Selecting only the physical wavenumber for the solution of Eq. 3.45 is captured

by the following dispersion equation:

k2 − k̄2(θ, s) = 0 (3.54)

multiplying Eq. 3.54 with −ρ0s
2/k̄2(θ, s), the dispersion relation becomes:

φ(s, θ)
(
D

(0)
11 (s) cos2 θ +D

(0)
22 (s) sin2 θ

)
k2 + ρ0s

2 = 0 (3.55)
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where,

φ(s, θ) =
−ρ0s

2

k̄2(θ, s)
(
D

(0)
11 (s) cos2 θ +D

(0)
22 (s) sin2 θ

) (3.56)

Equation 3.55 resembles the dispersion relation of the classical homogenization model

(Eq. 3.31a) except for the factor φ(s, θ), which results from the nonlocal terms in the

fourth order governing equation. Compared to the dispersion relation of the original

fourth order equation (Eq. 3.45), Eq. 3.55 is regularized in that the dispersion relation

contains the physical branches of the solution only and the non-physical branches are

suppressed. The regularized nonlocal momentum balance equation is then expressed

as:

ρ0s
2U(x, s)−De

kl(s, θ)U,kl = 0 (3.57)

in which, De
kl(s, θ) = φ(s, θ)D

(0)
kl (s). The nonlocal factor, φ(s, θ), depends on the

Laplace variable and the direction of wave propagation. The direction-dependence

reveals the anisotropic nature of wave dispersion, which is also observed by Phani

et al. [108] and Wautier and Guzina [125].

Equation 3.57 is a second order PDE that shares the same structure as the clas-

sical homogenization model but expressed in terms of nonlocal effective stiffness that

is frequency- and direction-dependent. In a transient dynamic analysis, computing

the direction-dependent nonlocal factor requires knowledge of the direction of local

wave vector at each material point which evolves as a function of time. Since the

wave vector is normal to the wave front, φ(s, θ) can be obtained by solving for the

evolution of wave front for any given s. A comprehensive study of techniques to

track wave front can be found in [34]. We use a simplified approach that prescribes

all the material points to have the same property that captures wave propagation of

Eq. 3.57 exactly in θ = 0 and θ = π/2 directions only. Substituting test harmonic

wave U = U0(s)ei(k1x1) and U = U0(s)ei(k2x2) into Eq. 3.57, the effective stiffness

are obtained: De
11(s) = −ρ0s

2/k̄2(s, 0), De
22(s) = −ρ0s

2/k̄2(s, π/2). The resulting
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Figure 3.3: Boundary value problem for macroscale displacement U(x, s).

momentum balance equation is:

ρ0s
2U(x, s)−De

kl(s)U,kl = 0 (3.58)

This operation in fact reduces the direction-dependent nonlocal effective stiffness to

a direction-independent one. As a result, the reduced dispersion relation matches

that of Eq. 3.55 exactly in θ = 0 and θ = π/2 directions, whereas the solutions

for arbitrary wave direction θ are approximated. The effect of this approximation

is discussed in Section 3.6.1. The resulting boundary value problem to evaluate the

macroscale displacement is summarized in Fig. 3.3.

3.5 Numerical Implementation

In this section, the numerical evaluation of the microscale influence functions,

computation of the homogenized shear moduli and model parameters, and the so-

lution to the macroscale momentum balance equation are presented. The analyses

are performed in the Laplace domain using complex algebra. For a fixed but ar-

bitrary Laplace variable, the microscale influence functions are evaluated using the

standard finite element method (FEM) with C0-continuous shape functions. Isogeo-

metric analysis (IGA) with C1-continuous NURBS (Non-Uniform Rational B-Splines)
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basis functions is employed to evaluate the macroscale momentum balance equation.

The time domain response is then obtained by numerical inverse Laplace transform.

3.5.1 Microscale problem

The numerical implementation of the first two influence functions, H(1) and H(2),

have been previously provided in Refs. [64, 65], and skipped herein for brevity. In

what follows, we provide a general procedure to compute the influence functions at

higher orders. Considering Eq. 3.24 for G(n)(y, s), the weak form of equilibrium

equation for the (n+ 1)th influence function (Fig. 3.1, n ≥ 1) is written as:

∫
Θ

G(y, s)∇yw(y).∇yH
(n+1)(y, s)dy = −

∫
Θ

G(y, s)∇yw(y).
(
H(n)(y, s)⊗ I

)
dy

+

∫
Θ

w(y)G(n−1)(y, s)dy −
∫

Θ

w(y)

θ(y)
n−1∑
j=0

H(j)(y, s)⊗D(n−1−j)(s)

 dy (3.59)

where, w ∈ Wper ⊂ H1(Θ,R) is the weighting function; Wper is space of suf-

ficiently smooth functions that is periodic along the microstructure boundary, ΓΘ;

and H1(Θ,R) is the Sobolev space of scalar-valued functions with square integrable

first derivative over the domain of microstructure, Θ. Rewriting H(n+1)(y, s) =

H
(n+1)
re + iH

(n+1)
im , where H

(n+1)
re and H

(n+1)
im are real. The solutions are sought in the

function space, Hper{re,im} ⊂ H1(Θ,Rn+2):

Hper{re,im} :=
{
H

(n+1)
{re,im}(y, s) | H

(n+1)
{re,im}(y, s) is periodic ∀y ∈ ΓΘ;

〈H(n+1)
{re,im}(y, s)〉 = 0

}
(3.60)

In the discrete approximation of H
(n+1)
{re,im}, periodicity is imposed by coupling the

nodes at the opposing edges as the master and slave nodes. The degrees of freedom

associated with the slave nodes are eliminated through static condensation. To im-

plement this coupling, the microstructure is discretized such that the nodal positions
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at the opposing boundaries match exactly. In addition, the value of the influence

function is set to zero at corner nodes to eliminate rigid body modes. The normaliza-

tion condition is imposed by subtracting the microstructural average of the influence

functions from each nodal value, which is done as a postprocessing step. The finite

dimensional subspace for the trial solutions, Hh
per ⊂ Hper, is constructed as:

Hh
per{re,im} :=

H(n+1),h
{re,im} (y, s)

∣∣∣ H(n+1),h
{re,im} (y, s) =

M∑
A=1

N [A](y)H
(n+1)[A]
{re,im} (s);

H
(n+1)[c]
{re,im} (s) = 0

}
(3.61)

where, N [A](y) is the shape function, M the number of nodes, superscript h indi-

cates discretization, and H
(n+1)[A]
{re,im} (s) denotes the influence function matrix at node

A. H
(n+1)[c]
{re,im} (s) is the influence function at the corner nodes.

Substituting the discretization of the influence function and the weighting function

into the weak form and expressing the terms in matrix-vector form using the Voigt

notation yields the following discrete system:

Kd(n+1) = F(n+1) (3.62)

which is formed by assemblying the element matrices:

K =
Ne
A
e=1

Ke; d(n+1) =
Ne
A
e=1

d(n+1)e; F(n+1) =
Ne
A
e=1

F(n+1)e (3.63)

A is the assembly operator, superscript e denotes the element index and Ne the

number of elements. The element stiffness matrix is expressed as:

Ke = G(y, s)

∫
Θe

Be (y)T Be (y) dy (3.64)
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where Θe denotes the domain of element e, T the matrix transpose, and

Be =

[
Be[1] Be[2] . . . Be[Me]

]
(3.65a)

Be[A] =

[
N
e[A]
,y1 (y) N

e[A]
,y2 (y)

]T
(3.65b)

For the convenience and efficiency of numerical implementation, the same discretiza-

tion of microstructure and shape functions are used for all influence functions, there-

fore, the stiffness matrix is only assembled and factorized (e.g., LU factorization)

once. The right-hand-side force matrices are assembled for each influence function.

The components of the influence functions are listed as follows:

H(1),h(y, s) =
[
H

(1),h
1 (y, s) H

(1),h
2 (y, s)

]T
(3.66a)

H(2),h(y, s) =
[
H

(2),h
(11) (y, s) H

(2),h
(12) (y, s) H

(2),h
(22) (y, s)

]T
(3.66b)

...

H(7),h(y, s) =
[
H

(7),h
(1×7)(y, s) H

(7),h
(1×62)(y, s) H

(7),h
(1×52×2)(y, s) H

(7),h
(1×42×3)(y, s)

H
(7),h
(1×32×4)(y, s) H

(7),h
(1×22×5)(y, s) H

(7),h
(1×12×6)(y, s) H

(7),h
(2×7)(y, s)

]T
(3.66c)

The element matrix of influence function H(n+1),h(y, s) is written as:

d
(n+1)e
H =

[
H(n+1)e[1] H(n+1)e[2] . . . H(n+1)e[Me]

]T
(3.67)

where, Me is the number of nodes in the element. The force matrix for element e is

written as a summation of three components:

F
(n+1)e
H = F

(n+1)e
H,1 + F

(n+1)e
H,2 + F

(n+1)e
H,3 (3.68)
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where,

F
(n+1)e
H,1 = −G(y, s)

∫
Θe

Be (y)T Sym
(
P(n)e (y, s)

)
dy (3.69a)

F
(n+1)e
H,2 =

∫
Θe

Ne (y)T Sym
(
G(n−1)e (y, s)

)
dy (3.69b)

F
(n+1)e
H,3 = −

∫
Θe

Ne (y)T Sym
(
Q(n−1)e (y, s)

)
dy (3.69c)

Sym
(
P(n)e (y, s)

)
, Sym

(
G(n−1)e (y, s)

)
and Sym

(
Q(n−1)e (y, s)

)
are defined in Eq. 3.75.

Assembling the force matrix, imposing periodic boundary condition and setting the

degree of freedom at corner nodes to be 0, the boundary value problem is solved with

standard finite element method. Upon normalization, the components of influence

function H(n+1),h(y, s) are obtained:

H
(n+1),h
(·) (y, s) =

M∑
A=1

N [A](y)H
(n+1)[A]
(·) (s) (3.70)

where, the normalization is computed as:

H
(n+1)[A]
(·) (s) = H

(n+1)[A]
(·)0 (s)− 1

|Θ|

∫
Θ

M∑
A=1

N [A](y)H
(n+1)[A]
(·)0 (s)dy (3.71)

in which, H
(n+1)[A]
(·)0 (s) are the nodal values obtained by solving Eq. 3.62 before nor-

malization.

In view of Eq. 3.59, computation of element force matrices requires information

from the inferior orders, which results in a successive solution of the influence func-

tions. The detailed evaluation procedure is provided in what follows.
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3.5.1.1 Evaluation of H(1)(y, s) and D(0)(s)

At n = 0, the expression for P(0)e (y, s) is:

P(0)e (y, s) =

 1 0

0 1

 (3.72)

whereas G(−1)e = 0 and Q(−1)e = 0. Substituting these expressions into Eq. 3.69,

H
(1),h
k (y, s) is obtained from the procedure described above. G

(0)
kl (y, s) is obtained by

substituting Eq. 3.70 for H
(1)
k (y, s) into Eq. 3.24:

G
(0)
kl (y, s) = G(y, s)

δkl +
M∑
A=1

B
[A]
l (y)H

(1)[A]
k (s)

 (3.73)

where, B
[A]
l (y) = N

[A]
,l (y). According to Eq. 3.21, the symmetric part is computed

as:

G
(0)
(kl)(y, s) =

1

2

(
G

(0)
kl (y, s) +G

(0)
lk (y, s)

)
(3.74)

and D
(0)
(kl)(s) is computed by Eq. 3.26 accordingly.

3.5.1.2 Higher order influence functions and homogenized moduli

The procedure to evaluate higher order influence functions, H(n+1)(y, s) and ho-

mogenized shear moduli, D(n)(s), n = {1, 2, ..., 6}, is provided in a general form.

63



Sym
(
P(n)e (y, s)

)
, Sym

(
G(n−1)e (y, s)

)
and Sym

(
Q(n−1)e (y, s)

)
are written as:

Sym
(
P(n)e (y, s)

)
=

1

(n+ 1)!

 (n+ 1)!H
(n)e
(1×n) n(n!)H

(n)e
(1×(n−1)2) · · · n!H

(n)e
(2×n) 0

0 n!H
(n)e
(1×n) · · · n(n!)H

(n)e
(12×(n−1))

(n+ 1)!H
(n)e
(2×n)


(3.75a)

Sym
(
G(n−1)e (y, s)

)
=[

G
(n−1)e
(1×n) (y, s) G

(n−1)e
(1×(n−1)2)(y, s) · · · G

(n−1)e
(12×(n−1))

(y, s) G
(n−1)e
(2×n) (y, s)

]
(3.75b)

Sym
(
Q(n−1)e (y, s)

)
=

θ(y)

[
Q

(n−1)e
(1×n) (y, s) Q

(n−1)e
(1×(n−1)2)(y, s) · · · Q

(n−1)e
(12×(n−1))

(y, s) Q
(n−1)e
(2×n) (y, s)

]
(3.75c)

where, the expressions for G
(n−1)e
(·) (y, s) and Q

(n−1)e
(·) (y, s) are provided in Appendix D.

Substituting Eq. 3.75 into Eq. 3.69, H
(n+1),h
(·) (y, s) is obtained using the same proce-

dure as for H
(1),h
k (y, s). The homogenized moduli D

(n)
(·) (s) is obtained from Eq. 3.29.

The expressions for D
(2)
(klmn)(s), D

(4)
(klmnpq)(s) and D

(6)
(klmnpqrs)(s) are obtained as follows:

D
(2)
(klmn)(s) = Ḡ

(2)
(klmn)(y, s)− Sym

(
ρ(y)H

(2)
(kl)(y, s)D

(0)
(mn)(s)

)
(3.76a)

D
(4)
(klmnpq)(s) = Ḡ

(4)
(klmnpq)(y, s)− Sym

(
ρ(y)H

(2)
(kl)(y, s)D

(2)
(mnpq)(s)

)
− Sym

(
ρ(y)H

(4)
(klmn)(y, s)D

(0)
(pq)(s)

)
(3.76b)

D
(6)
(klmnpqrs)(s) = Ḡ

(6)
(klmnpqrs)(y, s)− Sym

(
ρ(y)H

(2)
(kl)(y, s)D

(4)
(mnpqrs)(s)

)
− Sym

(
ρ(y)H

(4)
(klmn)(y, s)D

(4)
(pqrs)(s)

)
− Sym

(
ρ(y)H

(6)
(klmnpq)(y, s)D

(0)
(rs)(s)

)
(3.76c)
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3.5.2 Macroscale problem

The weak form of the boundary value problem defined in Fig. 3.3 is written as:

∫
Ω

w(x),xkD
e
kl(s)U,xl(x, s)dx +

∫
Ω

w(x)ρ0s
2U(x, s)dx =

∫
Γt
w(x)t̃(x, s)dx (3.77)

The macroscale displacement is rewritten as: U(x, s) = Ure + iUim, where Ure and Uim

are respectively the real and imaginary parts. Using Galerkin’s approximation, the

finite dimensional solution space for the macroscale displacement is written as:

Uh{re,im} :=

Uh
{re,im}(x, s) ∈ H1(Θ,R)

∣∣∣ Uh
{re,im}(x, s) = ũ{re,im}(s) ∀x ∈ Γu


(3.78)

Equation 3.77 is evaluated by Isogeometric Analysis (IGA) with NURBS basis

functions. Among the various desirable characteristics, e.g., exact geometric rep-

resentation [60], its application in wave propagation problems [61, 62, 126, 31] has

demonstrated high rate of convergence due to the so-called k-refinement, by which

Cp−1-continuity (p is the polynomial order of the basis functions) could be achieved.

It is noted that standard FEM with C0-continuous shape functions can also be em-

ployed to numerically evaluate Eq. 3.77, provided that a sufficiently fine mesh is used

to avoid numerical dispersion.

In the context of IGA, the basis functions that approximate the solution field

are ones representing the geometry of the physical domain. In two-dimensions, the

physical domain is represented by the NURBS basis functions through the mapping:

x(ξ) =

Mbf∑
A=1

N [A],p(ξ)P[A] (3.79)

where, {P[A]}Mbf

A=1 ∈ R2 is a set of control points in the physical domain, N [A],p is

the Ath NURBS basis function that is constructed from B-spline basis functions of
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polynomial order p. C1-continuous basis functions are used for all the numerical

examples in Section 3.6, therefore p = 2. The basis function is parameterized by knot

vectors that are defined in the parametric domain Ω̂ ∈ R2. The parametric domain

is partitioned into elements by knots, which forms the elements in physical domain

through mapping Eq. 3.79. A detailed discussion of the NURBS basis functions and

IGA are provided in Ref. [27]. By virtue of the isogeometric concept, the macroscale

displacement in the parametric domain is approximated by:

Ûh(ξ, s) =

Mbf∑
A=1

N [A],p(ξ)U [A](s) (3.80)

The macroscale displacement in the physical domain is obtained by considering the

inverse of the geometric mapping (Eq. 3.79):

Uh(ξ, s) = Ûh(ξ, s) ◦ x−1 (3.81)

3.5.3 Uncoupled multiscale solution strategy

In this section, we present the solution strategy to the multiscale system. The

micro- and macroscale problems are uncoupled because the microscale boundary value

problems are independent of the macroscale solution. The microscale boundary value

problems are successively evaluated in the Laplace domain to compute the homog-

enized shear moduli, after which the nonlocal effective stiffness is computed. The

macroscale boundary value problem is then solved to obtain the macroscale displace-

ment in the Laplace domain. Numerical inverse Laplace transform is applied to obtain

the solution in time domain. The computational flowchart is shown in Fig. 3.4.

A numerical inverse Laplace transform algorithm [29, 16] based on the Fast Fourier

Transform is used to transform the solution from the Laplace domain to the time

domain. In this algorithm, the accuracy of the numerical inverse transformation
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Given the convergence region of the inverse Laplace transform integration
Provide inputs: Laplace variable samples

(𝑠" where 𝛼 = 1, 2, … , 𝑁*) and for each 𝑠":

H(1)(y, s↵) and D(0)(s↵)

Microscale

H(2)(y, s↵)

H(3)(y, s↵) and D(2)(s↵)

H(4)(y, s↵)

H(5)(y, s↵) and D(4)(s↵)

H(6)(y, s↵)

H(7)(y, s↵) and D(6)(s↵)

D(0)(s↵), D(2)(s↵)

D(4)(s↵), D(6)(s↵)

Provide inputs: 𝑈(𝒙, 𝑠") for all Laplace variable samples

Numerical inverse Laplace transformation

𝑈(𝒙, 𝑡0) Given a simulation time period

Provide inputs: discrete time 
steps, 𝑡0, 𝛽 = 1, 2, … , 𝑁2.

Parallelization

Approximation parameters:

U(x, s↵)

Macroscale

Parameter: ⌫(s↵)

A(1)(s↵) and A(2)(s↵)

Nonlocal effective stiffness:

Macroscale displacement:

De(s↵)

Figure 3.4: Computational flowchart.

is controlled by an algorithm parameter. It is set to provide sufficient numerical

accuracy in all simulations. Fast convergence is achieved by employing the ε-algorithm

[84]. A comprehensive study of this algorithm compared to others can be found in

Ref. [30]. With this transformation, the key steps towards obtaining the macroscale

displacement, U(x, t) are described as follows:

1. Given an observation time period, discrete time steps (i.e., tβ where β =

1, 2, · · · , Nt and Nt is the number of time steps) are generated. The Laplace

variable, s, is sampled by sα where α = 1, 2, · · · , Ns and Ns is the number of

samples, within the convergence region of the inverse Laplace transform inte-

gration, along a vertical line (i.e., of the same real part) in the complex plane.

2. For each sample, sα, influence functions, H(n+1)(y, sα), and homogenized shear

moduli, D(n)(sα), n = 1, 2, ..., 6, are successively evaluated through the proce-
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dure in Section 3.5.1.

3. Provided with D(0)(sα), D(2)(sα), D(4)(sα) and D(6)(sα), the approximation

parameters are computed by the Moore-Penrose pseudo-inverse:

A(1)(sα) = d(6)(sα)
(
d(0,4)(sα)

)(−m)

and A(2)(sα) = d(4)(sα)
(
d(2,0)(sα)

)(−m)

,

where d(6)(sα), d(0,4)(sα), d(4)(sα) and d(2,0)(sα) are vectors of the non-zero

independent components of Sym(D(6)), Sym
(
D(0) ⊗ Sym(D(4))

)
, Sym(D(4))

and Sym
(

Sym(D(2))⊗D(0)
)

. The parameter, ν(sα), is obtained by the con-

strained minimization problem defined in Fig. 3.2.

4. With all the homogenized moduli and model parameters computed in the higher

order gradient nonlocal formulation, the nonlocal effective stiffness, De(sα), for

the nonlocal effective medium model is obtained as detailed in Section 3.4.3.

5. The macroscale displacement, U(x, sα), is obtained by evaluating the macroscale

boundary value problem in Section 3.5.2.

6. Steps 2-5 are repeated Ns times to compute the macroscale displacements for

all sampled Laplace variables. The complex valued macroscale displacements,

U(x, sα) are provided to the numerical inverse Laplace transform algorithm

and the macroscale displacements for all the time steps in the time domain are

obtained.

The uncoupled solution strategy allows an off-line computation of the required

nonlocal effective stiffness for the solution of macroscale displacement for a given mi-

crostructure. In particular, microscale problems are evaluated once in the case of com-

posites with elastic constituents, since they are independent of the Laplace variable.

For viscoelastic composites, the repeated evaluation of Steps 2-5 are implemented in

a parallel environment since all the Laplace variable samples are independent of each

other. They are evaluated once for a given period of simulation time.
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3.6 Model Verification

In this section, we assess the capability of the proposed spatial-temporal nonlocal

homogenization model (STNHM) in capturing wave dispersion and attenuation in

both elastic and viscoelastic composites. Two numerical examples are presented to

evaluate the proposed model for elastic layered composites and viscoelastic compos-

ites with circular inclusions. The dispersion relation and transient wave propagation

in elastic layered composite are investigated in the first example. The second example

focuses on transient wave propagation in the viscoelastic composite. Time domain

response and wave transmission characteristics are examined and compared with the

direct numerical simulations. In all numerical examples, the number of Laplace vari-

able samples are chosen large enough such that further increase of the resolution does

not significantly alter the simulation results.

3.6.1 Elastic layered composite

3.6.1.1 Low material property contrast

We consider a two-dimensional bi-material layered microstructure composed of

aluminum and steel, as shown in Fig. 3.5(a). The size of the microstructure is 0.02

m ×0.02 m and the volume fraction of steel is 0.5. The shear modulus and density

are 26.2 GPa and 2700 kg/m3 for aluminum, and 80.8 GPa and 7900 kg/m3 for steel,

respectively.

The steady-state wave propagation characteristics of the proposed model is eval-

uated by comparing the dispersion curves with those obtained from the Bloch wave

expansion [66], where an eigenvalue problem of frequency ω is formulated by discretiz-

ing the unit cell with finite element method and sampling the wave vector k within the

irreducible Brillouin zone. As shown in Fig. 3.5(b), this approach samples the wave

vector within the domain [0, π/l] × [0, π/l]. The dispersion relation for wave vectors

outside of the irreducible Brillouin zone but within [0, 2π/l]× [0, 2π/l] is obtained by
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Figure 3.5: (a) Aluminum-steel layered microstructure. (b) Sketch of
irreducible Brillouin zone (shaded square) and the probed domain of wave

vector (square ΓXMY). (c) Macrostructure and boundary conditions.

shifting the corresponding branch obtained in the irreducible Brillouin zone by π/l.

The dispersion curves of the proposed model (STNHM) is computed by sampling the

wave vector in [0, 2π/l] × [0, 2π/l] and solving for the frequency ω by Eq. 3.54 (s is

replaced with iω).

Figure 3.6 shows the dispersion curves of wave vectors sampled in four directions,

i.e., ΓX, ΓP, ΓM, ΓY. The dispersion relations of the spatial nonlocal homogenization

model (SNHM) proposed in Refs. [64, 43], STNHM with ν = 0 and STNHM, which

respectively correspond to the nonlocal homogenization models employing asymptotic

expansions of up to the 4th, 6th and 8th order, are plotted for comparison. STNHM

accurately captures the dispersion in the first pass band, and the initiation and size

of the first stop band in all directions. In Fig. 3.6(a) and (b), SNHM behaves as a

low-pass filter which prohibits any wave of frequency higher than the cut-off frequency

from propagating. In addition, it does not predict the onset of the stop band. By

setting ν = 0, STNHM recovers the homogenization model that is derived based on

Eqs. 3.31a-f. This model predicts the optical branch due to the presence of temporal

nonlocal term, but it is less accurate at the end of the first stop band compared to
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Figure 3.6: Dispersion curves of aluminum-steel layered composite.

STNHM.

Figure 3.7 shows the effect of reducing the direction-dependent nonlocal effec-

tive stiffness to a direction-independent one as employed in the nonlocal effective

medium (NEM) model. The wavenumber as a function of direction computed by

the regularized STNHM (Eq. 3.57), kreg, and NEM (Eq. 3.58), kred, are compared

with that from Bloch wave expansion in Fig. 3.7(a). Results obtained at frequencies,

ω = 2π{10, 20, 30, 40, 50} kHz, are plotted. At low frequencies, both STNHM models

predict the wavenumber in all directions accurately. As frequency increases, where

significant wave dispersion occurs, NEM captures the dispersion in 0° and 90°, and

introduces a slight discrepancy in other directions. The error induced by approximat-

ing the direction-dependent nonlocal effective stiffness with one obtained from θ = 0

and θ = π/2 is shown in Fig. 3.7(b). The error, kerr = |kreg−kred|/kreg, measures the

normalized absolute difference between wavenumber computed from the regularized

STNHM and NEM, as a function of frequency and wave propagation direction. The
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Figure 3.7: (a) Polar plots of the wavenumber kl/(2π) as a function of direction θ.
Dotted line, ’· ·’, Bloch wave expansion; Solid line, ’—’, regularized STNHM; Dashed

line, ’- -’, NEM. (b) Polar plots of the error caused by model reduction. From the
center outward, the diagrams are computed for ω = 2π{10, 20, 30, 40, 50} kHz.

maximum error is about 0.05 around 30°, 150°, 210°, 330° and when the frequency

is near the onset of the stop band. The regularized STNHM predicts the anisotropic

wave dispersion characteristics because of the direction-dependent nonlocal effective

stiffness. As a result of the model reduction, this feature is captured but with a

slightly increased error.

Transient wave propagation is investigated by considering a macrostructure that

is composed of 20 microstructures as shown in Fig. 3.5(a). The macrostructure and

boundary conditions are shown in Fig. 3.5(c). Sinusoidal out-of-plane displacement

load with amplitude M , ũ3(t) = M sin(2πft), is applied at the left boundary of the

structure and the right boundary is fixed. Periodic displacement boundary condition

is applied to the top and bottom edges. In Fig. 3.8, the normalized displacement

(U/M) along the bottom edge of the structure computed from NEM is examined

against the reference solution at two time instances, i.e., t=0.5T and t=T. The refer-

ence solution is obtained from direct numerical simulations with all the heterogeneities

fully resolved by IGA and Newmark-beta method for time integration. It is noted

72



0 0.08 0.16 0.24 0.32 0.4
-1.5

-1

-0.5

0

0.5

1

1.5

Reference, t=0.5T

NEM, t=0.5T
Reference, t=T

NEM, t=T

U
/M

x (m)
0 0.08 0.16 0.24 0.32 0.4

-1.5

-1

-0.5

0

0.5

1

1.5

U
/M

x (m)

0 0.08 0.16 0.24 0.32 0.4
-1.5

-1

-0.5

0

0.5

1

1.5

U
/M

x (m)
0 0.08 0.16 0.24 0.32 0.4

-1.5

-1

-0.5

0

0.5

1

1.5

U
/M

x (m)

(a) f = 10 kHz (b) f = 50 kHz

(c) f = 80 kHz (d) f = 120 kHz

Figure 3.8: Displacement snapshots along the measurement line.

that pointwise comparison of displacement between the homogenization model and

direct numerical simulations is only one-to-one at the corner points of the microstruc-

ture, where the microscale influence functions are zero (see Section 3.5.1). Because

the heterogeneous displacement is equal to the homogenized displacement at these

points according to Eqs. 3.14, 3.19, 3.20. Therefore, only the displacements at cor-

ner points of each microstructure from the direct numerical simulations are plotted

as the reference solution. As is shown in Fig. 3.8, NEM predicts the non-dispersive

wave propagation (Fig. 3.8(a)) and wave dispersion (Fig. 3.8(b)) in the first pass

band. Further increasing the loading frequency, wave is significantly attenuated in

the first stop band (Fig. 3.8(c)). The proposed model captures the attenuated wave

reasonably well. Wave propagation in the second pass band is shown in Fig. 3.8(d).

At f = 120 kHz, a phase shift between NEM and direct numerical simulations is

observed. The cause of this error is linked to the fundamental assumption of separa-

tion of scales. Although higher order terms in the asymptotic expansion contributes
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to a more accurate approximation of the heterogeneous displacement field and allows

NEM to predict wave dispersion in the first pass band and attenuation in the first stop

band, the accuracy of the proposed model deteriorates as the wavelength decreases.

When the wavelength approaches the size of the microstructure, the microscale and

macroscale responses are inseparable, and the homogenization model is no longer

accurate.

3.6.1.2 The effect of material property contrast

A parametric study examining the accuracy of STNHM for different material

property contrasts is performed for the layered microstructure. The volume fraction

of each phase is set to be 0.5. The dispersion curves for wave propagation in the k1

direction are shown in Fig. 3.9 for various stiffness contrasts, rG = G(1)/G(2), and

density contrasts, rρ = ρ(1)/ρ(2), where G(1), G(2) and ρ(1), ρ(2) are the shear moduli

and densities of the two phases, respectively. ωl/(2πc1) is the normalized frequency

and c1 =

√
D

(0)
11 /ρ0 is the homogenized wave velocity in the k1 direction.

For low material property contrast (Fig. 3.9(a)), STNHM accurately captures the

acoustic branch. The accuracy in prediction of the end of the stop band decreases as

the stiffness contrast increases. Figure 3.9(b) shows the dispersion curves of compos-

ites with high stiffness contrast which is typical of the contrast between polymers and

metals. In these cases, STNHM accurately predicts wave dispersion in the acoustic

regime and the initiation of the stop band. The end of the stop band is over pre-

dicted and the optical branch is shifted to higher frequency compared to the Bloch

wave solutions. The effect of density contrast is shown in Fig. 3.9(c). As the density

contrast increases, the accuracy of STNHM in the short wavelength regime of the

acoustic branch decreases. STNHM predicts the trend that the width of the stop

band increases as the density contrast increases. However, similar to the behavior

when high stiffness contrast is present, the predicted end of the stop band and the
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optical branch occur at higher frequency.
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Figure 3.9: Dispersion curves of elastic layered composite with different
material property contrasts. (a) Low stiffness contrast with rρ = 3, (b) High

stiffness contrast with rρ = 3, (c) High density contrast with rG = 200.

3.6.2 Viscoelastic matrix-fiber composite

In this section, we investigate wave propagation in viscoelastic composite with the

microstructure that has elastic circular inclusion embedded in viscoelastic matrix and

size of 0.02 m ×0.02 m. The elastic phase has volume fraction of 0.2. The constitutive

relation of the viscoelastic phase is given by Eq. 3.4, where the shear modulus is

represented with Prony series in time domain. After Laplace transformation, the

modulus function is expressed as:

G(2)(s) = G0s

1−
n∑
i=1

pi

(
1− s

s+ 1/qi

) (3.82)

where, G0 is the instantaneous shear modulus describing the elastic behavior, and pi

and qi are parameters that define the Prony series expansion representing the effect of

damping. G0 and the density are taken as 1.48 GPa and 1142 kg/m3, according to the

experimentally fabricated two-dimensional elastic phononic crystal [124]. Damping

effect is introduced by considering the Prony series provided in Table 1 [2].
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Table 3.1: Prony series of the viscoelastic phase.

p1 p2 p3 p4

0.074 0.147 0.313 0.379

q1 [ms] q2 [ms] q3 [ms] q4 [ms]
463.4 0.06407 1.163× 10−4 7.321× 10−7

3.6.2.1 Dispersion analysis

In this section, we perform dispersion analysis of viscoelastic composites and ex-

amine the characteristics of STNHM in capturing wave dispersion and attenuation.

The dispersion relation of the proposed model is compared to the Bloch expansion

approach [3]. The dispersion curves of both STNHM and the reference are obtained

in the frequency domain (replacing s with iω) by sampling the frequency and solving

for the wavenumber. The analysis is performed for microstructures with different

elastic phase properties, while the viscoelastic phase properties are fixed.
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Figure 3.10: Dispersion curves of viscoelastic matrix-fiber composite with different
material property contrasts. (a) Low stiffness contrast with rρ = 1.5, (b) High contrast.

Figure 3.10 shows the dispersion curves (in the k1 direction) of viscoelastic com-

posites with various property contrasts. The shear modulus of the viscoelastic phase

at the frequency, f = 15 kHz, is used to evaluate the stiffness contrast, rG. Both real

and imaginary parts of the wavenumber are shown, and they represent the spatial

variation of wavefield and attenuation, respectively. Due to the presence of viscoelas-

tic dissipation, wave attenuation increases monotonically as frequency increases in
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the pass bands. The stop band is featured by the elevated attenuation within certain

frequency ranges. In Fig. 3.10(a), STNHM predicts both real and imaginary parts

of wavenumber in the acoustic branch. Similar to the elastic case (Fig. 3.9(a)) the

error in the prediction of the end of the stop band increases as the stiffness contrast

increases. Figure 3.10(b) shows the dispersion curves of the acoustic branch and a

part of the stop band for viscoelastic composite with high material property contrast.

STNHM predicts wave dispersion and attenuation in the acoustic regime and the

initiation of the stop band for high stiffness contrast. The accuracy decreases as the

density contrast increases. This observation is consistent with the example of elastic

composite in Fig. 3.9(b)(c).
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Figure 3.11: Dispersion curves of viscoelastic composite with aluminum
inclusion.

Figure 3.11 shows the dispersion curves for viscoelastic composite in two wave

vector (k = k1ê1 + k2ê2) directions, k2 = 0 and k2 = 0.5k1. The elastic phase is

taken as aluminum. SNHM, STNHM with ν = 0 and STNHM are compared to

demonstrate the effect of high order asymptotic expansions. While both SNHM and

STNHM capture wave dispersion in the acoustic regime, SNHM does not capture the

initiation of the stop band accurately. By incorporation of the temporal nonlocal

term, STNHM with ν = 0 improves the prediction of the initiation of the stop band

with respect to the frequency compared to SNHM, however, it has significant error in

predicting wave dispersion within the first pass band. This manifests the importance

of appropriate computation of the parameter ν proposed in Section 3.4.2.
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3.6.2.2 Transient wave propagation in viscoelastic composite

A numerical example of transient wave propagation in a viscoelastic composite is

provided in this section. A macroscopic structure composed of 20×20 microstructures

is considered as shown in Fig. 3.12. The material properties are identical to those

used in Fig. 3.11. Out-of-plane sinusoidal displacement load is applied at the center

of left boundary within 10l range and the right boundary is fixed.

20 microstructures

phase-1: elastic
phase-2: viscoelastic

Macrostructure

Microstructure

x1

x2

y1

y2

10l

l̂

measurement line

ũ3(t)

Figure 3.12: Multiscale system of the viscoelastic composite.

Figure 3.13 shows the normalized displacement along the measurement line at the

end of the simulation, t=T, for four loading frequencies. The results of NEM are

compared to the classical local homogenization model (LHM) and direct numerical

simulation (reference). The classical homogenization model, which does not capture

the dispersion caused by heterogeneities, is provided to distinguish the dispersion

caused by material heterogeneity from material damping. At low frequencies, the

wavelength is significantly larger than the microstructure and the dispersion caused
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by material heterogeneity is negligible. Both NEM and LHM predict wave propa-

gation with progressively reduced amplitude due to wave spreading and viscoelastic

dissipation in Fig. 3.13(a). Increasing the loading frequency leads to shorter defor-

mation wavelength, and dispersion occurs due to interactions between macroscopic

wave and the microstructure. As a consequence, the macroscopic wave speed and

amplitude decrease. It is shown in Fig. 3.13(b) that NEM predicts wave speed and

the displacement along the measurement line. The first stop band occurs when the

macroscopic wavelength is about twice of the size of microstructure. As shown in

Fig. 3.13(c), the wave is significantly attenuated as a result of stop band formation

combined with viscoelastic dissipation. When the frequency is further increased to

24 kHz (Fig. 3.13(d)), the result of direct simulation is within the second pass band.

NEM deviates from the reference result.
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Figure 3.13: Displacement snapshots along the measurement line at t=T.

Figure 3.14 shows the contours of wave propagation in viscoelastic composite com-

pared to the elastic counterpart at fixed loading frequency, f = 12 kHz, at two time

instances, t=0.5T and t=T. The elastic composite is modeled by replacing the modu-
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Figure 3.14: Displacement contours of NEM compared to the reference at frequency
f = 12 kHz. (a), (b), (c), (d) are for viscoelastic composite, and (e), (f), (g), (h) are

for elastic composite. (a), (c), (e), (g) are at t=0.5T, and (b), (d), (f), (h) are at t=T.

lus function of the viscoelastic phase, G(2)(s), with the instantaneous shear modulus,

G0. As a result, the matrix material is stiffer than the viscoelastic matrix. Wave

propagates at lower speed in the viscoelastic composite compared to the elastic one,

leading to reduced wavelength at given frequency, which results in stronger inter-

action with the microstructure thus more significant dispersion. At t=T, the shear

wave propagating in the viscoelastic composite just reaches the right boundary of the

domain, whereas in the elastic composite, the reflected and incoming wave superim-

pose, creating an intensified wave field near the boundary. Within the stop band,

the traveling shear wave is subject to significant attenuation. Figure 3.15 shows the

displacement contour of viscoelastic and elastic composites, at loading frequencies

f = 18 kHz and f = 35 kHz, respectively, within the stop band. Compared to

wave propagating in the elastic composite, more significant attenuation is observed in

viscoelastic composite, featured by the almost complete attenuation after two wave-

length distance from the left boundary. In Fig. 3.14 and 3.15, the overall wave pattern

predicted by NEM matches with the direct simulation for both viscoelastic and elastic

composites.
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Figure 3.15: Displacement contours of viscoelastic and elastic composites at
t=T for loading frequencies within the stop band. (a), (c) are the reference, and

(b), (d) are results of NEM.

The wave transmission spectrum provides a more intuitive way to identify and

understand wave propagation characteristics in viscoelastic composites in terms of

loading frequency. We consider wave propagation in a viscoelastic composite com-

posed of a row of 20 microstructures, as sketched in Fig. 3.5(c). Sinusoidal load is

applied to the left boundary with a range of frequencies, f ∈ [1, 36] kHz, and the

displacement is measured 5 unit cells away from the left boundary, i.e., x1 = 0.1 m.

Two viscoelastic microstructures are investigated, i.e., matrix-fiber and bi-material

layered. The bi-material layered microstructure is shown in Fig. 3.5(a) with steel

phase replaced by the viscoelastic phase for which, the material properties are pro-

vided earlier in this section. Figure 5.10 shows the normalized maximum transmitted

wave amplitude, Ut/M , at the measurement point for the considered two microstruc-

tures. As LHM does not capture wave dispersion due to microstructures, it char-

acterizes the viscoelastic dissipation, which monotonically increases as a function of

loading frequency. At low frequency, only viscoelastic dissipation causes wave atten-

uation, therefore, NEM and LHM predict identical wave transmission. As frequency

increases, dispersion induced by material heterogeneity enhances wave attenuation.

Formation of the stop band is featured by the dip around f = 13 kHz, contributing

significant wave attenuation. NEM predicts the transmitted wave amplitude up to

f = 22 kHz and f = 31 kHz respectively for matrix-fiber and layered viscoelastic
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composites, where the wavelength is about 1.5 times of the size of microstructure.

The second pass band starts to form at these frequencies featured by the bump that

covers about 5 kHz frequency range. Frequencies higher than 36 kHz are not plotted,

because the wavelength is smaller than the size of microstructure within the matrix-

fiber composite and asymptotic homogenization is no longer applicable. Comparing

Figs. 5.10(a) and (b), the stop band of viscoelastic composite with bi-material layered

microstructure covers a much wider frequency range than the one with matrix-fiber

microstructure. Moreover, more pronounced wave attenuation is observed within the

stop band.
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Figure 3.16: Maximum transmitted wave amplitude after 5 unit cells. (a)
Matrix-fiber viscoelastic composite. (b) Bi-material layered viscoelastic composite.

3.7 Conclusion

This chapter extended the spatial-temporal nonlocal homogenization model for

transient anti-plane shear wave propagation in viscoelastic composite. The proposed

model is derived based on asymptotic expansions of up to the eighth order. The ho-

mogenized momentum balance equation has higher order gradient terms, i.e., fourth

order spatial, fourth order temporal and mixed spatial-temporal derivatives. Tran-

sient shear wave propagation is evaluated by an nonlocal effective medium model

that shares the same equation structure as the classical homogenization model, while

the nonlocal characteristics are retained through the nonlocal effective stiffness. The
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major conclusions are summarized as follows:

(1) The spatial-temporal nonlocal homogenization model captures wave dispersion

within the first pass band, the initiation of the first stop band and wave attenuation

within it for both elastic and viscoelastic composites.

(2) A major contribution of the proposed model is that all model parameters

are computed uniquely from the microstructural equilibrium and dependent on the

material properties and microstructural geometry only. The computation of model

parameters is performed as an off-line process uncoupled from the macroscale solution.

(3) Higher order asymptotic expansions and the derived temporal nonlocal term

is critical in extending the applicability of the asymptotic homogenization to shorter

wavelength regime, nevertheless, it cannot go beyond the limit of separation of scales.
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Chapter 4

SPATIAL-TEMPORAL NONLOCAL HOMOGENIZATION MODEL FOR

TRANSIENT IN-PLANE ELASTIC WAVE PROPAGATION IN PERIODIC

COMPOSITES

4.1 Introduction

In this chapter, the spatial-temporal nonlocal homogenization model is further

developed for transient in-plane wave propagation in periodic composites. The non-

local homogenization model is then employed to formulate an effective medium model

that retains the nonlocal features in the form of a nonlocal effective moduli tensor. It

is second order in space, therefore does not require high order boundary conditions

for transient simulations. The dispersion curves for layered and matrix-inclusion mi-

crostructures are numerically verified. Transient simulations of in-plane wave propa-

gation in an elastic waveguide are performed and compared with the direct numerical

simulations. We show that the proposed model captures wave dispersion of longitu-

dinal and shear wave modes up to the first optical branch. It is the first time, to the

best of author’s knowledge, the gradient-type nonlocal homogenization model cap-

tures vector-field elastic wave dispersion beyond the acoustic regime and is applied

for transient simulations of wave propagation.

The following notation is used throughout this chapter. Scalars are denoted by

italic Roman or Greek characters; vectors by boldface Roman characters; second or

higher order tensors by boldface italic Roman and Greek characters. Indicial notation

is used when necessary and Einstein summation convention applies to repeated in-

dices. Denoting vectors, second order tensors, nth order tensors respectively as a and

b, A and B, C and D, the tensor operations are defined as follows. Dyadic product:

a⊗b = aibj êi⊗êj, where êi is the Cartesian basis vector. Dot product: A.b = Aijbj êi,
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double contraction: A..B = AijBji and nth contraction: C(.)nD = Cij...uvDvu...ji.

4.2 Multiscale Problem Setting

Consider the domain of a heterogeneous body in the Cartesian coordinate system,

Ω ∈ R2, constructed by periodic unit cells composed of two or more constituents, as

illustrated in Fig. 4.1. Wave propagation within Ω is governed by the momentum

balance equation:

∇x.σ
ζ(x, t) = ρζ(x)üζ(x, t) (4.1)

where, σζ denotes the Cauchy stress tensor; ρζ the density; and uζ the displacement

vector. ∇x. is the divergence operator and superimposed dot denotes derivative

with respect to time. x is the position vector of material points. The superscript,

ζ, indicates that the response fields oscillate spatially due to the microstructural

heterogeneity. Body forces are ignored in the present study.

x1

x2

Ω

 

 

……
…

Θ

y1

y2
λ

ȋ

Figure 4.1: Schematic representation of the multiscale problem setting.

The constitutive response of the heterogeneous body is described by the general-

ized Hooke’s law:

σζ(x, t) = Cζ(x)..εζ(x, t) (4.2)

Cζ(x) is the elastic moduli tensor for the constituents and is taken to be strongly

elliptic with major and minor symmetries. εζ(x, t) is the strain tensor under the
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assumption of small deformation:

εζ(x, t) = ∇s
xu

ζ(x, t) =
1

2

[
∇xu

ζ(x, t) +
(
∇xu

ζ(x, t)
)T]

(4.3)

where ∇x and ∇s
x are the gradient and the symmetric gradient operators, respectively.

The canonical unit cell domain, Θ ∈ R2, is parameterized using the microscale

coordinate, y, which is related to the macroscale coordinate by y = x/ζ, where 0 <

ζ < 1 is the small scaling parameter. The smallness of the scaling parameter sets the

premise for the homogenization approach. Asymptotic homogenization is not suitable

when ζ ≥ 1. In the context of wave propagation, the scaling parameter is defined as

the ratio between the size of microstructure, l, and the characteristic length of the

deformation wave (i.e., ζ = l/λ, where λ is the characteristic deformation wavelength).

With the macro- and microscale coordinates, any response field, f ζ(x, t), is assumed

to allow a two-scale description: f ζ(x, t) = f(x,y(x), t). The material properties, i.e.,

elastic moduli tensor and density, are taken to depend on the microscale coordinate

only, i.e., Cζ(x) = C(y) and ρζ(x) = ρ(y). Local periodicity is assumed for all

response fields.

We consider periodic composites with low material property contrast between

different phases. The mechanism of band gap formation of these composites is mainly

due to destructive interaction of incident and scattered waves, i.e., Bragg scattering.

The first band gap typically occurs when the macroscopic wavelength is of the same

order as the size of the unit cell. Band gaps due to local resonance can occur with

wavelength much larger than the size of the unit cell, which requires high contrast

in constituent material properties. This type of composites is not considered in this

chapter.
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4.3 Two-Scale Asymptotic Analysis

The formulation of the proposed model is based on mathematical homogenization

with multiple spatial scales. The present approach considers asymptotic expansions

of up to the eighth order. The details of the formulation in the context of transient

dynamics for scalar-field wave is provided in Chapter 2 and Chapter 3. The overview

in this section is a straightforward extension to transient analysis of vector-field prob-

lems. The displacement field is approximated using the following decomposition:

uζ(x, t) = u(x,y, t) = u(0)(x, t) +
8∑
i=1

ζ iu(i)(x,y, t) +O(ζ9) (4.4)

where, u(0) denotes the macroscopic displacement field and is dependent on the

macroscale coordinate only [44] and u(i), i = 1, ..., 8, are the displacement fields

of high orders which depend on both macroscale and microscale coordinates. We

note that for composites that have constituents with high property contrast (e.g.,

when the tensors of elastic moduli of the constituents exhibit double porosity-type

scaling [115, 9]), u(0) may depend on both micro- and macroscale coordinates due to

local resonance within the microstructures.

The displacement field at each order is decomposed into a macroscopically con-

stant field and summation of a series of locally varying fields with zero mean over the

unit cell [15]:

u(i)(x,y, t) = U(i)(x, t) +
i−1∑
k=0

Ũ(i,k)(x,y, t) (4.5)

where, Ũ(i,k)(x,y, t) is the kth locally varying field of u(i)(x,y, t) and it is assumed to

be related to the successive gradients of macroscopic strain of an inferior order by a

time-invariant, locally periodic influence function defined over the unit cell:

Ũ(i,k)(x,y, t) = H(k+1)(y)..(.∇x)
k∇s

xU
(i−k−1)(x, t) (4.6)
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where, H(k+1) is the periodic microstructural influence function at order (k + 1) and

it is symmetric in the last two indices that are contracted with ∇s
xU

(i−k−1). (.∇x)
k is

the (k)th gradient with respect to the macroscale coordinate, x, with k contractions to

the microstructural influence function. This construction allows separate evaluation

of the microscale influence functions and macroscale momentum balance equations.

Employing Eqs. 5.1-4.6, the equilibrium equations for microscale influence functions

and macroscale momentum balance equations at each order are successively derived

(see Appendix E). The microscale equilibrium equations are:

O(ζ−1) : ∇y.C
(0)(y) = 0 (4.7a)

O(ζα) : ∇y.C
(α+1)(y) = θ(y)

α∑
j=0

H(j)(y).D(α−j) −C(α)(y) (4.7b)

where θ(y) = ρ(y)/ρ0, and ρ0 = ρ(y) is the homogenized density. Overbar indicates

averaging operator over the unit cell domain. C(α)(y) (α = 0, 1, ..., 7) is expressed as:

C(α)(y) = C(y)..
[
H(α)(y)⊗ I + ∇yH

(α+1)(y)
]

(4.8)

where I is the second order identity tensor. The homogenized moduli at each order

D(α) is written as:

D(0) = C(0)(y) (4.9a)

D(α) = C(α)(y)−
α∑
j=1

θ(y)H(j)(y).D(α−j) (4.9b)

D(0) is a 4th order tensor that defines the effective moduli in the quasi-static limit and

is a function of microstructural geometry and elastic properties only. It possesses ma-

jor and minor symmetries. The high order moduli, D(α), are (α+ 4)th order tensors.

These moduli are not only functions of microstructural geometry and elastic proper-
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ties, but also the densities of the constituents of the microstructure and they contain

length-scale of O(l̂α). For simplicity of formulation below, we consider microstruc-

tures that possess symmetry aligned with the Cartesian coordinate planes. For these

microstructures, orthotropic macroscopic properties are observed. As a consequence,

D(α) = 0 for odd α and the components with odd number of repeated indices are

zero for even α [55]. Therefore, the balance equations of odd orders have identical

form and parameters as the even order ones of an order inferior.

The macroscale balance equation at O(ζα) is written as:

∇x.
α∑
j=0

D(j)..(.∇x)
j∇s

xU
(α−j) = ρ0Ü

(α) (4.10)

At the leading order, α = 0, the macroscale momentum balance equation is local

and describes non-dispersive wave propagation in the long wavelength limit. The

balance equations at higher asymptotic orders successively include nonlocal stresses

that are of the second order form, D(j)..(.∇x)
j∇s

xU
(α−j), which are functions of strain

gradients of lower asymptotic orders. The contribution of the nonlocal stresses is the

volume source disturbance resulting from the lower order displacements. It balances

with the stress and momentum of the current order.

4.4 Spatial-Temporal Nonlocal Homogenization Model

In this section, we first propose a fourth-order spatial-temporal nonlocal homoge-

nization model. The structure of the resulting governing equation is similar to those

in Chapter 2 and Chapter 3 for scalar-field wave, and include spatial nonlocal, tem-

poral nonlocal and mixed spatial-temporal nonlocal terms. The model parameters

are determined using response in high symmetry directions of the first Brillouin zone.

Next, we formulate a nonlocal effective medium model that retains the nonlocal char-

acteristics of the corresponding nonlocal homogenization model in high symmetry

directions but in the form of a second-order PDE with a frequency-dependent moduli
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tensor. The nonlocal effective medium model is used for simulation of transient wave

propagation.

The proposed formulation consists of 5 steps: (1) restatement of the governing

equations at various asymptotic orders using a series of weighting tensors; (2) ap-

plication of projection operations to the high order homogenized moduli to achieve

a consistent model of the spatial-temporal nonlocal form; (3) identification of the

projection tensors based on particular plane wave solutions; (4) identification of the

weighting tensors; and (5) model order reduction to devise the effective medium model

for transient dynamics simulations. The key ideas, assumptions and concepts in the

proposed five-step formulation are discussed below. For clarity of the presentation,

we skip the algebraic details. A detailed derivation of the formulation is provided in

Appendix F.

4.4.1 Higher order gradient formulation

In what follows, we employ the momentum balance equations, Eq. 4.10 with α =

0, 2, 4, 6, to derive the fourth-order spatial-temporal nonlocal model. The balance

equations at odd orders do not contribute to the resulting model under the symmetry

conditions discussed above [55]. The homogenized displacement field is expressed as

the additive sum of contributions from all even orders:

U(x, t) =
3∑
i=0

ζ2iU(2i)(x, t) +O(ζ8) (4.11)

We start by restating the macroscale balance equations, Eq. 4.10 with α = 2, 4, 6,

in alternative forms. Let ν(j), j = 1, 2, 3, denote three weighting tensors that are

applied to the nonlocal stress terms in Eq. 4.10. Without loss of generality, the
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macroscale balance equations become:

ρ0Ü
(α) −∇x.

(
D(0)..∇s

xU
(α)
)

= ∇x.

α/2∑
j=1

ν(j).D(2j)..(.∇x)
2j∇s

xU
(α−2j)

+ ∇x.

α/2∑
j=1

(
δ − ν(j)

)
.D(2j)..(.∇x)

2j∇s
xU

(α−2j) (4.12)

The additive decomposition in Eq. 4.12 does not introduce any approximation and

is valid for any form of the weighting tensors. It is a more general form than those

employed in Chapter 2 and Chapter 3 in that the decomposition of all spatial nonlocal

terms is considered. This weighted form of the balance equations subsequently allows

transformation of weighted spatial nonlocal terms to a temporal nonlocal term and a

mixed spatial-temporal nonlocal term as described below. The temporal and mixed

spatial-temporal nonlocal terms are derived from the first term on the right hand side

of Eq. 4.12, while the second term is referred as the asymptotic residual term. The

fractions of spatial nonlocal terms that contribute to the formulation are controlled

by ν(j), where the spatial nonlocal terms are fully incorporated when ν(j) = δ and

not incorporated when ν(j) = 0. In this work, the weighting tensors are taken to be

second-order and diagonal. The choice for the form of the weighting tensors is made

to ensure that we introduce as small number of independent parameters as possible,

while capturing wave dispersion with reasonable accuracy. The choice of diagonal

weighting tensor implies that the contribution of the relevant high order asymptotic

term to momentum balance in each direction is weighted using a separate weighting

parameter. By this approach, two independent parameters need to be identified for

each weighting tensor. These diagonal weighting tensors are uniquely determined by

examining the characteristics of the nonlocal governing equation in each coordinate

direction as discussed in Section 4.4.3.

The next step in the formulation is the projection of high order moduli as follows:
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∇x.
[
D(6)..(.∇x)

6∇s
xU

(0)
]
≈∇x.

[(
A(1).D(0).D(4)

)
..(.∇x)

6∇s
xU

(0)

]
(4.13a)

∇x.

[(
D(0).D(2)

)
..(.∇x)

4∇s
xU

(2)

]
≈∇x.

[(
A(2).D(2).D(0)

)
..(.∇x)

4∇s
xU

(2)

]
(4.13b)

∇x.
[
D(4)..(.∇x)

4∇s
xU

(2)
]
≈∇x.

[(
A(3).D(2).D(0)

)
..(.∇x)

4∇s
xU

(2)

]
(4.13c)

where A(1), A(2) and A(3) are the projection tensors. The projection tensors are

second-order and diagonal. A straightforward rearrangement of Eq. 4.13 shows that

the moduli tensors D(6), D(0).D(2) and D(4) on the left hand side are projected onto

the corresponding tensors D(0).D(4), D(2).D(0) and D(2).D(0), respectively, for arbi-

trary high order strain gradient fields (e.g., (∇x)
4∇s

xU
(2) for Eq. 4.13c). In Chapter 3,

the projection tensors were identified by Moore-Penrose pseudo inversion, which pro-

vides the closest point projection of the projected tensors onto the corresponding

tensors. We employ an alternative strategy for the identification of the projection

tensors. The projection equations are expressed in the form shown in Eq. 4.13 and

the tensors are identified based on strain fields associated with certain plane wave

solutions as described in Section 4.4.2.

Employing the high order moduli projection, Eq 4.13, the first spatial nonlocal

terms on the right hand side of the restated macroscale balance equations, Eq. 4.12,

are transformed into the fourth-order spatial-temporal nonlocal form by replacing

spatial nonlocal terms with the terms in balance with them in the macroscale balance

equations, Eq. 4.10 with α = 0, 2, 4. Employing the definition for the homogenized

displacement field (Eq. 4.11), performing the summation of the spatial-temporal non-

local macroscale balance equations at O(ζα) with α = 0, 2, 4, 6, the homogenized
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momentum balance equation is obtained as:

ρ0Ü−∇x.
(
D(0)..∇s

xU
)

=∇x.
(
α..(.∇x)

2∇s
xU
)

+ ∇x.
(
β..∇s

xÜ
)

+ γ.
....
U

+
3∑
i=1

ζ2iR(2i)
(4.14)

where, the coefficients of the PDE are:

α = ν(1).D(2) − ν(3).A(1).D(0).D(0) (4.15a)

β = ρ0

[
ν(3).A(1).

(
I +A(2)

)
− ν(2).A(3)

]
.D(0) (4.15b)

γ = ρ2
0

(
ν(2).A(3) − ν(3).A(1).A(2)

)
(4.15c)

and the residual vector R(α) at each order are:

R(2) =∇x.
(
E(2)..(.∇x)

2∇s
xU

(0)
)

(4.16a)

R(4) =∇x.
(
E(2)..(.∇x)

2∇s
xU

(2) +E(4)..(.∇x)
4∇s

xU
(0)
)

(4.16b)

R(6) =∇x.
(
E(2)..(.∇x)

2∇s
xU

(4) +E(4)..(.∇x)
4∇s

xU
(2) +E(6)..(.∇x)

6∇s
xU

(0)
)

(4.16c)

in which, the residual coefficient tensors are:

E(2) = (δ − ν(1)).D(2) (4.17a)

E(4) = (δ − ν(2)).D(4) (4.17b)

E(6) = (δ − ν(3)).D(6) −
(
ν(2).A(3) − ν(3).A(1).A(2)

)
.
(
D(2).D(2) +D(4).D(0)

)
(4.17c)

Equation 4.14 represents a family of nonlocal homogenization models with the

coefficient tensors A(1), A(2), A(3), ν(1), ν(2) and ν(3) to be determined. In addition

to the terms (left hand side of the equation) pertain to the classical local homogeniza-
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tion model that characterize non-dispersive wave propagation, three nonlocal terms,

i.e., spatial nonlocal, temporal nonlocal and mixed spatial-temporal nonlocal terms,

are present to capture wave dispersion and attenuation. The asymptotic accuracy of

Eq. 4.14 is controlled by the residual term. When wavelength is much larger than

the size of microstructures, wave propagation is non-dispersive, the contribution of

the nonlocal terms compared to local terms is negligible. Compared to the existing

gradient-type nonlocal homogenization models [43, 11, 64] for in-plane elastic wave,

Eq. 4.14 incorporates the temporal nonlocal term by employing the balance equations

of higher orders. The asymptotic residual term is a function of the weighting ten-

sors and homogenized moduli, which is essential in enforcing the uniqueness of the

spatial-temporal nonlocal homogenization model. Through minimizing this term, the

optimal set of weighting tensors can be obtained that achieves the highest asymptotic

accuracy.

4.4.2 Projection tensors

l Phase 1
Phase 2 k1

k2

2�/l

(b) (c)

k

Г Χ

ΜΥ

l

x1

x3 x2

x1

x2

(a)

Figure 4.2: (a) Schematic representation of in-plane wave propagation in a
macroscopic structure. (b) Layered and matrix-inclusion unit cells as examples
for microstructures that possess symmetry with respect to the Cartesian planes.

(c) Sketch of the first Brillouin zone for considered microstructures.

The procedure to identify the projection tensors, A(j), is based on examining

the propagation of characteristic plane waves in the homogenized medium described

by the nonlocal model (Eq. 4.14). Consider three plane waves of the same mode
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propagating along the same direction as characteristic waves:

Û(i)(x, t) = Û (i)p̂ei(k(i)n̂.x−ωt), i = 0, 2 (4.18a)

Û(x, t) = Û p̂ei(kn̂.x−ωt) (4.18b)

where n̂ and p̂ are unit vectors in fixed directions of wave propagation and polariza-

tion, respectively. Without loss of generality, the plane waves are taken to reside in

the [x1, x2] plane, as shown in Fig. 4.2(a). ω is a positive real-valued scalar denoting

the frequency of the plane waves. Û and Û (i) are the amplitudes of the homogenized

displacement and the two low order components, respectively. k and k(i) denote

the wavenumbers. The wavenumbers are complex-valued when the wave frequency is

within the stop band, where the positive imaginary part results in the exponential de-

cay of the displacement amplitude. Substituting Eq. 4.18a into Eq. 4.13 (considering

equality), the components of the approximation tensors are computed as:

A
(1)
[ii] = d

(6)
[i] /d

(04)
[i] (4.19a)

A
(2)
[ii] = d

(02)
[i] /d

(20)
[i] (4.19b)

A
(3)
[ii] = d

(4)
[i] /d

(20)
[i] (4.19c)

in which,

d(6) = D(6)(.)9
[
p̂(⊗n̂)8

]
(4.20a)

d(04) =
(
D(0).D(4)

)
(.)9

[
p̂(⊗n̂)8

]
(4.20b)

d(4) = D(4)(.)7
[
p̂(⊗n̂)6

]
(4.20c)

d(02) =
(
D(0).D(2)

)
(.)7

[
p̂(⊗n̂)6

]
(4.20d)

d(20) =
(
D(2).D(0)

)
(.)7

[
p̂(⊗n̂)6

]
(4.20e)
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Square brackets around indices, [ii], imply that Einstein summation convention is

not applied to the subscript. The equality in Eq. 4.19 that fully defines the projection

tensors are strictly valid for planes waves associated with a fixed pair (n̂, p̂). Employ-

ing the projection tensors back to Eqs. 4.13 for a different and arbitrary pair of wave

and polarization directions (n,p) would not satisfy the equality and constitute an

approximation. In other words, Eqs. 4.13 are equalities only when n = n̂ and p = p̂.

In general, the directions of wave propagation and polarization are not necessarily

related for an arbitrary plane wave, but the eigenvalues and eigenvectors of a plane

wave are related to the direction of wave propagation and the material properties. For

plane wave propagation in homogeneous anisotropic materials, the eigenvalues and

eigenvectors are obtained by solving the Christoffel equation [98]. In order to char-

acterize the projection tensors and weighting tensors, the characteristic polarization

vector, p̂, is taken to be an eigenvector of wave propagation in a selected direction, n̂,

thus p̂ = p̂(n̂). The selection of the characteristic pair (n̂, p̂) constitutes two steps,

i.e., choose n̂ first and then compute p̂ along the selected direction.

Wave dispersion in periodic composites is typically characterized by the Bloch

wave expansion approach. This approach evaluates an eigenvalue problem of the unit

cell with periodic boundary conditions, either by solving for the frequency with the

wavevector sampled within the first Brillouin zone (i.e., ω(k) method [66, 73]) or by

solving for the wavenumber along a prescribed direction with frequency sampled (i.e.,

k(ω) method [76, 3, 74]). The unit cell averaged Bloch mode shapes describe the

effective polarization of the media when the frequency and wavenumber are within

the homogenizable regime [99, 118], including the acoustic branch and the first optical

branch of the dispersion curves. Therefore, the averaged Bloch mode shapes are used

as the characteristic polarization vector, p̂.

Although there are infinite number of Bloch modes within or on the edges of the

first Brillouin zone, the Bloch modes at high symmetry points are typically selected
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as the projection basis for reduced representation of the dispersion characteristics of

periodic composites. For example, Hussein [66] used high symmetry modes as basis

for model order reduction of unit cell dispersion analysis. Sridhar et al. [117] employed

high symmetry modes to formulate a generalized homogenization model. In order to

capture the dispersion behavior at the high symmetry points, we select the directions

of wave propagation from the center to the high symmetry points on the edges of

the first Brillouin zone (i.e., high symmetry directions) as the characteristic wave

propagation directions n̂. For instance, Γ−X, Γ−M and Γ−Y directions in Fig. 4.2(c)

are chosen as n̂ for the microstructures shown in Fig. 4.2(b). Since the nonlocal terms

in Eq. 4.14 do not contribute to non-dispersive wave propagation, i.e., lower acoustic

branches, Bloch modes of high symmetry points on the edges of the first Brillouin

zone are used. At these points, wave propagation is dispersive. However, only the

modes of acoustic branches (constituent phases moving in-phase) and the first optical

branches (constituent phases moving out-of-phase [18]) can be employed, because

higher modes correspond to wave propagation of wavelengths shorter than the size of

microstructures, violating the scale separation assumption. In addition, the prediction

of the optical branch is more sensitive to the magnitude of the asymptotic residual

(Eq. 4.14), since the residual grows as a function of the wavenumber. Therefore, the

lowest optical Bloch mode is used to compute the characteristic polarization vectors,

p̂.

Selecting (n̂, p̂) in high symmetry directions results in spatial-temporal nonlocal

homogenization models that are in the same form, with different model parameters.

The projection tensors of each model are uniquely computed in a direction of high

symmetry. As a result, the homogenization model most accurately characterizes wave

dispersion in that direction. As the direction of wave propagation migrates away from

the selected direction, the error of prediction increases.
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4.4.3 Weighting tensors

In this section, we propose two approaches to identify the weighting tensors ν(j):

asymptotic residual minimization, and band gap size matching. The asymptotic resid-

ual minimization approach determines the weighting tensors through a constrained

optimization problem that minimizes the asymptotic residual term in Eq. 4.14, where

the constraint is imposed by considering the dispersion characteristics of the nonlocal

governing equation. In the band gap size matching approach, the weighting tensors

are identified by minimizing the discrepancy between the band gap size predicted by

the nonlocal homogenization model and those computed based on the Bloch wave

analysis in prescribed directions.

4.4.3.1 Asymptotic residual minimization

The first approach we propose in the identification of the weighting tensors, ν(j),

is the idea of minimizing the asymptotic residual term in Eq. 4.14. The order of the

residual is O(ζ2) and is expressed as a function of all three weighting tensors. In view

of Eqs. 4.16 and 4.17, the O(ζ2) and O(ζ4) terms in the expression of the residual is

eliminated by simply setting ν(1) = I and ν(2) = I, resulting in a residual of O(ζ6).

The weighting tensor ν(3) is selected such that the remaining residual is minimized,

while considering constraints imposed by physical considerations of wave dispersion.

Considering plane wave propagation with the direction and polarization vectors

set to (n̂, p̂), substituting Eq. 4.18b into Eq. 4.14 and neglecting the residual term,

the characteristic equations of the nonlocal homogenization model are obtained as:

Aik
4 +Bi(ω)k2 + Ci(ω) = 0 (4.21a)

Ãiω
4 + B̃i(k)ω2 + C̃i(k) = 0 (4.21b)
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where,

Ai = αijpqmnp̂nn̂mn̂qn̂pn̂j, Ãi = γinp̂n (4.22a)

Bi = (ω2βijmn −D(0)
ijmn)p̂nn̂mn̂j, B̃i = (k2βijmnn̂mn̂j + ρ0δin)p̂n (4.22b)

Ci = (ω4γin + ρ0ω
2δin)p̂n, C̃i = (k4αijpqmnn̂mn̂qn̂pn̂j − k2D

(0)
ijmnn̂mn̂j)p̂n (4.22c)

The dispersion relation between ω and k for the pair (n̂, p̂) is obtained either by

solving for k given ω (Eq. 4.21a), or by solving for ω given k (Eq. 4.21b). According

to the plane wave solution form, Eq. 4.18b, the stop band occurs at frequencies that

result in complex-valued wavenumbers when k is solved in terms of ω. ω is required

to be real-valued when ω is solved in terms of k. The expressions:

φi(ω) = B2
[i](ω)− 4A[i]C[i](ω) = aiω

4 + biω
2 + ci (4.23a)

φ̃i(k) = B̃2
[i](k)− 4Ã[i]C̃[i](k) = aik

4 + b̃ik
2 + c̃i (4.23b)

determine the roots of Eqs. 4.21, k2 and ω2, being real- or complex-valued. ai, bi, ci,

b̃i and c̃i are functions of ν(3) only and their expressions are provided in Appendix G.

In order to constrain the solutions of k when k is solved in terms of ω, and ω when

ω is solved in terms of k, constraints on ν(3) are imposed through considering the

behaviors of φi(ω) and φ̃i(k).

In view of Eqs. 4.23, the stop band (k being complex) appears in the frequency

range that corresponds to φi(ω) < 0 and the existence of real-valued solution of ω

requires φ̃i(k) > 0. The bounds on the selection of ν(3) are found by constraining

the characteristics of the solutions of Eqs. 4.21 as follows: (1) a stop band exists and

it has finite size, (2) for any given k, there exists a real-valued solution of ω. Since

ci and c̃i are positive, in order to satisfy the two conditions, the following inequality
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constraints are imposed on the selection of ν(3):

ai > 0 (4.24a)

b2
[i] − 4a[i]c[i] ≥ 0 (4.24b)

b̃2
[i] − 4a[i]c̃[i] < 0 (4.24c)

Equation 4.24a ensures that the size of the stop band is not infinite. We make a

distinction between the existence of a stop band with zero width (Eq. 4.24b in equality

form) and nonexistence of a stop band (i.e., b2
[i] − 4a[i]c[i] < 0). The conditions where

”apparent” lack of stop band is therefore captured by Eq. 4.24b in its equality form.

Compared to those imposed based on stability arguments discussed in Chapter 3 in

the context of anti-plane shear wave, the proposed constraints are conceptually more

restrictive. This is because the stability arguments proposed in Chapter 3 are applied

at frequencies and wavenumbers associated with the quasistatic and infinitely long

wave conditions only. The proposed constraints affect the behavior of dispersion for

all frequencies and wavenumbers. Subject to the constraints in Eq. 4.24, the weighting

tensor ν(3) is uniquely determined by minimizing Eq. 4.16c in the Euclidean norm

under the condition of plane wave propagation.

4.4.3.2 Band gap size matching

Similar to above, the weighting tensors ν(1) and ν(2) are determined by eliminating

the O(ζ2) and O(ζ4) residuals (i.e., ν(1) = ν(2) = I). Considering the characteristic

equation of the nonlocal governing equation for plane wave propagation in a prescribed

direction, the wavenumbers and polarization vectors for quasi-longitudinal (P) and

vertically polarized quasi-shear (SV) modes in [x1, x2] plane in Fig. 4.2(a) satisfy the
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following relation:

Bin(ω, k, n̂,ν(3))pn =

B11 B12

B21 B22


p1

p2

 = 0 (4.25)

where,

Bin = k4αijpqmnn̂mn̂qn̂pn̂j + k2(ω2βijmn −D(0)
ijmn)n̂mn̂j + (ω4γin + ρ0ω

2δin) (4.26)

For any given ω and n̂, the wavenumbers for P and SV modes are computed by

equating the determinant of B in Eq. 4.25 to zero and the corresponding polarization

vectors, p, are obtained by substituting the wavenumbers back into Eq. 4.25. The P

and SV modes are generally coupled. In the special case when the wave is propagating

along the x1 or x2 planes (i.e., n̂ = [1, 0]T or n̂ = [0, 1]T ), the off-diagonal terms of B

vanish and the resulting two polarization vectors are along and orthogonal to the wave

vector, resulting in the uncoupling of the longitudinal and shear modes. Equating

the determinant of B in Eq. 4.25 to zero results in the following expression:

B11(ω, k,ν(3))B22(ω, k,ν(3)) = 0 (4.27)

The equality in Eq. 4.27 can be satisfied by either setting B11 = 0 or B22 = 0. These

expressions correspond to the dispersion relations for the uncoupled longitudinal and

shear wave modes, allowing us to determine the band structure of each mode given

an arbitrary weighting tensor. The frequency range of the stop band for each mode

is obtained in the analytical form:

ϕi =

√
b̄2

[i] − 4ā[i]c̄[i]

ā[i]

(4.28)
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where, ā[i], b̄[i] and c̄[i] are respectively computed using the expressions for ai, bi and

ci with n̂ = [1, 0]T or n̂ = [0, 1]T . With the analytical expression of the width of the

stop bands, ν(3) is obtained by solving the constrained minimization problem with

the objective function:
∣∣∣ϕ−ϕ(B)

∣∣∣. ϕ(B) is the frequency range of the first stop band

of the P and SV modes calculated using the Bloch wave expansion approach. The

constraints in Eq. 4.24 are imposed in this minimization problem. Wave propagation

in more general situations (arbitrary n̂) couples the P and SV modes. Performing the

calibration described above may be significantly more involved, since the analytical

expression for the frequency range of the stop band for each mode may not be readily

available.

4.4.4 Nonlocal effective medium model

Direct numerical implementation of the fourth-order initial-boundary value prob-

lem governed by Eq. 4.14 for transient wave propagation in a composite medium poses

two challenges. First, high order boundary conditions need to be imposed due to the

presence of the fourth order spatial term. The form of these high order boundary

conditions has been subject to a number of investigations, but remain to be contro-

versial [6]. Second, both physical and non-physical wave number solutions are present

in Eq. 4.14. The non-physical wavenumbers may result in severe instability in the

numerical solution [55]. In order to avoid these issues, we propose a second-order non-

local effective medium model for transient wave propagation simulations. The model

is formulated in the Laplace domain and by employing the spatial-temporal nonlo-

cal homogenization model with projection tensors and weighting tensors computed

in different high symmetry directions. The nonlocal features of the homogenization

model are retained by a nonlocal moduli tensor that is dependent on the Laplace

variable (i.e., frequency).

Applying the Laplace transformation to Eq. 4.14 and neglecting the residual term,
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the spatial-temporal nonlocal equation is expressed in the Laplace domain:

ρ0s
2U−∇x.

(
D(0)..∇s

xU
)

=∇x.
(
α..(.∇x)

2∇s
xU
)

+ s2∇x. (β..∇s
xU) + s4γ.U

(4.29)

where s = σ + iω is the complex-valued Laplace variable. We seek the nonlocal

effective medium model in the form of a second-order PDE:

ρ0s
2U−∇x.

(
D(e)(s)..∇s

xU
)

= 0 (4.30)

where, D
(e)
ijmn(s) is the nonlocal effective moduli tensor that has minor symmetry in

the last two indices, D
(e)
ijmn = D

(e)
ijnm, due to the symmetry of local strain tensor. Con-

sidering macroscopic orthotropy, it has 6 non-zero independent components for 2D

in-plane wave propagation problems. Inserting a plane wave, U(x, s) = U(s)peikn.x,

into Eq. 4.29 and 4.30, the following relations are satisfied respectively for the ho-

mogenization model and the effective medium model:

B̃in(s, k,n)pn =[
αijprmnnmnrnpnjk

4 + (−s2βijmn −D(0)
ijmn)nmnjk

2 + (s4γin − ρ0s
2δin)

]
pn = 0

(4.31a)

B̄in(s, k,n,D(e))pn =
[
ρ0s

2δin +D
(e)
ijmnnmnjk

2
]
pn = 0 (4.31b)

For any given s and n, the wavenumbers and polarization vectors of the nonlocal

homogenization model are computed by taking the determinant of B̃ to be zero.

Both physical and non-physical wavenumber solutions exist, and the non-physical

wavenumbers are identified as those that have negative imaginary parts, which result

in amplifying plane waves and instability in transient simulations. Only the physical

wavenumbers that have non-negative imaginary parts are employed in the deriva-
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tion of the nonlocal effective medium model. The nonlocal effective moduli tensor is

determined such that the discrepancy of wavenumbers computed from the nonlocal

effective medium model, Eq. 4.31b, and the physical wavenumbers of the nonlocal

homogenization model, Eq. 4.31a, is minimized for any s along high symmetry direc-

tions, n̂. For each direction, the model parameters of the nonlocal homogenization

model is computed as discussed in Section 4.4.2 and 4.4.3.

The components of the nonlocal effective moduli tensor are determined in two

steps. First, the wavenumbers of directions along the x1 and x2 planes computed

by Eq. 4.31b are matched to those computed by Eq. 4.31a, since P and SV modes

are uncoupled in these directions and the wavenumber of each mode of the nonlocal

effective medium model is uniquely determined by one component of D
(e)
ijmn(s) that

j = m:

D
(e)
1111 = −ρ0s

2/k̃2
(11), D

(e)
2112 = −ρ0s

2/k̃2
(12) (4.32a)

D
(e)
1221 = −ρ0s

2/k̃2
(21), D

(e)
2222 = −ρ0s

2/k̃2
(22) (4.32b)

where k̃2
(ij) is the square of the physical wavenumber of j-direction-polarized wave

propagating in the i-direction, computed from Eq. 4.31a. Equation 4.32 ensures

that the wave dispersion predicted by the nonlocal homogenization model in these

orthogonal high symmetry directions
(
e.g., Γ−X and Γ−Y directions in Fig. 4.2(c)

)
is captured by the nonlocal effective medium model. Second, in order to compute

the components that j 6= m (i.e., D
(e)
1122, D

(e)
2211), we incorporate the high symmetry

direction that is not aligned in the coordinate planes
(
e.g., Γ − M in Fig. 4.2(c)

)
and minimize the discrepancy between wavenumbers computed from Eq. 4.31b and

Eq. 4.31a. Denote the wavenumbers and polarization vectors computed from equating

the determinant of B̃ to zero as: k̃ = [k̃(P ), k̃(SV )]
T and P̃ = [p̃(P ), p̃(SV )]. Substituting

p̃(•), (•) indicating P mode or SV mode, into Eq. 4.31b, the wavenumber of the nonlocal
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effective medium model, k̄2
(•), is respectively related to D

(e)
1122 and D

(e)
2211:

k̄2
(•)

(
D

(e)
1122

)
=

−ρ0s
2p̃(•)1(

D
(e)
1111n̂1n̂1 +D

(e)
1221n̂2n̂2

)
p̃(•)1 +

(
D

(e)
1122n̂2n̂1 +D

(e)
1212n̂1n̂2

)
p̃(•)2

(4.33a)

k̄2
(•)

(
D

(e)
2211

)
=

−ρ0s
2p̃(•)2(

D
(e)
2112n̂1n̂1 +D

(e)
2222n̂2n̂2

)
p̃(•)2 +

(
D

(e)
2211n̂1n̂2 +D

(e)
2121n̂2n̂1

)
p̃(•)1

(4.33b)

D
(e)
1122 and D

(e)
2211 are respectively solved by eliminating the total normalized error of

wavenumbers in the two modes:

Φ1

(
D

(e)
1122

)
=

∣∣∣∣∣∣∣
k̃2

(P ) − k̄2
(P )

(
D

(e)
1122

)
k̃2

(P )

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
k̃2

(SV ) − k̄2
(SV )

(
D

(e)
1122

)
k̃2

(SV )

∣∣∣∣∣∣∣ = 0 (4.34a)

Φ2

(
D

(e)
2211

)
=

∣∣∣∣∣∣∣
k̃2

(P ) − k̄2
(P )

(
D

(e)
2211

)
k̃2

(P )

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
k̃2

(SV ) − k̄2
(SV )

(
D

(e)
2211

)
k̃2

(SV )

∣∣∣∣∣∣∣ = 0 (4.34b)

Compared to the local homogenization model which has static moduli tensor, the

effective medium is nonlocal and its moduli tensor depends on the Laplace variable,

which captures wave dispersion caused by the microstructures. Taking the real part

of the Laplace variable asymptote to 0, the dynamic behavior of the moduli tensor

can be interpreted in terms of frequency. In low frequency regime, the nonlocal ho-

mogenization model is non-dispersive, therefore the nonlocal effective moduli tensor

recovers the local counterpart and the nonlocal effective medium model recovers lo-

cal homogenization model. As the frequency increases, wave dispersion occurs. The

nonlocal effective medium model matches the dispersion of the nonlocal homogeniza-

tion model in high symmetry directions and approximates wave dispersion in other

directions.
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4.5 Model Implementation

In this section, we briefly present the implementation procedure of the multiscale

system for transient wave propagation simulations. As is shown in Fig. 4.3, the overall

procedure consists of two steps: (1) microscale problem solution and coefficient tensors

computation; (2) Laplace domain macroscale problem evaluation and inverse Laplace

transform.

Succesive evaluation 
of H(n+1)(y) and D(n)

 n = 0, ..., 6

Bloch analysis at high 
symmetry points of the 
1st Brillouin zone 

D(n)

α(      ,    ,    ) 
β(      ,    ,    ) 
γ(      ,    ,    )

D(n)

D(n)

D(n)

Nonlocal coefficient tensors:

Microscale

Laplace domain dispersion analysis of
 the nonlocal homogenization model

Nonlocal effective medium model

Laplace domain macroscale problem 
evaluation and inverse Laplace transfrom

Macroscale

Figure 4.3: Computational flowchart.

Microscale problems defined over the domain of the unit cell constitute evalua-

tion of influence functions and homogenized moduli, as well as Bloch analysis for the

characteristic waves. The influence functions H(n+1) and homogenized moduli D(n)

are evaluated sequentially using the finite element method (FEM). Periodic bound-

ary conditions are applied at the microstructure boundary nodes. H(n+1) is an order

(n+ 3) tensor and has 6× 2n independent components. Since the sequence of taking

the (n)th gradient of ∇s
xU

(i−n−1)(x, t) in Eq. 4.6 is interchangable, when the resulting

tensor is contracted with the microstructural influence function, only the symmet-

ric part of H(n+1) in those n dimensions, H
(n+1)
sym,n(y), affects the contraction [55].

Therefore, H
(n+1)
sym,n(y) is computed instead and the number of independent compo-

nent is 6(n+ 1). Similarly, only the symmetric part of D(n) in dimensions contracted

with (∇x)
n∇s

xU
(α−n) is computed in Eq. 4.10. The resulting number of computed

independent component of D(n) is 12(n+ 1).

The Bloch analysis is performed using the same finite element discretization of
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the microstucture. ω(k) method is used and the prescribed wavevector is taken as

the positions of the high symmetry points of the first Brillouin zone. Three sym-

metry points are selected to compute (n̂, p̂) of the characteristic waves, which are

then used to compute the projection tensors (Section 4.4.2) and weighting tensors

(Section 4.4.3). Thus a unique set of coefficient tensors of the spatial-temporal non-

local homogenization model is determined for each of the selected high symmetry

directions.

The single-variable constrained minimization problems in Sections 4.4.3.1 and

4.4.3.2 are implemented using the fminbnd function in MATLAB, which is based

on Brent’s method [17] and it combines the golden section search algorithm with

successive parabolic interpolation. The microscale problems and computation of the

nonlocal coefficient tensors are independent of the macroscale problem, therefore are

implemented off-line as a preprocessing step.

The macroscale problem is implemented in the Laplace domain by sampling the

Laplace variable. For each sampled Laplace variable, a dispersion analysis is per-

formed for the fourth-order nonlocal homogenization model with projection tensors

and weighting tensors computed in high symmetry directions to obtain the physical

wavenumbers in these directions. The nonlocal effective medium model is formu-

lated using the physical wavenumbers following the procedure in Section 4.4.4. The

macroscale displacement field is obtained by solving the nonlocal effective medium

model using Isogeometric analysis (IGA) [60] with C1 continuity. Compared to FEM

with quadratic Lagrange shape functions, IGA achieves higher convergence rate [61],

therefore accurately describes high frequency waves with fewer degrees of freedom.

Time domain response is obtained by a numerical inverse Laplace transform algo-

rithm [29]. The evaluation of macroscale problem for each sampled Laplace variable

is independent of another, therefore, the implementation for the macroscale problem

is easily parallelized.
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4.6 Model Verification

We evaluate the proposed approach in three aspects, (1) dispersion relation of

the nonlocal homogenization model (Eq. 4.14), (2) dispersion relation of the nonlocal

effective medium model (Eq. 4.30), and (3) transient wave propagation simulation

using the nonlocal effective medium model. Two-dimensional in-plane elastic wave

propagation in two types of composites are considered, i.e., bi-material layered and

matrix reinforced with a circular inclusion.

4.6.1 Dispersion of the nonlocal homogenization model

Wave dispersion of two types of unit cells are considered, as shown Fig. 4.2(b),

where the length of the unit cell is l = 0.02 m. The density, Young’s modulus and

Poisson’s ratio are respectively taken as 2700 kg/m3, 68 GPa and 0.3 for Phase 1,

and 7900 kg/m3, 210 GPa and 0.3 for Phase 2. The volume fraction of Phase 2 is 0.5

and 0.2 for the layered and matrix-inclusion unit cells respectively. The first Brillouin

zone of the unit cells is shown in Fig. 4.2(c) and only the shaded area is considered

due to the symmetry of the unit cells.

4.6.1.1 Verification of dispersion relation

The dispersion curves using the spatial-temporal nonlocal homogenization model

(referred to as STNHM) are computed for each high symmetry direction of the first

Brillouin zone, i.e., Γ−X, Γ−M , Γ−Y in Fig. 4.2(c), using Eq. 4.31a by sampling the

imaginary part and taking the real part of s as a much smaller number (10−6 is used

in the current analysis). In this limiting case, the Laplace domain dispersion analysis

can be viewed similar to the frequency domain analysis, while the complex-valued

wavenumbers can be identified as physical (wavenumbers with positive real part and

positive imaginary part) or non-physical (wavenumbers with positive real part and

negative imaginary part). Only the physical wavenumbers are studied here since the
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non-physical wavenumbers lead to unstable waves and are suppressed in transient

simulations. Wavenumbers with positive real part and non-negative imaginary part

computed from the Bloch wave expansion using the k(ω) approach [3, 74] are em-

ployed as reference solutions. The stop band is defined as the frequency range that no

propagating Bloch wavenumber solutions exist. This not only includes the situations,

where real wavenumber solutions do not exist (as is often used for identifying the stop

band), but also the situations, where the wavenumber is evanescent [76]. In case of

evanescent waves, the wavenumber is complex-valued and wave propagation is expo-

nentially attenuated due to the presence of the imaginary part. The lowest 10 Bloch

wavenumbers are computed and sorted. The first optical Bloch wavenumber branch

is plotted by mirroring the corresponding one within the first Brillouin zone, so that

positive group velocity is obtained as it is in the acoustic branch. The different wave

modes (P and SV modes) of STNHM and the reference solutions are classified by

projecting respectively the normalized mode shapes (the real part of the eigenvector)

and normalized unit cell averaged mode shapes onto the direction of wave propaga-

tion. The P and SV modes are identified as the absolute values of this projection

being greater and less than
√

2/2, respectively.
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Figure 4.4: Dispersion curves of the layered microstructure for wave
propagation in (a) Γ−X direction, (b) Γ− Y and (c) Γ−M direction.

Figure 4.4 shows the lowest wavenumber of each mode computed using STNHM

and the Bloch wave expansion for the layered microstructure, where the real part is

normalized and plotted in the right panel and the imaginary part is plotted in the

109



left panel. Wave dispersion in Γ −X direction is shown in Fig. 4.4(a). The homog-

enization models with the weighting tensor ν(3) obtained by minimizing the asymp-

totic error (Section 4.4.3.1) and calibrating the stop band width (Section 4.4.3.2)

are denoted as STNHM-1 and STNHM-2, respectively. Both methods of deter-

mining the model parameters result in accurate prediction of the acoustic branch

(Re
{
k1l/(2π)

}
< 0.5), the first stop band (Re

{
k1l/(2π)

}
= 0.5) and the first op-

tical branch (Re
{
k1l/(2π)

}
> 0.5). The stop bands of Bloch waves for P and SV

modes are featured by the wavenumber solutions that have both positive real and

imaginary parts. While wave propagation is supported by the real part of solution,

it is exponentially attenuated due to the imaginary part. Within the first stop band,

STNHM captures both real part and imaginary part of the lowest evanescent Bloch

modes. The stop band of SV mode occurs at a lower frequency and has a smaller

size compared to the P mode. The dispersion curves beyond Re
{
k1l/(2π)

}
= 1 are

not plotted since the wavelength is smaller than the size of microstructure and the

asymptotic homogenization does not apply in that regime. Figure 4.4(b) shows wave

dispersion in the Γ− Y direction. The SV mode is non-dispersive and both STNHM

models predict this behavior. P mode is dispersive only at high frequency, where

the lowest eigenvalue switches from one branch to another. This switch is captured

by the STNHM models. While Bloch P mode is propagative (eigenvalues are real-

valued) for all frequencies, f ∈ [0, 300] kHz, STNHM P modes become evanescent

at the switch. STNHM models capture the propagating mode at higher frequencies.

Wave dispersion in Γ−M direction is shown in Fig. 4.4(c). STNHM-1 predicts wave

dispersion of the acoustic branch and the first optical branch. The stop band is not

observed in both Bloch and STNHM P modes since real-valued eigenvalues exist for

all frequencies, f ∈ [0, 200] kHz. At Re
{
k1l/(2π)

}
= 0.5, the SV mode enters the

stop band, which is featured by the fact that the Bloch waves do not have a propagat-

ing SV mode. STNHM-1 captures the location and size of the stop band. However,
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instead of having an absence of wavenumber solutions, it predicts evanescent waves

that are strongly attenuated by the imaginary part.
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Figure 4.5: Dispersion curves of the matrix-inclusion microstructure.

Figure 4.5 shows the dispersion curves of the matrix-inclusion microstructure in

directions Γ − X and Γ −M . The response in the Γ − Y direction is identical to

that of Γ−X due to symmetry. In Fig. 4.5(a), both STNHM-1 and STNHM-2 cap-

ture the acoustic branch and the first optical branch of P and SV modes. Compared

to determining ν(3) by minimizing the asymptotic error, calibrating ν(3) by mini-

mizing the discrepancy of stop band width prediction between STNHM and Bloch

solutions results in more accurate prediction in the width of the stop band and wave

attenuation caused by the imaginary part of the wavenumber. This is natural as the

model is optimized to capture particularly this behavior. In the Γ −M direction,

Fig. 4.5(b), STNHM-1 accurately predicts the acoustic branch of P and SV modes.

While STNHM-1 predicts the initiation of the stop band, the error increases in the

prediction of the attenuation and end of the stop band that occurs at higher fre-

quency. Wave propagation in the first optical branch is captured well. STNHM-1

predicts the group velocity (slope of the dispersion curves) of both modes, while the

phase velocity of P wave is over predicted since the optical P branch is shifted to

higher frequency due to the error in the prediction of the onset of the optical pass

band.

It is observed that the propagating Bloch wavenumbers captured by STNHM are
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Figure 4.6: Typical acoustic and optical Bloch mode shapes in the Γ−X direction.

the ones of the lowest rank of P and SV modes, i.e., the acoustic and first optical

branch. In fact, there are infinitely many wavenumber solutions for any given fre-

quency, which correspond to wavenumbers of different multiplicity of 2π/l. The typ-

ical Bloch mode shapes of the acoustic and first optical branch are shown in Fig. 4.6.

Figures 4.6(a) and (b) illustrate the displacement field of the unit cell when the wave

is propagating in the Γ−X direction for the layered and matrix-inclusion unit cells, re-

spectively. The acoustic and optical mode shapes are plotted at Re
{
k1l/(2π)

}
= 0.25

and Re
{
k1l/(2π)

}
= 0.75. For both cases, the entire unit cell move uniformly in the

acoustic regime, parallel and perpendicular to the direction of wave propagation for

P and SV waves respectively. The optical modes are featured by the out-of-phase

displacement field. The material points change direction of motion within a distance

of about half of the unit cell in the direction of wave propagation. Higher optical

modes that are not captured correspond to the displacement field varies more rapidly

(e.g., the displacement field changes direction of motion multiple times within the

unit cell) in the direction of wave propagation, or varies not only in the direction of

wave propagation, but also along the transverse direction.
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4.6.1.2 Effects of the nonlocal terms
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Figure 4.7: Dispersion curves of different asymptotic homogenization models.

The nonlocal terms in the homogenization model, Eq. 4.14, contribute to its capa-

bility in capturing wave dispersion. By setting the weighting tensors, ν(1), ν(2), ν(3),

all equal to 0, nonlocal terms of the spatial-temporal nonlocal homogenization model

vanish and it recovers the local homogenization model (LHM) with asymptotic resid-

ual of O(ζ2). The spatial nonlocal homogenization model proposed in Refs. [43, 64]

(SNHM) is recovered by setting ν(1) = I, ν(2) = ν(3) = 0, which is of order O(ζ4).

An alternative spatial-temporal nonlocal homogenization model is obtained by using

ν(1) = ν(2) = I, ν(3) = 0. This model can be derived by employing macroscale

balance equations (Eq. 4.10) up to O(ζ4) therefore has asymptotic accuracy of O(ζ6).

Figure 4.7 compares the dispersion behaviors predicted by these models with the

STNHM model with ν(3) computed by minimizing the O(ζ6) asymptotic residual in

the Γ−X direction.

For both P and SV modes, STNHM with minimized asymptotic residual achieves

the best accuracy. LHM predicts wave propagation without dispersion which is valid

up to Re
{
k1l/(2π)

}
= 0.2. The spatial nonlocal term enables SNHM to predict

wave dispersion in the long wavelength regime, Re
{
k1l/(2π)

}
< 0.4. Although it

introduces wave attenuation, the initiation of the stop band is not well predicted.

Moreover, its dispersion relation behaves as a low-pass filter, which artificially atten-
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uates all the high frequency waves. The significance of the temporal nonlocal term

and mixed spatial-temporal nonlocal term is that they restrict the stop band to a

finite size, which allows STNHM to capture the optical branch, as is demonstrated

by STNHM with ν(3) = 0. Furthermore, the increased asymptotic accuracy results in

more accurate prediction in the acoustic regime, Re
{
k1l/(2π)

}
< 0.5. By minimizing

the asymptotic error, STNHM improves the accuracy in the prediction of dispersion

of shorter waves, 0.5 < Re
{
k1l/(2π)

}
< 1. However, due to the limit of separation of

scales, STNHM cannot be applied to situations where the wavelength is shorter than

the size of microstructure.

4.6.1.3 Effects of material property contrast
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Figure 4.8: Dispersion curves of wave propagation in the Γ−X direction. (a)
Layered microstructure with rρ = 3. (b) Layered microstructure with rE = 3. (c)

matrix-inclusion microstructure with rρ = 3. (d) matrix-inclusion microstructure with
rE = 3.

The accuracy of the proposed nonlocal homogenization model, when the weighting

tensor ν(3) is determined by minimizing the asymptotic residual, depends on the
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contrast between the properties of constituent materials. It has been demonstrated

that wave dispersion up to the initiation of the stop band is not affected significantly

with the property contrast, the error in the prediction of the size of the stop band

increases as the material property contrast increases in the context of scalar-field

waves [54, 55]. The alternative approach of computing ν(3), i.e., calibrating the

width of the stop band (STNHM-2) naturally guarantees the accuracy in predicting

the width of the stop band independent of the material property contrast.

Figure 4.8 presents a parametric study of the accuracy of STNHM-2 against the

Bloch wave solution, in predicting wave dispersion in the Γ−X direction for the unit

cells in Fig. 4.2(b). The vertical axis ωl/(2πcP1) is the normalized frequency, where

cP1 is the P wave velocity of the homogenization model in the quasi-static condition,

i.e., cP1 =

√
D

(0)
1111/ρ0. The parametric study is performed by fixing the properties of

Phase 1 and varying the Young’s modulus and density of Phase 2. The contrast is

measured by ratio between Phase 2 and Phase 1, e.g., rE = E2/E1. The investigated

material properties remain in the low contrast regime. For all studied cases, the

general trend is that the prediction of dispersion within the acoustic branch, and

the initiation and size of the stop band is accurate and not sensitive to the contrast

in Young’s modulus and density. Wave attenuation, due to the imaginary part of

the wavenumber, within the stop band in the high frequency regime and the wave

dispersion within the optical branch are affected, i.e., the prediction error increases

as the material property contrast increases. The proposed approach captures the

group velocity in the lower optical branch. As the wavelength decreases in higher

frequency regime and approaches the limit of separation of scales, the model becomes

non-dispersive, featured by the constant group velocity. While this behavior matches

with Bloch waves for unit cells with low material property contrast, i.e., rE = 3

and rρ = 3. The discrepancy becomes significant as the material property contrast

increases.
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4.6.2 Dispersion of the nonlocal effective medium model

In this section, we investigate the dispersion behavior predicted by the nonlocal

effective medium (NEM) model for the microstructures shown in Fig. 4.2(b) with

material properties used in Section 4.6.1.1. The NEM model is formulated based

on the procedure described in Section 4.4.4, where the spatial-temporal nonlocal

homogenization models with projection tensors and weighting tensors evaluated in

Γ−X, Γ− Y and Γ−M directions are employed. The homogenization models with

ν(3) determined by the band gap size matching approach are used in Γ−X and Γ−Y

directions, and the asymptotic residual minimization approach is used in the Γ−M

direction. Wavenumbers computed by Eq. 4.30 at two frequencies, f = 50 kHz and

f = 80 kHz, in all directions within the [x1, x2] plane are compared with the Bloch

waves. Polar representation is employed to reveal the different dispersion behavior in

different directions of wave propagation.
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Figure 4.9: Wavenumbers in polar coordinate for the layered microstructure. (a)
Real part of the wavenumber at f = 50 kHz. (b) Real part of the wavenumber at
f = 80 kHz. (c) Imaginary part of the wavenumber at f = 80 kHz. Solid line, ’—’,
SV mode; Dashed line, ’- -’, P mode; Circles, ’o’, Bloch waves. The rank of Bloch

eigenvalues increases as the color scale changes from dark to light.

Figure 4.9 shows the dispersion relation for the layered microstructure. It is

observed from Fig. 4.4 that P wave is non-dispersive at f = 50 kHz in Γ−X, Γ− Y

and Γ −M directions. As a result, the predicted P wavenumber is non-dispersive

and matches with the lowest Bloch eigenvalue exactly in all directions in Fig. 4.9(a).

SV wave has slower wave speed and larger wavenumber at this frequency. It enters
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the dispersive acoustic regime in Γ − X and Γ − M directions. NEM accurately

captures the wavenumber in these directions. The prediction error increases as the

direction of wave propagation migrates away from the high symmetry directions, e.g.,

the noticeable discrepancy in 25°. As wave frequency is increased to f = 80 kHz, SV

mode within (-30°, 30°) enters the stop band as is indicated by the imaginary part of

the wavenumber shown in Fig. 4.9(c). P mode becomes dispersive which is revealed

in the change of the shape of wavesurface
(
Fig. 4.9(b)) compared to Fig. 4.9(a)

)
. The

proposed model predicts the wavesurfaces of both P and SV modes. It captures the

SV imaginary wavenumber in the directions that reside in the stop band. We observe

that spurious imaginary SV and P wavenumbers are introduced in the directions of

50° and 40°, respectively. This is linked to the formulation of the nonlocal effective

moduli tensor of Eq. 4.30 based on selected directions. When the SV mode in the

Γ −X direction enters the stop band, the computed value of D
(e)
2112 is complex, thus

introducing imaginary part to wavenumbers of SV and P modes in all directions,

not only within (-30°, 30°) where Bloch wavenumber is complex-valued, but also the

directions that no wave attenuation occurs (e.g, 50°). Nevertheless, they have small

magnitudes in the studied cases, therefore, do not result in significant artificial wave

attenuation.

Figure 4.10 shows the dispersion relation for the matrix-inclusion microstructure

at the same frequencies as Fig. 4.9. At f = 50 kHz, the non-dispersive P wavesur-

face is circular-shaped, indicating isotropic macroscopic wave propagation. The SV

wavesurface is distorted due to wave dispersion, which has larger magnitude in 0°

and 90° compared to 45°. NEM captures both P and SV wavesurfaces very accu-

rately. At f = 80 kHz, the SV mode within (-30°, 30°) and (60°, 120°) enters the

stop band. The proposed model predicts the wavenumbers of SV and P modes. In

Figs. 4.9 and 4.10, the proposed model matches with the dark-colored Bloch eigen-

values only. The light-colored Bloch eigenvalues correspond to evanescent waves that
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are of higher rank. Although their real parts fall inside the first Brillouin zone due

to the periodicity of the wave vector in the Bloch theory, they are usually subject to

strong attenuation [76] and do not contribute to wave propagation in the investigated

frequency regime.
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Figure 4.10: Wavenumbers in polar coordinate for the matrix-inclusion
microstructure. (a) Real part of the wavenumber at f = 50 kHz. (b) Real part of the
wavenumber at f = 80 kHz. (c) Imaginary part of the wavenumber at f = 80 kHz.

4.6.3 Transient elastic wave propagation

In this section, we investigate the transient elastic wave propagation in composites

made of periodic layered microstructures. The volume fraction, size and material

properties of the unit cell are identical to those in Section 4.6.1.1. Two examples

are provided to evaluate the performance of the proposed model in predicting wave

dispersion and attenuation, i.e., (1) transient uni-directional elastic wave propagation

in the layered composite, (2) transient two-dimensional wave propagation in an elastic

waveguide. Direct simulations of the heterogeneous structure are employed as the

reference. IGA with sufficient refinement is used to discretize the structure for both

direct simulation and the nonlocal effective medium model. Time integration of the

direct simulation is implemented using the Newmark-beta implicit method.

4.6.3.1 Transient uni-directional elastic wave propagation

We consider transient wave propagation in a composite structure made of a row of

20 layered microstructures as shown in Fig. 4.11. The structure is fixed at the right
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edge and periodic boundary conditions are applied on the top and bottom edges.

Two types of sinusoidal in-plane displacement load are applied at the left edge, i.e.,

ũ1(t) = M sin(2πft) and ũ2(t) = M sin(2πft), which respectively generate P and SV

waves.

x1

x2

20 microstructures

Periodic boundary condition...

Figure 4.11: Periodic layered composite and boundary conditions.

Figure 4.12 shows the displacement snapshots measured along the bottom edge of

the structure at t = 0.06 ms. The vertical axis U/M is the displacement normalized

by the amplitude of applied load. Since only the displacement at the corner points

of the unit cell allows one-to-one comparison between the direct simulation and the

homogenization model [55], the displacement of direct simulation at these points are

plotted as the reference. In Fig. 4.12(a), both SV and P waves are within the acoustic

regime and dispersion occurs for the SV wave as manifested by the distorted wave

front. As the frequency is increased to 60 kHz, SV wave enters the stop band and P

wave becomes dispersive. Within the stop band, SV wave amplitude is significantly

reduced. Further increase in the loading frequency results in shorter waves. At

f = 120 kHz, SV wave enters the first optical branch while P wave falls inside the

stop band. At all three frequencies, NEM accurately predicts the displacement of the

reference model.
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Figure 4.12: Displacement snapshots along the bottom edge of the structure.
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4.6.3.2 Elastic waveguide

Figure 4.13 shows the two-dimensional elastic waveguide and the boundary con-

ditions for the simulation. The waveguide (2l ≤ x1 ≤ 14l) is made by inserting Phase

2 layers into the base material, Phase 1, within the region labeled as Heterogeneous

Medium. The structure is fixed on the right edge. Sinusoidal displacement load,

ũ1(t) = M sin(2πft), is applied at the center of the left edge within 5l. The rest of

edges are traction free.

12l
5lũ1(t) 9l

3l

24l

8l

4.5l
2l

l

x1

x2

Heterogeneous Medium Phase 12l

Receiver

...

...
Figure 4.13: Sketch of the elastic waveguide and boundary conditions.

Figure 4.14 shows the displacement fields of NEM (the Heterogeneous Medium

is modeled using the NEM model) compared with the direct simulation at f = 60

kHz. The total simulation time is T = 0.1 ms and the displacement fields are taken

at t = 0.3T, 0.6T and T . At this frequency, the overall wave field predicted by

NEM, Eq. 4.30, matches with the direct simulation. Propagation of macroscopic

wave through the layered composite is allowed, the propagating wave and reflected

wave at the traction free boundary superimpose, resulting in the short wavelength

pattern in x2 direction (right columns of figures), not only in the base material but

also in the layered composite. When the loading frequency is increased to f = 150

kHz as shown in Fig. 4.15, wave propagation is highly confined in the homogeneous

base material as the wave passes the waveguide. Much smaller wave amplitude is

observed within the layered composite compared to the base material. NEM cap-

tures the wave fields within the waveguide and after the wave exits the waveguide.
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Comparing Fig. 4.15 with 4.14, the predicted wave fields differs from the direct

t=0.3T t=0.6T t=T

Reference

NEM 1.0

-1.0

-0.5

0.5

0

U1

Figure 4.14: Displacement fields of wave propagation at f = 60 kHz.

simulations at the waveguide entrance (x1 ≤ 2l) at high frequency. The cause of this

discrepancy is that the homogenization model is formulated for the heterogeneous

domain without considering its interface with other domains. It could be addressed

by introducing a boundary layer between the domain of homogenized medium and

adjacent domains, where energy flux balance and continuity conditions between these

domains are enforced [119].

t=0.3T t=0.6T t=T

Reference

NEM 1.0

-1.0

-0.5

0.5

0

U1

Figure 4.15: Displacement fileds of wave propagation at f = 150 kHz.

In order to quantitatively compare the results of NEM to the reference at different

frequencies, the maximum transmitted wave amplitude Ut is recorded at two locations,

(12l, 2l) and (16l, 4.5l) in Fig. 4.13, while sweeping the loading frequency within the

range [0, 150] kHz. Figure 4.16 shows the normalized transmitted wave amplitude

spectrum. NEM captures the overall wave transmission pattern and the prediction

error increases at high frequencies. At both locations, good accuracy is observed for

f ∈ [0, 60] kHz. Increased error is observed for f ∈ [65, 75] kHz and f ∈ [100, 130]
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at the Receiver located within the base material, and f ∈ [70, 85] kHz and f ∈

[125, 135] at the Receiver located within the layered composite. These errors result

from three factors. First, the current homogenization model does not account for

the presence of interface between the homogenized domain and the homogeneous

domain, which results in prediction error at high frequency, as is observed in Fig. 4.15.

Second, NEM is formulated based on the high symmetry directions of the Brillouin

zone. However, for transient wave propagation in a two-dimensional domain, wave

modes in all directions occur. Although these modes may be approximated by the

nonlocal effective medium (Fig. 4.9), the approximation becomes less accurate at high

frequency. Third, the fundamental assumption of separation of scales restricts the

capability of the nonlocal effective medium model from predicting wave propagation

of wavelength shorter than the size of unit cell and the accuracy of NEM decreases

in high frequency regime. For the present in-plane wave propagation problem, this

limit is imposed by the SV wave which propagates in shorter length compared to P

wave at the same frequency.

0 50 100 150

U
t /M

0

0.5

1

1.5

2
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NEM
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Figure 4.16: Transmitted wave amplitude spectrum at locations (a) (12l, 2l) and
(b) (16l, 4.5l).

4.7 Conclusion

This chapter developed a spatial-temporal nonlocal homogenization model and a

nonlocal effective medium model for in-plane wave propagation in periodic compos-
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ites, accounting for wave dispersion and attenuation due to the Bragg scattering. In

order to derive the nonlocal homogenization model and extend the applicability of

asymptotic homogenization to short wavelength regime, asymptotic expansions of up

to the eighth order are employed. The resulting homogenized momentum balance

equation has higher order gradient terms, which are critical in capturing the stop

band and optical branch of the dispersion curves.

A nonlocal effective medium model is formulated for transient elastic wave propa-

gation based on the nonlocal homogenization model with model parameters computed

from high symmetry directions of the first Brillouin zone. The effective medium model

is a second order PDE, which shares the same structure as the classical local ho-

mogenization model. However, the nonlocal effective moduli is frequency dependent

and carries the nonlocal characteristics of the fourth-order nonlocal homogenization

model. Transient in-plane wave propagation is simulated using the nonlocal effective

medium model.

The proposed model is verified for in-plane elastic wave propagation in two-

dimensional composite configurations. It is shown that the nonlocal homogenization

model captures the acoustic branch, the stop band and the first optical branch of the

dispersion curves in the direction of high symmetry points of the first Brillouin zone.

A general trend is that the accuracy decreases as the frequency increases beyond the

acoustic regime and as the material property contrast increases. The nonlocal effec-

tive medium model matches the dispersion behavior of the spatial-temporal nonlocal

homogenization model in the high symmetry directions and approximates it in other

directions with reasonable accuracy. It accurately predicts uni-directional wave prop-

agation and the overall wave dispersion and attenuation behavior of wave propagation

in a two-dimensional waveguide.
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Chapter 5

SPECTRAL VARIATIONAL MULTISCALE MODEL FOR TRANSIENT WAVE

PROPAGATION IN PHONONIC CRYSTALS AND ACOUSTIC

METAMATERIALS

5.1 Introduction

Phononic crystals and acoustic metamaterials are architectured composites that

exhibit unique capabilities in controlling mechanical waves. Of particular interest is

the control of band gaps that are generated by Bragg scattering in phononic crystals

and local resonance in acoustic metamaterials. Tailoring material microstructures to

achieve band gaps in desired frequency ranges presents tremendous potential in novel

applications such as elastic cloaking [120], seismic wave mitigation [19, 25], acoustic

superlens [79, 71], topological insulators [97] and waveguides [72] among others.

In design and analysis of phononic crystals and acoustic metamaterials, numerical

simulations are employed either to characterize the unit cell band structure, or in

structural scale wave propagation analyses. The former approach typically charac-

terizes the band gaps of a periodic unit cell based on the Floquet-Bloch theorem.

Significant advances have been recently made in efficient computation of dispersion

band structures (see Refs. [66, 73]). The structural scale simulation of wave prop-

agation typically relies on the transient dynamic analysis of the structural domain,

where the microstructural features are fully resolved [72, 120, 97]. Clearly, the com-

putational cost for such direct numerical simulations is prohibitive particularly when

the structural domain size is large compared to that of the microstructure or when

the microstructure is complex. This motivates the development of multiscale meth-

ods towards modeling the dynamic response of architectured composites in a more

computationally efficient manner.
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Based on the assumption of scale separation, i.e., the size of microstructures is

much smaller than the wavelength, various homogenization approaches have been

proposed to model wave propagation in heterogeneous materials. Computational

homogenization [107, 116, 80, 81, 112, 113] evaluates nested initial-boundary value

problems at the macro- and microscales, which are coupled through the Hill-Mandel

energy consistency condition. In the macroscale problem, the constitutive behavior

at a quadrature point is obtained through the numerical evaluation of an attached

microstructure problem. This approach has been demonstrated to successfully cap-

ture the band gaps due to local resonance within acoustic metamaterials, which occur

when the macroscopic deformation wavelength is considerably large compared to the

size of the microstructure. In contrast, band gaps in phononic crystals occur when

the macroscopic wavelength is of the same order as the microstructure size. In or-

der to extend the applicability of homogenization to the short wavelength regime,

asymptotic homogenization models with higher-order asymptotic expansions have

been proposed [15, 42, 64, 65, 54, 55, 56]. Hu and Oskay [54, 55, 56] recently pro-

posed a nonlocal asymptotic homogenization approach to accurately predict wave

propagation in phononic crystals up to the second pass band. Despite significant

progress in homogenization-based methods in capturing high frequency dynamics,

the applicability of this approach is inherently constrained by the assumption of scale

separation. When the deformation wavelength is approaching or smaller than the

size of microstructure, the assumption of scale separation is no longer valid. Mul-

tiscale methods, such as the elastodynamic homogenization models based on Willis’

theory [127, 93, 101, 100, 117, 88], multiscale finite element method [53, 20, 21] and

the method of computational continua [41, 35, 38], that do not rely on the scale sep-

aration assumption, offer an alternative pathway to modeling wave propagation in

this regime.

Another widely used multiscale method that does not make assumptions on the
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length scales of continuum models is the variational multiscale method [59]. This

framework is based on an additive split of the solution into coarse (resolved) scale

and fine (unresolved) scale. The decomposition of solution results in two separate

variational equations for the coarse and fine scale, respectively. A crucial step in

achieving both accuracy and numerical efficiency using this method is the appro-

priate evaluation of the fine-scale Green’s function. While it can be evaluated an-

alytically for certain problems [102], the analytical form of the Green’s function is

generally not available when complex physics are involved for 2D and 3D problems.

Several variants of the variational multiscale method have been developed employing

numerical evaluation of the fine-scale problem to capture the highly complex behav-

ior of heterogeneous materials, including the numerical subgrid upscaling method [5],

the stochastic variational multiscale method [8, 46], and the variational multiscale

enrichment method [103, 132, 133, 134].

This manuscript proposes a spectral variational multiscale model for transient

wave propagation in phononic crystals and acoustic metamaterials. The proposed

model is developed based on the variational multiscale enrichment principles [103].

Using the additive split of the displacement field, a system of multiscale governing

equations is consistently derived in the variational form. In order to accurately repre-

sent wave propagation in short wavelength regimes, we employ spectral representation

of the displacement field at the coarse scale. Serendipity elements of up to the sep-

tic order are used as the coarse-scale basis. In order to achieve the computational

efficiency, a reduced order model is proposed for the fine-scale problem. The model

order reduction is achieved using a material-phase-based mode synthesis approach

that relies on the Craig-Bampton component mode synthesis [28] and characteristic

constraint mode reduction [22]. The proposed model reduction approach efficiently

captures the fine-scale transient dynamics with a set of reduced modal basis. To

the best of the authors’ knowledge, the present work is the first to model transient
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wave propagation in composite materials using the variational multiscale ideas. A

significant advantage of the proposed spectral variational multiscale model compared

to the homogenization models is that it is not restricted by the material property

contrast of the constituents or scale separation assumption. We demonstrate that the

proposed model is effective in transient wave propagation in both phononic crystals

and acoustic metamaterials for a broad frequency range.

The remainder of this manuscript is organized as follows: Section 2 derives the

two-scale momentum balance equations in variational form. Section 3 presents the

discrete multiscale system of equations. Section 4 elaborates the reduced order model

for the fine-scale problems. Section 5 provides details in numerical implementation

of the proposed model. Section 6 verifies the proposed model in three examples, i.e.,

unidirectional wave propagation in phononic crystals and acoustic metamaterials, and

wave propagation in a 2D phononic crystal waveguide. The accuracy and computa-

tional efficiency are examined against direct numerical simulations. The conclusions

and future research directions are presented in Section 7.

5.2 Variational Multiscale Model for Wave Propagation

We consider the transient response within a heterogeneous body, Ω ∈ R2, an open

and bounded domain constructed by periodic unit cells composed of two or more

constituents. Dirichlet and Neumann boundary conditions are respectively applied

at Γu ⊂ ∂Ω and Γt ⊂ ∂Ω, Γt ∩ Γu = ∅ and Γt ∪ Γu = ∂Ω. The momentum balance

equation that governs wave propagation within this body is expressed as:

∇.σ(x, t) = ρ(x)ü(x, t); x ∈ Ω, t ∈ [0, T ] (5.1)

where, σ denotes the stress tensor; ρ the density; and u the displacement vector. x

and t are the Cartesian spatial coordinate and time coordinate, respectively. ∇. is the

divergence operator and superimposed dot denotes derivative with respect to time.
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The constitutive response of the heterogeneous body is described by the generalized

Hooke’s law:

σ = C(x) : ε(x, t) (5.2)

C is the elastic moduli tensor that varies as a function of the position vector to

account for the material heterogeneity. ε is the strain tensor under the assumption

of small deformation:

ε = ∇su =
1

2

[
∇u + (∇u)T

]
(5.3)

where ∇ and ∇s are the gradient and symmetric gradient operators, respectively.

The boundary and initial conditions are:

B.C. u(x, t) = ũ(x, t); x ∈ Γu, σ(x, t).n = t̃(x, t); x ∈ Γt (5.4a)

I.C. u(x, 0) = u0; x ∈ Ω, u̇(x, 0) = v0; x ∈ Ω (5.4b)

where ũ and t̃ are respectively the prescribed displacement and traction along the

boundary, and u0 and v0 are respectively the initial displacement and velocity.

ũ

t̴

Γu

Γt Ωα

Γα

λ

Ω

Ωα

(a) (b) (c)

Figure 5.1: The two-scale problem setting for wave propagation in periodic
composites. (a) Composite domain discretized using coarse mesh. (b) One

coarse-scale element. (c) The associated fine-scale mesh.

Using the standard arguments, the problem is stated in the variational form:

∫
Ω

w(x). (ρü) dΩ +

∫
Ω

∇sw(x) : C : ∇su dΩ =

∫
Γt

w(x).̃t dΓ (5.5)
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in which, the function spaces for the displacement trial solution and the weighting

function are respectively:

V =

{
u
∣∣∣ u ∈ H1(Ω), u = ũ on Γu

}
(5.6a)

W =

{
w
∣∣∣ w ∈ H1(Ω), w = 0 on Γu

}
(5.6b)

where, H1(Ω) is the Sobolev space that contains functions with sufficient smoothness.

We proceed with partitioning the problem domain Ω into nnc non-overlapping

open and simply connected subdomains. Each subdomain is one coarse-scale element

and align with one unit cell. The interior of the coarse-scale element is denoted as Ωα

and Ω̄ =
⋃nec

α=1 Ω̄α, where the overbar indicates the closure of a domain. The choice

of using one coarse-scale element to represent one unit cell is made in view of the

periodic arrangement of microstructures. Each coarse-scale element can be different

when each unit cell contains different microstructures.

The displacement field over the domain Ω is expressed in terms of coarse-scale

and fine-scale components through an additive two-scale decomposition:

u(x, t) = uc(x, t) +
nec∑
α=1

ufα(x, t) (5.7)

Superscripts c and f denote the coarse and fine scales, respectively. In the classical

variational multiscale method, the coarse-scale component approximates the solution

resolved by a coarse mesh, whereas the fine-scale component is the associated error.

The fine-scale component remains unresolved, and is typically approximated by an

analytical function (e.g., residual free bubble function [59]). In the variational mul-

tiscale enrichment approach, the fine-scale problem is numerically evaluated, similar

to the numerical subgrid upscaling method [5]. For wave propagation in composites,

the material heterogeneity is not resolved at the coarse scale, and uc refers to the
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“homogenized” wave field solution. Numerical solution of ufα captures the rapid wave

field oscillations within a coarse-scale element Ωα, where material heterogeneity is

resolved by the fine-scale mesh.

The weighting function is approximated in a similar fashion using a two-scale

decomposition:

w(x) = wc(x) +
nec∑
α=1

wf
α(x) (5.8)

The displacements and weighting functions at the two scales are respectively

sought in the function spaces Vc,Wc and Vfα ,Wf
α . The solution space of the displace-

ment field, u, and weighting function, w, are therefore respectively restricted to the

direct sum of the coarse- and fine-scale solution spaces [59]. The fine-scale spaces are

defined such that the trial solution and the weighting function are localized within

the corresponding coarse-scale element Ωα and vanish elsewhere:

Vfα =Wf
α =

{
vα

f
∣∣∣ vfα = 0 on Ω̄ \ Ωα

}
(5.9)

The function spaces for the finite dimensional approximation to the coarse-scale fields

are chosen as C0 continuous:

Vc =

{
uc
∣∣∣ uc ∈ C0(Ω) ∩ V , uc(Ωα) ∈ Pp(Ωα)

}
(5.10a)

Wc =

{
wc
∣∣∣ wc ∈ C0(Ω) ∩W , wc(Ωα) ∈ Pp(Ωα)

}
(5.10b)

where Pp(Ωα) denotes the set of complete polynomials of order p over Ωα. This choice

for the coarse-scale displacement field indicates that high-order spectral functions are

admissible within each element, whereas the displacement is C0 continuous across the

element interfaces.

Remark 3. The approximation space defined in Eq. 5.9 implies the fine-scale homo-

geneous Dirichlet boundary conditions along the boundaries of Ωα. This boundary
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condition is widely used [86, 87, 103, 133] due to its simplicity and is adopted in this

study. We note that other fine-scale boundary conditions can also be applied, such as,

mixed boundary conditions [104, 132], edge bubbles for interface problems [123], and

mixed use of bubbles and other Dirichlet boundary conditions for strain localization

problems [48]. While these boundary conditions may improve the numerical accuracy,

the possible interactions of the fine-scale problems between neighboring coarse-scale

elements may result in significant complexity in numerical implementation and in-

creased computational cost.

Substituting the two-scale decompositions (Eqs. 5.7, 5.8) into Eq. 5.5, the varia-

tional form is decomposed into a coarse-scale problem defined over Ω and a series of

fine-scale problems defined within each coarse-scale element Ωα. At the coarse scale:

∫
Ω

wc. (ρüc) dΩ +

∫
Ω

∇swc : C : ∇suc dΩ =

−
nec∑
α=1

∫
Ωα

wc.
(
ρüfα

)
dΩα −

nec∑
α=1

∫
Ωα

∇swc : C : ∇sufα dΩα +

∫
Γt

wc .̃t dΓ (5.11)

The terms on the left hand side are the virtual kinetic energy and strain energy,

whereas the first two terms on the right hand side describe the total coarse-scale

virtual work due to fine-scale dynamics within all coarse-scale elements. At the fine

scale, the variational form for Ωα, is:

∫
Ωα

wf .
(
ρüf

)
dΩα +

∫
Ωα

∇swf : C : ∇suf dΩα =

−
∫

Ωα

wf . (ρüc) dΩα −
∫

Ωα

∇swf : C : ∇suc dΩα (5.12)

The traction term is not present in Eq. 5.12 because the fine-scale weighting function

vanishes at all coarse-scale element domain boundaries via Eq. 5.9. The fine-scale

problem states that the virtual kinetic energy and strain energy of each coarse-scale

element domain at the fine scale is balanced with the local virtual work due to the
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dynamics of the coarse-scale. Equations 5.11 and 5.12 constitute a coupled problem

for evaluating the dynamic response of the composite domain.

In what follows, we provide an approach to directly evaluate this system of equa-

tions. It is important to highlight that the direct evaluation of this system does not

reduce the computational cost compared with the direct numerical simulation of the

governing equation, Eq. 5.5. Alternatively, direct evaluation of the two-scale system

forms the foundation for the reduced basis approximation we later introduce for the

fine-scale problem.

5.3 Spectral Variational Multiscale Model

In this section, we propose a spectral approach to capture the transient dynamic

response of periodic composites by numerically evaluating the coarse- and fine-scale

variational forms provided in Eqs. 5.11 and 5.12.

The selection of the size of coarse-scale element and the order of the corresponding

shape functions depends on the characteristic wavelength of the associated problem.

For static problems [132, 133], the wavelength is infinitely long and it typically suffices

to use linear elements at the coarse scale. For wave propagation problems, sufficiently

fine resolution is necessary to accurately capture the wave field and avoid numerical

dispersion [32]. Fine resolution can be achieved through h-refinement or p-refinement,

and their application in dynamic problems has been extensively discussed in the

literature in the context of single scale analysis (see e.g., Refs. [122, 10, 68, 69, 70]).

In the proposed multiscale model, the size of the coarse-scale elements is fixed to

the size of the underlying microstructure. We employ high order shape functions to

accurately capture high frequency wave propagation through a p-refinement strategy

at the coarse scale.

Lagrange polynomials are used as shape functions for the coarse-scale elements. In

two dimensions, the classical quadrilateral Lagrange elements contain (p+ 1)2 nodes.
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Figure 5.2: Quadrilateral serendipity elements of (a) cubic (3rd), (b)
quintic (5th) and (c) septic (7th) orders.

Due to the presence of large numbers of bubble nodes, Lagrange elements pose signif-

icant computational cost for higher spectral orders. Instead, serendipity quadrilateral

elements achieve the same order of approximation with fewer nodes. The higher-order

serendipity elements developed in Refs. [110, 111] are adopted herein. In this family

of serendipity elements, the number of nodes is minimized while maintaining the re-

quired polynomial completeness. Figure 5.2 shows the elements of cubic, quintic and

septic orders, which respectively have 12, 24 and 40 nodes per element. The formulas

for the shape functions and locations of the nodal points are provided in Ref. [110].

The fine-scale trial solution and weighting function are approximated using stan-

dard bilinear finite elements. This selection of fine-scale elements has also been used

in Refs. [47, 104]. Along with the homogeneous Dirichlet type fine-scale boundary

conditions, this choice ensures linear independence of the solution spaces at the coarse

and fine scales and the direct sum relationship between the multiscale fields is valid.

Employing the classical Bubnov-Galerkin approach, the coarse-scale displacement,

weighting function and their gradients within a coarse-scale element are written as:

ucα = Nc
αd

c
α = Nc

αL
c
αd

c; wc
α = Nc

αc
c
α = Nc

αL
c
αc

c (5.13a)

[∇sucα] = Bc
αd

c
α = Bc

αL
c
αd

c; [∇swc
α] = Bc

αc
c
α = Bc

αL
c
αc

c (5.13b)

where, ucα(x, t) := uc(x ∈ Ωα, t) with the corresponding weighting function analo-
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gously defined. Nc
α and Bc

α are respectively the coarse-scale element shape function

matrix and strain-displacement matrix (detailed definition of these matrices is pro-

vided in Ref. [39]) within the coarse-scale element, Ωα. Einstein summation does

not apply to the subscripts. The square bracket indicates the vectorized form of the

corresponding tensors. dcα and ccα are the element nodal displacement and weighting

function vectors, and they are related to the global vectors, dc and cc, through the

mapping matrix Lc
α, which assembles the global vectors from the element vectors [39].

Each coarse-scale element is associated with a heterogeneous microstructure (also

denoted as Ωα in Fig. 5.1). Equation 5.12 is evaluated to compute the fine-scale fields

for all microstructures within the problem domain. Consider the discretization of the

microstructure, Ωα into nef fine-scale elements. The fine-scale displacement, weighting

function and their gradients for the fine-scale element e within the microstructure Ωα

are expressed as:

ufe,α = Nf
e,αd

f
e,α = Nf

e,αL
f
e,αd

f
α; wf

e,α = Nf
e,αc

f
e,α = Nf

e,αL
f
e,αc

f
α (5.14a)[

∇sufe,α

]
= Bf

e,αd
f
e,α = Bf

e,αL
f
e,αd

f
α;

[
∇swf

e,α

]
= Bf

e,αc
f
e,α = Bf

e,αL
f
e,αc

f
α (5.14b)

where, Nf
e,α and Bf

e,α are respectively the fine-scale element shape function matrix and

strain-displacement matrix within the fine-scale element, Ωe
α. dfe,α and cfe,α are the

fine-scale element nodal displacement and weighting vectors, related to the vector of

the fine-scale nodal displacement and weighting functions within the microstructure

through Lf
e,α. Employing Eqs. 5.13 and 5.14, the discretized forms of Eqs. 5.11 and

5.12 are obtained as:

Kccdc + Mccd̈c +
nec∑
α=1

Kcfαdfα +
nec∑
α=1

Mcfαd̈fα = Fc (5.15a)

Kfαcdc + Mfαcd̈c + Kfαfαdfα + Mfαfαd̈fα = 0, α = 1, ..., nec (5.15b)
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where, Kfαfα , Mfαfα and Kcc, Mcc are respectively the stiffness and mass matrices

of the fine-scale problem in Ωα and the coarse-scale problem. Kcfα and Mcfα are

the stiffness and mass matrices due to interactions between the two scales. Fc is the

coarse-scale force vector. They are obtained by assembling the element matrices and

the force vectors as:

Kfαfα =

nef∑
e=1

(
Lf
e,α

)T
Kfαfα
e Lf

e,α; Mfαfα =

nef∑
e=1

(
Lf
e,α

)T
Mfαfα

e Lf
e,α (5.16a)

Kcc =
nec∑
α=1

(Lc
α)T Kcc

α Lc
α; Mcc =

nec∑
α=1

(Lc
α)T Mcc

α Lc
α (5.16b)

Kcfα =
(
Kfαc

)T
= (Lc

α)T
nef∑
e=1

Kcfα
e Lf

e,α; Mcfα =
(
Mfαc

)T
= (Lc

α)T
nef∑
e=1

Mcfα
e Lf

e,α

(5.16c)

Fc =
nec∑
α=1

(Lc
α)T fα (5.16d)

nef is the number of fine-scale elements used to discretize Ωα. The element matrices

and the force vector are:

Kcc
α =

∫
Ωα

(Bc
α)TC(x)Bc

α dΩα; Mcc
α =

∫
Ωα

(Nc
α)Tρ(x)Nc

α dΩα (5.17a)

Kfαfα
e =

∫
Ωeα

(Bf
e,α)TCeB

f
e,α dΩe

α; Mfαfα
e =

∫
Ωeα

(Nf
e,α)TρeN

f
e,α dΩe

α (5.17b)

Kcfα
e =

∫
Ωeα

(Bc
e,α)TCeB

f
e,α dΩe

α; Mcfα
e =

∫
Ωeα

(Nc
e,α)TρeN

f
e,α dΩe

α (5.17c)

fα =

∫
Γtα

(Nc
α)T t̃ dΓtα (5.17d)

where Ce and ρe are respectively the elastic moduli and density of the eth fine-scale

element. The evaluation of the pure fine-scale matrices in Eq. 5.17b and the coarse-

scale force vector in Eq. 5.17d is straightforward and performed using the standard

element level integration procedure. Evaluating Eqs. 5.17a and c is not standard and

the detailed evaluation procedure for coarse-scale and scale interaction matrices is
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provided in Section 5.5.2.

The construction of global matrices constitutes the assembly of the coarse-scale

stiffness and mass matrices and the corresponding fine-scale matrices of all subdo-

mains. The global displacement vector that contains coarse-scale and fine-scale de-

grees of freedom (DOFs) are arranged as follows:

dSVM =

[
(dc)T ,

(
df1
)T

,
(
df2
)T

, ...,
(
dfnec

)T]T
(5.18)

Accordingly, the global stiffness matrix is constructed by block assembly of the coarse-

scale, fine-scale and the interaction matrices (Eqs. 5.17a-c) of all microstructures:

KSVM =



Kcc Kcf1 Kcf2 . . . Kcfnec

Kf1c Kf1f1 0 . . . 0

Kf2c 0 Kf2f2 . . . 0

...
...

...
. . .

...

Kfnecc 0 0 . . . Kfnecfnec


(5.19)

The global mass matrix is assembled similarly. The global force vector has the form:

FSVM =
[
(Fc)T , 0T , 0T , ..., 0T

]T
. The DOFs associated with Dirichlet boundary

conditions of both coarse and fine scales are eliminated using static condensation.

The resulting global system of equations is:

KSVMdSVM + MSVM d̈SVM = FSVM (5.20)

Equation 5.20 constitutes the full system of equations of the spectral variational

multiscale (SVM) model for wave propagation in periodic composites, where the dy-

namics at both scales are fully resolved.
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5.4 Phase Mode Synthesis for Basis Reduction at Fine Scale

Evaluating Eq. 5.20 directly does not provide significant numerical efficiency com-

pared to single scale finite element simulation when the same level of mesh density

is used to discretize the microstructure. The multiscale system of equations have

slightly fewer DOFs since the boundary DOFs at the fine scale are condensed out.

Nevertheless, the system size remains relatively large. In this section, we propose a

basis reduction strategy at the fine scale to improve the computational efficiency.

The basis reduction at the fine scale is performed as a two-step component mode

synthesis procedure that combines the Craig-Bampton method [28] and the charac-

teristic constraint mode reduction [22], which were originally developed for reduced

representation of structural components in analyzing the vibration response of large-

scale structural systems. The key idea in this approach is that the dynamic behavior

of a structural system is decomposed into its structural components. The dynamic

response of each component is expressed as the superposition of its internal dynamics

with the component-structure interface fixed, and the static response of the com-

ponent due to the deformation of the component-structure interface. The internal

dynamics of the component is approximated using a truncated modal basis. The

constraint mode reduction refers to a reduced modal basis representation of the de-

formation along the component-structure interface.

We adopt this idea in the analysis of the fine-scale problem and employ a phase-

based basis reduction approach. In this context, the subdomains of the microstructure

that are occupied by separate constituent materials (i.e., phases) are considered as the

“components”. The material interfaces become the “component-structure interfaces”.

Craig-Bampton mode synthesis is employed to express the response of each material

phase using a truncated set of modal basis functions. The interface degrees of freedom

are then reduced through constraint mode reduction.

Consider a microstructure Ωα that consists of nph material phases and nint in-
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terfaces. The interfaces are assumed to be non-intersecting, and separate only two

phases. The fine-scale stiffness matrix of each microstructure Kff (subscript α is

omitted for clarity) is partitioned and rearranged as follows:

Kff =



KP1P1 0 . . . 0 KP1I1 KP1I2 . . . KP1Inint

0 KP2P2 . . . 0 KP2I1 KP2I2 . . . KP2Inint

...
...

. . .
...

...
...

. . .
...

0 0 . . . KP
nph

P
nph KP

nph
I1 KP

nph
I2 . . . KP

nph
I
nint

KI1P1 KI1P2 . . . KI1Pnph KI1I1 0 . . . 0

KI2P1 KI2P2 . . . KI2Pnph 0 KI2I2 . . . 0

...
...

. . .
...

...
...

. . .
...

KI
nint

P1 KI
nint

P2 . . . KI
nint

P
nph 0 0 . . . KI

nint
I
nint


(5.21)

where KPiPi and KIjIj are the matrix blocks associated with phase Pi and interface

Ij, respectively. KPiIj =
(
KIjPi

)T
denotes the interaction matrix between phase Pi

and interface Ij. The mass matrix Mff is partitioned and rearranged similarly.

Equation 5.21 shows the general structure of the fine-scale stiffness matrix of

a multi-phase microstructure, where the fine-scale mesh conforms to the material

interfaces and the interfaces do not intersect. The type of microstructures under

these restrictions cover a broad class of phononic crystal and acoustic metamaterial

designs [83, 85]. For these microstructures, sufficiently fine mesh ensures that the

DOFs of two different interfaces do not have direct interactions, therefore, KIiIj = 0,

i 6= j. In addition, KPiIj = 0 when phase Pi is not connected with interface Ij.

The overall strategy for the material-phase-based mode synthesis is illustrated

in Fig. 5.3. Using the Craig-Bampton (CB) method [28], the dynamic response of

the microstructure is expressed in terms of a truncated set of fixed-interface normal

modes of each material phase and the interface nodal constraint modes. The char-

acteristic constraint (CC) mode synthesis is then employed to represent the interface
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Figure 5.3: Material-phase-based mode synthesis strategy.

deformation using a truncated set of characteristic interface constraint modes. The

normal modes of a material phase Pi, i = 1, ..., nph, are obtained by solving the

eigenvalue problem: (
KPiPi − λPiMPiPi

)
φPi = 0 (5.22)

All boundaries of the phase are fixed. Solving Eq. 5.22 results in mPi normal modes

and they are sorted according to their corresponding eigenvalues in the ascending or-

der: {φPi1 ,φ
Pi
2 , ...,φ

Pi
mPi
}. Model order reduction is achieved by selecting a truncated

set of normal modes as basis for the solution of the dynamics within phase Pi. The low-

est lPi modes are selected to form the normal mode matrix: ΦPi =
[
φPi1 ,φ

Pi
2 , ...,φ

Pi
lPi

]
.

The effect of deformation along an interface on the adjacent material phases is

taken into account by considering the static interface constraint modes. The interface

modes are computed by evaluating the static deformation of phase Pi subjected to

perturbations along the interface Ij. Let ΨPiIj denote the interface constraint mode

matrix. Each column in the constraint mode matrix contains the nodal displacements

in phase Pi subjected to a unit displacement applied at an interface node along

one spatial direction while all other interface nodal DOFs are set to vanish. It is
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straightforward to show that the interface constraint mode matrix is expressed as:

ΨPiIj = −
(
KPiPi

)−1

KPiIj (5.23)

The fine-scale DOFs within each material phase is represented using the gener-

alized basis that is composed of the fixed-interface normal modes and the interface

constraint modes. The original DOFs are related to the reduced DOFs by the modal

transformation matrix TP :

TP =



ΦP1 0 . . . 0 ΨP1I1 ΨP1I2 . . . ΨP1Inint

0 ΦP2 . . . 0 ΨP2I1 ΨP2I2 . . . ΨP2Inint

...
...

. . .
...

...
...

. . .
...

0 0 . . . ΦP
nph ΦP

nph
I1 ΦP

nph
I2 . . . ΦP

nph
I
nint

0 0 . . . 0 II1 0 . . . 0

0 0 . . . 0 0 II2 . . . 0

...
...

. . .
...

...
...

. . .
...

0 0 . . . 0 0 0 . . . IInint



(5.24)

where IIj is the identity matrix of the same size as KIjIj . Applying this transformation

to the fine-scale stiffness and mass matrix:

Kff
R1 =

(
TP
)T

KffTP (5.25a)

Mff
R1 =

(
TP
)T

MffTP (5.25b)

Kff
R1 and Mff

R1 are the reduced stiffness and mass matrices due to the truncated

selection of normal modes of each material phase.

While the above procedure reduces the degrees of freedom within each mate-

rial phase, the number of interface degrees of freedom can be significant, especially
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for complex microstructures where a fine mesh is required at the interface region.

We perform a secondary model order reduction using the characteristic constraint

mode reduction approach [22]. The interface degrees of freedom is reduced by using

truncated normal modes to represent the interface dynamics. The normal modes of

interface Ij are computed by the eigenvalue analysis of the interface partition of Kff
R1

and Mff
R1: (

K
IjIj
R1 − λ

IjM
IjIj
R1

)
φIj = 0 (5.26)

The reduced basis is obtained by sorting the interface normal modes and selecting

those with the lowest lIj eigenvalues to construct the interface normal mode matrix:

ΦIj =
[
φ
Ij
1 ,φ

Ij
2 , ...,φ

Ij

lIj

]
. The interface modal transformation matrix is defined as:

TI =



IP1
R1

0 . . . 0 0 0 . . . 0

0 IP2
R1

. . . 0 0 0 . . . 0

...
...

. . .
...

...
...

. . .
...

0 0 . . . I
P
nph

R1
0 0 . . . 0

0 0 . . . 0 ΦI1 0 . . . 0

0 0 . . . 0 0 ΦI2 . . . 0

...
...

. . .
...

...
...

. . .
...

0 0 . . . 0 0 0 . . . ΦI
nint



(5.27)

where IPiR1
is the identity matrix of the same size as the partition of the reduced stiff-

ness matrix corresponding to the ith material phase, KPiPi
R1

. The secondary reduction

to the stiffness and mass matrix is obtained by:

Kff
R2 =

(
TI
)T

Kff
R1T

I =
(
TPTI

)T
KffTPTI (5.28a)

Mff
R2 =

(
TI
)T

Mff
R1T

I =
(
TPTI

)T
MffTPTI (5.28b)
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The coarse-fine interaction matrices in Eq. 5.15 are reduced similarly by post-

multiplying the phase and interface modal transformation matrices:

Kcfα
R2 =

(
Kfαc
R2

)T
= KcfαTPTI (5.29a)

Mcfα
R2 =

(
Mfαc

R2

)T
= McfαTPTI (5.29b)

The reduced order multiscale system of equations is written as:

Kccdc + Mccd̈c +
nec∑
α=1

Kcfα
R2 gfα +

nec∑
α=1

Mcfα
R2 g̈fα = Fc (5.30a)

Kfαc
R2 dc + Mfαc

R2 d̈c + Kfαfα
R2 gfα + Mfαfα

R2 g̈fα = 0, α = 1, ..., nec (5.30b)

where gfα =

[(
gfαP1

)T
,
(
gfαP2

)T
, ...,

(
gfαP

nph

)T
,
(
gfαI1

)T
,
(
gfαI2

)T
, ...,

(
gfαI

nint

)T]T
,

is the vector of the generalized degrees of freedom associated with the normal modes

of the material phases and interfaces of the microstructure. The fine-scale nodal

DOFs are recovered from the generalized DOFs using the transformation matrices:

dfα = TPTIgfα (5.31)

Due to the periodic arrangement of unit cells, the model order reduction is per-

formed only once for one unit cell and the same reduced stiffness and mass matrices

are used for all unit cells. The global matrices and the force vector are assembled sim-

ilarly as the full multiscale model in Section 5.3. The two-step model order reduction

presented above significantly reduces the number of DOFs of the full spectral vari-

ational multiscale model and it is referred as reduced spectral variational multiscale

(RSVM) model hereafter.

Another model order reduction strategy that can be used for reducing the fine-scale
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degrees of freedom is the unit cell based Craig-Bampton component mode synthesis

(UCRSVM), which employs the unit cell normal modes as the reduced basis for the

fine-scale problem, without distinguishing the material phases and interfaces and

performing model order reduction to each of them. The fine-scale unit cell normal

modes are obtained by solving the eigenvalue problem:

(
Kfαfα − λfαMfαfα

)
φfα = 0 (5.32)

Similar to RSVM, the normal mode matrix is constructed by truncating the higher

frequency modes and the size of the stiffness and mass matrix is reduced by matrix

transformation of the original matrices using the normal mode matrix (e.g., Eq. 5.25).

This approach has been successfully applied in modeling the acoustic metamaterials

using the computational homogenization framework [116, 112]. In these works, pe-

riodic boundary conditions are applied at the fine scale, the local resonance modes

are identified and used as reduced basis. In the current work, since homogeneous

Dirichlet boundary condition is used at the fine scale, the resulting normal modes

are fixed-boundary vibration modes. It is observed that these modes do not well

capture the wave propagation at the fine scale. A comparison of UCRSVM to RSVM

is provided in Section 5.6.2.

5.5 Implementation Details

In this section, we provide implementation details of the proposed spectral varia-

tional multiscale model, including coarse-scale and fine-scale discretization, evaluation

of element matrices, selection of the normal modes for reduced basis approximation,

and time integration.
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5.5.1 Multiscale discretization

The proposed multiscale approach has been verified on coarse-scale domains,

where the domain of the coarse-scale element in the discretization conforms to that

of a unit cell. The domain is first discretized using linear quadrilateral elements (the

edges of the elements remain straight). Higher-order serendipity elements are then

achieved by adding edge nodes and bubble nodes to the linear base element. The

coordinates of the added nodes are linearly interpolated using the corner nodes of the

linear base element. The node numbering and positioning in the cubic, quintic and

septic elements are shown in Fig. 5.2. Each coarse-scale element is associated with the

same unit cell morphology, which is meshed using the bilinear quadrilateral elements

at the fine scale. In order to avoid numerical dispersion, sufficient spectral order has

to be employed for the coarse-scale element, and at least 10 elements have been used

to resolve one wavelength at the fine scale. In a composite medium undergoing wave

propagation at a given frequency, the softer material phases require more refinement,

since the wave speed is slower and the wavelength is shorter in the softer material

phases.

5.5.2 Element matrices

Construction of the appropriate element matrices requires numerical integration of

the element matrices that involves fine-scale basis functions only (Eq. 5.17b), coarse-

scale basis functions only (Eq. 5.17a) and the coupling terms with both coarse- and

fine-scale basis functions (Eq. 5.17c). The integration of Eq. 5.17b for an arbitrary

fine-scale element, Ωe
α, is standard and performed using the Gaussian quadrature. The

integration procedure for Eqs. 5.17a and c is non-standard and described below for

the stiffness matrix in Eq. 5.17a. The mass matrix in Eqs. 5.17a and c are integrated

in a similar fashion and skipped for brevity.

The integration of a function f(x) over the fine-scale element domain is approxi-
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mated as:

∫
Ωeα

f(x) dΩe
α =

∫
�f
f
(
x(ξf )

)
Jf (ξ)d�f ≈

nfint∑
l=1

f(ξfl )Jf (ξfl )Wl (5.33)

where, Jf = det(∂x/∂ξf ), is the fine-scale element Jacobian determinant and �f is

the fine-scale parent domain. nfint is the number of integration points to accurately

evaluate the integrand. ξfl and Wl are respectively the coordinates and weight of

the integration point, l. In order to resolve the material heterogeneity within coarse-

scale elements, each coarse-scale element is partitioned using the fine-scale mesh. The

element stiffness matrix in Eq. 5.17a is expressed as:

Kcc
α =

∫
Ωα

(Bc
α)TC(x)Bc

α dΩα =

nef∑
e=1

∫
Ωeα

(Bc
α)TCeB

c
α dΩe

α (5.34)

The evaluation of Eq. 5.34 using Eq. 5.33 requires the interpolated values of the

spectral coarse-scale basis functions and their derivatives at the integration points

within the fine-scale parent domain. The interpolated values are not readily available

for the coarse-scale shape functions since they are defined in the coarse-scale parent

domain, �c. In order to obtain the coarse-scale shape functions and their derivatives

at the integration points within the fine-scale parent domain, a two-scale mapping

procedure is employed.

Figure 5.4 schematically illustrates this mapping process for a cubic coarse-scale

element. LetMf andMc respectively denote the fine-scale and coarse-scale isopara-

metric mappings that map functions defined in the fine-scale and coarse-scale parent

domains to the physical domain. For any quadrature point within the fine-scale par-

ent domain, its corresponding location in the coarse-scale parent domain is obtained

by first employing the fine-scale element isoparametric mapping to find its location

in the physical domain, then applying the coarse-scale element inverse isoparametric
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Material phase-1
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Coarse-scale node
Fine-scale node
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ηf
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Fine-scale forward mapping
Coarse-scale forward mapping
Coarse-scale inverse mapping

Ωα
e

Figure 5.4: The two-scale element mapping relationship.

mapping:

ξc =M−1
c (Mf (ξ

f )) (5.35)

where M−1
c denotes the inverse mapping. The procedure of inverse mapping was

originally proposed in Refs. [77, 78] and is elaborated in Appendix H. The inverse

mapping for spectral elements is developed based on the theory of differential geome-

try and has been previously used in the context of distortion measures for 2D 8-node

serendipity element and 3D hexahedron elements [131].

Gauss-Legendre quadrature rule is employed for numerical integration. Since

linear quadrilateral element is used for the fine-scale discretization, integration of

Eq. 5.17b is exact with 2 × 2 integration points. The number of integration points

required to exactly evaluate Eqs. 5.17a and c depends on the spectral order of the

coarse-scale shape functions. For a pth order coarse-scale spectral element, the min-

imum number of integration points for Eqs. 5.17a and c are (p + 1) × (p + 1) and

(p
2

+ 1)× (p
2

+ 1), respectively. For each integration point within the fine-scale parent

domain, its corresponding location in the coarse-scale parent domain is obtained by

Eq. 5.35. The coarse-scale shape functions and their derivatives are evaluated at this

mapped point. Equation 5.17d that provides the force term at the coarse scale is
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integrated using the standard procedure over the coarse-scale element assuming that

the boundary tractions remain unresolved at the fine scale.

5.5.3 Normal mode selection

The retained normal modes in the Craig-Bampton component mode synthesis and

characteristic constraint mode reduction is typically selected by truncating the modes

with higher natural frequencies [28, 22, 73]. The number of the normal modes is de-

termined using a heuristic approach, based on ensuring that the desired accuracy is

achieved with the resulting reduced order model. The appropriate number of mate-

rial phase and interface normal modes used in RSVM are determined by gradually

truncating the higher frequency modes, while evaluating the accuracy of the resulting

transient response field compared to SVM. Parametric studies are provided in the

next section for phononic crystals and acoustic metamaterials.

The general trend for the relation between wave frequency and the number of

normal modes required for accuracy is that the required number of normal modes

increases as the wave frequency increases. At low frequency, a few normal modes

suffice to accurately predict wave propagation in the composite. As frequency in-

creases, more modes need to be incorporated to retain accuracy, and the number of

normal modes required for each material phase and interface varies depending on the

constituent material properties.

Truncation of higher frequency modes is performed starting from the phase modes.

Among all material phases, the normal modes of the stiff material phases are truncated

first, since they have higher natural frequencies and typically only a few normal modes

are important at the wave frequency of interest. The soft material phases require more

normal modes to capture the deformation states during wave propagation, since their

natural frequencies are lower than the stiff phases and more normal modes are excited.

The interface normal modes of higher natural frequencies are truncated after the
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phase modes are selected. Since the reduced interface normal modes directly control

the static deformation of adjacent material phases, the number of interface normal

modes is chosen to be relatively large to accurately capture the static deformation of

adjacent material phases. This relation is also observed in Refs. [22, 52] in the context

of model order reduction of homogeneous structures. In the current study, the number

of interface normal modes is selected such that it is larger than the smallest number

of selected normal modes of adjacent material phases.

This heuristic way of mode selection can be improved by establishing a rela-

tionship between the number of modes for material phases and interfaces with the

microstructure morphology, material properties and wave frequency. Such an effort

would require a systematic study of the mode selection strategy for different phononic

crystal and acoustic metamaterial designs and is beyond the scope of this manuscript.

5.5.4 Time integration

The monolithic time integration with Newmark’s family of methods is employed in

solving the discretized system of equations. In particular, we use the implicit uncon-

ditionally stable “Average acceleration” method [58]. Explicit time integration with

lumped mass matrix is typically more efficient for wave propagation in homogeneous

materials. In contrast, explicit integration for wave propagation in complex compos-

ites does not guarantee numerical efficiency over implicit methods, due to the large

stiffness contrast between the constituents and variations in mesh size [50]. The time

step size in the implicit time integration approach adopted herein is controlled by

accuracy considerations only. Sufficiently fine time step size is used in the numerical

examples below to resolve the temporal oscillations at each material point.

In the implicit time integration, inversion of global coefficient matrix MSVM +

β∆t2KSVM or MRSVM + β∆t2KRSVM (β is the algorithmic parameter in the New-

mark’s method and ∆t is the time step size) is performed at every time step. Since
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the coefficient matrix does not change during the time integration, it is decomposed

only once before the time integration. A substitution is performed at each time step

to update the solution.

5.6 Model Verification

In this section, we assess the capability of SVM and RSVM in modeling transient

wave propagation in periodic composites. Numerical examples of wave propagation

in phononic crystals (PC) and acoustic metamaterials (AMM) are presented. The

proposed model is verified against direct numerical simulations (DNS) using the finite

element method for a wide range of frequencies. The effects of coarse-scale element

spectral order, material property contrast and the number of fine-scale normal modes

on the accuracy and efficiency of the proposed model are discussed.

Figure 5.5(a) shows the two-dimensional unit cells of the acoustic metamaterial

and phononic crystal that are used in the numerical examples. All examples are

performed in plane strain condition. The acoustic metamaterial unit cell consists of

three material phases: epoxy matrix, rubber coating and lead core. Under dynamic

excitation, this material absorbs kinetic energy through locally resonant motion of

the rubber coating and the lead core. This acoustic metamaterial design is originally

proposed by Liu et al. [82] and has been analyzed using the computational homoge-

nization framework [107]. In the current work, the dimensions of the unit cell, rubber

coating and lead core, as well as the material properties of each phase are identical to

those used in Ref. [82]. The phononic crystal unit cell is designed to have the same

size as acoustic metamaterial unit cell. The steel inclusion has identical geometry as

the lead core of the acoustic metamaterial unit cell. The material properties of epoxy

used for the phononic crystal are identical to those used for the acoustic metamaterial.

The material properties used in the simulations are summarized in Table 5.1.

Each acoustic metamaterial unit cell is discretized using 2,752 linear quadrilateral
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Table 5.1: Material properties used in simulations.

Material Young’s modulus (GPa) Poisson’s ratio Density (kg/m3)

Epoxy 3.6 0.3679 1, 180
Rubber 11.8× 10−5 0.4688 1, 300

Lead 40.8 0.3698 11, 600
Steel 210 0.3 7, 900

elements and it contains 5,346 fine-scale DOFs. A fine mesh is used in the rubber

coating phase with 10 elements in the radial direction in order to capture the resonant

motion. The number of DOFs associated with the epoxy matrix, matrix-coating

interface, rubber coating, coating-core interface and lead core are respectively 782,

256, 2,304, 256 and 1,748. The same mesh is used for the phononic crystal unit cell.

The number of DOFs associated with epoxy matrix, matrix-inclusion interface and

steel inclusion is respectively 3,342, 256 and 1,748. The proposed multiscale method

leverage the periodic arrangement of unit cell discretization, therefore the element

matrices are evaluated only for one unit cell and they are assembled block-by-block

to construct the global matrices. In direct finite element simulations, each unit cell

is discretized identically as the fine-scale discretization of the proposed multiscale

method, i.e., 2,752 elements are used for each unit cell. Two composite structure

configurations are investigated below, and transient sinusoidal velocity is applied for

both cases, ṽx(t) = sin(2πft) m/s. The time step size is determined such that each

loading cycle is resolved by 100 time steps: ∆t = 0.01/f . It is verified that decreasing

the time step size does not change the results significantly.

Both direct numerical simulations and the proposed model are excuted on a 4-core

desktop with 2.3 GHz Intel processors and 16 GB of memory. In direct numerical

simulations, the matrices of each element within each unit cell is computed and as-

sembled. The time integration scheme and time step size are identical to the proposed

multiscale method. For all simulations (DNS, SVM and RSVM), sparse matrix stor-
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age is used for the global matrices and sparse matrix Cholesky decomposition is

applied to the global coefficient matrix.

5.6.1 Spectral variational multiscale model

In this section, we investigate wave propagation in the phononic crystal and acous-

tic metamaterial as shown in Fig. 5.5 using SVM. The composite structure is com-

posed of a row of nec microstructures. The right edge is fixed and the left edge is

subject to sinusoidal velocity load, ṽx. Periodic boundary condition is applied to

the top and bottom edges. nec is 50 for acoustic metamaterial and 20 for phononic

crystal examples. The simulation time is T = 1/f s for acoustic metamaterial and

T = 1.5×10−4 s for phononic crystal examples. The simulation setup for the acoustic

metamaterial example is identical to that used in Ref. [107].

PCAMM
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.5

 m
m 10 m

m
15 m

m

x

y

1 microstructure

nen microstructures

Periodic boundary condition

(b)
Composite structure

Microstructures(a)
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rubber
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steel

Figure 5.5: (a) Acoustic metamaterial and phononic crystal unit cells. (b)
Composite structure and boundary conditions.

5.6.1.1 Accuracy of SVM at various wave frequencies

Figure 5.6 shows the velocity profiles along the bottom edge of the phononic

crystal structure at time t = T as predicted by SVM and the reference simulations.

The vertical axis label vx denotes the measured velocity in x direction. The responses
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Figure 5.6: Velocity profiles as predicted by SVM and reference simulations
along the bottom edge of the PC structure at t = T : (a) 10 and 50 kHz, (b)

100 and 140 kHz.

at the applied frequencies of 10, 50, 100, 140 kHz are shown. The frequencies are

respectively in the first pass band, the first stop band, the second pass band and

the second stop band. For all applied loading frequencies, SVM very accurately

captures the wave field, including wave dispersion in the acoustic regime (10 kHz),

wave attenuation in the stop bands (50 kHz and 140 kHz) and wave amplification

in the optical regime (100 kHz). Within the second stop band (f = 140 kHz),

the wavelength is shorter than the microstructure. Since the present approach does

not rely on the assumption of separation of scales, the short wavelength response is

accurately captured. The lateral velocity contours within the phononic crystal for

the aforementioned four frequencies are shown in Fig. 5.7. In the first pass band, the

wave propagates through both the matrix and inclusion with similar amplitudes. In

contrast, the wave appears to propagate through the matrix only when its frequency

is within the second pass band. While both the first and second stop bands feature a

significant reduction in wave amplitude, the distribution of the kinetic energy density

within the phases is different. The kinetic energy is concentrated in the inclusion

within the first stop band, whereas it is concentrated in the matrix when the wave

frequency is within the second stop band. SVM accurately predicts the wave patterns

at all four frequency regimes.

Figure 5.8 shows the velocity profiles along the bottom edge of the structure when
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Figure 5.7: Velocity contours of the PC structure as predicted by SVM and
reference simulations at t = T .

acoustic metamaterial unit cell is used. Compared to the phononic crystal, wave

attenuation occurs at much lower frequencies in the acoustic metamaterial. At these

frequencies, the wavelength is much larger than the size of microstructures. The

mechanism of wave attenuation is the local resonance. As shown in Fig. 5.9, the

local resonance is mainly due to the resonant motion of the lead core at f = 500 Hz.

As the wave frequency increases, a transition from the core resonance to the coating

resonance occurs (f = 700 Hz). At f = 1, 300 Hz, the coating resonance becomes

dominant. This observation is consistent with Ref. [82]. The local resonance becomes

weaker as the wave frequency further increases (f = 2, 700 Hz). The rubber-coated

lead inclusion behaves more like a soft scatterer than a resonator and less kinetic

energy is absorbed in the lead core and the rubber coating. As a consequence, the

wave amplitude increases at high frequencies as shown in Fig. 5.8(b).

The transmitted wave amplitude spectra for the phononic crystal and acoustic

metamaterial are shown in Fig. 5.10. The spectra are built based on wave amplitudes

measured along the bottom edge of the composite structure (Fig. 5.5(b)) at t = T .
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Figure 5.8: Velocity profiles as predicted by SVM and reference simulations
along the bottom edge of the AMM structure at t = T : (a) 300, 500, 700,

900 and 1,300 Hz, (b) 1,500, 1,800, 2,100, 2,400 and 2,700 Hz.

Along the measurement line (i.e., the bottom edge), the maximum amplitude of

the velocity field is employed for the acoustic metamaterial spectrum, whereas the

maximum amplitude of the velocity field 5 unit cells away from the loaded end is used

for the phononic crystal spectrum. The probed frequency range covers up to the third

pass band for the phononic crystal and the pass band beyond the local resonance stop

band for the acoustic metamaterial. For wave propagation in the phononic crystal

(Fig. 5.10(a)), SVM accurately captures the transmission spectrum up to the second

stop band. The accuracy decreases as the wave frequency increases. In the third

pass band, the wavelength is much shorter than the length of the unit cell. The

septic shape functions used at the coarse scale does not provide sufficient resolution

to accurately capture the wave field, and the error is therefore larger in this regime.

For wave propagation in the acoustic metamaterial (Fig. 5.10(b)), SVM is accurate

in the entire range of probed frequencies.

5.6.1.2 Parametric study for accuracy assessment

A parametric study is performed to examine the accuracy of SVM as a function of

the spectral order of the coarse-scale shape functions. Figure 5.11 compares the ve-

locity field obtained using SVM with spectral coarse-scale elements of different orders

with the reference simulations. The composite structure made of phononic crystal
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Figure 5.10: Transmitted wave amplitude spectra for (a) phononic
crystal, and (b) acoustic metamaterial.

unit cells is considered in this study. The structure is excited at two frequencies. At

f = 10 kHz, the wavelength is about 12 times of the size of a coarse-scale element.

A slight numerical dispersion is observed when linear elements are used. Simulations

with higher-order spectral elements agree very well with the reference simulations. At

f = 100 kHz, linear coarse-scale element fails to capture the propagation of the high

frequency wave, and a significant phase shift is observed for cubic element. Quintic

and septic coarse-scale elements accurately capture the wave field. This observation

confirms the importance of using higher-order spectral elements at the coarse scale
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to capture the high frequency waves using the proposed multiscale approach.
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Figure 5.11: The effect of the spectral order of coarse-scale element on the
accuracy of SVM for the phononic crystal structure simulation: (a) f = 10

kHz, and (b) f = 100 kHz.
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Figure 5.12: The effect of the spectral order of coarse-scale element on the
accuracy of SVM for the acoustic metamaterial simulation: (a) f = 300 Hz,

and (b) f = 2, 000 Hz.

Similar to the observations for phononic crystals, the accuracy of SVM requires

sufficiently high order spectral coarse-scale elements in modeling acoustic metamate-

rials. Figure 5.12 shows the velocity profiles predicted by SVM with varying orders

of coarse-scale elements compared with the reference simulations under two loading

frequencies. The figure demonstrates convergence to the reference simulations as the

order of the coarse-scale elements is increased. At f = 300 Hz and f = 2, 000 Hz, the

wavelength within the epoxy matrix is much larger compared to the size of coarse-scale

element. However, the velocity profiles predicted by models using linear and cubic

elements show significant discrepancy. This is attributed to the observation that the
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wavelength within the rubber coating is much shorter than it is in the epoxy matrix,

and these short waves could not be accurately captured using low-order elements.

Next, we assess the accuracy of the proposed multiscale approach in capturing

the transient dynamic response within the composite domain as a function of con-

trast in the constituent elastic moduli. Figure 5.13 shows the velocity profiles as

predicted by SVM and reference simulations for various Young’s modulus contrasts.

The parametric study is performed by varying the Young’s modulus ratio by 0.1

times (rE = 5.83 for PC and rE = 3.5 × 104 for AMM) or 10 times (rE = 583 for

PC and rE = 3.5 × 106 for AMM) compared to the Young’s modulus ratio used in

previous examples (rE = 58.3 for PC and rE = 3.5× 105 for AMM). Varying Young’s

modulus contrast is achieved by varying the Young’s modulus of epoxy for phononic

crystals and rubber for acoustic metamaterials, while other material properties re-

main unchanged. In the phononic crystal case (Fig. 5.13(a)), a change in the Young’s

modulus of the matrix constituents results in a significant change in the length of the

propagating wave when excited with a frequency of 20 kHz. Compared to rE = 58.3,

increasing the modulus ratio by decreasing the modulus of the matrix leads to shorter

wavelength, resulting in strong destructive interactions and stop band formation when

rE = 583. When the acoustic metamaterial is excited at f = 2, 000 Hz, the wavelength

remains nearly unchanged when the modulus of the coating is decreased 10 times.

Contrary to the strong attenuation observed in the phononic crystal, increasing the

modulus contrast results in weaker attenuation. This is because the stop band shifts

to lower frequencies due to the decreased coating modulus. The loading frequency is

further away from the stop band. On the other hand, reducing the modulus contrast

leads to stronger attenuation at f = 2, 000 Hz, as the frequency range for the stop

band is shifted to higher frequencies and f = 2, 000 Hz falls in the stop band.
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Figure 5.13: The effect of the material property contrast on the
accuracy of SVM: (a) PC at f = 20 kHz, (b) AMM at f = 2, 000 Hz.

5.6.2 Reduced order spectral variational multiscale model

In this section, we investigate the accuracy and numerical efficiency of the pro-

posed reduced order spectral multiscale model for wave propagation in the phononic

crystal and acoustic metamaterial. The geometry, boundary and loading conditions

for the numerical example are identical to those described in Section 5.6.1. Septic

coarse-scale basis functions are employed for RSVM.

Figure 5.14 shows the velocity profiles along the bottom edge of the phononic

crystal evaluated using RSVM compared to reference simulations and UCRSVM.

The selected number of normal modes for RSVM are 20, 40, 80, 160. The numbers

of selected modes for matrix, matrix-inclusion interface and inclusion are respectively

5-10-5, 10-20-10, 20-40-20 and 40-80-40. UCRSVM incorporates the first 320 unit

cell normal modes. In the first pass band (Fig. 5.14(a)), RSVM agrees well with the

reference simulations using as few as 40 modes. Using fewer modes results in a slight

phase shift. Even with significantly larger number of modes, UCRSVM does not

capture the wave field as accurately. As the wave frequency increases, the wavelength

becomes shorter, and additional modes are required to capture the wave field with

similar accuracy. At f = 50 kHz (the first stop band), 40 modes are not sufficient to

accurately capture the wave field. RSVM with 80 modes agrees well with the reference

simulations. At higher frequencies, in the second pass band and second stop band,
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Figure 5.14: Velocity profiles as predicted by RSVM with different
number of modes and reference simulations along the bottom edge of

the PC structure at t = T : (a) 10 kHz, (b) 50 kHz, (c) 100 kHz, (d) 140
kHz.

while RSVM with 80 and 160 modes both predict the short wavelength responses, it

is apparent that more retained modes result in better accuracy. The computational

efficiency decreases as the number of modes increases. It is important to note that

due to the high modulus contrast between epoxy and steel, the critical time step size

for explicit time integration is approximately 3.6 × 10−9 s. Using vectorized explicit

time integration for reference simulations in fact is more computationally expensive

than the implicit time integration.

Figure 5.15 shows the velocity profiles as predicted using RSVM with 80, 160

and 320 modes, compared to reference simulations and UCRSVM for the acoustic

metamaterial. The numbers of modes for the epoxy matrix, matrix-coating interface,

rubber coating, coating-core interface and lead core are respectively 10-20-30-10-10,

20-40-70-20-10 and 20-100-150-40-10. The number of modes selected for the lead

core is much smaller than the others since it undergoes primarily rigid body motion
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due to high density and modulus compared to the soft rubber coating. The wave

within the epoxy matrix can also be well captured with relatively small number of

modes, because the wavelength within the epoxy matrix is much larger than the

size of the unit cell in the frequency range of interest. The rubber coating requires

significant number of modes to accurately capture its deformation since higher natural

modes of vibration can be easily excited even at low frequency. As the number of

selected modes increases, more modes are incorporated for the rubber coating and the

adjacent interfaces, while the numbers of modes for the epoxy matrix and lead core

remains unchanged. The number of modes for the rubber coating is approximately

1.5 and 3 to 4 times the numbers of modes for the coating-core interface and matrix-

coating interface, respectively. The latter interface retains more modes because more

modes are selected for the epoxy matrix than the lead core. Figure 5.15 shows that

the accuracy of RSVM improves with increasing number of modes. Compared to

the phononic crystal example, modeling acoustic metamaterial requires more modes

to accurately predict the wave field. This is due to the more complex unit cell

architecture with more phases and interfaces, and the presence of the soft rubber

phase that requires a large number of modes to resolve its deformation. The UCRSVM

approach exhibits significant discrepancy even with a large number of modes (800).

This implies that the unit cell normal modes with homogeneous boundaries are not

proper basis for the fine-scale problem for the proposed multiscale formulation, and

justifies the phase mode synthesis strategy.

The computational efficiency of the example in Fig. 5.15(a) is shown in Table 5.2.

the normalized computation time indicates the computation time of RSVM divided by

the computation time of the reference simulation during the preprocessing and time

integration. The preprocessing step includes element matrices evaluation and global

matrices assembly for the reference simulation, and element matrices evaluation at

both scales, fine-scale model basis reduction and global matrices assembly for RSVM.
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Significant computational efficiency is achieved at both preprocessing and time inte-

gration steps. As more modes are incorporated, the computation time remains nearly

unchanged in preprocessing, and increases in time integration. For preprocessing, the

efficiency is mainly attributed to that the coarse- and fine-scale element matrices are

evaluated only once for one unit cell and the block-by-block global matrices assembly.

The computational efficiency of RSVM in time integration is achieved due to the

reduced global matrices size compared to reference simulations.
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Figure 5.15: Velocity profiles as predicted by RSVM with different
number of modes and reference simulations along the bottom edge of

the AMM structure at t = T : (a) 300 Hz, (b) 700 Hz, (c) 1,300 Hz, (d)
2,700 Hz

Table 5.2: Normalized computation time of RSVM for the AMM simulation.

Number of modes Preprocessing Time integration

80 0.343 0.034
160 0.345 0.082
320 0.349 0.185
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5.6.3 Elastic waveguide simulation using RSVM

In this section, we investigate the transient wave propagation in an elastic waveg-

uide shown in Fig. 5.16. The length and height of the structure are 15 unit cells

and 12 unit cells, respectively. The waveguide is constructed as the periodic arrange-

ment of the phononic crystal unit cell (Fig. 5.5), except along an elbow path made

of homogeneous epoxy. This design has been previously investigated experimentally

and numerically in the context of acoustic wave guiding [72] in water using periodic

array of steel cylinders. The right boundary of the waveguide is fixed and sinusoidal

velocity is applied along the left boundary. The total simulation time is T = 4×10−4

s.

x

y

Figure 5.16: The geometry and boundary conditions of the elastic
waveguide simulation.

The discretization for the phononic crystal unit cell is identical to the previous

sections for both DNS and RSVM. In reference simulations, 495,360 elements are

used to discretize the domain. In multiscale simulations, the elements within the

homogeneous path region are not enriched with the fine-scale problem, but are dis-

cretized using the septic coarse-scale shape functions. 80 modes are incorporated as

the fine-scale basis and the number of modes for epoxy matrix, interface and steel

inclusion are respectively 20, 40 and 20. The total numbers of DOFs for DNS and

RSVM are respectively 991,439 and 21,605.
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Figure 5.17: Velocity contours of wave propagation in elastic waveguide,
f = 10 kHz.

Figure 5.17 shows the velocity contours of wave propagation in the composite

structure. Sinusoidal velocity at a frequency of f = 10 kHz is applied to the left

boundary and the snapshots are taken at 4 separate time instances. The elastic wave

travels through the entire composite structure and forms a complex wave pattern due

to reflections at the structural boundaries. The dispersion induced by the microstruc-

tures is relatively minor, because the macroscopic wavelength is significantly larger

than the size of the microstructure. When the wave frequency is increased to 60 kHz,

the frequency falls within the first stop band (Fig. 5.10). At this frequency, the wave-

length is approximately twice of the unit cell size, resulting in significant destructive

interactions within the composite structure. Because of the stop band formation, the

elastic wave is only permitted to propagate within the homogeneous guide, as shown

in Fig. 5.18. The wave amplitude outside of the guide is strongly attenuated and is

much lower than it is within the guide. At both of these frequencies, it is observed

that RSVM with 80 modes accurately captures the overall wave field.

The computation time for DNS and RSVM in preprocessing and time integration

is shown in Table 5.3. Similar to the acoustic metamaterial case shown in Table 5.2,

RSVM is significantly faster than DNS in both preprocessing and time integration.

In the present numerical example, since a relatively short period of time is simulated,
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Figure 5.18: Velocity contours of wave propagation in elastic
waveguide, f = 60 kHz.

the time integration is less computationally expensive than the preprocessing. The

computation time of time integration linearly increases as longer total simulation time

is investigated.

Table 5.3: Computation time in the phononic crystal waveguide simulation.

Simulation model Preprocessing Time integration

DNS 9.5 hours 765.7 seconds
RSVM 0.5 hours 4.7 seconds

5.7 Conclusion

This manuscript presented a spectral variational multiscale model for transient

wave propagation in phononic crystals and acoustic metamaterials. The proposed

model is developed based on the variational multiscale enrichment method, employing

the additive split of the solution field and numerically evaluating the coupled system

of equations at two scales. Spectral elements are employed at the coarse scale to

accurately resolve the wave field. A material-phase-based model order reduction

method is proposed for efficient evaluation of the fine-scale numerical solution. Based

on the Craig-Bampton component mode synthesis and the characteristic constraint

mode reduction, the proposed approach distinguishes material phases and interfaces
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at the fine scale and perform modal reduction individually.

A novel contribution of the proposed model is that it does not introduce dras-

tic accuracy reduction in composites with high material property contrast and it

does not employ the scale separation principle. This permits the proposed model to

accurately capture wave propagation in both phononic crystals and acoustic meta-

materials over a wide frequency range. The accuracy and computational efficiency of

the spectral variational multiscale model is demonstrated for both phononic crystals

and acoustic metamaterials. It is shown that the wave field in the phononic crystal

is accurately predicted by the proposed model up to the second stop band, where the

wavelength is shorter than the microstructure. The proposed model well captures

the local resonance and wave attenuation in acoustic metamaterials. Computational

cost reduction is achieved in both preprocessing and time integration for the reduced

order model. The computational efficiency decreases as the number of incorporated

modes increases. It is observed that more modes are required to accurately capture

the wave field in acoustic metamaterials than phononic crystals, due to the increased

number of modes to resolve the soft material phase and adjacent interfaces.

In the near future, the current model will be extended to 3D for more general

applications in design and analysis of phononic crystals and acoustic metamateri-

als. Furthermore, a broader range of material constitutive behaviors need to be

investigated, including the viscoelasticity and thermal effect [57], in order to explore

undiscovered design space for exotic dynamic properties of architectured composites.

From the computational perspective, the use of other fine-scale boundary conditions

(e.g., periodic boundary condition) and modal basis functions will be investigated for

improved accuracy and computational efficiency.
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Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

This dissertation has focused on advancing the multiscale computational methods

for wave propagation in periodic composites including phononic crystals and acoustic

metamaterials. In particular, it is devoted to modeling wave dispersion and attenua-

tion associated with the band gap phenomenon within these architectured materials.

Multiscale methods in two categories are proposed: (1) scale separation assumption

dependent and (2) scale separation assumption independent. The key contributions

of this dissertation are concluded as follows:

1. Development of a spatial-temporal nonlocal homogenization model for transient

wave propagation in periodic elastic and viscoelastic composites.

A spatial-temporal nonlocal homogenization model has been developed for tran-

sient wave propagation in periodic elastic and viscoelastic composites. The

homogenization model is derived by employing high order asymptotic expan-

sions, extending the applicability of asymptotic homogenization to the short

wavelength regime. A gradient-type spatial-temporal nonlocal macroscopic gov-

erning equation is consistently derived from the momentum balance equations

of successive asymptotic orders. All the model parameters are uniquely com-

puted from the microscale equilibrium equations that are independent of the

macroscale displacement, therefore, computed as an off-line process. The pro-

posed model is formally similar to the gradient elasticity models. It is unique in

that it applies to wave propagation in two-dimensional composites without the

model parameter tuning. A nonlocal effective medium model, in the form of

second order PDE with nonlocal effective moduli tensor, is developed based on
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the nonlocal homogenization model. The effective medium model retains the

nonlocal features of the homogenization model in high symmetry directions of

the first Brillouin zone, while suppressing the non-physical wavenumbers that

result in instability.

The proposed model is verified for wave propagation in several composite con-

figurations including: 1D wave in elastic and viscoelastic layered composites,

anti-plane shear wave in 2D elastic and viscoelastic composites, and in-plane

wave in 2D elastic composite. It is shown that the nonlocal homogenization

model captures the acoustic branch, the stop band and the first optical branch

of the dispersion curves in the direction of high symmetry points of the first

Brillouin zone. The accuracy decreases as the frequency increases beyond the

acoustic regime and as the material property contrast increases. The nonlocal

effective medium model matches the dispersion behavior of the spatial-temporal

nonlocal homogenization model in the high symmetry directions and approxi-

mates it in other directions with reasonable accuracy, and it accurately predicts

uni-directional wave propagation and the overall wave dispersion and attenua-

tion behavior of wave propagation in a simple 2D phononic crystal waveguide.

2. Development of a spectral variational multiscale model for transient wave prop-

agation in phononic crystals and acoustic metamaterials.

The proposed model employs the additive split of the solution field and nu-

merically evaluates the coupled system of equations at two scales. Spectral

elements are employed at the coarse scale to accurately resolve the wave field.

A material phase based model order reduction method is proposed for efficient

evaluation of the fine-scale numerical solution. Based on the Craig-Bampton

component mode synthesis and the characteristic constraint mode reduction, the

proposed approach distinguishes material phases and interfaces at the fine-scale

and perform modal reduction individually. An important feature of the pro-
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posed model is that it does not make assumptions on the relative size between

macroscopic wave and microstructures, and the material property contrast of

the constituents. This permits the proposed model to accurately capture wave

propagation in both phononic crystals and acoustic metamaterials over a wide

frequency range.

The accuracy and computational efficiency of the spectral variational multiscale

model is demonstrated for both phononic crystals and acoustic metamaterials.

It is shown that the wave field in the phononic crystal is accurately predicted

even when the wavelength is shorter than the microstructure. The proposed

model well captures the local resonance and wave attenuation in acoustic meta-

materials. Computational cost reduction is achieved in both preprocessing and

time integration using the reduced order spectral variational multiscale model.

The computational efficiency decreases as the number of incorporated modes

increases. It is demonstrated that the proposed model accurately predicts the

wave dispersion and attenuation within a 2D phononic crystal waveguide with

significant computational efficiency.

6.2 Recommendations for the Future Work

From the method development point of view, the following directions are recom-

mended:

1. The multiscale models developed in this dissertation are verified in two-dimensions.

It is desirable to extend the current methods to three-dimensions in order for

these models to be applied in more general settings.

2. The current development is limited to elastic and viscoelastic composites. Devel-

opment of computationally efficient multiscale models in the nonlinear regime,

incorporating material nonlinearity and geometric nonlinearity, is an impor-
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tant step towards exploring the undiscovered design space for exotic dynamic

properties of architectured composites.

From the method application point of view, the following directions are recom-

mended:

1. Applying the proposed multiscale models to facilitate the design and analysis

of novel applications, such as seismic wave mitigation [19, 25], acoustic super-

lens [79, 71] and topological insulators [97], will have an profound impact on

advancing the respective fields. Design optimization can be achieved in a more

efficient manner by employing these multiscale models.
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Appendix A

Analytical expression for Êk

Êk =
α2(1− α)2(E1ρ1 − E2ρ2)2E0l̂

6

60480ρ6
0(E1(1− α) + αE2)6

{[
(1− α)4E4

1

(
32(1− α)4ρ4

2 − 160α(1− α)3ρ1ρ
3
2 + 192α2(1− α)2ρ2

1ρ
2
2+

108α3(1− α)ρ3
1ρ2 + 3α4ρ4

1

)]
+[

α(1− α)3E3
1E2

(
− 160(1− α)4ρ4

2 + 944α(1− α)3ρ1ρ
3
2−

1580α2(1− α)2ρ2
1ρ

2
2 − 12α3(1− α)ρ3

1ρ2 + 108α4ρ4
1

)]
+[

α2(1− α)2E2
1E

2
2

(
192(1− α)4ρ4

2 − 1580α(1− α)3ρ1ρ
3
2+

3826α2(1− α)2ρ2
1ρ

2
2 − 1580α3(1− α)ρ3

1ρ2 + 192α4ρ4
1

)]
+[

α3(1− α)E1E
3
2

(
− 160α4ρ4

1 + 944α3(1− α)ρ3
1ρ2−

1580α2(1− α)2ρ2
1ρ

2
2 − 12α(1− α)3ρ1ρ

3
2 + 108(1− α)4ρ4

2

)]
+[

α4E4
2

(
32α4ρ4

1 − 160α3(1− α)ρ3
1ρ2 + 192α2(1− α)2ρ2

1ρ
2
2+

108α(1− α)3ρ1ρ
3
2 + 3(1− α)4ρ4

2

)]}

(A.1)
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Appendix B

Momentum balance equations at O(ζ4) and O(ζ2)

The derivation of macroscale momentum balance equations at O(ζ4) and O(ζ2)

are provided in this appendix.

Equation 3.31e is rewritten as:

ρ0s
2U (4)(x, s)−D(0)

kl (s)U
(4)
,kl =

(
D

(2)
(klmn)(s)− ν(s)A(1)(s)D

(0)
kl (s)D(0)

mn(s)
)
U

(2)
,klmn

+ ν(s)A(1)(s)ρ0s
2D

(0)
kl (s)U

(2)
,kl + ν(s)A(1)(s)D

(0)
kl (s)D(0)

mn(s)U
(2)
,klmn

− ν(s)A(1)(s)ρ0s
2D

(0)
kl (s)U

(2)
,kl +D

(4)
(klmnpq)(s)U

(0)
,klmnpq

(B.1)

Multiplying Eq. 3.31c with ρ0s
2 and considering Eq. 3.31a:

ρ2
0s

4U (2)(x, s)− ρ0s
2D

(0)
kl (s)U

(2)
,kl = ρ0s

2D
(2)
(klmn)(s)U

(0)
,klmn = D

(2)
(klmn)(s)D

(0)
pq (s)U

(0)
,klmnpq

(B.2)

we recall Eq. 3.37 and plug Eq. B.2 into Eq. B.1:

ρ0s
2U (4)(x, s)−D(0)

kl (s)U
(4)
,kl =

(
D

(2)
(klmn)(s)− ν(s)A(1)(s)D

(0)
kl (s)D(0)

mn(s)
)
U

(2)
,klmn

+ ν(s)A(1)(s)ρ0s
2D

(0)
kl (s)U

(2)
,kl + A(2)(s)

(
ρ2

0s
4U (2) − ρ0s

2D
(0)
kl (s)U

(2)
,kl

)
− ν(s)A(1)(s)ρ0s

2D
(0)
kl (s)U

(2)
,kl + ν(s)A(1)(s)D

(0)
kl (s)D(0)

mn(s)U
(2)
,klmn

(B.3)

Taking two spatial derivatives of Eq. 3.31c and substituting the resulting expression
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for the last two terms of Eq. B.3 and collecting terms:

ρ0s
2U (4)(x, s)−D(0)

kl (s)U
(4)
,kl =

(
D

(2)
(klmn)(s)− ν(s)A(1)(s)D

(0)
kl (s)D(0)

mn(s)
)
U

(2)
,klmn

+
(
ν(s)A(1)(s)− A(2)(s)

)
ρ0s

2D
(0)
kl (s)U

(2)
,kl + A(2)(s)ρ2

0s
4U (2)

− ν(s)A(1)(s)D
(0)
kl D

(2)
mnpq(s)U

(0)
,klmnpq

(B.4)

Substituting Eq. 3.31a into the last term of Eq. B.4 and plugging Eq. 3.31c into the

resulting expression, we obtain the momentum balance equation at O(ζ4):

ρ0s
2U (4)(x, s)−D(0)

kl (s)U
(4)
,kl =

(
D

(2)
(klmn)(s)− ν(s)A(1)(s)D

(0)
kl (s)D(0)

mn(s)
)
U

(2)
,klmn

+
(

2ν(s)A(1)(s)− A(2)(s)
)
ρ0s

2D
(0)
kl (s)U

(2)
,kl +

(
A(2)(s)− ν(s)A(1)(s)

)
ρ2

0s
4U (2)

(B.5)

In view of Eq. 3.31a, the momentum balance equation at O(ζ2) is obtained by rewrit-

ing Eq. 3.31c:

ρ0s
2U (2)(x, s)−D(0)

kl (s)U
(2)
,kl =

(
D

(2)
(klmn)(s)− ν(s)A(1)(s)D

(0)
kl (s)D(0)

mn(s)
)
U

(0)
,klmn

+
(

2ν(s)A(1)(s)− A(2)(s)
)
ρ0s

2D
(0)
kl (s)U

(0)
,kl +

(
A(2)(s)− ν(s)A(1)(s)

)
ρ2

0s
4U (0)

(B.6)
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Appendix C

Laplace domain stability analysis for infinitely long wave

The stability of Eq. 3.43 is analyzed by moving the nonlocal terms to the left hand

side and applying a spatial-harmonic-time-impulse load at the right hand side, which

is expressed as Fei(k1x1+k2x2) in the Laplace domain. Assuming the spatial response

is harmonic, U(s) = U0(s)ei(k1x1+k2x2), substituting the impulse load expression and

spatial-harmonic displacement into Eq. 3.43 and using the polar representation of the

wave vector, the transfer function is written as:

T (s) =
U0(s)

F
=

−1

A(s, θ)k4 +B(s, θ)k2 + C(s, θ)
(C.1)

where, A(s, θ), B(s, θ), C(s, θ) are given in Eq. 3.46a-c. Taking the infinitely long

wave limit, i.e., k → 0, the poles of the rational transfer function are found by

C(s, θ) = 0:

s{1,2} = 0, s{3,4} = ±

√
1

α(3)(s)ρ0

(C.2)

In the complex plane, any pole of the transfer function that has a positive real part

results in exponentially unstable response [49]. Therefore, in order to avoid expo-

nential instability, s{3,4} must have real part to be zero. According to the rule of

computing square root of complex number [95], Eq. 3.50b has to be satisfied.
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Appendix D

Expressions for G
(n−1)e
(·) (y, s) and Q

(n−1)e
(·) (y, s)

The expression for G
(1)e
klm(y, s) is:

G
(1)e
klm(y, s) = G(y, s)

 Me∑
B=1

N [B](y)H
(1)[B]
k (s)δlm +

Me∑
B=1

B[B]
m (y)H

(2)[B]
(kl) (s)

 (D.1)

According to Eq. 3.21, the symmetric part is computed as summation of components

of all permutations divided by the total number of permutations:

G
(1)e
(klm)(y, s) =

1

6

(
G

(1)e
klm(y, s) +G

(1)e
lkm(y, s) +G

(1)e
lmk(y, s)

+G
(1)e
mlk(y, s) +G

(1)e
kml(y, s) +G

(1)e
mkl(y, s)

) (D.2)

The expression for Q
(1)e
klm(y, s) is:

Q
(1)e
klm(y, s) =

Me∑
B=1

N [B](y)H
(1)e[B]
k (s)D

(0)
(lm)(s) (D.3)

The symmetric part of Q
(1)e
klm(y, s) is computed by replacing G

(1)e
(·) (y, s) with Q

(1)e
(·) (y, s)

in Eq. D.2. We provide the expressions for G
(n−1)e
(·) (y, s) and Q

(n−1)e
(·) (y, s) in what

follows, and the symmetric part is computed by Eq. 3.21 .

G
(2)e
klmn(y, s) = G(y, s)

 Me∑
B=1

N [B](y)H
(2)[B]
(kl) (s)δmn +

Me∑
B=1

B[B]
n (y)H

(3)[B]
(klm) (s)

 (D.4)

Q
(2)e
klmn(y, s) =

Me∑
B=1

N [B](y)H
(2)e[B]
(kl) (s)D

(0)
(mn)(s) +D

(2)
(klmn)(s) (D.5)

G
(3)e
klmnp(y, s) = G(y, s)

 Me∑
B=1

N [B](y)H
(3)[B]
(klm) (s)δnp +

Me∑
B=1

B[B]
p (y)H

(4)[B]
(klmn)(s)

 (D.6)
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Q
(3)e
klmnp(y, s) =

Me∑
B=1

N [B](y)H
(3)e[B]
(klm) (s)D

(0)
(nq)(s) +

Me∑
B=1

N [B](y)H
(1)e[B]
k (s)D

(2)
(lmnp)(s)

(D.7)

G
(4)e
klmnpq(y, s) = G(y, s)

 Me∑
B=1

N [B](y)H
(4)[B]
(klmn)(s)δpq +

Me∑
B=1

B[B]
q (y)H

(5)[B]
(klmnp)(s)

 (D.8)

Q
(4)e
klmnpq(y, s) =

Me∑
B=1

N [B](y)H
(4)e[B]
(klmn)(s)D

(0)
(pq)(s)+

Me∑
B=1

N [B](y)H
(2)e[B]
(kl) (s)D

(2)
(mnpq)(s) +D

(4)
(klmnpq)(s) (D.9)

G
(5)e
klmnpqr(y, s) = G(y, s)

 Me∑
B=1

N [B](y)H
(5)[B]
(klmnp)(s)δqr +

Me∑
B=1

B[B]
r (y)H

(6)[B]
(klmnpq)(s)


(D.10)

Q
(5)e
klmnpqr(y, s) =

Me∑
B=1

N [B](y)H
(5)e[B]
(klmnp)(s)D

(0)
(qr)(s)+

Me∑
B=1

N [B](y)H
(3)e[B]
(klm) (s)D

(2)
(npqr)(s) +

Me∑
B=1

N [B](y)H
(1)e[B]
k (s)D

(4)
(lmnpqr)(s) (D.11)
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Appendix E

Asymptotic analysis procedure

The derivation of equilibrium equations for microscale influence functions and

macroscale balance equations are provided in this appendix.

Substituting Eqs. 5.2, 5.3, 4.4 into Eq. 5.1, the balance equations at each order is

obtained:

O(ζ−1) : ∇y.σ
(0)(x,y, t) = 0 (E.1a)

O(ζα) : ∇x.σ
(α)(x,y, t) + ∇y.σ

(α+1)(x,y, t) = ρ(y)ü(α)(x,y, t) (E.1b)

where,

σ(α)(x,y, t) = C(y)..
[
∇s

xu
(α)(x,y, t) + ∇s

yu
(α+1)(x,y, t)

]
(E.2)

Substituting Eqs. 4.5 and 4.6 into Eq. E.2, σ(α)(x,y, t) is written as:

σ(α)(x,y, t) =
α∑
k=0

C(k)(y)..(.∇x)
k∇s

xU
(α−k)(x, t) (E.3)

where, the expression for C(k)(y) is given in Eq. 4.8. Substituting Eqs. E.3 and 4.8

with α = 0 into Eq. E.1a, the equilibrium equation for H(1)(y) is obtained:

∇y.

{
C(y)..

[
I + ∇yH

(1)(y)
]}

= 0 (E.4)

The boundary value problem is defined on the microscale and depends on the mi-

crostructure and material properties only. It is evaluated following the procedure in

Ref. [64]. Applying the unit cell averaging operator to Eq. E.1b with α = 0, the
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macroscale balance equation at O(1) is obtained:

∇x.
(
D(0)..∇s

xU
(α)
)

= ρ0Ü
(α) (E.5)

Generalization of this procedure for higher orders results in the equilibrium equa-

tions for microscale influence functions (Eq. 4.7), the expressions for higher order

homogenized moduli (Eq. 4.9) and the macroscale balance equations at higher or-

ders (Eq. 4.10). At order O(ζα), the equilibrium equation for the influence function,

H(α+2)(y), is obtained through substituting Eqs. 4.5, 4.6, E.3, 4.8, equilibrium equa-

tions for influence functions of lower orders and macroscale balance equations up to

order O(ζα) into Eq. E.1b. Employing these equations and applying the averaging

operator to Eq. E.1b at O(ζα+1), the macroscale balance equation is obtained.
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Appendix F

Derivation of the spatial-temporal nonlocal governing equations

This appendix first derives the spatial-temporal nonlocal macroscale balance equa-

tions at O(ζ6), O(ζ4) and O(ζ2). The spatial-temporal nonlocal homogenized momen-

tum balance equation, Eq. 4.14, is then derived by employing the macroscale balance

equations at O(ζα) with α = 0, 2, 4, 6.

Rewritting Eq. 4.12 with α = 6 in indicial notation:

ρ0Ü
(6)
i −D

(0)
ijmnexnm(U(6)),xj = ν

(1)
iq D

(2)
qjprmnexnm(U(4)),xrpj +

ν
(2)
iq D

(4)
qjprstmnexnm(U(2)),xtsrpj +ν

(3)
iq D

(6)
qjprstuvmnexnm(U(0)),xvutsrpj +

(δiq − ν(1)
iq )D

(2)
qjprmnexnm(U(4)),xrpj +(δiq − ν(2)

iq )D
(4)
qjprstmnexnm(U(2)),xtsrpj +

(δiq − ν(3)
iq )D

(6)
qjprstuvmnexnm(U(0)),xvutsrpj

(F.1)

Substituting Eq. 4.13a into the third term on the right side of Eq. F.1, taking two

spatial derivatives and inserting Eq. 4.10 with α = 4 into the resulting expression of

Eq. F.1 and considering Eqs. 4.13b and 4.13c:

ρ0Ü
(6)
i −D

(0)
ijmnexnm(U(6)),xj =

(
ν

(1)
iq D

(2)
qjprmn − ν

(3)
iq A

(1)
qkD

(0)
kjplD

(0)
lrmn

)
exnm(U(4)),xrpj

+
(
ν

(2)
iq A

(3)
qk − ν

(3)
iq A

(1)
qwA

(2)
wk

)
D

(2)
kjprslD

(0)
ltmnexnm(U(2)),xtsrpj+

ρ0ν
(3)
iq A

(1)
qkD

(0)
kjmnexnm(Ü(4)),xj + (δiq − ν(1)

iq )D
(2)
qjprmnexnm(U(4)),xrpj +

(δiq − ν(2)
iq )D

(4)
qjprstmnexnm(U(2)),xtsrpj +(δiq − ν(3)

iq )D
(6)
qjprstuvmnexnm(U(0)),xvutsrpj

(F.2)

Taking four spatial derivatives and substituting Eq. 4.10 with α = 2 into the second
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term on the right side of Eq. F.2:

ρ0Ü
(6)
i −D

(0)
ijmnexnm(U(6)),xj =

(
ν

(1)
iq D

(2)
qjprmn − ν

(3)
iq A

(1)
qkD

(0)
kjplD

(0)
lrmn

)
exnm(U(4)),xrpj+

ρ0

(
ν

(2)
iq A

(3)
qk − ν

(3)
iq A

(1)
qwA

(2)
wk

)
D

(2)
kjprmnexnm(Ü(2)),xrpj + ρ0ν

(3)
iq A

(1)
qkD

(0)
kjmnexnm(Ü(4)),xj+

(δiq − ν(1)
iq )D

(2)
qjprmnexnm(U(4)),xrpj +(δiq − ν(2)

iq )D
(4)
qjprstmnexnm(U(2)),xtsrpj +[

(δiq − ν(3)
iq )D

(6)
qjprstuvmn −

(
ν

(2)
iq A

(3)
qk − ν

(3)
iq A

(1)
qwA

(2)
wk

)
D

(2)
kjprslD

(2)
ltuvmn

]
exnm(U(0)),xvutsrpj

(F.3)

Taking two time derivatives of Eq. 4.10 with α = 4, substituting the resulting expres-

sion into the second term on the right side of Eq. F.3 and using Eq. 4.10 with α = 0,

we arrive at the spatial-temporal nonlocal momentum balance equation at O(ζ6):

ρ0Ü
(6)
i −D

(0)
ijmnexnm(U(6)),xj =

(
ν

(1)
iq D

(2)
qjprmn − ν

(3)
iq A

(1)
qkD

(0)
kjplD

(0)
lrmn

)
exnm(U(4)),xrpj+

ρ0

[
ν

(3)
iq A

(1)
qw

(
δwk + A

(2)
wk

)
− ν(2)

iq A
(3)
qk

]
D

(0)
kjmnexnm(Ü(4)),xj+

ρ2
0

(
ν

(2)
iq A

(3)
qk − ν

(3)
iq A

(1)
qwA

(2)
wk

) ....
U

(4)
k + E

(2)
ijprmnexnm(U(4)),xrpj +

E
(4)
ijprstmnexnm(U(2)),xtsrpj +E

(6)
ijprstuvmnexnm(U(0)),xvutsrpj

(F.4)

where E(2), E(4) and E(6) are:

E
(2)
ijprmn = (δiq − ν(1)

iq )D
(2)
qjprmn (F.5a)

E
(4)
ijprstmn = (δiq − ν(2)

iq )D
(4)
qjprstmn (F.5b)

E
(6)
ijprstuvmn = −

(
ν

(2)
iq A

(3)
qk − ν

(3)
iq A

(1)
qwA

(2)
wk

)(
D

(2)
kjprslD

(2)
ltuvmn +D

(4)
kjprstulD

(0)
lvmn

)
+ (δiq − ν(3)

iq )D
(6)
qjprstuvmn (F.5c)

179



Rewritting Eq. 4.12 with α = 4:

ρ0Ü
(4)
i −D

(0)
ijmnexnm(U(4)),xj =

(
ν

(1)
iq D

(2)
qjprmn − ν

(3)
iq A

(1)
qkD

(0)
kjplD

(0)
lrmn

)
exnm(U(2)),xrpj

+ ρ0ν
(3)
iq A

(1)
qkD

(0)
kjmnexnm(Ü(2)),xj + ν

(3)
iq A

(1)
qkD

(0)
kjplD

(0)
lrmnexnm(U(2)),xrpj

− ρ0ν
(3)
iq A

(1)
qkD

(0)
kjmnexnm(Ü(2)),xj + ν

(2)
iq D

(4)
qjprstmnexnm(U(2)),xtsrpj

+ E
(2)
ijprmnexnm(U(2)),xrpj +E

(4)
ijprstmnexnm(U(0)),xtsrpj

(F.6)

Taking two time derivatives of Eq. 4.10 with α = 2, multiplying the resulting equation

with ρ0 and employing Eq. 4.10 with α = 0:

ρ2
0

....
U

(2)
i − ρ0D

(0)
ijmnexnm(Ü(2)),xj = ρ0D

(2)
ijprmnexnm(Ü(0)),xrpj =

D
(2)
ijprslD

(0)
ltmnexnm(U(0)),xtsrpj

(F.7)

Using the approximation Eq. 4.13c and substituting Eq. F.7 into Eq. F.6:

ρ0Ü
(4)
i −D

(0)
ijmnexnm(U(4)),xj =

(
ν

(1)
iq D

(2)
qjprmn − ν

(3)
iq A

(1)
qkD

(0)
kjplD

(0)
lrmn

)
exnm(U(2)),xrpj

+ ρ0

(
ν

(3)
iq A

(1)
qk − ν

(2)
iq A

(3)
qk

)
D

(0)
kjmnexnm(Ü(2)),xj + ν

(3)
iq A

(1)
qkD

(0)
kjplD

(0)
lrmnexnm(U(2)),xrpj

− ρ0ν
(3)
iq A

(1)
qkD

(0)
kjmnexnm(Ü(2)),xj + ρ2

0ν
(2)
iq A

(3)
qk

....
U

(2)
k

+ E
(2)
ijprmnexnm(U(2)),xrpj +E

(4)
ijprstmnexnm(U(0)),xtsrpj

(F.8)

Taking two spatial derivatives of Eq. 4.10 with α = 2, substituting the resulting

expression into ν
(3)
iq A

(1)
qkD

(0)
kjplD

(0)
lrmnexnm(U(2)),xrpj − ρ0ν

(3)
iq A

(1)
qkD

(0)
kjmnexnm(Ü(2)),xj and

180



recalling the approximation Eq. 4.13b:

ρ0Ü
(4)
i −D

(0)
ijmnexnm(U(4)),xj =

(
ν

(1)
iq D

(2)
qjprmn − ν

(3)
iq A

(1)
qkD

(0)
kjplD

(0)
lrmn

)
exnm(U(2)),xrpj

+ ρ0

(
ν

(3)
iq A

(1)
qk − ν

(2)
iq A

(3)
qk

)
D

(0)
kjmnexnm(Ü(2)),xj + ρ2

0ν
(2)
iq A

(3)
qk

....
U

(2)
k

− ν(3)
iq A

(1)
qwA

(2)
wkD

(2)
kjprslD

(0)
ltmnexnm(U(0)),xtsrpj

+ E
(2)
ijprmnexnm(U(2)),xrpj +E

(4)
ijprstmnexnm(U(0)),xtsrpj

(F.9)

Taking four spatial derivatives of Eq. 4.10 with α = 0, substituting the resulting

expression into the fourth term on the right side of Eq. F.9 and employing Eq.4.10

with α = 2 taken two time derivatives, we obtain the spatial-temporal nonlocal

momentum balance equation at O(ζ4):

ρ0Ü
(4)
i −D

(0)
ijmnexnm(U(4)),xj =

(
ν

(1)
iq D

(2)
qjprmn − ν

(3)
iq A

(1)
qkD

(0)
kjplD

(0)
lrmn

)
exnm(U(2)),xrpj

+ ρ0

[
ν

(3)
iq A

(1)
qw

(
δwk + A

(2)
wk

)
− ν(2)

iq A
(3)
qk

]
D

(0)
kjmnexnm(Ü(2)),xj

+ ρ2
0

(
ν

(2)
iq A

(3)
qk − ν

(3)
iq A

(1)
qwA

(2)
wk

) ....
U

(2)
k

+ E
(2)
ijprmnexnm(U(2)),xrpj +E

(4)
ijprstmnexnm(U(0)),xtsrpj

(F.10)

The spatial-temporal nonlocal momentum balance equation at O(ζ2) is obtained by

rewritting Eq. 4.12 with α = 2 while considering the momentum balance of Eq. 4.10

with α = 0:

ρ0Ü
(2)
i −D

(0)
ijmnexnm(U(2)),xj =

(
ν

(1)
iq D

(2)
qjprmn − ν

(3)
iq A

(1)
qkD

(0)
kjplD

(0)
lrmn

)
exnm(U(0)),xrpj

+ ρ0

[
ν

(3)
iq A

(1)
qw

(
δwk + A

(2)
wk

)
− ν(2)

iq A
(3)
qk

]
D

(0)
kjmnexnm(Ü(0)),xj

+ ρ2
0

(
ν

(2)
iq A

(3)
qk − ν

(3)
iq A

(1)
qwA

(2)
wk

) ....
U

(0)
k + E

(2)
ijprmnexnm(U(0)),xrpj

(F.11)
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Employing Eqs F.4, F.10, F.11 and 4.10 with α = 0, and using the summation

of macroscale displacement from all orders, Eq. 4.11, the spatial-temporal nonlocal

homogenized momentum balance equation is obtained as:

ρ0Üi −D(0)
ijmnexnm(U),xj =

(
ν

(1)
iq D

(2)
qjprmn − ν

(3)
iq A

(1)
qkD

(0)
kjplD

(0)
lrmn

)
exnm(U),xrpj+

ρ0

[
ν

(3)
iq A

(1)
qw

(
δwk + A

(2)
wk

)
− ν(2)

iq A
(3)
qk

]
D

(0)
kjmnexnm(Ü),xj+

ρ2
0

(
ν

(2)
iq A

(3)
qk − ν

(3)
iq A

(1)
qwA

(2)
wk

) ....
U k + ζ2E

(2)
ijprmnexnm(U(0)),xrpj +

ζ4
(
E

(2)
ijprmnexnm(U(2)),xrpj +E

(4)
ijprstmnexnm(U(0)),xtsrpj

)
+

ζ6
(
E

(2)
ijprmnexnm(U(4)),xrpj +E

(4)
ijprstmnexnm(U(2)),xtsrpj +E

(6)
ijprstuvmnexnm(U(0)),xvutsrpj

)
(F.12)
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Appendix G

Expressions of ai, bi, ci, b̃i and c̃i

ai =
(
β[i]jmnβ[i]pqr − 4α[i]jpqmnγ[i]r

)
n̂jn̂mn̂pn̂qp̂np̂r (G.1a)

bi = −2
(
β[i]jmnD

(0)
[i]pqr + 2ρ0α[i]jpqmnδ[i]r

)
n̂jn̂mn̂pn̂qp̂np̂r (G.1b)

ci = D
(0)
[i]jmnD

(0)
[i]pqrn̂jn̂mn̂pn̂qp̂np̂r (G.1c)

b̃i = 2
(
β[i]jmnδ[i]rρ0 + 2D

(0)
[i]jmnγ[i]r

)
n̂jn̂mp̂np̂r (G.1d)

c̃i = ρ2
0δ[i]nδ[i]rp̂np̂r (G.1e)

For a selected pair of vectors (n̂, p̂), ci > 0 and c̃i > 0.
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Appendix H

Inverse isoparametric mapping

This appendix provides the detailed procedure of the inverse isoparametric map-

ping for 2D quadrilateral elements. The procedure is developed based on Ref. [78]

that maps any point within the coarse-scale element in Cartesian coordinates to the

isoparametric coordinates.

The inverse isoparametric mapping for a higher order element is performed based

on its cord element, which is the 4-node linear quadrilateral element that is formed by

the corner nodes of the quadrilateral, i.e., node 1, 2, 3, 4 in Fig. 5.2. The isoparametric

mapping for the cord element is expressed as:

xy
 =

a0 + a1ξ + a2ξη + a3η

b0 + b1ξ + b2ξη + b3η

 (H.1)

where,

a0 =
1

4
(x1 + x2 + x3 + x4); b0 =

1

4
(y1 + y2 + y3 + y4)

a1 =
1

4
(−x1 + x2 + x3 − x4); b1 =

1

4
(−y1 + y2 + y3 − y4)

a2 =
1

4
(x1 − x2 + x3 − x4); b2 =

1

4
(y1 − y2 + y3 − y4)

a3 =
1

4
(−x1 − x2 + x3 + x4); b3 =

1

4
(−y1 − y2 + y3 + y4)

(H.2)

Following the formula provided in Ref. [78], the geodesic parameters are written as:

ξg = ξ̄ − γξ̄η̄ + (αγξ̄2η̄ + γ2ξ̄η̄2)− (α2γξ̄3η̄ + 2αγ2ξ̄2η̄2 + γ3ξ̄η̄3)

ηg = η̄ − αξ̄η̄ + (α2ξ̄2η̄ + αγξ̄η̄2)− (α3ξ̄3η̄ + 2α2γξ̄2η̄2 + αγ2ξ̄η̄3)

(H.3)
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where, ξ̄η̄
 =

1

J0

 b3 −a3

−b1 a1


xy
 (H.4)

The parameters are:

J0 = a1b3 − a3b1

α = (a1b2 − a2b1)/J0

γ = (a2b3 − a3b2)/J0

(H.5)

A linear mapping is then performed to map the geodesic parameters to the isopara-

metric variables: ξη
 =

â0 + â1ξ
g + â2ξ

gηg + â3η
g

b̂0 + b̂1ξ
g + b̂2ξ

gηg + b̂3η
g

 (H.6)

where, âi and b̂i, i = 1, 2, 3, 4, are computed using Eq. H.2 with (xi, yi) taken as:

(−1,−1), (−1, 1), (1, 1) and (−1, 1), respectively.
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