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CHAPTER 1

INTRODUCTION

1.1 Motivation
1.1.1 Interaction of fluids with thin solid structures

The interactions between fluids and thin structures can bedion many exam-
ples in nature, for instance, elastic membranous wingss&ats [1], undulating fins of
fish [2], flapping flags and tree leaves in the wind, oscilladiof underwater plants in
unsteady currents, rotating flagella of bacteria [3], defation of cell membranes [4]
(see Fig. 1.1). Complicated fluid—structure interactio8IjHs involved in these sys-
tems. Computational modeling of these system is typicadiyy \challenging because
the solid bodies experience large displacements, whickesathe mesh generation in
the conventional methods of computational fluid dynamids§to be an expensive
and sometimes even formidable procedure.

We are specifically interested in two applications in thiskv@l) aerodynamics of
the flapping wings of insects; and (2) energy harvestinggusiee-leaf-like structures
attached with piezoelectric materials. The backgroundasheapplication is briefly
discussed here and will be further described in the perticieapter.

Aerodynamics of insect flight has drawn considerable atienh recent years due
to its promising application in the development of biomimehicro air vehicles [5].
During flight, insect wings typically experience dynamidatenations [6], i.e., change
of the wing shape from its rest configuration regardless tis#ion or orientation of the
wing. Even though the deformation magnitude and pattemfyam species to species,
physiological studies have shown that insect wings do nes@ss an internal actuation

mechanism and thus the deformation has to be passive [7} i han insect wing is



(a) A hovering hummingbird (Credit: Dean E. Brig{b) Swimming fish (Credit: Dr. James C. Liao, Uni-
gins, U.S. Fish and Wildlife Service) versity of Florida)

(c) Bacterial flagella (Credit: Michael D. Jonedqd) Tree leaves (Credit: Dr. Yahya Modarres-
httpy/en.wikipedia.orgwiki/Flagellum) Sadeghi, University of Massachusetts)

Figure 1.1: Interactions between fluids and thin structures

deformed by the external means, i.e., the aerodynamic foooe the air around the
wing, or due to the wing acceleration, i.e., the inertiatBrThe mass ratio describing
the relative &ect of the wing inertia with respect to the aerodynamic fosadfficult to
match in an experiment requiring dynamic similarity. THere, a computational study
would be very useful in studying théfect of wing deformation.

On a separate application, recent experimental studiesdmwonstrated that tree-
leaf-like thin structures can be used as energy harvestees \placed in a flow [8—

10]. When the structure is vibrating due to vortex sheddihg,piezoelectric material



(@) A wavy microchannel for drop-based mixingb) Water-oil flows used in pipeline transport of
(Credit: Bringer et.al [12]) crude oils (Credit: D.D. Joseph et.al [13])

Figure 1.2: Interactions of flows with fluid—fluid interfaces

attached to the structure converts the kinetic energy itgotrécity through a circuit.
The device may be potentially used to power small electrdeigces. In the work of
[11], a single leaf unitis able to produce an amount of poweunad 30QuW. So it may

be possible to use multiple units to power a small electrdeidce that requires power
on order of 100 mW. Nevertheless, thi@@ency of the energy harvesting needs to be
improved significantly in order for such a mechanism to haeetcal use. Therefore,

a study of the flow-induced vibration of an array of thin stuwes will be useful for

exploring the parameter regime in which the system woul@ lesahanced performance.

1.1.2 Interaction of fluids with fluidic interfaces

In a different situation, two-phase flows of immiscible fluids (eog.and water, or
air and water) have wide applications in industry rangigrfmicrofluidics to pipeline
transport of crude oils (see Fig. 1.2). The interface betwbe two liquids has zero
thickness, and across the interface, the velocity is caotis but the traction undergoes
a jump due to the presence of the surface tension. In a ser$ea$luid—fluid interface
may be viewed as a thin structure that may be stretched antd®@empared to the thin

solid bodies, there are added complexities for modelingy $wed—fluid interfaces, as



these interfaces not only go through great bending ancktrgf deformations but may
also experience topological changes, e.g., breakup anesceace.

For two-fluid flows in arbitrary domains, both types of bounes, i.e., the fluid—
solid interface and the fluid—fluid interface, would appeaone problem. For exam-
ple, microchannels with intricate shape features were tsgénerate and manipulate
droplets carrying living cells [14] or physiological fluid$5] on microfluidic devices.
Pipeline transporting heavy oils using water lubricatibmown as core—annular flow,
involves geometries such as pipe fittings, T-junctions, emtractiongexpansions of
the cross section [16]. Combustion chambers with sophisttitinterior design have
massive behaviors including break-up and coalescencqudlfuel drops [17].

The existing methods of numerically simulating two immimeifluids in non-trivial
geometries are usually based on meshes that conform to tleeswf the solid, i.e.,
either a curvilinear grid or an unstructured grid, so thathlbundary conditions, typi-
cally no-slip and no-penetration wall conditions, can bpligg at the surface straight-
forwardly. On the other hand, there are several approadrdsahdling the interface
between the two fluids in which the computational mesh do¢haee to conform to
the interface. Based on the approach of tracing the fluidd-fhiierface, the existing
methods for modeling multi-fluid flows include the followind) the Lagrangian mesh
approach, where the interface is represented by a set obmaoknts and a mesh mov-
ing with the local fluid. (Il) the volume-of-fluids (VOF) meatd, where the interface
is represented by the volume fraction of the fluids [18];)(tHe level set function,
where the interface is represented by the zero-level cowfaaudistance function [19];
and more recently (IV) the phase-field method, where thefaxte is represented by
the chemical energy level of the fluids [20]. In the first meththe surface tension
can be directly incorporated into the boundary conditiahé volume mesh moves to-
gether with the interface, e.g., the arbitrary Lagrandtaerian (ALE) method [21],
or it can spread into the fluid near the interface if the volumesh is fixed, e.g., the

front-tracking method [22]; Among these methods, only thd&EAnethod requires the

4



volume mesh to be adapted to the moving interface, and tlez otathods can be built
on a fixed mesh. Furthermore, except the Lagrangian mesloagpthat utilizes an
explicit surface meshing technique, the other methods us=mlkar variable advected
by the flow to trace the interface implicitly, and they have thherent capability of
handling topological changes of the interface.

The immersed-boundary methods based on fixed meshes,ap€artesian grids,
have been developed and applied extensively in treatingonand moving bound-
aries of solids. In its original version, Peskin [23] coneerthe surface traction exerted
by the thin elastic body immersed in the fluid into a volumeséousing a regularized
Dirac’s delta function. Conceptually, this method closelgembles the front-tracking
method and thus both can be categorized as thies#-interface method. After Peskin’s
work, several other families of the Cartesian grid basedaguhes were developed for
arbitrary solid boundaries and were dubbed with terms sacha@aimmersed-interface
method [24], the embedded-boundary method [25], or sti#, immersed-boundary
method [26]. These later methods have significantly dedifiten Peskin’s original no-
tion of an immersed boundary in that they retain the surfaoee nature of the traction
from the solid boundary and are therefore referred to thepsimierface method [26].
Nevertheless, compared with the curvilinear or unstrectigrid based methods, the
common advantages of these immersed-boundary methodsmnule snesh generation
and dficient computational algorithms that are based on the Gantgsid. In all these
methods, an explicit mesh representing the solid body igeskeFor further reviews
of the immersed-boundary methods and also additional rdstti@at are based on fixed
grids, e.g., the fictitious domain method, the readers degrezl to the works of [27],
[26], and [28].

Having listed many non-boundary-conformal approachesiitrer fluid—fluid in-
terfaces or fluid—solid interfaces, we point out that thesefaw approaches available
that utilize Cartesian meshes to treat both types of intedan one program. The ma-

jor reason for this is that the two interfaces are assocmatdddifferent characteristic



deformations and also boundary conditions. A fluid surfgpécally can be bent and
stretched to a large degree, or even change its topologyesutadly, while a solid sur-
face may be rigid or inextensible (e.g., a moving piston oekastic airplane wing).
With regard to the boundary conditions, the velocities aeally specified for a solid
surface, while a fluid surface involves the unknown intedleelocity but a known
traction jump across the interface due to the presence dutface tension. As a re-
sult, none of the aforementioned methods is readily swatédyl both types of surfaces
in general. For example, an explicit mesh using Lagrangiarkers may be suitable for
representing a solid surface but haffidulty dealing with morphology of a fluid sur-
face. On the other hand, the level set method can handldaai@rmorphology easily,
but it cannot give the location of the interface explicitlydgthus is not straightforward
for implementation of the no-slip condition at a solid sada

Therefore, a proper combination of some of the existing oethbased on Cartesian
grids would be appropriate for simulating two immisciblediinvolving solid bound-
aries of arbitrary geometries. In the present work, we combhe level-set method
for the fluid surface and a sharp-interface immersed-baynaathod for the rigid or
deformable solid boundary. For the solid boundary, theshaerface treatment is
chosen because the method is typically second-order decasaopposed to the gen-
erally first-order accuracy for the fllise-interface treatment [29]. Furthermore, for a
rigid body, an iterative approach would be needed in tii@sk-interface treatment for
the no-slip boundary condition to be satisfied, which may keaslow convergence or
even numerical instability [26]. The combined method pnéseé in this work will have
the following features: (1) easy to represent both fluid asldisurfaces, even if the
surfaces are complex-shaped or moving, (2) straightfau@incorporate the bound-
ary conditions associated with each type of the interfa@@s;apable of handling the
topological change of the fluid surface, and (4) simple mesfegation and f&cient

computation on the Cartesian grid.



1.2 Objectives of the dissertation

The specific objectives of this work can be summarized asviali

1. Computationally model the fluid—structure interactidrtlee flapping wings of
insect and study (1) theffect of wing deformation on the aerodynamic perfor-
mance of the wing and (2) the relative role of the wing inéwih respect to the

aerodynamic force.

2. Computationally model the hydrodynamic interactiomissn the thin structures
that are placed in close range and seek the regime in whicartbey level of
the entire system is significantly increased; and if suchgare is found, the

underlying physical mechanism will be studied.

3. Develop a three-dimensional immersed-boundary metrataan be used to sim-
ulate two immiscible fluids in arbitrary domains. The methstuld be able to
capture both the morphological and topological changebt®fltid—fluid inter-

face.

4. Use the immersed-boundary method to study the dynamickopfs traveling
through microchannels with asymmetric wall bumps and testigate the inte-

rior flow pattern for the purpose of mixing enhancement.

1.3 Outline of the dissertation
This dissertation includes the discussion and implemiemtaf the numerical algo-
rithms for treatment of the fluid—solid interface and thedhdluid interface, and it also
covers three independent applications of the current ndetho
Chapter 1 provides the overall motivation for a numericathnod capable of sim-
ulating the interaction between fluids and thin structuiidse background of the three

applications are briefly described.



Chapter 2 provides the descriptions of the numerical methdthe Navier-Stokes
equations are numerically solved on a fixed Cartesian grile Jharp and éuse
immersed-boundary methods are combined in one progranpéoately treat the fluid—
solid interface and the fluid—fluid interface. The level&gitction is introduced with
the mass conservation and stability issues addressed. ridainealidation cases are
provided.

Chapter 3 describes the application of the current meththebtbuid—structure inter-
action of flapping wings. A two-dimensional model is develdpo model the hovering
flight of insects. The #ect of wing deformation and the role of the wing inertia are ad
dressed by varying the mass ratio and structural flexikilityhe wing. The implication
of the findings on insect flight is discussed.

Chapter 4 describes the application of the current methdldetduid—structure in-
teraction of an array of elastic sheets placed in a freerstr&ae parameter regime for
the system resonance is studied, and the mechanism of iearese is examined in
detail.

Chapter 5 describes the application of the current methttetdrops going through
an asymmetric microfluidic channel that has bumps on one Jile parameters that
lead to the asymmetric flow pattern inside the drops are tigaged for the purpose of
mixing enhancement.

Chapter 6 provides a summary of the dissertation. Overaltlcgions and contri-

butions are presented, and future work based on the cugsuilts is suggested.



CHAPTER 2

NUMERICAL METHOD FOR THE FLOW

2.1 Governing equations and numerical discretization
The fluid in this study is considered to be viscous, incongbds and Newtonian.

The governing Navier-Stokes equation for the viscous imm@ssible flow is written as

p(a—u+u-Vu)

5 -Vp+2V-(uE)+F

V-u = 0, (2.2)
whereu = (u,v,w), p, p, u are the velocity, pressure, density, and viscosity, raspedy,
1 T

E= E(Vu +Vu') (2.2)

is the rate-of-deformation tensor, akdlenotes the external body force, which can be
gravity, an imposed pressure gradient, the elastic membstess, or the regularized
surface tension in the application of a continuous surfaceef model (CSF) [30] for

the fluid-fluid interface. In the CSF model, the surface tendfect is included as
F = oknd(e) (2.3)

whereo is the constant surface tensionandn are the mean curvature and normal
vector of the fluid—fluid interface, respectively, af(@) is the regularized Dirac delta
function which will be discussed later (Section 2.3).

According to the vector identities, the rate-of-deforraatiensor in Eq. (2.1) for an



incompressible flow can be expressed as [31]

2V - (UE) = uV?u+ Vu X @ + 2Vu - Vu, (2.4)

where

w=Vxu (2.5)

is the vorticity. In the present work, the viscosity of eachdlis assumed to be constant.
Thus,Vu is only non-zero near the two-fluid interface and is alongsing¢ace normal
of interface.

The entire rectangular computational domain, which inekuthe fluid region and
part of the solid region, is discretized on a nonuniform and-staggered Cartesian
grid. For the bulk-fluid region (away from the solid boundathe governing equation

is solved using a variant of Chorin’s projection method vkhigvolves several sub-

steps:

p% =-VPy+Vuxw+F
ou 2
— +(U- =Vyu) - Vu=yVau (2.6)
ot 0

ou

— =-Vp.

Pa p

The first sub-step is treated explicitly, while the advettdiffusion equation in the
second sub-step is solved implicitly using the Crank-Nioal scheme to obtain an in-

termediate velocity®*. In the discrete form, this step can be written as

2.7)

you Lsvu) 5(v,-ui)”] _ g[ s (6u;“) L0 (5ui”)]

A T3 Tox T Tox, 5% \ax )+ 3% \ox,
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whereéixj represents a second-order centréiledtence scheme,

2 6u
Vi=Uj - —-—— 2.8
J J ,0(5X1 ( )

is the modified velocity component, at} is the face-centered velocity obtained by
averagingu; along thej-direction. Note that Eq. (2.7) is a nonlinear equation, aed
updateU; andV; from availableu; in an iterative solution process.

Before solving the third sub-step in Eq. (2.6), the pressuodtained by requiring

the velocity after this step to be divergence-free. Thus,

n+1 SU*
9 (5p ) = ﬁ_l, (2.9)
5Xj 6Xj At 6Xj
for which an inhomogeneous Neumann boundary condition,
op Du
L - p=—.n 2.10
on ~ Dt (2.10)

is assumed and i Dt stands for the material derivative of the velocity. Aftee hres-

sure is obtained, the third sub-step in Eq. (2.6) is exedatéd discrete form,

At 6pn+1

ut = U )
p 6%

(2.11)

2.2 Sharp-boundary treatment for the fluid—solid interface
In this work, a previously developed sharp-interface imnsedrboundary method [32,
33] is used to handle the complex geometry of the fluid—salierface. In this method,
the irregular solid interface is triangulated by an ungtricex surface mesh consisting
of a set of Lagrangian marker points. The nodal points on tweSian grid that dis-
cretizes the computational domain are labeled either d&l“sodes” or “fluid nodes”

depending on which side of interface the node is located.yAwan the solid surface,

11
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Figure 2.1: lllustration of the sharp-interface immer&edmndary method for the fluid—
solid boundary. Flow field extrapolation is applied at thegfinodes.

the Navier—Stokes equation is discretized using a starstanoind-order central fdier-
ence scheme. Such a scheme is also applied at the fluid—ftarfaice after the dliuse
interface treatment, as will be discussed in next section.

Near the solid surface, the standard centraikdence scheme cannot be applied for
those nodes at which the stencil involves solid nodes. Tfiegkenodes are immedi-
ately next to the solid surface and are termed “hybrid” npdesl the corresponding
solid nodes involved in the stencil are termed “ghost” no@&N). Flow field recon-
struction is applied at the ghost nodes with the boundaryglition incorporated [32].
To accomplish this, the image point (IP) on the fluid side isni by projecting the
ghost node along the surface normal, and the body interB&poK the solid surface is
thus located midway between the ghost node and image passurie thap(x, y, z) is
a generic variable. To interpolate the valuesadt the image point, a trilinear interpola-

tion is used in the local area with eight nodes enclosingrttage point,

P(X1, X2, X3) = CiXaXoXs + CoXaXo + CaXoXg + CaXaXy

+ C5X1 + C6X2 + C7X3 + Cg (212)

12



where the polynomial cdicientsCi,i = 1, 2, ..., 8 are determined by the valuesgét

the eight nodess;,
(C} = [VIH{g). (2.13)

with {C}T = {C,C,, ...,Cg} and{¢}" = {¢1, ¢o, ..., #g}. The matrix V] is the Vander-

monde matrix constructed from the coordinates of the eigtes,

X1XoXaln, X1Xoln, XoXaln, XaXaln, Xaln, Xoln, Xaln, 1

X1XoXaly, X1Xoln, XoXaln, X3Xiln, Xiln, Xoln, Xaln, 1
[V] — 2 2 2 2 2 2 2 (2-14)

| X1XoXalng  X1Xelng  XoXahe XaXalng Xalng Xelng Xahg 1

where the subscriptg means theth node. With the solved céi&ients, the trilinear

interpolation is complete and the interpolated value atrttege point becomes
8
dip(%a Xo. Xa) = [XHC} = (XI[V] Hg} = > Bigy (2.15)
i=1

where{X} = {X1XoXa, X1 X2, X2 X3, X3X1, X1, X2, X3, 1}|,p denotes the vector of coordinates
of the image point ang, is the interpolation weight calculated frofX}[V]~t. From
Eqg. (2.15), the interpolation weigfst depends on the positions of the image point and
the eight data points only. Thus, it can be determined oregdéometrical information
is available and is then ready for use during the iterativetsm of the flow variables.
The eight data points used for interpolation could be thatergrtices on the com-
putational cell surrounding the image point. However, thegj node itself could be one
of the eight nodes, as shown by one of the two situations tipia Fig. 2.1. Under
such circumstance, the ghost node is replaced by the baslgept in the interpolation
process. At the body intercept, either Dirichlet (for théoe#ty) or Neumann (for the

pressure) condition is specified. For the Dirichlet comaifiusing the body intercept

13



in the interpolation is straightforward — the interpolatimrmula, Eq. (2.15), remains
the same and the coordinatesXnand [V] should be replaced by those for the body
intercept. For the Neumann conditiai)/dn, needs to be incorporated into the inter-
polation formula. This is done by modifying the last row oé landermonde matrix in

Eqg. (2.14) into

[a(xlxm)| 6(><1Xz)| 5(X2X's)| 6(>«°,><1)|n8 % e 6><z|n8 BX3|n8 o], (2.16)

with the definition ofd/dn, Eq. (2.16) can be re-written as:

[n1X2X3 F X Xs + NgXaXo MiXo + MoXy MoXg + NgXp MXz+NgXy Ng Ny Ng 0]2-17)

where (1, np, N3) represents the normal at node 8. Correspondingly, thelastent in
¢ is replaced by)¢/on at the body intercept, and Eq. (2.15) becomes

9¢

7
(. Xe. Xa) = ) Bidhi + By (2.18)
i=1

For the velocity boundary condition, a linear distributisrassumed along the line

segment connecting the ghost node, body intercept, andiidga point. That is,
Ugn + Uip = 2UB|. (219)

Given the boundary velocityg;, whereug, = O for a stationary boundarygy can
be calculated from Eq. (2.19). For the press@ﬁeis given as the boundary condition.

Using a central dference approximation, the condition can be written as

ap :pIP_pGN:_ Du N
on|g Al Dt

(2.20)
Bl

where thell is the distance between the IP and GN. Inhomogeneous pesssudition

14



op/on = —p(Du/Dt) - n has been assumed here. The value of X at the BI is
interpolated from the acceleration of the Lagrangian nrgokénts on the solid surface
in the case of a moving boundary.

With the above numerical descriptions of the flow variabletha ghost nodes and
the finite-diference discretization at all the fluid nodes, a completebaige system
could be formed for all the discrete variables. More detaflsmplementation and
validation of this sharp-interface treatment are providedittal et al.[32]. In the case
that the solid surface is a moving boundary, such a methodoaaybject to numerical
oscillations as the solid surface moves across the stayigral and the ghost nodes
have to be re-identified at each time step. To suppress thikaten, Luo et al. [33]
improved the method by applying a hybrid numerical desimpat the fluid nodes
immediately next to the solid surface where the finit#edlence stencil involves some
of the ghost nodes. In the hybrid description, a local ird&fon and the standard
finite-difference discretization are weighted based on the distanite dfuid node to
the solid surface. Thus, as the boundary moves, the inegtipnland finite-dterence
formulas transition to each other gradually rather thanpity. Since the primary focus
of the current work is on stationary solid boundaries, ferttetails of the moving-
boundary treatment is not discussed here. Readers areerketerLuoet al. [33] for

more information.

2.3 Tracking the fluid—fluid interface: the level set method
We consider a viscous incompressible flow of two immiscihles in an arbitrary
geometry. The level set function[19, 34] is one popular reétto implicitly represent
the interface between two fluids. In this method, a smoothicoaus scalar function
is established with zero value on the interface of two fluptsitive in one phase and
negative in another (Fig. 2.2). One particular advantagkeefevel set method is that it

can deal with the topological change inherently, for exanpbalescence and breakup
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>0

Figure 2.2: The signed distance function as the level setifom

of the interface. The classical level set function is defiagd signed minimum distance

function:

Y(X) = distx) = min(x — x,[), X = {Xq, X2, X3}, X| € 0Q (2.21)

whereodQ is the interface.y(x) = O represents the position of the interface, while
Y(x) > 0 for x € 0Q* andy(x) < 0 for x € Q™. This definition maintains the feature
V| = 1inside the entire domain. As a continuous functibhas adequate smoothness
that the normah and curvature of the interface can be directly computed frgm

Vy

n=——, k=-V-n. 2.22
V] (2:22)

These two quantities are used in the calculation of the sattension force in Eq. (2.3).
Under the fluid velocity field, the standard equation for @ating the level set

function is given as

W u.vy=o (2.23)
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Thus the zero level of distance function, or the interfaa# be transported along with
the local fluid. Since the density and viscosity remain camsin each fluid phase, they

can be written with the Heaviside function as

p = p1+(p2—p1)H(®)

p1 + (uz — u1)H(®) (2.24)

=
I

where the subscript indicates the phase 1 or 2. To reguldr&zdiscontinuous Heavi-

side function, the following approximation is used instead

0, Y < —€
HW) =1 SL+ £sin(Z2),  -e<y<e (2.25)
1, eE<y

wheree is the parameter that determines the bandwidth of the smh@@exface. Typi-
cally e varies from one to two grid intervals around the interfadee Tegularized Heav-

iside function is also used to derive the approximate Didtadunction in Eq. (2.3),

0, U< —€
SW)=HW) =1 £+ £cos(Z), -e<uy<e (2.26)
0, €<y

Thus,s(y) is equal to zero elsewhere except within the thicknesseofiiffuse interface.
When solving the advection equation (2.23), the distanoetian will be distorted
and the smoothness @f may be lost, which leads to inaccuracy of the geometrical
guantities and even numerical instabilities at the intaff{84](Chapter 7). To keep
¥ smooth and a meaningful distance function, re-initialabf the signed distance

profile is enforced in the vicinity of the zero-level cont@awery a few time steps. The

17



usual re-initialization step is to solve a Hamilton-Jacedpiation

2 ST - 1) =0 @27)
a

whereS(yy) is a sign function taking 1 i@*, -1 inQ~, and 0 on the interface, ands

the pseudo time. Numericall$(y,) is also smoothed to increase the stability,

Yo
W5+ (AX)?

S(o) = (2.28)
wherey is the initial value ofy at the beginning of each re-initialization iteration and
AXis the mesh interval. After a few iterations in the pseudaetifaqg. (2.27) can reach
the steady state, where th¢/dr approaches zero afdy| is equal to one.

The advection equation, Eq. (2.23), is a special kind of HamiJacobi equa-
tion [35], and many numerical algorithms, e.g., the 3rdeor@NO (Essentially Non-
Oscillatory) and the 5th-order WENO (Weighted ENO), haverbdeveloped to solve
(2.23) and (2.27), which can achieve high-order accuracyrabustness. The ENO
introduced by Harten et al. [36] increases the accuracy pfagmation fory;, andy;,
significantly, wherey;, andy; are the approximatéy/ox on a left- and right-biased
stencil in the x-direction, respectively. Its basic ideaoiseconstructy using a high-
order polynomial on a four-point stencil and therffelientiate the polynomial to ap-
proximatey,. The stencils for the ENO are tabulated in [37]. Based on tN® Bhe
WENO [38, 39] is a convex combination of three overlappingdEstencils to achieve
the 5th-order accuracy. In the current work, we have implgegtthe WENO to solve
Eq. (2.27).

Three possible ENO approximations i@ i can be calculated on the stencil sup-
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ported by the nodelsq_s, X2, ..., Xi—2} [34] as

LT 1
Vs = 376 "5

5
W2 = —V—62+%+% (2.29)
3 _ V3 SV V%
¥ 376 6

wherevy = (Yi—2—¥i-3)/ AX, Vo = (Yi-1 —¥i-2)/ AX,...,V5 = (Yir2—is1)/AX. The WENO

consists of a convex combination of the approximation in(2@0) as

Uy = wiy + Wl + Wy (2.30)

wherewy are the weights satisfyin@g; + w, + w3 = 1,0 < wyx < 1. The weights are

defined as follows [40] to estimate the stencil smoothness:

13 1

S = 1—2(v1 — V5 + Va)% + Z(Vl — 4V, + 3v3)?
13 1

S, = 1—2(V2 — 2V3 + V4)2 + Z(VQ - V4)2 (231)
13 1

S; = 1—2(V3 —2V4 + V5)2 + Z(3V3 —4v, + V5)2

Then, we define

o1
T Girep
0.6
ay = m (232)
_ _o3
T (Sste?

wheree = 10°° max{v3, 3, v2, V4, 3} + 10-%°. By normalizingay, we obtain the weights

from

wi=—33 =123 (2.33)

a1+ ay + a3z

19



2.3.1 Mass conservation

One challenging issue for the level set method is the massecaation problem.
Mass gaiyloss during update of the two-fluid interface causes a crimipact to the
accuracy of the method. The mass conservation problem leasdigcussed frequently
in literature [41-45]. Spelt [46] utilized a simple correct method to compensate the

mass loss,

(2.34)

whereV is the volume of one phas¥y is the initial value of the same phase, &t
the area of the interface. BothandS can be determined straightforwardly from the
Heaviside and(y) functions. The correction of the fluid volumes is appliedhat end
of each convection step in Eq. (2.23). This treatment exaxihserves the volumes
of the two fluids and does not have a significafieet on the non-physical interface

displacement [47]. Therefore, we have implemented it inctimeent method.

2.3.2 Curvature smoothing
In the CSF model expressed by Eg. (2.3), the surface tensrae is calculated

based on the surface normaknd the curvature. However, the computation of the
curvature is prone to numerical noise, which could causecunacy and failure of the
surface force model. Previously, smoothing kernels or @ipes have been applied
to the level set method and volume-of-fluid (VOF) method [48] to counteract the
numerical instability. Recently, Chiu & Lin [50] employedHelmholtz smoother to
stabilize the calculation of the curvature. This smooteexdopted in the current work

and is described here as

H=1-¢V> (2.35)
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Wheree is a constant parameter. Apply this operator and solve thahtdtz equation
¥ =H) = § - €7, (2.36)

then we obtain the smoothed functignThe curvature can then be calculated frogm

using a 2nd-order centralftierence scheme,

K:v.nzv-( (2.37)

] ]
W :

Fig. 2.3 shows the comparison between the smoothed andmoatised curvature
computation. In this test, a 2D droplet with a radiuSddis placed in the Poiseuille
flow originally at the center of the domain that has dimensibjr-d, d] x [-d, d]. Here
d is the half channel width. A uniform grid of 209 200 points is used to discretize
the domain, and the time step is chosen ta\be- 10-3d/U. The inlet boundary is at
x = —d, and the outlet ak = d. The Reynolds number BRe = pUd/u = 1, where
U is the centerline velocity of the Poiseuille flow. Fig. 2.2wels the level set contour
and the corresponding curvature at twdfelient time instancesyJ/d = 0.1 and 0.2.
At both time moments, the smoothing treatment does not csigséicant diference
in the level set contours. However, oscillations can berlyleseen at top and bottom
sides of the contours of the curvature for the non-smoothuiation. In comparison,
the curvature from the smoothed calculation has a stablgisnland much smoother
contours.

The parametes affects the strength of curvature smoothing. Here we checse

kAX, whereAx is the grid interval. After several tests with the droplethe Poiseuille

flow, we setk = 5, which gives a reasonable result.
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Figure 2.3: Hect of curvature smoothing for an initially cylindrical griet placed in a

channel flow at time (a,l)J/d = 0.1 and (c,dYU/d = 0.2. (a,c) The level set contours;
(b,d) contours of the curvature calculated from the levelgection. The solid lines are
from the non-smoothing treatment, and the dashed linestinersmoothing treatment.
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CHAPTER 3

EFFECT OF WING INERTIA ON HOVERING PERFORMANCE OF
FLEXIBLE FLAPPING WINGS

3.1 Background

Aerodynamics of insect flight (Fig. 3.1) has drawn considkrattention in recent
years due to its promising application in the developmertiomimetic micro air ve-
hicles [5]. During flight, insect wings typically experiemdynamic deformations [6],
i.e., change of the wing shape from its rest configuratioandgss the position or ori-
entation of the wing. Even though the deformation magnitaiceé pattern vary from
species to species, physiological studies have showntbatti wings do not possess an
internal actuation mechanism and thus the deformationdas passive [7]. That is,
an insect wing is deformed by either the aerodynamic foremfthe surrounding air,
or the inertial acceleration, or a combination of both.

The structural deformation during flapping may significarthange the flow be-
havior around the wing and consequently have an import@@&tteon its aerodynamic
performance. A few studies have been devoted to the unddistnof the &ect of
the wing flexibility. Using a two-link model representing hordwise wing section,
Vanellaet al. [51] performed a two-dimensional numerical simulation loé tflow—
structure interaction in hovering flight. They found thag tstructural flexibility can
enhance the aerodynamic performance of the wing by inergdke lift-to-drag and
lift-to-power ratios, and that the best performance is iolet when the flapping fre-
guency is a fraction of the natural frequency of the wingdtrce. In a separate study
using also the linkage model, Eldredgeal. [52] investigated the féect of the wing

flexibility in a range of kinematic parameters describing tombined pitching and
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heaving motion of the wing. They found that a mildly flexibléngy has consistently
good performance over a wide range of phasietences between pitching and heaving,
which is in contrast with the relative sensitivity of a righdng to this parameter. Full
three-dimensional numerical simulations of the desemidgcSchistocerca gregaria
were recently performed by reconstructing the detailedyinematics, including the
time-varying camber and spanwise twist of the wing surf&oa) the high-speed digi-
tal video of the real insect flight [53]. By comparing the perhance of the wing model
based on the fully reconstructed kinematics and that of tiheesponding wing models
without the camber or twist, Youngf al. [53] found that the wing deformation leads to
substantial power economy in lift production. Meanwhileyt noticed that the leading
edge vortex remains attached to the wing during the entippiitg cycle in the full-
kinematics model, which may have contributed to the aeradya power éiciency of
the wing. The aerodynamic advantage of the passive wingiléyiwas also reported
for the biomimetic wings that are designed to produce cheristic deformation pat-
terns of insects or birds [54].

In insect flight, both the inertial force and the fluid forcendze the primary causes
of the wing deformation. Combes & Daniel [55] compared vilaas of the excited
hawkmothManduca sextaing in normal air and in helium (approximately 15% of the
air density) and noticed that thefidirence in the wing deformation pattern between the
two cases is very small. Their result suggests thatMaeducawing deformation is
mainly due to the inertia force of the wing. In another stu@yenet al.[56] performed
a vibration test of the dragonfly wing and found that the lawesjuency among the
natural vibration modes is on order of 170 Hz, which is muahkr than the flapping
frequency of the insect. Therefore, they concluded thating inertia is small com-
pared to the elastic force for the dragonfly and the wing deé&tion is mainly due to
the aerodynamic force.

From the aeroelasticity point of view, whether the wing defation is caused by

the wing inertia or the fluid force will not onlyféect the deformation pattern but also
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Figure 3.1: Illustration of the wing motion during hoveriflight of an insect.

change the phase of the wing deflection during a flapping cytle therefore worth-
while to investigate the aerodynamic consequences ofghigei Since both situations
exist in insect flight, as seen in the hawkmoth and dragomigstigation of this issue
may provide some biomechanical insight into the morphaalgilifferences between
these insect wings. To address the problem, we have perfoarte/o-dimensional
numerical simulation of the flow—structure interaction ovaring flight and have sys-

tematically studied thefiect of the mass ratio of the wing, defined as

S

psh

s (3.1)

wherepgh is the surface density of the wing; is the density of the air, andis the
characteristic length of the wing. The deformable wing isects represented by an
elastic plate which may undergo large displacements. Torerethe wing model in the
present study has infinite degrees of freedom and can haveatlsocamber, as opposed
to the previous linkage models [51, 52].

Note that experimental measurements of the aerodynante farinsect flight are
typically carried out in water or oil in order to scale up theesof the wing model while
keeping the Reynolds number in the physiological regimef®J. In that case, the hy-
drodynamic pressure is much higher than the inertial fofcee@wing. Therefore, the
effect of the wing inertia could not be addressed in those stutlie also point out that

the dfect of the wing inertia was a topic in a few previous theoedtstudies [60, 61].
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However, these works mainly focused on the thrust generatiot lift production, of
the flexible wings. Furthermore, in Zhu [60] only potentialflis assumed and the vis-
cous dtects including flow separation are completely omitted. Migh& Smith [61]
introduced point vortices into their inviscid flow model tccaunt for the vortex shed-
ding dfect, but the stroke distance of the wing is very small conghaoethe chord

length and flow separation at the leading edge is not included

3.2 Problem formulation

(a) (b)
Xy (1)

Figure 3.2: (a) A schematic of the wing section during hawgtilight. (b) A wing
segment illustrating the in-plane tensienthe transverse stresg and the bending
momentM.

We consider a two-dimensional hovering wing section with ¢hord lengttc, as
shown in Fig. 3.2(a). The wing undergoes a combined transiatand rotational mo-

tion specified at the leading edge [62, 63],

X(t) = %cos(aft) (3.2
a(t) = ag+pBsin(2rft+¢) (3.3)

where xo(t) is the horizontal position of the leading edgs}) is the angle between
the leading edge and the horizontal axis (measured in thetemlockwise direction),
A is the stroke distance of the leading edggis the initial orientationg is the angle

amplitude,f is the flapping frequency, ands the phase dierence between the rotation
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and translation. In the present work, we chooge- -7 and¢ = 0, which corresponds
to the symmetrical rotation [62].

The wing chord is assumed to be elastic and nearly inextensibd its dynamics
is governed by the nonlinear equation

d?x

0
pShﬁ = E(Tt + qn) + f, (34)

whereps andh are density and thickness of the wing, respectively,the unit tangent
vector pointing in the direction of increasing arc lengthfrom the leading edgey

is the unit normal vector, anilis the diference between the distributed loads on the
two sides of the wing. The in-plane tensian,is assumed to be proportional to the

tangential strain so that

oX

olo

ol

dlo

T:Es(

oo

whereEs is the stretching cdicient of the plate, ant} is the arc length in the un-

- 1), (3.5)

stretched state. The transverse strgsss linearly related to the bending momemM,

by

_ M _ 3(Eex)
o ol

(3.6)

whereEg is the bending modulus, ands the curvature [64]. The boundary conditions

atl = 0 include the specified position and orientation, i.e.,
0 .
X = Xo(t), o _ (cosa, sina). (3.7)

ol

At the trailing edge] = c, both the bending moment and the transverse stress vanish,
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which requiresc = 0 anddk/ol = 0. Therefore, we have

%X 3
W = O, W = O (38)

The flow is governed by the viscous incompressible Naviekeét equation and the

continuity equation,

v, M _1op v
e proxox
o\,
= -0 3.9

wherey; is the velocity,os andv; are the fluid density and viscosity, apds the pres-
sure. No-slip and no-penetration conditions are specifidteedlow—solid boundary. To
parametrize the system, we define the non-dimensional giagjuding the normalized

wing stroke, Reynolds number, mass ratio, and frequenay, sahich are given by

Po  Re=ThofC o _psh w2 (3.10)

C Vi pr’ Wn Wn

respectively, wheres = 27f, and

_ ki |Esg
o= 2\ o (3.11)

with k, = 1.8751 is the frequency of the first natural vibration mode efwhng [65].
Physically,m* represents the ratio between the inertial force of the wirdjthe aero-
dynamic pressure, and' represents the wing rigidity.

The equations governing the system, (3.4) and (3.9), ak@dalumerically in an
implicitly coupled manner using an in-house solver. Spesily, the incompressible
flow is solved using a sharp-interface immersed-boundathodaeg32, 66] with a spe-

cial treatment to suppress the pressure oscillations e$sdavith the moving bound-
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aries [67]. In this method, a single-block Cartesian griased to discretize the Navier—
Stokes equation on a rectangular domain, and the ghost aoddsybrid nodes are de-
fined near the fluid—solid interface to facilitate the bougdeeatment at the interface.
The infinitely thin membranous wing is augmented with anfiarél thickness that is

about three times the spacing of the Cartesian grid and asraattcally reduced as the
grid is refined. The wing section is discretized by a set ofraagian points initially

distributed uniformly along the wing. A standard centraltérdifference scheme is
used to discretize Eqgns. (3.4) to (3.8), and Eq. (3.4) isesbiteratively as an inner loop
embedded within the implicit algorithm for the flow—struaunteraction. The flow—

structure interaction is solved at each time step by itegdtne flow and the structural

dynamics until convergence is reached [67].

3.3 Validation of the numerical method

The simulation of the unsteady flow around a thin and rigidgnsicompared with
previous results in [63]. In this test, the wing rotates abits center, whose stroke
distance is denoted b§,. The parameters are otherwise defined in the same way as in
Section 3.2. To match the simulation setédg/c = 2.8 andB = /4 are chosen for the
wing kinematics, and the Reynolds numbeRis= 75. The flow is initially quiescent.
The lift and drag co#éicients for first a few cycles are shown in Fig. 3.3. It can beasee
that the present simulation has very good agreement withnh&3] where a vortex
particle method was used.

The structural solver is validated by comparing the nunaérstmulation of the
small-amplitude vibration in vacuum with the eigenmodeshaf wing structure. To
do this, a sinusoidal translation is specified at the leaéuge and the amplitude of
translation is much smaller than The structural dynamics is simulated in the absence
of the fluid so that there is no damping mechanism. The fregguehthe actuation is

chosen to be either the first or second eigenfrequency ofdiresponding cantilever
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Figure 3.3: (a) Lift and (b) drag céigcients (defined in the same way as in Section 3.5)
from the present simulation (solid) and from [63] (dashed).

beam [65]. Figure 3.4 shows the simulation vibration modgetber with the analytical
eigenfunctions. For the first mode, 20 nodes on the wing afecigunt to capture the
deformation pattern accurately. For the second mode, anb@@-mesh leads to a sat-
isfactory solution. In the flow—structure simulations mmt®d here, 100 nodes are used

in all cases.

3.4 Simulation setup
In the present simulations, we choose the stroke distagpe = 2.5, Reynolds
numberRe = 150, and rotational angjeé = 0, or3 = n/8. The parameters describing
the wing kinematics are selected based on previous worksecirflight [51, 62, 63].
Three mass ratios are consideretl,= 1, 5 and 25, which represent the light, medium,

and heavy wing, respectively. For each of these mass rdtiesrequency ratio* is
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Figure 3.4: Comparison of the simulated vibration mode wh#neigenmode. (a) The
first mode; (b) the second mode.
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chosen to vary among1.25, 71.5, 42, 1/2.5, 13, 1/4, 16, and O, wherev* = 1/1.25
means that the wing is most flexible and flaps near the resémaptency, and* = 0
means that the wing is rigid.

The computational domain (Fig. 3.5) has a size abZ®bc. We have done extensive
tests to make sure that the domain is large enough to acha¢iegastory accuracy of
the results. The entire domain consists of a nonuniformeSah grid of 320« 448
points. The grid contains a horizontal band and a verticatld width 3 in which the
grid points are uniformly and densely distributed such thatgrid spacingax = Ay =
0.02c. A total number of 100 nodes are used to discretize the wimgitargoverning
equation. The time step sizeA$ = 0.0025T whereT = 1/f is the period of a flapping
cycle. The flow solver and the structure solver have beedatd separately as shown
in Section 3.3. In addition, grid refinement has been peréarto make sure that the

simulation results are grid-independent.

3.5 Flexible translating wings without rotation
We first consider the flexible wing driven by the pure transtati.e.,f = 0, at
the leading edge where the wing is clamped. Therefore, ting Wwas to rely on its

deflection to generate a non-zero lift. Fig. 3.6(a) showditheoefficient,

CL = 2F/(p;U%) (3.12)

averaged from 15 flapping cycles, whéfgis the total lift andU = 7Aqf is the maxi-
mum translational velocity of the leading edge. The resu#thown for the mass ratio
m* = 1, 5, 25 and frequency ratio* from 0 to 0.8. Two interesting phenomena can
be observed from this figure. First, for each mass ratio ttseaeparticular frequency
ratio at which the lift force peaks. The peak lift ¢heients for the three mass ratios

are very close to each other, and all are around 0.9. Sedaschdrticular frequency
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Figure 3.5: (a) The computational domain with strectheaicstrral mesh; (b) Immersed
flexible wing; (c) One flapping cycle.

ratio depends on the mass ratio of the wing. For= 25, C, peaks atw* = 0.8. For
m* = 5 and 1, the peaks @, are shifted to the left, taking placeat = 0.5 and 0.4,
respectively. That is, as the mass ratio is reduced, theidmxy ratio for the peak lift
also decreases. Physically, this result means that forgaeywing (largem’), flapping
near the resonant frequency produces higher lift, and ®ligint wing (smallm®), flap-
ping at a frequency much lower than the resonant frequencydymroduce higher lift.
To understand this result, we point out that when the magsisdarge, the fluid force
becomes insignificant compared to the wing’s inertial fpered the flapping actuation
has to be close to the natural vibration mode in order to predignificant wing defor-
mations for lift production. On the other hand, when the mrasis is low, the wing is

deformed by the fluid force, and a lower flapping frequency i@uffice to produce
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the necessary deformation. If the flapping frequency is igh m the case of lown®,
the wing deformation may become exceedingly large, andftheduld drop as shown
in Fig. 3.6(a) for largev*.

Figure 3.6(b) shows the drag dtieient defined as

Cp = 2Fp/(p1U%c) (3.13)

averaged over the 15 flapping cycles. HEggis the total horizontal fluid force on the
wing defined to be positive when it is against the translationotion of the leading
edge. This force can be temporarily negative in a cycle dalegoving deformation, as
seen later. Fom" = 25 and 5, the averagé, changes approximately within 20% @%

is varied. Form® = 1, the averag€p decreases drastically from 2.76 to 0.6%.#9s
increased from 0 to 0.8, and the drag is generally much lolager the other two wings
with the same rigidity. Such a drag reduction is becauseigie Wing is deflected by
the fluid force and its shape is adapted to the drag by redabagontal area. When
w* is large and the wing is more flexible, this self-adaptatifiact becomes more pro-
nounced. On the other hand, whenhgoes zero, that is, the wing behaves essentially as
a rigid plate, the lift cofficient vanishes and the drag ¢@aent approaches the same
constant for all the mass ratios as expected. Note that icdkes ofn* = 25 and 5,
the average drag of a flexible wing{ > 0) can be higher than that of a correspond-
ing rigid wing (w* = 0), which indicates that the inertia-dominated defornraticay
substantially augment the drag force.

The dependence of the lift-to-drag ratio ori andw* is shown in Fig. 3.6(c). It
can be seen that the low-mass wings clearly out-performititeiinass wings when the
wing rigidity is the same. Fom* = 25, the lift-to-drag ratio increases nearly mono-
tonically asw* is raised and the wing becomes more flexible; for= 5, this ratio
increases first and then reaches a plateau of 0.31; amd*fer1, the lift-to-drag ratio

first increases, then reaches a peak of 0.56 araxind 0.6, and finally drops a&* is
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further raised.

To analyze the power consumption, we first define the net p&{gas

P(t) = FxXo + M (3.14)

whereF, andM, are the total force and total torque, respectively, ap@iatie leading
edge to actuate the wing. Note that the second term is zern thleeving has no active
rotation. Next we adopt a conservative assumption thatelgative power in the either
one of the two terms in (3.14) is not reusable. Therefore, &fmd an alternative power
measuremen®, which represents only the positive contributions from the terms
in (3.14). The averaged net and modified powertiicdents,Cp andCp, defined as the
power normalized by (R)p;U3c, are plotted in Figs. 3.6(d) and (e), respectively. For
all three mass ratios, the two power measurements ovetabiexa similar trend. For
m* = 25 and 5, the net power cfieient increases up to 4.2 and 3.0, respectivelyas
is raised, which indicates a significant energy loss due @ddlge wing deformation.
The instantaneous power consumption, as plotted in FigdBfér w* = 0.5, shows
that at these two mass ratios, the net power fluctuates agedanplitude in a flapping
cycle because the energy changes its form between thedkeretirgy of the wing and
the elastic potential stored in the wing. Therefore, if tlgative power is not reusable
as assumed for the modified power, a large portion of the iapatgy would be lost.
This dfect is reflected in Fig. 3.6(e), where the = 25 wing requires a much higher
modified power than the other two wings. Especially when thmgwigidity is low, the
modified power coicient reaches an amount of 12 for = 25. On the other hand,
for m* = 1, the modified power cdicient is close to the net power deient, and
both in general decrease as the wing becomes more flexiblese&s in Fig. 3.7(d)
for w* = 0.5, the instantaneous power ¢heent at this mass ratio is almost always
positive, and its magnitude is much smaller than thatnfior= 5 and 25. Figs. 3.6(d)

and (e) show that the average power consumptiomfot 1 is lowest among the three
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mass ratios. This result is understandable since the witlgwi = 1 experiences a
smaller drag resistance compared to the other two wings.poher economy of the
low-mass wing is further seen in Fig. 3.6(f), where the résgdween the average lift
codficient and the average modified power fméent is shown. For the same amount
of power input, the wing withm* = 1 may produce more than twice amount of lift than
the other two wings. The peak performance gr = 1 is around 0.58, which takes
place atw* = 0.5.

We select a specific frequency ratio; = 0.5, to analyze the details of the force
characteristics and flow field. From Fig. 3.6, the wing fleiiypiat this frequency ratio
has nearly the best lift-to-modified-power performancedibthree mass ratios. Fig-
ure 3.7(a) shows the-component of the displacement of the wing tail with respect
its undeformed configuration fon* = 25, 5, and 1. At this frequency ratio, the max-
imum displacement is more than 50% of the chord length inha#lé cases, while the
wing with m* = 1 has largest amplitude. The positions of the positive arghines
peaks in the displacement indicate that there is a signtfighase dference among
the three cases. Fon* = 25, the maximum displacement almost always takes place
at the stroke reversals, e.g)T = 12.0, 12.5, 13.0,.., and so on. Fom* = 1, there
is a phase delay of approximatety4 in the maximum displacement. In addition, the
wing displacement in this case becomes highly asymmettiwdsn the forward and
backward strokes, as indicated by the appearance of twaspedke first half-stroke.
This interesting deformation pattern will be discussedrl&agether with the flow field.

Figures 3.7(b) and (c) show the corresponding lift and doaficients to the wing
displacement shown in Fig. 3.7(a). The two heavy wings, @aflg m* = 25, produce
a large amount of negative lift every time after the wing pagtie middle point of the
stroke, at which the wing has recovered to from its deforomatind is overshooting
and bending forward. In comparison, the light wing with = 1 has typically a non-
negative lift codicient throughout the multiple flapping cycles. In the dragjdny, the

two heavy wings cause much higher drag than the light wind,tha peak drag takes
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Figure 3.6: (a) Lift, (b) drag, (c) lift-to-drag, (d) net pew (e) modified power, and
(N lift-to-modified-power coéicients of the flexible wing without active rotation and
m* = 1 (solid), 5 (dashed), and 25 (dash-dotted).
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place when the wing has the maximum translation and is n@adyvertical position.
For m* = 1, the peak drag happens when the wing has the maximum trianslia
velocity and the least frontal area, or when the wing is masgats shape prior to the
stroke reversal, at which point the wing has slowed downrésdiational movement.
In either case, the drag is reduced considerably. The gunesng power ca@cients
for the three mass ratios are plotted in Fig. 3.7(d). Noté shece the rotational term
in Eqg. (3.14) vanishes @ = 0, Cp is exactly equal to the positive portion Gk in
this case. Comparing the three mass ratios, we find that terpmedficient has least
fluctuations form* = 1. In addition, the power peaks have more time delay wheis
lower. Form® = 5 and 25, the power reaches its maximum magnitude near thieestr
reversals due to the inertial acceleration or deceleratiahe wing.

The instantaneous vorticity field in an entire flapping cyehel the corresponding
wing configuration are shown in Fig. 3.8 for = 5and 1 atv* = 0.5. There are several
similarities in the vortex behavior between the two cases.example, a leading-edge
vortex (LEV) is generated during each half-stroke and is tieecaptured by the wing
during its return trip after the stroke reversal (e.g., tbsifive vortex blob at/T = 130
and the negative blob &T = 135). The LEV moves downward along the cambered
wing and may merge with the trailing edge vortex (TEV) [68]tloé same sign that is
being formed (e.g., the positive blobtaT = 13.1 and the negative blob BT = 13.6).
The merged vortex is strengthened and meanwhile stretchetebtrailing edge as
shown by the positive vortex band gfT = 133 and also by the negative band at
t/T = 13.8. The gradually thinned trailing edge vortex eventuallygbies & in the
middle (e.g., the filament between two positive blobg/at = 135). The portion
that attaches to the trailing edge, now termed the endrokstvortex (ESV) [51], has
been evolving during the stroke reversal while the wing &aeng its shape and then
deforming in the other way (e.¢/T = 133 to 13.6). After the TEV breaksfiofrom
the ESV, it travels downward in the wake, while the ESV lalspaletaches from the

trailing edge but may temporarily move upward before dieapimg or merging into
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Figure 3.7: Histories of (a) the tail displacement in #adirection, (b)C,, (c) Cp, and
(d) Cp for w* = 0.5 andm* = 1 (solid), 5 (dashed), and 25 (dash-dotted).
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Figure 3.8: A series of instantaneous vortex field in a flaggycle forw* = 0.5, m*=5
(first and third columns) and = 1 (second and fourth columns). The contour level
ranges from -3.2/cto 3.24J/c.
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the downwash. The wake below the hovering wing is marked bgilagh TEVs with
opposite signs that are generated by the two half-strokesomplete cycle.

The diferences in the flow field between = 5 and 1 are also evident. First,
the size of the LEV fom* = 5 is generally larger than that fon* = 1. Second, the
stretched trailing edge vortex fon* = 5 is aligned more in the horizontal direction,
while it is more in the vertical direction fom* = 1, as shown in the frames from
t/T = 134 to 13.7. These flow features are consistent to the highgrfdrenation for
m* = 5. Furthermore, a substantial portion of the flow in the cdsa'o= 5 travels in
the horizontal direction, or even in an upward directionjlevin the case ofn* = 1,
the flow mainly travels downward, leading to superior enefiigiency of this wing.
Form* = 1, the unsteady vortices may cause aperiodic vibration @fwimg. This
phenomenon is illustrated in the framg$ = 132 to 13.4, where a blob of negative
vortex passes underneath the wing, causing the wing to téblethe second time in
the same half-stroke.

The distinct vortices have been indicated in Fig. 3.8. Tongjifiathe strength of
these vortices, we first visualize the vorticity field usiogtour lines. After each vortex
is manually identified, a closed contour line is generatediiaa this vortex with the
specified level, and then the circulatidnis computed along this line. Though the
magnitude of the circulation depends on the chosen conewal,|the characteristic
behavior of the vortex is notfiected by this choice. The computed circulations of the
LEV, TEV, and ESV are shown in Fig. 3.9 for the vortices indigchin Fig. 3.8. It can be
seen that the LEV fom" = 5 is much stronger than the corresponding vortexrioe 1
over a significantly long period of time. The TEV is initialgronger form* = 5, but
after breaking up, it has a similar strength for both masesafurthermore, the timing
of the LEV and the TEV is similar for the two mass ratios. It slibbe pointed out
that the diference between the LEVs and between TEVs shown in Fig. 3&iriyg f
consistent for dterent wing strokes, but theftirence between the ESVs is not. The

appearance and strength of the ESV vary from stroke to stewicethey depend on the
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evolution of the LEV. For example, in Fig. 3.8 for = 5 fromt/T = 130to 13.1, the
LEV moves along the wing to the trailing edge and suppressaddtion of the ESV.
Consequently, the ESV fan* = 1 is stronger during that stroke reversal (this ESV is
visible in Fig. 3.8 but is too weak to show up in Fig. 3.9).

Generally speaking, the strength and timing of the vortltage important conse-
guences on the force production of flapping wings. In thegresase, the three types
of vortices have both positive and negatifieets on the wing performance. For ex-
ample, during the translational stage, the LEV and the THYsedhe flow to circulate
around the leading edge and the trailing edge, reducingrésspre dierence between
the two sides of the wing and thus lowering the lift. Howewtbg shed vortices pro-
vide lift augmentation through the wake-capturing meckieniThis &ect can be seen
from Fig. 3.8 at/T = 13,6, where the LEV and ESV create a flow directed against the
wing and thus the lift is enhanced. The lift enhancementattioment is seen from
Fig. 3.7(b), where ther = 5 wing has significantly higher lift than the* = 1 wing at
t/T = 136.

3.6 Flexible translating wings with rotation

Next we consider the situation where the wings both traesdad rotate actively
around the leading edge with an amplitudeBof =/8. Onlym* = 5 and 1 are con-
sidered here. Figure 3.10(a) shows the averaged liffficeent C, of the wing. The
corresponding non-rotational cases are also includederfigure for comparison. It
can be seen that for both* = 5 and 1, adding a moderate amount of active rotation
significantly increases the lift force for a rangewf. Whenw® is large and the wing
is very flexible, the active rotation reduces the lift instelue to the upward swinging
motion of the wing tail. The frequency ratio of the rotatibomang at which the lift
peaks is lower compared to that of the corresponding natiooial wing. Therefore,

when the wing is actively rotating, less structural flextils needed for lift enhance-
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Figure 3.9: Histories of the circulation for the vorticesthe flow at3 = 0, w* = 0.5,
m* = 1 (solid lines) and 5 (dashed lines); the vortex type andpleeified contour level
are: LEV with +3.95U/c (thick lines), ESV with+1.9U/c (squares), and TEV with
+3.95U/c (thin lines).

ment. Furthermore, like the non-rotational wings, thediftves of the rotational wings
also have a peak value whose amplitude is insensitive to iting mvass ratio but whose
corresponding frequency ratio exhibits a left-shift treviten the mass ratio is reduced.
The average drag cficient is shown in Fig. 3.10(b). The active rotation reduces

the drag for bothm® = 5 and 1 for all the frequency ratios. In addition, theéeet of
the frequency ratio on the drag dheient for the rotational wings is similar to that
for the corresponding non-rotational wings. That is, igr = 5, the drag cocient
only changes slightly when the wing becomes more flexibleledbr m* = 1 the drag
codfticient reduces significantly. The lift-to-drag ratio in F&10(c) shows that the
combination of the active rotation and passive wing defdimnaimproves the wing
performance by 66.7% fam* = 5 and 38.7% fom* = 1. Compared to the wings
without rotation, the optimal frequency ratio for the lii-drag ratio is shifted to a lower
value for the wings with active rotation. For battii = 5 and 1, this value is around

w* = 0.4. As a reference, we provide the lift dGeient, the drag cdé&cient, and the
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lift-to-drag-ratio of a rigid wing performing the same tedation at the leading edge but
rotates with an amplitude ¢f = n/4. The Reynolds number is alste = 150 for this
rigid wing. The results are shown in Fig. 3.10(a,b,c) as thtéed lines. Comparing this
rigid wing with the flexible wings that has less active ratatiwe notice that the flexible
wings may generate higher lift when they have a proper figitut the reference wing
has considerably lower drag. In terms of the lift-to-dratipronly the light wing with
m* = 1 can out-perform the reference wing by a small amount (at@%a). This result
suggests that there may be an optimal combination of theeawfing rotation and the
passive wing deformation.

The active rotation has a similaffect on the powerféciency of the flexible wings.
Figures 3.10(d) to (f) show the net power io@ent, the modified power céigcient, and
the lift-to-modified-power ca@cient, respectively. Overall, introducing active rotatio
reduces the power requirement and significantly improvesptbwer &iciency. The
frequency ratio for the optimal power performance is dowiitsd to 0.35 for the wings
with active rotation, regardless the mass ratio. Finallypeint out that in both the lift-
to-drag and lift-to-modified-power measurements, the wiiyp m* = 1 significantly
out-performs the wing witim* = 5 by 34% forC,_/Cp and 71% forC, /Cs.

Figure 3.11 shows the-displacement, lift, drag, and power histories of the rota-
tional wing atw* = 0.4. There is again a phase delay in the displacement of the wing
with m* = 1 compared to that fom* = 5. Although the light wing does not have an
obvious double-peak displacement within a single hatikgras shown earlier for the
corresponding non-rotational wing, the deformation haslye plateau after the wing
passes the mid-stroke point. The peak liftfior= 1 takes place at the mid-stroke point
where the wing has the maximum translation. Ror= 5, the peak lift point during
second half-stroke also takes place at the mid-stroke dminit is brought earlier dur-
ing the first half-stroke. The drag histories are in phasé wdch other for the two
wings, but than* = 5 wing clearly produces a higher peak drag when the wing passe

the mid-stroke point. The histories of the net and modifiedgrocodficients, plotted
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Figure 3.10: (a) Lift, (b) drag, (c) lift-to-drag, (d) netwer, (e) modified power, and (f)
lift-to-modified-power co#ficients of the flexible wing with active rotatigh= 7/8 for

m" = 1 (thick solid) and 5 (thick dashed). The corresponding ttatthe non-rotational
wing are shown as thin lines. The dotted lines in (a) to (c)farg¢he corresponding
rigid wing with a rotation angle g8 = x/4.
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in Fig. 3.11(d,e), show that the power input has large flueina form* = 5, especially
before and after the stroke reversals when the wing expergetine maximum inertial
deceleration or acceleration. On the other hand, the pawpertiform* = 1 is nearly
always positive and has a much lower amplitude of fluctuation

The flow field is shown in Fig. 3.12 fan* = 5 and 1 atw* = 0.4. Comparing this
figure with Fig. 3.8, it can be seen that the LEV now becomesmtached to the rear
side of the wing due to the active rotation and an on-averadeaed angle of attack at
the leading edge. Compared the flow fields betweer:= 5 and 1, we see again that
the LEV of the light wing is smaller in size than that of the Weaving. In addition,
the vortices have less upward movement in the case‘'cf 1, and the vortex pairs
in the wake are more evenly spaced comparethtc= 5. Using the same approach
described earlier, we compute the instantaneous cironkatior the LEV, TEV, and
ESV identified from the vorticity contours shown in Fig. 3,52d the result is plotted
in Fig. 3.13. Like the non-rotational wing, the LEV and the\l &re again consistently
much stronger fom* = 5 than form* = 1, while the diference between the ESVs of the
two wings may vary for each stroke reversal. Among thesesthoetices, the LEV and
the ESV have a significant contribution to the lift during theke capture. Therefore,
immediately after the right stroke reversals (etgrl, = 13.1), the wing withm = 5 has
both stronger LEV and ESV and thus a much higher liftfiornt than the wing with
m* = 1; while immediately after the left stroke reversals, theagwvith m* = 5 has a
stronger LEV but a weaker ESV (e.¢).T = 13.6), thus the wing has only a moderately

higher lift codficient than the wing witim* = 1, as shown in Fig. 3.11.

3.7 Discussion
According to the insect data in [55], a hawkmdtlanducawing has a chord length
on order of 10 cm and an approximate thicknesk ef45um. Using the wing density

ps = 1200 kgm?® and the air density; = 1.2 kgym?®, we obtain the mass ratior =
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T

Figure 3.11: Histories of (a) the tail displacement in tdirection, (b)C_, (c) Cp,
(d) Cp, and (e)Cp for w* = 0.4, m" = 1 (solid), 5 (dashed), and the rotational angle
B =n/8.
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Figure 3.12: A series of instantaneous vortex field in a flagmycle forg = x/8,
w* = 0.4, =5 (first and third columns) anal* = 1 (second and fourth columns). The
contour level ranges from -3/ cto 3.2J/c.
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Figure 3.13: Histories of the circulation for the vorticeghe flow a3 = 7/8, w* = 0.4,
m* = 1 (solid lines) and 5 (dashed lines); the vortex type andpleeified contour level
are: LEV with £3.95U/c (thick lines), ESV with+1.9U/c (squares), and TEV with
+3.95U/c (thin lines).

psh/(osc) = 4.5. Chenet al. [56] measured the natural frequency of the dragonfly
wing (Orthetrum pruinosunand Orthetrum sabing In their study, the wing has a
dimension of 38 mmx 8 mm, and the wing mass is 2.5 mg. Based on these data,
the mass per unit wing area is aroyngh = 8.2 mgmn?, and the mass ratio is‘ =
0.85. Therefore, the hawkmoth and dragonfly wings correspouadhly to them* = 5
and 1 cases, respectively, in the present simulations, laaving inertia seems to
play different roles in the structural deformation in these two itsseChenret al. [56]
found that the flapping frequency of the dragonfly is only dabb®f6 of the natural
frequency of the wing. Their finding is thus consistent to msult that for the low-
mass wing to have best performance, the flapping frequenaylégtbe much lower
than the resonant frequency. Our simulation further suggéat the dragonfly could
have taken advantage of the low mass ratio of its wings fidcient lift production.
We should point out that a direct comparison of the aerodynaerformance between

the dragonfly wing and the hawkmoth wing is not possible tglothe present work,
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since the three-dimensionafect, which is an important factor in insect flight, is not
considered here.

Finally, we should note that the mass ratio of an insect wiag ot be reduced
arbitrarily, even though reducing the mass ratio more mathé&n improve the wing
performance aerodynamically. This is because the wings&edhaintain at least a
minimal thickness to achieve the necessary rigidity angliggsiological functions. In
some insect wings, certain structural features may helpceedhe wing mass while

retaining the necessary ftiess, e.g., corrugations of the dragonfly wing [69].

3.8 Conclusion
In this study the fluid-structure interaction of a two-dirsemal hovering wing is
numerically simulated in order to investigate thieeet of the wing inertia on the wing
deformation and the aerodynamic performance. The wingranpetrized by a nondi-
mensional mass ratio and a frequency ratio representingitigeflexibility. The mass
ratio is taken from the physiological data of insects. Teutation shows that when
the amount of deformation is about the same, the low-masg as consistently bet-
ter performance than the high-mass wing in terms of thddHthag ratio and power
efficiency. Therefore, the present result suggests that the filuce dominated wing

flexibility has aerodynamic advantages over the inertisddalominated flexibility.
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CHAPTER 4

HYDRODYNAMIC INTERACTION OF OBLIQUE SHEETS IN TANDEM
ARRANGEMENT

4.1 Background

Vortex-induced vibration is a common phenomenon for etdstidies immersed in
flow, and it has a broad range of applications in the engingetesign of aerospace
and civil structures. The underlying fluid—structure iattion in this phenomenon has
been discussed extensively in literature [70]. In its eapyplications, vortex-induced
vibration is generally deemed harmful to the system and shosild be avoided during
the design process. Recently, this phenomenon has bearexjgls a mechanism for
harvesting energy from the flow. For example, Bernitsiaal. [71] presented a hydro-
electric device in which vortex shedding from a group of egters causes the cylinders
to vibrate and the vibration is then converted to elecfritirough the electromagnetic
system on the tracks of each cylinder’s axle. In Akayelial. [10] and Liet al.[11],
thin elastic structures with built-in piezoelectric maas were used to convert the ki-
netic energy of the vibrating structures into electricity.those piezoelectric devices,
the elastic sheet is either mounted transverse to the flojofldarallel to the flow [10].
In the latter case, vibration of the sheet is sustained bydnices shed from a biti
body located upstream. In all these examples, the systemagse is sought, instead of
being avoided as in early applications, to maximize thematkof energy conversion.

When multiple oscillators are placed in close range in a floydrodynamic inter-
action among the oscillators would be unavoidable (Fig).4limay be possible to
utilize such interaction to improve the energy harvestiaggrmance of the oscillators.

The basic idea is that the overall capacity of a group of agevexceeds the sum of the
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individuals operating independently. Analogies in nawiréhis idea are the schooling
behavior of fish and the formation flight of birds, where therals are likely able to
save energy by taking advantage of the vortices shed fromréighbors [72—74]. Mo-
tivated by the application of the piezo-sheets in energgpecton and inspired by the
animal behaviors in nature, in the present work we conshiehydrodynamic interac-
tion of two elastic sheets that are placed in tandem in a trears.

For vortex-induced vibration, an elastically mounted mglér is a classical config-
uration to study the fundamental fluid—structure intemactiA comprehensive review
of this model problem can be found in Williamson & Govardh@@][ The hydrody-
namic interaction between two closely placed bodies is sigdied frequently using
two cylinders. The cylinders may be fixed [75] but more oftea allowed to vibrate
freely [76—78]. Zdravkovich [76] provided a review of vilbi@s of two cylinders
in tandem, side-by-side, and staggered arrangements. hEdahdem arrangement,
Zdravkovich described several experimentally observegasse types of the cylinders
and briefly sketched two interference mechanisms that leatiaty of vibration be-
haviors. These are the so-called gap-flow-switch mechamidnch takes fect in the

region of 1< d/D < 3.5, and the wake-displacement mechanism, which takKeste

Figure 4.1: Illustration of leaves in the wind.
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in the region ofd/D > 3.5. Hered denotes the center-to-center distance Bnthe
diameter of the cylinders. The mainfidirence between the two is that in the former
mechanism the downstream cylinder disrupts vortex shgddom the upstream cylin-
der, while in the latter the downstream cylinder fieated by the upstream vortices but
it does not in turn change the vortex shedding event of th&eeg® cylinder. Boraz-
jani & Sotiropoulos [78] numerically studied two cylindarstandem at a distance of
d/D = 1.5 and further discussed the underlying vortex-vortex antexecylinder in-
teractions. They systematically varied the reduced vl@id determined the lock-in
region within which both cylinders undergo increased amafdimated vibrations. Ac-
cording to their conclusion, the direct exposure to the $teeam by the displaced rear
cylinder initiates a flow through the gap region created dude relative position shift
of the two cylinders in the transverse direction, and sucaaflpw is the key to sustain
the large-amplitude oscillations of the cylinders.

Compared to the cylinders with elastic foundation, ostidlas of deformable bod-
ies such as thin-walled structures in tandem arrangememr stadied much less fre-
quently. Having more degrees of freedom, deformable boai@g interact with the
flow in more complex manners than rigid bodies. In the caseofalastic sheets con-
sidered here, vortex shedding i$exted by the movement as well as the shape change
of the sheets. Furthermore, since the sheets will be clampeghe side in the current
study, the relative position of the sheets in the cross-flmaction does not change as
the two free cylinders would. As a result, the rear sheetislimectly subject to the free
stream, and the mechanism used to explain the excitatidmeofytlinders [78] is thus
not be applicable in the present study.

It should be noted that deformable bodies in tandem arraagehave been studied
in the context of flapping flags, e.g., Ristroph & Zhang [79] &tu [80]. In those stud-
ies, two highly flexible filaments pinned at the leading edge are aligned along with
the free stream. It was found that like the cylinders, boghftbnt and rear flags can be

affected by the wake interference. However, the front flag'dlasion is typically sup-
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(a) (b)

Figure 4.2: (a) Two elastic sheets in tandem mounted olijga¢he free stream, where
ap IS the mount angley is the pitch angle used to measure the passive rotationwand
is the tip displacement. (b) A segment of the sheets showagtplane tension, the
transverse stresp and the bending momeM.

pressed compared to the single flag, while the rear flag'slatsch can be increased.
In the present study, the two elastic sheets are obliquestiéle stream and are clamp-
mounted, and it is not straightforward to predict the defation modes and the energy
levels of the sheets. We also point out that in the studieBeofiapping flags, the bend-
ing rigidity of the structures is very low and may be on ordet@* when normalized
by the freestream properties (density and velocity) andahgth of the flags [80]. As
a result, the flags exhibit high modes of deformation undefftbw-induced vibration,
and traveling waves are formed along the flags. From the gr®yesting perspective,
little energy is stored in such structures. In the presentigoration, the elastic sheets
are mounted obliquely to the flow to facilitate flow instatyiland vortex shedding, and
the setup will allow the induced vibration to happen at muiginér bending sfiness.
This feature could be desirable for the purpose of energyelséing.

In the present study, we will investigate that for given #taproperties, whether
there is a particular distance at which the hydrodynameradtion would enhance the
vibration of both front and rear sheets and what would be é&stctmechanism for such

interaction.
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4.2 Problem formulation and numerical method
We consider a two-dimensional configuration as shown in &ig(a), where two
identical elastic sheets of lengithare clamp-mounted in tandem and are oblique to the
flow with an anglexy. The distance between thendsThe sheets are nearly inextensi-
ble but can have dynamical bending. The balance of the atéotice, the elastic force,
and the hydrodynamic load for each sheet is governed bywolpequation [64]

d?x

P
pshz = =t +an) +f, (4.1)

whereps andh are the density and the thickness of the sheet, respectivslthe unit
tangent vector pointing in the direction of increasing &mgthl from the base to the
tip, n is the unit normal vector, anidis the diterence between the distributed loads on
the two sides of the sheet. The in-plane tensiois assumed to be proportional to the

tangential strain so that
ol

T= ES(8|O

_ 1), 4.2)

whereEs is the stretching cdicient andl, is the arc length at the unstretched state.

The transverse stregs,is linearly related to the bending momeht, by

_ M _ d(Egk)
R T

(4.3)

whereEg is the bending cd@cient, andk is the curvature [64]Eg is related to Young'’s
modulusk by Eg = EI, wherel is the second moment of inertia of the cross sec-
tion. Note that structural damping is not included in thespré model. The boundary

conditions at the base include the specified position arehtation, i.e.,

O0X .
X = Xo, i (cosay, Sinay). (4.4)
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At the free end] = L, both M andq vanish, which requiregs = 0 anddk/dl = 0.
Therefore, we have [64]

%X 93X

W = O, W = O (45)

The flow is governed by the viscous incompressible Navieké&dt equation and the

continuity equation,

o v 1dp, P

ot dx,  prox faxJ?’
8vi
= = o, 4.6
x (4.6)

wherey; is the velocity,o; andv; are the fluid density and viscosity, apds the pres-
sure. No-slip and no-penetration conditions are specifititesfluid—solid interface.

The equations governing the system, (4.1) and (4.6), aredalumerically in a
coupled manner using an in-house solver. Specifically, tveift solved using a sharp-
interface immersed-boundary method [81]. The thickneskegheet is assumed to be
small so thah << L. In the numerical method, the sheet is augmented with an arti
ficial thickness that is about three times of grid spacingiadothe sheet. A standard
central finite-diference scheme is used to discretize Eq. (4.1), which is dadleea-
tively as an inner loop embedded within the iterative alidponi at each time step for the
fluid—structure coupling. More details about the numenathod can be found in our
previous publications [82, 83].

The non-dimensional groups in this problem include the ceduistance between

the sheetg]/L, the Reynolds number

Re= 2L 4.7)

Vi

56



the mass ratio,

= P (4.8)
ptL
and the Strouhal number,
L 4.
St, R (4.9)

where

_ K |Ee
f= 57 o (4.10)

andk, = 1.8751, is the natural frequency of the first vibration modeslam the Euler-
Bernoulli beam theory [65]. Note that* represents the ratio between the inertial force
and the dynamic pressure of a sheet vibrating in an othemuigsscent fluid. A large
value of m* means that the inertial force of the sheet is higher than the force.
The stifthess of the sheets is representedSty The amplitude of vibrationAy, is
defined by dividing the peak-to-peak displacement of the &ed of the sheet by two.
In addition, we define the pitch angle, as the angle from the-axis to the straight line
connecting the base and tip of each sheet (see Fig. 4.2(a))wea calculate the total

hydrodynamic torque on each sheet by integrating along &lae#t according to

L
T:j;(x—xo)xfdx (4.112)

wherexg is the base point of the sheet.

Unless otherwise note®&e= 300 is used in the simulation. The Strouhal number is
St = 0.2, which is chosen so that the natural frequency is closegtoditex shedding
frequency. In the literature, the inverse $f, or the reduced velocityf,L/U, is also

often used to represent the frequency of the structure. YWhesenass ratio to be* = 1
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or 5. Note that whei$ t, is fixed, the sheet witim* = 1 is more flexible than the sheet
with m* = 5. The specific values ofi* are chosen based on the insect wing data [84],
wherem* = 5 means that the wing inertia is dominant and= 1 means that the wing
inertia and the fluid force are comparable. Interestindigse values fall within the
range of data for tree leaves, as shown by a straightforwalailation based on the
data given in Milla & Reich [85]. The mount angle is chosen &xlg = 60°, which
represents the angle between tree leaves and wind.

The computational domain is a rectangular box df 4®22L in size, and a nonuni-
form Cartesian grid of 44% 324 points is used to discretize the entire domain. The
minimum grid spacing around the sheets i8ZBL in both x- andy-directions. The
non-dimensional time step i#U/L = 0.0125. To confirm that the grid is ficient, we
have doubled the resolution in both directions around tleetsh The result is shown
by plotting the history of the tip displacement in Fig. 4.3 fwth the front and rear
sheets am* = 1 andd/L = 1.2. The comparison indicates that the current resolution is
satisfactory. Furthermore, we have done a few tests toprdt the current size of the

computational domain is large enough.

4.3 Results: the characteristics of vibration

We vary the separation distana®/L, from 1.2 to 6 while keeping all the other
variables constant. The statistics are calculated fromentlmain 20 cycles after the
vibrations of the sheets are fully established. Fig. 4.4nshthe reduced vibration
amplitude,An/L, for bothm* = 1 andm® = 5 as a function ofi/L. As a reference,
the amplitude of the corresponding single sheet is alsdguotNote that the mean
displacement has been excluded from the definition of theatidm amplitude. It can
be seen that for both mass ratios, there is an obvious redidpLowithin which the
oscillations of the two sheets are significantly higher thaat of the single sheet. In

particular, the rear sheet is greatly excited, and its doqgi can be a few times as
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Figure 4.3: The tip displacememnty/L, of the front sheet (a) and of the rear sheet (b)
form* =1 andd/L = 1.2.

high as that of the front sheet. We will refer this phenomeasithe system resonant
behavior and will focus on the detail of the fluid—structurieraction at this state. Such
resonance was also seen for two elastically mounted cybnd®] when they are in
close proximity and when the Strouhal number is adjustedaimper range. However,
as discussed in Section 4.1, there are importaterdinces between the thin sheets and
the cylinders.

Fig. 4.4 also shows that the region of resonance and the moagnof vibration
vary depending on the mass ratio. Faor = 1, the region of resonance ranges from

the lowest separation distance that we testitl, = 1.2, to approximatehyd/L = 4.
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Figure 4.4: The time-averaged vibration amplitude agaimstseparation distance for
(@)m*=1 and (b)m=5.
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The peak oscillation is achieved aroudfl. = 1.5. At this distance, the oscillation
amplitudes of the front and rear sheets are respectivetetamnd seven times that of the
single sheet. Fam* = 5, the region of resonance is narrower, frdph = 2 tod/L = 4.
However, the excited sheets at this mass ratio are much nibranv than those at
m* = 1. The peak oscillation takes placeddL = 2 and the oscillation amplitude has
reachedA,, = 0.15L for the front sheet and\,, = 0.65L for the rear sheet. These two
values are respectively eight and forty times of increaserwdompared with that for
the corresponding single sheet. As the separation distarfagher increased beyond
d/L = 4, the oscillations of the two sheets approach to that of ithgles sheet due to
the weakening interaction between the sheets.

The vibration patterns of the sheets are shown in Fig. 4.3Hemresonant cases.
Also plotted is the single sheet at the corresponding mdgssralt can be seen that
in the case ofn* = 1, the mean deformations of the sheets are greater than dfiose
the sheets in the case of = 5. This is because the low-mass-ratio sheets also have
lower stifness when their natural frequencies are fixed. On the othet, ket high
mass ratios, the hydrodynamic forces are smaller compartitetinertial force of the
sheets. Therefore, due to the reduced damperttiegtedrom the fluid, the sheets with
high mass ratios may have stronger vibration, which is iddgsen here in the case
of m* = 5. Another observation from Fig. 4.5 is that the deformapaitterns are of
the first-mode type, and the magnitude of the displacemeasi¢asly large enough for
nonlinearity to occur in the dynamics of the sheets.

To quantify the energy level of the sheets, we calculate thetic energyEy, and

the elastic potentiak:, using the following expressions

s ol

1 L
E, = 5 fo = (4.12)

The total energy is thul; = E, + E,. In Fig. 4.6 we plot the time-averaged total energy
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Figure 4.5: Deformation patterns of a single sheet (a,c)tadsheets at the resonant
state (b,d), where the mass rations = 1 in (a,b) andn* = 5 in (c,d). The separation
distance igd/L = 1.5 in (b) andd/L = 2 in (d).
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Figure 4.6: The normalized energy (pyU?L?) of each sheet for (ahn*=1 and (b)
m*=5, where the energy includes both the elastic potential la@#inetic energy.
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normalized byp;U?L2. It can be seen that the trends in this figure are very similar
to those in Fig. 4.4 for the vibration amplitude. That is, le¢ system resonance, the
energy level of both sheets is much higher than that of thglesisheet, and the rear
sheet is more energetic than the front sheet.

In Fig. 4.7(a), we plot the ratio between the vibration freqey, f,, and the natural
frequencyf, to show the relationship between these two frequencies i@t vortex-
shedding synchronization, which will be described latee, two sheets vibrate at the
same frequency. Therefore, only one frequency graph isgaldor each mass ratio. In
addition, the vibration frequency of the single sheet ip glotted as a reference. The
result shows that the frequency of a single sheet is significhigher than the natural
frequency, withf,/f, = 1.5 form* = 1 andf,/f, = 1.2 for m* = 5. The vibration
frequency is not exactly the same as the natural frequendiieoEheet because the
oscillator has been detuned by vortex shedding and is edgagee “soft” lock-in
vibration [77]. When the two sheets are arranged in tandeetfréquency of the sheets
becomes lower than that of the corresponding single sheetheAsystem resonance,
the oscillation frequency of the sheets reaches its lonasiey which isf,/f, = 1.13
form* = 1 andf,/f, = 0.92 form* = 5.

Fig. 4.7(b) shows the phase advance angle of the rear shibatespect to the front
sheet, where the phase angle changes fraim —0.757 as the separation distance is
increased from 2L to 6L. Therefore, the sheets are out of phase with each other when
they are very close to each other. At the resonant state,ithsepangle is.@5r for
m* = 1 withd/L = 1.5, and it is 037 for m* = 5 with d/L = 2. As shown later,
such phase tlierences between the sheets will prevent the free streamdnautly
impacting on the rear sheet.

Fig. 4.8 shows the time course of the tip displacemenit,, for the two sheets at
the resonant state. For the first case where- 1 andd/L = 1.5, we see that both the
front sheet and the rear sheet experience steady osciliadiad there is little cycle-to-

cycle variation. For the second case where= 5 andd/L = 2, we see that other than
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Figure 4.7: (a) The normalized vibration frequenty,f,, and (b) phase fierenceAg,
for m* = 1 (squares) anth* = 5 (crosses). A positive value adfp means that the rear
sheet is advanced with respect to the front sheet.
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Figure 4.8: Time courses of the tip displacemevit,, for the resonant cases: fa) = 1
andd/L = 1.5 and (b)m* = 5 andd/L = 2. Thick line: the front sheet; thin line: the
rear sheet.

the main oscillation frequency, there is also a low-fregquyemaveform that governs the
cycle-to-cycle variations of each sheet. Furthermorentbdulating wave for the front
sheet is out of phase with that for the rear sheet. Therefdren the rear sheet has large

oscillation amplitude, the front sheet has low oscilla@onplitude, and vice versa.

4.4 Mechanism of the system resonance
4.4.1 Flow analysis for the single sheet
Vibration of an elastic body has to do with the magnitudegdiency, and phase
of the external load acting on the body. To better understaadehavior of the two
sheets, we shall examine these force characteristics adg thieir relationship with the

vortex shedding in the flow. For comparison, we first brieflycdiss the result for the
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case of the single sheet. Fig. 4.9(a,b) shows the vortexdamggattern for the single
sheet am" = 5. The flow pattern fom* = 1 is similar and is thus not plotted. For both
mass ratios, the deformation of the single sheet is small tlag& wake pattern is close
to that of a rigid sheet. That is, the positive and negativéiaes in turn pinch & from
the sheet and form a vortex train in the wake.

Fig. 4.9(c,d) shows the fluctuating components of the pitafileex and hydrody-
namic torquer, o’ andT’, for the two mass ratios. The mean valuesradnd T are
subtracted when calculating the fluctuating componentsthEtmore, the torque has
been normalized by.Bp;U?L2. Compared ton* = 1, m" = 5 has greater torque oscilla-
tions but it has a smaller vibration amplitude. The reasdhasthe sheets are gar for
m* = 5. Another observation is that for both mass ratib'sis nearly out of phase with
a'. That is, T’ reaches the peak value when the sheet has its maximum déimmma
Note that at the maximum deformation, the velocity of theesle at the lowest level.
Therefore, the energy flow at the moment is limited becauséaite and the velocity
mismatch. For a simple linear mass-spring-damper systaiettperiences resonant
vibrations under a sinusoidal load, the external force hatsase lead of with respect
to the displacement of the mass. In that case the work is doae tdficient” manner
because the force and the velocity of the mass would be irepdrad both would reach

the maximum values at the same time.

4.4.2 Resonant vibration of two sheets an* = 5andd/L = 2

When the two sheets are placed in close range, the vortiass fsbim the front
sheet and the vortices from the rear sheet interact with eter. \We will discuss three
factors that have contributed to the observed system rasené&irst of all, the vortex-
vortex and vortex-sheet interactions in the tandem arraege alter the frequency of
vortex shedding for both sheets and makes the frequenogrdlmthe natural frequency

of the sheets. Second, for the front sheet, the phase slwieba its hydrodynamic
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Figure 4.9: (a,b) Instantaneous vorticity field (left colnand pressuyeelocity (right
column) for the single sheet at* = 5. The vorticity ranges from3U/L to 3U/L and
pressure from-p;U? to 3p;U2. (c,d) The fluctuating components of the pitch angle and
the torqueq’ andT’, for m* = 5 (c) andm® = 1 (d).
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Figure 4.10: See next page for the caption.
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Figure 4.10: (a-e) Instantaneous vorticity field (left col) and pressureelocity (right
column) for two sheets ab* = 5 andd/L = 2. The contour levels are the same as in
Fig. 4.9. The fluctuation components of the pitch angle angut® are shown in (f) for
the front sheet and (g) for the rear sheet.

torque and its pitching motion becomes beneficial for thegnegansfer between the
fluid and the sheet itself. Third, for the rear sheet, greatef@scillations occur when
the vortices shed from the front sheet merges with its owricss in a coordinated
manner. Next, we will discuss thesfezts along with the flow field in detail.

Fig. 4.10 shows the instantaneous flow at the system reserfanon = 5 and
d/L = 2 during the time period betweéd /L = 330 and 334. The velocity field and the
pressurgrorticity contours are plotted for five selected time insesthat are marked

in Fig. 4.10(f,g), where the histories ef andT’ are shown. From the flow field we first
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notice that introducing a second sheet has completely neddifie wake structure that
is seen in Fig. 4.9(a,b) for the single sheet. Behind the tveets, the wake exhibits two

trains of vortices with the upper train consisting of negafclockwise) vortices and the

lower train consisting of positive (counterclockwise)woes. Further inspection shows
that these vortex trains are formed due to the vortices addinge signs, i.e., the negative
vortices from the tip side of the two sheets, or the positogiges from the base side,

merging into one stronger vortex.

For the rear sheet, the coordinated vortex shedding causasascillations of the
load on sheet. Fig. 4.10(g) shows that normaliZéascillates between -0.5 and 0.5.
For the corresponding single sheet, normalizéds approximately between -0.37 and
0.35, as seenin Fig 4.9(c). Combining Fig. 4.10(a), (b),(@nhdve see that the negative
peak of T’ takes place when the positive vortex from the base of thet fsbeet is
growing in size and is connected to the shear layer belowdhegheet (Fig 4.10(a)).
The merged vortex then pinchef ’tom the front sheet and continues to develop from
the rear sheet (Fig 4.10(b)). As seen in the pressure comdéig 4.10(b), this positive
vortex forms a low pressure pocket below the rear sheet,mibads to negativé’ on
the sheet between times (a) and (b). Posifives generated between times (b) and (c)
when a merged negative vortex is about to pinfititlee tip of the rear sheet. Another
positive peak ofl” is caused after time (e) when a negative vortex shed fronrtime f
sheet passes over the rear sheet. These large-magnitudecpeae great deformation
to the rear sheet.

The reason for the front sheet to be excited is not as cleady ss for the rear
sheet. Comparing Fig. 4.10(f) and Fig. 4.9(c), we see tletdigue oscillation of the
front sheet is actually lower compared to that of the sinblees. For the front sheet,
normalizedT’ varies between -0.17 and 0.17. However, compared the shglet, the
vibration frequency of this sheet is closer to the natuedfiency. Fig. 4.7 shows that
f, = 0.92f, for the two-sheet system whilg = 1.23f, for the single sheet. Note that

for both the single-sheet and the two-sheet cases, thexvaneglding frequency is the

71



same as the vibration frequency of the sheets. The reasdhdaeduced frequency
in the two-sheet case is that the evolution and sheddingeotaditices from the front
sheet are somewhat slowed down due to the downstream dixstro€the rear sheet.
For the rear sheet, there is a corresponding slowdown inghexevolutiorishedding
because its upstream flow is dominated by the vortex shedding the front sheet.
Therefore, both the front and the rear sheets in the pressetare vibrating near the
natural frequency, which is important for the resonancectauo

In addition to the frequency of vortex shedding, we also @rachthe phase shift
between the torque and the pitch angle of each sheet. As sdeg.i4.10(f,g), the
torque oscillations of the two sheets are quite irregulangared to that for the single
sheet, while the pitch angle oscillations are much morelaeguFor the front sheet
there are two distinct time periods when the phadieince betwee’ and o’ is
close to. The first period is between times (a) and (b), during whichatige T’
corresponds to a positive pitching rate, The product off” andea’ is thus negative, so
the energy is being transferred from the sheet to the fluidletrtoment. The second
period is between times (c) and (e), during which negaliveorresponds to negative
a@’. The product is positive, so the energy is being transfefireh the fluid to the
sheet. Compared to the single sheet where the phase steftityn, the current phase
shift allows a larger amount of energy to be transferred witbwer torque. For the
rear sheet, a similar phase shift can be seen between tilmaaddb), during which
the energy is transferred from the sheet to the fluid. In sumna the two sheets and
especially the front sheet, the phase shift of the hydrosynébad enhances the energy
exchange between the fluid and the structure, and ffestehas helped the resonance
to occur.

Comparing the resonance of the thin sheets and that of tvaicdfly mounted
cylinders in tandem arrangement, we point out that theresayeficant diferences
between the underlying mechanisms. In the case of cylintter$wo bodies can vibrate

transversely to the flow with a phase shift so that the reay lmgeriodically exposed
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to the free stream. According to Borazjani & Sotiropoulo8][such an exposure leads
to a pressure distribution around the rear cylinder thagatiér the flow through the gap
region created by the position shift of the cylinders. Fenthore, when the transverse
distance between the cylinders in their case is more thardi@ameeter length, the gap
flow causes the top-side shear layer of the front cylindeetpushed into the bottom-
side shear layer of the rear cylinder (or the bottom-sidastager of the front cylinder
into the top-side shear layer of the rear cylinder). Thewadythat such shear layer
interactions cause great force oscillations and therdéoge vibration amplitudes of
the cylinders.

Unlike the cylinder case, in the present case the rear she@etver directly subject
to the free stream, which can be seen from Fig. 4.10. Howéweiinteraction of the
vortices shed from the same side of the two sheets can atillktelarge-amplitude vibra-
tions. Therefore, the transverse shift and the verticalagamot necessary conditions
for the bodies in tandem arrangement to undergo resonardtvibs. We also point
out that even though in the present case there is no traesgapsbetween the sheets,
there still exists a flow through the streamwise gap betweesleets. As shown by the
velocity field in Fig. 4.10, and the gap flow between the twoettienay take dierent
forms, e.g., entering the gap region from one side and lgdvom the other side (see
Fig. 4.10(a,d)), or entering and leaving from the same séde Fig. 4.10(c)). In Bo-
razjani & Sotiropoulos [78], the gap flow always enters frone @ide and leaves from
the other. In the present case, the gap flow is important Isechwtects the vortex

development for both the front and rear sheets.

4.4.3 Resonant vibrations of two sheets ati* = 1andd/L = 1.5
For the resonant case with* = 1 andd/L = 1.5, the interaction between the
vortices and the sheets is in general similar to what we hasgeribed for the case of

m* = 5. We plot the typical flow field and correspondiagand T’ in Fig. 4.11 for
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this low-mass-ratio case. erent fromm* = 5, the oscillations o’ andT’ are nearly

periodic and exhibit little cycle-to-cycle variation. Atiner diference in this case is that
the two sheets are oscillating out of phase. Therefore, wheefront sheet is up against
the free stream, the rear sheet is bent backward to its maxiexdent. On the other
hand, when the front sheet is bent backward, the rear shagtisd is partially exposed
to the free stream. This situation therefore bears somdasityito the cylinder case.

However, after examining the vibration frequency, forcegmtude and phase shift,
we notice the similar features as described previouslyrfoe= 5. For example, the

vortex shedding frequency in this case is adjusted towarah#tural frequency of the
sheets, i.e. fronf,/ f, = 1.5 for the single sheet t§,/f, = 1.13 for the two sheets; the
rear sheet experiences large torque oscillations; andwgthT” on the front sheet has
reduced magnitude, it has a phase shift which helps withggreecchange. Therefore,

the three factors we discussed earlier also apply hena'fer 1.

4.5 Further discussions

45.1 Hfect of the Reynolds number

To see the fect of the Reynolds number on the resonant behavior of theheets,
we performed two additional series of simulationsiRe= 100 andRe= 500 at mass
ratiom* = 5. Fig. 4.12 shows the time-averaged amplitudes of osaiiaor both
sheets. It can be seen that as the Reynolds number is indrigase 300 to 500, the
critical separation distance for the system resonance oeshange very much. In
addition, the oscillation amplitude of the rear sheet ret®aroundi,,/L = 0.65. How-
ever, the oscillation amplitude of the front sheet has iaseel nearly twice. When the
Reynolds number is reduced to 100, Fig. 4.12 shows that Humamce region is shifted
to the right and has become much wider. Furthermore, théaism amplitude of each
sheet is smaller than that of the corresponding sheleeat 300. Flow visualization

shows that aRe= 100, the vortices from the front sheet need a larger spacevielab
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Figure 4.11: (a,b) Instantaneous vorticity field (left col) and pressureelocity (right
column) for two sheets at* = 1 andd/L = 1.5. The contour levels are the same as
in Fig. 4.9. The oscillations of the pitch angle and torquestrown in (c) for the front

sheet and (d) for the rear sheet.
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Figure 4.12: Hect of the Reynolds number on the oscillation amplitude ef tihio
sheets am® = 5.

in this low-Re case, and the separation distance thus hasitecieased for the vortex

synchronization to take place.

45.2 Hfect of the Strouhal number
The Strouhal numbe6t,, has so far been fixed at 0.2. Previously, this parameter

has been studied in detail by others in the context of one orcidinders [70, 77, 78].
Note that the inverse dbt, i.e., St;' = U/(f,L) or the reduced velocity, may have
been used in those studies. In the case of cylinders, thexeaage ofSt, i.e., the
lock-in region, where the resonance would occur. Furtheemihe lock-in region for
the two cylinders in tandem arrangement is significantffedent from that of the single
cylinder [78]. To see whether a similaffect of St, exists in the present problem, we
setd/L = 2 form" = 5 andd/L = 1.5 form = 1 and we vanSt, in the simulation.

The result is shown in Fig. 4.13 féte= 300.
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The first observation from Fig. 4.13 is that for both massostthere is indeed a
range of Strouhal numbers at which both the front and reastsdre excited and have
large vibration amplitudes. In addition, compared to theesponding single sheet, the
lock-in regions of the two sheet are narrower and have bededito lower Strouhal
numbers. In all the cases considered here, the rear shemtsahas a larger vibration
amplitude than the front sheet, while in the case of two dgdns a larger amplitude
could happen for the front cylinder [78]. The closest case ein Fig. 4.13(b), where
the front and rear sheets have a similar amplitudgtat 0.125.

Fig. 4.14 shows the ratio between the vibration frequencythe natural frequency.
Since the vortex shedding frequency, and thus the vibrdtiegquency, is relatively
constant, increasing the Strouhal number leads to decoé#tge frequency ratio, which
is seen from the figure. For both mass ratios, the two-shs&tisyhas a lower vibration

frequency than the single sheet at the same Strouhal number.

4.6 Multiple sheets in tandem arrangement

A natural question is whether a similar resonant behaviaralao happen when
more than two sheets are aligned in the same manner. If sschaece exists also for
multiple sheets, then the energy in the unsteady flow may hvesied moreféiciently.
From the result described earlier, the resonance of théshs@ group may not occur
since the vortex structure in the merged wake behind the heets has been largely
modified from that of the single sheet. Nevertheless, we fewaimulations to verify
this speculation. Fig. 4.15(a) shows the oscillation atagé averaged fon = 1, 2,
3, 5 sheets at mass ratios = 1 and 5. Atm" = 5, the oscillation amplitude drops
quickly whenn > 3. The flow visualization shows that initially all the shekisated
downstream are greatly excited by the interaction amongshieets. However, after
about 40 cycles the third sheet settles down to a low-ang@itanotion, and the second

sheet also has significantly reduced oscillation. The reasihat the vortices shed from
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Figure 4.13: Hect of the Strouhal numb&t, for (a)m* =1 andd/L =15 (b)m" =5
andd/L = 2. The Reynolds number Be= 300.
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the second sheet does not have strong interaction with ittestheet and in addition,
the vibration frequency of the three-member group has beéuaced tof,/f, = 0.85
(Fig. 4.15(b)).

Form* = 1, Fig. 4.15(a) shows the oscillation amplitude of the grbyegomes
greater fom = 3 and then levelsfé. Fig. 4.15(a) shows that the oscillation frequency
of the sheet at this mass ratio is around the natural frequena = 3 andn = 5. As
an example, we plot the vorticity and shape of the sheets atstantaneous moment
in Fig. 4.16 forn = 5. The group form a regular vibration pattern: sheets 1, 8,5n
are in phase with each other, but sheets 2 and 4 are out of plithsénose three. The
animation shows that each downstream sheet interacts hatiaartices from the sheet
immediately in front of it, and the interaction becomes werdior the sheets located
further downstream.

From these results, we conclude that the parameters tithtdethe system reso-
nance of two sheets may not lead to resonance of multiplesbéthe same properties
and configuration. In order to excite all the sheets in a gragb explore its maxi-
mum performance, one should adjust the parameters sucle awdilidual spacing of
the sheets and probably optimize the group as a whole systera.example of such
study is by Hobbs and Hu [86], who studied the power genergigrformance of a
four-cylinder array by varying both the separation distaand the flow speed (thus the
vortex shedding frequency). Alternativelyfidrent arrangement patterns could be con-
sidered, e.g., a staggered placement in the transversgialireso that the interaction
between the vortices and the downstream sheets may betsgerd.

Finally, we point out that the current study is limited to t@imensions and the
three-dimensionalftects due to flow instability or finite aspect ratios are noluded.

In addition, only low Reynolds numbers (less than 1000) aresiclered, and the in-
clination angle of the sheets is fixed. Explorations beydrasé¢ limitations will be

considered in the future work.
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Figure 4.15: Multiple sheets in tandem arrangement widkte = 1.5 form* = 1
andd/L = 2 form* = 5. (a) The averaged oscillation amplitude; (b) the vibratio
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andSt, = 0.2, respectively.
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Figure 4.16: Vibration pattern and vorticity field for fiveests aim* = 1, d/L = 1.5,
Re= 300 andSt, = 0.2.

4.7 Conclusion

We have performed a two-dimensional numerical simulatiothe hydrodynamic
interaction between two elastic sheets mounted in tandemflow. The goal is to ex-
plore the energy-harvesting potential of the sheets thrawagtex-induced vibrations.
The result shows that at a particular distance that depemtteeanass ratio, both sheets
are excited and the system exhibits a resonant behavioheAtesonant state, the vi-
bration amplitude of both sheets can be an order of magnligteer than that of the
corresponding single sheet.fi&rent from two elastically and in tandem mounted cylin-
ders that oscillate perpendicularly to the free streamivtioesheets are fixed at the base
and do not have a relative shift in position. As a result, tke stream may not directly
impinge on the rear sheet. Nevertheless, the two sheetgitaaxgerience a similar
resonant vibration that is seen in the case of two cylindeysnvestigate the underlying
mechanism of resonance, we examined the instantaneous élovafid force charac-
teristics of each sheet. It was found that through the hydradhic interaction, the
vortex shedding frequency, which is the same as the vibrdtemuency, is adjusted to
better match the natural frequency of the sheets. Furthernttee vortex-vortex syn-
chronization causes stronger force oscillations on thegieaet and greatly intensifies
its vibration. For the front sheet, the phase of the torquéhersheet is shifted so that

the energy transfer between the fluid and the sheet is enthaBgestudying the fect
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of the Strouhal number, we found that the resonant behasioomsistent within the
lock-in region.

The optimal configuration that causes resonance of the teetsidoes not neces-
sarily lead to resonance of multiple sheets that have the saaterial properties and the
same separation distance as in the two-sheet case. Thactmerof the downstream
sheets could become weak due to modification of the upstresitical structures by
the first two sheets. This result implies that in order to iowerthe overall energy-
harvesting potential of multiple sheets, one should adjesgoverning parameters from

a system perspective.
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CHAPTER 5

NUMERICAL SIMULATION OF DROPS INSIDE AN ASYMMETRIC
MICROCHANNEL WITH PROTRUSIONS

51 Background

Drops in microfluidic channels have been recently exploeed kighly controllable
platform for applications in the measurement of chemicattien kinetics [12]. In these
applications, mixing of agents inside the drops is ofterdeddor the device to perform
its function. However, mixing in microfluidic channels igpigally slow because the
Reynolds numbers involved are small and convective mixgrigmited. To enhance the
mixing rate in microchannels (not necessarily involvingmB), both active and passive
mixers have been developed in the past. Active mixers imchmbustic [87], temper-
ature [88], or magneto [89] actuation approaches and thqusreeincorporation of ad-
ditional system components. Passive mixers typicallyyrepl the certain geometrical
features of the microchannel, e.g., a serpentine chariralare made without intro-
ducing extra steps in the fabrication process [90]. A nundfgrevious studies have
focused on the passive mixing that involves drops. For exarBpingeret al.[12] pro-
vided a comprehensive review of the mixing mechanisms amdc¢hling of the mixing
time for both straight and winding channels. Muradogfial.[91] numerically studied
the mixing inside a drop passing through a serpentine cthamaeinvestigated the ef-
fects of the Reynolds number, capillary number, and visgaatio. In another study,
Stone & Stone [92] simulated the mixing inside a drop throsgipentine channels by
simplifying the flow to superposition of uniform and sheanfo

Liau et al. [93] introduced single-sided wall protrusions, or “bumpsgito both

straight and serpentine channels, illustrated here in-ig.and found that the periodic
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Figure 5.1: Straight and winding channels with bumps on tak tw enhance the mix-
ing inside the droplets. The idea was presented in ktzal. [93].

protrusions significantly enhance mixing inside the drogspag through the channels.
To explain the mixing enhancement, Liatial. [93] provides three factors that may
have played a role: (1) the asymmetry of the flow and sheassstrethe constriction
region, (2) the surfactant distribution caused by the asgtrinstretching of the droplet
surface, and (3) the non-Newtoniaffiext of the drop fluid. Despite the insightful view,
their explanation was qualitative, and a parametric studuld/be helpful to clarify
these #ects. Given that previous studies on dynamics of drops fireuchannel con-
striction typically focus on symmetric geometries [e.g], 94 the current work we aim
to study the &ect asymmetric constriction on the drop deformation ancherstream-
line pattern inside the drop. In addition, we will considéffetent shapes of the wall
protrusion and study theirffect on the flow pattern.

Computational modeling of two immiscible fluids in contactan arbitrary geom-
etry is in general a challenging task since it needs to hahéenterface between the

two fluids and also the interface between the fluids and soiithse. In the exist-
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ing numerical methods, the mesh discretizing the domaiheea curvilinear grid or
an unstructured grid, is typically chosen to conform to th@fsolid interface so that
the no-slip and no-penetration conditions at the wall camiposed straightforwardly.
On the other hand, the interface between the two fluids carabdléd by several ap-
proaches that do not require the mesh to be conformal to tliphtogical change of
the interface. Based on how the fluid—fluid interface is wateese approaches include
the following: (1) the Lagrangian mesh approach, wherentexfiace is represented by
a set of marker points moving with the local fluid [22]; (2) ¥@ume-of-fluids (VOF)
method, where the interface is represented by the volunagdreof the fluids [18]; (3)
the level-set function, where the interface is represebtethe zero-level contour of
a distance function [19]; and (4) the phase-field method revtige interface is repre-
sented by the chemical energy level of the fluids [20]. Amdrege approaches, method
(2)-(4) uses a scalar variable convected by the flow to tiaeaterface implicitly, and
they have the inherent capability of handling topologidamges of the interface.

For complex and moving boundaries of solid bodies, the insegkiboundary method
based on a fixed Cartesian grid has been developed and digixtensively in various
applications [26, 29]. Compared with the curvilinear ortoastured grid based meth-
ods, the advantages of the immersed-boundary method msiotple mesh generation
and dficient computational algorithms that are based on the Gantegid. Among
several existing variants of the immersed-boundary me#tredthose categorized as
the sharp-interface method, where th#eet of the solid surface is incorporated as a
direct forcing through interpolation [26]. Compared to th#use-interface immersed-
boundary method where the surface traction is smeared aratturacy is correspond-
ingly reduced [29], the sharp-interface method is usuabosd-order accurate.

One way to simulate the fluid—solid—fluid interface is to camebthe immersed-
boundary method for solid bodies and the interfacial treanior multiphase flows
so that the advantages of each method can be shared. Suchadnmedeed has

been developed before. For example, etal. [95] presented a two-dimensional (2D)
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Cartesian grid based sharp-interface method to simulafeidrpact and spreading on
solid surfaces of arbitrary shape. In their method, bothfltid—fluid and fluid—solid
interfaces are traced by level-set functions. Yang & St&®] developed a sharp-
interfaceglevel-set Cartesian grid method for large eddy simulatadiisree-dimensional
(3D) two-phase flows interacting with moving bodies. In baitbrks, the ghost-fluid
method [97], is used to treat the jump conditions at the fliligg- interface, which
requires designation of ghost cells near the interface apticé incorporation of the
interfacial discontinuity into the finite-@fierence approximation of the governing equa-
tion. A simple alternative to their approach is to use theioowus surface force model
(CSF) [30] to regularize the traction jump and solve the gowvg equation in a unified
approach.

In the present work, we combine the level-set method for theé-fluid interface and
a sharp-interface immersed-boundary method for the solishBary, and we adopt the
CSF model to incorporate the traction jump due to the sutti@esion. The numerical
method has been described in Chapter 2. Here the methodenul$é&d to simulate the

drops passing through channels with asymmetric constnicti

5.2 Validation
The current numerical method has been implemented in bodn2C3D. To validate
the method, we consider three problems that involve nematiggeometries of the fluid—

fluid andor fluid—solid interfaces.

521 Leveling of an interface in a wavy channel

The leveling of a fluid—fluid interface under thfext of surface tension in a corru-
gated 2D channel is firstly considered. The problem is itated in Fig. 5.2(a), where
the horizontal channel has a straight top wall and a sinasbmttom wall described by

Yw = aw C0oskX), wherea,, is the amplitudek = 2r/L is the wavenumber, andis the
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Figure 5.2: (a) lllustration of a two-layer flow in a wavy ctmeh. (b-d) Evolution of the
interfacial amplitude in time foa,,/h = 0 (b), 0.15 (c), and 0.25 (d). Solid line: current
result; symbols: result from Luet al.[98].
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wavelength. The two-fluid interface is initially placed at

y = h; + e h coskx) (5.1)

whereh is the channel widthh; = h/3 is the mean thickness of fluid 1, aad= 0.1
is the amount of initial perturbation. The fluids are iniyaduiescent, and there is no
any external force. The fluid interface starts to evolve duthé stabilizing &ect of
the surface tension in this problem. Periodic conditiomsagplied at the left and right
boundaries.

To apply the current numerical method, the uneven wall isesgnted with piece-
wise line segments and is treated as an immersed solid bgudsingle-block Carte-
sian grid is used to discretize the computational domaitrdnrages from-L/2 toL/2
in xand from-a,, to hin y. Equal density fluids are considered so {at p, = p. For
the case study, the dimensionless parameters are chokgm-asr/2, 1 = up/u; = 0.2,
andRe = poh/u?2 = 200. The surface tensian is assumed to be constant along the
interface. A uniform grid is used for the simulation with tgad intervalsAx/h =
Ay/h = 0.02, and the time step &t = 0.0025:;h/o. Previously, this problem has
been solved using a curvilinear grid that conforms to theywaall by Luo et al. [98].

In that study, the two-fluid interface is treated using aairiof Peskin’s immersed-
boundary method [29], and a second-order finit&edence method is used to discretize
the governing equation. Their result is used here to vaitla current simulation.

Fig. 5.2(b-d) shows evolution of the amplitude of the irded,a;/ay, against the
dimensionless timedg/(u1h). Herea; is the amplitude of the interface, aagl= eh is
the initial amplitude. The result is plotted on a log-linsaele and is shown for three
different wall amplitudesa,/h=0, 0.15 and 0.25. Due to a combined surface tension
and inertial &ect, the fluid interface first levelsffobut then overshoots by reversing
its waviness, resembling a standing wave under the greontatefect. The wave am-

plitude thus oscillates up and down in time as shown in therdigiHowever, due to
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presence of the viscous damping, the wave amplitude becema#ier and smaller
and would eventually diminish. As the wall amplitude is e&sed froma,,/h=0 to

a,/h=0.25, the oscillation period is elongated and the interfaogement slows down,
and in addition, the wave oscillation decays in a faster. réemparing the current

result with that from Lucet al.[98], we see that they agree with each other very well.

5.2.2 Deformation of a 3D droplet in simple shear flow

In the second test, we consider the dynamic deformation @ ar®p in a linear
shear flow as shown in Fig. 5.3(a). The drop is initially spdedrand has a radius
Ro. The two fluids have equal densities. Under the sheaffifegte the drop assumes
an ellipsoidal shape with three characteristic axes. Thélpm is governed by two
dimensionless groups, the viscosity ralie= u,/u1, Whereu, andu; are respectively
the viscosity of the drop and the viscosity of the continuttwisl, the capillary number
is defined asCa = u1yRy/o, wherey is the shear rate, and the Reynolds number is
defined aRe= pyRZ/u; and is set aRe= 0.2.

Taylor [100, 101] introduced a non-dimensional paramBter (L — B)/(L + B) to
describe the shape of the ellipsoid at the steady state iimtiteof Stokes flow, where
L is the length of the principal axis ari@lthe length of the minor axis in thezplane
(as in Fig. 5.3(a)). He derived the relationship betwBeand the governing parameters

Al andCa,
191 + 16

D=Cato 76

(5.2)

At the steady state, the viscous and capillafe@s balance with each other. Taylor’s
equation matches the experimental result well wWBan< 1. AsCais further increased
beyond some critical value, the drop deviates from the ®digal shape and pinchfo
may appear in the middle of the elongated drop, eventuallgiog it to break up [102].
In the present simulation, a cubic box of lengfR,2s used for the computational do-

main. The mesh resolution /32 in all three directions, and the time step size is
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Figure 5.3: See next page for the caption.
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Figure 5.3: (a) An initially spherical drop in a linear shélaw with Ca = 0.24 and

A = 1.4, where the velocity field in the symmetry plane is shownliersteady state. (b)
Evolution of the axes of the drop witha = 0.24 anda = 1.4, where the upper branch
is L/Ry and the lower branch iB/R,. Lines: current result; triangles: experimental
data [99]. (c)D as a function o€Caat the steady state far= 1.4. Dashed line: Taylor’'s
prediction [100, 101]; circles: present simulation; tgées: experimental data [99].

Aty = 0.005.

Fig. 5.3(b) shows evolution of the principal and minor axestmalized byRy,
against the dimensionless tintg, atCa = 0.24 andl = 1.4. Together shown is the ex-
perimental result from Guido [99], who used an oil dropletimstudy and employed an
automated procedure to analyze image and extract the dnogndions. It can be seen
that the experimental data and present result agree vehamgthe present simulation
is able to capture both the transient and steady defornsatibtihe drop. Fig. 5.3(c) is a
comparison among the theoretical, experimental, and cuma@merical results. In this
figure, simulations are run at the capillary numBer = 0.1 to 0.4 andl = 1.4. The
shape parametdD is calculated from the steady state and is compared withofayl

prediction, Eq. (5.2), and also with Guido’s experimentaiad[99]. The figure shows
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that at small capillary numbers, both experimental and nigaledata fit the linear trend
described by Eq. (5.2) very well. However, the deviatiomrfrine theory becomes evi-
dent aLCais raised above 0.3. In all cases, the current result matbleesxperimental

data very well.

5.2.3 Instability of a core-annular flow

In the third problem, a core-annular flow is considered asvshm Fig. 5.4(a),
where two fluids are concentrically placed and have equalities. The stationary flow
in the cylindrical channel is perturbed initially by positing the two-fluid interface as

described by

r(x,t =0) = a+ e bcoskx), (5.3)

whereb represents the channel radiis,= 0.5b is the mean thickness of the core
fluid, k = 2n/L denotes the wavenumber, the wavelength of the interfacaews
L/b = 6, ande is the dimensionless amplitude of the initial disturbancd B set to
bee = 0.01. A 3D numerical simulation on a single-block Cartesiad g performed
even through the problem is axisymmetric, and we compareethdt with that from
the axisymmetric simulation in Blytat al. [31].

In the current simulation, the cylindrical wall is represshby a triangular mesh
and is immersed in a uniform Cartesian grid with resolutib®@®x 48 x 48 in thex,
y, andz directions. The time step size /& = 0.005u,b/o. Periodic conditions are
applied along thex-direction. The viscosity ratio and the Reynolds numberctw@sen
to bed = up/u; = 0.5 andRe = ’%’ = 1. Fig. 5.4(b) shows a comparison between
the current result and that in Bly#t al. [31]. The interface amplitude; normalized

by the initial amplitudeay = eb is plotted against the dimensionless titag(u,b) on a

log-linear scale. It can be seen that the two results agréeaach other very well.
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Figure 5.4: (a) Breakup of a core-annular flow. (b) Growthlod tnterface ampli-
tude in time, where the line represents the current resultthe symbols are from
Blyth et al. [31].
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Figure 5.5: A 2D schematic of a drop passing through an asynoreéhannel with a
bump as labeled type A.

5.3 Motion of a drop through a constricted channel

53.1 Problem description

In this section, we apply the immersed-boundary methodmailsite the motion of a
viscous drop through an asymmetrically constricted chiafirree problem is illustrated
in Fig. 5.5, where the channel is assumed to be periodic wghratio between the
wavelength and the width & (2h) = 3. The flow is driven by a mean pressure gradient
applied along the channel. A circular bump of radibss2set up in the channel blocking
half of the passage. An initially spherical drop of radaisvherea/h = 0.5, is placed at
the centerline as shown. The ratio between the viscosityeofitop .y, and viscosity of
the surrounding liquidko, IS A = uq/uo. The two fluids are assumed to have the same
density,p. The Reynolds number and capillary number are defined ragelycas
Re= pUy(2h)/ue andCa = uoUo/o, whereUy is a reference velocity)o = xyh?/(2uo),
andy is the negative of the uniform streamwise pressure gradieving the flow. In
the current work, we will discuss thedtects of1, Ca, andReon the translation and
deformation of the drop. In addition, we will discuss tHeeet of the geometry of the
bump and the three-dimensiondlext.

In the simulations, a period of the channel is discretized byiform Cartesian grid
which covers the semi-circular blockage. The uneven cHamak and the drop sur-

face are treated respectively with the sharp- anilisie-interface immersed-boundary
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methods as discussed in Chapter 2. The resolution of thenelaesh is chosen as
h/64 in bothx- andy-directions and the time step i8#Uy/h = 0.0005, which pre-
vents numerical instability while solving the Navier—S¢skequation and the level-set

function.

5.3.2 Hfects of the viscosity ratio and capillary number

We first consider the loviRe situation and study the consequence of varying the
viscosity ratio and the capillary number. A set of simulai@re performed &®e= 1,
Ca=02,0.5, 1.0, andt = 0.01, 0.1, 1.0, 10. When the drop motion settles down
to a periodical state in the channel, usually after 3 to 5eg,clve compare the drop’s
translational velocity and deformed shape undéedent values oft.

Fig. 5.6 shows the-velocity of the mass center of the drdg,, normalized byJ,
against the position of the mass centerh. HereU,, is the maximunx-velocity of
the flowin the absencef the drop and is obtained in a separate simulation. It can be
seen from the figure that the translational velocity of thepds significantly &ected
by 1 andCa. In Fig. 5.6(a) wher&€a = 0.2, all the normalized velocities are less than
1, which means the drop in the gap moves at a slower velocity the unperturbed
background flow or introducing the drop slows down the flonotlgh the channel.
Furthermore, the velocity of the drop decreased @sincreased, which is due to the
greater impedanceffect of a more viscous drop. For the drop with lower viscosity
than the surrounding fluid, i.e4 = 0.01 and 0.1U./U, is still less than 1. This is
because the surface tension tends to maintain the dropsisphshape and thus causes
resistance to the flow. Nevertheless, the impedance of the shrould be lower than
that of a rigid particle of equivalent size because the flaglde the drop may move
along with the surrounding fluid. Thefect of the viscosity ratio on the translation of
the drop seen here is consistent to the previous study oftiperdoving in a symmetric

plane channel [103] where the Stokes flow was considered.
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(b)

(b)

Figure 5.6: (a) The translational velocity of the mass aeoté¢he drop in the channel
with bump A forRe= 1 andCa= 0.2 (a), 0.5 (b), 1 (c).
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(d)

Figure 5.7: (a) The shape of the drop at threféedent positions in the channet; =
-2h,0,+2h, for Re= 1 andCa= 0.2,1 = 0.01 (solid line), 0.1 (dashed line), 1 (dash-
double-dotted line) and 10 (dash-dotted line). (b-e) $tieees as viewed by traveling
with the drop fora = 0.01 (b), 0.1 (¢), 1 (d), 10 (e).
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If we increaseCa and meanwhile havReand A fixed, the surface tensiorffect
is reduced and the drop would thus deform more easily. Sutdrrdability should
play a positive role in enhancing mobility of the drop thrbube constricted channel.
This dfect is reflected in Fig. 5.6(b,c) whe@a = 0.5 and 1. Comparing these cases
with the corresponding value afatCa = 0.2, we see that the drop of higher capillary
numbers passes through the channel gap at a faster spe€a.-A0.5, the maximum
translational velocity of the drop reachklg/U,, = 1.18 for4 = 0.01 and 1.07 for
A = 0.1. At Ca = 1, this velocity reacheb./U,, = 1.31 forA = 0.01 and 1.13 for
A = 0.1. Therefore, the translation of the drop is faster than thgedurbed flow. Of
course in these cases where< 1, the low viscosity of the enclosed fluid inside the
drop also contributes the mobility of the drop. In Fig. 5,6fbU./Uy, is still less than
1 for the cases ot = 1 and 10.

The instantaneous deformation of the drop is shown in Fig@}.for three loca-
tions: before, within, and after the gap region. In thesesasince the surface tension
effect is relatively strong, the deformation of the drop is nratks and the shapes of the
drop at diterent values oft are quite close to each other. However, since the drop has
different viscosities in these cases, the fluid motion insidaltbp exhibits disparate
behaviors. Fig. 5.7(b) to (e) show the flow pattern as seen dyimg along with the
drop. That is, the streamlines are drawn from the the veldieikd subtracted uniformly
by the velocity of the dropJ.. For the drop with a low viscosity, i.e,= 0.01 and 0.1,
there are a pair of circulation regions inside the drop, nmeatinat the fluid on the top
and bottom sides of the drop moves more slowly than the cefdsethe viscosity ratio
is increased ta = 1, the two vortices become more asymmetric and the one near th
bump is larger in size than the other one. As the viscosith@tirop is further increased
to 10 times of that of the surrounding fluid, i.@.= 10, the drop contains only one sin-
gle vortex that allows the drop to roll clockwisely while & passing through the gap
region. This result confirms the explanation of the mixingemment in Liauet al.[93]

that a higher viscosity ratio would lead to a single-vortait@rn in the drop that passes
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Figure 5.8: The instantaneous deformation of the droRe&tl and (a)Ca = 0.5,
1=01,(b)Ca=1,2=01,(c)Ca=0.5,4=10, (dCa=1,4 = 10.

over the bump.

The instantaneous deformation of the drop of higher capillambers is shown in
Fig. 5.8 fora = 0.1 and 10. The deformation patternsiat 0.01 and 1 are close to
the situation att = 0.1 and are thus not shown here. From these plots, we see that as
A is fixed, increasin@a leads to an elongated shape of the drop due to the weakened
surface tensionféect. As the drop becomes more viscous, e.g:,10, its front portion
becomes narrower compared to its rear portion, revealieaghiggish deformation of
the drop due to its internal damping. Fig. 5.9 shows the stliea pattern inside the
drop fora = 0.1 andCa = 0.5, 1, and 10. It can be seen thaiGsis increased, the drop
becomes slenderer and the interior vortex pair are moreeskemt the highesCa, the
interior fluid joins the exterior fluid and forms a single eifation. From these results,
we see that the single-vortex pattern can also be producéuacbsasing the capillary

number.

5.3.3 Hfect of the Reynolds number
In addition to the viscosity ratio and capillary number, veé varied the Reynolds

number from 1 to 50 to study thefect of the fluid inertia. The simulations show
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Figure 5.9: The instantaneous streamline pattern inselenbp atRe=1, 1 = 0.1, and
(@)Ca=0.5,(b)Ca=1, (c)Ca=10.

(@) (b)

Figure 5.10: Deformation of the 2D dropRe= 50,Ca = 0.5, and1 = 0.1 (a) and 10
(b).

101



Ca=0.2, A=0.1 Ca=1, A=0.1

—Re=1 ‘ ‘ ‘ ‘ —Re=1

---Re=10 ---Re=10
~--'Re=50 | [

Zxm? “xm?
C C

Ca=0.2, A=10 Ca=1, A=10

Figure 5.11: The translational velocity of the drop as a fiomcof the centroid position
for differentRe Ca, andaA.

(b)

Figure 5.12: Instantaneous streamline pattern insiderthgwhereRe= 50,Ca= 0.2,
A=0.1(a) and 10 (b).
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that the Reynolds number in this range does not change tloendiation of the drop
significantly. For example, Fig. 5.10 shows a sequence qf dhapes foCa = 0.5,
Re= 50, and? = 0.1 or 10. Comparing these patterns with those correspon@isgsc
for Re= 1in Fig. 5.8(a,c), we only notice slightféérences in the instantaneous shape
as the drop exits the gap region.

Fig. 5.11 shows the translational velocity of the drop aswfion of the position of
the mass center fdRe= 1, 10, and 50. The viscosity ratio is chosen tolbe 0.1, 1,
or 10, and the capillary number@a = 0.2 or 1. One interesting observation from this
figure is that the @ect ofReis not consistent in these cases. At the lowest viscosity, rat
A =0.1,U./Uyis greater for lower values dte Note that the reference velocity used
in the normalizationy,, varies for diferent Reynolds numbers and the result does not
mean that the actual velocity of the drop would decrease &g increased. Instead,
it means that introducing the drop into the channel caudaswely more impedance to
the flow wherReis higher. The figure shows that thifext ofReis not very significant
atl = 1, or at4 = 10 andCa = 1. However, aCa = 0.2 andA = 10 the role of
Reis reversed. In this casél./Uy, is greater for higher values &®e meaning that
introducing the viscous drop into the channel would cause flew resistance.

To better understand thdfect of the Reynolds number, we plot in Fig. 5.12 the
streamline pattern as the drop passes through the gap. ,Algaistreamlines are plotted
in the coordinate system that moves in #éirection with the centroid of the drop. The
two cases witlCa = 0.2, Re= 50, andd = 0.1 or 10 are shown. The corresponding
cases wittRe= 1 can be found in Fig. 5.7(c,e).

Comparing Fig. 5.12(a) and Fig. 5.7(c), where bGthand A are the same buRe
is different, we notice that the fluid motion inside the drop becosmesewhat more
complex in the case dRe = 50. Note that a higheRe corresponds to the situation
where the fluid density is increased while all other dimenaigparameters are held
constant. FoRe = 1, the flow inside the drop consists a pair of major vorticesilev

at Re = 50, smaller vortices have been developed due to the lovesitgscand high-
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inertia dfects inside the drop. Since the drop fluid is 10 times lessouscthan the
surrounding fluid in this case, the interior flow in the casdref= 50 becomes less
regular and thus the drop causes higher resistance to théhidown the corresponding
case ofRe = 1. On the other hand, when the viscosity ratio istat 10, the flow
inside the drop consists of only one clockwise vortex forhdee = 1 andRe = 50,
as seen in Fig. 5.7(e) and Fig. 5.12(b). At this high visgositio, the shear layers in
the surrounding fluid becomes more important for the mgbditthe drop. A higher
Rein this case likely provides better lubrication for the dtogo through the gap, and
therefore the impedancéect of the drop on the flow is less than thaRa&= 1. From
this study we see that increasiRgup to 50 may #&ect the mobility of the drop but the
the flow pattern inside the drop does not change significamtlgssaA is much lower

than 1.

5.34 Hfect of the channel geometry

The flow patterns observed in Section 5.3.(2) and 5.3.(3rlgldhave to do with
the asymmetric shape of the channel. To better understangetbmetric fect on the
drop dynamics, we introduce two other bumps as shown in Fi3(&), where one
has an exactly semi-circular shape and the other is a teanghe channel length is
kept the same in all three cases. The three types of bumpslaetet with A, B,
and C, respectively. They have the same height biier@dint gradualness in the gap
width transition. Among the three cases, the triangulapshat bump C would cause
the greatest curvature to the streamlines of the backgromd The maximumx-
velocity in the absence of the drop for bump A, B, and Mjs/Ux=0.56, 0.66, and
0.82, respectively. Fig. 5.13(b) shows that the shape of#ipehas a significantiect
on the motion of the drop. The width of the velocity peak of thiep is the greatest
for bump A but the narrowest for bump C, reflecting the qui@asition of the drop

through the gap in case C. The figure also shows that the nasdgleak velocity of
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Figure 5.13: (a) Three types of bumps considered here ty shadgeometric #ect.
(b) The velocity of the mass center of the drop through eaph of channel.
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Figure 5.14: Drop deformation and the streamline patterdémonp B (a,c) and bump
C (b,d) atRe= 1,Ca = 0.2, andA = 1. The corresponding result for bump A is in
Fig. 5.7(a,d).
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Figure 5.15: lllustration of the superpositiofiiext of the uniform and shear flows caus-
ing the circulations inside the drop that passes over thepbum

the drop is similar for bumps B and C while this velocity igglily lower for bump A.

Fig. 5.14 shows the simulation results for bump B and bumpReat 1, Ca= 0.2
andA = 1. The corresponding result for bump Ais in Fig. 5.7(a,d)mparing the drop
shapes in the three cases, we see that bump C causes the ynusiedisc deformation
to the drop. The asymmetry in the internal flow is shown by theasnline pattern. It
can be seen that the two circulations zones in the drop besames asymmetric for
bump B as compared to those for bump A in Fig. 5.7(d). For bumih€ interior of
the drop forms a single circulation zone, which is similattte situation in the case of
bump A with2 = 10 shown in Fig. 5.7(e). Therefore, for bump C the criticalcasity
ratio A becomes much lower for a single circulation to occur inskeedrop.

To characterize the flow pattern inside a drop passing thr@uginding channel,
Stone & Stone [92] approximated the flow by simple superposiof uniform and
shear flows. Their approach can be used in the current stugyaltatively explain
the streamline pattern observed here. The idea is illestrigit Fig. 5.15. As the drop
is going through the gap, the shearirteet of the channel walls both above and below
the drop, if symmetric, would cause a pair of equal circolatzones inside the drop,
much like a uniform flow passing the drop. In the present dasshump on the bottom
side causes greater shear than the straight wall on thedepEherefore, a linear shear
flow can be used to approximate the asymmetric sheaftiegtewhich would cause a
single circulation zone in the drop. The resultant flow delsesn how strong the shear

flow is relative to the uniform flow. In the present case, iasiag either the viscosity
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ratio or the curvature of the bump would strengthen the sfiear effect and cause
the circulations to be more skewed.fldrent from the inverted U-channel in Stone &
Stone [92] where the shear flow is in the counterclockwisedtion due to the curvature

of the entire channel, in the present case the shear flow Ieinlbckwise direction.

5.3.5 Three-dimensional ffect

We now extend the study of the drop to 3D and incorporate tfi@rehation of the
drop in the spanwise direction. To do this, the channel isreded in the-direction and
the spanwise depth of the channel is Periodic boundary condition is applied along
the z-axis. To limit the scope of our study, we only focus on theesashereRe = 1.
Our simulation shows that in the 3D cases considered hexdrehslational velocity of
the drop is generally higher as compared to that of the qooreting 2D drop, which
is due to the lower drag induced by the 3D drop. This resulbisstent to the finding
in Mortazavi & Tryggvason [104], who studied the translataf 2D and 3D drops in a
plane channel &a = 0.05.

Fig. 5.16 shows the deformation pattern of the 3D drop for ppénwith A = 1 and
Ca= 0.2 or 1. Both side view and top view of the drop are shown. Froasille view,
it can be seen that the drop’s shape is very similar to thdtgrcorresponding 2D case
with the same viscosity ratio and capillary number, i.eg, Bi16(a) and Fig. 5.7(a). The
spanwise deformation, which is unique in the 3D cases, catelbdy seen from the top
view in Fig. 5.16(b,d). Fo€a = 0.2, the 3D drop overall remains a circular shape in the
xz-plane. In the case @a = 1, as the drop exits the gap, its rear portion is depressed in
the middle but is stretched at upper and lower corners, fagrtwo protrusions on the
rear side. In all the 3D cases, the drop exhibits a symmegficrchation pattern about
thez = 0 plane.

Fig. 5.17(a-c) shows the streamline pattern inside the tlvophe case of bump

A andCa = 02,4 = 0.1, 1, and 10. By comparing the flow field with that in the
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Figure 5.16: Side view (a,c) and top view (b,d) of the 3D dropvee bump A foRe= 1,
A=1,and (a,ba=0.2, (c,d)Ca= 1.
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Figure 5.17: See next page for the caption.
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Uniform flow Shear flow
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(Uniform flow dominant) (Shear flow dominant)

Figure 5.17: The streamline pattern inside the drop abowepbly with Re=1,Ca =

0.2, andA = 0.1 (a), 1 (b), and 10 (c). (d) lllustration of the superpositéffect for the
streamlines fi the symmetry plane.
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corresponding 2D case shown in Fig. 5.7(c-e), we note tleatiticulation in the sym-
metry plane akz = 0 is close to that in the 2D case. Away from this symmetry plane
3D features can be clearly seen in the present cases. Tdrekmahese features, we
again use the similar decomposition approach describetbimeS. Stone [92]. In the
approach, the interior of a spherical drop passing a chaanetonsists of the axisym-
metric circulations caused by a uniform flow and the in-plameulation caused by a
shear flow. A similar decomposition can be applied here atjhan the current case
there is no spanwise wall present and the circulation irk#y@lane is not as strong as
that in thexy-plane. As seen in Fig. 5.17(d), if the uniform flow is domitahe circu-
lations df the symmetry planez(= 0) become bent in the spanwise direction, and those
circulations in the lower hemisphere become greater in Seeh situation is found in
Fig. 5.17(a) whera = 0.1. If the shear flow becomes strong or even dominant, the cir-
culations df the symmetry plane change their topology — the circulatiortee upper
hemisphere disappear while those in the lower hemisphlkeestzer and are bent in the
spanwise direction. Such situations are found in the cals¢s-dl andA = 10.

As discussed in the 2D case, the shear flow here is in the cleekalrection as
viewed from the positive-axis, which is opposite to that in the inverted U-channel
studied by Stone & Stone [92]. In addition, Fig. 5.17(a-a)wh that the circulations
are not separate vortex rings but are connected to each fathramg spiral patterns.

We have studied the 3D drop f@a = 1. The results are in general consistent to
that presented in Fig. 5.17. One majofteience is that a&a = 1, the drop becomes
narrower in the spanwise direction and the horizontal tatcans become weak or even
disappear, so the circulations mostly remain inxiplanes. We also studied the drop
over bumps B and C. The results are again consistent excapthin shear flowféect
becomes dominant at a much lower value of the viscosity,ratmp, 1 = 1, for those

two bumps.

112



54 Conclusion

We have applied an immersed-boundary method to simulatgyth@mics of a vis-
cous drop passing through a channel with bumps on one sidegdél is to study the
translation and deformation of the drop and to investigageflow pattern inside the
drop. The governing parameters under consideration iedioel Reynolds number, the
capillary number, and the viscosity ratio.

The results show that the drop with a higher viscosity thangirrounding fluid
or with high capillary numbers tends to impede the flow, wiiile drop with a lower
viscosity may accelerate the flow. Although the deformapeaitterns of the drop at
different viscosity ratios may be close to each other when thdazgmumber is low,
the internal flow patterns can be quitdéfdrent. At higher viscosity ratios, the vortex
pair become skewed or reduce into one single vortex. Thidtressconsistent to the
experimental observation. A similar internal flow patteraynappear when the capillary
number is raised and the drop has a slender shape. By vahgrghape of the bump,
we found that the critical viscosity ratio for the flow in theog to switch the pattern
becomes lower if the bump has a greater curvature. The flowerpais in general
consistent for a range of Reynolds numbers except at verylewosity ratios, the
interior of the drop may consists of multiple vortices due ithertial éfect.

Three-dimensional simulations show that the flow pattetthéxsymmetry plane is
close to that in the two-dimensional studyff@e symmetry plane the vortices also
become skewed. Qualitatively the streamline pattern enii@ drop may be viewed
as a result of superposition of external uniform and shewsfld-inally, the switch of
the internal flow pattern as the drop passes over the bumpeasdid to enhance the

mixing inside the drop.
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CHAPTER 6

CONCLUSIONS

6.1 Summary of the present work

We have developed an immersed-boundary method to modelildestructure in-
teraction of viscous incompressible fluids with thin solicustures. The method was
applied to simulate the aeroelasticity of flexible flappinggs and hydrodynamic in-
teraction of multiple elastic sheets placed in tandem gearent.

In Chapter 3, a two-dimensional hovering wing is modeledféexéble plate under-
going translating and pitching motions. The wing is parametl by the dimensionless
mass ratio, which represents the relatifeet of the wing inertia with respect to the
aerodynamic force, and the frequency ratio, which repitegée flexibility of the struc-
ture. The representative values of the mass ratio from tectrdata were used, while
the frequency ratio was systematically varied to repreent a completely rigid wing
to a very flexible wing. The results show that for a certairgeof flexibility, the wing
deformation increases the lift production and enhancesaénedynamic powerfg-
ciency. However, when the wing is overly flexible, the defation is detrimental to the
aerodynamic performance. Furthermore, when the magnatideformation is about
the same, the low-mass wing leads to greater performancparech to the high-mass
wing. Note that for the low-mass wing, both aerodynamic éaaad the wing-inertial
force have significant contribution to the wing deformation

In Chapter 4, the energy-harvesting potential of an arrasfastic sheets in tandem
arrangement was explored where the sheets oscillate ireasfream due to vortex-
induced vibration. Theféects of the mass ratio and the separation distance areimnvest

gated. It was found that within a particular region that defseon the mass ratio, the
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two sheets in tandem experience greatly increased vibratm, a state referred to as
the system resonance. At the resonance, both the upstrehtheadownstream sheets
undergo larger-amplitude oscillations, and their kinetmergy grow by several times
as compared to the corresponding single sheet placed inathe e further studied
the mechanism of the system resonance in detail and fouhththeesonance is caused
by the vortex-sheet and vortex-vortex interactions thfusidhe oscillation frequency
and modify the magnitugdphase-shift of the hydrodynamic force on the sheets. We
also discussed thetects of the Reynolds number and reduced velocity. Furthexmo
implication of the study on multiple sheets in tandem areamgnt is also discussed.
The immersed-boundary method is also extended to two-pi@ss in arbitrary
domains in which both fluid-solid and fluid-fluid interfacesammplex shapes need
to be handled. Using the level-set function and theude-interface approach to treat
the fluid-fluid interface, the method has the flexibility ofatlag with interfacial mor-
phological and topological changes. Both two- and threeedisional versions of the
method are developed and are described in Chapter 2. Thedwts used to model
the dynamics of drops traveling through microchannels witmps on one side of the
walls. The dfects of the capillary number, viscosity ratio, and Reynaoldsber on the
drop translation and deformation were investigated. Treigpfocus was given to the
interior flow pattern of the drop. It was found that when thecaisity ratio or the curva-
ture of the bumps is increased, the vortex pair inside thp dewome skewed or even
reduce to one single circulation. In three dimensions, tteikations in the spanwise
direction are also developed. These flow patterns could bd tssenhance the drop

based mixing.

6.2 Contributions

The contribution of this dissertation work can be summatias follows.

1. We have developed a simple two-dimensional model to addhe aeroelasticity
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of insect wings and help to explain the role of the structdefbrmation in the
aerodynamic performance of the wings. We have clarifiedgbpeactive contribu-
tions from the wing inertia and the aerodynamic force to thegvdeformation,
and through the present study, we have made the aerodynamseqguence of
each type of contribution understood. The results predemeee will be useful

for the future engineering design of flexible flapping wings.

2. We have innovatively applied the idea from the formatigghtland fish schooling
in nature to energy-harvesting piezo-leaves in close geiaent. We have devel-
oped a simple model to simulate the hydrodynamic interaatifotwo leaves in
tandem arrangement and have found a resonant state at wdtichelaves can
benefit remarkably from the hydrodynamic interaction. Weehatered an ex-
planation, through a detailed study, to the underlying rmacm for the observed

resonant behavior.

3. We have successfully developed and validated a Cartgsidmased numerical
method for two- and three-dimensional simulations of the-plhase flows in
complex domains, and we have applied the method to similat@rbdp dynamics
in non-trivial shaped channels. We have systematicallgistuthe flow pattern
inside the drop, and the results help to explain the mechenehind the observed
drop behavior in a previous experimental study. Furtheenihre results will be

useful for the design drop-based mixing in microfluidic chels.

The work described in this dissertation has been presentée ifollowing publica-

tions:

1. Yin, B., Luo, H. (2013) Numerical simulation of drops inside an asgtric

microchannel with protrusions. Submitted to Computers &id4s.

2. Yin, B., Luo, H. (2013) Hydrodynamic interaction of oblique sheetsandem

arrangement. Physics of Fluids, 25, 011902
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3. Luo, H., Dai, H., Ferreira de SousaY, B. (2012) On numerical oscillation of
the direct-forcing immersed-boundary method for movingrmtaries. Comput-

ers & Fluids. 56, 61-76

4. Yin, B., Luo, H. (2010) Eect of wing inertia on hovering performance of flexible

flapping wings. Physics of Fluids, 22, 111902 (10 pages).

5. Yin, B., Luo, H. Energy-harvesting potential of multiple elastizistures in tan-
dem arrangement. The 64th Annual Meeting of APFED, November 20-22,
2011. Baltimore, Maryland.

6. Yin, B., Luo, H. Numerical simulation of two-phase flows in compl@ometries
by combining two diferent immersed-boundary methodshe 63rd AP®FD
Annual MeetingNov. 21-23, 2010. Long Beach, California.

6.3 Future work

The future work is summarized as follows regarding each ethinee applications:

For the inset flight problem, there are rarely three-dimamesi models that address
the role of the wing flexibility in the aerodynamics. The ftegwork will focus on de-
velopment of such models, which are obviously more compartally expensive. The
guestions that could be addressed include: (1) to what eséenthe current 2D results
be extended to 3D? (2) Can the complex structure of an insict ke parametrized
efficiently using only a few variables? (3) What fluid-structumeraction mechanisms
have caused the 3D and asymmetric deformation patternsedtimvings observed dur-
ing flight? (4) How general can the results from simplified ruical models be ex-
tended to dierent wing morphology of insects? (5) How can results beieggb
actual wing designs of a biomimetic micro air vehicle? Sorhéhese questions are
currently being answered by our group, while others reqgfuitere collaboration with

biologists as well as engineers who specialize machingdesid system integration.
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For the energy harvesting problem, a straightforward gmeso ask is whether
there is a resonance regime for multiple piezo-leaves glata patterned array. As
suggested by our current study, an investigation incotp@anore leaf sheets would
help to find the answer in which the separation distance aray grattern could be
explored. In addition, a simulation including the charaste&s of the piezoelectric
material and the circuit has not been done yet. Such systeet+hodeling work could
be pursued in the future.

For the study on the drops moving in microchannels, the éustudy could focus
on modeling the actual mixing inside the drop and quantgytime mixing rate for dif-
ferent geometries of the wall protrusions. Fig. 6.1 showsxample of such study,
where mixing of two species inside the drop is shown for thmeap shapes considered
in the present work. Passive tracers are introduced inbigl@top to mark the mix-
ing both qualitatively and quantitatively. Our prelimigastudy confirms that the wall
protrusions significantly enhance the mixing rate in thepdurther quantitative and

parametric study can be done in the future.
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(@)

(b)

(©)

Figure 6.1: Mixing as indicated by passive tracers insidéetint channels with (a)
bump A; (b) bump B; (c) bump C.
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