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CHAPTER I 

 

INTRODUCTION 

 

1.1. Introduction 

Magnetic resonance image is a modern imaging modality providing non-invasive 

access for diagnosis of soft tissue of both human and animals.  It has variety of clinical 

and neurological applications. Among many of the existing MR imaging sequences, 

gradient-echo (GE) echo-planar imaging (EPI) [1], which can acquire a human brain 

image within seconds, has become the most common technique for the study of dynamic 

brain function, using, for example, in-vivo diffusion-tensor imaging [2-5] and perfusion 

imaging [6-10], for other high-speed applications like cardiac imaging [7;8;11], as well as 

for basic neuroscience investigations, presurgical planning, and post-therapy evaluation.   

However, the usefulness of GE-EPI is limited by the severe geometric and 

intensity distortion caused by the inhomogeneity in the static magnetic field, which is 

present to some degree in all MR images but most prominent in GE-EPI. The magnetic 

field inhomogeneity, while partially caused by imperfect hardware, is largely induced by 

the susceptibility differences between air and tissues or bone and tissue of the subject 

being imaged. Hence, field inhomogeneity induced image distortion is also called a 

“susceptibility artifact”. The artifacts are most pronounced around sinuses in human brain 

imaging.   We denote the inhomogeneous field, or “distortion field”, as  in this 

dissertation.  Since the magnitude of Δ  caused by susceptibility is proportional to the 

applied static magnetic field, , larger distortion fields are found in MR scanners with 

BΔ

B
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higher fields. As we will see later,  introduces extra phase in the MR image formation 

process and degrades the image reconstruction. It has been mathematically proved that 

these phase errors will cause geometric and intensity distortion in EPI that are acquired 

with a Cartesian k-space sampling pattern [12;13] and will cause blurring in EPI acquired 

with a spiral pattern [14], in both cases reducing the accuracy of localization of the image 

anatomy and of functional analysis. For standard spin-echo (SE) and GE MR images, 

there is no phase evolution in the phase-encoding direction, so the image distortion is  

ΔB

 

 

 

 

 

 

 
(a)                                     (b)                                   (c)      

Figure 1. MR images and the corresponding field map from Philips Intera 
Achieva 7T MR scanner.  The field of view is 192 mm with the read-out left 
to right and phase-encoding top to bottom. (a) standard GE: TE/TR= 5/500 
ms, 256x256 matrix (b) GE-EPI: TE/TR= 25/990 ms, 128x128 matrix, EPI 
factor 63 (2 shots) (c o  field map: 128x128 matrix.  The green outline 
from  (a) is superimposed on (b) and (c), revealing severe distortion in EPI 
relative to the GE image, especially anteriorly (indicated by a red a

)

rrow).  
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confined to the frequency-encoding direction, also known as the “read-out” direction, and 

the slice-selection direction.  Unlike a standard acquisition, in which each line of k-space 

is acquired in a separate shot, for EPI all -space lines are acquired in one shot or a few 

shots, both for SE-EPI and for GE-EPI. Hence the phase errors caused by the distortion 

k
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field evolve in the phase-encoding direction as well.  If the frequency-encoding direction 

is along x and the phase encoding is along y, then the effective time to traverse one  

line is about N  time longer than one 

yk

xk  line for a single-shot EPI, where N  is the 

number of lines in the phase-encoding direction with  typically equal to 64 or 128. The 

severity of the distortion in a given direction is proportional to the time required for the 

traversal in that direction. The time required for a 

N

xk  line is short enough to keep the 

distortion at a negligible level. Hence the image distortion lies primarily in the phase-

encoding direction in EPI and can be quite large [15]. The distortion pattern depends on 

the inhomogeneity pattern—information which is not present in the reconstructed 

information. In theory, an accurate field inhomogeneity map can be transformed into a 

distortion field, which allows us to solve an inverse problem to restore the lost 

information in the distorted MR image and produce an undistorted MR image. We call 

the production of an undistorted MR image “distortion correction” in this dissertation. 

Figure 1 shows (a) a standard multi-shot GE image, (b) a GE-EPI, and (c) the 

corresponding field inhomogeneity map of the same human subject in Philips Intera 

Achieva 7T MR scanner. The green line was drawn on the undistorted GE (a) and then 

superimposed on the EPI (b). Areas where the edges of the EPI do not match the contour 

of GE indicate that severe image distortion exists in the phase-encoding direction 

(vertical).  They are particularly pronounced at the top (anterior) of the head (indicated by 

a red arrow) where large gradients in susceptibility exist because of differences arising 

near the sinuses. 
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In addition to the static component of field inhomogeneity caused by the 

susceptibility differences at tissue boundaries, fluctuations in the magnetic field with time, 

induced by physiological processes such as cardiovascular pulsation and respiration, have 

been observed in most rapid brain imaging such as functional MRI (fMRI). Moreover, 

the fact that the subject’s head cannot remain still during a long imaging scan makes 

dynamic image series suffer from bulk motion. Although rigid-body registration has been 

employed successfully to correct motion among dynamic scans, considerable movement-

related effects caused by rotation still remain and cannot be removed easily. The static-

field inhomogeneity is determined not only by the spatial distribution of the magnetic  
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                  (a)                                      (b)                                      (c) 

Figure 2.  Effect of fluctuations in magnetic field effects on dynamic image series. (a) 
magnitude difference between two images acquired at two different time points (b) 
magnitude difference after the two images are realigned by rigid-body registration (c) 
fluctuation in magnetic field. The non-uniformity of (b) shows that temporal variation in 
image intensity in dynamic series may not be successfully removed by means of rigid-
body registration.   

 

susceptibility but also by the direction of the static magnetic field,  relative to the 

anatomy [16;17].  As pointed out by Jezzard et al. [17] and Andersson et al. [16], rotation 

of the object with respect to the applied field alters that relative direction, resulting in a 

oB
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change in the induced field, and the change is not a rotation of the field. .Figure 2 shows 

(a) the magnitude difference of two images at two different time points, (b) the 

magnitude difference of these two images after they are registered using a rigid-body 

realignment, and (c) the variation of the magnetic field inhomogeneity between these two 

time points.  The large variation in image intensity shown in (b) indicates that rigid-body 

registration may not successfully remove temporal variations of image intensity in EPI 

series. The variation of the field inhomogeneity shown (c) indicates that the variation 

shown in (b) may be due to the fluctuations of magnetic field inhomogeneity.  

 

1.2. Contribution 

The focus of this work is the reduction of distortion in EPI series of the brain. It is 

well known that inhomogeneity in the static field causes spatial variation in the phase of 

complex MR images, and methods to determine the inhomogeneity from this variation 

have been termed “field-map” methods. In this work, we introduce an extension of the 

traditional field-map method, which we will call the “phase-map” method, to accomplish 

the calculation of inhomogeneity as it changes dynamically throughout the acquisition of 

a series of GE-EPI images. Our method is based on the idea that the variation of the 

distortion field is encoded in the temporal phase changes of the EPI. If the distortion field 

varies sufficiently slowly with time, we can calculate the distortion field for a given EPI 

based on the distortion field of the previous EPI and their phase differences. Given this 

distorted field for each EPI, the geometric distortion and the intensity distortion caused 

by local compression or stretching can be corrected. However, calculation of this field 

and the correction of image distortion based on this field is made difficult by noise in the 
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signal and motion of the anatomy. The major contribution of this work is the correction 

of image distortion in an EPI series in the face of this noise and motion.  

The difficulty with noise arises from the fact that the temporal phase changes are 

small making the field calculation highly sensitive to noise in EPI. We develop a 

regularization method based on both the phase and the intensity of the image data to 

reduce the estimation errors. The regularization helps both to produce smoother distortion 

fields and to extrapolate the estimated field into areas where the SNR is low. The 

corrected images based on the regularized distortion field have a better image quality 

than images corrected without the regularization.  

The difficulty caused by motion arises from the fact that motion of the anatomy is 

different from the motion of the image because motion of the anatomy also changes the 

inhomogeneity patterns. Changes in inhomogeneity lead to changes in image distortion, 

and the resulting interaction of motion and distortion results in critical issues in the 

analysis of EPI series. Image registration has been proven to be successful for motion 

compensation and distortion correction of a single EPI. In this work, we study the 

methods of using intensity based registration to correct the dynamic distortion of EPI 

series in the presence of motion, and we suggest a motion compensation strategy based 

on corrected EPIs. We incorporated a phase-gradient term into an optimization 

framework for distortion correction of EPI series. The objective function we developed 

accounts for not only the traditional intensity similarity but also a similarity in the 

gradient of the distortion field derived from the image phase. Our new phase-gradient 

term enforces an additional constraint on the estimation of the distortion fields in EPI 

series using registration methods.  
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To test the methods that we have proposed to solve these problems, we perform a 

validation of our proposed methods based on two types of images with known ground 

truth. Instead of using real human data, which has unknown ground truth and unknown 

sources of intensity variation, we use simulated images and images of a physical phantom. 

The simulated images are brain images with realistic motion and image distortion. Our 

physical phantom is carefully designed to provide a known geometry. Using the 

simulation and phantom images, we conduct quantitative studies of the performance of 

our methods in the correction of dynamic image distortion in EPI time series. We also 

quantify improvements of our methods over existing methods. Finally, we compare 

different strategies for distortion correction of EPI series in the presence of motion and a 

varying distortion field and analyze their performance.  

 

1.3. Chapter summaries 

The work in this dissertation is organized as follows. Chapter I presents an 

introduction of this work followed by a summarization of the main contributions of this 

dissertation.  

Chapter II presents the background of this work. The sources of and the nature of 

the image distortion in EPI series are discussed. Extensive research on existing distortion 

correction methods in the literature is presented and discussed. 

Chapter III starts with a review of EPI formation in the presence of field 

inhomogeneity. The mathematical formulation of both geometric distortion and intensity 

distortion is presented. The principle of the traditional field-map method is reviewed. A 

phase-map method to calculate the dynamic distortion fields based on the temporal phase 
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changes is proposed. A phase regularization method for the estimation of dynamic 

distortion fields is described in detail. Finally, the method for correction of EPI series 

based on dynamic distortion fields is given. 

Chapter IV centers on the utilization of image registration methods in the 

estimation of dynamic distortion fields. Specifically, the limitations of the image 

registration methods in correction of EPI series are discussed. In order to overcome these 

limitations, the integration of a phase-gradient term into the registration framework is 

proposed. A method to calculate the gradients of the distortion field for each EPI based 

on a wrapped image phase is developed. Finally, an algorithm that utilizes both intensity 

and phase information from the image to correct the dynamic image distortion is 

presented. 

In Chapter V, a validation of the two methods that we proposed in Chapter III and 

Chapter IV is conducted based on both simulated brain images and real data of a physical 

phantom. Experiments to quantitatively analyze and evaluate the performance of our 

methods based on known ground truth are described. The improvements of our methods 

are shown by comparing them to the traditional field-map method and to the standard 

non-rigid registration method. Finally, different strategies for estimation of dynamic 

distortion fields of an EPI series in the presence of motion and a varying distortion field 

are compared.   

Chapter VI concludes by providing a summary of the work presented in this 

dissertation accompanied by possible future work regarding distortion correction of EPI 

series. 
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CHAPTER II 

 

BACKGROUND 

 

MR imaging is widespread nowadays and routinely used in many clinical settings 

because it provides excellent contrast for soft tissue. GE-EPI, as a rapid imaging 

technique, is commonly used in dynamic imaging applications such as fMRI. However, 

image distortion induced by field inhomogeneity, which is present in all MR images, is 

severe in GE-EPI with both geometric and intensity distortion being observed in the 

reconstructed images.  

In this chapter, we begin by briefly introducing and describing the sources of, and 

the nature of, geometric distortion and intensity distortion in MR images, especially that 

of GE-EPI. Specific issues of image distortion for EPI series are discussed. Existing 

methods of distortion correction in the literatures are classified and summarized in detail.   

 

2.1. Image distortion in GE-EPI  

GE-EPI, which is the most widely used technique for fMRI due to its speed and 

sensitivity to blood oxygen level dependent (BOLD) contrast [18-22], is strongly affected 

by inhomogeneity in the static magnetic field, which cause both image warping and 

spurious changes in intensity. The changes in intensity produce errors in the functional 

measurements, and the warping causes errors in mapping of measured brain function to 

anatomical images. Warping is present in all MR images, although the severity of the 

distortion is dependent on MR sequence type, the trajectory by which the signal data 

array ( -space) is filled, and field strength, with high fields, as desired for fMRI, k
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aggravating the problem. Field inhomogeneity arises from errors in the applied field and, 

more critically, variations in the induced field. The induced field is a function of the 

complex 3D map of the magnetic susceptibility of the subject [23]. Since different tissues 

have different susceptibilities, the fields induced vary locally and influence the field in 

surrounding regions. Chemical shift differences and time-varying imperfections imposed 

by eddy currents also distort the field. The result is that the field is far from the uniform 

ideal, especially near the frontal sinus, nasal cavity, and temporal bone, where abrupt 

spatial changes in susceptibility cause large variations in the field. 

With its high temporal resolution and relatively high spatial resolution, especially 

as compared to positron emission tomography, event-related potentials, and 

magnetoencephalography, GE-EPI is now used to study dynamic brain function and has 

applications in basic neuroscience investigations, presurgical planning, and post-therapy 

evaluation. Unfortunately, in many ways, GE-EPI has become a “black box” technique, 

used by many investigators who may be unaware of the complexity and limitations of 

EPI. The accuracy of this approach in functional localization of human brain is limited by 

spatial distortion as great as 4 pixels out of 64 [24], dramatic signal loss near the frontal 

sinus, nasal cavity, and temporal bone [25], and subject motion between image 

acquisitions [26;27]. Image distortion and signal loss in GE-EPI hamper the study of a 

host of brain functions including language [28;29], memory [30], and olfaction [31]. EPI 

is also used for in-vivo diffusion-tensor imaging [2-5;32], perfusion imaging [6-10], and 

other high-speed applications like cardiac imaging [7;8;33]. The importance of accuracy 

in the findings from fMRI studies and from these other EPI applications all urgently 

motivates the development of methods to correct for image distortion. 
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The distortion comes in two forms—geometrical distortion and intensity 

distortion. The latter distortion comprises two types. The first is present for both GE and 

SE sequences. It is a spurious amplification or diminution of image intensity in regions 

where the image is compressed or stretched, respectively. Because this latter effect can be 

modeled mathematically by the Jacobian of the geometrical distortion (more precisely, its 

determinant) [13], we will call it the Jacobian factor. The second type of intensity 

distortion is the result of intravoxel dephasing and is present only for GE images. In this 

work, we will focus only on the intensity distortion that can be corrected with Jacobian–

distortion caused by local compression or stretching. 

 

2.2. Single EPI versus EPI series 

EPI is a fast imaging technique with a temporal resolution of several seconds. An 

EPI time series, including hundreds of volumes, is often utilized for temporal image 

analysis. For example, the acquisition of an EPI time series is a routine protocol for 

statistical analysis of brain functions in fMRI. Relatively long acquisition times make the 

images suffer from physiological motion induced by head motion, cardiac motion, and 

respirations, etc. The concomitant variations of field inhomogeneity in time caused by 

motion induce confusion in image analysis.  Even after realignment, EPI time series still 

suffer from residual movement-related effects which may cause erroneous analysis and 

false conclusions. 

The static-field inhomogeneity induced by a human subject is determined by the 

spatial distribution of magnetic susceptibility relative to the direction of the impressed 

static-field,  [16;17]. Translational motion has no effect on distortion, but rotational  oB
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motion can change its patterns. We will call the type of motion “out-of-plane” motion 

when the rotation is along an axis other than the  direction. The plane referred to here 

is the one perpendicular to —not necessarily the imaging plane. All other types of 

motion will be classified as “in-plane” motion. The interaction between motion of the 

imaged anatomy and distortion will be denoted as “motion-distortion” in the following. 

To take a close look at this effect, we have calculated two different field maps using an 

MR simulator [23] with the head of the subject in differing orientations. For comparison, 

we also simply rotated the field map from orientation 1 to orientation 2. 

oB

oB

Figure 3 shows a 

comparison between the rotated field map of a head (a) and the field map of the 

equivalently rotated head (b).  The maps are not the same, as shown by the difference 

image in (c), which reveals the variation of field inhomogeneity induced by head motion. 

The temporal variation of image intensity in an EPI time series is induced by the 

effect of motion-distortion and by respiration. To understand the resulting distortion 

patterns it is important to note that the direction of the geometric distortion lies primarily 

along the phase-encoding gradient. The direction of that gradient during a series 

acquisition is fixed with the scanner’s coordinate system regardless of subject motion. So, 

Figure 3. Interaction of field inhomogeneity and motion. (a) is the rotated field map 
of a head. (b) is the field map of the rotated head. (c) is (a) minus (b). The 
nonuniformity of (c) reveals the variation of field inhomogeneity induced by head 
motion.  

-4

-2

0

2

Tesla   (a)                                       (b)                                     (c) 



therefore, the direction of the distortion is also fixed with the scanner. Hence if the head 

is rotated about an axis other than the phase-encoding direction, then the direction of the 

distortion relative to the head will change, resulting in an effect of motion-distortion. 

Furthermore, if the head is rotated out-of-plane (see the definition in the preceding 

paragraph), the magnitude of the distortion field will change and hence the magnitude of 

the distortion will change as well. These changes arise because the distortion fields are 

determined not only by the pattern of the susceptibility of the imaging subject but also by 

the direction of its distribution relative to the static field. Variation due to out-of-plane 

rotation is a second example of the effect of motion-distortion. Combinations of these 

effects can occur as well. 

A source of temporal variation of the distortion fields in addition to out-of-plane 

rotation is respiration [34]. Bulk susceptibility variation in the lungs during respiration 

causes variation in the field inhomogeneity of human head. Image shift and intensity 

changes in the phase-encoding direction have been noticed during respiration. Variation 

of the distortion patterns caused by motion-distortion and respiration is the major source 

of erroneous temporal changes in EPI time series and could cause spurious activation 

analysis and reduce the significance of true activation.  

 

2.3. Existing distortion correction methods   

Numerous techniques for image distortion correction have been proposed. 

Approaches based on the separate acquisition of a field map are most widely used. A map 

of static-field inhomogeneity is first measured and the distorted image is warped back to 

undistorted space according to a relation between the field inhomogeneity and image 

  13



distortion. Sekihara et al. [35] proposed a method for measuring a field map using an 

asymmetric spin-echo sequence, where the time interval between the 90o RF pulse and 

the 180o RF pulse is set to be different from the time interval between the 180o pulse and 

the spin-echo formation. The field inhomogeneity information can be extracted from the 

phase shift at each point in the reconstructed image. Sumanaweera in 1993 [36] and 

Jazzard and Balaban in 1995 [15] suggested using two GE images differing in the values 

of their echo times (TE). The phase differences between the two reconstruct images were 

used to calculate a field map.  In practice, multiple gradient-echo images are acquired to 

correct the phase wrapping problem.  

Kadah and Hu [37], Munger et al. [38] formulize the MR image formation 

process in the presence of static-field inhomogeneity as a linear equation system in a 

matrix form. The matrix can be constructed given the field inhomogeneity for each voxel. 

The solution from approximate matrix inversions gives an image with reduced image 

distortion.  

Typically it takes about minute of scan time to obtain a field map. Unfortunately, 

a minute is a very long time when compared with the two seconds typically required for 

each EPI acquisition in the typical time series acquisition, and it is short time with respect 

to changes in the field due to changes in head orientation and with respect to changes in 

the field due to respiration. Thus, with the use of the field map the quality of distortion 

correction of a series of images that are acquired before or after the field-map acquisition 

can be seriously degraded by head motion. To reduce the scan time for field mapping, 

Reber et al. [39] propose to use two EPIs differing in the values of their echo times to 

compute a field map. Because the EPIs are geometrically distorted, the field map 
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calculated from EPIs will be warped the same way as the EPIs. With a field map acquired 

via EPIs the correction method is slightly different from that with a field map acquired 

via GE images.  

Rather than measuring a field map, some groups [40-44] propose to measure the 

phase modulation caused by static-field inhomogeneity directly from multiple reference 

scans and use the measured phase modulation to generate a modified k-space data.  A 

corrected image is then generated after taking the Fourier transform. This technique 

collects information from multiple reference scans and encodes the phase errors coming 

from field inhomogeneity, eddy current and chemical shift. However, the prolonged 

acquisition time required for this method is not affordable for most imaging studies. 

A technique based on a spatially varying point-spread function employs an 

additional phase-encoding gradient along any of the spatial directions, which enables the 

measurement of a point-spread function for each image voxel directly so that the 

geometric distortion for each voxel is known accordingly. This technique was originally 

proposed by Robson et al. [45] and later used for image distortion correction [46;47].  

This correction method incorporates the image distortion coming from various sources 

such as static-field inhomogeneity, eddy current, and chemical shift. However, as for the 

method based on multi-reference scans, a prohibitively long acquisition time is required.  

Another retrospective technique for image distortion correction is based on non-

rigid registration of the distorted images to other images of the same subject [48-50]. For 

example, in fMRI applications, in addition to an EPI time series, a so-called “anatomical 

image” is acquired by means of a different acquisition protocol. The anatomical image 

has negligible distortion and much higher resolution than the EPI, but requires a longer 
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scan time. While adequate distortion correction can be achieved with these methods 

under some circumstances when smoothly varying functions are incorporated, one would 

not expect the correction to be as accurate as those methods where each voxel is 

corrected individually based on prior-knowledge. Furthermore, image distortion in an EPI 

of the head is very local. A large number of degrees of freedom are needed to model the 

distortion field, which prolongs the correction process. In addition, EPI often has low 

resolution and suffers from signal loss in some regions, which makes it difficult to 

register the EPI to an anatomical image.  

Some other techniques attempt to minimize errors in the applied and induced 

fields by means of shimming either globally or locally [51-53], although this is typically 

insufficient. More complex shimming techniques calculate a field map (via chemical-

shift imaging [54;55], phase-sensitive imaging [56;57], multiple spin-echo images 

[12;35;58], or double-echo gradient-echoes [59], and then a corrective field is fit to the 

field map [55-57] and implemented as well as possible by the shim coils [59].  

Forward-reverse methods, also known as gradient-reversal methods, which 

involve two acquisitions with reversed gradients and thus reversed geometric distortion, 

have been investigated by Chang & Fitzpatrick and several other groups [13;60-69]. 

While these studies have demonstrated useful corrections at low fields and small 

distortion, the utility of forward-reverse at high fields, where the distortion will be much 

larger, is likely to be limited. The primary problem is that the basic assumptions of the 

method are violated by the presence of noise, and the violation increases strongly with 

increasing distortion. Efforts to solve the problem by means of new algorithms for 

combining the forward and reversed images have been advanced by Kannengiesser [64], 
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Anderson and Skare [65;67], Reinsberg et al. [63;68], and recently Weiskopf et al. 

propose a modification of the method that involves the acquisition of a third image [66]. 

A requirement of the forward-reverse methods is that at least one pair of corresponding 

points be identified in each line of the image. The identification of corresponding points 

in two images that have poor image quality and severe signal loss is problematic and 

prevents its in-vivo use in such situations.  

The parallel imaging method called “SENSitivity Encoding” (SENSE) [70] 

reduces warping in EPI by reducing the required number of phase encodings, which 

reduces the time spent sampling k-space, but it also decreases the SNR. Alternatively, 

higher in-plane resolution can also be achieved using parallel imaging, so the effects of 

in-pane intravoxel dephasing are expected to be reduced, although with the reduction of 

SNR and with minimal or no reduction in warping.  

The majority of the existing techniques for distortion correction are limited in the 

ability to correct EPI time series because only a single field map or distortion field is 

obtained or modeled for correcting the distortion in the entire series. While they are 

effective when there is negligible change in the inhomogeneity pattern between the map-

measurement scan and the EPI scans, these techniques may fail when gross motion or 

physiological activity is present during the acquisition of the dynamic scans. The 

temporal variation of field inhomogeneity results in varying image distortion, and the 

image distortion in an EPI time series cannot be corrected accurately using a single field 

map. Hence, in the process of field mapping it is desirable to account not only for the 

inhomogeneity before or after the series is acquired but also for the changes in 
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inhomogeneity throughout the series—both changes that are caused by gross motion of 

the head and those caused by physiological changes in anatomy outside the head.   

To determine these changes in inhomogeneity, some groups have explored the 

possibility of acquiring a separate field map for each scan of the series. Hutton et al. [71] 

suggest acquiring a series of extra EPIs to compute multiple field maps and performing 

the distortion correction for each image in an fMRI time series individually. 

Unfortunately the time for the series acquisition is doubled in this way and, more 

importantly, the temporal resolution of the temporal signal is cut in half. Roopchansingh 

et al. [72] propose a dynamic field-mapping method with the field map acquisition 

embedded in the EPI pulse sequence.  Unfortunately, only a very low resolution field 

map can be obtained in this way because of T2* decay, and the reduction in resolution 

results in a reduction in accuracy of the correction. Navigator echoes [73-75] have been  

employed to measure the phase changes induced by physiological effects, but the 

assumptions are that the variations of field inhomogeneity caused by physiological 

activities are either global or linear in space, which is invalid because the spatial variation 

of the physiological effects is not necessarily linear [76]. 

 

2.4. Phase method versus intensity method  

A field map can be derived directly from image phase. With the phase evolution 

induced by Δ  from two GE images, a map of field inhomogeneity can be calculated. 

The field map accurately determines image distortion because there is a simple 

proportionality relation between a field map and the corresponding image distortion and 

the proportionality constant is determined by the known strength of an image-acquisition 

B
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gradient. Unfortunately, the field-map method did not find its role in the correction of 

dynamic image distortion in EPI series because normally an extra scan is necessary for 

the calculation of the distortion field for each time point. The resulting reduction in 

temporal resolution is not affordable in applications requiring fast imaging. There is a 

need to develop new techniques for dynamic field mapping to correct the image 

distortion of EPI series. In later chapters, we will see that not only a static distortion field 

but also a series of distortion fields can be estimated from temporal phase evolution. 

Another class of methods for the correction of image distortion is based on image 

intensity. In these methods, a distortion field is estimated from image intensity rather than 

image phase. The distortion field is either calculated for each voxel, such as in the 

forward-reverse method [13] or modeled as a non-linear function, as in the non-rigid-

registration method [77]. The idea of image intensity methods for distortion correction is 

to find a template image which has either minimal distortion or opposite distortion. The 

distortion field is then estimated by finding the spatial correspondence between the 

distorted image and the template image automatically. Once the correspondence is 

identified, the distortion field is calculated straightforwardly.   

Non-rigid registration has the advantage over standard field-map methods of not 

requiring extra scan time. Its greatest disadvantage is problem sub-optimal local minima, 

and it also suffers from slow convergence whether or not it is trapped in a suboptimal 

local minimum. Both problems are made worse by the requirement that a large number of 

degrees of freedom need to be optimized. A review of existing methods for distortion 

correction via non-rigid registration can be found in [78]. Several groups have explored 

the feasibility of using non-rigid methods to correct for EPI, but the majority of these 
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methods are confined to correcting the distortion of a single EPI. The application of non-

rigid registration methods in correcting dynamic distortion of EPI time series has yet 

been fully explored. There are two major problems when we apply non-rigid registration 

methods to the problem of correcting dynamic image distortion. First, motion is present 

in all EPI time series. Although rigid-body realignment can compensate for motion to a 

large extent, inaccurate motion compensation induced by dynamic distortion fields can 

result in false warping when a non-rigid registration is applied afterwards. The false 

warping is a critical problem for temporal data analysis. Andersson et al. [16] introduce a 

mathematical model to account for the effect of motion-distortion in their intensity based 

method. However, their method is also based on the assumption that an accurate motion 

compensation is provided by some other means and that the variation of the distortion 

fields can be approximated as a first order Talyor expansion in of the motion components.  

Another limitation of non-rigid-registration for distortion correction is that the 

distortion field is modeled as a non-linear function with a large number of degrees of 

freedom. The distortion field is estimated by performing a non-linear optimization, which 

is prone to find a suboptimal local minimum when the number of unknown parameters is 

large [79]. To reduce these problems various constraints based on the physics of the 

imaging process have been developed to limit the space of optimization in the methods 

based on non-rigid registration.  
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2.5. Relationship of this dissertation to the state of the art  

This dissertation is focused on the reduction of distortion in series acquisitions of 

EPI of the brain. In particular, it is concerned with geometrical distortion and with 

intensity distortion that results from compression or stretching in the geometrical 

distortion pattern. Existing methods are based on shimming, field-mapping, or image 

registration. Shimming is incapable of handling the complex distortion patterns caused by 

the susceptibility of the head. Field-mapping methods are available only for static 

inhomogeneity, which requires that the head not move and respiration cease, for dynamic 

inhomogeneity when temporal resolution can be sacrificed, or for dynamic 

inhomogeneity with linear spatial variation. Registration methods suffer from the 

requirement that the distortion pattern be modeled by a spatial function of high 

dimensionality leading to suboptimal solutions and false warpings. At present no reliable 

method exists for the determination of distortion maps that accommodates dynamic 

inhomogeneity with full temporal resolution and accurate spatial variation. The focus of 

this dissertation is to develop methods to generate such dynamic maps efficiently and 

accurately.  

We present two methods in this dissertation for the estimation of dynamic 

distortion maps in GE-EPI time series. They are presented in Chapter III and Chapter IV, 

respectively. Their validation is presented in Chapter V.  
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CHAPTER III 

 

ESTIMATION OF DYNAMIC DISTORTION FIELDS VIA PHASE MAPS 

 

 In this Chapter, a method to estimate dynamic distortion fields in EPI time series 

via phase maps is introduced. Acquiring a field map with extra scans for each EPI 

individually is typically not affordable for most fast imaging applications. The temporal 

changes of distortion fields, however, are encoded in the phase changes of the distorted 

EPIs themselves. When the distortion fields vary sufficiently slowly with time, which is a 

valid assumption during fast imaging scans, such as EPI, the temporal changes of the 

image phase have minimum or correctable phase wrapping.  Hence, the temporal phase 

changes provide useful information to generate a separate distortion field for each EPI in 

a time series. 

Given a field map for each time point, the image distortion of each EPI can be 

corrected individually. The estimation errors of the distortion field caused by noisy phase 

could potentially introduce artifacts into the corrected EPI. As a result, regularization of 

the estimated field is necessary and has a large influence on the image quality of the 

corrected images. In this chapter, we extend an existing approach for field-map 

regularization. A regularization term is incorporated into a maximum likelihood (ML) 

framework in which the regularized distortion field for each time point is calculated 

iteratively.  

In this chapter, we start with an overview of MR image formation in the presence 

of field inhomogeneity. The geometric distortion and intensity distortion of EPI image 

are formularized. This is followed by an introduction of our phase-map method for the 
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estimation of dynamic distortion fields. A regularization approach for the phase map is 

described in detail. In the end, the distortion correction method for EPI time series using 

dynamic fields is described. 

   

3.1. GE image formation in the presence of magnetic field inhomogeneity 

Considering a multi-slice MR image sequence, a slab of spins of a slice of interest 

at  is excited by an RF pulse and a slice-selection gradient. The frequency-encoding 

gradient and phase-encoding gradient at time  are represented by  and 

1z

t ( )xG t ( )yG t . The 

image signal  received by the RF coil in a rotating frame can be represented as follows: s
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where ( 1, ,x y zρ  is the spin density, γ  is the gyromagnetic ratio 

( 642.5774 10 H= × z/Teslaγ  for hydrogen and 2γ πγ= ), A is a scaling constant, T  and 

 represent longitudinal relaxation time and transverse relaxation time, respectively, 

and T  is the repetition time. The integral in Eqn. 
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Ignoring the  and  effects, we can write Eqn. (1) as  T1 T2*
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( ) ( ) ( )2
1, , , x yi xk yk

x ys k k A x y z e dxdyπρ − += ∫∫ .      (3) 

   

It can be seen that ( ),x ys k k  forms a 2D Fourier transform of the spin 

density ( )1, ,x y zρ . xk  and yk  are the two spatial frequency components. The collected 

signal w ar d is c monly called k-space data. If the k-space data is properly 

collected, we will get (

e formul ize om

)1, ,x y zρ  after taking the inverse Fourier transform. This process 

is the fundamental bas I image reconstruction. Different ways of filling the k-

space data trajectory correspond to different MR pulse sequences.  

The previous discussions are based on the assumption that 

is for MR

there is no static field 

inhomo

iffer e o

         

geneity ΔB . In practice, ΔB , either caused by hardware imperfection or 

susceptibility d ences at air/tissu r bone/tissue interfaces, will cause accumulated 

phase other than that induced by the frequency-encoding gradient and the phase-encoding 

gradient. This phase will compromise the spatial encoding achieved by the imaging 

gradients and will cause problems in image reconstruction. The k-space data in the 

presence of field inhomogeneity will have a form given by  
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Here, we assume that the field inhomogeneity is constant during the collection of the 
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ΔB  

image signal. What we will show later on is t the field inhomogeneity can also be 

  24



modeled as a function of time and varies slowly with time, a variation potentially caused 

by motion and physiological activity.  

GE imaging is one of the most important classes of MR imaging sequences. A 

combination of a RF pulse and a slice-selection gradient  excites a slice of interest. A 

subsequent reversed gradient is applied to refocus the spins within the slice. In this work, 

we ignore any errors in this refocusing. Suppose the phase-encoding gradient is applied 

for time 

zG

pτ  with a strength . Then, a defocusing gradient yG xG−  is applied for time  

2ft  followed by the frequency-encoding gradient xG , which is applied for time ft . If 

we set the echo time TE as the zero time point, then during the application of the 

frequency-encoding gradient, the phase of spins at location ( )1, ,x y z  at time  has the 

form 

t
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Let x xk G= t p and y yk G τ= , we can rewrite the k-space data as 
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where we introduce a slice-selection function ( )( )1 1, ,p x y zω ω−  with 
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in which  is the static magnetic field. Simplifying Eqn. oB (6), we have 
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We now transform the variables of integration ( )1, ,x y zr  as follows, where the primed 

variables (e.g., x′ ) define positions within a warped image: 
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Assume that the inverse transformation ( )1Τ ', ', 'x y z−=r  exists, which means that the 

Jacobian  (i.e., the determinant, ( )J r '∂ ∂r r ) of the transformation is non-zero. From 

Eqns. (9), it can be shown that 
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Therefore , and hence the inverse transformation exists, in regions for which the 

following relationships hold: 

0J >

 

 ΔB ΔB,x zG
x z

∂ ∂
∂ ∂

� G� . (11) 

 

Using Eqns. (9) in Eqn. (8) yields 

 

   

 

( ) ( )( ) ( )
( )( )

( )( ) ( )

1

1

, '

exp ΔB TE

exp ' ',

x y z

x y

s k k A p G z z

i

i k x k y J d

γ ρ

γ
−

= − ×

− × ×

− +

∫∫∫ r

r

r r

. (12) 

 

The reconstructed image intensity at a point 1 1 1, , 1x y z≡r  is produced by taking the 

inverse Fourier transform  of the k-space data,  1−ℑ

 

 

( ) ( ){ }
( )( )

( ) ( )( ) ( )

1
1 1 1 1

1

1

, , , ,

'

exp ΔB TE

x y

z

i s k k z x y

C p G z z

i J

γ

ρ γ

−

−

= ℑ

= − ×

− ×

∫

r

r r r 'dz

. (13) 

 

If the spin density  is assumed to be constant within the slice of interest, we have  ( )ρ r

 

 ( ) ( ) ( )( ) ( )( ) ( ) 1
1 0exp exp ΔB TEi C i i Jρ φ γ −= − − ×r r r r r , (14) 
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where  is the residual phase error caused by imperfect slice excitation. Hence, a GE 

MR image at position  in the presence of field inhomogeneity has an intensity value 

proportional to the spin density modified by a Jacobian factor at position r , and the 

phase is linearly related to 

( )0φ r

1r

( )ΔB r .  

 

3.2. Field mapping based on dual-echo images 

According to the above mathematical derivation, the phase of a reconstructed GE 

image is linearly related to the distortion field Δ . Image phase can be computed from 

the imaginary part and real part of a complex image 

B

( )1i r  using  

 

 ( )( ) ( )( )( )1
1tan imag reali i− r 1r .  (15) 

 

Based on Eqn. (14), the image phase is related to ( )ΔB r  by 

 

 ( ) ( ) ( )( )1 ΔB TE+ oφ γ φ= − ×r r r . (16) 

 

If the phase error  is negligible, we have ( )oφ r

 

 ( )1 ΔB TEφ γ≈ − ×r . (17) 
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The field inhomogeneity information is encoded in the image phase of the reconstructed 

GE image. Unfortunately, a direct computation of Δ  is difficult because the TE value is 

typically large and we have 

B

 

 ( ) ( )( ) ( )( )( )1
1 1 1tan imag real 2 , 0, 1, 2,...i i k kφ π−= +r r r = ± ± . (18) 

 

However, the value of the 1tan−  function lies only in the range of [ , ]π π− , while the true 

phase change may be well outside that range, as indicated by Eqn. (18). This ambiguity is 

the well-known “phase wrapping” problem, and because of it a phase map computed via 

Eqn. (15) can be expected to exhibit severe phase wrapping. Calculation of a field 

inhomogeneity map from a wrapped phase map will be highly inaccurate. This problem is 

demonstrated in Figure 4 and Figure 5. In Figure 4, the left image is a true field map. The 

right image is the field map calculated by means of Eqn. (15). The discontinuity in the 

right image demonstrates the phase wrapping ambiguity. A profile plot of both images 

(locations are indicated by red lines in Figure 4) is shown in Figure 5. The disagreement 

in some areas demonstrates phase wrapping ambiguity. 

 

Hz 

 

 

Figure 4. A true field map (left) and the field map calculated 
from a wrapped phase map (right).  Discontinuity in the right 
image demonstrates phase wrapping ambiguity.  
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Figure 5. A profile (red lines in Figure 4) plot of the true field map (solid 
line) and the field map calculated via Eqn. (15) (dotted line). The 
disagreement in some areas demonstrates phase wrapping ambiguity.  

 

The map of field inhomogeneity, however, can be computed from two or more 

GE images acquired with differing values of TE [15;36]. According to our derivation, 

two GE images differing in their echo time by TEΔ  can be represented by  

 

 ( ) ( ) ( )( ) ( )( ) ( ) 1
TE 1 0exp exp ΔB TEi C i i Jρ φ γ −= − − ×r r r r r      (19) 

 

and  

 

 ( ) ( ) ( )( ) ( ) ( )( ) ( ) 1
TE+ TE 1 0exp exp ΔB TE+ TEi C i i Jρ φ γ −

Δ = − − × Δr r r r r . (20) 
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These two GE images share the same imaging parameters except for echo time and it is 

assumed that they are scanned closely in time so that the field inhomogeneity remains 

static. We will call this pair of images “dual-echo” images. If  TEΔ  is chosen to be small 

enough, a map of field inhomogeneity can be calculated from these two complex images 

by 

  

 ( ) ( ) ( )( )TE 1 TE+ TE 1angle /
ΔB

TE
i i

γ
Δ=

Δ

r r
r . (21) 

 

Here, we use “ ” to denote the phase of a complex image, and use  to denote a 

complex division of two complex images. For traditional GE images, geometric 

distortion is negligible in most applications because of high bandwidth in this type of 

pulse sequence. Hence,  and 

angle /

1≈r r ( ) ( )1ΔB ΔB≈r r  holds. We denote the field map 

acquired using two traditional GE images as an “undistorted field map” because the field 

map computed has minimum warping. Because of the image quality of GE images, the 

computed field map has a high SNR and high resolution and can be utilized to correct the 

image distortion of EPI. However, the acquisition of a pair of GE images typically takes a 

couple of minutes of scan time. Motion of human subject during that time is likely, and it 

will decrease the effectiveness of distortion correction methods relying on this acquisition.  

Now we consider a “blipped” GE-EPI sequence in which movement along the  

(nominal phase-encoding) axis is accomplished by means of 

yk

bG  gradient pulses and the 

readout is performed back and forth in the xk  direction while the xG  gradient directs the 

k-space trajectory. Figure 6 shows the pulse sequence and the path through k-space. Note 
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that we have set the echo time as the time origin. Thus, the 90o excitation pulse is at 

.  TEt = −

 

 

 

 

 

 

 

Δty 

Figure 6. Part of pulse sequence diagram for a blipped GE-EPI sequence. The 
readout for each  line occurs during the shaded yk xG

t y

. Adjacent k-space points in 
the  direction is acquired with a time interval of yk Δ  

 

Similar to our previous derivation, we have the k-space representation for a multi-

slice GE-EPI sequence as follows: 

 

 

        

( ) ( )( )( )
( ) ( )( )

( )( )((
( )( )))

1 1, , ΔB

exp ΔB TE

exp ΔB

ΔB ,

x y z z

x x

y y

s k k z A p G z G z

i

i k x G

k y G d

γ

ρ γ

= +

− × ×

− + +

+

∫ r

r r

r

r r

− ×

                              (22) 

 

with each variable having the same meaning as before except . Here we define  as 

the “effective gradient” in the phase-encoding direction defined as  

yG yG

  32



  

 ( )b0

p

yG G t dt
τ

yt≡ Δ∫  (23) 

 

with pτ  being the interval of time during which the blipped gradient is applied. With a 

similar variable transformation, ( )' ', ', ' T , ,x y z x y z≡ =r , as before, the following holds 

for the EPI: 

 

                                       
( ) ( )
( ) ( )
( ) ( )

ΔB

ΔB

ΔB

x

y

z

x x G

y y

z z

′ ≡ +

′ ≡ +

′ ≡ +

r r

r r

r r

G

G

.                                               (24) 

 

The Jacobian of the variable transformation can be shown to be 

 

                                     
( )

1 ΔB 1 ΔB 1 ΔB1
x y z

J

G x G y G z

=

∂ ∂ ∂
+ + +

∂ ∂ ∂

r
.                              (25) 

 

Compared with Eqn. (9) and Eqn. (10), we can see that EPI has image distortion caused 

by field inhomogeneity in all three directions while GE image has distortion only in the 

frequency-encoding direction and the slice-selection direction. Another important fact is 

that  

   

 . (26) ory xG G G�  z
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With this fact, the image distortion in EPI is approximately confined to the phase-

encoding direction only. The corresponding spatial transformation of the image induced 

by field inhomogeneity can be rewritten as 

 

 

( )
( ) ( )
( )

ΔB y

x x

y y

z z

′ ≡

′ ≡ +

′ ≡

r

r r

r

G .  (27) 

 

The corresponding Jacobian factor simplifies to   

 

 ( ) 1 ΔB1
y

J
G y

∂
= +

∂
r . (28) 

 

Based on the above derivation, the reconstructed EPI at ( )1 1 1 1, ,x y zr  in the presence of 

field inhomogeneity is produced by taking the inverse Fourier transform  of the k-

space data represented by Eqn. 

1−ℑ

(22),  

  

 ( ) ( ) ( ) ( )( )1 exp ΔB TEi C J iρ γ−= −r r r r ×  (29) 

 

where C  is a scaling constant, the difference between  and r  represent the geometric 

distortion of EPI, and  represents the intensity distortion induced by the geometric 

transformation of the image. 

1r

( )J r

( )ΔB Tγ− ×r E  represents the image phase. Eqn. (29) is 

guaranteed to have a solution as long as the Jacobian is nonzero. Note that we have 
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ignored the effects caused by intravoxel dephasing, which could induce more intensity 

distortion. In this work we focus on correction only of geometric distortion and the 

component of intensity distortion induced by geometric deformation of the image.  

Based on two EPIs with slightly different TEs, a field map can be calculated. The 

SNR of a standard GE scan is superior to that of a GE-EPI scan, but, because an EPI scan 

is much faster than a GE scan, the potential for patient motion is reduced during the 

acquisition. On balance, field-mapping based on dual-echo EPIs is superior to that based 

on dual-echo GE images. 

 

3.3. Estimation of dynamic distortion fields for a EPI time series 

The above field-mapping techniques indeed provide an effective solution to 

compute the distortion field for the correction of the distortion of a single EPI. However, 

as we have described, the distortion field induced by the susceptibility differences of air-

tissue or bone-tissue varies not only spatially but also temporally because of motion and 

respiration. A fast imaging application requires acquisition of a hundred or more volumes 

over a period of three or more minutes, and therefore it would be inappropriate to 

approximate the dynamic distortion fields for a whole time series with a static distortion 

field. Because each EPI in a time series is distorted differently, the desired temporal 

variation is corrupted by changes due to the changes in distortion, termed “temporal 

noise” in the signal. Estimation of dynamic image distortion for EPI time series can help 

to reduce the temporal noise in EPI time series. Hence, it is desirable to have a separate 

distortion field for each time point individually.  
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As we have seen, the phase of GE images encodes field inhomogeneity 

information. However, because of phase wrapping ambiguity it is not possible to extract a 

distortion field from the image phase directly. Intuitively, when the distortion field 

changes in time, the phase will change accordingly. On the other hand, the phase changes 

in time encode the temporal variation of the distortion field. If the distortion field changes 

sufficiently slowly with time, the corresponding temporal phase changes between 

adjacent volumes in the series will have minimum or correctable phase wrapping. So the 

variations of the distortion field in time can be computed from the image phase directly. 

Based on this idea, a separate distortion field for each EPI image can be derived.  

 Suppose we have two EPIs (  and ) that are acquired at the beginning of an 

EPI time series with a difference of Δ  in their echo times. According to Eqn. 

oi

TE

1i

(29),  the 

phase of the reconstructed images can be written as follows: 

 

 ( )1ΔB TE+ TEoφ γ≈ − × Δ  (30) 

 

and  

  

 1 1ΔB TEφ γ≈ − × . (31) 

 

Because  and  are acquired closely in time, we can assume that they have the same 

field inhomogeneity . Consider another EPI which is acquired immediately after the 

acquisition of i  with the same echo time as . We call this image , and, because of 

oi 1i

1

1ΔB

1i 2i
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patient motion or respiration it experiences a different distortion field represented by 

2ΔB . Its phase can be writte  an s  

 

           2 2ΔB TEφ γ= − × .                                        (32) 

 

Although each of  the phases 0φ , 1φ , and 2φ  is so large that a direct calculation based on 

Eqn. (15) will suffer from the angular ambiguity due to phase wrapping, the phase 

differences between  and  and the differences between  and  tend to be small and 

have minimum phase wrapping. Here minimum phase wrapping means either no phase 

wrapping or the phase wrapping can easily be corrected. The small size of these 

differences can be explained by the fact that (a) 

oi 1i 1i 2i

1 Δ1 0 ΔB TEφ φ γ− = ×  is small if Δ  

can be made sufficiently small and (b) 

TE

( )1B1 2 Eφ φ 2ΔB Δ Tγ− = − ×  is small if the 

variation of Δ  at a given point in scanner space is sufficiently slow in time. Based on 

this idea, the distortion fields corresponding to two time points can be calculated with the 

assistance of one extra EPI . Formulas for inhomogeneity are given as follows: 

B

oi

 

 
( ) ( )

( ) ( )

( ) ( ) ( )
( ) ( )

1
1

0

1
2 1

2

ΔB angle TE

ΔB ΔB angle TE

i
i

i
i

γ

γ

⎛ ⎞
= Δ⎜ ⎟

⎝ ⎠
⎛ ⎞

= + ⎜ ⎟
⎝ ⎠

r
r

r

r
r r

r

. (33) 

 

Note here that we use r  to represents a position that is fixed with respect to the 

scanner’s coordinate system (i.e., not fixed with respect to the patient’s head). Because 
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the field map is computed from the warped EPI and because the patient’s head may move 

between acquisitions, r  will in general lie at different points in the patient’s head at 

different points in time, and therefore for different values of k,  denotes the 

inhomogeneity at different points in the head. We will discuss this further later in this 

chapter.  

( )kΔB r

It is straightforward to alter Eqns. (33) to compute the distortion field for any 

given time point in terms of the distortion field and the image at the preceding time point 

as follows:  

 

 

( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

1
1 r

0

1
1

ΔB angle TE

...

ΔB ΔB angle TE ,k
k k

k

i
i

i
k

i

γ

γ−
−

⎛ ⎞
= Δ⎜ ⎟

⎝ ⎠

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠

r
r

r
r r

r
2,3,...=

. (34) 

 

Note that we only need one extra image ( )oi r  to perform all the calculation. Hence, the 

extra scan time for a fast imaging applications requiring a hundred or more acquisitions is 

almost negligible.  

 

3.4. Regularization of phase maps  

 Correction of EPIs can be performed with the distortion fields calculated from 

Eqns. (34), but any estimation error of the distortion fields will propagate to the corrected 

images. The distortion field we calculate is based on the phase of EPIs, which are 

notorious noisy. Regularization of the distortion fields has a strong impact on the 
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corrected images. Regularization is necessary because the temporal variations of the 

distortion fields tend to be subtle and sensitive to noise. 

A low-pass spatial filter provides a simple regularization method for a noisy field 

map, but the estimation errors in the field map could propagate to other regions by using 

this approach. A more promising regularization method was recently proposed by Fessler 

et al. [80]. A regularized field map is estimated from two complex GE images based on 

maximum likelihood (ML). We extend their regularization method to estimate dynamic 

distortion fields of EPI time series using our phase-map method. In the following, we will 

briefly describe their approach followed by our modifications.  

Suppose two complex GE images with a difference of Δ  in their echo times 

are represented by 

TE

y  and . Then each reconstructed voxel z j ( 1:j N=  and  is the 

number of voxels) has a form as follows: 

N

 

 
j

j j j

ix
j j

y f

z f e

ε

jη

= +

= +
, (35) 

 

 

where jf  denotes a complex voxel, ΔB Tj jx Eγ= − ×Δ , jε  and jη  denote complex noise 

that is assumed to have a Gaussian distribution with zero-mean and σ  standard deviation. 

In the equation, y and z are the observed data (complex intensities after image 

reconstruction) and f  and x  are unknown variables. A solution based on ML can be 

carried out as follows. The joint log-likelihood for the estimation of f  and x  given y and 

z is   
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 ( ) ( )
2

2

2
1

1log ; log ; ,
2

j
N

ix
j j j j

j

p y f p z f x y f z f e
σ =

−
+ = − + −∑ . (36) 

 

After simplification, the ML cost function for estimation of x  is given as  

 

 ( ) ( ) ( )(
1

1 cos angle angle
N

j j j j j
j

)x y z z y x
=

⎡ ⎤Ψ = − − −⎣ ⎦∑ . (37) 

 

In the absence of noise, the cost function is minimized when ( ) ( )angle anglej j jx z y= −  

(  denotes the computation of a magnitude from a complex image), which is exactly the 

same as the traditional dual-echo field mapping defined in Eqn. (21).  

 In order to suppress noise effect, a regularization term can be incorporated into 

the cost function (37) based on the a priori knowledge that the field map tends to be 

smooth in space. Hence, the penalized ML cost function to estimate the distortion field 

from two complex GE images can be constructed as follows: 

 

 ( ) ( ) ( ) ( )( ) (
1

ΔB 1 cos angle angle ΔB ΔB
N

j j j j j j
j

y z z y x Rβ
=

⎡ ⎤Ψ = − − − +⎣ ⎦∑ ) , (38) 

 

where β  is the coefficient to control the smoothness of the estimated field and ( )R x  is a 

spatial roughness penalty term. Following Fessler, we base the penalty on the differences 

in values of the distortion field between horizontal and vertical neighboring voxels. The 

regularized distortion field can then be estimated by iteratively solving Eqn. (38).  
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We aim to extend Fessler’s approach for field-map regularization and apply it to 

our phase-map method. A direct extension, however, is complicated by the fact that, 

image  and  may not share the same image magnitude at each reconstructed voxel 1ki − ki j   

because the patient’s head may move or be warped differently between acquisitions and 

voxel j  will in general lie at different points within the patient’s head at different points 

in time, whereas the assumption in Fessler’s application is that both images have 

magnitude jf . In order to accommodate differences in intensity, we only consider the 

noise in image phase. While the complex image is corrupted by Gaussian noise, the noise 

distribution in image phase could be complicated. We make the approximation that the 

image phase is corrupted by Gaussian noise. This assumption does not agree with the 

assumption of additive complex noise made by Fessler, which is based on the observed 

noise patterns in MR signal acquisition, but we make it in order to simplify this problem.  

A more complicated noise model for the image phase still allows us to apply a 

regularization approach (see future work described in Chapter VI). The phase differences 

between images  and  and between images 0i 1i 1ki −  and  can be represented by  ki

 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( )

1 0 1 1

1 k k-1

ΔB ΔTE+

ΔB ΔB TE+

2,3,....
k k k

k

φ φ φ γ η

φ φ φ γ ε−

Δ = − = ×

Δ = − = − ×

=

r r r r r

r r r r r r , (39) 

 

where  and  denotes Gaussian noise at location r . In Eqns. ( )η r

( 1,k

( )ε r (39), 

 is the observed data, Δ  and  are known parameters,  and ( ) )...kφΔ =r TE TE
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( )kΔB r  are the unknowns. For each image we define a ML function as the weighted sum 

of the squared difference between the observed phase differences φΔ  and the phase that 

can be modeled as function of Δ . For image  the function can be written as B

N

j

1i

 

 ( ) ( )( 2
1 1 1 1

1
ΔB ,ΔTEw f )ψ φ

=

= Δ −∑ r , (40) 

 

where ( ),f x y xyγ= . The weighting function, ( )1w r , is defined as the product of the 

image intensity of the two images from which the phase differences are computed: 

 

 ( ) ( ) ( )1 0r r 1w i i= r . (41) 

 

Similarly, a function kψ  to estimate the distortion field of image  is defined as ki

 

 ( ) (( 1B B ,Tk k ) 2
E )

1

M

k k
j

kw fψ φ −= Δ − Δ −Δr
=
∑ , (42) 

 

and ( ) ( ) ( )1k k kw i i−=r r r . As we know, the phase differences between adjacent image 

volumes can be written as  

 

  42



 

( )
( )
( )
( )

1
1

0

1

angle

angle k
k

k

i
i

i
i

φ

φ −

⎛ ⎞
Δ = ⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

Δ = ⎜ ⎟⎜ ⎟
⎝ ⎠

r
r

r
r

. (43) 

 

Following Fessler, a priori knowledge about the distortion field can be incorporated into 

Eqn. (40) and Eqn. (42) in the form of a penalty function. The resulting penalized ML 

functions to compute the distortion fields for multiple time points can be written as 
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where  
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with  being the number of voxels of the field map volume and  being a 

differentiable function. Again, following Fessler, we choose 

, , and N M K ( )tϕ

( ) 2 / 2t tϕ = . 

Eqns. (44) represent a nonlinear optimization problem that can be solved 

iteratively using Newton’s approach. The iterative solution is given by Eqn. (46), where 

 is the iteration number. Regularized distortion fields can be then estimated.  l

 

 ( ) ( ) ( )( ) ( )( )1 2ΔB ΔB ΔB ΔBl l l+ = −∇Ψ ∇ Ψ l  (46) 

 

Essentially, it can be seen from Eqns. (44) that our estimation method tends to extrapolate 

the estimated fields in areas where the intensity is low ( 1k ki i−  is small) while relying on 

local phase information where the intensity is high. The trade-off is controlled by the 

coefficient β . In practice, this regularization method is quite efficient. Several iterations 

are sufficient to generate estimated fields with proper regularization. One drawback of 

the regularization approach is that the coefficient β  has to be chosen manually. A high 

β  value is preferred when the image has a low signal-to-noise ratio.  The spatial 

resolution of the estimated field map, however, is reduced with a high value of β . The 

effect of β  on the local frequency response of the regularization estimator is discussed in 

[81].  
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3.5. Correction of an EPI when the distortion field is known 

By taking the absolute value of both sides of Eqn. (29) and letting ( ) ( )ci Cρ=r r  

we find that . Using this relation and Eqns. ( ) ( ) ( )1ci i J=r r r (27) and Eqn. (28), we can 

perform the correction of an EPI when the distortion field ( )ΔB r  is given as follows:  
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= +

=

∂
= +

∂

r r r

r

. (47) 

 

We call this calculation a “backward” correction when the distortion field is provided in 

“undistorted” space. The field-mapping approach based on standard GE images generates 

a field map that lies in undistorted space. The backward correction is applicable in this 

case.  However, when we estimate the distortion field from EPIs, because the EPIs 

themselves are warped, the estimated field lies in “distorted” space. If the distorted image 

and the undistorted image have one-to-one spatial correspondence, the following relation 

holds: 
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. (48) 
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A “forward” correction can be used to correct the distorted EPI.  In fact, the distortion 

field can be converted from distorted space to undistorted space or vice versa according 

to the following relation:   

 

 
( )

( )
1

1 1

ΔB

ΔB

= +

− =

r r r

r r r
, (49) 

where  is a warped position of . 1r r

This is an important fact that we need to keep in mind because a correction 

method must account for the space in which the distortion field lies. To see the difference 

between a distortion field in distorted space and one in undistorted space, a comparison is 

made in Figure 7 and Figure 8.  Figure 7 denotes (a) a field map in undistorted space, (b) 

the corresponding field map in distorted space, and (c) their difference. The difference is 

caused by the geometric distortion of the EPIs used to calculate the field. (b) contains the 

field as calculated directly from two EPIs, while (a) is the result of correcting (b) for the 

geometric distortion in the EPI. A profile plot along one vertical line in both field maps 

(positions are marked as red lines in Figure 7) is shown in Figure 8, where a difference is 

noticeable. The distortion field can be converted from either space to the other, but the 

corresponding distortion correction method will be slightly different as Eqn. (47) and Eqn. 

(48) show. We will be using this fact in Chapter IV.  
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Figure 7. (a) an undistorted field map, (b) a distorted field 
map, and (c) their difference. We can see the difference 
when we get a field map in undistorted space and distorted 
space. 
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 Figure 8. A profile plot (indicated by red lines in 
Figure 7) of a field map in undistorted space (solid 
line) and distorted space (dashed line). Slight 
differences are noticeable because of geometric 
distortion of EPI.  

 

 

 

3.6. Conclusion 

Correction of EPIs is typically performed using the traditional field-map method, 

in which the distortion field is computed from the phase differences of two GE images. 

However, the field-map method cannot encode the temporal variations of distortion fields 
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induced by respiration and motion in EPI time series. Each EPI in a time series could 

potentially experience different image distortion, which makes the field-map method 

invalid.  

We have developed a method to estimate the dynamic distortion fields in EPI time 

series via image phase. The temporal variation of the image phase encodes the variation 

of the distortion field, which provides useful information to correct the dynamic image 

distortion. The phase information of the EPIs, in conjunction with one extra EPI, helps to 

compute a separate distortion field for each EPI in a time series. A regularization term 

based on maximum likelihood is incorporated in the estimation of dynamic distortion 

fields to suppress the effect of noise. Once this distortion field is determined, each EPI 

can be corrected accordingly. A validation of this method is presented in Chapter V.  
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CHAPTER IV 

 

ESTIMATION OF DYNAMIC DISTORTION FIELDS VIA BOTH PHASE AND 
INTENSITY 

 

In last chapter, we introduced a phase-map method to estimate dynamic distortion 

fields in EPI time series using image phase information.  However, there are two 

potential issues with the phase-map method. First, when there is sufficient movement 

during the time series, the phase variation for some physical locations may not be 

available because they have moved into the background area of the previous image. The 

variations of distortion fields cannot be determined in these regions because of lack of 

phase information. Second, the calculation of dynamic distortion fields is based on 

assumption that the distortion fields vary sufficiently slowly with time. When the 

variation of the distortion fields between adjacent volumes is large, the induced phase 

differences could suffer from phase wrapping. Integration of image intensity information 

via image registration has the potential to mitigate both these issues.   

Rigid-body registration based on image intensity is a standard method for motion 

compensation of EPI time series. Correction of a single EPI image using non-rigid 

registration methods has also been intensively studied. However, the potential for using 

both rigid and non-rigid registration to estimate the dynamic distortion fields in EPI time 

series has not yet been fully explored. In this chapter, we study the feasibility of 

employing image registration to perform motion compensation and distortion correction 

of EPI time series. A mathematical framework that characterizes the effect of motion-

distortion in EPI time series is described. The limitations of using non-rigid registration 
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to correct the EPI image series are analyzed. To overcome these limitations we propose 

to incorporate the phase information in the standard registration framework for the 

estimation of the dynamic distortion fields in EPI time series.  Our phase-map method 

from Chapter III is in the present chapter used as an adjunct to the registration method by 

applying it to the original EPI series to obtain a more accurate first approximation to 

motion compensation via rigid-body registration. We then develop a phase-gradient term 

from the image phase map. This term is incorporated in standard non-rigid registration 

based on the minimization of a sum of cost functions. The phase gradients are time-

dependent and approximately proportional to the gradients of the distortion field of the 

EPI, and when used as a cost function help to impose a spatial constraint on the estimated 

distortion field.  In summary, in this chapter, a strategy is suggested for the correction of 

dynamic image distortion in EPI time series using a method of registration that 

incorporates both phase information and intensity information.  

 

4.1. Motion compensation in EPI series 

In EPI time series, the majority of the erroneous variation of image intensity is 

attributable to the rigid motion of the imaging subject [82] and respiration-induced Bo 

fluctuations [75]. An image realignment based on intra-subject rigid-registration is 

available in most packages that are designed for data analysis of MR series imaging. To 

perform motion compensation, a “template” image (usually the first EPI) is chosen as a 

target image. All other EPIs, termed the “source” images are registered to the template 

image. Since all EPIs in a time series share the same resolution, modality, and intensity, 

the measure of difference between images used as a cost function for image registration is 
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typically the sum of the squared differences (SSD) in intensity. Both rotation and 

translation parameters are estimated by minimizing the cost function to make the 

transformed source images more similar to the template image.  

We let the source image be SI  and the template image be TI . Suppose the rigid 

transformation from SI  to TI  is unknown and represented by six parameters including 

rotation and translation q q . The homogeneous matrix of the corresponding 

transformation can be represented by  

1,...,
r

6 ]q[=

 

  
( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( )
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−

0 0 0

⎡ ⎤
⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎣ ⎦

1

3q
1

.(50) 

 

Then the sum of the squared differences between the transformed source image and the 

template image is written as  

 

                                                ( ) 2

int S TT q I Iψ = −
r

, (51) 

 

where the subscript “int” means “intensity” and signifies that the cost is based entirely on 

the intensity at each point in the two images. In this equation, we use 2  to denote the 

sum of the squared differences of corresponding voxels between SI  and TI .  If the source 

image and the template image differ only by a rigid-body transformation, the cost 

function Eqn. (51) is decreased when the estimated parameters q  approach the true 
r
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transformation parameters 0q
r

. Hence, motion compensation in EPI time series is 

essentially a nonlinear optimization process in which a measure of difference in intensity 

patterns is minimized. The optimization process is formularized as 

  

            arg min
q

ψ
r

.                                    (52) 

 

In the above method for motion compensation, the source EPI and the template 

EPI are assumed to differ only by a rigid transformation. However, it is well known that 

EPI is distorted, as described in Chapter III. Moreover, each EPI can experience a 

different image distortion from others in the series. In previous work, we have shown that 

when the source EPI and template EPI experience different image distortion, motion 

compensation using Eqn. (52) can be biased [83]. It is more appropriate to correct the 

images before motion compensation is performed. There are three scenarios by which the 

motion compensation can be performed on an EPI series. The first one is to perform 

rigid-body motion compensation directly on the EPI series. In this case, the effect of 

image distortion is totally ignored. We denote the estimated transformation from the 

source image to the template image in this scenario as T .  In the second scenario, the 

template EPI and each source EPI are corrected using the same distortion field. It 

represents the case in which only a static distortion field is available. We denote the 

estimated transformation in this case as . In the third scenario, the template EPI and 

each source EPI are corrected with a separate distortion field. As we have discussed, the 

dynamic distortion fields are typically not available. To perform a separate distortion 

correction for the source EPI and the target EPI, we will utilize the phase-map method 

fldT
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that we introduced in Chapter III. Each EPI is corrected with an estimated distortion field 

based on our phase-map method. The motion compensation is then performed on the 

corrected EPI. We denote the estimated transformation matrix using this method as phaT .  

 

4.2. Estimation of dynamic distortion fields using non-rigid registration  

 Non-rigid registration methods have been employed to correct the image 

distortion of EPI in which a distorted EPI is warped to a template image. There are 

mainly two applications of using non-rigid registration in correction of EPI. The first one 

is for functional localization in the human brain. In this application, the image distortion 

of EPI needs to be corrected in order to map the activation regions to anatomic regions 

correctly. A typical template image for registration is an anatomical image (e.g a standard 

GE image). The distorted EPIs are warped to the anatomical image. The similarity 

measure is typically based on mutual information because the EPI and the anatomical 

image have different contrast patterns. Since the distortion of EPI is confined by physics 

constraints, many groups have developed non-rigid methods for distortion correction by 

imposing specific constraints on the estimation of deformation fields. For example, 

Studholme et al. [77] suggest using a unidirectional constraint and employing the 

Jacobian factor of the transformation to estimate the distortion field using a non-rigid 

registration method. Li et al. [84] account for the signal loss of EPI when registering the 

EPI to an anatomical image and further propose to use a scheme with spatially varying 

scale for modeling the distortion field based on a priori knowledge. 

 There is another application of non-rigid registration in correction of EPI.  In this 

application the EPI is corrected to reduce the erroneous variation of image intensity in an 
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EPI time series. The purpose of this application is to reduce the spurious activations or 

temporal variation induced by dynamic distortion fields or motion-distortion. The 

pioneering wok regarding the effect of motion-distortion has been laid out by Andersson 

et al. [16] in which a mathematical model was described to estimate motion-dependent 

distortion fields by using a non-rigid registration method. In this application, the direct 

application of non-rigid registration tends to be more difficult because of the motion 

confound. An inappropriate warping of the EPI could generate false distortion fields. 

Standard registration methods have to be altered before they can be applied to remove the 

motion-related image distortion in EPI series. This will be the focus of the work we 

present in this chapter.  

 As for the motion compensation method, a template image ought to be chosen to 

perform a non-rigid registration. Typically, a template image would be the first EPI in an 

image series. It is important to correct the template image before another EPI is warped to 

this template. We use  and  to represent the distortion fields for the source 

image and the template image. The corrected template image is represented by  

SΔB TΔB

 

 ( )T T,ΔBf I . (53) 

 

where f  represents the correction function defined in Eqns. (48).  After the corrected 

template image  has been calculated, a standard rigid-body registration 

method can be employed to first realign the source EPI with the corrected template image 

to get an estimated rigid transformation T . Then the rigidly-transformed source EPI is 

corrected by warping it to match the corrected template EPI.  

( T T,ΔBf I )
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Note that the distortion in EPI is confined to the phase-encoding direction, which 

is known and is typically either the vertical or horizontal direction of the EPI. However, 

if the source EPI is rotated by T  when it is registered to the template image, then its 

distortion direction is rotated as well. Rotation is almost always present, and thus, the 

image distortion of the transformed source EPI will almost always, contain components 

in all three directions—phase-encoding, readout, and slice-selection. To avoid that 

complication, a better strategy is to transform the corrected template EPI to the source 

EPI with the inverse transformation 1T − . Then, the distorted EPI can be warped to the 

corrected and rigidly-transformed template EPI. This way, we should be able to estimate 

the distortion field  properly by confining the distortion to be unidirectional, as in all 

other distortion correction methods based on image registration [77]. The cost function 

that contains the distorted EPI and the transformed template EPI is given as follows: 

SΔB

 

 ( ) ( ) ( )
2

1
S S T T,ΔB ,ΔBf I T q f Iψ −= −

r
. (54) 

 

The distortion field  is estimated by solving the following optimization problem: SΔB

 

 
ΔBs

arg minψ . (55) 

 

.  As we can see from this derivation, the accuracy of the rigid realignment T  is 

critical to estimate  accurately based on subsequent non-rigid registration. 

Unfortunately, finding an accurate T  depends on knowledge of  ! As a way out of 

SΔB

SΔB
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this loop, we note that, according to our theory in Chapter III, an estimation  of the 

distortion field  can be calculated by using our phase-map method.  could 

potentially suffer from isolated phase wrapping or inaccurate estimation near the edges of 

foreground image—the two issues cited at the beginning of this chapter. However, 

because T is a rigid registration, which has only six degrees of freedom ( ), these local 

errors should have only a small effect on it, and thus we can expect that a T  based on a 

S0ΔB

S0ΔBSΔB

q
r

SI  that has been corrected by using  is likely to be more accurate than one based on 

the original image. In other words, we can use the 

S0ΔB

phaT  in Eqn. (54) rather than T  or  

(both defined in previous section). With this in mind, we could rewrite Eqn. 

fldT

(54) as 

follows:  

   

 ( ) ( ) ( )
2

1
S S pha T T,ΔB , B ,ΔBf I T q f IS0Δ−= −

r
. (56) ψ

 

By minimizing the function defined in Eqn. (56), we should be able to estimate the 

dynamic distortion field  more accurately. We will verify this hypothesis  in Chapter 

V. The approximation  can also be employed as an initial estimation of  when 

solving Eqn. 

SΔB

S0ΔB SΔB

(56), as suggested in [50], dramatically reducing the convergence time of 

the optimization.   

 The distortion field in the traditional field-map method or our phase-map method 

is represented voxel by voxel. In non-rigid registration, a non-linear function is typically 

used to represent the estimated distortion field to reduce the degrees of freedom and 

increase the optimization efficiency. The distortion field is typically modeled as a 
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combination of basis functions such as B-spline [85], radial basis function [86], or 

discrete cosine function [16]. This way, the distortion field is uniquely determined by the 

corresponding coefficients of the basis functions rather than being explicitly specified for 

each individual voxel. The number of coefficients may be chosen to be much smaller 

than the number of voxels, thus simplifying greatly the minimization problem. In our 

work, we have tested both the Cubic B-spline and the radial basis function to model the 

distortion field. We found no substantial difference between them in our application. We 

employed the Cubic B-spline to model the distortion field because of its nice properties. 

The first derivative and the second derivative of Cubic B-spline with respect to the spatial 

coordinates are also smooth functions and can be calculated easily. Moreover, the B-

spline is locally supported, and thus it is more efficient to perform the optimization of 

distortion field modeled with B-spline than with other splines such as thin-plate spline. 

 When multiple 1-D B-spline functions are placed evenly on some control points 

with a spacing of 1, four pieces of polynomial functions lie in the range of [0, 1]. These 

four pieces of functions are represented as follows: 
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. (57) 

 

Figure 9 (a) shows these four pieces of functions. The B-spline basis function at each 

control point then consists of four segments. Figure 9 (b) shows a basis function ( )jr-rφ  
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locating at control point  (2 in this example). The transition from solid line to dotted 

line shows the transition from one piece of the spline to the next. .  

jr
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The unknown distortion field can be represented as a linear combination of the basis 

functions uniformly distributed over the image as follows: 

 

 , (58) ( ) ( j
1

ΔB r r-r
M

j
j

c φ
=

=∑ )

 

where M  is the number of control points on the image and  is the corresponding 

coefficient. 

jc

Figure 10 shows, as an example, a fitting of a 1D distortion field (dotted line) 

Figure 9. Cubic B-spline basis function. It consists of four pieces 
of polynomial functions. (a) The four pieces, B0, B1, B2, B3, as 
functions of u. (b) ( )r 2φ −  formed from B3, B2, B1, B0 (solid, 
dashed, solid, dashed) shifted right by 0, 1, 2, and 3 units, 
respectively. 
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with a combination of B-spline basis functions (solid lines). The basis functions are 

evenly distributed in the image space (horizontal axis).   The extension from a 1D B-

spline to two dimensions is straightforward: 

 

 ( ) ( ) (
,

ΔB , - -ij i j
i j

)x y c x x y yφ φ= ∑  (59) 
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Figure 10. Fitting of 1D distortion field by Cubic B-
spline. The dotted line is the fitted distortion field and 
the solid lines represent the basis functions.  

 

 

 

 

4.3. Limitations of non-rigid registration for estimation of a distortion field. 

According to Eqn. (56), the estimation of a distortion field based on non-rigid 

registration is equivalent to solving a nonlinear optimization problem, in which unknown 

parameters are estimated. The number of degrees of freedom is equal to the number of 

control points used to model the distortion field. The cost function is defined as the sum 

of the squared differences (SSD) between a distorted EPI and a corrected and rigidly-

transformed template EPI. To model the distortion field with sufficient accuracy, it is 

required to place sufficient control points on an image. The number of control points is 
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determined by their spacing. If, for example, we place B-spline basis functions on every 

third voxel of in the horizontal and vertical direction of an EPI with a resolution of 64x64, 

there would be 22x22 unknown parameters to optimize.  When the similarity measure is 

defined as SSD, infinite solutions to the distortion field exist to make it small. An 

optimization with this many degrees of freedoms is prone to a suboptimal local minimum. 

Wahba [87] was among the earliest to suggest incorporating a regularization term into a 

cost function to estimate unknown parameters based on observed data A regularization 

term that is commonly used is to penalize the second derivative of the estimated field 

with respect to space to make the estimated field smooth. This regularization represents 

the so called “bending energy” [85;87;88]  of a 2D distortion field, which is defined, in 

analogy to the energy in the stretching of an elastic medium, as follows: 

 

                                   ( )( )
2 22 2 2

S S
smooth S 2

ΔB ΔB ΔBΔB r 2
x x y y

2

S
2ψ ∂ ∂ ∂

= + +
∂ ∂ ∂ ∂

. (60) 

 

Even with this regularization term, a non-rigid registration could still produce a 

distortion field that is not accurate. As we discussed in Section 4.2, numerous methods 

have been developed to enforce specific constraints on the estimation of the distortion 

field in non-rigid registration. However, those constraints are not closely related to the 

estimated distortion field. The optimization process in these non-rigid registration 

methods still relies entirely on the intensity information.  
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4.4. Computation of gradients of a distortion field  

According to Eqns (27) to (29), the information about the distortion field of each 

EPI is encoded in the image phase. However, the distortion field cannot be extracted 

directly from the wrapped phase. Fortunately, as we discussed before, the changes of 

phase reflect the changes of the distortion field and vice versa. Because the distortion 

field in an MR image tends to be spatially smooth, the phase variations in space are 

expected to be small. In other words, the phase differences between neighboring voxels 

in the phase image are sufficiently small to have only correctable phase wrapping. This 

fact can be formularized as follows: 

 

      
( ) ( )( ) ( )

( ) ( )( ) ( )

* *
-1

* *
-1

ΔB r
angle TE ( , )

ΔB r
angle TE ( , )

j j x

j j y

I x I x v
x

I y I y v
y

γ π π

γ π π

∂
≈ ∈

∂
∂

≈ ∈
∂

−

−
, (61) 

 

Here we use *I  to denote a complex image in order to clearly distinguish it from a 

magnitude image, alternatively called an “intensity” image. The subscript j  is the voxel 

index, and xv ,  are the voxel dimensions. It can be shown that the left side of Eqn. yv (61) 

suffers from minimum phase wrapping provided the magnitude of the angular difference 

between neighboring voxels in the complex image is less than π . In Figure 11, we show 

why. Suppose the complex vector ( )*
jI x  lies in the first quadrant and the complex 

vector ( j )1
*I x −  lies in the fourth quadrant and the true phase difference is the angle 1α  as 

shown. Then, the “angle” function in Eqn (61) will give the correct phase difference.  
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Now suppose instead that ( )*
1jI x −  lies in the third quadrant and the true phase difference 

from ( )*
jI x  is the angle 2α . In this case, angle function will give the wrong answer, 

because it always chooses the smallest possible angular difference—in this case β , 

which is equal to 2 2α π− . There is an infinity of possible angles in each of these cases 

because additions of any integral multiple of 2π  are possible as well. In order to produce 

an unambiguous result, the calculation performed by the angle function must be limited 

to a range of width 2π . Since angles of small absolute value are to be expected, the 

optimum range is ( , )π π− . Thus, Eq. (61) gives the correct answer if the angular 

difference lies in this range so the errors of this calculation are minimized when the phase 

differences between neighboring voxels in the phase image are sufficiently small.  

 

 

Figure 11. A complex plane 
demonstrating the validity of 
our phase-gradient calculation. 
R refers to the real component; 
I refers to the imaginary 
component. See text for 
explanation. 

 

Based on the above analysis, we can compute the approximate gradients of the distortion 

field ( )ΔB r x∂ ∂  and ( )ΔB r y∂ ∂ , from a complex image *I  (or its phase map). We treat 

the left sides of Eqns. (61) as the x and y components of a “phase-gradient” because they 
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are computed from the image phase, and we denote these components ( )xg I ∗  and 

. Because the distortion field tends to be spatially smooth, the difference in phase 

angle between neighboring voxels can be expected to exceed 

( )yg I ∗

π  only rarely. As result any 

phase wrap between them is due simply to the restriction of the phase to the range 

( , )π π− + , and it is easy to show that such phase wrap will never cause error in the 

calculation of the angular difference in Eqn. (61). In those rare cases in which the 

difference exceeds π , the error is correctable by means of unwrapping. Thus the 

magnitude of the phase-gradient is approximately proportional to the local spatial 

variation of the distortion field ( )B r

yg

Δ . Figure 12 shows (a) a wrapped phase map. Figure 

12 (b) and (c) are the computed  and xg , respectively. As it shows, the phase-gradient 

maps have minimum phase-wrapping. A wrapped phase map computed using Eqn. (15) 

and the true phase ΔB TEγ ×  share a common gradient. In Figure 13, we show a profile 

plot (indicated by a red line in Figure 12) of the wrapped phase map, the true phase map, 

and their common gradient. The phase-gradients are approximately proportional to the 

gradients of the distortion field.  

 

 

 

 
             (a)                      (b)                    (c) 

  63



Figure 12.  Computation of gradient maps of a distortion field from a 
wrapped phase map. (a) is a wrapped phase map. The gradient map of the 
distortion field in the y direction is shown in (b). The gradient map in the 
x direction is shown in (c).  As it shows, the gradient maps have 
minimum phase wrapping because the distortion field tends to be 
spatially smooth. 
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Figure 13. Profile plots. The solid line is a profile of a true 
phase. The dashed line is a profile of the corresponding 
wrapped phase. The dotted line is their common gradient. 
The gradients of a distortion field can be computed form a 
wrapped phase map. 

 

As we discussed in Section 3.4 of Chapter III, the distortion field computed from a 

complex EPI lies in distorted space. Similarly the gradients we computed using Eqns. 

(61) are actually the gradients of the “distorted” distortion f ( )1r . The distortion 

field estimated using the image registration method based on Eqn. 

ield ΔB

(56) is “undistorted” 

( ). Hence, we have to perform a forward warping on the estimated field ( )ΔB r ( )B rΔ  

before we can make a proper comparison between the gradients of the estimated 
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distortion field computed based on Eqn. (56) and the gradients computed based on Eqns. 

(61).  

Given the above knowledge about the distortion field, we can construct a new cost 

function to estimate the distortion field . The new cost function contains three terms. 

The first term is the intensity term, given by Eqn. 

SΔB

(56), which penalizes the intensity 

differences between the source EPI and the corrected and rigidly-transformed template 

EPI. The second term is the regularization term defined in Eqn. (60). We add a third term 

which penalizes disagreement between the gradients of the estimated distortion field 

and the gradients 

SΔB  

xg  and  based on Eqn. yg (61). This term is formularized as follows: 

 

        ( ) ( ) ( ) ( ) ( )
2 2

S S* *
pha S S S S

ΔB ΔB
ΔB , x

h h *
yI g I g I

x y
ψ

∂ ∂
= − + −

∂ ∂
. (62) 

 

Note that we use h  to represent the forward warping of the distortion field  based on 

Eqn. 

SΔB

(49). Eqn. (62) is a cost function that compares the gradients of the estimated 

distortion field with those computed from the image phase. We call this function the 

“gradient disagreement” of the distortion field. The complete cost function for estimation 

of the distortion field  is given by SΔB
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As with the standard non-rigid registration, this cost function matches the 

intensity of a distorted EPI to a corrected and rigidly-transformed template EPI. The 

motion compensation relies on 1
phaT − . Unlike standard methods, the gradients computed 

from the estimated distortion field are compared to those computed from the image phase. 

The constants 1λ  and 2λ  are weights that control the relative importance of each term and 

are obtained experimentally. The gradient disagreement term phaψ  imposes a local spatial 

constraint on the estimated distortion field. This term is time dependent because it is 

computed from the EPI itself. With this new cost function, both the phase and the 

intensity of the EPI will affect the entire optimization process for the estimation of . 

Hence, it is expected that the estimated distortion field based on this cost function will be 

more accurate than that computed with intensity information alone. This hypothesis will 

be verified in Chapter V.  

SΔB

Many methods are available to solve the non-linear optimization problem defined 

in Eqns. (63), and because the source EPI and the template EPI in Eqns. (63) share 
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exactly the same imaging parameters, it is relatively easy to minimize ψ  and hence 

relatively easy to find an estimation of the distortion field based on non-rigid registration.  

We have found that a simple gradient-descent method is sufficient, in which the gradient 

of the cost function with respect to each of the unknown parameters, namely the 

coefficients of the basis functions , are computed. The parameters are updated along 

the directions with steepest gradients. Because the initial estimate of the distortion field 

 is close to the true distortion field , a fixed number of iterations is chosen as 

the stopping criterion.  

ijc

S0ΔB SΔB

The gradient of the cost function in Eqns. (63) with respect to each unknown 

coefficient of the basis functions can easily be computed.  For intψ  and smoothψ , analytic 

calculation is possible because of the smoothness property of the B-spline basis function, 

the computation of ijf c∂ ∂  being performed using chain rule. The gradient of phaψ  with 

respect to the unknown parameters cannot be computed analytically because of the form 

of . For this term a finite difference method is employed instead. We use  as an 

initial estimation of the distortion field.  is first fitted with B-splines, and then the 

coefficients after this fitting are provided as the initial values for the unknown 

coefficients .  

h S0BΔ

S0ΔB

ijc

 

4.5. Suggested algorithm to estimate dynamic distortion fields  

 Step 0: One image in an EPI series, typically the first, is chosen as a “template” 

image, TI . The remaining images of the series are designated as “source” images. The 
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image distortion of the template image is corrected using the field-map method to 

produce .  ( )T T,ΔBf I

For each source image SI  the following steps are taken: 

Step 1: An approximate inhomogeneity field  is calculated using the phase-

map method (Chapter  III), and distortion correction is performed on the source image 

using Δ  to produce .  

S0ΔB

( )S S0,ΔBf IS0B

Step 2: A rigid transformation phaT  for motion compensation of the source 

relative to the template is computed based on the corrected template and the 

approximately corrected source.   

 Step 3: The template EPI is transformed according to 1
phaT −  to produce 

( ) ( )1
pha T,ΔBT q−

r
S0 T,ΔB f I .  

Step 4: The gradients, xg  and  of the distortion field are computed based on 

the phase of the distorted EPI.  

yg

 Step 5: With  as an initial value, the unknown distortion field  is 

estimated by minimizing the cost function defined in Eqn. 

S0ΔB SΔB

(63). The optimization stops 

with a defined criterion.  

 

4.6. Conclusion 

 Image registration is an important post-processing technique for motion 

compensation and distortion correction of EPI series. Rigid-body registration is 

insufficient to remove the effect of motion-distortion in EPI time series, and the success 
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of non-rigid registration in the estimation of dynamic distortion fields in EPI series 

depends on accurate motion compensation and effective constraints. We have proposed in 

this chapter an optimization framework for estimating dynamic distortion fields in EPI 

time series based on rigid and non-rigid registration in which both the intensity and the 

phase of EPIs are utilized throughout the optimization process. 

 The phase-map method, which we described in Chapter III provides in this 

chapter an initial estimation of the dynamic distortion field from which a more accurate 

motion compensation is obtained. The phase of each EPI provides gradient information 

for its distortion field. This gradient information is utilized to constrain the estimation of 

the distortion field in a non-rigid registration method. It is expected that these phase 

gradients enforce an effective constraint to mitigate the local minimum problem in the 

non-rigid registration. Furthermore, the registration method, because of the integration of 

intensity information, serves to reduce the estimation errors in the phase-map method and 

to generate a smoother distortion field with reduced artifacts. An evaluation of this 

method is presented in next chapter. 
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CHAPTER V 

 

VALIDATION AND COMPARISON 

 

In chapter III and chapter IV, we proposed a phase-map method and a registration 

method, respectively, for the estimation of dynamic distortion fields in EPI time series. 

We have presented theoretical derivations in detail. In this chapter, we aim to validate 

these two methods with experiments and quantitative evaluations. We conduct a 

validation based on two types of image data. In order to isolate the temporal variation of 

image intensity in EPI series caused by unknown motion and unknown sources, we use 

simulated EPI series of human brain with realistic distortion fields and realistic motion. 

We evaluate the performance of our proposed methods by comparing our results with the 

known distortion fields and a distortion-free EPI, which provide ground truth. We 

quantify the estimation errors of the distortion field and analyze the capability of our 

methods in the correction of dynamic image distortion. We also compare the performance 

of our methods with the traditional field-map method and the standard non-rigid 

registration method.  

We also employ our methods on real EPI data from Philips 3T MR scanner. A 

physical phantom is carefully designed to provide a known geometry. We create a 

variation in the distortion field of the phantom by rotating the physical phantom inside 

the scanner. The ground-truth field maps are acquired by using the field-mapping method 

with dual-echo GE-EPIs. Our phase-map method is then applied to estimate the distortion 

field when the phantom lies in a new orientation. We compare our estimation results with 
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the ground truth. The geometry of the EPI before and after a correction with the 

traditional field-map method and our phase-map method is quantitatively compared. 

Finally, we compare different strategies that are based on image phase and image 

intensity for the estimation of dynamic distortion fields. The evaluation is performed 

based on simulated EPI series with motion and a varying distortion field. The variation of 

the distortion field is generated using an MR simulator [23] based on the orientation of 

the susceptibility distribution of air-tissue of a human head. The estimation errors of the 

distortion fields of different strategies are quantified. 

 

5.1. Simulated EPI series 

 To validate our methods, we create simulated EPI series with known ground truth 

[23;83]. A static distortion field is generated from a real field map acquired 

experimentally. The field map is then processed and regularized in order to reduce 

artifacts. GE-EPI series are simulated with an image size of 64x64x28, phase-encoding 

bandwidth of 2000 Hz, and echo time of 35 ms. The field of view is 240 mm in the x-y 

plane and 137.2 mm in the z direction. Each EPI has a voxel size of 3x3x4.9 mm. The 

phase-encoding direction is Anterior and Posterior (AP). A distortion-free EPI is 

generated by simply turning off the static field inhomogeneity in the simulation. EPIs 

with a TE of 27 ms are also simulated as reference images for performing both the field-

map method and our phase-map method. Gaussian noise is added to the real channel and 

imaginary channel of the simulated images separately. Both the magnitude and the phase 

of the EPI are saved for further processing. Figure 14 shows (a) the intensity of the 

distortion-free EPI (multiple slices), (b) the distorted EPI, (c) magnitude (b) minus 
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magnitude (a) , and (d) the corresponding distortion field that we applied. A plot of the 

intensity profile and the distortion field profile (indicated by red vertical lines in Figure 

14) is shown in Figure 15 to demonstrate the intensity changes of the EPI caused by 

image distortion. 

 

 

 

 

 

 

 

 

 

 

 

 

           (a)                            (b)                             (c)                             (d)  

Figure 14. (a) Simulated distortion-free EPI, (b) distorted EPI, (c) magnitude 
(b) minus magnitude (a), and (d) the corresponding distortion field. Noticeable 
image distortion can be observed in (c). The geometric distortion is confined to 
the phase-encoding direction which is vertical in this figure. 
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In order to simulate the variations of the distortion field caused by external 

sources (e.g. variation of distortion field induced by respiration) in EPI, we create a 

perturbed distortion field by modifying the original distortion field. We extract the 

fluctuation of distortion fields between two adjacent time points from a real EPI time 

series. Then we vary the scale of this fluctuation to simulate variation in the size of the 

distortion field, as for example during respiration. A slice of the original distortion field 

and the corresponding perturbed distortion field (in the unit of voxel shift) are shown in 

Figure 16. By changing the scale of this fluctuation, we can alter the magnitude of the 

distortion-field variation. According to a study from Raj et al. [34;89], the susceptibility 

changes caused by respiration for a 1.5 T scanner may lead to a shift of image on the 

order of 0.1 pixel. At 7 T, it is expected that there could be a shift of about half of an 

pixel or higher in the EPI caused by respiration. We choose the scale of the distortion-

Figure 15. Changes of intensity profile (shown on the left) caused by distortion field 
(shown the right). Both geometric shift and intensity distortion are noticeable. The 
position of this profile is shown as red lines in Figure 14. 
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field variation based on this expectation to simulate the dynamic distortion fields induced 

by respiration.  

 

 

 

 

 

 

  

We generate simulated EPI time series with motion sequences extracted from real 

fMRI studies and a varying distortion field induced by motion. Two types of motion are 

employed. One type of motion is in-plane motion (perpendicular to the B-field, as 

defined in Chapter II). In the series of EPI with in-plane motion, only the direction of the 

image distortion will vary with time. The other type of motion is out-of-plane motion 

(also defined in Chapter II). For this type of motion, not only the direction but also the 

magnitude of the image distortion varies with time. We chose two motion sequences of 

each type, which were extracted from a typical human head in fMRI. The rotation is 

within a range of -4o to 4 o, and the translation is within a range of -2 mm to 2 mm. To 

simulate the magnitude changes of the distortion field induced by motion, we start with a 

distortion field calculated for a given head orientation, then we choose an out-of-plane 

Figure 16. Generation of perturbed distortion field. (a) is the 
original field map, (b) is the perturbed distortion field, and (c) 
equals (b) – (a), which is the distortion-field variation. The 
distortion-field variation is extracted from the fluctuation of 
distortion fields in a real EPI series. The scale of this fluctuation is 
chosen according to the expected effect of respiration.  

mm
 

 

         (a)                              (b)                              (c) 

-5

0

5

  74



motion pattern for the head and calculate the temporal variation of the distortion field 

induced by that motion using an MR simulator [23]. Each EPI at each time point in the 

series is then distorted differently according to the corresponding distortion field 

calculated at that time point. 

  

5.2. Real EPI data of a physical phantom 

 We designed a physical phantom to validate our methods. The phantom is a 

cylinder that is 6 inches in diameter and 6 inches in height. It is made of plastic with 

susceptibility close to that of water. The liquid in the cylinder is water solution of 0.1 mM 

MnCL2. There are five small cylinders within in the 6-inch cylinder whose axes are 

parallel to that of the larger cylinder with diameters of 0.5 inch, 0.75 inch, and 1 inch. 

The smaller cylinders are filled with powdered bone, with tightly fitting glass rods or 

with air (half of the cylinder is inserted with glass to reduce loss of signal) in order to 

create a spatially varied field inhomogeneity with local variations. A schematic of the 

phantom is shown in Figure 17. 

Powdered bone   
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The phantom is placed in the scanner so that its cylindrical axes are perpendicular 

to the static field. The orientation of the image acquisition relative to the static field and 

the phase-encoding gradient is shown in Figure 17 (b). Two-shot GE-EPI images are 

obtained on a Philips 3T MR scanner with an image size of 80x80x24, a phase-encoding 

bandwidth of 4497 Hz, and a TE of 12 ms. The field of view is 240 mm in x-y plane and 

108 mm in z direction. The image has a voxel size of 3x3x4.5 mm. A reference GE-EPI 

with a TE of 13 ms TE is also acquired for calculating a field map. We also acquired a 

multi-shot GE image as an “anatomical” image because of the similarity of the 

acquisition parameters to that of the anatomical image acquired to accompany a fMRI 

series. Figure 18 shows three views of the anatomical images of the phantom (top rows) 

Figure 17. Physical phantom. Several small cylinders with different 
diameters filled with powdered bone, glass rods, and air are placed within 
a cylinder containing a solution of Manganese Chloride to create spatially 
varied field inhomogeneity. The rotation is described in the text. 

image slice 

(b) 
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and the corresponding EPI (bottom rows). The majority of the field inhomogeneity is 

seen near the interfaces of tissues with differing susceptibility. Since glass has a 

susceptibility that is closer to that of water, the cylinders with glass experience less image 

distortion than the cylinders with bone and air. Air is supposed to induce more image 

distortion than bone and glass. The bigger the cylinder is, the more distortion we will 

have. It can be seen in the regions indicated by the red arrows that the cylinders with 

bone, glass, and air experience different extents of image distortion.  

 

bone
glass air

 

 

 

 

 

 

 

Figure 18. Anatomical image (top row) and the corresponding GE-EPI (bottom row) in 
three different views. Severe image distortion can be observed at tissue interfaces 
(indicated by red arrows). Different susceptibility patterns induce different extents of 
image distortion.  

 

 Both the magnitude and the phase of the acquired EPI are saved for processing. In 

order to create temporal variation for the distortion field, we rotate the phantom in the 

scanner slightly (5 to 10 degrees) about an axis other than the static field direction 

(Figure 17 (b)) and then re-acquire the EPI. This way, we expect to have an EPI with 
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slightly different distortion field. Again, a reference EPI with a TE of 13 ms is acquired 

to compute a ground-truth field map at the new orientation.  

 

5.3. Validation of our phase-map method 

 The temporal variation of the distortion fields in EPI time series of the head can 

be caused either by external sources (e.g. respiration) or by head motion. In our 

experiments, we consider both effects. Our first experiment is to validate our phase-map 

method in recovering the temporal variation of the distortion field induced by respiration. 

As we mentioned in the previous section, we perturbed an original distortion field to 

represent a variation of the field with time other than that resulting from movement of the 

head itself. The resulting image distortion of the EPI will then vary with time because of 

the temporal variation of the distortion field. Figure 19 shows the percentage of the 

temporal variation of image intensity of the EPI caused by the variation of the distortion 

field. Comparison with Figure 15(c), which shows the variation of the distortion field, 

confirms that temporal intensity changes occur where the distortion field varies 

temporally. 
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Figure 19. The percentage of intensity changes of 
the EPI is caused by the temporal variation of the 
distortion field.  
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We can estimate this variation of the distortion field using our phase-map method. 

The result is compared with the true variation of the distortion field we modeled. The 

comparison results are shown in Figure 20. As it shows, our phase-map method properly 

recovers the variation of the distortion field from external sources when the head remains 

stationary.  

 

 

 

 

 

 

To evaluate the performance of our method on the correction of dynamic image 

distortion from external sources, the EPI before and after our correction and after the 

traditional field-map correction are demonstrated in Figure 21.  Figure 21 shows a set of 

difference images that result from subtracting a distortion-free EPI from (a) the 

magnitude of the original EPI, (b) the magnitude of the EPI corrected with the traditional 

field-map method, (c) the magnitude of the EPI corrected with our phase-map method 

and (d) the EPI corrected with the ground-truth distortion field. Not surprisingly, (a) 

demonstrates severe image distortion. Using the field-map method, the image distortion 

is largely removed as shown in (b), but noticeable intensity error induced by the variation 

Figure 20. Estimated variation of the distortion field (left) using 
our phase-map method and the true variation of the distortion field 
(right). Their similarity indicates that, when the head remains 
stationary, our phase-map method can recover the variation of the 
distortion caused by external sources (respiration).  
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of the distortion field still exists (indicated by red arrows). Our correction method 

reduced the image distortion to a great extent in the internal region (c) with a 

performance comparable to (d), which is the image correction resulting from the use of 

the ground truth field.  

 

            (a)                              ( b)                           ( c)                              (d)             

 

 

 

 

Figure 21 Difference images obtained by subtracting a distortion-free EPI from (a) the 
magnitude of the original EPI, (b) the magnitude of the EPI corrected with the 
traditional field-map method, (c) the magnitude of the EPI corrected with our phase-
map method and (d) the EPI corrected with the ground-truth distortion field. Difference 
(d) represents the best scenario that can be achieved by means of distortion correction. 
The red arrows highlight internal errors remaining in (b) that are reduced in (c).  

 

In our phase-map method, we make the assumption that the distortion field varies 

slowly with time, so that the temporal phase variation has correctable phase wrapping. By 

altering the magnitude of the distortion field, we are able to evaluate the capability of our 

phase-map method to recover the temporal variation of the distortion field. In Figure 22, 

we show an estimated field-variation (left) and the ground-truth field-variation when the 

when the field variation reaches a level about 20HZ, which is equivalent to about 2.3 mm 

spatial shift in image space. The large estimation errors (indicated by a red arrow) 

indicate that the assumption that the distortion field varies slowly with time is violated 
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when the change in the distortion field exceeds 20 Hz. As a result, the temporal change in 

image phase, which is induced by the variation of the distortion field, experiences phase 

wrapping. Fortunately, the temporal variation of the distortion field in EPI time series 

induced by external sources such as respiration is typically small [34] increasing the 

likelihood of success for our method. However, the phase-map method will fail in those 

regions where the distortion field has dramatic temporal variations. In this case, an 

incorporation of intensity information into our registration approach, which we described 

in Chapter IV, will help to reduce the estimation errors. We will explore that reduction in 

Section 5.4. 
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Figure 22. Example of error in our estimation of distortion-field 
variation caused by temporal phase-wrapping.  The left is the 
estimated distortion-field variation, and the right is the ground-truth 
distortion-field variation.  Large errors occur in regions where the 
distortion field has dramatic temporal variations. 

We use simulated EPI series with both in-plane motion and out-of-plane motion 

(motion is described in Section 5.1) to evaluate the performance of our phase-map 

method on the correction of the effect of motion-distortion. The distortion field at each 

time point of the time series is estimated using our method. In the traditional field-map 
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method, only a static distortion field can be accessed. It is expected that there will be 

large field-estimation errors when the dynamic distortion fields are approximated by a 

static distortion field. In order to visualize this effect, a comparison is made in Figure 23. 

The left column shows the errors when we use a static distortion field to approximate a 

dynamic distortion field at a selected time point. The right column shows the errors when 

we represent the dynamic distortion field with our phase-map method. As expected, 

noticeable errors are found when we approximate the dynamic distortion field using a 

static field map. Our phase-map method provides a much more accurate representation of 

the distortion fields in EPI series except in a few isolated areas of very large distortion.  
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Figure 23. Estimation errors of the distortion field (multiple slices are shown). The 
result from approximating the dynamic distortion field with a static distortion field is 
shown on the left. The estimation result with our phase-map method is shown on the 
right. Noticeable errors found on the left demonstrate the importance of having a 
dynamic distortion field for each EPI. Our phase-map method properly estimates the 
dynamic distortion fields except in a few isolated areas of very large distortion.   
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To show the difference between using distortion correction based on the field-

map method and that based on our phase-map method, the distorted EPI at a selected time 

point before and after correction is compared with distortion-free images. The results are 

shown in Figure 24. Figure 24 shows difference images obtained by subtracting the 

magnitude of the distortion-free EPI from (a) the magnitude of the original EPI, (b) the 

magnitude of the EPI corrected with the field-map method, and (c) the magnitude of the 

EPI corrected with our phase-map method. As can be seen, the intensity variations in EPI 

series caused by dynamic distortion field have been reduced noticeably using our phase-

map method.  

 

(a)                            (b)                           (c) 

 

 

 

 

 

 

 

 

Figure 24. Difference images obtained by subtracting the magnitude of the distortion-
free EPI from (a) the magnitude of the original EPI, (b) the magnitude of the EPI 
corrected with the field-map method,  and (c) the magnitude of the EPI corrected with 
our phase-map method As it shows, except for a few strongly perturbed areas, our phase-
map method noticeably reduces the temporal intensity variation caused by dynamic 
image distortion.  
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To further quantify the improvements of using our phase-map method over the 

traditional field-map method approach, the temporal evolution of Root Mean Square 

(RMS) intensity variation of the original EPI series with both in-plane motion and out-of-

plane motion are calculated based on the sum of the squared differences between the 

magnitude of the EPI at each time point and that of the first EPI (corrected). The ideal 

value would be zero throughout the series. The same calculation is also applied to the EPI 

series after distortion correction with the traditional field-map method and with our 

phase-map method. The motion compensation that we described in Chapter IV is applied 

to the EPI series before we perform the calculation. The results are shown in Figure 25. 
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Figure 25. Temporal RMS intensity variation of EPI series before and after 
correction. The left is with only in-plane motion, the right is for the EPI time series 
with only out-of-plane motion. Solid lines indicate the original RMS intensity 
variation. Dashed lines indicate the RMS intensity variation after the field-map 
correction. Dotted lines indicate the RMS intensity variation after our phase-map 
correction. As can be seen, the field-map correction works fairly well at the 
beginning of the time series when the field has not changed much but fails badly 
later in the series. Our phase method effectively reduces the temporal RMS intensity 
variation for in-plane motion throughout the series and suffers from about half the 
error through the first 10 to 12 time points.  
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As expected, the distortion correction based on the traditional field-map method 

works well at the beginning of the time series when the dynamic distortion field does not 

deviate from the static distortion field much. Our phase-map method is more effective in 

reducing the temporal intensity variations of the original image series than the field-map 

method, and it keeps the errors low throughout the series for in-plane motion. As time 

progresses, however, the correction performance is markedly reduced for out-of-plane 

motion. The fact that the intensity errors get larger for out-of-plane motion for phase-map 

correction can be explained by the fact that, when there is sufficient movement during the 

time series, the required phase information at some physical locations is not be available 

because they have moved into the background area of the previous images. The variation 

of the distortion field can be determined accurately only in those regions with sufficiently 

high SNR in both the current EPI and the previous EPI. The other regions will exhibit 

high estimation errors primarily near the boundaries of the foreground of the image 

volume. These errors can be reduced by incorporating intensity information via the 

registration method that we described in Chapter IV. 

 To quantify the correction in areas away from the image boundaries and to 

evaluate the potential effects of the correction of dynamic distortion in EPI series on 

activation analysis in these areas, an interior region of interest in the EPI is chosen 

(shown as a red circle in Figure 26), and the mean temporal intensity variation in this 

region is computed.  

Figure 26. A region of 
interest in EPI for 
evaluation. 
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We plot the percentage of the temporal RMS intensity variation of the distorted 

EPI in the region of interest relative to the first EPI (corrected) in the time series. The 

results are shown in Figure 27. As it shows, both the traditional field-map method and 

our phase-map method help to reduce errors in this region. However, there is still about 

10% intensity variation in the time series after the field-map correction. The intensity 

variation is considerably above the typical activation level (2-4%) for fMRI and thus can 

seriously compromise activation analysis. After our phase-map correction, the intensity 

changes are reduced below this level.  
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Figure 27. Percentage of temporal RMS intensity variation in region of interest for EPI 
time series with in-plane motion(left) and out-of-plane motion(right). As it shows, both 
the field-map method and our phase-map method help to reduce error in this region. 
But there is still about 10% intensity variation in the time series after the field-map 
correction, which is above the typical activation level. After our phase-map correction, 
the intensity variation is reduced below the activation level. 

We now examine motion compensation, in which we apply rigid-body 

realignment on the original EPI series, on the EPI series corrected with the traditional 

field-map method, and on the EPI series corrected with our phase-map method.  We 

found that for purely in-plane motion, motion estimation for all these methods agrees 

with the ground truth to within one-half mm translation and one-half degree rotation. The 
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motion compensation of the EPI series with out-of-plane motion, however, was strongly 

affected by the effect of motion-distortion.  shows the results for out-of-plane 

motion. It can be seen that a more accurate motion estimation was achieved after a 

distortion correction with our phase-map method than a correction with the field-map 

method or no correction on the original EPI series. As we can see, the estimation of the 

out-of-plane rotation angle is biased when we calculate it on the basis of the original EPI 

series and on the series that is corrected with the traditional field-map method. The 

motion compensation on the EPI series that is corrected with our phase-map method is 

also biased but is closer to the ground truth. This verifies the hypothesis we proposed in 

Chapter IV that a transformation 

Figure 28

phaT  will be more accurate than either  T  or . Thus, 

our experiments show that motion compensation should be performed on the EPI series 

that have been corrected by means of dynamic distortion fields. 
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Figure 28. Effect of distortion correction on motion 
compensation. It shows that the motion 
compensation should be performed on the EPI 
series with a correction by means of dynamic 
distortion fields.
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We also validated motion compensation for our phase-map method based on the 

phantom EPI data that we acquired. When the phantom lies in two different orientations 

(the rotational axis is shown in Figure 17 (b)), the corresponding EPIs experience 

different distortion fields.  At the first orientation, dual-echo EPIs were acquired. These 

two images can be used to compute the corresponding distortion field. According to our 

theory, if we are given the phase information of an EPI corresponding to a new 

orientation, then we can use our phase-map method to estimate an updated distortion field. 

Figure 29 shows the estimation error of the distortion field (absolute difference) for a new 

orientation using both the traditional field-map method (left image) and our phase-map 

method (right image). As it shows, our phase-map method reduces the estimation errors 

in most internal areas of the image. Note that the estimation errors near the edges of the 

foreground of the right image, indicated by red arrows, are largely due to the fact that a 

part of the phantom has moved into a position formerly outside the phantom, so that it is 

not possible to get an accurate measurement of the phase change, as explained above. 

This effect remains to be an issue in the phase-map method, but it can be mitigated by 

means of image registration as we will see in Section 5.4  

 

mm 

 

 

 

Figure 29. Absolute difference between estimated distortion field and 
ground truth. Left is from the field-map method. Right is from our phase-
map method. As it shows, the field-map method is not accurate when the 
distortion field varies with time. Our phase-map method reduced the 
estimation errors.  
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To quantify the performance of our methods, we plotted the mean absolute 

difference between the estimated distortion field for the new orientation of the phantom 

and the ground truth distortion field versus slice number, and the results are shown in 

Figure 30 . As expected, an approximation of the distortion field for a new orientation 

using a static field-map suffers from large errors (solid line in Figure 30). The estimation 

errors are reduced by using our phase-map method (dashed line). Another important fact 

we noticed is that, because the real EPI data has a very low SNR, the utilization of the 

regularization factor, which we described in Chapter III further reduced the estimation 

errors (dotted line). Regularization had a negligible effect on the computer simulations 

above, in which SNR was higher. 

 

 

 

 

 

 

 

 

Figure 30. Mean absolute difference between the estimated 
distortion field and the ground truth. Field-map approximation 
(solid line) suffers from large errors near one end of the 
phantom. Our phase-map method (dashed line) dramatically 
reduced the estimation errors. The integration of a 
regularization term (dotted line) is also important when the 
SNR of the EPI is slow. 
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We performed distortion correction of the EPI at the new orientation using both 

the field-map method and our phase-map method. We approximated the distortion-free 

EPI with a corrected EPI by means of a field map that is calculated based on an extra 

scan at the new orientation. We compared the corrected EPI using the traditional field-

map method and the corrected EPI using our phase-map method with the distortion-free 

image. Figure 31 shows the mean absolute difference of the image intensity between the 

corrected EPI and the distortion-free EPI for all slices. (The mean absolute intensity for 

the phantom is about 1000). As it shows, a correction based on our phase-map method 

(dashed line) reduces intensity errors somewhat more than the traditional field-map 

method (solid line), but the incorporation of a phase regularization factor has a large 

influence on the reduction of intensity errors (dotted line). 
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Figure 31. Correction of EPI. A correction based on 
our phase-map method (dashed line) reduced intensity 
errors somewhat more than the traditional field-map 
method (solid line), but the incorporation of a phase 
regularization factor (dotted line) greatly increased the 
reduction. 
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In our phase-map method, a phase-unwrapping step needs to be taken when we 

compute the temporal phase variation. We need to pre-process the phase-map difference 

defined in Eqn. (43) before it can be used in our phase-map method. Figure 32 shows the 

original phase-map difference (left image) and the phase-map difference after phase 

unwrapping (right image). As it shows, the phase-wrapping ambiguity (indicated by red 

arrows) in the original phase-map difference is removed in the processed phase-map 

difference by means of a phase-unwrapping algorithm proposed in [90].  

 

 

 

 

 

Figure 32. Temporal phase unwrapping in our phase-map method. Left is 
the original temporal phase difference. Right is the phase difference after 
phase unwrapping. Note that most regions in the left image exhibit 
minimum phase wrapping, which makes it relatively easy to perform a 
successful phase unwrapping for a whole image.  

 

Figure 33 shows the original phantom EPIs and the corrected EPIs. Figure 33 (a) 

is the corrected EPI with a ground-truth field map, which represents a distortion-free EPI. 

It represents the best image quality that can be achieved by means of a distortion 

correction obtainable by using a field map acquisition for each EPI acquisition. Figure 33 

(b) is the original distorted EPI. The corrected EPIs with the traditional field-map method 

and our phase-map method are shown in (c) and (d) respectively. We draw the contours 
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of the cylinders in the distortion-free EPI with green lines, and then superimpose them 

onto the other EPIs.  

  (c)                                           (d) 

   (a)                                         (b) 

 

 

 

 

Bone 

Glass 

Air and glass 

Figure 33.  Distortion correction of phantom EPI. (a) is the corrected EPI 
with a ground-truth field map. (b) is the original EPI. (c) is the corrected 
EPI with the traditional field-map  method. (d) is the corrected EPI with 
our phase-map method. As it shows, our phase-map method achieves a 
comparable performance as the correction with the ground-truth field map 
in terms of recovering the warped geometry of the phantom. 
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As we can see, the large and medium cylinders filled with of powdered bone could not be 

corrected successfully even with a correction based on a ground-truth field map because 

of loss of signal. For all sizes of cylinders with glass rods, the corrected EPI in (a) 

demonstrates better geometry compared with the original EPI shown in (b). In (c), the 

geometry of the medium cylinder and the small cylinder with bone are improved 

compared with the original EPI (b), but the geometry of all sizes of cylinders with glass 

rods the small cylinder with air still suffer from noticeable warping. It means a correction 

with the field-map method may be inaccurate. In (d), the EPI corrected with our phase-

map method demonstrates a comparable quality as (a) in terms of recovering the warped 

geometry of the phantom. There is an improvement over (c) for all the glass cylinders and 

the air cylinder, most noticeable in the largest glass cylinder (bottom left). Thus,  our 

dynamic phase-map method estimates a distortion field that is closer to the ground truth 

than the static field-map method. 

 To quantify the performance of the field-map method and our phase-map method 

on recovering the warped geometry of different cylinders, we measure the DICE 

similarity [91] of the segmented circles from the original EPI, from the EPI corrected 

with the ground-truth field map, from the EPI corrected with the traditional field-map 

method, and the corrected EPI with our phase-map method. The Dice similarity = 

( )2 A B A B∩ + , where A and B are sets of the voxel in the respective shapes being 

compared. The higher the similarity, the better correction performance is achieved, and it 

ranges from 0, meaning no similarity, to 0.8, meaning good similarity, to 0.9, meaning 

excellent similarity, to 1 at perfect similarity. We compute similarities by comparing each 
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corrected shape in turn as A with the ground-truth field map as reference B. Table 1 

summarizes the comparison results.  

 

Table 1. Dice similarity of the segmented circles from original EPI and the corrected EPI  

cylinders Small 
(bone) 

Large 
(glass) 

Medium 
(glass) 

Small 
(glass) 

Small 
(air) 

original 0.80 0.88 0.92 0.93 0.91 
field map 0.92 0.89 0.92 0.85 0.85 
phase map 0.92 0.95 0.96 0.93 0.97 

 

According to the results, our phase-map method achieves better performance in 

terms of recovering the warped geometry of the cylinders in the original phantom image. 

The field-map method may produce worse results because of inaccurate estimation of the 

distortion field. For example, after correction with the field-map method, the geometry of 

the small cylinder with glass rod and the small cylinder with air both become worse. 

Hence, these results indicate that it is important to correct the image distortion with a 

dynamic distortion field.  

 

5.4. Validation of our registration method with phase-gradient constraint 

We validate our registration method with phase-gradient constraint based on 

simulated EPI series. The imaging parameters for the simulated EPI are the same as those 

for the simulated EPI in the previous experiments, and were given in Section 5.1. As 

explained in Chapter IV, standard Cubic B-spline basis functions are employed to model 

the distortion field. In our experiments, we place the B-spline basis functions on a grid of 

every third voxel in the x and in the y direction in the foreground area of the EPI. In 
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Figure 34, a distortion field fitted by B-spline (left) is compared with the true distortion 

field (right). A profile plot of the red line in Figure 34 is shown in Figure 35. As it shows, 

with the modeled distortion field, the ground truth field map can be approximated fairly 

well. 

 

  

 

 

Figure 34. Distortion field fitted with B-spline. Left is the 
fitted distortion field. Right is the true distortion field. Basis 
functions are placed on foreground area of the EPI. 
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Figure 35. A profile plot of the distortion field (indicated by a 
red line in Figure 34). The solid line represents the true 
distortion field, and the dotted line represents the fitted 
distortion field. As it shows, the true distortion field can be 
approximated fairly well with the modeled distortion field. 

  

 As we discussed in Chapter IV, the phase gradients that are computed from a 

wrapped phase map have minimum or zero phase wrapping and are approximately 

proportional to the spatial gradient of the distortion field in distorted space. To verify our 

theory, we compute the phase-gradient maps from a simulated EPI, and the results are 
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shown in Figure 36. Because the distortion field is spatially smooth, the gradient maps 

computed from the image phase have minimum phase wrapping. From the phase-gradient 

maps, the spatial gradients of the distorted field in distorted space are easily calculated. 

Figure 36 shows (a) wrapped phase maps, (b) the gradient maps of the distortion field in 

vertical direction computed from the image phase, and (d) the gradient maps of the 

distortion field in horizontal direction computed from the image phase. As a comparison, 

the gradients of the distortion field in vertical direction and in horizontal direction 

computed from the true field map are shown in (c) and (f). The similarity between (b) and 

(c), (d) and (f) supports our theory.  

HZ/mm 
        (a)            (b)              (c)             (d)             (e) 

Figure 36. Computation of the gradients of a distortion field from wrapped phase. (a) 
is a wrapped phase map. (b) is the gradient maps of the distortion field in vertical 
direction computed from the phase map. (c) is the gradient maps of the distortion 
field in vertical direction computed from the field map directly. (d) and (e) are the 
gradient maps in horizontal direction computed from phase map and the field map 
respectively. Because distortion field tends to be smooth in space, the phase-gradient 
maps have minimum phase wrapping. From the phase-gradient maps, we can easily 
calculate the gradients of the distorted field in distorted space. The similarity between 
(b) and (c), (d) and (e) supports our theory.  
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 We now investigate the effects of using the non-rigid registration method with 

and without phase-gradient constraint to estimate the distortion field. A distorted EPI is 

registered to a template EPI which was corrected with the traditional field-map method. 

Figure 37 shows (a) the estimated distortion field via the standard non-rigid registration 

method without phase-gradient constraint, (b) the estimated distortion field via our 

method, and (c) the true distortion field. The estimated errors found in the results from 

the traditional non-rigid registration (indicated by red arrows) are largely removed by 

integrating the phase-gradient constraint. The red line in Figure 37 is utilized in Figure 38, 

and the red circle is utilized in Table 2 below.   

 

 

 

 

 

 

 

 

 

             (a)                   (b)                    (c) 

Figure 37. Estimated distortion fields based on non-rigid registration 
with and without our phase-gradient constraint. (a) is the estimated 
distortion field without the phase-gradient constraint. (b) is the estimated 
distortion field with the constraint. (c) is the ground-truth distortion field. 
With the phase-gradient constraints, the estimation errors are largely 
reduced. Particularly at the areas pointed at by the arrows. (The circle is 
referred to in Table 2.) 
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In the standard non-rigid registration method, the distortion field is estimated 

based on matching image intensity patterns. The distorted EPI is warped to a corrected 

EPI. However, the resulting estimated distortion field could be false because it relies only 

on the intensity patterns.  With the incorporation of our phase-gradient constraint, not 

only the image intensity but also the phase guides the optimization process, thus the 

chance of getting an inaccurate distortion field is reduced.  

To take a closer look at the effect of the incorporation of the phase-gradient 

constraint in non-rigid registration, we plot the field-map profile (indicated by a red line 

in Figure 37). In Figure 38, the solid line represents the ground-truth distortion field. The 

dashed line represents the estimated distortion field based on the standard non-rigid 

registration method. The dotted line represents the estimated field based on our method.  

As it shows, the phase-gradient enforces an effective spatial constraint on the generation 

of accurate distortion field in non-rigid registration method. This comes from the fact that 

the estimated distortion field using our method is based on an optimization framework 

with both phase information and intensity information. In the cost function for 

optimization, not only the similarity of image intensity but also the similarity of the 

spatial gradients of the distortion field is optimized. Thus, inaccurate estimation of the 

distortion field can be mitigated by using our method. 
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Figure 38. Estimated distortion field and ground-truth distortion field. 
The solid line represents the ground-truth distortion field. The dashed 
line is the estimated distortion field with standard non-rigid 
registration. The dotted line is the estimated distortion field with our 
phase-gradient constraint. We see that some false spatial variation of 
the distortion field from the standard non-rigid is suppressed by using 
our method. 

 

In Figure 39, we show the spatial gradients of the estimated distortion field and 

those of the ground-truth distortion field. Column (a) shows the spatial gradients of the 

estimated distortion field based on the standard non-rigid registration method. Column (b) 

shows the spatial gradients based on our method with the phase-gradient constraint. 

Column (c) shows the real gradient maps of the distortion field.  As can be seen, the 

spatial gradients of the estimated distortion using our method are closer to the ground 

truth as expected than the standard non-rigid registration. The false spatial variations of 

the distortion field in the standard non-rigid registration method (indicated by red arrows 

in (a)) are largely removed by using our method (shown in (b)). Note, not only the 

magnitude but also the geometry of the gradient maps should be compared because the 
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gradient maps are computed when the distortion field is in distorted space. The red line in 

this figure is utilized in Figure 40. 

 

 

 

 

 

 

 

 

 

 

  

            (a)                              (b)                               (c) 

Figure 39. Gradient maps of the estimated distortion field and those of the 
ground-truth distortion field. Top rows are the gradients in the vertical 
direction and the bottom rows are the gradients in the horizontal direction. 
Column (a) shows the results from standard non-rigid registration. Column (b) 
shows the results from incorporating the phase-gradient constraint. Column (c) 
shows the ground-truth. As expected, our method generates gradient maps that 
are closer to ground truth in terms of both magnitude and geometric pattern. 
The false spatial variations of the distortion field in the standard non-rigid 
registration method (indicated by red arrows in (a)) are largely removed by 
using our method shown in (b). 

 

A profile plot of the spatial gradient of the distortion fields (indicated by a red line in 

Figure 39) is shown in Figure 40. The solid line presents the ground truth. The dashed 

line represents the gradient maps from the results of the standard non-rigid registration. 

The dotted line represents the results from our method. As it shows, the false spatial 
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gradients of the estimated distortion field can be suppressed by integrating the phase 

information.  
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Figure 40. Gradient profile (indicated by a red line in Figure 39). The solid line is the 
true gradient of the distortion field. The dashed line is the gradient from the estimated 
distortion with standard non-rigid registration. The dotted line is the gradient from the 
estimated distortion field with the phase-gradient constraint. As it shows, the 
gradients of the distortion field computed with the new constraint is closer to that of 
the ground truth than the standard non-rigid registration without phase information.  

To further quantify the effect of incorporating the phase-gradient constraint into 

the standard non-rigid registration, we compute the RMS errors of the estimated 

distortion field in a region of interest (indicated by a red circle in Figure 37) at different 

time points in an EPI time series. The results are summarized in Table 2. As it shows, the 

integration of the phase-gradient constraint can reduce the estimate errors.  

Table 2 RMS error of the estimated field in a ROI (mm) 

Time point 1 2 3 4 5 6 

No phase-gradient 3.06 3.3 3.60 3.10 3.81 1.52 
With phase-gradient 0.83 0.55 0.88 0.45 1.02 0.27 
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5.5. Comparison of strategies for estimation of  SΔB

 In this experiment, we compare six strategies for the estimation of dynamic 

distortion fields of a simulated EPI series in the presence of motion and a varying 

distortion field. The imaging parameters and the out-of-plane motion sequence for the 

simulated EPIs are the same as those used in Section 5.4. We chose two EPIs from the 

original time series for evaluation including a template EPI (the first EPI of the series) 

and a source EPI (an EPI from a selected time point). 

Our first strategy is as follows: First, we perform a motion compensation between 

the source and the template by rigidly transforming the original template to the original 

source. Then we correct the template EPI using the field-map method. We rigidly 

transformed the corrected template EPI according the estimated motion parameters. Then 

we estimate the distortion field for the source EPI  by warping the source EPI to the 

corrected and rigidly transformed template based on standard non-rigid registration. We 

will call this strategy “intensity method”. 

SΔB

 In the second strategy, we correct both the source EPI and the template EPI with a 

single field map. Then we perform a motion compensation based on the corrected EPIs. 

Then, we estimate  based on standard non-rigid registration. We use the field map 

for the template image ( ) as an initial estimation of the distortion field for each non-

rigid registration to reduce the convergence time. We call this strategy “field correction & 

intensity method”. 

SΔB

TΔB

 The third strategy is similar to the second one except that we correct the source 

EPI with an estimated field based on our phase-map method ( ) instead of using the 

same field map used for the template image. Then we apply standard non-rigid 

S0ΔB
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registration to re-optimize the distortion field . We also use  as an initial 

estimation of the non-rigid registration to reduce the convergence time. We call this 

strategy “phase correction & intensity method”. 

SΔB S0ΔB

 The fourth strategy follows the same steps as the third strategy. In the last step, 

however, we incorporate the phase-gradient constraint into the non-rigid registration 

method. This strategy is called “phase correction & intensity method with phase 

constraint”. 

 All these four methods give an estimation of the distortion field for each source 

EPI  with the help of non-rigid registration. We compare the estimation results from 

these four methods, an approximation of the distortion field based on a static field map 

(Δ ), and the distortion field computed from our phase-map method directly ( . 

Four regions of interests in the EPI are chosen.  The  RMS errors in different regions of 

interest are computed for all these methods. The results are summarized in 

SΔB

TB S0ΔB )

Figure 41.  

Among these six strategies, the intensity method, the field correction & intensity 

method, and the field-map method give the largest errors. Phase correction & intensity 

method produce fewer estimation errors than these three methods. The two methods— 

phase correction & intensity method with phase-gradient constraint and the phase-map 

methods—achieve the best performance among all these six strategies. Based on these 

results, we reach these conclusions: (a) motion compensation should be performed on 

EPI series only after they have been corrected for distortion. (b) Each EPI should be 

corrected with its own distortion field. (c) A standard registration method alone may 

generate relatively large estimation errors. (d) The incorporation of the phase-gradient 

constraint imposes an effective spatial constraint on standard non-rigid registration.  
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Figure 41. A comparison of different strategies. The phase-map method and the phase 
correction & intensity method with phase-gradient constraint are the best two among 
all strategies.   

  

It is not surprising that non-rigid registration would not generate an estimated 

field as accurate as the phase-map method in which the distortion field is known for each 

voxel. However, the utilization of non-rigid registration could still be helpful in practice. 

For example, if the temporal variation of the distortion field is dramatic, then the phase 

unwrapping algorithm in our phase-map method may fail in those areas, as has already 

been demonstrated in Figure 22. A subsequent correction based on an erroneous 

distortion field from the phase-map method could potentially introduce artifacts into the 

corrected image. Moreover, if large motion exists in a time series, then our phase-map 

method may produce large estimation errors primarily near the image edge of foreground 

areas because of the lack of phase information in these areas. These problems can be 

mitigated by further applying our non-rigid registration method with both phase and 

intensity information. In Figure 42, the estimation errors of the distortion field in the 

phase-map method caused by temporal phase wrapping are reduced by means of a non-
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rigid registration method with both phase and intensity information. The top panel of 

Figure 42 shows (a) the estimated distortion field with our phase-map method, (b) the 

estimated distortion field when the phase-map method is followed by our non-rigid 

registration with phase-gradient constraint, and (c) the ground-truth distortion field 

respectively. Bottom panel: (a) and (b) are the results of subtracting the magnitude of the 

distortion-free image from the magnitudes of the EPI corrected with the phase-map and 

the EPI corrected with our registration method and (c) is the distortion-free image. As can 

be seen, the temporal phase wrapping causes artifacts in the corrected image. These 

errors are reduced by a subsequent registration method with both phase and intensity 

information.  

 

 

 

 

  

Figure 42. Temporal phase wrapping remedied via registration. Top panel: 
(a) is the estimated distortion field with the phase-map method, (b) is the 
estimated distortion field via our registration method incorporating both 
phase and intensity information, and (c) is the ground-truth distortion field. 
Bottom panel: (a) and (b) are the results of subtracting the magnitude of the 
distortion-free image from the magnitudes of the EPI corrected with the 
phase-map and the EPI corrected with our registration method and (c) is the 
distortion-free image. We can see that the estimation error caused by 
temporal phase wrapping, which is clearly visible in (a), is removed in (b).  

        (a)                  (b)                     (c)

There is another aspect in which our registration method could potentially reduce 

the estimation errors. According to the theory we presented in Chapter III, there is a 

fundamental assumption for the distortion correction to succeed. The original undistorted 
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EPI and the distorted EPI should have one-to-one correspondence in image space, which 

makes the distortion reversible and thus correctable. This assumption is violated in 

regions where the distortion field changes abruptly in space. In those areas, the image 

tissues can be squeezed so dramatically that folding can occur. In such regions, a 

correction based on the phase-map method can introduce severe artifacts in the corrected 

EPI as shown in Figure 43. The top panel of Figure 43 shows (a) the estimated distortion 

field with the phase-map method, (b) the estimated distortion field via the registration 

method with both phase and intensity, and (c) the ground-truth distortion field 

respectively. The bottom panel of Figure 43 (from left to right) shows the corrected 

images with the corresponding distortion fields. These artifacts can be reduced in our 

registration method, in which the distortion field is modeled as a smooth function, and, as 

a result, a better approximate solution can be produced when folding occurs than that 

produced by the phase-map method alone. This improvement is the result of the required 

smoothness of the distortion field and the least-squares solution, both of which limit the 

propagation of the effect in areas remote from the fold. We can see fewer artifacts in the 

corrected images with registration method. 
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         (a)                   (b)                   (c)

Figure 43. Phase-map method versus registration method. The top panel shows 
(a) the estimated field with the phase-map method, (b) the registration method 
with both phase and intensity, and (c) the ground-truth distortion field 
respectively. The bottom panel (from left to right) shows the corrected images 
with the corresponding distortion fields. In regions where the distortion field 
changes abruptly in space, the distortion correction as an inverse problem is ill-
conditioned. Here registration is superior to the phase-map method. 

 

5.6. Conclusion 

 In this chapter, we have validated two methods for the estimation of dynamic 

distortion fields in EPI series. One is the phase-map method. The other one is registration 

with phase-gradient constraint. The theory associated with these two methods has been 

presented in Chapter III and Chapter IV. We focused on the validation and evaluation of 

these two methods in this chapter.  

 We employed two types of image data for validation. One is a simulated EPI 

series with realistic motion and a varying distortion field. The other one is real EPI 

acquisitions of a physical phantom with a geometrical design. Based on the experimental 

results, our phase-map method properly estimated the dynamic distortion in EPI time 

series caused by external sources such as respiration and bulk motion, indicating that the 
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application of our phase-map method can recover the temporal variation of distortion 

fields. We found that a correction based on our “phase-map” method which estimates a 

dynamic field is superior to the traditional field-map method in which only a static 

distortion field is available. The correction of an EPI series based on our phase-map 

method can reduce the intensity variation caused by dynamic image distortion, which is 

important for temporal analysis of a series of EPIs. 

 Image registration, as an important intensity method, has been applied by others 

to correct the EPI distortion. Based on our simulation, the accuracy of using image 

registration for estimation of dynamic distortion fields depends on two factors. First, 

proper motion compensation is critical. Second, an effective constraint on the distortion 

field is necessary. In this chapter, we validated the theory we presented in Chapter IV 

based on simulated EPI series. Motion compensation on the corrected EPI series with our 

phase-map method was found in our experiments to be more accurate than that motion 

compensation based on either the original EPI series or the EPI series corrected with the 

traditional field-map method. We also showed that the spatial gradients of the distortion 

fields can be computed accurately from the image phase and that these gradients impose 

an effective spatial constraint on the estimation of dynamic distortion fields. We also 

demonstrated that our registration method with phase-gradient constraint can achieve an 

accuracy equal to that of our phase-map method in most areas. In addition, the artifacts in 

the corrected EPI caused by temporal phase wrapping and abrupt spatial variation of the 

distortion field in the phase-map method can be reduced via our registration method 

because of the incorporation of intensity information with phase information. 
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CHAPTER VI 

 

CONCLUSION AND FUTURE WORK 

 

6.1. Conclusion 

 In this dissertation, we have studied the correction of dynamic image distortion in 

EPI time series. Two retrospective methods were proposed and tested to achieve this goal. 

Our methods rely on the well established facts that the dynamic distortion fields are 

encoded in the image phase from the EPI and that the temporal variation and the spatial 

variation of the distortion fields are proportional to the temporal variation and the spatial 

variation of the image phase, respectively. We showed how to take advantage of these 

facts by overcoming problems of low signal-to-noise ratios and non-overlapping 

foregrounds by means of an extended regularization approach and combining phase 

information with intensity information through constrained non-rigid registration. 

Quantitative validation and evaluation of the proposed methods were performed based 

both on simulated EPI data and on real EPI data of a physical phantom. Results showed 

that our methods are superior to the traditional distortion-correction methods with regard 

to the specific problem of reducing the temporal intensity variation of an EPI series 

caused by dynamic image distortion.  

In Chapter III, we described our “phase-map” method. Based on MR physics, our 

phase-map method takes advantage of the fact that the temporal variation of the distortion 

field in an EPI series is encoded in the temporal phase variation. If the variation of the 

distortion field is sufficiently slow in time, then the phase changes induced by them will 

be immune to phase wrapping. We looked into the temporal phase evolution of the EPI, 

  109



from which the variation of the distortion field was computed. In our method, the phase 

information of the EPI, in conjunction with one extra EPI reference-image, was used to 

compute a separate distortion field at each time point. It is well known that EPI phase is 

notorious noisy. To suppress the effects of noise in the field calculation, we proposed a 

regularization method for phase calculation. Regularized distortion fields were estimated 

by using both image phase and image intensity based on maximum likelihood. An 

application of the regularized distortion fields in distortion-correction helped to reduce 

artifacts in the corrected images. Because the estimated distortion fields from EPI are 

geometrically distorted in the same way as the EPI itself, a forward correction was 

employed for distortion correction. The dynamic image distortion in an EPI series can 

then be corrected directly with the dynamic distortion fields. 

The employment of image registration in motion compensation and distortion 

correction of EPI series was studied in Chapter IV. We found that the utilization of 

standard non-rigid registration in correction of dynamic image distortion is limited in that 

it depends on accurate motion compensation and effective constraint on the distortion 

field.  We suggested a new strategy for motion compensation, in which the motion 

compensation was performed on the corrected EPIs with our phase-map method. The 

correction of EPI using a non-rigid registration method is prone to a suboptimal local 

minimum because a large number of degrees of freedom must be optimized to represent 

the distortion field. Furthermore, the traditional optimization methods rely entirely on the 

image differences in intensity patterns between a distorted EPI and a template EPI.  To 

overcome these limitations, we proposed to incorporate the spatial gradient of the 

distortion field into the non-rigid registration framework. We use the gradient of the 
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distortion field, computed from the image phase, which we call the “phase gradient” to 

impose a time-dependent spatial constraint on the distortion field. In this new method, a 

novel cost function is presented, which depends not only on the similarity of the image 

intensity patterns but also on the similarity of the gradients of the distortion fields. 

Compared with standard non-rigid registration, the problem of the suboptimum local 

minimum in correction of EPI is mitigated by this use of phase information. The 

application of our phase-map method followed by our registration method, driven by both 

phase and intensity patterns, achieves a more accurate estimation of the dynamic 

distortion field in EPI series than traditional methods.  

The validation and evaluation of our proposed methods was carried out in Chapter 

V. A simulated EPI series with realistic motion and a varying distortion field were 

utilized to generate dynamic image distortion and motion effects. We applied our 

methods to the simulated EPI series, and performed quantitative evaluation to compare 

the results from our methods to the known ground truth. The effects of using our methods 

on the reduction of the temporal intensity variation in EPI series were quantified. 

Improvements over current approaches were shown by comparing our method with the 

traditional field-map method and the standard non-rigid registration method. We also 

validated our methods based on real EPI of a physical phantom. We carefully designed 

our phantom to create both a spatial variation and a temporal variation of the distortion 

field. We obtained the ground-truth distortion field by acquiring extra scans. The results 

of our method were analyzed by means of an evaluation of the estimated distortion field 

and an evaluation of the corrected EPI.  We compared several strategies for estimation of 
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dynamic distortion fields based on simulated EPI series in the presence of motion and 

dynamic distortion fields.  

 

6.2. Future work 

We developed a phase-map method for the generation of dynamic distortion fields 

in EPI series.  In our derivation, we ignored the effects of the phase errors induced by 

sources other than the static field inhomogeneity. It was assumed that all the excited spins 

would be in phase after the 900 RF pulse is turned off. The phase evolution of each spin 

will be affected only by the imaging gradients and static field inhomogeneity.  However, 

the phase errors coming from  field inhomogeneity could have an impact. If the spatial 

variation of these phase errors is large, they can cause errors when we compute the 

temporal phase difference. This did not appear to be a problem when we tested our 

algorithm using real EPI data. However, a study of the magnitude of both the spatial and 

the temporal distribution of these phase errors could be helpful to increase the robustness 

of our phase-map method. In fact, if the magnitude of the spatial distribution of these 

phase errors has a negligible effect, then our phase-map method could be further 

improved.  As we have shown, the temporal phase variation between adjacent EPI 

volumes cannot be determined in some physical locations when there is sufficiently large 

motion. This might be improved by the following method. First, the motion of adjacent 

EPI volumes could be corrected based on an estimation of their relative motion by 

registering their magnitude images. The overlapping regions of the aligned volumes 

would be increased. We could then compute the temporal phase difference from the 

aligned phase volumes. With an estimation of the dynamic distortion fields, each EPI 

1B
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could be corrected with a separate distortion field. Improved motion compensation could 

be then recalculated. Iteratively repeating this process, we might achieve a more accurate 

estimation of the distortion fields. By using the image intensity and the image phase, the 

motion compensation and the estimation of the distortion field might be improved 

alternatively.  

As we can see from Eqn. (34), our method utilizes the phase information of a 

reference image acquired at the beginning of the time series to calculate the dynamic 

distortion field for all other time points. It is expected that noise will be accumulated in 

our iterative calculation. One solution to this problem is to divide a time series into 

several sections and acquire a separate reference image at the beginning of each section. 

In this case, the effect of noise accumulation could be reduced and the temporal 

resolution of the study will be minor because we are dealing with an EPI time series 

including hundreds of volumes.  

The study of the distribution of phase errors could also be useful for the 

registration method we developed in Chapter IV. In our method, we incorporated a 

phase-gradient constraint into the image-registration framework. The phase gradients 

characterize the spatial gradients of the distortion field. This also depends on the 

assumption either that the phase errors are small or that they do not have a spatial 

distribution pattern that is comparable to that induced by the distortion field. Fortunately, 

our method is based on both image intensity and image phase.  The effect of the phase 

errors is expected to be small. However, it will still be an interesting topic to study the 

spatial distribution of the phase errors. A pre-processing on the image phase could be 

useful. 
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We proposed a phase-map regularization approach in Chapter III, in which the 

noise in the phase of EPI is assumed to have a Gaussian distribution. It may not be 

accurate, however, because when each channel of the complex EPI signal is corrupted 

individually by Gaussian noise, the noise distribution in the phase is more complicated 

than a simple Gaussian. In future work, the study of the noise distribution of the image 

phase may be useful to develop a more accurate regularization approach than the current 

one.  

In Chapter IV, we incorporated a phase-gradient constraint into the image-

registration framework. We expected that the estimation errors from our phase-map 

method could be reduced via an image registration method with both phase and intensity 

information. However, a non-rigid registration is typically very costly. While calculation 

of a distortion field for an image volume based on our phase-map method takes less than 

a minute, a subsequent non-rigid registration implemented takes about 20 minutes of 

computation time on a PC with a 3G Hz CPU and 1GB of RAM using Matlab (The 

Mathworks, Natick, MA). In fact, the estimated distortion field from our phase-map 

method is quite close to ground truth, and substantial estimation errors occur only near 

the edges of foreground areas and near the sinuses. Even errors coming from temporal 

phase wrapping could be easily identified. Hence, it is not optimum to re-estimate the 

distortion field for the whole image volume. If the re-optimization of the distortion field 

is performed only in those problem areas, the computation time could be dramatically 

reduced.  

We can also apply the registration method we developed in Chapter IV to correct 

EPI for functional localization. Presumably, the registration of an EPI with an anatomical 
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image is more difficult than registering two EPIs because the EPI and the anatomical 

image have different contrast, image quality, and resolution. In this application, an 

integration of the spatial constraint on the distortion field computed from image phase 

could be quite useful. This will be an interesting topic. 

The validation of our methods was performed based on simulated EPI series and 

real EPI data of a physical phantom. In the future it is hoped that the application of our 

methods can be extended to clinical applications such as fMRI .  
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