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CHAPTER 1

INTRODUCTION

1.1 Motivation

1.1.1 Interaction of fluids with thin solid structures

The interactions between fluids and thin structures can be found in many exam-

ples in nature, for instance, elastic membranous wings of insects [1], undulating fins of

fish [2], flapping flags and tree leaves in the wind, oscillations of underwater plants in

unsteady currents, rotating flagella of bacteria [3], deformation of cell membranes [4]

(see Fig. 1.1). Complicated fluid–structure interaction (FSI) is involved in these sys-

tems. Computational modeling of these system is typically very challenging because

the solid bodies experience large displacements, which causes the mesh generation in

the conventional methods of computational fluid dynamics (CFD) to be an expensive

and sometimes even formidable procedure.

We are specifically interested in two applications in this work: (1) aerodynamics of

the flapping wings of insects; and (2) energy harvesting using tree-leaf-like structures

attached with piezoelectric materials. The background of each application is briefly

discussed here and will be further described in the pertinent chapter.

Aerodynamics of insect flight has drawn considerable attention in recent years due

to its promising application in the development of biomimetic micro air vehicles [5].

During flight, insect wings typically experience dynamic deformations [6], i.e., change

of the wing shape from its rest configuration regardless the position or orientation of the

wing. Even though the deformation magnitude and pattern vary from species to species,

physiological studies have shown that insect wings do not possess an internal actuation

mechanism and thus the deformation has to be passive [7]. That is, an insect wing is

1



(a) A hovering hummingbird (Credit: Dean E. Brig-
gins, U.S. Fish and Wildlife Service)

(b) Swimming fish (Credit: Dr. James C. Liao, Uni-
versity of Florida)

(c) Bacterial flagella (Credit: Michael D. Jones,
http://en.wikipedia.org/wiki /Flagellum)

(d) Tree leaves (Credit: Dr. Yahya Modarres-
Sadeghi, University of Massachusetts)

Figure 1.1: Interactions between fluids and thin structures.

deformed by the external means, i.e., the aerodynamic forcefrom the air around the

wing, or due to the wing acceleration, i.e., the inertial force. The mass ratio describing

the relative effect of the wing inertia with respect to the aerodynamic forceis difficult to

match in an experiment requiring dynamic similarity. Therefore, a computational study

would be very useful in studying the effect of wing deformation.

On a separate application, recent experimental studies have demonstrated that tree-

leaf-like thin structures can be used as energy harvesters when placed in a flow [8–

10]. When the structure is vibrating due to vortex shedding,the piezoelectric material

2



(a) A wavy microchannel for drop-based mixing
(Credit: Bringer et.al [12])

(b) Water-oil flows used in pipeline transport of
crude oils (Credit: D.D. Joseph et.al [13])

Figure 1.2: Interactions of flows with fluid–fluid interfaces.

attached to the structure converts the kinetic energy into electricity through a circuit.

The device may be potentially used to power small electronicdevices. In the work of

[11], a single leaf unit is able to produce an amount of power around 300µW. So it may

be possible to use multiple units to power a small electronicdevice that requires power

on order of 100 mW. Nevertheless, the efficiency of the energy harvesting needs to be

improved significantly in order for such a mechanism to have practical use. Therefore,

a study of the flow-induced vibration of an array of thin structures will be useful for

exploring the parameter regime in which the system would have enhanced performance.

1.1.2 Interaction of fluids with fluidic interfaces

In a different situation, two-phase flows of immiscible fluids (e.g.,oil and water, or

air and water) have wide applications in industry ranging from microfluidics to pipeline

transport of crude oils (see Fig. 1.2). The interface between the two liquids has zero

thickness, and across the interface, the velocity is continuous but the traction undergoes

a jump due to the presence of the surface tension. In a sense, such a fluid–fluid interface

may be viewed as a thin structure that may be stretched and bent. Compared to the thin

solid bodies, there are added complexities for modeling such fluid–fluid interfaces, as

3



these interfaces not only go through great bending and stretching deformations but may

also experience topological changes, e.g., breakup and coalescence.

For two-fluid flows in arbitrary domains, both types of boundaries, i.e., the fluid–

solid interface and the fluid–fluid interface, would appear in one problem. For exam-

ple, microchannels with intricate shape features were usedto generate and manipulate

droplets carrying living cells [14] or physiological fluids[15] on microfluidic devices.

Pipeline transporting heavy oils using water lubrication,known as core–annular flow,

involves geometries such as pipe fittings, T-junctions, andcontractions/expansions of

the cross section [16]. Combustion chambers with sophisticated interior design have

massive behaviors including break-up and coalescence of liquid fuel drops [17].

The existing methods of numerically simulating two immiscible fluids in non-trivial

geometries are usually based on meshes that conform to the surface of the solid, i.e.,

either a curvilinear grid or an unstructured grid, so that the boundary conditions, typi-

cally no-slip and no-penetration wall conditions, can be applied at the surface straight-

forwardly. On the other hand, there are several approaches for handling the interface

between the two fluids in which the computational mesh does not have to conform to

the interface. Based on the approach of tracing the fluid–fluid interface, the existing

methods for modeling multi-fluid flows include the following: (I) the Lagrangian mesh

approach, where the interface is represented by a set of marker points and a mesh mov-

ing with the local fluid. (II) the volume-of-fluids (VOF) method, where the interface

is represented by the volume fraction of the fluids [18]; (III) the level set function,

where the interface is represented by the zero-level contour of a distance function [19];

and more recently (IV) the phase-field method, where the interface is represented by

the chemical energy level of the fluids [20]. In the first method, the surface tension

can be directly incorporated into the boundary condition ifthe volume mesh moves to-

gether with the interface, e.g., the arbitrary Lagrangian-Eulerian (ALE) method [21],

or it can spread into the fluid near the interface if the volumemesh is fixed, e.g., the

front-tracking method [22]; Among these methods, only the ALE method requires the

4



volume mesh to be adapted to the moving interface, and the other methods can be built

on a fixed mesh. Furthermore, except the Lagrangian mesh approach that utilizes an

explicit surface meshing technique, the other methods use ascalar variable advected

by the flow to trace the interface implicitly, and they have the inherent capability of

handling topological changes of the interface.

The immersed-boundary methods based on fixed meshes, especially Cartesian grids,

have been developed and applied extensively in treating complex and moving bound-

aries of solids. In its original version, Peskin [23] converted the surface traction exerted

by the thin elastic body immersed in the fluid into a volume force using a regularized

Dirac’s delta function. Conceptually, this method closelyresembles the front-tracking

method and thus both can be categorized as the diffuse-interface method. After Peskin’s

work, several other families of the Cartesian grid based approaches were developed for

arbitrary solid boundaries and were dubbed with terms such as the immersed-interface

method [24], the embedded-boundary method [25], or still, the immersed-boundary

method [26]. These later methods have significantly deviated from Peskin’s original no-

tion of an immersed boundary in that they retain the surface-force nature of the traction

from the solid boundary and are therefore referred to the sharp-interface method [26].

Nevertheless, compared with the curvilinear or unstructured grid based methods, the

common advantages of these immersed-boundary methods are simple mesh generation

and efficient computational algorithms that are based on the Cartesian grid. In all these

methods, an explicit mesh representing the solid body is needed. For further reviews

of the immersed-boundary methods and also additional methods that are based on fixed

grids, e.g., the fictitious domain method, the readers are referred to the works of [27],

[26], and [28].

Having listed many non-boundary-conformal approaches foreither fluid–fluid in-

terfaces or fluid–solid interfaces, we point out that there are few approaches available

that utilize Cartesian meshes to treat both types of interfaces in one program. The ma-

jor reason for this is that the two interfaces are associatedwith different characteristic
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deformations and also boundary conditions. A fluid surface typically can be bent and

stretched to a large degree, or even change its topology substantially, while a solid sur-

face may be rigid or inextensible (e.g., a moving piston or anelastic airplane wing).

With regard to the boundary conditions, the velocities are usually specified for a solid

surface, while a fluid surface involves the unknown interfacial velocity but a known

traction jump across the interface due to the presence of thesurface tension. As a re-

sult, none of the aforementioned methods is readily suitable for both types of surfaces

in general. For example, an explicit mesh using Lagrangian markers may be suitable for

representing a solid surface but has difficulty dealing with morphology of a fluid sur-

face. On the other hand, the level set method can handle interfacial morphology easily,

but it cannot give the location of the interface explicitly and thus is not straightforward

for implementation of the no-slip condition at a solid surface.

Therefore, a proper combination of some of the existing methods based on Cartesian

grids would be appropriate for simulating two immiscible fluids involving solid bound-

aries of arbitrary geometries. In the present work, we combine the level-set method

for the fluid surface and a sharp-interface immersed-boundary method for the rigid or

deformable solid boundary. For the solid boundary, the sharp-interface treatment is

chosen because the method is typically second-order accurate as opposed to the gen-

erally first-order accuracy for the diffuse-interface treatment [29]. Furthermore, for a

rigid body, an iterative approach would be needed in the diffuse-interface treatment for

the no-slip boundary condition to be satisfied, which may lead to slow convergence or

even numerical instability [26]. The combined method presented in this work will have

the following features: (1) easy to represent both fluid and solid surfaces, even if the

surfaces are complex-shaped or moving, (2) straightforward to incorporate the bound-

ary conditions associated with each type of the interfaces,(3) capable of handling the

topological change of the fluid surface, and (4) simple mesh generation and efficient

computation on the Cartesian grid.
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1.2 Objectives of the dissertation

The specific objectives of this work can be summarized as follows:

1. Computationally model the fluid–structure interaction of the flapping wings of

insect and study (1) the effect of wing deformation on the aerodynamic perfor-

mance of the wing and (2) the relative role of the wing inertial with respect to the

aerodynamic force.

2. Computationally model the hydrodynamic interaction between the thin structures

that are placed in close range and seek the regime in which theenergy level of

the entire system is significantly increased; and if such a regime is found, the

underlying physical mechanism will be studied.

3. Develop a three-dimensional immersed-boundary method that can be used to sim-

ulate two immiscible fluids in arbitrary domains. The methodshould be able to

capture both the morphological and topological changes of the fluid–fluid inter-

face.

4. Use the immersed-boundary method to study the dynamics ofdrops traveling

through microchannels with asymmetric wall bumps and to investigate the inte-

rior flow pattern for the purpose of mixing enhancement.

1.3 Outline of the dissertation

This dissertation includes the discussion and implementation of the numerical algo-

rithms for treatment of the fluid–solid interface and the fluid–fluid interface, and it also

covers three independent applications of the current method.

Chapter 1 provides the overall motivation for a numerical method capable of sim-

ulating the interaction between fluids and thin structures.The background of the three

applications are briefly described.
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Chapter 2 provides the descriptions of the numerical methods. The Navier-Stokes

equations are numerically solved on a fixed Cartesian grid. The sharp and diffuse

immersed-boundary methods are combined in one program to separately treat the fluid–

solid interface and the fluid–fluid interface. The level-setfunction is introduced with

the mass conservation and stability issues addressed. Numerical validation cases are

provided.

Chapter 3 describes the application of the current method tothe fluid–structure inter-

action of flapping wings. A two-dimensional model is developed to model the hovering

flight of insects. The effect of wing deformation and the role of the wing inertia are ad-

dressed by varying the mass ratio and structural flexibilityof the wing. The implication

of the findings on insect flight is discussed.

Chapter 4 describes the application of the current method tothe fluid–structure in-

teraction of an array of elastic sheets placed in a free stream. The parameter regime for

the system resonance is studied, and the mechanism of the resonance is examined in

detail.

Chapter 5 describes the application of the current method tothe drops going through

an asymmetric microfluidic channel that has bumps on one side. The parameters that

lead to the asymmetric flow pattern inside the drops are investigated for the purpose of

mixing enhancement.

Chapter 6 provides a summary of the dissertation. Overall conclusions and contri-

butions are presented, and future work based on the current results is suggested.
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CHAPTER 2

NUMERICAL METHOD FOR THE FLOW

2.1 Governing equations and numerical discretization

The fluid in this study is considered to be viscous, incompressible and Newtonian.

The governing Navier-Stokes equation for the viscous incompressible flow is written as

ρ
(∂u
∂t
+ u · ∇u

)

= −∇p+ 2∇ · (µ E) + F

∇ · u = 0, (2.1)

whereu = (u, v,w), p, ρ, µ are the velocity, pressure, density, and viscosity, respectively,

E =
1
2

(∇u + ∇uT) (2.2)

is the rate-of-deformation tensor, andF denotes the external body force, which can be

gravity, an imposed pressure gradient, the elastic membrane stress, or the regularized

surface tension in the application of a continuous surface force model (CSF) [30] for

the fluid-fluid interface. In the CSF model, the surface tension effect is included as

F = σκnδ(φ) (2.3)

whereσ is the constant surface tension,κ andn are the mean curvature and normal

vector of the fluid–fluid interface, respectively, andδ(φ) is the regularized Dirac delta

function which will be discussed later (Section 2.3).

According to the vector identities, the rate-of-deformation tensor in Eq. (2.1) for an
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incompressible flow can be expressed as [31]

2∇ · (µE) = µ∇2u+ ∇µ ×ω + 2∇µ · ∇u, (2.4)

where

ω ≡ ∇ × u (2.5)

is the vorticity. In the present work, the viscosity of each fluid is assumed to be constant.

Thus,∇µ is only non-zero near the two-fluid interface and is along thesurface normal

of interface.

The entire rectangular computational domain, which includes the fluid region and

part of the solid region, is discretized on a nonuniform and non-staggered Cartesian

grid. For the bulk-fluid region (away from the solid boundary), the governing equation

is solved using a variant of Chorin’s projection method which involves several sub-

steps:

ρ
∂u
∂t
= −∇P0 + ∇µ × ω + F

∂u
∂t
+ (u−

2
ρ
∇µ) · ∇u = ν∇2u (2.6)

ρ
∂u
∂t
= −∇p.

The first sub-step is treated explicitly, while the advection-diffusion equation in the

second sub-step is solved implicitly using the Crank-Nicolson scheme to obtain an in-

termediate velocityu∗. In the discrete form, this step can be written as

u∗i − un
i

∆t
+

1
2

[

δ(V jui)∗

δxj
+
δ(V jui)n

δxj

]

=
ν

2

[

δ

δxj

(

δu∗i
δxj

)

+
δ

δxj

(

δun
i

δxj

)]

(2.7)
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where δ
δxj

represents a second-order central difference scheme,

V j = U j −
2
ρ

δµ

δxj
(2.8)

is the modified velocity component, andU j is the face-centered velocity obtained by

averagingu j along thej-direction. Note that Eq. (2.7) is a nonlinear equation, andwe

updateU∗j andV∗j from availableu∗i in an iterative solution process.

Before solving the third sub-step in Eq. (2.6), the pressureis obtained by requiring

the velocity after this step to be divergence-free. Thus,

δ

δxj

(

δpn+1

δxj

)

=
ρ

∆t

δU∗j
δxj

, (2.9)

for which an inhomogeneous Neumann boundary condition,

∂p
∂n
= −ρ

Du
Dt
· n (2.10)

is assumed and Du/Dt stands for the material derivative of the velocity. After the pres-

sure is obtained, the third sub-step in Eq. (2.6) is executedin its discrete form,

un+1
i = u∗i −

∆t
ρ

δpn+1

δxi
. (2.11)

2.2 Sharp-boundary treatment for the fluid–solid interface

In this work, a previously developed sharp-interface immersed-boundary method [32,

33] is used to handle the complex geometry of the fluid–solid interface. In this method,

the irregular solid interface is triangulated by an unstructured surface mesh consisting

of a set of Lagrangian marker points. The nodal points on the Cartesian grid that dis-

cretizes the computational domain are labeled either as “solid nodes” or “fluid nodes”

depending on which side of interface the node is located. Away from the solid surface,
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Figure 2.1: Illustration of the sharp-interface immersed-boundary method for the fluid–
solid boundary. Flow field extrapolation is applied at the ghost nodes.

the Navier–Stokes equation is discretized using a standardsecond-order central differ-

ence scheme. Such a scheme is also applied at the fluid–fluid interface after the diffuse

interface treatment, as will be discussed in next section.

Near the solid surface, the standard central difference scheme cannot be applied for

those nodes at which the stencil involves solid nodes. Thesefluid nodes are immedi-

ately next to the solid surface and are termed “hybrid” nodes, and the corresponding

solid nodes involved in the stencil are termed “ghost” nodes(GN). Flow field recon-

struction is applied at the ghost nodes with the boundary condition incorporated [32].

To accomplish this, the image point (IP) on the fluid side is found by projecting the

ghost node along the surface normal, and the body intercept (BI) on the solid surface is

thus located midway between the ghost node and image point. Assume thatφ(x, y, z) is

a generic variable. To interpolate the value ofφ at the image point, a trilinear interpola-

tion is used in the local area with eight nodes enclosing the image point,

φ(x1, x2, x3) = C1x1x2x3 +C2x1x2 +C3x2x3 +C4x3x1

+ C5x1 +C6x2 +C7x3 +C8 (2.12)
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where the polynomial coefficientsCi , i = 1, 2, ..., 8 are determined by the values ofφ at

the eight nodes,φi,

{C} = [V]−1{φ}. (2.13)

with {C}T = {C1,C2, ...,C8} and{φ}T = {φ1, φ2, ..., φ8}. The matrix [V] is the Vander-

monde matrix constructed from the coordinates of the eight nodes,

[V] =



























































x1x2x3|n1 x1x2|n1 x2x3|n1 x3x1|n1 x1|n1 x2|n1 x3|n1 1

x1x2x3|n2 x1x2|n2 x2x3|n2 x3x1|n2 x1|n2 x2|n2 x3|n2 1
...

...
...

...

x1x2x3|n8 x1x2|n8 x2x3|n8 x3x1|n8 x1|n8 x2|n8 x3|n8 1



























































(2.14)

where the subscriptsni means theith node. With the solved coefficients, the trilinear

interpolation is complete and the interpolated value at theimage point becomes

φIP(x1, x2, x3) = {X}{C} = {X}[V]−1{φ} =

8
∑

i=1

βiφi (2.15)

where{X} = {x1x2x3, x1x2, x2x3, x3x1, x1, x2, x3, 1}|IP denotes the vector of coordinates

of the image point andβi is the interpolation weight calculated from{X}[V]−1. From

Eq. (2.15), the interpolation weightβi depends on the positions of the image point and

the eight data points only. Thus, it can be determined once the geometrical information

is available and is then ready for use during the iterative solution of the flow variables.

The eight data points used for interpolation could be the eight vertices on the com-

putational cell surrounding the image point. However, the ghost node itself could be one

of the eight nodes, as shown by one of the two situations depicted in Fig. 2.1. Under

such circumstance, the ghost node is replaced by the body intercept in the interpolation

process. At the body intercept, either Dirichlet (for the velocity) or Neumann (for the

pressure) condition is specified. For the Dirichlet condition, using the body intercept
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in the interpolation is straightforward – the interpolation formula, Eq. (2.15), remains

the same and the coordinates inX and [V] should be replaced by those for the body

intercept. For the Neumann condition,∂φ/∂n, needs to be incorporated into the inter-

polation formula. This is done by modifying the last row of the Vandermonde matrix in

Eq. (2.14) into

[

∂(x1x2x3)
∂n |n8

∂(x1x2)
∂n |n8

∂(x2x3)
∂n |n8

∂(x3x1)
∂n |n8

∂x1
∂n |n8

∂x2
∂n |n8

∂x3
∂n |n8 0

]

. (2.16)

with the definition of∂/∂n, Eq. (2.16) can be re-written as:

[

n1x2x3 + n2x1x3 + n3x1x2 n1x2 + n2x1 n2x3 + n3x2 n1x3 + n3x1 n1 n2 n3 0
]

.(2.17)

where (n1, n2, n3) represents the normal at node 8. Correspondingly, the lastelement in

φ is replaced by∂φ/∂n at the body intercept, and Eq. (2.15) becomes

φIP(x1, x2, x3) =
7

∑

i=1

βiφi + β8
∂φ

∂n
. (2.18)

For the velocity boundary condition, a linear distributionis assumed along the line

segment connecting the ghost node, body intercept, and the image point. That is,

uGN + uIP = 2uBI. (2.19)

Given the boundary velocity,uBI, whereuBI = 0 for a stationary boundary,uGN can

be calculated from Eq. (2.19). For the pressure,∂p
∂n is given as the boundary condition.

Using a central difference approximation, the condition can be written as

∂p
∂n

∣

∣

∣

∣

∣

BI
=

pIP − pGN

∆l
= −ρ

Du
Dt
· n

∣

∣

∣

∣

∣

BI
(2.20)

where the∆l is the distance between the IP and GN. Inhomogeneous pressure condition
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∂p/∂n = −ρ(Du/Dt) · n has been assumed here. The value of Du/Dt at the BI is

interpolated from the acceleration of the Lagrangian marker points on the solid surface

in the case of a moving boundary.

With the above numerical descriptions of the flow variables at the ghost nodes and

the finite-difference discretization at all the fluid nodes, a complete algebraic system

could be formed for all the discrete variables. More detailsof implementation and

validation of this sharp-interface treatment are providedin Mittal et al.[32]. In the case

that the solid surface is a moving boundary, such a method maybe subject to numerical

oscillations as the solid surface moves across the stationary grid and the ghost nodes

have to be re-identified at each time step. To suppress the oscillation, Luo et al. [33]

improved the method by applying a hybrid numerical description at the fluid nodes

immediately next to the solid surface where the finite-difference stencil involves some

of the ghost nodes. In the hybrid description, a local interpolation and the standard

finite-difference discretization are weighted based on the distance ofthe fluid node to

the solid surface. Thus, as the boundary moves, the interpolation and finite-difference

formulas transition to each other gradually rather than abruptly. Since the primary focus

of the current work is on stationary solid boundaries, further details of the moving-

boundary treatment is not discussed here. Readers are referred to Luoet al. [33] for

more information.

2.3 Tracking the fluid–fluid interface: the level set method

We consider a viscous incompressible flow of two immiscible fluids in an arbitrary

geometry. The level set function[19, 34] is one popular method to implicitly represent

the interface between two fluids. In this method, a smooth continuous scalar functionψ

is established with zero value on the interface of two fluids,positive in one phase and

negative in another (Fig. 2.2). One particular advantage ofthe level set method is that it

can deal with the topological change inherently, for example, coalescence and breakup
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ψ < 0

ψ = 0 ψ > 0

Figure 2.2: The signed distance function as the level set function.

of the interface. The classical level set function is definedas a signed minimum distance

function:

ψ(x) ≡ dist(x) = min(|x − xI |), x = {x1, x2, x3}, xI ∈ ∂Ω (2.21)

where∂Ω is the interface.ψ(x) = 0 represents the position of the interface, while

ψ(x) > 0 for x ∈ ∂Ω+ andψ(x) < 0 for x ∈ ∂Ω−. This definition maintains the feature

|∇ψ| = 1 inside the entire domain. As a continuous function,ψ has adequate smoothness

that the normaln and curvatureκ of the interface can be directly computed fromψ,

n =
∇ψ

|∇ψ|
, κ = −∇ · n. (2.22)

These two quantities are used in the calculation of the surface tension force in Eq. (2.3).

Under the fluid velocity field, the standard equation for convecting the level set

function is given as

∂ψ

∂t
+ u · ∇ψ = 0. (2.23)
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Thus the zero level of distance function, or the interface, will be transported along with

the local fluid. Since the density and viscosity remain constant in each fluid phase, they

can be written with the Heaviside function as

ρ = ρ1 + (ρ2 − ρ1)H(φ)

µ = µ1 + (µ2 − µ1)H(φ) (2.24)

where the subscript indicates the phase 1 or 2. To regularizethe discontinuous Heavi-

side function, the following approximation is used instead,

H(ψ) =







































0, ψ < −ǫ

ǫ+ψ

2ǫ +
1
2π sin

(

πφ

ǫ

)

, −ǫ ≤ ψ ≤ ǫ

1, ǫ < ψ

(2.25)

whereǫ is the parameter that determines the bandwidth of the smeared interface. Typi-

cally ǫ varies from one to two grid intervals around the interface. The regularized Heav-

iside function is also used to derive the approximate Dirac delta function in Eq. (2.3),

δ(ψ) = H′(ψ) =







































0, ψ < −ǫ

1
2ǫ +

1
2ǫ cos

(

πψ

ǫ

)

, −ǫ ≤ ψ ≤ ǫ

0, ǫ < ψ

(2.26)

Thus,δ(ψ) is equal to zero elsewhere except within the thickness of the diffuse interface.

When solving the advection equation (2.23), the distance function will be distorted

and the smoothness ofψ may be lost, which leads to inaccuracy of the geometrical

quantities and even numerical instabilities at the interface [34](Chapter 7). To keep

ψ smooth and a meaningful distance function, re-initialization of the signed distance

profile is enforced in the vicinity of the zero-level contourevery a few time steps. The
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usual re-initialization step is to solve a Hamilton-Jacobiequation

∂ψ

∂τ
+ S(ψ0)(|∇ψ| − 1) = 0, (2.27)

whereS(ψ0) is a sign function taking 1 inΩ+, -1 inΩ−, and 0 on the interface, andτ is

the pseudo time. Numerically,S(ψ0) is also smoothed to increase the stability,

S(ψ0) =
ψ0

√

ψ2
0 + (∆x)2

(2.28)

whereψ0 is the initial value ofψ at the beginning of each re-initialization iteration and

∆x is the mesh interval. After a few iterations in the pseudo time, Eq. (2.27) can reach

the steady state, where the∂ψ/∂τ approaches zero and|∇ψ| is equal to one.

The advection equation, Eq. (2.23), is a special kind of Hamilton-Jacobi equa-

tion [35], and many numerical algorithms, e.g., the 3rd-order ENO (Essentially Non-

Oscillatory) and the 5th-order WENO (Weighted ENO), have been developed to solve

(2.23) and (2.27), which can achieve high-order accuracy and robustness. The ENO

introduced by Harten et al. [36] increases the accuracy of approximation forψ−x andψ+x

significantly, whereψ−x andψ+x are the approximate∂ψ/∂x on a left- and right-biased

stencil in the x-direction, respectively. Its basic idea isto reconstructψ using a high-

order polynomial on a four-point stencil and then differentiate the polynomial to ap-

proximateψx. The stencils for the ENO are tabulated in [37]. Based on the ENO, the

WENO [38, 39] is a convex combination of three overlapping ENO stencils to achieve

the 5th-order accuracy. In the current work, we have implemented the WENO to solve

Eq. (2.27).

Three possible ENO approximations to (ψ−x )i can be calculated on the stencil sup-
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ported by the nodes{xi−3, xi−2, ..., xi=2} [34] as

ψ1
x =

v1

3
−

7v2

6
+

11v3

6

ψ2
x = −

v2

6
+

5v3

6
+

v4

3
(2.29)

ψ3
x = −

v3

3
+

5v4

6
−

v5

6

wherev1 = (ψi−2−ψi−3)/∆x, v2 = (ψi−1−ψi−2)/∆x,...,v5 = (ψi+2−ψi+1)/∆x. The WENO

consists of a convex combination of the approximation in Eq.(2.30) as

ψx = ω1ψ
1
x + ω2ψ

2
x + ω3ψ

3
x (2.30)

whereωk are the weights satisfyingω1 + ω2 + ω3 = 1, 0 ≤ ωk ≤ 1. The weights are

defined as follows [40] to estimate the stencil smoothness:

S1 =
13
12

(v1 − 2v2 + v3)
2 +

1
4

(v1 − 4v2 + 3v3)
2

S2 =
13
12

(v2 − 2v3 + v4)
2 +

1
4

(v2 − v4)
2 (2.31)

S3 =
13
12

(v3 − 2v4 + v5)
2 +

1
4

(3v3 − 4v4 + v5)
2

Then, we define

α1 =
0.1

(S1 + ǫ)2

α2 =
0.6

(S2 + ǫ)2
(2.32)

α3 =
0.3

(S3 + ǫ)2
,

whereǫ = 10−6 max{v2
1, v

2
2, v

2
3, v

2
4, v

2
5}+ 10−99. By normalizingαk, we obtain the weights

from

ωi =
αi

α1 + α2 + α3
, i = 1, 2, 3. (2.33)
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2.3.1 Mass conservation

One challenging issue for the level set method is the mass conservation problem.

Mass gain/loss during update of the two-fluid interface causes a crucial impact to the

accuracy of the method. The mass conservation problem has been discussed frequently

in literature [41–45]. Spelt [46] utilized a simple correction method to compensate the

mass loss,

ψ̃ = ψ +
V − V0

2S
(2.34)

whereV is the volume of one phase,V0 is the initial value of the same phase, andS is

the area of the interface. BothV andS can be determined straightforwardly from the

Heaviside andδ(ψ) functions. The correction of the fluid volumes is applied atthe end

of each convection step in Eq. (2.23). This treatment exactly conserves the volumes

of the two fluids and does not have a significant effect on the non-physical interface

displacement [47]. Therefore, we have implemented it in thecurrent method.

2.3.2 Curvature smoothing

In the CSF model expressed by Eq. (2.3), the surface tension force is calculated

based on the surface normaln and the curvatureκ. However, the computation of the

curvature is prone to numerical noise, which could cause inaccuracy and failure of the

surface force model. Previously, smoothing kernels or operators have been applied

to the level set method and volume-of-fluid (VOF) method [48,49] to counteract the

numerical instability. Recently, Chiu & Lin [50] employed aHelmholtz smoother to

stabilize the calculation of the curvature. This smoother is adopted in the current work

and is described here as

H = 1− ǫ2∇2, (2.35)
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Whereǫ is a constant parameter. Apply this operator and solve the Helmholtz equation

ψ = H(ψ̃) = ψ̃ − ǫ2∇2ψ̃, (2.36)

then we obtain the smoothed functionψ̃. The curvatureκ can then be calculated from̃ψ

using a 2nd-order central difference scheme,

κ = ∇ · n = ∇ ·















∇ψ̃
∣

∣

∣∇ψ̃
∣

∣

∣















. (2.37)

Fig. 2.3 shows the comparison between the smoothed and non-smoothed curvature

computation. In this test, a 2D droplet with a radius 0.5d is placed in the Poiseuille

flow originally at the center of the domain that has dimensionof [−d, d] × [−d, d]. Here

d is the half channel width. A uniform grid of 200× 200 points is used to discretize

the domain, and the time step is chosen to be∆t = 10−3d/U. The inlet boundary is at

x = −d, and the outlet atx = d. The Reynolds number isRe = ρUd/µ = 1, where

U is the centerline velocity of the Poiseuille flow. Fig. 2.3 shows the level set contour

and the corresponding curvature at two different time instances,tU/d = 0.1 and 0.2.

At both time moments, the smoothing treatment does not causesignificant difference

in the level set contours. However, oscillations can be clearly seen at top and bottom

sides of the contours of the curvature for the non-smoothed calculation. In comparison,

the curvature from the smoothed calculation has a stable solution and much smoother

contours.

The parameterǫ affects the strength of curvature smoothing. Here we chooseǫ =

k∆x, where∆x is the grid interval. After several tests with the droplet inthe Poiseuille

flow, we setk = 5, which gives a reasonable result.
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Figure 2.3: Effect of curvature smoothing for an initially cylindrical droplet placed in a
channel flow at time (a,b)tU/d = 0.1 and (c,d)tU/d = 0.2. (a,c) The level set contours;
(b,d) contours of the curvature calculated from the level set function. The solid lines are
from the non-smoothing treatment, and the dashed lines fromthe smoothing treatment.
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CHAPTER 3

EFFECT OF WING INERTIA ON HOVERING PERFORMANCE OF

FLEXIBLE FLAPPING WINGS

3.1 Background

Aerodynamics of insect flight (Fig. 3.1) has drawn considerable attention in recent

years due to its promising application in the development ofbiomimetic micro air ve-

hicles [5]. During flight, insect wings typically experience dynamic deformations [6],

i.e., change of the wing shape from its rest configuration regardless the position or ori-

entation of the wing. Even though the deformation magnitudeand pattern vary from

species to species, physiological studies have shown that insect wings do not possess an

internal actuation mechanism and thus the deformation has to be passive [7]. That is,

an insect wing is deformed by either the aerodynamic force from the surrounding air,

or the inertial acceleration, or a combination of both.

The structural deformation during flapping may significantly change the flow be-

havior around the wing and consequently have an important effect on its aerodynamic

performance. A few studies have been devoted to the understanding of the effect of

the wing flexibility. Using a two-link model representing a chordwise wing section,

Vanella et al. [51] performed a two-dimensional numerical simulation of the flow–

structure interaction in hovering flight. They found that the structural flexibility can

enhance the aerodynamic performance of the wing by increasing the lift-to-drag and

lift-to-power ratios, and that the best performance is obtained when the flapping fre-

quency is a fraction of the natural frequency of the wing structure. In a separate study

using also the linkage model, Eldredgeet al. [52] investigated the effect of the wing

flexibility in a range of kinematic parameters describing the combined pitching and
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heaving motion of the wing. They found that a mildly flexible wing has consistently

good performance over a wide range of phase differences between pitching and heaving,

which is in contrast with the relative sensitivity of a rigidwing to this parameter. Full

three-dimensional numerical simulations of the desert locust, Schistocerca gregaria,

were recently performed by reconstructing the detailed wing kinematics, including the

time-varying camber and spanwise twist of the wing surface,from the high-speed digi-

tal video of the real insect flight [53]. By comparing the performance of the wing model

based on the fully reconstructed kinematics and that of the corresponding wing models

without the camber or twist, Younget al. [53] found that the wing deformation leads to

substantial power economy in lift production. Meanwhile, they noticed that the leading

edge vortex remains attached to the wing during the entire flapping cycle in the full-

kinematics model, which may have contributed to the aerodynamic power efficiency of

the wing. The aerodynamic advantage of the passive wing flexibility was also reported

for the biomimetic wings that are designed to produce characteristic deformation pat-

terns of insects or birds [54].

In insect flight, both the inertial force and the fluid force can be the primary causes

of the wing deformation. Combes & Daniel [55] compared vibrations of the excited

hawkmothManduca sextawing in normal air and in helium (approximately 15% of the

air density) and noticed that the difference in the wing deformation pattern between the

two cases is very small. Their result suggests that theManducawing deformation is

mainly due to the inertia force of the wing. In another study,Chenet al.[56] performed

a vibration test of the dragonfly wing and found that the lowest frequency among the

natural vibration modes is on order of 170 Hz, which is much higher than the flapping

frequency of the insect. Therefore, they concluded that thewing inertia is small com-

pared to the elastic force for the dragonfly and the wing deformation is mainly due to

the aerodynamic force.

From the aeroelasticity point of view, whether the wing deformation is caused by

the wing inertia or the fluid force will not only affect the deformation pattern but also
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Figure 3.1: Illustration of the wing motion during hoveringflight of an insect.

change the phase of the wing deflection during a flapping cycle. It is therefore worth-

while to investigate the aerodynamic consequences of this issue. Since both situations

exist in insect flight, as seen in the hawkmoth and dragonfly, investigation of this issue

may provide some biomechanical insight into the morphological differences between

these insect wings. To address the problem, we have performed a two-dimensional

numerical simulation of the flow–structure interaction in hovering flight and have sys-

tematically studied the effect of the mass ratio of the wing, defined as

m∗ =
ρsh
ρ f c

(3.1)

whereρsh is the surface density of the wing,ρ f is the density of the air, andc is the

characteristic length of the wing. The deformable wing section is represented by an

elastic plate which may undergo large displacements. Therefore, the wing model in the

present study has infinite degrees of freedom and can have a smooth camber, as opposed

to the previous linkage models [51, 52].

Note that experimental measurements of the aerodynamic force in insect flight are

typically carried out in water or oil in order to scale up the size of the wing model while

keeping the Reynolds number in the physiological regime [57–59]. In that case, the hy-

drodynamic pressure is much higher than the inertial force of the wing. Therefore, the

effect of the wing inertia could not be addressed in those studies. We also point out that

the effect of the wing inertia was a topic in a few previous theoretical studies [60, 61].
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However, these works mainly focused on the thrust generation, not lift production, of

the flexible wings. Furthermore, in Zhu [60] only potential flow is assumed and the vis-

cous effects including flow separation are completely omitted. Michelin & Smith [61]

introduced point vortices into their inviscid flow model to account for the vortex shed-

ding effect, but the stroke distance of the wing is very small compared to the chord

length and flow separation at the leading edge is not included.

3.2 Problem formulation

(a) (b)
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α

l

n t

x

y

x  (t)

(t)
.

q

τ

dl
n t

q
τM

M

Figure 3.2: (a) A schematic of the wing section during hovering flight. (b) A wing
segment illustrating the in-plane tensionτ, the transverse stressq, and the bending
momentM.

We consider a two-dimensional hovering wing section with the chord lengthc, as

shown in Fig. 3.2(a). The wing undergoes a combined translational and rotational mo-

tion specified at the leading edge [62, 63],

x0(t) =
A0

2
cos(2π f t) (3.2)

α(t) = α0 + β sin(2π f t + φ) (3.3)

wherex0(t) is the horizontal position of the leading edge,α(t) is the angle between

the leading edge and the horizontal axis (measured in the counterclockwise direction),

A0 is the stroke distance of the leading edge,α0 is the initial orientation,β is the angle

amplitude,f is the flapping frequency, andφ is the phase difference between the rotation
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and translation. In the present work, we chooseα0 = −
π
2 andφ = 0, which corresponds

to the symmetrical rotation [62].

The wing chord is assumed to be elastic and nearly inextensible, and its dynamics

is governed by the nonlinear equation

ρsh
d2x
dt2
=
∂

∂l

(

τt + qn
)

+ f , (3.4)

whereρs andh are density and thickness of the wing, respectively,t is the unit tangent

vector pointing in the direction of increasing arc length,l, from the leading edge,n

is the unit normal vector, andf is the difference between the distributed loads on the

two sides of the wing. The in-plane tension,τ, is assumed to be proportional to the

tangential strain so that

τ = ES

(
∣

∣

∣

∣

∣

∂x
∂l0

∣

∣

∣

∣

∣

− 1

)

= ES

(
∣

∣

∣

∣

∣

∂l
∂l0

∣

∣

∣

∣

∣

− 1

)

, (3.5)

whereES is the stretching coefficient of the plate, andl0 is the arc length in the un-

stretched state. The transverse stress,q, is linearly related to the bending moment,M,

by

q =
∂M
∂l
=
∂(EBκ)
∂l

, (3.6)

whereEB is the bending modulus, andκ is the curvature [64]. The boundary conditions

at l = 0 include the specified position and orientation, i.e.,

x = x0(t),
∂x
∂l
= (cosα, sinα). (3.7)

At the trailing edge,l = c, both the bending moment and the transverse stress vanish,
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which requiresκ = 0 and∂κ/∂l = 0. Therefore, we have

∂2x
∂l2
= 0,

∂3x
∂l3
= 0. (3.8)

The flow is governed by the viscous incompressible Navier–Stokes equation and the

continuity equation,

∂vi

∂t
+
∂vjvi

∂xj
= −

1
ρ f

∂p
∂xi
+ ν f

∂2vi

∂x2
j

,

∂vi

∂xi
= 0, (3.9)

wherevi is the velocity,ρ f andν f are the fluid density and viscosity, andp is the pres-

sure. No-slip and no-penetration conditions are specified at the flow–solid boundary. To

parametrize the system, we define the non-dimensional groups including the normalized

wing stroke, Reynolds number, mass ratio, and frequency ratio, which are given by

A0

c
, Re=

πA0 f c
ν f

, m∗ =
ρsh
ρ f c

, ω∗ =
ω f

ωn
=

2π f
ωn

(3.10)

respectively, whereω f = 2π f , and

ωn =
k2

n

c2

√

EB

ρsh
(3.11)

with kn = 1.8751 is the frequency of the first natural vibration mode of the wing [65].

Physically,m∗ represents the ratio between the inertial force of the wing and the aero-

dynamic pressure, andω∗ represents the wing rigidity.

The equations governing the system, (3.4) and (3.9), are solved numerically in an

implicitly coupled manner using an in-house solver. Specifically, the incompressible

flow is solved using a sharp-interface immersed-boundary method [32, 66] with a spe-

cial treatment to suppress the pressure oscillations associated with the moving bound-
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aries [67]. In this method, a single-block Cartesian grid isused to discretize the Navier–

Stokes equation on a rectangular domain, and the ghost nodesand hybrid nodes are de-

fined near the fluid–solid interface to facilitate the boundary treatment at the interface.

The infinitely thin membranous wing is augmented with an artificial thickness that is

about three times the spacing of the Cartesian grid and is automatically reduced as the

grid is refined. The wing section is discretized by a set of Lagrangian points initially

distributed uniformly along the wing. A standard central finite difference scheme is

used to discretize Eqns. (3.4) to (3.8), and Eq. (3.4) is solved iteratively as an inner loop

embedded within the implicit algorithm for the flow–structure interaction. The flow–

structure interaction is solved at each time step by iterating the flow and the structural

dynamics until convergence is reached [67].

3.3 Validation of the numerical method

The simulation of the unsteady flow around a thin and rigid wing is compared with

previous results in [63]. In this test, the wing rotates around its center, whose stroke

distance is denoted byA0. The parameters are otherwise defined in the same way as in

Section 3.2. To match the simulation setup,A0/c = 2.8 andβ = π/4 are chosen for the

wing kinematics, and the Reynolds number isRe= 75. The flow is initially quiescent.

The lift and drag coefficients for first a few cycles are shown in Fig. 3.3. It can be seen

that the present simulation has very good agreement with that in [63] where a vortex

particle method was used.

The structural solver is validated by comparing the numerical simulation of the

small-amplitude vibration in vacuum with the eigenmodes ofthe wing structure. To

do this, a sinusoidal translation is specified at the leadingedge and the amplitude of

translation is much smaller thanc. The structural dynamics is simulated in the absence

of the fluid so that there is no damping mechanism. The frequency of the actuation is

chosen to be either the first or second eigenfrequency of the corresponding cantilever
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Figure 3.3: (a) Lift and (b) drag coefficients (defined in the same way as in Section 3.5)
from the present simulation (solid) and from [63] (dashed).

beam [65]. Figure 3.4 shows the simulation vibration mode together with the analytical

eigenfunctions. For the first mode, 20 nodes on the wing are sufficient to capture the

deformation pattern accurately. For the second mode, a 100-node mesh leads to a sat-

isfactory solution. In the flow–structure simulations presented here, 100 nodes are used

in all cases.

3.4 Simulation setup

In the present simulations, we choose the stroke distanceA0/c = 2.5, Reynolds

numberRe= 150, and rotational angleβ = 0, orβ = π/8. The parameters describing

the wing kinematics are selected based on previous work on insect flight [51, 62, 63].

Three mass ratios are considered,m∗ = 1, 5 and 25, which represent the light, medium,

and heavy wing, respectively. For each of these mass ratios,the frequency ratioω∗ is
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chosen to vary among 1/1.25, 1/1.5, 1/2, 1/2.5, 1/3, 1/4, 1/6, and 0, whereω∗ = 1/1.25

means that the wing is most flexible and flaps near the resonantfrequency, andω∗ = 0

means that the wing is rigid.

The computational domain (Fig. 3.5) has a size of 20c×35c. We have done extensive

tests to make sure that the domain is large enough to achieve satisfactory accuracy of

the results. The entire domain consists of a nonuniform Cartesian grid of 320× 448

points. The grid contains a horizontal band and a vertical band of width 3c in which the

grid points are uniformly and densely distributed such thatthe grid spacings∆x = ∆y =

0.02c. A total number of 100 nodes are used to discretize the wing and its governing

equation. The time step size is∆t = 0.0025T whereT = 1/ f is the period of a flapping

cycle. The flow solver and the structure solver have been validated separately as shown

in Section 3.3. In addition, grid refinement has been performed to make sure that the

simulation results are grid-independent.

3.5 Flexible translating wings without rotation

We first consider the flexible wing driven by the pure translation, i.e., β = 0, at

the leading edge where the wing is clamped. Therefore, the wing has to rely on its

deflection to generate a non-zero lift. Fig. 3.6(a) shows thelift coefficient,

CL = 2FL/(ρ f U
2c) (3.12)

averaged from 15 flapping cycles, whereFL is the total lift andU = πA0 f is the maxi-

mum translational velocity of the leading edge. The result is shown for the mass ratio

m∗ = 1, 5, 25 and frequency ratioω∗ from 0 to 0.8. Two interesting phenomena can

be observed from this figure. First, for each mass ratio thereis a particular frequency

ratio at which the lift force peaks. The peak lift coefficients for the three mass ratios

are very close to each other, and all are around 0.9. Second, this particular frequency
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Figure 3.5: (a) The computational domain with strecthed structural mesh; (b) Immersed
flexible wing; (c) One flapping cycle.

ratio depends on the mass ratio of the wing. Form∗ = 25, CL peaks atω∗ = 0.8. For

m∗ = 5 and 1, the peaks ofCL are shifted to the left, taking place atω∗ = 0.5 and 0.4,

respectively. That is, as the mass ratio is reduced, the frequency ratio for the peak lift

also decreases. Physically, this result means that for the heavy wing (largem∗), flapping

near the resonant frequency produces higher lift, and for the light wing (smallm∗), flap-

ping at a frequency much lower than the resonant frequency would produce higher lift.

To understand this result, we point out that when the mass ratio is large, the fluid force

becomes insignificant compared to the wing’s inertial force, and the flapping actuation

has to be close to the natural vibration mode in order to produce significant wing defor-

mations for lift production. On the other hand, when the massratio is low, the wing is

deformed by the fluid force, and a lower flapping frequency would suffice to produce
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the necessary deformation. If the flapping frequency is too high in the case of lowm∗,

the wing deformation may become exceedingly large, and the lift would drop as shown

in Fig. 3.6(a) for largeω∗.

Figure 3.6(b) shows the drag coefficient defined as

CD = 2FD/(ρ f U
2c) (3.13)

averaged over the 15 flapping cycles. HereFD is the total horizontal fluid force on the

wing defined to be positive when it is against the translational motion of the leading

edge. This force can be temporarily negative in a cycle due tothe wing deformation, as

seen later. Form∗ = 25 and 5, the averageCD changes approximately within 20% asω∗

is varied. Form∗ = 1, the averageCD decreases drastically from 2.76 to 0.69 asω∗ is

increased from 0 to 0.8, and the drag is generally much lower than the other two wings

with the same rigidity. Such a drag reduction is because the light wing is deflected by

the fluid force and its shape is adapted to the drag by reducingthe frontal area. When

ω∗ is large and the wing is more flexible, this self-adaptation effect becomes more pro-

nounced. On the other hand, whenω∗ goes zero, that is, the wing behaves essentially as

a rigid plate, the lift coefficient vanishes and the drag coefficient approaches the same

constant for all the mass ratios as expected. Note that in thecases ofm∗ = 25 and 5,

the average drag of a flexible wing (ω∗ > 0) can be higher than that of a correspond-

ing rigid wing (ω∗ = 0), which indicates that the inertia-dominated deformation may

substantially augment the drag force.

The dependence of the lift-to-drag ratio onm∗ andω∗ is shown in Fig. 3.6(c). It

can be seen that the low-mass wings clearly out-perform the high-mass wings when the

wing rigidity is the same. Form∗ = 25, the lift-to-drag ratio increases nearly mono-

tonically asω∗ is raised and the wing becomes more flexible; form∗ = 5, this ratio

increases first and then reaches a plateau of 0.31; and form∗ = 1, the lift-to-drag ratio

first increases, then reaches a peak of 0.56 aroundω∗ = 0.6, and finally drops asω∗ is
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further raised.

To analyze the power consumption, we first define the net powerP(t) as

P(t) = Fxẋ0 + Mzα̇ (3.14)

whereFx andMz are the total force and total torque, respectively, appliedat the leading

edge to actuate the wing. Note that the second term is zero when the wing has no active

rotation. Next we adopt a conservative assumption that the negative power in the either

one of the two terms in (3.14) is not reusable. Therefore, we define an alternative power

measurement,̂P, which represents only the positive contributions from thetwo terms

in (3.14). The averaged net and modified power coefficients,CP andCP̂, defined as the

power normalized by (1/2)ρ f U3c, are plotted in Figs. 3.6(d) and (e), respectively. For

all three mass ratios, the two power measurements overall exhibit a similar trend. For

m∗ = 25 and 5, the net power coefficient increases up to 4.2 and 3.0, respectively, asω∗

is raised, which indicates a significant energy loss due to the large wing deformation.

The instantaneous power consumption, as plotted in Fig. 3.7(d) for ω∗ = 0.5, shows

that at these two mass ratios, the net power fluctuates at a large amplitude in a flapping

cycle because the energy changes its form between the kinetic energy of the wing and

the elastic potential stored in the wing. Therefore, if the negative power is not reusable

as assumed for the modified power, a large portion of the inputenergy would be lost.

This effect is reflected in Fig. 3.6(e), where them∗ = 25 wing requires a much higher

modified power than the other two wings. Especially when the wing rigidity is low, the

modified power coefficient reaches an amount of 12 form∗ = 25. On the other hand,

for m∗ = 1, the modified power coefficient is close to the net power coefficient, and

both in general decrease as the wing becomes more flexible. Asseen in Fig. 3.7(d)

for ω∗ = 0.5, the instantaneous power coefficient at this mass ratio is almost always

positive, and its magnitude is much smaller than that form∗ = 5 and 25. Figs. 3.6(d)

and (e) show that the average power consumption form∗ = 1 is lowest among the three
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mass ratios. This result is understandable since the wing with m∗ = 1 experiences a

smaller drag resistance compared to the other two wings. Thepower economy of the

low-mass wing is further seen in Fig. 3.6(f), where the ratiobetween the average lift

coefficient and the average modified power coefficient is shown. For the same amount

of power input, the wing withm∗ = 1 may produce more than twice amount of lift than

the other two wings. The peak performance form∗ = 1 is around 0.58, which takes

place atω∗ = 0.5.

We select a specific frequency ratio,ω∗ = 0.5, to analyze the details of the force

characteristics and flow field. From Fig. 3.6, the wing flexibility at this frequency ratio

has nearly the best lift-to-modified-power performance forall three mass ratios. Fig-

ure 3.7(a) shows thex-component of the displacement of the wing tail with respectto

its undeformed configuration form∗ = 25, 5, and 1. At this frequency ratio, the max-

imum displacement is more than 50% of the chord length in all three cases, while the

wing with m∗ = 1 has largest amplitude. The positions of the positive and negative

peaks in the displacement indicate that there is a significant phase difference among

the three cases. Form∗ = 25, the maximum displacement almost always takes place

at the stroke reversals, e.g.,t/T = 12.0, 12.5, 13.0,. . ., and so on. Form∗ = 1, there

is a phase delay of approximatelyπ/4 in the maximum displacement. In addition, the

wing displacement in this case becomes highly asymmetric between the forward and

backward strokes, as indicated by the appearance of two peaks in the first half-stroke.

This interesting deformation pattern will be discussed later together with the flow field.

Figures 3.7(b) and (c) show the corresponding lift and drag coefficients to the wing

displacement shown in Fig. 3.7(a). The two heavy wings, especially m∗ = 25, produce

a large amount of negative lift every time after the wing passes the middle point of the

stroke, at which the wing has recovered to from its deformation and is overshooting

and bending forward. In comparison, the light wing withm∗ = 1 has typically a non-

negative lift coefficient throughout the multiple flapping cycles. In the drag history, the

two heavy wings cause much higher drag than the light wing, and the peak drag takes
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Figure 3.6: (a) Lift, (b) drag, (c) lift-to-drag, (d) net power, (e) modified power, and
(f) lift-to-modified-power coefficients of the flexible wing without active rotation and
m∗ = 1 (solid), 5 (dashed), and 25 (dash-dotted).
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place when the wing has the maximum translation and is nearlyin a vertical position.

For m∗ = 1, the peak drag happens when the wing has the maximum translational

velocity and the least frontal area, or when the wing is restoring its shape prior to the

stroke reversal, at which point the wing has slowed down its translational movement.

In either case, the drag is reduced considerably. The corresponding power coefficients

for the three mass ratios are plotted in Fig. 3.7(d). Note that since the rotational term

in Eq. (3.14) vanishes asβ = 0, CP̂ is exactly equal to the positive portion ofCP in

this case. Comparing the three mass ratios, we find that the power coefficient has least

fluctuations form∗ = 1. In addition, the power peaks have more time delay whenm∗ is

lower. Form∗ = 5 and 25, the power reaches its maximum magnitude near the stroke

reversals due to the inertial acceleration or decelerationof the wing.

The instantaneous vorticity field in an entire flapping cycleand the corresponding

wing configuration are shown in Fig. 3.8 form∗ = 5 and 1 atω∗ = 0.5. There are several

similarities in the vortex behavior between the two cases. For example, a leading-edge

vortex (LEV) is generated during each half-stroke and is then re-captured by the wing

during its return trip after the stroke reversal (e.g., the positive vortex blob att/T = 13.0

and the negative blob att/T = 13.5). The LEV moves downward along the cambered

wing and may merge with the trailing edge vortex (TEV) [68] ofthe same sign that is

being formed (e.g., the positive blob att/T = 13.1 and the negative blob att/T = 13.6).

The merged vortex is strengthened and meanwhile stretched by the trailing edge as

shown by the positive vortex band att/T = 13.3 and also by the negative band at

t/T = 13.8. The gradually thinned trailing edge vortex eventually pinches off in the

middle (e.g., the filament between two positive blobs att/T = 13.5). The portion

that attaches to the trailing edge, now termed the end-of-stroke vortex (ESV) [51], has

been evolving during the stroke reversal while the wing is restoring its shape and then

deforming in the other way (e.g.,t/T = 13.3 to 13.6). After the TEV breaks off from

the ESV, it travels downward in the wake, while the ESV later also detaches from the

trailing edge but may temporarily move upward before disappearing or merging into
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Figure 3.7: Histories of (a) the tail displacement in thex-direction, (b)CL, (c) CD, and
(d) CP for ω∗ = 0.5 andm∗ = 1 (solid), 5 (dashed), and 25 (dash-dotted).
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Figure 3.8: A series of instantaneous vortex field in a flapping cycle forω∗ = 0.5, m∗=5
(first and third columns) andm∗ = 1 (second and fourth columns). The contour level
ranges from -3.2U/c to 3.2U/c.
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the downwash. The wake below the hovering wing is marked by a pair of TEVs with

opposite signs that are generated by the two half-strokes ina complete cycle.

The differences in the flow field betweenm∗ = 5 and 1 are also evident. First,

the size of the LEV form∗ = 5 is generally larger than that form∗ = 1. Second, the

stretched trailing edge vortex form∗ = 5 is aligned more in the horizontal direction,

while it is more in the vertical direction form∗ = 1, as shown in the frames from

t/T = 13.4 to 13.7. These flow features are consistent to the higher drag formation for

m∗ = 5. Furthermore, a substantial portion of the flow in the case of m∗ = 5 travels in

the horizontal direction, or even in an upward direction, while in the case ofm∗ = 1,

the flow mainly travels downward, leading to superior energyefficiency of this wing.

For m∗ = 1, the unsteady vortices may cause aperiodic vibration of the wing. This

phenomenon is illustrated in the framest/T = 13.2 to 13.4, where a blob of negative

vortex passes underneath the wing, causing the wing to deflect for the second time in

the same half-stroke.

The distinct vortices have been indicated in Fig. 3.8. To quantify the strength of

these vortices, we first visualize the vorticity field using contour lines. After each vortex

is manually identified, a closed contour line is generated around this vortex with the

specified level, and then the circulationΓ is computed along this line. Though the

magnitude of the circulation depends on the chosen contour level, the characteristic

behavior of the vortex is not affected by this choice. The computed circulations of the

LEV, TEV, and ESV are shown in Fig. 3.9 for the vortices indicated in Fig. 3.8. It can be

seen that the LEV form∗ = 5 is much stronger than the corresponding vortex form∗ = 1

over a significantly long period of time. The TEV is initiallystronger form∗ = 5, but

after breaking up, it has a similar strength for both mass ratios. Furthermore, the timing

of the LEV and the TEV is similar for the two mass ratios. It should be pointed out

that the difference between the LEVs and between TEVs shown in Fig. 3.9 is fairly

consistent for different wing strokes, but the difference between the ESVs is not. The

appearance and strength of the ESV vary from stroke to stroke, and they depend on the
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evolution of the LEV. For example, in Fig. 3.8 form∗ = 5 from t/T = 13.0 to 13.1, the

LEV moves along the wing to the trailing edge and suppressed formation of the ESV.

Consequently, the ESV form∗ = 1 is stronger during that stroke reversal (this ESV is

visible in Fig. 3.8 but is too weak to show up in Fig. 3.9).

Generally speaking, the strength and timing of the vorticeshave important conse-

quences on the force production of flapping wings. In the present case, the three types

of vortices have both positive and negative effects on the wing performance. For ex-

ample, during the translational stage, the LEV and the TEV cause the flow to circulate

around the leading edge and the trailing edge, reducing the pressure difference between

the two sides of the wing and thus lowering the lift. However,the shed vortices pro-

vide lift augmentation through the wake-capturing mechanism. This effect can be seen

from Fig. 3.8 att/T = 13.6, where the LEV and ESV create a flow directed against the

wing and thus the lift is enhanced. The lift enhancement at the moment is seen from

Fig. 3.7(b), where them∗ = 5 wing has significantly higher lift than them∗ = 1 wing at

t/T = 13.6.

3.6 Flexible translating wings with rotation

Next we consider the situation where the wings both translate and rotate actively

around the leading edge with an amplitude ofβ = π/8. Only m∗ = 5 and 1 are con-

sidered here. Figure 3.10(a) shows the averaged lift coefficient CL of the wing. The

corresponding non-rotational cases are also included in the figure for comparison. It

can be seen that for bothm∗ = 5 and 1, adding a moderate amount of active rotation

significantly increases the lift force for a range ofω∗. Whenω∗ is large and the wing

is very flexible, the active rotation reduces the lift instead due to the upward swinging

motion of the wing tail. The frequency ratio of the rotational wing at which the lift

peaks is lower compared to that of the corresponding non-rotational wing. Therefore,

when the wing is actively rotating, less structural flexibility is needed for lift enhance-

42



12.5 13 13.5 14
t/T

-6

-4

-2

0

2

4

6

LEV

TEV

ESV

TEV
LEV

Γ
/(

U
c)

Figure 3.9: Histories of the circulation for the vortices inthe flow atβ = 0, ω∗ = 0.5,
m∗ = 1 (solid lines) and 5 (dashed lines); the vortex type and the specified contour level
are: LEV with±3.95U/c (thick lines), ESV with±1.9U/c (squares), and TEV with
±3.95U/c (thin lines).

ment. Furthermore, like the non-rotational wings, the liftcurves of the rotational wings

also have a peak value whose amplitude is insensitive to the wing mass ratio but whose

corresponding frequency ratio exhibits a left-shift trendwhen the mass ratio is reduced.

The average drag coefficient is shown in Fig. 3.10(b). The active rotation reduces

the drag for bothm∗ = 5 and 1 for all the frequency ratios. In addition, the effect of

the frequency ratio on the drag coefficient for the rotational wings is similar to that

for the corresponding non-rotational wings. That is, form∗ = 5, the drag coefficient

only changes slightly when the wing becomes more flexible, while for m∗ = 1 the drag

coefficient reduces significantly. The lift-to-drag ratio in Fig.3.10(c) shows that the

combination of the active rotation and passive wing deformation improves the wing

performance by 66.7% form∗ = 5 and 38.7% form∗ = 1. Compared to the wings

without rotation, the optimal frequency ratio for the lift-to-drag ratio is shifted to a lower

value for the wings with active rotation. For bothm∗ = 5 and 1, this value is around

ω∗ = 0.4. As a reference, we provide the lift coefficient, the drag coefficient, and the
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lift-to-drag-ratio of a rigid wing performing the same translation at the leading edge but

rotates with an amplitude ofβ = π/4. The Reynolds number is alsoRe= 150 for this

rigid wing. The results are shown in Fig. 3.10(a,b,c) as the dotted lines. Comparing this

rigid wing with the flexible wings that has less active rotation, we notice that the flexible

wings may generate higher lift when they have a proper rigidity, but the reference wing

has considerably lower drag. In terms of the lift-to-drag ratio, only the light wing with

m∗ = 1 can out-perform the reference wing by a small amount (around 6%). This result

suggests that there may be an optimal combination of the active wing rotation and the

passive wing deformation.

The active rotation has a similar effect on the power efficiency of the flexible wings.

Figures 3.10(d) to (f) show the net power coefficient, the modified power coefficient, and

the lift-to-modified-power coefficient, respectively. Overall, introducing active rotation

reduces the power requirement and significantly improves the power efficiency. The

frequency ratio for the optimal power performance is down-shifted to 0.35 for the wings

with active rotation, regardless the mass ratio. Finally, we point out that in both the lift-

to-drag and lift-to-modified-power measurements, the wingwith m∗ = 1 significantly

out-performs the wing withm∗ = 5 by 34% forCL/CD and 71% forCL/CP̂.

Figure 3.11 shows thex-displacement, lift, drag, and power histories of the rota-

tional wing atω∗ = 0.4. There is again a phase delay in the displacement of the wing

with m∗ = 1 compared to that form∗ = 5. Although the light wing does not have an

obvious double-peak displacement within a single half-stroke as shown earlier for the

corresponding non-rotational wing, the deformation has nearly a plateau after the wing

passes the mid-stroke point. The peak lift form∗ = 1 takes place at the mid-stroke point

where the wing has the maximum translation. Form∗ = 5, the peak lift point during

second half-stroke also takes place at the mid-stroke point, but it is brought earlier dur-

ing the first half-stroke. The drag histories are in phase with each other for the two

wings, but them∗ = 5 wing clearly produces a higher peak drag when the wing passes

the mid-stroke point. The histories of the net and modified power coefficients, plotted
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Figure 3.10: (a) Lift, (b) drag, (c) lift-to-drag, (d) net power, (e) modified power, and (f)
lift-to-modified-power coefficients of the flexible wing with active rotationβ = π/8 for
m∗ = 1 (thick solid) and 5 (thick dashed). The corresponding datafor the non-rotational
wing are shown as thin lines. The dotted lines in (a) to (c) arefor the corresponding
rigid wing with a rotation angle ofβ = π/4.
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in Fig. 3.11(d,e), show that the power input has large fluctuations form∗ = 5, especially

before and after the stroke reversals when the wing experiences the maximum inertial

deceleration or acceleration. On the other hand, the power input for m∗ = 1 is nearly

always positive and has a much lower amplitude of fluctuation.

The flow field is shown in Fig. 3.12 form∗ = 5 and 1 atω∗ = 0.4. Comparing this

figure with Fig. 3.8, it can be seen that the LEV now becomes more attached to the rear

side of the wing due to the active rotation and an on-average reduced angle of attack at

the leading edge. Compared the flow fields betweenm∗ = 5 and 1, we see again that

the LEV of the light wing is smaller in size than that of the heavy wing. In addition,

the vortices have less upward movement in the case ofm∗ = 1, and the vortex pairs

in the wake are more evenly spaced compared tom∗ = 5. Using the same approach

described earlier, we compute the instantaneous circulations for the LEV, TEV, and

ESV identified from the vorticity contours shown in Fig. 3.12, and the result is plotted

in Fig. 3.13. Like the non-rotational wing, the LEV and the TEV are again consistently

much stronger form∗ = 5 than form∗ = 1, while the difference between the ESVs of the

two wings may vary for each stroke reversal. Among these three vortices, the LEV and

the ESV have a significant contribution to the lift during thewake capture. Therefore,

immediately after the right stroke reversals (e.g.,t/T = 13.1), the wing withm∗ = 5 has

both stronger LEV and ESV and thus a much higher lift coefficient than the wing with

m∗ = 1; while immediately after the left stroke reversals, the wing with m∗ = 5 has a

stronger LEV but a weaker ESV (e.g.,t/T = 13.6), thus the wing has only a moderately

higher lift coefficient than the wing withm∗ = 1, as shown in Fig. 3.11.

3.7 Discussion

According to the insect data in [55], a hawkmothManducawing has a chord length

on order of 10 cm and an approximate thickness ofh = 45µm. Using the wing density

ρs = 1200 kg/m3 and the air densityρ f = 1.2 kg/m3, we obtain the mass ratiom∗ =
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Figure 3.11: Histories of (a) the tail displacement in thex-direction, (b)CL, (c) CD,
(d) CP, and (e)CP̂ for ω∗ = 0.4, m∗ = 1 (solid), 5 (dashed), and the rotational angle
β = π/8.
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Figure 3.12: A series of instantaneous vortex field in a flapping cycle forβ = π/8,
ω∗ = 0.4, m∗=5 (first and third columns) andm∗ = 1 (second and fourth columns). The
contour level ranges from -3.2U/c to 3.2U/c.
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Figure 3.13: Histories of the circulation for the vortices in the flow atβ = π/8,ω∗ = 0.4,
m∗ = 1 (solid lines) and 5 (dashed lines); the vortex type and the specified contour level
are: LEV with±3.95U/c (thick lines), ESV with±1.9U/c (squares), and TEV with
±3.95U/c (thin lines).

ρsh/(ρ f c) = 4.5. Chenet al. [56] measured the natural frequency of the dragonfly

wing (Orthetrum pruinosumand Orthetrum sabina). In their study, the wing has a

dimension of 38 mm× 8 mm, and the wing mass is 2.5 mg. Based on these data,

the mass per unit wing area is aroundρsh = 8.2 mg/mm2, and the mass ratio ism∗ =

0.85. Therefore, the hawkmoth and dragonfly wings correspond roughly to them∗ = 5

and 1 cases, respectively, in the present simulations, and the wing inertia seems to

play different roles in the structural deformation in these two insects. Chenet al. [56]

found that the flapping frequency of the dragonfly is only about 16% of the natural

frequency of the wing. Their finding is thus consistent to ourresult that for the low-

mass wing to have best performance, the flapping frequency should be much lower

than the resonant frequency. Our simulation further suggests that the dragonfly could

have taken advantage of the low mass ratio of its wings for efficient lift production.

We should point out that a direct comparison of the aerodynamic performance between

the dragonfly wing and the hawkmoth wing is not possible through the present work,
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since the three-dimensional effect, which is an important factor in insect flight, is not

considered here.

Finally, we should note that the mass ratio of an insect wing can not be reduced

arbitrarily, even though reducing the mass ratio more may further improve the wing

performance aerodynamically. This is because the wing needs to maintain at least a

minimal thickness to achieve the necessary rigidity and itsphysiological functions. In

some insect wings, certain structural features may help reduce the wing mass while

retaining the necessary stiffness, e.g., corrugations of the dragonfly wing [69].

3.8 Conclusion

In this study the fluid-structure interaction of a two-dimensional hovering wing is

numerically simulated in order to investigate the effect of the wing inertia on the wing

deformation and the aerodynamic performance. The wing is parametrized by a nondi-

mensional mass ratio and a frequency ratio representing thewing flexibility. The mass

ratio is taken from the physiological data of insects. The simulation shows that when

the amount of deformation is about the same, the low-mass wing has consistently bet-

ter performance than the high-mass wing in terms of the lift-to-drag ratio and power

efficiency. Therefore, the present result suggests that the fluid force dominated wing

flexibility has aerodynamic advantages over the inertial force dominated flexibility.
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CHAPTER 4

HYDRODYNAMIC INTERACTION OF OBLIQUE SHEETS IN TANDEM

ARRANGEMENT

4.1 Background

Vortex-induced vibration is a common phenomenon for elastic bodies immersed in

flow, and it has a broad range of applications in the engineering design of aerospace

and civil structures. The underlying fluid–structure interaction in this phenomenon has

been discussed extensively in literature [70]. In its earlyapplications, vortex-induced

vibration is generally deemed harmful to the system and thusshould be avoided during

the design process. Recently, this phenomenon has been explored as a mechanism for

harvesting energy from the flow. For example, Bernitsaset al. [71] presented a hydro-

electric device in which vortex shedding from a group of cylinders causes the cylinders

to vibrate and the vibration is then converted to electricity through the electromagnetic

system on the tracks of each cylinder’s axle. In Akaydinet al. [10] and Li et al. [11],

thin elastic structures with built-in piezoelectric materials were used to convert the ki-

netic energy of the vibrating structures into electricity.In those piezoelectric devices,

the elastic sheet is either mounted transverse to the flow [11] or parallel to the flow [10].

In the latter case, vibration of the sheet is sustained by thevortices shed from a bluff

body located upstream. In all these examples, the system resonance is sought, instead of

being avoided as in early applications, to maximize the potential of energy conversion.

When multiple oscillators are placed in close range in a flow,hydrodynamic inter-

action among the oscillators would be unavoidable (Fig. 4.1). It may be possible to

utilize such interaction to improve the energy harvesting performance of the oscillators.

The basic idea is that the overall capacity of a group of devices exceeds the sum of the
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individuals operating independently. Analogies in natureof this idea are the schooling

behavior of fish and the formation flight of birds, where the animals are likely able to

save energy by taking advantage of the vortices shed from their neighbors [72–74]. Mo-

tivated by the application of the piezo-sheets in energy production and inspired by the

animal behaviors in nature, in the present work we consider the hydrodynamic interac-

tion of two elastic sheets that are placed in tandem in a free stream.

For vortex-induced vibration, an elastically mounted cylinder is a classical config-

uration to study the fundamental fluid–structure interaction. A comprehensive review

of this model problem can be found in Williamson & Govardhan [70]. The hydrody-

namic interaction between two closely placed bodies is alsostudied frequently using

two cylinders. The cylinders may be fixed [75] but more often are allowed to vibrate

freely [76–78]. Zdravkovich [76] provided a review of vibrations of two cylinders

in tandem, side-by-side, and staggered arrangements. For the tandem arrangement,

Zdravkovich described several experimentally observed response types of the cylinders

and briefly sketched two interference mechanisms that lead avariety of vibration be-

haviors. These are the so-called gap-flow-switch mechanism, which takes effect in the

region of 1< d/D < 3.5, and the wake-displacement mechanism, which takes effect

Figure 4.1: Illustration of leaves in the wind.
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in the region ofd/D > 3.5. Hered denotes the center-to-center distance andD the

diameter of the cylinders. The main difference between the two is that in the former

mechanism the downstream cylinder disrupts vortex shedding from the upstream cylin-

der, while in the latter the downstream cylinder is affected by the upstream vortices but

it does not in turn change the vortex shedding event of the upstream cylinder. Boraz-

jani & Sotiropoulos [78] numerically studied two cylindersin tandem at a distance of

d/D = 1.5 and further discussed the underlying vortex-vortex and vortex-cylinder in-

teractions. They systematically varied the reduced velocity and determined the lock-in

region within which both cylinders undergo increased and coordinated vibrations. Ac-

cording to their conclusion, the direct exposure to the freestream by the displaced rear

cylinder initiates a flow through the gap region created due to the relative position shift

of the two cylinders in the transverse direction, and such a gap flow is the key to sustain

the large-amplitude oscillations of the cylinders.

Compared to the cylinders with elastic foundation, oscillations of deformable bod-

ies such as thin-walled structures in tandem arrangement were studied much less fre-

quently. Having more degrees of freedom, deformable bodiesmay interact with the

flow in more complex manners than rigid bodies. In the case of two elastic sheets con-

sidered here, vortex shedding is affected by the movement as well as the shape change

of the sheets. Furthermore, since the sheets will be clampedon one side in the current

study, the relative position of the sheets in the cross-flow direction does not change as

the two free cylinders would. As a result, the rear sheet is not directly subject to the free

stream, and the mechanism used to explain the excitation of the cylinders [78] is thus

not be applicable in the present study.

It should be noted that deformable bodies in tandem arrangement have been studied

in the context of flapping flags, e.g., Ristroph & Zhang [79] and Zhu [80]. In those stud-

ies, two highly flexible filaments pinned at the leading edge and are aligned along with

the free stream. It was found that like the cylinders, both the front and rear flags can be

affected by the wake interference. However, the front flag’s oscillation is typically sup-
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Figure 4.2: (a) Two elastic sheets in tandem mounted obliquely to the free stream, where
α0 is the mount angle,α is the pitch angle used to measure the passive rotation, andw
is the tip displacement. (b) A segment of the sheets showing the in-plane tensionτ, the
transverse stressq, and the bending momentM.

pressed compared to the single flag, while the rear flag’s oscillation can be increased.

In the present study, the two elastic sheets are oblique to the free stream and are clamp-

mounted, and it is not straightforward to predict the deformation modes and the energy

levels of the sheets. We also point out that in the studies of the flapping flags, the bend-

ing rigidity of the structures is very low and may be on order of 10−4 when normalized

by the freestream properties (density and velocity) and thelength of the flags [80]. As

a result, the flags exhibit high modes of deformation under the flow-induced vibration,

and traveling waves are formed along the flags. From the energy-harvesting perspective,

little energy is stored in such structures. In the present configuration, the elastic sheets

are mounted obliquely to the flow to facilitate flow instability and vortex shedding, and

the setup will allow the induced vibration to happen at much higher bending stiffness.

This feature could be desirable for the purpose of energy harvesting.

In the present study, we will investigate that for given elastic properties, whether

there is a particular distance at which the hydrodynamic interaction would enhance the

vibration of both front and rear sheets and what would be the basic mechanism for such

interaction.
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4.2 Problem formulation and numerical method

We consider a two-dimensional configuration as shown in Fig.4.2(a), where two

identical elastic sheets of lengthL are clamp-mounted in tandem and are oblique to the

flow with an angleα0. The distance between them isd. The sheets are nearly inextensi-

ble but can have dynamical bending. The balance of the inertial force, the elastic force,

and the hydrodynamic load for each sheet is governed by following equation [64]

ρsh
d2x
dt2
=
∂

∂l
(

τt + qn
)

+ f , (4.1)

whereρs andh are the density and the thickness of the sheet, respectively, t is the unit

tangent vector pointing in the direction of increasing arc lengthl from the base to the

tip, n is the unit normal vector, andf is the difference between the distributed loads on

the two sides of the sheet. The in-plane tensionτ, is assumed to be proportional to the

tangential strain so that

τ = ES

(
∣

∣

∣

∣

∣

∂l
∂l0

∣

∣

∣

∣

∣

− 1

)

, (4.2)

whereES is the stretching coefficient andl0 is the arc length at the unstretched state.

The transverse stress,q, is linearly related to the bending moment,M, by

q =
∂M
∂l
=
∂(EBκ)
∂l

, (4.3)

whereEB is the bending coefficient, andκ is the curvature [64].EB is related to Young’s

modulusE by EB = EI, where I is the second moment of inertia of the cross sec-

tion. Note that structural damping is not included in the present model. The boundary

conditions at the base include the specified position and orientation, i.e.,

x = x0,
∂x
∂l
= (cosα0, sinα0). (4.4)
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At the free end,l = L, both M andq vanish, which requiresκ = 0 and∂κ/∂l = 0.

Therefore, we have [64]
∂2x
∂l2
= 0,

∂3x
∂l3
= 0. (4.5)

The flow is governed by the viscous incompressible Navier–Stokes equation and the

continuity equation,

∂vi

∂t
+
∂vjvi

∂xj
= −

1
ρ f

∂p
∂xi
+ ν f

∂2vi

∂x2
j

,

∂vi

∂xi
= 0, (4.6)

wherevi is the velocity,ρ f andν f are the fluid density and viscosity, andp is the pres-

sure. No-slip and no-penetration conditions are specified at the fluid–solid interface.

The equations governing the system, (4.1) and (4.6), are solved numerically in a

coupled manner using an in-house solver. Specifically, the flow is solved using a sharp-

interface immersed-boundary method [81]. The thickness ofthe sheet is assumed to be

small so thath << L. In the numerical method, the sheet is augmented with an arti-

ficial thickness that is about three times of grid spacing around the sheet. A standard

central finite-difference scheme is used to discretize Eq. (4.1), which is solved itera-

tively as an inner loop embedded within the iterative algorithm at each time step for the

fluid–structure coupling. More details about the numericalmethod can be found in our

previous publications [82, 83].

The non-dimensional groups in this problem include the reduced distance between

the sheets,d/L, the Reynolds number

Re=
UL
ν f
, (4.7)
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the mass ratio,

m∗ =
ρsh
ρ f L

, (4.8)

and the Strouhal number,

S tn =
fnL
U
, (4.9)

where

fn =
k2

n

2πL2

√

EB

ρsh
(4.10)

andkn = 1.8751, is the natural frequency of the first vibration mode based on the Euler-

Bernoulli beam theory [65]. Note thatm∗ represents the ratio between the inertial force

and the dynamic pressure of a sheet vibrating in an otherwisequiescent fluid. A large

value of m∗ means that the inertial force of the sheet is higher than the fluid force.

The stiffness of the sheets is represented byS tn. The amplitude of vibration,Am, is

defined by dividing the peak-to-peak displacement of the free end of the sheet by two.

In addition, we define the pitch angle,α, as the angle from thex-axis to the straight line

connecting the base and tip of each sheet (see Fig. 4.2(a)), and we calculate the total

hydrodynamic torque on each sheet by integrating along eachsheet according to

T =
∫ L

0
(x − x0) × fdx (4.11)

wherex0 is the base point of the sheet.

Unless otherwise noted,Re= 300 is used in the simulation. The Strouhal number is

S tn = 0.2, which is chosen so that the natural frequency is close to the vortex shedding

frequency. In the literature, the inverse ofS tn or the reduced velocity,fnL/U, is also

often used to represent the frequency of the structure. We set the mass ratio to bem∗ = 1
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or 5. Note that whenS tn is fixed, the sheet withm∗ = 1 is more flexible than the sheet

with m∗ = 5. The specific values ofm∗ are chosen based on the insect wing data [84],

wherem∗ = 5 means that the wing inertia is dominant andm∗ = 1 means that the wing

inertia and the fluid force are comparable. Interestingly, these values fall within the

range of data for tree leaves, as shown by a straightforward calculation based on the

data given in Milla & Reich [85]. The mount angle is chosen to be α0 = 60◦, which

represents the angle between tree leaves and wind.

The computational domain is a rectangular box of 40L × 22L in size, and a nonuni-

form Cartesian grid of 445× 324 points is used to discretize the entire domain. The

minimum grid spacing around the sheets is 0.025L in both x- andy-directions. The

non-dimensional time step is∆tU/L = 0.0125. To confirm that the grid is sufficient, we

have doubled the resolution in both directions around the sheets. The result is shown

by plotting the history of the tip displacement in Fig. 4.3 for both the front and rear

sheets atm∗ = 1 andd/L = 1.2. The comparison indicates that the current resolution is

satisfactory. Furthermore, we have done a few tests to verify that the current size of the

computational domain is large enough.

4.3 Results: the characteristics of vibration

We vary the separation distance,d/L, from 1.2 to 6 while keeping all the other

variables constant. The statistics are calculated from more than 20 cycles after the

vibrations of the sheets are fully established. Fig. 4.4 shows the reduced vibration

amplitude,Am/L, for bothm∗ = 1 andm∗ = 5 as a function ofd/L. As a reference,

the amplitude of the corresponding single sheet is also plotted. Note that the mean

displacement has been excluded from the definition of the vibration amplitude. It can

be seen that for both mass ratios, there is an obvious region of d/L within which the

oscillations of the two sheets are significantly higher thanthat of the single sheet. In

particular, the rear sheet is greatly excited, and its amplitude can be a few times as
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Figure 4.3: The tip displacement,w/L, of the front sheet (a) and of the rear sheet (b)
for m∗ = 1 andd/L = 1.2.

high as that of the front sheet. We will refer this phenomenonas the system resonant

behavior and will focus on the detail of the fluid–structure interaction at this state. Such

resonance was also seen for two elastically mounted cylinders [78] when they are in

close proximity and when the Strouhal number is adjusted to aproper range. However,

as discussed in Section 4.1, there are important differences between the thin sheets and

the cylinders.

Fig. 4.4 also shows that the region of resonance and the magnitude of vibration

vary depending on the mass ratio. Form∗ = 1, the region of resonance ranges from

the lowest separation distance that we tested,d/L = 1.2, to approximatelyd/L = 4.
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Figure 4.4: The time-averaged vibration amplitude againstthe separation distance for
(a)m∗=1 and (b)m∗=5.
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The peak oscillation is achieved aroundd/L = 1.5. At this distance, the oscillation

amplitudes of the front and rear sheets are respectively twice and seven times that of the

single sheet. Form∗ = 5, the region of resonance is narrower, fromd/L = 2 tod/L = 4.

However, the excited sheets at this mass ratio are much more vibrant than those at

m∗ = 1. The peak oscillation takes place atd/L = 2 and the oscillation amplitude has

reachedAm = 0.15L for the front sheet andAm = 0.65L for the rear sheet. These two

values are respectively eight and forty times of increase when compared with that for

the corresponding single sheet. As the separation distanceis further increased beyond

d/L = 4, the oscillations of the two sheets approach to that of the single sheet due to

the weakening interaction between the sheets.

The vibration patterns of the sheets are shown in Fig. 4.5 forthe resonant cases.

Also plotted is the single sheet at the corresponding mass ratios. It can be seen that

in the case ofm∗ = 1, the mean deformations of the sheets are greater than thoseof

the sheets in the case ofm∗ = 5. This is because the low-mass-ratio sheets also have

lower stiffness when their natural frequencies are fixed. On the other hand, at high

mass ratios, the hydrodynamic forces are smaller compared to the inertial force of the

sheets. Therefore, due to the reduced dampening effect from the fluid, the sheets with

high mass ratios may have stronger vibration, which is indeed seen here in the case

of m∗ = 5. Another observation from Fig. 4.5 is that the deformationpatterns are of

the first-mode type, and the magnitude of the displacement isclearly large enough for

nonlinearity to occur in the dynamics of the sheets.

To quantify the energy level of the sheets, we calculate the kinetic energy,Ek, and

the elastic potential,Ep, using the following expressions

Ek =
ρsh
2

∫ L

0













(

dx
dt

)2

+

(

dy
dt

)2










dl

Ep =
1
2

∫ L

0
EBκ

2dl. (4.12)

The total energy is thusEt = Ek+Ep. In Fig. 4.6 we plot the time-averaged total energy
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Figure 4.5: Deformation patterns of a single sheet (a,c) andtwo sheets at the resonant
state (b,d), where the mass ratio ism∗ = 1 in (a,b) andm∗ = 5 in (c,d). The separation
distance isd/L = 1.5 in (b) andd/L = 2 in (d).
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normalized byρ f U2L2. It can be seen that the trends in this figure are very similar

to those in Fig. 4.4 for the vibration amplitude. That is, at the system resonance, the

energy level of both sheets is much higher than that of the single sheet, and the rear

sheet is more energetic than the front sheet.

In Fig. 4.7(a), we plot the ratio between the vibration frequency, fv, and the natural

frequencyfn to show the relationship between these two frequencies. Dueto the vortex-

shedding synchronization, which will be described later, the two sheets vibrate at the

same frequency. Therefore, only one frequency graph is plotted for each mass ratio. In

addition, the vibration frequency of the single sheet is also plotted as a reference. The

result shows that the frequency of a single sheet is significantly higher than the natural

frequency, withfv/ fn = 1.5 for m∗ = 1 and fv/ fn = 1.2 for m∗ = 5. The vibration

frequency is not exactly the same as the natural frequency ofthe sheet because the

oscillator has been detuned by vortex shedding and is engaged in the “soft” lock-in

vibration [77]. When the two sheets are arranged in tandem, the frequency of the sheets

becomes lower than that of the corresponding single sheet. At the system resonance,

the oscillation frequency of the sheets reaches its lowest value, which isfv/ fn = 1.13

for m∗ = 1 and fv/ fn = 0.92 form∗ = 5.

Fig. 4.7(b) shows the phase advance angle of the rear sheet with respect to the front

sheet, where the phase angle changes fromπ to −0.75π as the separation distance is

increased from 1.2L to 6L. Therefore, the sheets are out of phase with each other when

they are very close to each other. At the resonant state, the phase angle is 0.75π for

m∗ = 1 with d/L = 1.5, and it is 0.3π for m∗ = 5 with d/L = 2. As shown later,

such phase differences between the sheets will prevent the free stream fromdirectly

impacting on the rear sheet.

Fig. 4.8 shows the time course of the tip displacement,w/L, for the two sheets at

the resonant state. For the first case wherem∗ = 1 andd/L = 1.5, we see that both the

front sheet and the rear sheet experience steady oscillations and there is little cycle-to-

cycle variation. For the second case wherem∗ = 5 andd/L = 2, we see that other than
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Figure 4.7: (a) The normalized vibration frequency,fv/ fn, and (b) phase difference,∆φ,
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Figure 4.8: Time courses of the tip displacement,w/L, for the resonant cases: (a)m∗ = 1
andd/L = 1.5 and (b)m∗ = 5 andd/L = 2. Thick line: the front sheet; thin line: the
rear sheet.

the main oscillation frequency, there is also a low-frequency waveform that governs the

cycle-to-cycle variations of each sheet. Furthermore, themodulating wave for the front

sheet is out of phase with that for the rear sheet. Therefore,when the rear sheet has large

oscillation amplitude, the front sheet has low oscillationamplitude, and vice versa.

4.4 Mechanism of the system resonance

4.4.1 Flow analysis for the single sheet

Vibration of an elastic body has to do with the magnitude, frequency, and phase

of the external load acting on the body. To better understandthe behavior of the two

sheets, we shall examine these force characteristics and study their relationship with the

vortex shedding in the flow. For comparison, we first briefly discuss the result for the
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case of the single sheet. Fig. 4.9(a,b) shows the vortex shedding pattern for the single

sheet atm∗ = 5. The flow pattern form∗ = 1 is similar and is thus not plotted. For both

mass ratios, the deformation of the single sheet is small, and the wake pattern is close

to that of a rigid sheet. That is, the positive and negative vortices in turn pinch off from

the sheet and form a vortex train in the wake.

Fig. 4.9(c,d) shows the fluctuating components of the pitch angleα and hydrody-

namic torqueT, α′ andT′, for the two mass ratios. The mean values ofα andT are

subtracted when calculating the fluctuating components. Furthermore, the torque has

been normalized by 0.5ρ f U2L2. Compared tom∗ = 1,m∗ = 5 has greater torque oscilla-

tions but it has a smaller vibration amplitude. The reason isthat the sheets are stiffer for

m∗ = 5. Another observation is that for both mass ratios,T′ is nearly out of phase with

α′. That is,T′ reaches the peak value when the sheet has its maximum deformation.

Note that at the maximum deformation, the velocity of the sheet is at the lowest level.

Therefore, the energy flow at the moment is limited because the force and the velocity

mismatch. For a simple linear mass-spring-damper system that experiences resonant

vibrations under a sinusoidal load, the external force has aphase lead ofπ2 with respect

to the displacement of the mass. In that case the work is done in an “efficient” manner

because the force and the velocity of the mass would be in phase and both would reach

the maximum values at the same time.

4.4.2 Resonant vibration of two sheets atm∗ = 5 and d/L = 2

When the two sheets are placed in close range, the vortices shed from the front

sheet and the vortices from the rear sheet interact with eachother. We will discuss three

factors that have contributed to the observed system resonance. First of all, the vortex-

vortex and vortex-sheet interactions in the tandem arrangement alter the frequency of

vortex shedding for both sheets and makes the frequency closer to the natural frequency

of the sheets. Second, for the front sheet, the phase shift between its hydrodynamic
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Figure 4.9: (a,b) Instantaneous vorticity field (left column) and pressure/velocity (right
column) for the single sheet atm∗ = 5. The vorticity ranges from−3U/L to 3U/L and
pressure from−ρ f U2 to 3ρ f U2. (c,d) The fluctuating components of the pitch angle and
the torque,α′ andT′, for m∗ = 5 (c) andm∗ = 1 (d).
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Figure 4.10: See next page for the caption.
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Figure 4.10: (a-e) Instantaneous vorticity field (left column) and pressure/velocity (right
column) for two sheets atm∗ = 5 andd/L = 2. The contour levels are the same as in
Fig. 4.9. The fluctuation components of the pitch angle and torque are shown in (f) for
the front sheet and (g) for the rear sheet.

torque and its pitching motion becomes beneficial for the energy transfer between the

fluid and the sheet itself. Third, for the rear sheet, great force oscillations occur when

the vortices shed from the front sheet merges with its own vortices in a coordinated

manner. Next, we will discuss these effects along with the flow field in detail.

Fig. 4.10 shows the instantaneous flow at the system resonance for m∗ = 5 and

d/L = 2 during the time period betweentU/L = 330 and 334. The velocity field and the

pressure/vorticity contours are plotted for five selected time instances that are marked

in Fig. 4.10(f,g), where the histories ofα′ andT′ are shown. From the flow field we first
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notice that introducing a second sheet has completely modified the wake structure that

is seen in Fig. 4.9(a,b) for the single sheet. Behind the two sheets, the wake exhibits two

trains of vortices with the upper train consisting of negative (clockwise) vortices and the

lower train consisting of positive (counterclockwise) vortices. Further inspection shows

that these vortex trains are formed due to the vortices of thesame signs, i.e., the negative

vortices from the tip side of the two sheets, or the positive vortices from the base side,

merging into one stronger vortex.

For the rear sheet, the coordinated vortex shedding causes great oscillations of the

load on sheet. Fig. 4.10(g) shows that normalizedT′ oscillates between -0.5 and 0.5.

For the corresponding single sheet, normalizedT′ is approximately between -0.37 and

0.35, as seen in Fig 4.9(c). Combining Fig. 4.10(a), (b), and(g), we see that the negative

peak ofT′ takes place when the positive vortex from the base of the front sheet is

growing in size and is connected to the shear layer below the rear sheet (Fig 4.10(a)).

The merged vortex then pinches off from the front sheet and continues to develop from

the rear sheet (Fig 4.10(b)). As seen in the pressure contourin Fig 4.10(b), this positive

vortex forms a low pressure pocket below the rear sheet, which leads to negativeT′ on

the sheet between times (a) and (b). PositiveT′ is generated between times (b) and (c)

when a merged negative vortex is about to pinch off the tip of the rear sheet. Another

positive peak ofT′ is caused after time (e) when a negative vortex shed from the front

sheet passes over the rear sheet. These large-magnitude peaks cause great deformation

to the rear sheet.

The reason for the front sheet to be excited is not as clearly seen as for the rear

sheet. Comparing Fig. 4.10(f) and Fig. 4.9(c), we see that the torque oscillation of the

front sheet is actually lower compared to that of the single sheet. For the front sheet,

normalizedT′ varies between -0.17 and 0.17. However, compared the singlesheet, the

vibration frequency of this sheet is closer to the natural frequency. Fig. 4.7 shows that

fv = 0.92fn for the two-sheet system whilefv = 1.23fn for the single sheet. Note that

for both the single-sheet and the two-sheet cases, the vortex shedding frequency is the
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same as the vibration frequency of the sheets. The reason forthe reduced frequency

in the two-sheet case is that the evolution and shedding of the vortices from the front

sheet are somewhat slowed down due to the downstream obstruction of the rear sheet.

For the rear sheet, there is a corresponding slowdown in the vortex evolution/shedding

because its upstream flow is dominated by the vortex sheddingfrom the front sheet.

Therefore, both the front and the rear sheets in the present case are vibrating near the

natural frequency, which is important for the resonance to occur.

In addition to the frequency of vortex shedding, we also examined the phase shift

between the torque and the pitch angle of each sheet. As seen in Fig. 4.10(f,g), the

torque oscillations of the two sheets are quite irregular compared to that for the single

sheet, while the pitch angle oscillations are much more regular. For the front sheet

there are two distinct time periods when the phase difference betweenT′ andα′ is

close to π
2. The first period is between times (a) and (b), during which negativeT′

corresponds to a positive pitching rate, ˙α′. The product ofT′ andα̇′ is thus negative, so

the energy is being transferred from the sheet to the fluid at the moment. The second

period is between times (c) and (e), during which negativeT′ corresponds to negative

α̇′. The product is positive, so the energy is being transferredfrom the fluid to the

sheet. Compared to the single sheet where the phase shift is nearlyπ, the current phase

shift allows a larger amount of energy to be transferred witha lower torque. For the

rear sheet, a similar phase shift can be seen between times (a) and (b), during which

the energy is transferred from the sheet to the fluid. In summary, for the two sheets and

especially the front sheet, the phase shift of the hydrodynamic load enhances the energy

exchange between the fluid and the structure, and this effect has helped the resonance

to occur.

Comparing the resonance of the thin sheets and that of two elastically mounted

cylinders in tandem arrangement, we point out that there aresignificant differences

between the underlying mechanisms. In the case of cylinders, the two bodies can vibrate

transversely to the flow with a phase shift so that the rear body is periodically exposed
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to the free stream. According to Borazjani & Sotiropoulos [78], such an exposure leads

to a pressure distribution around the rear cylinder that directs the flow through the gap

region created by the position shift of the cylinders. Furthermore, when the transverse

distance between the cylinders in their case is more than onediameter length, the gap

flow causes the top-side shear layer of the front cylinder to be pushed into the bottom-

side shear layer of the rear cylinder (or the bottom-side shear layer of the front cylinder

into the top-side shear layer of the rear cylinder). They argued that such shear layer

interactions cause great force oscillations and thereforelarge vibration amplitudes of

the cylinders.

Unlike the cylinder case, in the present case the rear sheet is never directly subject

to the free stream, which can be seen from Fig. 4.10. However,the interaction of the

vortices shed from the same side of the two sheets can still lead to large-amplitude vibra-

tions. Therefore, the transverse shift and the vertical gapare not necessary conditions

for the bodies in tandem arrangement to undergo resonant vibrations. We also point

out that even though in the present case there is no transverse gap between the sheets,

there still exists a flow through the streamwise gap between the sheets. As shown by the

velocity field in Fig. 4.10, and the gap flow between the two sheets may take different

forms, e.g., entering the gap region from one side and leaving from the other side (see

Fig. 4.10(a,d)), or entering and leaving from the same side (see Fig. 4.10(c)). In Bo-

razjani & Sotiropoulos [78], the gap flow always enters from one side and leaves from

the other. In the present case, the gap flow is important because it affects the vortex

development for both the front and rear sheets.

4.4.3 Resonant vibrations of two sheets atm∗ = 1 and d/L = 1.5

For the resonant case withm∗ = 1 andd/L = 1.5, the interaction between the

vortices and the sheets is in general similar to what we have described for the case of

m∗ = 5. We plot the typical flow field and correspondingα′ andT′ in Fig. 4.11 for
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this low-mass-ratio case. Different fromm∗ = 5, the oscillations ofα′ andT′ are nearly

periodic and exhibit little cycle-to-cycle variation. Another difference in this case is that

the two sheets are oscillating out of phase. Therefore, whenthe front sheet is up against

the free stream, the rear sheet is bent backward to its maximum extent. On the other

hand, when the front sheet is bent backward, the rear sheet isup and is partially exposed

to the free stream. This situation therefore bears some similarity to the cylinder case.

However, after examining the vibration frequency, force magnitude and phase shift,

we notice the similar features as described previously form∗ = 5. For example, the

vortex shedding frequency in this case is adjusted toward the natural frequency of the

sheets, i.e. fromfv/ fn = 1.5 for the single sheet tofv/ fn = 1.13 for the two sheets; the

rear sheet experiences large torque oscillations; and althoughT′ on the front sheet has

reduced magnitude, it has a phase shift which helps with energy exchange. Therefore,

the three factors we discussed earlier also apply here form∗ = 1.

4.5 Further discussions

4.5.1 Effect of the Reynolds number

To see the effect of the Reynolds number on the resonant behavior of the twosheets,

we performed two additional series of simulations forRe= 100 andRe= 500 at mass

ratio m∗ = 5. Fig. 4.12 shows the time-averaged amplitudes of oscillation for both

sheets. It can be seen that as the Reynolds number is increased from 300 to 500, the

critical separation distance for the system resonance doesnot change very much. In

addition, the oscillation amplitude of the rear sheet remains aroundAm/L = 0.65. How-

ever, the oscillation amplitude of the front sheet has increased nearly twice. When the

Reynolds number is reduced to 100, Fig. 4.12 shows that the resonance region is shifted

to the right and has become much wider. Furthermore, the oscillation amplitude of each

sheet is smaller than that of the corresponding sheet atRe= 300. Flow visualization

shows that atRe= 100, the vortices from the front sheet need a larger space to develop
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Figure 4.11: (a,b) Instantaneous vorticity field (left column) and pressure/velocity (right
column) for two sheets atm∗ = 1 andd/L = 1.5. The contour levels are the same as
in Fig. 4.9. The oscillations of the pitch angle and torque are shown in (c) for the front
sheet and (d) for the rear sheet.

75



1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

d/L

A
m

/L

 

 

Re 100 Front sheet
Re 100 Rear  sheet
Re 300 Front sheet
Re 300 Rear  sheet
Re 500 Front sheet
Re 500 Rear  sheet

Figure 4.12: Effect of the Reynolds number on the oscillation amplitude of the two
sheets atm∗ = 5.

in this low-Re case, and the separation distance thus has to be increased for the vortex

synchronization to take place.

4.5.2 Effect of the Strouhal number

The Strouhal number,S tn, has so far been fixed at 0.2. Previously, this parameter

has been studied in detail by others in the context of one or two cylinders [70, 77, 78].

Note that the inverse ofS tn, i.e., S t−1
n = U/( fnL) or the reduced velocity, may have

been used in those studies. In the case of cylinders, there isa range ofS tn, i.e., the

lock-in region, where the resonance would occur. Furthermore, the lock-in region for

the two cylinders in tandem arrangement is significantly different from that of the single

cylinder [78]. To see whether a similar effect ofS tn exists in the present problem, we

setd/L = 2 for m∗ = 5 andd/L = 1.5 for m∗ = 1 and we varyS tn in the simulation.

The result is shown in Fig. 4.13 forRe= 300.
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The first observation from Fig. 4.13 is that for both mass ratios, there is indeed a

range of Strouhal numbers at which both the front and rear sheet are excited and have

large vibration amplitudes. In addition, compared to the corresponding single sheet, the

lock-in regions of the two sheet are narrower and have been shifted to lower Strouhal

numbers. In all the cases considered here, the rear sheet always has a larger vibration

amplitude than the front sheet, while in the case of two cylinders a larger amplitude

could happen for the front cylinder [78]. The closest case here is in Fig. 4.13(b), where

the front and rear sheets have a similar amplitude atS tn = 0.125.

Fig. 4.14 shows the ratio between the vibration frequency and the natural frequency.

Since the vortex shedding frequency, and thus the vibrationfrequency, is relatively

constant, increasing the Strouhal number leads to decreaseof this frequency ratio, which

is seen from the figure. For both mass ratios, the two-sheet system has a lower vibration

frequency than the single sheet at the same Strouhal number.

4.6 Multiple sheets in tandem arrangement

A natural question is whether a similar resonant behavior can also happen when

more than two sheets are aligned in the same manner. If such resonance exists also for

multiple sheets, then the energy in the unsteady flow may be harvested more efficiently.

From the result described earlier, the resonance of the sheets as a group may not occur

since the vortex structure in the merged wake behind the two sheets has been largely

modified from that of the single sheet. Nevertheless, we ran afew simulations to verify

this speculation. Fig. 4.15(a) shows the oscillation amplitude averaged forn = 1, 2,

3, 5 sheets at mass ratiosm∗ = 1 and 5. Atm∗ = 5, the oscillation amplitude drops

quickly whenn ≥ 3. The flow visualization shows that initially all the sheetslocated

downstream are greatly excited by the interaction among thesheets. However, after

about 40 cycles the third sheet settles down to a low-amplitude motion, and the second

sheet also has significantly reduced oscillation. The reason is that the vortices shed from
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Figure 4.13: Effect of the Strouhal numberS tn for (a)m∗ = 1 andd/L = 1.5 (b)m∗ = 5
andd/L = 2. The Reynolds number isRe= 300.
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the second sheet does not have strong interaction with the third sheet and in addition,

the vibration frequency of the three-member group has been reduced tofv/ fn = 0.85

(Fig. 4.15(b)).

For m∗ = 1, Fig. 4.15(a) shows the oscillation amplitude of the groupbecomes

greater forn = 3 and then levels off. Fig. 4.15(a) shows that the oscillation frequency

of the sheet at this mass ratio is around the natural frequency for n = 3 andn = 5. As

an example, we plot the vorticity and shape of the sheets at aninstantaneous moment

in Fig. 4.16 forn = 5. The group form a regular vibration pattern: sheets 1, 3, and 5

are in phase with each other, but sheets 2 and 4 are out of phasewith those three. The

animation shows that each downstream sheet interacts with the vortices from the sheet

immediately in front of it, and the interaction becomes weaker for the sheets located

further downstream.

From these results, we conclude that the parameters that lead to the system reso-

nance of two sheets may not lead to resonance of multiple sheets of the same properties

and configuration. In order to excite all the sheets in a groupand explore its maxi-

mum performance, one should adjust the parameters such as the individual spacing of

the sheets and probably optimize the group as a whole system.One example of such

study is by Hobbs and Hu [86], who studied the power generation performance of a

four-cylinder array by varying both the separation distance and the flow speed (thus the

vortex shedding frequency). Alternatively, different arrangement patterns could be con-

sidered, e.g., a staggered placement in the transverse direction, so that the interaction

between the vortices and the downstream sheets may be strengthened.

Finally, we point out that the current study is limited to twodimensions and the

three-dimensional effects due to flow instability or finite aspect ratios are not included.

In addition, only low Reynolds numbers (less than 1000) are considered, and the in-

clination angle of the sheets is fixed. Explorations beyond these limitations will be

considered in the future work.
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Figure 4.16: Vibration pattern and vorticity field for five sheets atm∗ = 1, d/L = 1.5,
Re= 300 andS tn = 0.2.

4.7 Conclusion

We have performed a two-dimensional numerical simulation of the hydrodynamic

interaction between two elastic sheets mounted in tandem ina flow. The goal is to ex-

plore the energy-harvesting potential of the sheets through vortex-induced vibrations.

The result shows that at a particular distance that depends on the mass ratio, both sheets

are excited and the system exhibits a resonant behavior. At the resonant state, the vi-

bration amplitude of both sheets can be an order of magnitudehigher than that of the

corresponding single sheet. Different from two elastically and in tandem mounted cylin-

ders that oscillate perpendicularly to the free stream, thetwo sheets are fixed at the base

and do not have a relative shift in position. As a result, the free stream may not directly

impinge on the rear sheet. Nevertheless, the two sheets can still experience a similar

resonant vibration that is seen in the case of two cylinders.To investigate the underlying

mechanism of resonance, we examined the instantaneous flow field and force charac-

teristics of each sheet. It was found that through the hydrodynamic interaction, the

vortex shedding frequency, which is the same as the vibration frequency, is adjusted to

better match the natural frequency of the sheets. Furthermore, the vortex-vortex syn-

chronization causes stronger force oscillations on the rear sheet and greatly intensifies

its vibration. For the front sheet, the phase of the torque onthe sheet is shifted so that

the energy transfer between the fluid and the sheet is enhanced. By studying the effect
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of the Strouhal number, we found that the resonant behavior is consistent within the

lock-in region.

The optimal configuration that causes resonance of the two sheets does not neces-

sarily lead to resonance of multiple sheets that have the same material properties and the

same separation distance as in the two-sheet case. The interaction of the downstream

sheets could become weak due to modification of the upstream vortical structures by

the first two sheets. This result implies that in order to improve the overall energy-

harvesting potential of multiple sheets, one should adjustthe governing parameters from

a system perspective.
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CHAPTER 5

NUMERICAL SIMULATION OF DROPS INSIDE AN ASYMMETRIC

MICROCHANNEL WITH PROTRUSIONS

5.1 Background

Drops in microfluidic channels have been recently explored as a highly controllable

platform for applications in the measurement of chemical reaction kinetics [12]. In these

applications, mixing of agents inside the drops is often needed for the device to perform

its function. However, mixing in microfluidic channels is typically slow because the

Reynolds numbers involved are small and convective mixing is limited. To enhance the

mixing rate in microchannels (not necessarily involving drops), both active and passive

mixers have been developed in the past. Active mixers include acoustic [87], temper-

ature [88], or magneto [89] actuation approaches and thus require incorporation of ad-

ditional system components. Passive mixers typically reply on the certain geometrical

features of the microchannel, e.g., a serpentine channel, that are made without intro-

ducing extra steps in the fabrication process [90]. A numberof previous studies have

focused on the passive mixing that involves drops. For example, Bringeret al.[12] pro-

vided a comprehensive review of the mixing mechanisms and the scaling of the mixing

time for both straight and winding channels. Muradogluet al. [91] numerically studied

the mixing inside a drop passing through a serpentine channel and investigated the ef-

fects of the Reynolds number, capillary number, and viscosity ratio. In another study,

Stone & Stone [92] simulated the mixing inside a drop throughserpentine channels by

simplifying the flow to superposition of uniform and shear flows.

Liau et al. [93] introduced single-sided wall protrusions, or “bumps”, into both

straight and serpentine channels, illustrated here in Fig.5.1, and found that the periodic
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(a)

(b)

Figure 5.1: Straight and winding channels with bumps on the wall to enhance the mix-
ing inside the droplets. The idea was presented in Liauet al. [93].

protrusions significantly enhance mixing inside the drop passing through the channels.

To explain the mixing enhancement, Liauet al. [93] provides three factors that may

have played a role: (1) the asymmetry of the flow and shear stress in the constriction

region, (2) the surfactant distribution caused by the asymmetric stretching of the droplet

surface, and (3) the non-Newtonian effect of the drop fluid. Despite the insightful view,

their explanation was qualitative, and a parametric study would be helpful to clarify

these effects. Given that previous studies on dynamics of drops through a channel con-

striction typically focus on symmetric geometries [e.g. 94], in the current work we aim

to study the effect asymmetric constriction on the drop deformation and on the stream-

line pattern inside the drop. In addition, we will consider different shapes of the wall

protrusion and study their effect on the flow pattern.

Computational modeling of two immiscible fluids in contact in an arbitrary geom-

etry is in general a challenging task since it needs to handlethe interface between the

two fluids and also the interface between the fluids and solid surface. In the exist-
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ing numerical methods, the mesh discretizing the domain, either a curvilinear grid or

an unstructured grid, is typically chosen to conform to the fluid-solid interface so that

the no-slip and no-penetration conditions at the wall can beimposed straightforwardly.

On the other hand, the interface between the two fluids can be handled by several ap-

proaches that do not require the mesh to be conformal to the morphological change of

the interface. Based on how the fluid–fluid interface is traced, these approaches include

the following: (1) the Lagrangian mesh approach, where the interface is represented by

a set of marker points moving with the local fluid [22]; (2) thevolume-of-fluids (VOF)

method, where the interface is represented by the volume fraction of the fluids [18]; (3)

the level-set function, where the interface is representedby the zero-level contour of

a distance function [19]; and (4) the phase-field method, where the interface is repre-

sented by the chemical energy level of the fluids [20]. Among these approaches, method

(2)-(4) uses a scalar variable convected by the flow to trace the interface implicitly, and

they have the inherent capability of handling topological changes of the interface.

For complex and moving boundaries of solid bodies, the immersed-boundary method

based on a fixed Cartesian grid has been developed and utilized extensively in various

applications [26, 29]. Compared with the curvilinear or unstructured grid based meth-

ods, the advantages of the immersed-boundary method include simple mesh generation

and efficient computational algorithms that are based on the Cartesian grid. Among

several existing variants of the immersed-boundary methodare those categorized as

the sharp-interface method, where the effect of the solid surface is incorporated as a

direct forcing through interpolation [26]. Compared to thediffuse-interface immersed-

boundary method where the surface traction is smeared and the accuracy is correspond-

ingly reduced [29], the sharp-interface method is usually second-order accurate.

One way to simulate the fluid–solid–fluid interface is to combine the immersed-

boundary method for solid bodies and the interfacial treatment for multiphase flows

so that the advantages of each method can be shared. Such a method indeed has

been developed before. For example, Liuet al. [95] presented a two-dimensional (2D)
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Cartesian grid based sharp-interface method to simulate drop impact and spreading on

solid surfaces of arbitrary shape. In their method, both thefluid–fluid and fluid–solid

interfaces are traced by level-set functions. Yang & Stern [96] developed a sharp-

interface/level-set Cartesian grid method for large eddy simulationsof three-dimensional

(3D) two-phase flows interacting with moving bodies. In bothworks, the ghost-fluid

method [97], is used to treat the jump conditions at the fluid–fluid interface, which

requires designation of ghost cells near the interface and explicit incorporation of the

interfacial discontinuity into the finite-difference approximation of the governing equa-

tion. A simple alternative to their approach is to use the continuous surface force model

(CSF) [30] to regularize the traction jump and solve the governing equation in a unified

approach.

In the present work, we combine the level-set method for the fluid-fluid interface and

a sharp-interface immersed-boundary method for the solid boundary, and we adopt the

CSF model to incorporate the traction jump due to the surfacetension. The numerical

method has been described in Chapter 2. Here the method will be used to simulate the

drops passing through channels with asymmetric constriction.

5.2 Validation

The current numerical method has been implemented in both 2Dand 3D. To validate

the method, we consider three problems that involve non-trivial geometries of the fluid–

fluid and/or fluid–solid interfaces.

5.2.1 Leveling of an interface in a wavy channel

The leveling of a fluid–fluid interface under the effect of surface tension in a corru-

gated 2D channel is firstly considered. The problem is illustrated in Fig. 5.2(a), where

the horizontal channel has a straight top wall and a sinusoidal bottom wall described by

yw = aw cos(kx), whereaw is the amplitude,k = 2π/L is the wavenumber, andL is the
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Figure 5.2: (a) Illustration of a two-layer flow in a wavy channel. (b-d) Evolution of the
interfacial amplitude in time foraw/h = 0 (b), 0.15 (c), and 0.25 (d). Solid line: current
result; symbols: result from Luoet al. [98].
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wavelength. The two-fluid interface is initially placed at

y = h1 + ǫ h cos(kx) (5.1)

whereh is the channel width,h1 = h/3 is the mean thickness of fluid 1, andǫ = 0.1

is the amount of initial perturbation. The fluids are initially quiescent, and there is no

any external force. The fluid interface starts to evolve due to the stabilizing effect of

the surface tension in this problem. Periodic conditions are applied at the left and right

boundaries.

To apply the current numerical method, the uneven wall is represented with piece-

wise line segments and is treated as an immersed solid boundary. A single-block Carte-

sian grid is used to discretize the computational domain that ranges from−L/2 to L/2

in x and from−aw to h in y. Equal density fluids are considered so thatρ1 = ρ2 = ρ. For

the case study, the dimensionless parameters are chosen asL/h = π/2,λ = µ2/µ1 = 0.2,

andRe= ρσh/µ2
1 = 200. The surface tensionσ is assumed to be constant along the

interface. A uniform grid is used for the simulation with thegrid intervals∆x/h =

∆y/h = 0.02, and the time step is∆t = 0.0025µ1h/σ. Previously, this problem has

been solved using a curvilinear grid that conforms to the wavy wall by Luo et al. [98].

In that study, the two-fluid interface is treated using a variant of Peskin’s immersed-

boundary method [29], and a second-order finite-difference method is used to discretize

the governing equation. Their result is used here to validate the current simulation.

Fig. 5.2(b-d) shows evolution of the amplitude of the interface,a1/a0, against the

dimensionless time,tσ/(µ1h). Herea1 is the amplitude of the interface, anda0 = ǫh is

the initial amplitude. The result is plotted on a log-linearscale and is shown for three

different wall amplitudes,aw/h=0, 0.15 and 0.25. Due to a combined surface tension

and inertial effect, the fluid interface first levels off but then overshoots by reversing

its waviness, resembling a standing wave under the gravitational effect. The wave am-

plitude thus oscillates up and down in time as shown in the figure. However, due to
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presence of the viscous damping, the wave amplitude becomessmaller and smaller

and would eventually diminish. As the wall amplitude is increased fromaw/h=0 to

aw/h=0.25, the oscillation period is elongated and the interfacemovement slows down,

and in addition, the wave oscillation decays in a faster rate. Comparing the current

result with that from Luoet al. [98], we see that they agree with each other very well.

5.2.2 Deformation of a 3D droplet in simple shear flow

In the second test, we consider the dynamic deformation of a 3D drop in a linear

shear flow as shown in Fig. 5.3(a). The drop is initially spherical and has a radius

R0. The two fluids have equal densities. Under the shearing effect, the drop assumes

an ellipsoidal shape with three characteristic axes. The problem is governed by two

dimensionless groups, the viscosity ratioλ = µ2/µ1, whereµ2 andµ1 are respectively

the viscosity of the drop and the viscosity of the continuousfluid, the capillary number

is defined asCa = µ1γ̇R0/σ, whereγ̇ is the shear rate, and the Reynolds number is

defined asRe= ργ̇R2
0/µ1 and is set atRe= 0.2.

Taylor [100, 101] introduced a non-dimensional parameterD = (L − B)/(L + B) to

describe the shape of the ellipsoid at the steady state in thelimit of Stokes flow, where

L is the length of the principal axis andB the length of the minor axis in thexz-plane

(as in Fig. 5.3(a)). He derived the relationship betweenD and the governing parameters

λ andCa,

D = Ca
19λ + 16
16λ + 16

. (5.2)

At the steady state, the viscous and capillary effects balance with each other. Taylor’s

equation matches the experimental result well whenCa≪ 1. AsCa is further increased

beyond some critical value, the drop deviates from the ellipsoidal shape and pinch-off

may appear in the middle of the elongated drop, eventually causing it to break up [102].

In the present simulation, a cubic box of length 2R0 is used for the computational do-

main. The mesh resolution isR0/32 in all three directions, and the time step size is
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Figure 5.3: See next page for the caption.

91



(c)

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ca

D

Figure 5.3: (a) An initially spherical drop in a linear shearflow with Ca = 0.24 and
λ = 1.4, where the velocity field in the symmetry plane is shown for the steady state. (b)
Evolution of the axes of the drop withCa = 0.24 andλ = 1.4, where the upper branch
is L/R0 and the lower branch isB/R0. Lines: current result; triangles: experimental
data [99]. (c)D as a function ofCaat the steady state forλ = 1.4. Dashed line: Taylor’s
prediction [100, 101]; circles: present simulation; triangles: experimental data [99].

∆tγ̇ = 0.005.

Fig. 5.3(b) shows evolution of the principal and minor axes,normalized byR0,

against the dimensionless time,tγ̇, atCa= 0.24 andλ = 1.4. Together shown is the ex-

perimental result from Guido [99], who used an oil droplet inhis study and employed an

automated procedure to analyze image and extract the drop dimensions. It can be seen

that the experimental data and present result agree very well and the present simulation

is able to capture both the transient and steady deformations of the drop. Fig. 5.3(c) is a

comparison among the theoretical, experimental, and current numerical results. In this

figure, simulations are run at the capillary numberCa = 0.1 to 0.4 andλ = 1.4. The

shape parameterD is calculated from the steady state and is compared with Taylor’s

prediction, Eq. (5.2), and also with Guido’s experimental data [99]. The figure shows
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that at small capillary numbers, both experimental and numerical data fit the linear trend

described by Eq. (5.2) very well. However, the deviation from the theory becomes evi-

dent asCa is raised above 0.3. In all cases, the current result matchesthe experimental

data very well.

5.2.3 Instability of a core-annular flow

In the third problem, a core-annular flow is considered as shown in Fig. 5.4(a),

where two fluids are concentrically placed and have equal densities. The stationary flow

in the cylindrical channel is perturbed initially by positioning the two-fluid interface as

described by

r(x, t = 0) = a+ ǫ bcos(kx), (5.3)

whereb represents the channel radius,a = 0.5b is the mean thickness of the core

fluid, k = 2π/L denotes the wavenumber, the wavelength of the interfacial wave is

L/b = 6, andǫ is the dimensionless amplitude of the initial disturbance and is set to

beǫ = 0.01. A 3D numerical simulation on a single-block Cartesian grid is performed

even through the problem is axisymmetric, and we compare theresult with that from

the axisymmetric simulation in Blythet al. [31].

In the current simulation, the cylindrical wall is represented by a triangular mesh

and is immersed in a uniform Cartesian grid with resolution of 96 × 48× 48 in thex,

y, andz directions. The time step size is∆t = 0.005µ2b/σ. Periodic conditions are

applied along thex-direction. The viscosity ratio and the Reynolds number arechosen

to beλ = µ2/µ1 = 0.5 andRe = ρσb
µ2

2
= 1. Fig. 5.4(b) shows a comparison between

the current result and that in Blythet al. [31]. The interface amplitudea1 normalized

by the initial amplitudea0 = ǫb is plotted against the dimensionless timetσ/(µ2b) on a

log-linear scale. It can be seen that the two results agree with each other very well.
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Figure 5.5: A 2D schematic of a drop passing through an asymmetric channel with a
bump as labeled type A.

5.3 Motion of a drop through a constricted channel

5.3.1 Problem description

In this section, we apply the immersed-boundary method to simulate the motion of a

viscous drop through an asymmetrically constricted channel. The problem is illustrated

in Fig. 5.5, where the channel is assumed to be periodic with the ratio between the

wavelength and the width atL/(2h) = 3. The flow is driven by a mean pressure gradient

applied along the channel. A circular bump of radius 2h is set up in the channel blocking

half of the passage. An initially spherical drop of radiusa, wherea/h = 0.5, is placed at

the centerline as shown. The ratio between the viscosity of the drop,µd, and viscosity of

the surrounding liquid,µ0, is λ = µd/µ0. The two fluids are assumed to have the same

density,ρ. The Reynolds number and capillary number are defined respectively as

Re= ρU0(2h)/µ0 andCa= µ0U0/σ, whereU0 is a reference velocity,U0 = χh2/(2µ0),

andχ is the negative of the uniform streamwise pressure gradientdriving the flow. In

the current work, we will discuss the effects ofλ, Ca, andReon the translation and

deformation of the drop. In addition, we will discuss the effect of the geometry of the

bump and the three-dimensional effect.

In the simulations, a period of the channel is discretized bya uniform Cartesian grid

which covers the semi-circular blockage. The uneven channel wall and the drop sur-

face are treated respectively with the sharp- and diffuse-interface immersed-boundary
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methods as discussed in Chapter 2. The resolution of the volume mesh is chosen as

h/64 in bothx- and y-directions and the time step is∆tU0/h = 0.0005, which pre-

vents numerical instability while solving the Navier–Stokes equation and the level-set

function.

5.3.2 Effects of the viscosity ratio and capillary number

We first consider the low-Resituation and study the consequence of varying the

viscosity ratio and the capillary number. A set of simulations are performed atRe= 1,

Ca = 0.2, 0.5, 1.0, andλ = 0.01, 0.1, 1.0, 10. When the drop motion settles down

to a periodical state in the channel, usually after 3 to 5 cycles, we compare the drop’s

translational velocity and deformed shape under different values ofλ.

Fig. 5.6 shows thex-velocity of the mass center of the drop,Uc, normalized byUm

against the position of the mass center,xc/h. HereUm is the maximumx-velocity of

the flow in the absenceof the drop and is obtained in a separate simulation. It can be

seen from the figure that the translational velocity of the drop is significantly affected

by λ andCa. In Fig. 5.6(a) whereCa = 0.2, all the normalized velocities are less than

1, which means the drop in the gap moves at a slower velocity than the unperturbed

background flow or introducing the drop slows down the flow through the channel.

Furthermore, the velocity of the drop decreases asλ is increased, which is due to the

greater impedance effect of a more viscous drop. For the drop with lower viscosity

than the surrounding fluid, i.e.,λ = 0.01 and 0.1,Uc/Um is still less than 1. This is

because the surface tension tends to maintain the drop’s spherical shape and thus causes

resistance to the flow. Nevertheless, the impedance of the drop should be lower than

that of a rigid particle of equivalent size because the fluid inside the drop may move

along with the surrounding fluid. The effect of the viscosity ratio on the translation of

the drop seen here is consistent to the previous study of the drop moving in a symmetric

plane channel [103] where the Stokes flow was considered.

96



(a)

−2 0 2 4 6 8
0.4

0.6

0.8

1

1.2

1.4

x
c
/h

U
c/U

m

 

 

λ=0.01
λ=0.1
λ=1
λ=10

(b)

−2 0 2 4 6 8
0.4

0.6

0.8

1

1.2

1.4

x
c
/h

U
c/U

m

 

 

λ=0.01
λ=0.1
λ=1
λ=10

(b)

−2 0 2 4 6 8
0.4

0.6

0.8

1

1.2

1.4

x
c
/h

U
c/U

m

 

 

λ=0.01
λ=0.1
λ=1
λ=10

Figure 5.6: (a) The translational velocity of the mass center of the drop in the channel
with bump A forRe= 1 andCa= 0.2 (a), 0.5 (b), 1 (c).
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Figure 5.7: (a) The shape of the drop at three different positions in the channel:xc =

−2h, 0,+2h, for Re= 1 andCa = 0.2, λ = 0.01 (solid line), 0.1 (dashed line), 1 (dash-
double-dotted line) and 10 (dash-dotted line). (b-e) Streamlines as viewed by traveling
with the drop forλ = 0.01 (b), 0.1 (c), 1 (d), 10 (e).
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If we increaseCa and meanwhile haveReandλ fixed, the surface tension effect

is reduced and the drop would thus deform more easily. Such deformability should

play a positive role in enhancing mobility of the drop through the constricted channel.

This effect is reflected in Fig. 5.6(b,c) whereCa = 0.5 and 1. Comparing these cases

with the corresponding value ofλ atCa = 0.2, we see that the drop of higher capillary

numbers passes through the channel gap at a faster speed. AtCa = 0.5, the maximum

translational velocity of the drop reachesUc/Um = 1.18 for λ = 0.01 and 1.07 for

λ = 0.1. At Ca = 1, this velocity reachesUc/Um = 1.31 forλ = 0.01 and 1.13 for

λ = 0.1. Therefore, the translation of the drop is faster than the unperturbed flow. Of

course in these cases whereλ < 1, the low viscosity of the enclosed fluid inside the

drop also contributes the mobility of the drop. In Fig. 5.6(b,c), Uc/Um is still less than

1 for the cases ofλ = 1 and 10.

The instantaneous deformation of the drop is shown in Fig. 5.7(a) for three loca-

tions: before, within, and after the gap region. In these cases, since the surface tension

effect is relatively strong, the deformation of the drop is moderate, and the shapes of the

drop at different values ofλ are quite close to each other. However, since the drop has

different viscosities in these cases, the fluid motion inside thedrop exhibits disparate

behaviors. Fig. 5.7(b) to (e) show the flow pattern as seen by moving along with the

drop. That is, the streamlines are drawn from the the velocity field subtracted uniformly

by the velocity of the drop,Uc. For the drop with a low viscosity, i.e.,λ = 0.01 and 0.1,

there are a pair of circulation regions inside the drop, meaning that the fluid on the top

and bottom sides of the drop moves more slowly than the center. As the viscosity ratio

is increased toλ = 1, the two vortices become more asymmetric and the one near the

bump is larger in size than the other one. As the viscosity of the drop is further increased

to 10 times of that of the surrounding fluid, i.e.,λ = 10, the drop contains only one sin-

gle vortex that allows the drop to roll clockwisely while it is passing through the gap

region. This result confirms the explanation of the mixing experiment in Liauet al.[93]

that a higher viscosity ratio would lead to a single-vortex pattern in the drop that passes
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(a) (b)

(c) (d)

Figure 5.8: The instantaneous deformation of the drop atRe=1 and (a)Ca = 0.5,
λ = 0.1, (b)Ca= 1, λ = 0.1, (c)Ca= 0.5, λ = 10, (d)Ca= 1,λ = 10.

over the bump.

The instantaneous deformation of the drop of higher capillary numbers is shown in

Fig. 5.8 forλ = 0.1 and 10. The deformation patterns atλ = 0.01 and 1 are close to

the situation atλ = 0.1 and are thus not shown here. From these plots, we see that as

λ is fixed, increasingCa leads to an elongated shape of the drop due to the weakened

surface tension effect. As the drop becomes more viscous, e.g.,λ = 10, its front portion

becomes narrower compared to its rear portion, revealing the sluggish deformation of

the drop due to its internal damping. Fig. 5.9 shows the streamline pattern inside the

drop forλ = 0.1 andCa= 0.5, 1, and 10. It can be seen that asCa is increased, the drop

becomes slenderer and the interior vortex pair are more skewed. At the highestCa, the

interior fluid joins the exterior fluid and forms a single circulation. From these results,

we see that the single-vortex pattern can also be produced byincreasing the capillary

number.

5.3.3 Effect of the Reynolds number

In addition to the viscosity ratio and capillary number, we have varied the Reynolds

number from 1 to 50 to study the effect of the fluid inertia. The simulations show
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(a)

(b)

(c)

Figure 5.9: The instantaneous streamline pattern inside the drop atRe=1, λ = 0.1, and
(a)Ca= 0.5, (b)Ca= 1, (c)Ca= 10.

(a) (b)

Figure 5.10: Deformation of the 2D drop atRe= 50,Ca = 0.5, andλ = 0.1 (a) and 10
(b).
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Figure 5.11: The translational velocity of the drop as a function of the centroid position
for differentRe, Ca, andλ.

(a) (b)

Figure 5.12: Instantaneous streamline pattern inside the drop whereRe= 50,Ca= 0.2,
λ = 0.1 (a) and 10 (b).
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that the Reynolds number in this range does not change the deformation of the drop

significantly. For example, Fig. 5.10 shows a sequence of drop shapes forCa = 0.5,

Re= 50, andλ = 0.1 or 10. Comparing these patterns with those corresponding cases

for Re= 1 in Fig. 5.8(a,c), we only notice slight differences in the instantaneous shape

as the drop exits the gap region.

Fig. 5.11 shows the translational velocity of the drop as a function of the position of

the mass center forRe= 1, 10, and 50. The viscosity ratio is chosen to beλ = 0.1, 1,

or 10, and the capillary number isCa= 0.2 or 1. One interesting observation from this

figure is that the effect ofReis not consistent in these cases. At the lowest viscosity ratio,

λ = 0.1, Uc/Um is greater for lower values ofRe. Note that the reference velocity used

in the normalization,Um, varies for different Reynolds numbers and the result does not

mean that the actual velocity of the drop would decrease whenReis increased. Instead,

it means that introducing the drop into the channel causes relatively more impedance to

the flow whenReis higher. The figure shows that the effect ofReis not very significant

at λ = 1, or atλ = 10 andCa = 1. However, atCa = 0.2 andλ = 10 the role of

Re is reversed. In this case,Uc/Um is greater for higher values ofRe, meaning that

introducing the viscous drop into the channel would cause less flow resistance.

To better understand the effect of the Reynolds number, we plot in Fig. 5.12 the

streamline pattern as the drop passes through the gap. Again, the streamlines are plotted

in the coordinate system that moves in thex-direction with the centroid of the drop. The

two cases withCa = 0.2, Re= 50, andλ = 0.1 or 10 are shown. The corresponding

cases withRe= 1 can be found in Fig. 5.7(c,e).

Comparing Fig. 5.12(a) and Fig. 5.7(c), where bothCa andλ are the same butRe

is different, we notice that the fluid motion inside the drop becomessomewhat more

complex in the case ofRe = 50. Note that a higherRecorresponds to the situation

where the fluid density is increased while all other dimensional parameters are held

constant. ForRe= 1, the flow inside the drop consists a pair of major vortices, while

at Re = 50, smaller vortices have been developed due to the low-viscosity and high-

103



inertia effects inside the drop. Since the drop fluid is 10 times less viscous than the

surrounding fluid in this case, the interior flow in the case ofRe = 50 becomes less

regular and thus the drop causes higher resistance to the flowthan in the corresponding

case ofRe = 1. On the other hand, when the viscosity ratio is atλ = 10, the flow

inside the drop consists of only one clockwise vortex for both Re = 1 andRe = 50,

as seen in Fig. 5.7(e) and Fig. 5.12(b). At this high viscosity ratio, the shear layers in

the surrounding fluid becomes more important for the mobility of the drop. A higher

Rein this case likely provides better lubrication for the dropto go through the gap, and

therefore the impedance effect of the drop on the flow is less than that atRe= 1. From

this study we see that increasingReup to 50 may affect the mobility of the drop but the

the flow pattern inside the drop does not change significantlyunlessλ is much lower

than 1.

5.3.4 Effect of the channel geometry

The flow patterns observed in Section 5.3.(2) and 5.3.(3) clearly have to do with

the asymmetric shape of the channel. To better understand the geometric effect on the

drop dynamics, we introduce two other bumps as shown in Fig. 5.13(a), where one

has an exactly semi-circular shape and the other is a triangle. The channel length is

kept the same in all three cases. The three types of bumps are labeled with A, B,

and C, respectively. They have the same height but different gradualness in the gap

width transition. Among the three cases, the triangular shape of bump C would cause

the greatest curvature to the streamlines of the backgroundflow. The maximumx-

velocity in the absence of the drop for bump A, B, and C isUm/U0=0.56, 0.66, and

0.82, respectively. Fig. 5.13(b) shows that the shape of thegap has a significant effect

on the motion of the drop. The width of the velocity peak of thedrop is the greatest

for bump A but the narrowest for bump C, reflecting the quick transition of the drop

through the gap in case C. The figure also shows that the normalized peak velocity of
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Figure 5.13: (a) Three types of bumps considered here to study the geometric effect.
(b) The velocity of the mass center of the drop through each type of channel.

105



(a)

(b)

(c)

(d)

Figure 5.14: Drop deformation and the streamline pattern for bump B (a,c) and bump
C (b,d) atRe= 1, Ca = 0.2, andλ = 1. The corresponding result for bump A is in
Fig. 5.7(a,d).
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Figure 5.15: Illustration of the superposition effect of the uniform and shear flows caus-
ing the circulations inside the drop that passes over the bump.

the drop is similar for bumps B and C while this velocity is slightly lower for bump A.

Fig. 5.14 shows the simulation results for bump B and bump C atRe= 1, Ca= 0.2

andλ = 1. The corresponding result for bump A is in Fig. 5.7(a,d). Comparing the drop

shapes in the three cases, we see that bump C causes the most asymmetric deformation

to the drop. The asymmetry in the internal flow is shown by the streamline pattern. It

can be seen that the two circulations zones in the drop becomes more asymmetric for

bump B as compared to those for bump A in Fig. 5.7(d). For bump C, the interior of

the drop forms a single circulation zone, which is similar tothe situation in the case of

bump A withλ = 10 shown in Fig. 5.7(e). Therefore, for bump C the critical viscosity

ratioλ becomes much lower for a single circulation to occur inside the drop.

To characterize the flow pattern inside a drop passing through a winding channel,

Stone & Stone [92] approximated the flow by simple superposition of uniform and

shear flows. Their approach can be used in the current study toqualitatively explain

the streamline pattern observed here. The idea is illustrated in Fig. 5.15. As the drop

is going through the gap, the shearing effect of the channel walls both above and below

the drop, if symmetric, would cause a pair of equal circulation zones inside the drop,

much like a uniform flow passing the drop. In the present case,the bump on the bottom

side causes greater shear than the straight wall on the top side. Therefore, a linear shear

flow can be used to approximate the asymmetric shearing effect, which would cause a

single circulation zone in the drop. The resultant flow depends on how strong the shear

flow is relative to the uniform flow. In the present case, increasing either the viscosity
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ratio or the curvature of the bump would strengthen the shearflow effect and cause

the circulations to be more skewed. Different from the inverted U-channel in Stone &

Stone [92] where the shear flow is in the counterclockwise direction due to the curvature

of the entire channel, in the present case the shear flow is in the clockwise direction.

5.3.5 Three-dimensional effect

We now extend the study of the drop to 3D and incorporate the deformation of the

drop in the spanwise direction. To do this, the channel is extended in thez-direction and

the spanwise depth of the channel is 2h. Periodic boundary condition is applied along

thez-axis. To limit the scope of our study, we only focus on the cases whereRe= 1.

Our simulation shows that in the 3D cases considered here, the translational velocity of

the drop is generally higher as compared to that of the corresponding 2D drop, which

is due to the lower drag induced by the 3D drop. This result is consistent to the finding

in Mortazavi & Tryggvason [104], who studied the translation of 2D and 3D drops in a

plane channel atCa= 0.05.

Fig. 5.16 shows the deformation pattern of the 3D drop for bump A with λ = 1 and

Ca= 0.2 or 1. Both side view and top view of the drop are shown. From the side view,

it can be seen that the drop’s shape is very similar to that in the corresponding 2D case

with the same viscosity ratio and capillary number, i.e., Fig. 5.16(a) and Fig. 5.7(a). The

spanwise deformation, which is unique in the 3D cases, can beclearly seen from the top

view in Fig. 5.16(b,d). ForCa= 0.2, the 3D drop overall remains a circular shape in the

xz-plane. In the case ofCa= 1, as the drop exits the gap, its rear portion is depressed in

the middle but is stretched at upper and lower corners, forming two protrusions on the

rear side. In all the 3D cases, the drop exhibits a symmetric deformation pattern about

thez= 0 plane.

Fig. 5.17(a-c) shows the streamline pattern inside the dropfor the case of bump

A and Ca = 0.2, λ = 0.1, 1, and 10. By comparing the flow field with that in the
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(a)

(b)

(c)

(d)

Figure 5.16: Side view (a,c) and top view (b,d) of the 3D drop above bump A forRe= 1,
λ = 1, and (a,b)Ca= 0.2, (c,d)Ca= 1.
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(a)

(b)

Figure 5.17: See next page for the caption.
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Figure 5.17: The streamline pattern inside the drop above bump A with Re= 1, Ca =
0.2, andλ = 0.1 (a), 1 (b), and 10 (c). (d) Illustration of the superposition effect for the
streamlines off the symmetry plane.
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corresponding 2D case shown in Fig. 5.7(c-e), we note that the circulation in the sym-

metry plane atz = 0 is close to that in the 2D case. Away from this symmetry plane,

3D features can be clearly seen in the present cases. To explain the these features, we

again use the similar decomposition approach described in Stone & Stone [92]. In the

approach, the interior of a spherical drop passing a channelturn consists of the axisym-

metric circulations caused by a uniform flow and the in-planecirculation caused by a

shear flow. A similar decomposition can be applied here although in the current case

there is no spanwise wall present and the circulation in thexz-plane is not as strong as

that in thexy-plane. As seen in Fig. 5.17(d), if the uniform flow is dominant, the circu-

lations off the symmetry plane (z= 0) become bent in the spanwise direction, and those

circulations in the lower hemisphere become greater in size. Such situation is found in

Fig. 5.17(a) whereλ = 0.1. If the shear flow becomes strong or even dominant, the cir-

culations off the symmetry plane change their topology – the circulationsin the upper

hemisphere disappear while those in the lower hemisphere take over and are bent in the

spanwise direction. Such situations are found in the cases of λ = 1 andλ = 10.

As discussed in the 2D case, the shear flow here is in the clockwise direction as

viewed from the positivez-axis, which is opposite to that in the inverted U-channel

studied by Stone & Stone [92]. In addition, Fig. 5.17(a-c) shows that the circulations

are not separate vortex rings but are connected to each other, forming spiral patterns.

We have studied the 3D drop forCa = 1. The results are in general consistent to

that presented in Fig. 5.17. One major difference is that atCa = 1, the drop becomes

narrower in the spanwise direction and the horizontal circulations become weak or even

disappear, so the circulations mostly remain in thexy-planes. We also studied the drop

over bumps B and C. The results are again consistent except that the shear flow effect

becomes dominant at a much lower value of the viscosity ratio, e.g.,λ = 1, for those

two bumps.
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5.4 Conclusion

We have applied an immersed-boundary method to simulate thedynamics of a vis-

cous drop passing through a channel with bumps on one side. The goal is to study the

translation and deformation of the drop and to investigate the flow pattern inside the

drop. The governing parameters under consideration include the Reynolds number, the

capillary number, and the viscosity ratio.

The results show that the drop with a higher viscosity than the surrounding fluid

or with high capillary numbers tends to impede the flow, whilethe drop with a lower

viscosity may accelerate the flow. Although the deformationpatterns of the drop at

different viscosity ratios may be close to each other when the capillary number is low,

the internal flow patterns can be quite different. At higher viscosity ratios, the vortex

pair become skewed or reduce into one single vortex. This result is consistent to the

experimental observation. A similar internal flow pattern may appear when the capillary

number is raised and the drop has a slender shape. By varying the shape of the bump,

we found that the critical viscosity ratio for the flow in the drop to switch the pattern

becomes lower if the bump has a greater curvature. The flow pattern is in general

consistent for a range of Reynolds numbers except at very lowviscosity ratios, the

interior of the drop may consists of multiple vortices due the inertial effect.

Three-dimensional simulations show that the flow pattern inthe symmetry plane is

close to that in the two-dimensional study. Off the symmetry plane the vortices also

become skewed. Qualitatively the streamline pattern inside the drop may be viewed

as a result of superposition of external uniform and shear flows. Finally, the switch of

the internal flow pattern as the drop passes over the bump can be used to enhance the

mixing inside the drop.
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CHAPTER 6

CONCLUSIONS

6.1 Summary of the present work

We have developed an immersed-boundary method to model the fluid-structure in-

teraction of viscous incompressible fluids with thin solid structures. The method was

applied to simulate the aeroelasticity of flexible flapping wings and hydrodynamic in-

teraction of multiple elastic sheets placed in tandem arrangement.

In Chapter 3, a two-dimensional hovering wing is modeled as aflexible plate under-

going translating and pitching motions. The wing is parametrized by the dimensionless

mass ratio, which represents the relative effect of the wing inertia with respect to the

aerodynamic force, and the frequency ratio, which represents the flexibility of the struc-

ture. The representative values of the mass ratio from the insect data were used, while

the frequency ratio was systematically varied to representfrom a completely rigid wing

to a very flexible wing. The results show that for a certain range of flexibility, the wing

deformation increases the lift production and enhances theaerodynamic power effi-

ciency. However, when the wing is overly flexible, the deformation is detrimental to the

aerodynamic performance. Furthermore, when the magnitudeof deformation is about

the same, the low-mass wing leads to greater performance compared to the high-mass

wing. Note that for the low-mass wing, both aerodynamic force and the wing-inertial

force have significant contribution to the wing deformation.

In Chapter 4, the energy-harvesting potential of an array ofelastic sheets in tandem

arrangement was explored where the sheets oscillate in a free stream due to vortex-

induced vibration. The effects of the mass ratio and the separation distance are investi-

gated. It was found that within a particular region that depends on the mass ratio, the
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two sheets in tandem experience greatly increased vibration, i.e., a state referred to as

the system resonance. At the resonance, both the upstream and the downstream sheets

undergo larger-amplitude oscillations, and their kineticenergy grow by several times

as compared to the corresponding single sheet placed in the flow. We further studied

the mechanism of the system resonance in detail and found that the resonance is caused

by the vortex-sheet and vortex-vortex interactions that adjust the oscillation frequency

and modify the magnitude/phase-shift of the hydrodynamic force on the sheets. We

also discussed the effects of the Reynolds number and reduced velocity. Furthermore,

implication of the study on multiple sheets in tandem arrangement is also discussed.

The immersed-boundary method is also extended to two-phaseflows in arbitrary

domains in which both fluid-solid and fluid-fluid interfaces of complex shapes need

to be handled. Using the level-set function and the diffuse-interface approach to treat

the fluid-fluid interface, the method has the flexibility of dealing with interfacial mor-

phological and topological changes. Both two- and three-dimensional versions of the

method are developed and are described in Chapter 2. The method was used to model

the dynamics of drops traveling through microchannels withbumps on one side of the

walls. The effects of the capillary number, viscosity ratio, and Reynoldsnumber on the

drop translation and deformation were investigated. The special focus was given to the

interior flow pattern of the drop. It was found that when the viscosity ratio or the curva-

ture of the bumps is increased, the vortex pair inside the drop become skewed or even

reduce to one single circulation. In three dimensions, the circulations in the spanwise

direction are also developed. These flow patterns could be used to enhance the drop

based mixing.

6.2 Contributions

The contribution of this dissertation work can be summarized as follows.

1. We have developed a simple two-dimensional model to address the aeroelasticity
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of insect wings and help to explain the role of the structuraldeformation in the

aerodynamic performance of the wings. We have clarified the respective contribu-

tions from the wing inertia and the aerodynamic force to the wing deformation,

and through the present study, we have made the aerodynamic consequence of

each type of contribution understood. The results presented here will be useful

for the future engineering design of flexible flapping wings.

2. We have innovatively applied the idea from the formation flight and fish schooling

in nature to energy-harvesting piezo-leaves in close arrangement. We have devel-

oped a simple model to simulate the hydrodynamic interaction of two leaves in

tandem arrangement and have found a resonant state at which both leaves can

benefit remarkably from the hydrodynamic interaction. We have offered an ex-

planation, through a detailed study, to the underlying mechanism for the observed

resonant behavior.

3. We have successfully developed and validated a Cartesiangrid based numerical

method for two- and three-dimensional simulations of the two-phase flows in

complex domains, and we have applied the method to simulate the drop dynamics

in non-trivial shaped channels. We have systematically studied the flow pattern

inside the drop, and the results help to explain the mechanism behind the observed

drop behavior in a previous experimental study. Furthermore, the results will be

useful for the design drop-based mixing in microfluidic channels.

The work described in this dissertation has been presented in the following publica-

tions:

1. Yin, B., Luo, H. (2013) Numerical simulation of drops inside an asymmetric

microchannel with protrusions. Submitted to Computers & Fluids.

2. Yin, B., Luo, H. (2013) Hydrodynamic interaction of oblique sheetsin tandem

arrangement. Physics of Fluids, 25, 011902

116



3. Luo, H., Dai, H., Ferreira de Sousa, P.,Yin, B. (2012) On numerical oscillation of

the direct-forcing immersed-boundary method for moving boundaries. Comput-

ers & Fluids. 56, 61-76

4. Yin, B., Luo, H. (2010) Effect of wing inertia on hovering performance of flexible

flapping wings. Physics of Fluids, 22, 111902 (10 pages).

5. Yin, B., Luo, H. Energy-harvesting potential of multiple elastic structures in tan-

dem arrangement. The 64th Annual Meeting of APS/DFD, November 20-22,

2011. Baltimore, Maryland.

6. Yin, B., Luo, H. Numerical simulation of two-phase flows in complex geometries

by combining two different immersed-boundary methods.The 63rd APS/DFD

Annual Meeting, Nov. 21-23, 2010. Long Beach, California.

6.3 Future work

The future work is summarized as follows regarding each of the three applications:

For the inset flight problem, there are rarely three-dimensional models that address

the role of the wing flexibility in the aerodynamics. The future work will focus on de-

velopment of such models, which are obviously more computationally expensive. The

questions that could be addressed include: (1) to what extent can the current 2D results

be extended to 3D? (2) Can the complex structure of an insect wing be parametrized

efficiently using only a few variables? (3) What fluid-structureinteraction mechanisms

have caused the 3D and asymmetric deformation patterns of insect wings observed dur-

ing flight? (4) How general can the results from simplified numerical models be ex-

tended to different wing morphology of insects? (5) How can results be applied to

actual wing designs of a biomimetic micro air vehicle? Some of these questions are

currently being answered by our group, while others requirefuture collaboration with

biologists as well as engineers who specialize machine design and system integration.
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For the energy harvesting problem, a straightforward question to ask is whether

there is a resonance regime for multiple piezo-leaves placed in a patterned array. As

suggested by our current study, an investigation incorporating more leaf sheets would

help to find the answer in which the separation distance and array pattern could be

explored. In addition, a simulation including the characteristics of the piezoelectric

material and the circuit has not been done yet. Such system-level modeling work could

be pursued in the future.

For the study on the drops moving in microchannels, the future study could focus

on modeling the actual mixing inside the drop and quantifying the mixing rate for dif-

ferent geometries of the wall protrusions. Fig. 6.1 shows anexample of such study,

where mixing of two species inside the drop is shown for threebump shapes considered

in the present work. Passive tracers are introduced inside the drop to mark the mix-

ing both qualitatively and quantitatively. Our preliminary study confirms that the wall

protrusions significantly enhance the mixing rate in the drop. Further quantitative and

parametric study can be done in the future.
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(a)

(b)

(c)

Figure 6.1: Mixing as indicated by passive tracers inside different channels with (a)
bump A; (b) bump B; (c) bump C.
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