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CHAPTER I 

 

INTRODUCTION 

 

Overview 

 Aggression is an important component of adaptive behavioral repertoires 

aimed at ensuring survival.  Like other behaviors that fall into this pallet of 

behaviors, such as feeding, drinking and sex, it has been hypothesized that acts 

of aggression are positively reinforcing.  Though the neural mechanisms 

underlying several different forms of aggression have been well documented, the 

link between these mechanisms and mechanisms of positive reinforcement has 

yet to be approached.     

One neural characteristic continually associated with positively reinforcing 

stimuli is the release of dopamine (DA) into the Nucleus Accumbens (NAC) from 

afferent projections from the Ventral Tegmental Area (VTA).  This fact has led to 

several innovative methods used to treat addictions to positively reinforcing 

stimuli.  Due to the pressing need to control species atypical aggression around 

the world, it would be quite valuable to determine if the same mechanisms 

underlie to positively reinforcing properties of aggression; in hopes of adopting 

similar innovative treatment options for individuals who struggle with controlling 

aggression.   

In efforts to understand the mechanisms involved in the positively 

reinforcing properties of aggression, the overall aim of this work is to A) Further 
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understand the positively rewarding characteristics of aggression and B) to 

examine DA, DA metabolites and DA receptors (DA1-like and DA2-like) in the 

NAC and the Pre Frontal Cortex (PFC) and their role in positively reinforcing 

aggression.  

 

Why Study Aggression? 

Although aggression is evolutionally adaptive in many instances, atypical 

levels of aggression have become a heavy burden on societies around the world, 

especially in the United States.  In 2003, 5.3% of children age 12-18 report being 

a victim of violent crime.  Also in 2003, there were a total of 5.4 million violent 

crimes committed in the U.S. (U.S. Bureau of Justice Statistics.  2006).  Around 

the world, 1 in 3 women have reported being beaten, raped or otherwise 

physically abused at least once in their lifetime (Family Violence Prevention 

Fund. 2006). 

In addition to the increasing burden violence places on the entire 

population at large, aggression occurs at an unusually high rate among 

developmentally delayed and mentally ill populations.  Aggression is a major 

symptom of a range of neurodevelopmental and psychologically challenging 

disabilities including, but not limited to, Schizophrenia, autism spectrum disorder 

(ASD), and Alzheimer’s disease.  It is likely that an improved understanding of 

the underlying causes of aggression, not only as a symptom but as a 

maladaptive condition itself, will shed light on the mechanisms of action of the 

neurodevelopmental disorder it accompanies as well.  The cost of violence in the 
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normally developing population —including medical costs, quality of life, and loss 

of productivity—reached more than $158 billion in 2000 (SfN.org; Brain Research 

Success Stories).  This estimate is not even including the financing of additional 

personnel (e.g., additional police force, additional hospital or private care staff) 

needed to manage aggression in a variety of environments.   

 Due to the ever-present need for understanding the entire picture involved 

with maladaptive aggression, efforts from several avenues of science, including 

molecular, behavioral and clinical research, have been launched.  Though some 

advances have been made, the above described societal burdens still persist 

due to the yet unanswered questions about the link between aggression and 

positive reinforcement.  

 

What is Aggression? 

Aggression is a complex social behavior that evolved in the context of 

defending or obtaining resources.  Although there are broad similarities across 

species, some features of aggression are species-specific.  When studying 

aggression in a species-specific manner, species-specific behavior topographies 

are of interest.  However, when investigating aggression across species, studies 

show that many of the same neurochemical and anatomical systems are 

activated during aggressive behavior in humans and non-human animals, even 

though the specific behavioral outputs can differ greatly. 

Traditionally, aggression has been defined as overt behavior that has the 

intention of inflicting physical damage on another individual (Moyer, 1971).  
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Although aggression can yield competitive advantages in an evolutional sense, it 

is time-consuming and can be dangerous. Pathological aggression is considered 

so when it is exaggerated, persistent or expressed out of context. From an 

ethological perspective, aggression is used for obtaining or defending food or 

mates from competitors; from a psychiatric perspective, it is thought to be 

motivated by hypothetical constructs such as anger, irritation, frustration, fear 

and, in some cases, as is discussed in the following work, pleasure. Two 

subtypes of aggression have been identified in humans: the instrumental subtype 

and the affective subtype (Vitiello & Stoff, 1997). Affective aggression is 

considered to be more impulsive (it is usually associated with anger), whereas 

instrumental aggression is considered to be more purposeful and goal-oriented. 

Affective aggression is considered reactive and can result in sudden, 

inappropriate aggressive responses.  This type of aggression is thought to 

account for the majority of aggressive crime and aggression associated with 

psychiatric/developmental disorders. However, higher profile incidents, such as 

serial killings, genocides and assassinations, are thought to be caused by a more 

instrumental mechanism of aggression.  Instrumental aggression is thought to be 

regulated by higher cortical systems and less dependent on the hypothalamic 

and limbic systems that are known to mediate affective aggression.  

 

What is Positive Reinforcement? 

Behavioral theory embraces the notion that responses are selected by the 

individual based on the consequences of behavior (Skinner, 1953).  According to 
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a behavior-analytic approach, the environment evokes behavior. Once the 

behavior is emitted it can be reinforced or punished by some change in the 

environment, thus increasing or decreasing (respectively) the probability of the 

response occurring in the future under similar conditions. Over time, an organism 

learns to discriminate the availability of the stimulus event and responds 

according to the contingencies of reinforcement. Behavior under control of 

consequences in the environment is called an operant. Operants under stimulus 

control are differentially reinforced in the presence of contextual stimuli while 

other responses are extinguished. Thus, responding occurs in the presence of 

discriminative stimuli that set the occasion for reinforcement if responding occurs  

Basic behavioral processes involved in shaping operant behaviors include 

positive and negative reinforcement (Catania, 1998). Positive reinforcement is a 

process by which the rate of responding increases contingent upon the 

presentation of a pleasant stimulus. For most people, receiving food, money, or 

preferred activities are considered positively reinforcing events. When these 

stimulus events are available, people will engage in behaviors that access these 

stimuli. Conversely, negative reinforcement is a process by which the rate of 

responding increases contingent upon the subsequent removal of a noxious 

stimulus. People who find loud noise or the presentation of a task aversive may 

engage in certain behaviors, such as leaving the room, to avoid the stimulus. 

Whether a stimulus is considered pleasant or noxious is idiosyncratic to the 

organism. 

 

 5



Neurobiology of Aggression 

 Work in the mid-1930’s initially implicated the limbic-hypothalamic-

periaquiductal grey’s (PAG) role in the performance of aggressive behavior 

(Grinker & Serota, 1938; Wortis & Maurer, 1941).  Through these efforts and 

modern extensions of them it is thought that there are two distinct circuits that 

underlie affective and instrumental aggression (Monroe, 1978; Monroe, 1985; 

Reeves & Plum, 1969; Siegel et al., 1999).  

 The neurons essential for the performance of affective aggression 

behaviors reside in both the medial hypothalamus (MH) and the PAG.  The MH 

sends efferents which synapse on PAG neurons.  PAG neurons then send 

efferents to the brain stem and spinal cord.  Though the MH and the PAG are 

essential for the expression of affective aggression, many other structures such 

as the amygdale, bed nucleus of the stria terminalis, frontal cortex and the lateral 

hypothalamus (LH) are thought to play important modulatory roles (Potegal et al., 

1996; Raine et al., 1994; Raine et al., 1998; Raine et al. 1999; Reeves & Plum, 

1969; Siegel et al., 1999).  

 Neurons essential for the expression of instrumental aggression are 

located in the LH.  These neurons project directly to the trigeminal motor nucleus, 

locus cerruleus, pons, VTA, and the ventral portion of the PAG (Siegel et al., 

1999).   

Three important caveats are to be considered when utilizing the above two 

models of aggression.  First, although the above mentioned studies conducted 

on humans offer converging evidence in support of these models, most of the 
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controlled experimentation used to elucidate these pathways were conducted on 

animals (predominantly cats).  Second, much less work has been done on the 

model of instrumental aggression (as compared to the work completed on 

affective aggression).  Third, the modulatory impact of other brain areas is not yet 

adequately understood.  

 

Neurobiology of Positive Reinforcement 

The scientific literature investigating the biology of Positive Reinforcement 

indicates that there are many limbic structures that play important modulatory 

roles in positive reinforcement processing such as the bed nucleus of the stria 

terminalis and the amygdala; however, it is widely thought that the ventral 

tegmental area’s dopaminergic projections to the nucleus accumbens (NAc) and 

the pre-frontal cortex (PFC) (Mesocorticolimbic pathway; see Fig. 1) are integral 

for the processing of positive reinforcement (Bozarth, 1987; Bozarth, 1991; 

Fibiger & Phillips,1979; Olds & Milner,1954; Staley & Mash, 1996; Wise, 2002). 

The release of dopamine (DA) in the NAc has been highly associated with 

positive reinforcement.  

 

Brain-Environment Interactions  

The ventral striatum is activated during early learning experiences with 

environmental contingencies (Berridge & Robinson, 1998; Ikemoto & Panksepp, 

1999). When a stimulus predicts reinforcement, DA is released from the 

substantia nigra and ventral tegemental area onto DA receptors in the ventral 
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and dorsal striatum. DA transmission in the ventral striatum subsequently 

enhances the effects of a stimulus to predict reinforcement, which determines the 

reinforcer value of the stimulus.  

Most of the evidence for DA involvement in mediating the acquisition of 

instrumental behavior comes from DA antagonism of D1 and D2 receptors in the 

striatum. For example, pre-trial blockade of D1 receptors with the DA antagonist, 

SCH23390, impairs the acquisition of a lever-press response in rats (Hernandez, 

Andrzejewski, Sadeghian, Panksepp, & Kelley, 2005). Fowler and Liou (1994) 

conducted a study on the effects of DA antagonists on lever pressing in rats to 

obtain water reinforcement. It was concluded that D1 antagonists prevent 

learning, while D2 antagonism with drugs, like raclopride, enhances learning. 

However, raclopride has also been shown to reduce operant behavior on 

intermittent Schedules of reinforcement, suggesting D2 antagonists most likely 

influence movement more than motivation (Nakajima & Baker, 1989).  

When D1 and D2 antagonists are given simultaneously, D2 receptor 

antagonists abolish the effects of D1 antagonists. For example, SCH23390 

reduces running speed of pups attempting to obtain nipple reinforcement from a 

dam (McDougall, Crawford, & Nonneman, 1992). The D2 receptor antagonist, 

sulpiride, reinstated running speed. It was concluded that D1 and D2 receptors 

have a synergistic effect on reinforcement, although D2 antagonism alone 

influences primarily movement. Therefore, D1 receptors are more importantly 

involved in the positively reinforcing properties of stimuli.  
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The findings related to the effects of D1 and D2 antagonists confirm those 

previously mentioned about the effects of DA receptors on stereotypy as an 

operant behavior (Capper-Loup et al., 2002; Keefe & Gerfen, 1995; Kuczenski & 

Segal, 1999; Waszczak et al., 2002). That is, activating both D1 and D2 

receptors produces movement in the context of reinforcing stimuli. For movement 

to occur, DA receptors must be activated. If DA receptors are activated, it is in 

the context of an experience that is either (a) novel to the organism, or (b) an 

environment that no longer produces reinforcement. Thus, DA projections from 

ventral and dorsal regions of the striatum play a role in mediating the positively 

reinforcing effects of various environmental stimuli. (Bardo, 1998; Beninger & 

Miller, 1998; Blackburn, Phillips, Jakubovic, & Fibiger, 1989; Robbins & Everitt, 

1996; Schultz, Apicella, & Ljungberg, 1993).  

This DA release in the NAc that is coupled with the hedonic experience of 

positive reinforcement occurs in one of three regions of the NAc; the core, the 

shell and the rostral pole.  These subdivisions of the NAc are based upon 

staining appearance and anatomical connections.  The shell is thought to be 

much more anatomically and chemically diverse than the core, whereas the 

rostral pole is much less studied than both the shell and core (Zahm, 2000).  

Research with a variety of species and reinforcers suggests that the medial shell 

is strongly associated with the positively reinforcing effects of a stimulus, 

whereas the core contributes to behavioral activation. This hypothesis is strongly 

supported by evidence ranging from c-fos mRNA expression studies to studies  
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Figure 1. Mesocorticolimbic DA system. Adapted from the National Institute on 
Drug Abuse website.  
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utilizing 6-Hydroxydopmaine lesions in conjunction with a variety of positive 

reinforcement-response analysis paradigms (Sham et al., 2007; Floresco et al., 

2006; Selling’s & Clark, 2006; Hara & Pickle, 2005; Kimono et al., 2005; Selling’s 

& Clark, 2003).   

Thought the NAc is most often studied in conjunction to positive 

reinforcement, the PFC has also demonstrated an important role in positive 

reinforcement.  The PFC is thought to be involved in the cognitive processes of 

executive functioning.  Executive functions include the ability to differentiate 

among conflicting thoughts, determine value among stimuli, determine ‘same-

ness’ and ‘different-ness’, initiation of goal directed behavior, prediction of 

outcomes, expectations based on actions, and social "control".  Positive 

reinforcement plays an integrate role in each of these executive functions in that 

the value of a stimulus effects an organisms approach or avoidance behavior 

towards that stimulus. Thus, it is necessary that the area integral for processing 

positive reinforcement stimuli (NAc) be intimately related to the area that initiates 

complex decisions about that stimulus.  The intimate relation that these two brain 

areas share is that the activation of medial PFC glutamatergic neurons causes 

DA release in the NAc (Wise, 2002).  In addition, suppression of glutamatergic 

activation, for example through serotonergic activation, suppresses the release of 

DA in the NAc.  By these mechanisms, the PFC strongly modulates NAc 

activation and positive reinforcement.  
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How to Study Aggression as a Reinforcer 
 

Behavioral Analysis Meets Neuroscience 

As described above, theoretical and empirical evidence is mounting that 

suggests a relation between brain function and environmental contingencies 

(Kennedy, Caruso & Thompson, 2001; Cohen & Leckman, 1994; Nelson & 

Bloom, 1997). Until recently, however, behavior analysis and neurobiology have 

been studied in parallel. Whereas the former is concerned with the observation 

and measurement of behavior, the latter is concerned with the study of cellular, 

neurophysiological, and biochemical processes in the nervous system. In a 

majority of modern neuroscience, a long term goal of basic research is to some 

day affect therapy of nervous system disorders.  Through the years of treating a 

vast array of disorders ranging from very physical disorders like Parkinsons 

disease to psychological disorders such as Schizophrenia, clinical evidence 

suggests that the most effective treatments plans include a combination of both 

external treatment (such as physical therapy, counseling etc.) and internal 

treatments (such as surgery, drug therapy etc.).  Thus, current research 

investigating complex neurological disorders has finally begun to be guided by 

this clinical evidence.  Basic science researchers are now approaching 

neuroscience questions from both points of view; with outside behavioral 

observation and manipulation in conjunction with internal neurochemical 

observation and manipulation.  There are a variety of ways that the study of 

behavior and neuroscience are being integrated, from clinical questionnaires in 

combination to drug therapies to new emerging imaging techniques.  For the 
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purposes of the studies described here, basic animal models utilizing behavioral 

pharmacological method will be the focus.    

 

Using Animal Models  

A preponderance of research on the neurobiology of aggression comes 

from murine models. Rodents and humans have similar brain structures involving 

movement, memory, and emotions (Bear, Connors, & Paradaiso, 2001). Rodent 

models are an efficient means for examining neurobiological influences on 

aggression because (a) behavioral processes of rodents are representative of 

more complex species and are thought to be highly conserved, (b) experimenters 

have greater control over the experiences of rodents, and (c) neurotransmitter 

systems found in rodents parallel those found in humans. Therefore, many 

researchers find rodent models to be an appropriate model for human stereotypy.  

 

Is Aggression Positively Reinforcing? 
 

Behavioral Evidence Supporting Aggression as a  Positive Reinforcer 

Beginning in the 1950’s it started to become clear, behaviorally at least, 

that aggression might have some self-reinforcing properties.  In 1951, Scott and 

Fredrickson noted that animals that were victorious in a battle were more likely to 

engage in aggression than those animals that were not victorious (Scott & 

Fredrickson, 1951).  While this study did show that victory could be positively 

reinforcing and it allowed for the idea that aggression might be positively 

reinforcing, it did not definitively demonstrate the positively reinforcing aspects of 
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aggression itself.  Later experiments conducted by et al. (1969) used a T-maze 

paradigm to demonstrate that aggression was positively reinforcing (Tellegen et 

al., 1969).  In these experiments, mice were given a choice to run to a side of the 

T-maze where they had previously been conditioned to associate aggressive 

encounters or to a side of the T-maze where they had never experienced 

aggression.  A vast majority of these trials resulted in the mice choosing the arm 

of the maze where they had previously experienced the aggression.  These 

results were later replicated by multiple groups in the mid-1990 by using similar 

paradigms (Meisel & Joppa, 1994; Martinez, 1995).  More compelling are the 

experiments where fighting fish (also demonstrated in fighting cocks) will 

complete elaborate mazes, going over, under and through barriers to even get a 

glimpse of a potential opponent engaging in aggressive posturing (Thompson, 

1964; Thompson & Bloom, 1964; Thompson, 1969).   

 Advancing this line of research has been more elaborate work conducted 

on rodents.  In these experiments, male resident rodents have been trained to 

perform an operant response in order to obtain the opportunity to aggress 

against a conspecific intruder (Fish et al., 2002; Miczek, 2002; Tellegen & Horn, 

1972).  This response has been maintained on a variety of reinforcement 

Schedules including fixed ratio, fixed interval, variable ratio and progressive ratio 

(PR) and has been shown to be sensitive to extinction paradigms.  While results 

from PR Schedules reveal that aggression may not be as positively reinforcing as 

food, it does prove to be a potent positive reinforcer with mice maintaining PR 
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Schedules as high as PR40 (Kennedy, May & Couppis, unpublished 

observations). 

 

Anatomical Evidence In Support of Aggression as a Positive Reinforcer 

 In addition to the behavioral data massing to support an interaction 

between mechanisms of positive reinforcement and those of aggression, there is 

substantial anatomical data that also suggests a plausible link.  Due to the fact 

that the NAc is the structure most often implicated in positive reinforcement 

processing, it is important to look at its anatomy and projections. The NAc is 

divided into three regions based upon primary efferents and afferents: the core, 

shell and rostral pole.  Through extensive work on the anatomy of each region, 

the shell has been most vigorously implicated in positive reinforcement 

processing due to its elaborate interconnections with structures associated with 

emotive behavior. The shell’s primary efferents are to the ventromedial ventral 

pallidum, ventral tegmental area, prefrontal cortex, PAG and a dense innervation 

of the LH (Brog et al., 1993, Zahm, 2000).  The efferents to the PAG and the LH 

are of specific interest as they are both thought to play central roles in aggression 

(Bandler R, 1988; Gregg & Seigel 2001; Seigel, 1999, Zahm, 2000).  The shell 

receives dense innervation by limbic structures including various nuclei of the 

amygdala, the extended amygdala, prefrontal cortex and the LH (French & 

Totterdell, 1983; Zahm, 2000).  These afferents are of interest as well due to 

studies implicating each in modulating aggressive output (Adolfs, 1994; Pietrini et 

al., 2000; Potegal et al., 1996; Raine et al., 1994; Raine et al., 1998; Volkow & 
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Tancredi, 1987).  In addition, it has been observed that neurons in the shell 

region will respond to excitatory input from more than one source, making it an 

excellent candidate for serving an integrative function (Zahm, 2000). Less 

controlled evidence for the NAc’s involvement in aggression and emotion 

processing related to aggression comes from studies documenting impaired 

anger recognition in humans with ventral striatum damage (Calder et al., 2004).   

 

Neurochemical Evidence In Support of Aggression as a Positive Reinforcer 

Evidence more strongly supporting the idea that aggression is positively 

reinforcing comes from neurochemical and pharmacological studies.  Efforts as 

early as the 1960’s began to incriminate dopamine in the investigation of 

aggression.  These early observations, using post mortem analyses, reported 

increases in cortical and NAc DA following aggression in mice (Miczek et al., 

2002).  Though it was a start, these early endeavors lacked the ability to link 

changes in DA levels to specific time points within an aggressive episode.  With 

the development of in vivo microdialysis, it became possible to measure 

fluctuations in DA before, during and after aggressive behaviors.  In rats, Van Erp 

et al. (2000) demonstrated that DA levels significantly increased in the NAc 

during and after an aggressive bout peaking 20-30 minutes after the encounter.  

In the PFC, DA was also noted to increase up to 120% above baseline following 

an aggressive encounter (Van Erp & Miczek, 2000). It is not to be ignored that 

both significant increases and decreases in DA levels have been observed in a 

variety of socially stressful situations (Kalivas & Duffy, 1995). However, work 
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conducted by Ferrari et al. (2003) show NAc DA increases associated with 

expected aggression even when the socially stressing event is omitted.  In these 

experiments rats were trained to have an aggressive encounter at a specific time 

of day for 10 days.  On the 11th day, the encounter was omitted.  Samples 

showed the expected 40% and 150 % (above baseline) DA increases in NAc 

during and after the aggressive encounter, respectively.  Surprisingly, samples of 

the 11th day session (where Scheduled aggression was omitted) showed an 

astonishing 60%-70% rise in NAc DA even in the absence of the socially 

stressful bout (Ferrari et al., 2003).  Though these rises in NAc and PFC DA are 

seen primarily during and after an aggressive episode, it is also plausible that DA 

could play an important role prior to aggression.  In both cat and rat, electrical 

stimulation of neurons in the VTA lowered latency to attack (Shaikh et al., 1991).  

Though this does not offer direct evidence in support of a link between positive 

reinforcement and aggression, taken together with the NAc and PFC 

microdialysis studies, one could speculate that the lowered attack latency in 

these studies might be mediated through mesocorticolimbic circuitry.      

 

Genetic Evidence In Support of Aggression as a Positive Reinforcer 

Another line of research that is becoming increasingly important to the 

study of positive reinforcement and aggression is that which links genetic 

polymorphisms to aggression.  Genes of interest are those that encode for 

proteins that are thought to be important for proper DA neurotransmission such 

as Monoamine Oxidase (MAO), Catecho-O-Methyl Transferase (COMT), DA 
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receptors and the DA transporter (DAT).  Though these studies can only supply 

permissive evidence, at best, due to the lack of controlled neurochemical data 

available in humans, they are highly valuable.   

Studies of a psychiatric subpopulation in the Netherlands powerfully linked 

a point mutation in the gene encoding MAO-A  to aggression (Brunner et al.., 

1993).  Since this finding, several initiatives to study the behavioral relevance of 

polymorphisms in the MAO-A gene has arisen.  In Rhesus monkeys, gene 

variation yielding lower MAO-A activity, coupled with abnormal rearing, has been 

shown to result in high levels of aggression (Newman et al., 2003).  Work looking 

at platelet levels of MAO-A have consistently found correlations between low 

MAO-A activity and aggression (Skondras et al., 2004).  Criticisms of work on 

MAO-A in relation to a DA hypothesis of aggression are that MAO-A also affects 

serotonin levels.  This fact causes difficulty when interpreting findings relating 

MAO-A and aggression, especially since samples of cerebrospinal fluid from 

aggressive subjects consistently show abnormalities in serotonin metabolites but 

not so consistently show abnormalities in DA metabolites.   

These facts make the progress relating COMT, DA receptors and DAT 

activity to positive reinforcement and aggression ever more imperative.  Studies 

generating COMT knockout mice have shown elevated levels of aggression 

(Volavka et al., 2004).  Several studies looking at COMT levels in human 

subjects also show a correlation between low COMT activity and aggression 

Volavka et al., 2004). 
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Similarly, DAT1 knockout mice show problematic social interaction; one 

issue being increased aggressive behavior towards cage mates (Rodriguez et 

al., 2004).  In humans, DAT1 polymorphism has also been linked to aggression 

by studies in pathologically aggressive adolescents.  In this same population, a 

D2 receptor polymorphism was also observed (Chen et al., 2005).  D2 receptor is 

not the only receptor linked through correlation to aggression.  Polymorphisms in 

the D3 receptor gene has been found among populations of adult violent criminal 

offenders (Retz et al., 2003) and D4 receptor polymorphisms have been found in 

dog breeds scoring high on aggressive behavior scales (Ito et al., 2004).  

Integrating the above genetic data, it is likely that aggression in humans is 

related to increased DA tone and transmission through D2 receptor subtype. It is 

also conceivable that these abnormalities in DA neurotransmission underlie the 

behavioral link noted between aggression and positive reinforcement.   

 

Pharmacological Evidence In Support of Aggression as a Positive Reinforcer 

Early efforts to pharmacologically manipulate aggression through 

dopaminergic mechanisms were based on observations of clinical practices that 

used antipsychotics to tame aggression and mania.  Antipsychotic drugs 

primarily act on DA receptors.  However, it is also known that several commonly 

prescribed antipsychotic drugs also have high affinities for receptor types other 

than DA.  Due to the inability to discern whether the anti-aggressive effects of 

antipsychotics were due to action on DA receptors alone, or if other medications 

that patients were taking could confound observations, pharmacological 
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manipulation of aggression through dopaminergic mechanisms moved into the 

controlled environment of the laboratory.   

In laboratory studies, compounds with higher affinity and specificity for 

different DA receptor subtypes have been used to explore DA’s role in 

aggression.  Studies administering apomorphine (a semi-selective D2 receptor 

agonist) and amphetamine (DAT blocker) report increased aggressive behavior 

(Miczek et al., 2000; Seigel et al., 1999).  One study, using a DA-agonist 

reportedly even more potent than apomorphine, N-n-Propyl-Norapomorphine, 

showed a faciliatory effect on aggression under predatory, foot-shock and 

isolation induced aggression conditions (Baggio & Ferrari, 1980).  In addition to 

drugs that increase DA neurotransmission, studies administering DA antagonists, 

aimed at decreasing DA neurotransmission, have reported decreases in 

aggression (Miczek et al., 2000; Seigel et al., 1999).  Haloperidol and raclopride, 

both D2 receptor antagonists, have been associated with lowered aggression in 

both rodents and humans, though their use and data interpretation are 

problematic due to undesired motor side effects (Miczek et al., 2000).  It has also 

been observed that administration of haloperidol prior to administration of 

apomorphine blocked apomorphine’s faciliatory effect on aggression without any 

motor side effects (Seigel et al., 1999).    

Studies demonstrating the role of D1 receptors in the modulation of 

aggression have been less successful. SKF-38393, a selective DA1 receptor 

agonist, was not shown to effect affective aggression in cats (Seigel et al., 1999) 

and actually shown to reduce aggression when administered at very high doses 
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in mice (Miczek et al., 2000). SCH 23390, a D1 receptor antagonist, has been 

reported to reduce aggressive behavior in rodents (Rodriguez-Arias et al., 1998), 

an effect not able to be replicated in cat (Seigel et al., 1999).    

   

Preliminary Studies Exploring Aggression as a Positive Reinforcer 

In order to understand biologically how aggression might function as a 

positive reinforcer, it is first necessary to have a complete behavioral portrait of 

aggression as a reinforcer.  Previously in our laboratory at Vanderbilt University, 

we have replicated and extended the behavioral findings of Miczek et al. (2000) 

in regards to aggression functioning as a positive reinforcer.  Using the resident-

intruder model of aggression in conjunction with an operant nose-poke response 

paradigm (Miczek et al., 2000), we have shaped male mice to respond on 

various Schedules of reinforcement to gain access to aggression with male 

conspecifics.  We have established access to aggression on fixed ratio (FR), 

fixed interval (FI) and progressive ratio Schedules (PR).   

In the experiments exploring FR responding for access to aggression, we 

demonstrated contingent nose pokes to access a conspecific for aggression 

could be established on a FR 8 reinforcement Schedule. That is, resident mice 

emitted a required number of nose pokes in order to gain access to an intruder 

mouse. The response rate decreased to near zero levels of responding when the 

aggression contingency was removed. Baseline responding recovered when the 

reinforcement contingency was re-established (see Fig. 2). Since responding 

was maintained when the aggression-event contingency was present, and was 
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not maintained when the aggression-event contingency was removed, the 

aggression positively reinforced nose pokes. The Inter-response time (IRT) 

distribution obtained for resident mice demonstrated that nose pokes occurred in 

rapid bursts (see Fig. 3). Longer IRTs would suggest nose pokes could be 

maintained by some other stimulus event, and that contact with the aggression 

contingency was coincidental. Since short IRT were seen in our experiments, it is 

likely that we established stimulus control using access to aggression as a 

reinforcer.  

The FR experiments demonstrated that rapid Schedule completion on an 

FR reinforcement Schedule could be reinforced with an aggressive event with a 

conspecific mouse. The next experiment completed by our laboratory 

demonstrated that nose pokes were maintained on a FI reinforcement Schedule 

when aggression was the reinforcer. This was demonstrated by the sustained 

response rate over time, a decrease in responding when the aggression 

contingency was removed, and recovery of the response rate when the 

aggression contingency was re-instated (see Fig. 4). Furthermore, the Index of 

curvature (IC; is calculated for FI responding to quantify the acceleration of 

response rate toward the end of an interval; Bannai et al. 2007) obtained for each 

mouse suggested responding was minimal during the early minutes of an interval 

and increased as time progressed toward the expiration of the interval (see Fig. 

5). Finally, each mouse nearly maximized all reinforcement opportunities, 

suggesting aggression as a reinforcer can sustain responding. 
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Though the above findings in our laboratory added support to the idea that 

aggression can be positively reinforcing, the extent to which aggression as a 

reinforcer sustains responding is not known. The FR and FI experiments 

imposed time constraints, limiting the number of reinforcers earned in a given 

session. Thus, even though responding was sustained over the course of the 

session there is no evidence of the value of aggression as a reinforcer beyond 

the parameters of the experimental time. The third experiment that was 

completed by our lab was an attempt to establish the reinforcer value of 

aggression by allowing each mouse to respond freely without time constraints. 

By doing this, we could establish a point at which aggression no longer sustains 

nose pokes.  

Experiment 3 showed nose pokes during the PR 2 (see Fig. 6) 

reinforcement Schedule were maintained by access to aggression as 

reinforcement. Mice successfully completed between 5 and 10 PR 2 

reinforcement Schedules before aggression no longer maintained nose pokes. 

When the aggression contingency was removed, nose pokes quickly ceased. 

Post-reinforcement pauses for two mice consistently increased as the PR 

Schedule value increased. The pause durations were recovered when baseline 

was re-instated (see Fig. 7). Experiment 3 established the extent aggression was 

a reinforcer for mice on a PR reinforcement Schedule. This was demonstrated by 

a stable rate of Schedule completion for each mouse. Furthermore, PRPs were 

demonstrated to increase as a function of the PR 2 Schedule value for two mice. 
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Figure 2. The frequency of nose pokes per min over the last 5 sessions on the 
FR reinforcement Schedule. Baseline and extinction conditions are separated by 
dashed phase lines. The vertical axis represents the number of nose pokes per 
min. The horizontal axis represents the session number. The top panel 
represents nose pokes for Mouse 100, the middle panel represents nose pokes 
for Mouse 101, and the bottom panel represents nose pokes for Mouse 102.  
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Figure 3. The average IRT per session over the last 5 sessions in 1.0 s time bins 
on the FR reinforcement Schedule. Black circles represent the first baseline 
condition and open circles represent the second baseline condition. The vertical 
axis represents the frequency of nose pokes in 1.0 s time bins. The horizontal 
axis represents 1.0 s time bins. The top panel represents IRTs for Mouse 100, 
the middle panel represents IRTs for Mouse 101, and the bottom panel 
represents IRTs for Mouse 102.  
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Figure 4. The frequency of nose pokes per min over the last 5 sessions on the FI 
reinforcement Schedule. Baseline and extinction conditions are separated by 
dashed phase lines. The vertical axis represents the number of nose pokes per 
min. The horizontal axis represents the session number. The top panel 
represents nose pokes for Mouse 200, the middle panel represents nose pokes 
for Mouse 201, and the bottom panel represents nose pokes for Mouse 202. 
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Figure 5. The cumulative rate of nose pokes per quarter and corresponding IC 
across the FI 5 min reinforcement Schedule over the last 5 sessions. Black 
circles represent the first baseline condition and open circles represent the 
second baseline condition. The vertical represents the cumulative number of 
nose pokes per quarter. The horizontal axis represents each quarter in a 5 min 
interval. The top panel represents the cumulative graph and IC for Mouse 200, 
the middle panel represents the cumulative graph and IC for Mouse 201 and the 
bottom panel represents the cumulative graph and IC for Mouse 202. 
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Figure 6. The number of completed Schedules over the last 5 sessions on the 
PR 2 reinforcement Schedule. Baseline and extinction conditions are separated 
by dashed phase lines. The vertical axis represents the number of Schedules 
completed. The horizontal axis represents the session number. The top panel 
represents completed Schedules for Mouse 300, the middle panel represents 
completed Schedules for Mouse 301, and the bottom panel represents 
completed Schedules for Mouse 302.  
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Figure 7. The average PRP durations per session in seconds over the last 5 
sessions in on the PR reinforcement Schedule. Black circles represent the first 
baseline condition and open circles represent the second baseline condition. The 
vertical axis represents the PRPs per PR 2 Schedule value. The horizontal axis 
represents PR 2 Schedule values. The top panel represents PRPs for Mouse 
300, the middle panel represents PRPs for Mouse 301, and the bottom panel 
represents PRPs for Mouse 302.  
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Dopamine Receptors and Drugs 
 
DA receptors 

In common with virtually all other neuroreceptors, DA receptors are now 

known to exist in multiple subtypes.  Like other G-protein coupled receptors, the 

5 DA receptors have 7 putative membrane spanning helices which forms a 

narrow dihedral hydrophobic cleft surrounded by 3 extracellular and 3 

intracellular loops (see Fig. 8).  The receptor polypeptides are thought to be 

further anchored to the membranes in which they exist through palmitoylation of 

a conserved Cys residue found in their C-tails (Civelli, 2000).    

The first indication that the DA receptors could be differentiated into two 

subfamilies came in their cloned primary sequences.  In their putative 

transmembrane domains, the D1 and D5 receptors are 79% identical but are only 

approximately 43% identical to D2, D3 and D4 receptors (Civelli, 2000).  In 

addition, the D2, D3 and D4 receptors share up to 75% homology with each 

other.  Though the DA receptors primary sequences were the first indication that 

these 5 receptors (D1-D5) could be divided into two subfamilies, the definitive 

evidence dividing these receptors was made on pharmacological grounds; D1 

and D2 receptors are coupled to different postsynaptic transduction mechanisms. 

The D1 receptors are positively coupled to Gi/o whereas D2 are negatively 

coupled to Gs. As a result of this differential coupling to G-proteins, activation of 

each of these receptors results in differential cellular activity.  For example, in the 

dorsal striatum, DA has excitatory effects at D1 receptors while D2 receptors are 

inhibitory.   
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D1 and D2 receptors are present in all brain regions that receive a 

dopaminergic projection, both subtypes are expressed at a high level in the 

dorsal and ventral striatum, olfactory tubercle, and lower levels are present in the 

septum, hypothalamus and cortex; though D1 receptors predominate in PFC. D2 

receptors, but not D1 receptors are found in the substantia nigra and VTA.  

Conversely, D1 is found in the amygdala, where little if any D2 receptors reside.  

DA autoreceptors are of the D2 subtype, with a possible D3 contribution; there 

are no D1 autoreceptors. D3 and D4 receptors are localized almost exclusively 

within ‘limbic’ areas, particularly the nucleus accumbens shell, and so are of 

particular interest in relation to affective disorders (Civelli, 2000).   The 

localization of the D5 receptors is highly specific; in the hippocampus, 

hypothalamus and the parafascicular nucleus of the thalamus (Civelli, 2000).  

D1 Antagonist: SCH-23390 

SCH-23390 is a potent D1-like receptor antagonist of the benzazepine 

family of compounds.  SCH-23390 is also known as R(+)-7-Chloro-8-hydroxy-3-

methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride with a 

molecular formula of C17H18ClNO · HCl and molecular weight of 324.24 (see Fig. 

9).  The active enantiomer of SCH-23390 is the (R) in contrast to the in Active (S) 

enantiomer. This compound inhibits the stimulation of adenylyl cyclase caused 

by dopamine binding to D1-like receptors.   

Most studies in vivo utilize radioactively labeled SCH-23390 in order to 

assess pharmacokinetic activity.  Kd values for these compounds have ranged 

from 0.14 nM in rat striatum (Andersen et al., 1985) to 1.83 nM human putamen 
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(Raisman et al.., 1985).  In experiments conducted by Cumming et al. (1999), it 

was observed that after 2 min of intravenous infusion of [11C]SCH-23390, 

untransformed [11C]SCH 23390 comprised 50% of plasma radioactivity at 7 min 

and only 10% of plasma activity at 30 min. Studies conducted by Sossi et al.. 

demonstrate that in the occipital cortex, [11C]SCH-23390 reaches equilibrium in 

the first 15 min of administration.  These data taken together indicate that SCH-

23390 is a fast acting and rapidly metabolized drug (Cumming et al., 1999; Sossi 

et al., 2000).   

 Recently it has been noted that SCH-23390 has some affinity for serotonin 

(5-HT) 2A receptor.  Though there has been a variety of opinions about what 

SCH-23390’s affinity for 5-HT 2A receptors is in vivo, it appears to be 

somewhere in the range of 6-10 fold lower than for D1-like receptors (Bourne, 

2001).  Though some researchers claim that as much as one-fourth of SCH-

23390 in vivo cortical activation is through 5-HT 2A receptors (Ekelund et al., 

2007), this is not widely agreed upon and SCH-23390 still remains the D1 

antagonist of choice in a staggering amount of literature assessing the function of 

D1-like receptors.   

 

D2 Receptor Antagonist: Sulpride 

Sulpiride is a potent D2-like receptor antagonist of the benzamide family of 

compounds.  Sulpiride is also known as (S)-5-Aminosulfonyl-N-[(1-ethyl-2-

pyrrolidinyl)methyl]-2-methoxybenzamide, has a molecular formula of 

C15H23N3O4S and a molecular weight of 341.43 (see Fig. 10).     
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Like SCH-23390, there are two optical enantiomers of sulpiride; (+)-

sulpiride or D-sulpiride and (-)-sulpiride or L-sulpiride. The L-sulpiride is the 

pharmacologically active isomer.  Bioavailability of Sulpiride is 30% due to poor 

and slow gastrointestinal absorption (Kostowski, 1993). Sulpiride’s peak plasma 

concentration is reached after 4.5 hrs with a half-life approximately 5-8 hrs.  

Using 14C-sulpiride, Dross and Hopf found that in the rat brain, 90% of the 

radioactivity consisted of unchanged sulpiride, not metabolized sulpiride.  In rat 

waste, about one-third of total 14C-sulpiride was metabolized while two-thirds 

were excreted unchanged (Dross & Hopf, 1979).  These findings indicate that 

sulpiride is not readily metabolized and is stable in the rodent.  Kd for sulpiride 

ranges between 2-10 nM for D2 and D3 receptors, while it has been reported to 

be up to 1000 nM for D4 receptors (Strange, 2001).   
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                                Figure 10. Molecular structure of sulpiride 
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CHAPTER II 

 

SPECIFIC AIM I: IS AGGRESSION POSITIVELY REINFORCEING? IF SO, 

WHAT PART OF THE AGGRESSIVE ENCOUNTER SERVES AS THE 

POSITIVELY REINFORCING EVENT?   

 

Rational 
 

 While it has been demonstrated that an aggressive encounter in a 

resident-intruder paradigm can be positively reinforcing, it is still unclear the 

actual stimulus in the event that functions as the positive reinforcer.  An 

aggressive encounter is a complex one, rich in sight, sound, physical contact, 

physical activity and olfactory stimulation.  Any of these stimuli potentially serve 

as a positive reinforcer.  When studying aggression as a positive reinforcer, it is 

essential to first determine if aggression itself is positively reinforcing; as 

opposed to the many other stimuli that the resident mouse comes into contact 

with during an aggressive encounter. 

 

Materials and Methods 
 

Subjects   

Male Swiss Webster albino mice (n = 5) were maintained on a 12:12 h 

light/dark cycle (lights on at 6:00 A.M.) with experimental sessions occurring 

during the light-on cycle.  At 28 d postpartum, “resident males” were individually 

housed with a same-strain female. The sire and dam were housed together for 
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the duration of the experiment. Following a similar timeline, “intruder males” were 

group-housed (5 males per cage) throughout the experiment. Cages were clear 

polycarbonate plastic (29 cm x 17 cm x 53 cm) with standard stainless-steel wire 

lids and CareFresh paper bedding. All mice had ad libitum access to rodent chow 

(Purina, St. Louis, MO) and water. The protocol was reviewed and approved by 

the Vanderbilt Institutional Animal Care and Use Committee and followed 

National Institutes of Health guidelines. 

 

Apparatus 

The nose-poke apparatus contains two nose-poke sensors (only the right 

sensor is operative during the experiment), a houselight (illumination at onset of 

session), and two jeweled stimulus lights (not operative during experiment) (see 

Fig. 11).  Also placed in the home cage prior to the start of the experiment, was a 

wire mesh screen.  The wire mesh screen was placed parallel to and 5 in away 

from the nose poke apparatus (see Fig. 12).  The wire mesh screen served to 

separate a section of the home cage where the resident mouse could see and 

smell, but not access physically.   The nose-poke instrument panel is controlled 

by software developed by the Vanderbilt Kennedy Center Computer Services 

Department, and run on a MSDOS-based personal computer through a Med 

Associates interface. 

 

Aggression screening   
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Aggression was assessed by introducing an intruder mouse into the home 

cage of the male resident mouse with female removed (Miczek & O’Donnell, 

1978). Aggression screening involved three separate 10 min resident-intruder 

encounters each separated by three days. If a resident emitted aggression in 2 or 

more test sessions, it was included in a subsequent behavioral analysis. For the 

aggression screening test, aggression was defined as biting or boxing only.   

 

Behavioral contingency  

During all behavioral contingency tests, the dam/pups were removed from 

the resident cage and the operant conditioning panel and mesh screen were 

inserted. All behavioral contingency sessions were run once daily. All sessions 

began with house light illumination and lasted for 15 min.  Mice meeting criteria in 

the aggression screening were taught to nose poke via shaping successive 

approximations with the introduction of an intruder mouse into the resident cage 

for 6 sec as a consequent stimulus. Resident mice were trained to nose poke on 

a variable-ratio (VR) 5 reinforcement Schedule to earn access to the intruder 

mouse. Each time the VR-5 contingency requirement was met, the house light 

turned off for 0.5 sec and the stimulus mouse was introduced for 6 sec.  Mice 

were required to exhibit aggression toward the intruder on 90% of the 

opportunities where they earned access to the intruder.  If the resident mice did 

not exhibit aggression on 90% of the opportunities to aggress, they were 

discontinued.  Aggression during the behavioral contingency task was defined as 

tail rattle, sideways threat, boxing or biting.   
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The intruder mouse in the baseline condition was place on the side of the 

mesh screen that was physically accessible to the resident mouse.  The intruder 

mouse was places approximately 3 in, frontally oriented to the resident mouse 

upon the resident mouse’s completion of the VR-5 contingency.  After a steady 

baseline rate of nose-poke was observed (baseline criteria was that the last three 

response rates were within the range of the first 5 response rates), subjects were 

then exposed to an extinction condition.  In the extinction condition, after the 

resident mouse completed the VR-5 contingency, the intruder mouse was placed 

on the opposite side of the mesh screen; where the resident mouse could see 

and smell the intruder mouse but not physically attack it.  Upon extinguishing the 

nose-poke rate to the pre-training nose-poke rate, the subjects were then re-

exposed to the baseline condition until nose-poke rate was recovered to at least 

pre-extinction response rate.   

 

Statistical analysis   

Within-subjects, repeated measures Analysis of Variance (ANOVA) with 

Tukey-Kramer post-hoc analyses were used to analyze differences in behavioral 

response in each baseline condition and extinction.  Values included in the 

statistical analyses were those after steady state in each condition had been 

reached.   

 
Results 

 
 Under the above conditions, nose-poke rate was successfully 

extinguished by removing physical access to the intruder mouse.  Each resident 
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mouse could still see and smell the intruder mouse from the opposite side of the 

wire mesh screen after the completion of the VR-5 behavioral contingency.  

However, without being able to physically attack the intruder mouse, each 

resident mouse ceased responding over time. There was a significant difference 

between each of the baseline conditions and the extinction condition (F(2,21) = 

61.55; p < .001).  In the first baseline condition, the mean response rate was 3.80 

pokes/min with an SEM = .14.  In the extinction condition, the mean response 

rate was .22 pokes/min with an SEM = .07.  In the second baseline condition, the 

mean response rate was 4.12 pokes/min with an SEM = .19.  The mean days for 

responding to extinguish was 13.80 days with an SEM = 1.77.  The mean days 

for the recovery of baseline nose-poke rate was 3.8 days with an SEM = .37 (see 

Figs. 13 and 14).   

 

Discussion 

 In the above analysis it was established that upon the removal of physical 

access to an intruder mouse, a resident mouse will no longer nose-poke for the 

opportunity to aggress. By placing a wire mesh screen between the resident and 

intruder mice, it was clearly demonstrated that physical aggression, not visual 

stimulation, novelty, social interaction or olfactory stimulation, was the positively 

reinforcing event in an aggressive encounter.  This finding is important for 

several reasons.  First, before this analysis, it had not been established under 

classic behavioral definitions that aggression itself is positively reinforcing.  Much 

of the literature exploring aggression as a reinforcer use the behavioral 
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phenomena that animals will perform tasks for the opportunity to aggress.  

However, there has been no published literature attempting to demonstrate 

exclusive stimulus control over aggression as a reinforcer.   Second, though 

there was strong evidence in support of aggression being positively reinforcing, 

there was no insight into what part of the aggressive encounter acted as the 

positive reinforcer.  Due to the fact that an aggressive encounter is a complex 

one, rich with a variety of stimuli (i.e. olfactory stimulation, visual stimulation, 

social interaction, tactile stimulation, novelty, heightened physical activity),  it was 

possible the actual act of aggression might not be the positively reinforcing 

stimulus in fight.  In previous literature this issue had not been directly 

addressed.  In fact, work conducted with Beta splendins indicate that these fish 

will complete elaborate mazes just to get a visual image of an opponent 

(Tellegen, 1969). In addition, humans enjoy watching violent sport and cinema.   

However, upon experiencing repeated aggressive encounters, as was the case 

with subjects in this study, it appears clear that aggressive contact is necessary 

component of an aggressive encounter to establish response contingency.   
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Figure 13.  Mean response rate in each behavioral condition in Aim 1. Each bar 
represents the mean value in each condition after subjects reached steady 
responding (see above description) in each condition.  Error bars represent SEM. 
Asterisks represent significant difference from baseline. 
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Figure 14. Single-subject response rate across sessions of Aim 1.  Baseline, 
Extinction and Re-Baseline are divided by vertical dashed lines.  The values at 
session 1 began after a steady baseline (see above definition) had been 
established. 
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CHAPTER III 

 

SPECIFIC AIM 2: DO DA 1/5 AND/OR DA 2/3 RECEPTORS IN THE NAC 

MEDIATE ACCESS TO AGGRESSION AS POSITIVE REINFORCEMENT?  

 

Rational 

The collective problem with present pharmacology work investigating the 

role of the mesocorticolimbic system in aggression is that they have, thus far, 

been ineffective at targeting the mesocorticolimbic DA circuit exclusively.  Due to 

the challenges of locally administering drugs in rodents and humans, the 

pharmacological evidence for the role of positive reinforcement mechanisms in 

aggression is confounded and must be interpreted in conjunction with behavioral 

and neurochemical data.  What is needed for understanding DA’s role in 

aggression as a positive reinforcer are experiments that carefully separate DA’s 

role in the motivating aspects of aggression from DA’s role in generalized 

movement.  Thus, the following experiment is proposed.   

  

Materials and Methods 

Subjects   

Male Swiss Webster albino mice were maintained on a 12:12 h light/dark 

cycle (lights on at 6:00 A.M.) with experimental sessions occurring during the 

light-on cycle.  At 28 d postpartum, “resident males” were individually housed 

with a same-strain female. The sire and dam were housed together for the 
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duration of the experiment. Following a similar timeline, “intruder males” were 

group-housed (5 males per cage) throughout the experiment. Cages were clear 

polycarbonate plastic (29 x 17 x 53 cm) with standard stainless-steel wire lids 

and CareFresh paper bedding. All mice had ad libitum access to rodent chow 

(Purina, St. Louis, MO) and water. The protocol was reviewed and approved by 

the Vanderbilt Institutional Animal Care and Use Committee and followed 

National Institutes of Health guidelines. 

 

Surgical procedures 

At 60 to 75 d postpartum, resident males were unilaterally implanted with 

guide cannula (CMA7, CMA Microdialysis, Solna, Sweden) positioned directly 

above the nucleus accumbens (AP, 1.6 mm; ML, 7.5 mm; DV, 4.5 mm)(Paxinos 

and Franklin, 2001). Before surgery, subjects were anesthetized with 125 mg/kg 

ketamine and 10 mg/kg xylazine. Cannulae were adhered to the skull using 

Geristore dental adhesive (Denmat Corporation, Santa Maria, CA). The skin was 

replaced over the base of the guide cannula and sutured closed. After surgery, 7 

d of isolated recovery occurred. Mice were then paired with the original female 

mate and left to acclimate for 7 to 14 d. After the acclamation period, mice were 

screened for aggression. 

 

Aggression screening   

Aggression was assessed by introducing an intruder mouse into the home 

cage of the male resident mouse with female removed (Miczek and O’Donnell 
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1978). Aggression screening involved three separate 10 min resident-intruder 

encounters each separated by three days. If a resident emitted aggression in 2 or 

more test sessions, it was included in a subsequent pharmacological analysis.  

 

Aggression as positive reinforcement apparatus  

The operant conditioning panel (29 cm x 17 cm x 0.6 cm) was comprised 

of two nose-poke sensors (only the right sensor was operative during the 

experiment) and a house light. The instrument panel, which was inserted into the 

resident vivarium cage, was controlled by software developed by the Vanderbilt 

Kennedy Center and run on a MSDOS-based personal computer through a Med 

Associates interface (see Fig. 11). 

 

Behavioral contingency  

During all behavioral contingency tests, the dam/pups were removed from 

the resident cage and the operant conditioning panel was inserted. All behavioral 

contingency sessions were run once daily. Mice meeting criteria in the 

aggression screening were taught to nose poke via shaping successive 

approximations with the introduction of an intruder mouse into the resident cage 

for 6 sec as a consequent stimulus. Resident mice were trained to nose poke on 

a variable-ratio (VR) 5 reinforcement Schedule to earn access to the intruder 

mouse. All sessions began with house light illumination and lasted for 15 min. 

Each time the VR-5 contingency requirement was met, the house light turned off 

for 0.5 sec and the stimulus mouse was introduced for 6 sec. Mice were required 
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to exhibit aggression toward the intruder on 90% of the opportunities where they 

earned access to the intruder.  If the resident mice did not exhibit aggression on 

90% of the opportunities to aggress, they were discontinued.  Aggression during 

the behavioral contingency task was defined as tail rattle, sideways threat, 

boxing or biting.  Along with the automatically recorded nose pokes, sessions 

were videotaped and scored for locomotion/aggression as described below. 

 

Dopamine antagonist tests   

After subjects demonstrated steady nose poking rates in baseline, drug 

microinjections were conducted. Double determinations were made at each 

dosage in an ascending dose-effect function with baseline sessions occurring in 

between each drug tests. Determinations were established for mock-infusions 

(cannula without liquid were inserted into guides of subjects for 3 min), vehicle 

(artificial cerebral spinal fluid) and the D1-like receptor antagonist SCH-23390 

(12 ng, 25 ng, and 50 ng) and the D2-like receptor antagonist sulpiride (12 ng, 25 

ng, and 50 ng). All drugs were obtained from Sigma-Aldrich (St. Louis, MO). 

Each microinjection was 150 nl in volume and manually infused over 3 min using 

a microsyringe (Gilmont Instruments, Morgantown, PA). Microinjections were 

administered 15 min prior to behavioral contingency testing. 

 

Videotaped scoring of locomotion/aggression  

Each behavioral contingency test session was videotaped and scored for 

movement and aggression. Movement included time spent running/walking, 
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grooming and rearing during mock-infusion, vehicle and DA antagonist test 

conditions. Aggression included tail rattle, sideways threat, boxing, and biting 

during mock-infusion, vehicle and DA antagonist after the intruder mouse was 

introduced. Trained graduate students blinded to conditions scored videotaped 

sessions (see Miczek and O’Donnell 1978). 

 

Open-field tests   

Naïve cannulated mice were treated one time in each in each condition 

(mock-infusion, vehicle, 25 ng and 50 ng of  SCH-23390 or sulpiride using a Latin 

square randomization design) 15 min prior to open-field test. Animals were then 

placed in a 43 cm X 43 cm open field chamber (ENV-515 test environment, MED 

Associates Inc., St. Albans, VT) for 15 min in a lit room. Total distance traveled 

was recorded and analyzed as the measure of locomotion using MED Associates 

SOF-811 Open Field Activity Software. 

 

Histology   

After completing behavioral contingency test, mice were deeply 

anesthetized with 800 mg/kg pentobarbital (Abbot Laboratories, Chicago, IL) and 

transcardially perfused with 4% paraformaldehyde (Sigma-Aldrich, St. Louis, 

MO). Brains were removed and cryoprotected by overnight submersion in 30% 

sucrose: 70% paraformaldehyde fixative. Tissue was frozen on dry ice and sliced 

at 50 µm using a microtome. Mounted tissue was then Nissel stained in order to 

verify cannula placement in the NAc.  To verify size and spread of infusions, a 
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spread analysis was conducted. In this analysis, 15 min prior to perfusion, 

animals (n = 4) were infused with 150 nl of micro-ruby (Sigma-Aldrich, St. Louis, 

MO) mixed in vehicle. Fifteen min after the micro-ruby infusion, animals were 

perfused and tissue treated as described above. 

 

Statistical analysis   

Within-subjects, repeated measures Analysis of Variance (ANOVA) with 

Tukey-Kramer post-hoc analyses were used to analyze differences in behavioral 

response to drug doses in each test (i.e., behavioral contingency test, videotaped 

movement, open-field test).  All comparisons of drug effects were in reference to 

vehicle. 

 

Results 

Histological verification of cannula placement 

After perfusion of each cannulated animal, tissue was sliced and stained 

to verify placement. Twenty-five animals had cannula placed within the 

boundaries of the NAc. Fig. 15 shows a diagram depicting a coronal mouse 

section through the NAc (adapted from Paxinos and Watson, 2001) indicating 

cannula placement was accurate and consistent across all animals. 

Infusion of micro-ruby prior to perfusion was conducted to quantify the 

spread of infusions. The infusions were tear-drop shaped with the mean length 

(dorsal to ventral) at the largest point being 475 µm (+120) and the mean width 

(medial to lateral) being 400 µm (+37). 
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Dopamine antagonist effects on the positively reinforcing properties of 

aggression 

For cannula placements within the NAc, infusing SCH-23390 significantly 

reduced nose poking for aggression at the 50 ng dosage compared to vehicle 

(F(3,49) =6.26; p < .001) (see Fig. 16a.). Infusing sulpiride into the NAc resulted 

in reduced nose poking for aggression at the 25 ng and 50 ng dosages of 

sulpiride compared to vehicle  (F(3,55) = 6.26; p < .001) (see Fig. 16b). Table 2 

(see appendix a.) shows high levels of agonistic behaviors during vehicle 

injections when intruder mice were present. Reductions in aggression occurred 

at the 50 ng dosage of SCH-23390 for biting (F(3,56) = 5.06; p < .01). 

Aggression was reduced at the 25 ng dosage of sulpiride for tail rattle (F(3,56) = 

11.04; p < .01) and biting (F(3,56) = 70.66; p < .01) and for all aggressive 

behaviors at the 50 ng dosage of sulpiride (p < .01). For cannula placements 

outside the NAc, no dosage of SCH-23390 (Fig 17a.) or sulpiride (Fig. 17b.) 

affected nose poking for aggression. 

 

Dopamine antagonist effects on movement during aggression tests 

Each resident mouse was videotaped during each mock, vehicle and drug 

infusion while performing the behavioral contingency task and scored for time 

spent walking/running, grooming and rearing.  In the SCH-23390 analysis, no 
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Figure 15. A diagram depicting coronal mouse sections at 3 different AP levels 
through the NAc (adapted from Paxinos & Watson, 1984).  Each diamond 
represents the center point of an indwelling cannula that was included within the 
boundaries of the NAc (n = 25).  Each circle represents the center point of an 
indwelling cannula that was considered outside the boundaries of the NAc (n = 
9).  AP measurements are mm from Bregma.   
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differences from vehicle were seen in total time spent moving. However, 

grooming, at both the 25 ng and 50 ng dosages was different from vehicle (F(3,37) 

= 46.76; p < .001). Rearing was also different between 50 ng SCH-23390 and 

vehicle (F(3,37) = 4.62; p < .01) (see Table 1; appendix a.). For the sulpiride 

analysis, total movement differed from vehicle only at the 50 ng dosage (F(3,44) = 

31.40; p < .0001). Walking, grooming and rearing were different from vehicle only 

at the 50 ng dosage (F(3,44) = 27.35; p < .001; F(3,44)  = 6.44; p < .001; F(3,44)  = 

32.72; p < .001; respectively). 

 

Dopamine antagonist effects on movement during aggression tests 

Each resident mouse was videotaped during each mock, vehicle and drug 

infusion while performing the behavioral contingency task and scored for time 

spent walking/running, grooming and rearing.  In the SCH-23390 analysis, no 

differences from vehicle were seen in total time spent moving. However, 

grooming, at both the 25 ng and 50 ng dosages was different from vehicle (F(3,37) 

= 46.76; p < .001). Rearing was also different between 50 ng SCH-23390 and 

vehicle (F(3,37) = 4.62; p < .01) (see Table 1; appendix a.). For the sulpiride 

analysis, total movement differed from vehicle only at the 50 ng dosage (F(3,44) = 

31.40; p < .0001). Walking, grooming and rearing were different from vehicle only 

at the 50 ng dosage (F(3,44) = 27.35; p < .001; F(3,44)  = 6.44; p < .001; F(3,44)  = 

32.72; p < .001; respectively).



Table 1.  Effects of SCH-23390 and Sulpiride on Walking, Grooming, Rearing and Total Movement 
Data for each behavior are means +/- SEM. Values that are significantly different from average vehicle are printed 

in boldface (p < 0.01). 

 
Mock-
Injection  Vehicle 

12 ng  
SCH-
23390 

25 ng  
SCH-
23390 

50 ng  
SCH-
23390 

12 ng 
Sulpiride 

25 ng 
Sulpiride 

50 ng 
Sulpiride 

Walking 
8.91 +/- 
.47 

8.58 +/- 
.40 7.9 +/-.39 6.35 +/-.41 

6.64 +/-
.49 

8.13 +/- 
.45 

7.67 +/- 
.48 

3.65 +/-
.47 

Grooming .84 +/- .09 .83 +/- .10 .79 +/-.14 2.87 +/-.15 
1.98 +/-
.15 

0.82 +/-
.05 .73 +/-.03 .58 +/-.05 

Rearing 3.32 +/-.27 2.65 +/-.25 3.06 +/-.22 2.20 +/-.26 
1.73 +/-
.19 

2.89 +/-
.28 

2.01 +/-
.26 .54 +/-.24 

Total 
12.90 +/-
.52 

11.88 +/-
.50 

11.71 +/-
.44 

11.43 +/-
.42 

10.42 +/-
.37 

11.85 +/-
.61 

10.41 +/-
.59 

4.77 +/-
.63 



Table 2. Mean % of Earned Reinforcement Time Spent Performing Aggressive Behaviors. 
Data for each behavior are means expressed as % +/- SEM. Values that are significantly different from vehicle are 

printed in boldface (p < 0.01). Note that for the 50 ng sulpiride condition, most subjects did not earn any 
reinforcement time.  Scores for 50 ng sulpiride are base on a small amount of earned reinforcement time. 

 Vehicle 1 12 ng Sul 25 ng Sul 50 ng Sul Vehicle 2 
12 ng 
SCH 

25 ng 
SCH 50 ng SCH 

Tail-Rattle 
8.5 +/- 
1.86 

7.9 +/- 
1.28 

5.3 +/- 
1.04 0  8 +/- 1.30 

9.97 +/- 
1.04 

8.21 +/- 
1.16 

9.33 +/- 
1.04 

Sideways 
Threats 

12.3 +/- 
2.09 

13+/- 
2.10 

12.6 +/- 
1.00 

11.02 +/- 
1.04 

11.9 +/- 
1.35 

10.08 +/- 
2.70 

12.33 +/- 
1.27 

15.23 +/- 
3.27 

Boxing 
24.06+/- 
1.55 

24.6+/- 
1.75 

26.15 +/- 
1.66 

19.43 +/- 
1.46 

22.23 +/- 
2.68 

24.3 +/- 
2.42 20 +/- 2.33

20.22 +/- 
1.7 

Biting 
53.17+/- 
1.56 

51.7+/- 
1.86 

46.89 +/- 
1.46 

25.22 +/- 
1.88 

55.68 +/- 
1.20 

53.5 +/- 
1.80 

53.01 +/- 
1.95 

48.12 +/- 
1.95 

Total 
98.03 +/- 
4.09 

97.2 +/- 
4.39 

90.94 +/- 
3.05 

55.67 +/- 
3.0 

97.81 +/- 
3.80 

97.85 +/- 
4.30 

93.55 +/- 
4.92 

92.9 +/- 
5.35 

 
 

 

 



                
 
Figure 16.  SCH-23390 (16a.) and sulpiride (16b.) dose-response curve 
(diamonds) and total minutes spent moving (squares) as scored from video taped 
sessions for animals with cannula placed within the boundaries of the NAc (N = 
5; N = 6, respectively). Data is presented as means +/- SEM (vertical lines).  
Asterisks denote statistically significant differences relative to vehicle (p < 0.05) 
     



                
 
 
Figure 17. SCH-23390 (17a.) and sulpiride (17b.) dose-response curves 
(diamonds) and total minutes spent moving (squares) as scored from video taped 
sessions for animals with cannula placed outside the boundaries of the NAc (N = 
3; N = 4, respectively). Data is presented as means +/- SEM (error bars). * 
denotes significant difference from vehicle (p < 0.05).   
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Figure 18. Effect of SCH-23390 and sulpiride on total distance traveled in an 
open field.  Data is presented as means +/- SEM (vertical lines).  Asterisks 
denote statistically significant differences relative to vehicle (p < 0.05). 
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Dopamine antagonist effects on movement in open-field tests 

The distance traveled in the SCH-23390 open-field test yielded an overall 

significant effect (F(3,37) = 3.67, p < .05). The mean distance traveled in the SCH-

23390 groups was 1903 cm for mock-injections (SEM = 213), 1662 cm for 

vehicle (SEM = 189), 1701 cm for 25 ng (SEM = 195) and 1630 cm for 50 ng 

(SEM = 200). Tukey-Kramer post-hoc analyses revealed that there were no 

significant differences between drug dosages and vehicle (see Fig. 18). The 

distance traveled in the sulpiride open-field test yielded an overall significant 

effect (F(5,54) = 4.37, p < .05). The mean distance traveled in the sulpiride group 

was 2246 cm for mock-injections (SEM = 220), 1691 cm for vehicle (SEM = 223), 

1573 cm for 25 ng (SEM = 184 cm), and 1291 cm for 50 ng (SEM = 207). Results 

of the Tukey-Kramer post-hoc analyses revealed that the 50 ng dosage differed 

from vehicle (p < .05) (see Fig. 18). 

 

Discussion 

 We established contingent access to aggression as a positively reinforcing 

stimulus for male CFW mice.  Localized administration into the NAc of a D1-like 

DA receptor antagonist (SCH-23390) or a D2-like DA receptor antagonist 

(sulpiride) decreased aggression at dosages that did not disrupt general motor 

behavior.  Additional open-field tests were conducted demonstrating that SCH-

23390 and sulpiride dosages that reduced aggression in the operant conditioning 

task did not impair general motor movement in the open-field test.  These 
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findings suggest that mesocorticolimbic DA is involved in the mediation of the 

positively reinforcing effects of aggression in mice.  In addition, we have 

demonstrated a technique for local administration of DAergic antagonists into the 

NAc that avoids previous confounds in regard to general motor suppression. 

Previous experiments have established the viability of the operant 

conditioning task used in this experiment to study aggression as positive 

reinforcement.  De Almeida and Miczek (2002), Fish et al. (2002), and May et al. 

(2007) have used contingent access to aggression under a range of response- 

and time-based positive reinforcement Schedules.  An important aspect of this 

method is the separation of ethologically evoked aggression elicited from the 

introduction of a conspecific into the resident cage from the motivation of the 

resident mouse to earn access to aggression as a stimulus event by emitting 

instrumental behavior.  This paradigm allowed us to analyze the motivational 

properties of aggression as a positively reinforcing stimulus separate from other 

behavioral processes evoked by agonistic encounters (Michael, 1982; Laraway 

et al., 2003).   

 Several previous studies have implicated mesocorticolimbic DA in relation 

to the positively reinforcing properties aggression.  The most direct evidence for 

the involvement of the “reward pathway” comes from microdialysis experiments 

showing that extracellular levels of DA increase in the NAc after agonistic 

encounters, a finding that parallels microdialysis studies of other positively 

reinforcing stimuli (Ferrari et al., 2003; Van Erp et al., 2000).  In our experiment 

we were able to further the microdialysis findings by directly suppressing DAergic 
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activity in the NAc.  This NAc DAergic antagonism resulted in mice no longer 

engaging in instrumental behavior to earn access to aggression, further 

implicating NAc DA in the positively reinforcing properties of agonistic 

encounters. 

The results of our experiments indicate a role for D1-like and D2-like DA 

receptors in the reinforcing properties of aggression.  However, to what extent 

each DA receptor subtype serves in aggression and positive reinforcement is yet 

to be determined. Experiments administering apomorphine (a SEMI-selective D2-

like receptor agonist) and N-n-Propyl-Norapomorphine (a potent D2-like receptor 

agonist), showed a facilitative agonistic effect under predatory, foot-shock and 

isolation-induced aggression paradigms (Baggio & Ferrari, 1980; Miczek et al., 

2002; Siegel et al., 1999).  Complimenting the findings of these experiments are 

studies using haloperidol and raclopride (D2-like receptor antagonists) which 

decreased aggression in rodents and humans, although the findings are 

problematic due to undesired motor side effects (Miczek et al.., 2002; Siegel et 

al., 1999).  Experiments demonstrating a role for D1-like receptors in the 

modulation of aggression are also present in the literature.  SCH-23390 and 

SKF-38393 (a selective D1-like receptor agonist) have been reported to reduce 

aggression in rodents, although movement confounds limit interpretation of 

previous studies (Miczek et al., 2002; Rodriguez-Arias et al., 1998) and 

interspecies replication has been limited (Siegel et al., 1999).
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In other positively reinforcing behaviors, DA is the most strongly implicated 

neurotransmitter (Wise and Rompre´, 1989; Wise, 2004). Drugs of abuse, 

including cocaine, amphetamine, heroine and nicotine, are all associated with 

elevated DA and are thought to be addictive because of this elevated brain DA. 

Blockade of mesocorticolimbic DA receptors by mixed DA antagonists results in 

significantly reduced self-administration of these drugs of abuse (Di Chiara and 

Imperato, 1988; Yokel and Wise, 1975; de Wit and Wise, 1977; Corrigall et al., 

1992; Franklin, 1978). Positively reinforcing behaviors besides the administration 

of DA-altering pharmacological agents have also been consistently attributed to 

mesocorticolimbic DA. For instance, studies with food/drink positive 

reinforcement and Intra-Cranial Self-Stimulation (ICSS) demonstrate attenuated 

responding with the administration of pimozide (potent mixed DA antagonist) in 

the rat (Fouriezos and Wise, 1976 Fouriezos et al., 1978; Zarevics and Setler, 

1979; Franklin and McCoy, 1979; Gallistel et al., 1982; Gallistel and Karras, 

1984; Gallistel and Freyd, 1987; McFarland and Ettenberg, 1995; Geary & Smith; 

1985). Each of the above effects were seen in absence of motoric side effects.   

Though the current literature clearly indicates that dopamine is involved in 

positive reinforcement, the relative roles of D1-like vs. D2-like receptor activation 

still remains controversial.  Conflicting data supports D1 activation, D2 activation 

and activation of both.  For instance, studies in human subjects report two D2 

genetic polymorphisms, a TaqIA allele variant and a D2 receptor haplotype, 

associated with food and nicotine addictions (Morton et al., 2006).  Supporting 

the role for D2-like activation in positive reinforcement is work demonstrating NAc 
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D2-like control over responding for food, cocaine, nicotine and ICSS (Pezze et 

al., 2007; Esposito et al., 1979; Seeger TF & Gardner, 1979; Gál K & Gyertyán I, 

2006; Ross et al., 2007). Coupling these data with anatomical data 

demonstrating a high concentration of D3 receptors in the NAc shell; an area 

commonly associated with positive reinforcement, there is substantial support for 

a role of D2-like receptor activation in positive reinforcement (Scwartz et al.., 

1994).  In contrast to these data are those that demonstrate a role for D1 

activation. Studies administering D1-like agonists into the NAc report reduced 

responding for food positive reinforcement (Katz et al., 2006; Caine, 2000; 

Bratcher et al.).  However, it is interesting to note that antagonism of these 

behavioral effects by the D1 receptor antagonist, SCH-23390, was only seen for 

SKF 82958 infusions.  This point indicates that the behavioral effects of the other 

D1-like receptor agonists used in these studies may be due to activation of 

receptors other than D1-like receptors and thus, must be considered carefully 

(Katz et al., 2006).  In compliment to the work demonstrating the role of D1-like 

receptors in food positive reinforcement are studies showing that D1-like agonists 

also attenuate cocaine self-administration and D1-like antagonists potentiate 

cocaine self-administration (Caine et al., 1995, Barrett et al., 2004; Bari et al., 

2005).  In each of these pharmaco-behavioral studies implicating D1-like 

activation in positive reinforcement (both those that use food positive 

reinforcement and cocaine positive reinforcement paradigms), results regarding 

the effect of D2 agonism/antagonism vary with a tendency towards 

demonstrating little to no effect of D2 manipulation on positive reinforcement-
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based responding (Katz et al., 2006; Bratcher et al.; Bari et al., 2005; Caine et 

al., 2005; Cheer, 2007).   In direct opposition to the data demonstrating that D1-

like agonism attenuates responding for food and cocaine but still supporting the 

exclusive role of D1-like receptors in positive reinforcement is work 

demonstrating that D1-like antagonists, but not D2-like antagonists, decreases 

responding for ICSS (Cheer et al., 2007).     

Though there is still ongoing debate over an exclusive role for one or the 

other DA receptor subtype in various types of positive reinforcement, a majority 

of the literature does not support this.  Instead, the abundance of studies are in 

accord with our findings; that both the D1 and D2 receptors are involved in 

positive reinforcement-based responding.  It appears from the distinct D1-like 

and D2-like dose-response curves yielded from studies investigating food, 

cocaine, amphetamine, nicotine and ICSS positive reinforcement in species 

ranging from monkey to rat, that both D1-like and D2-like receptors play 

important roles in positive reinforcement; albeit very different ones that are still 

widely unknown (Ikemoto et al., 1997; Wolterink et al., 1993; White, Hu & Henry , 

1993; Singh et al., 1997; Ranaldi & Beninger, 1994; Eiler et al., 1997; Caine et 

al., 2000; Barrett et al., 2004; SCHmidt et al., 2006; Phillips et al., 1994; 

Spealman, et al., 1991).   

In addition to the lack of conclusive evidence on the nature of receptor 

subtype contributions in positive reinforcement, there is no literature, excluding 

our study, describing possible contributions of DAergic postsynaptic mechanisms 

in reinforcing aggression. In order to extend the findings of our study, 
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experiments utilizing antagonists exclusively specific for individual DA receptors 

1-5, should be used in follow-up behavioral pharmacological work. Though there 

are specific antagonists for the D1, D2, D4 and D5 receptors, there has been 

little success at deriving a DA antagonist with exclusive affinity for the D3 

receptor (Heidbreder et al., 2005). This becomes a reasonable problem in the 

search for DA receptor contributions to aggression as a reinforcer due to the fact 

that D3r’s are most highly concentrated in the islands of Calleja and NAc; thus 

making it a likely contributor to the reinforcing properties of aggression. In 

attempts to identify possible presynaptic mechanisms acting in the reinforcing 

properties of aggression, experiments targeting DA production, release and 

turnover would be an asset   

In our experiments described above, we were not able to isolate the role 

of nucleus accumbens core v. shell. Even though our histological data 

demonstrated consistent, isolated micro-injections not exceeding the boundaries 

of the NAc, it was not possible to isolate core vs. shell injections due to the 

extremely small size of the mouse ventral striatum. However, research with other 

species with other reinforcers suggests that the medial shell is strongly 

associated with the positively reinforcing effects of a stimulus, whereas the core 

contributes to behavioral activation. This hypothesis is strongly supported by a 

variety of evidence ranging from c-fos mRNA expression studies to studies 

utilizing 6-Hydroxydopmaine lesions in conjunction with a variety of positive 

reinforcement-response analysis paradigms (Sham et al., 2007; Floresco et al., 
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2006; Selling’s & Clark, 2006; Hara & Pickle, 2005; Kimono et al., 2005; Selling’s 

& Clark, 2003).   

Recent evidence has highlighted a role of serotonin (5-HT) and serotonin 

receptors (5-HTr) in aggression. Though the 5-HTr subtype most implicated in 

male aggression has been the 5-HT1Br, some data has been offered implicating 

5-HT 2 and 1C as well (de Almeida & Miczek; 2002; Ferrari et al., 2005; De 

Almeida et al., 2006; Bannai et al., 2007;  Olivier & Mos, 1992; Olivier et al., 

1995; de Boer & Koolhaas, 2005). In light of this recent evidence regarding the 

role of 5-HTrs in aggression, it is important to acknowledge the possibility that the 

drugs used in our study, specifically SCH-23390, have some affinity at 5-HT 2r 

and 1Cr sites.  Studies conducted by Nicklaus et al.. 1988 demonstrate that at 

high concentrations, unlike what was used in our study, SCH-23390 can bind to 

5-HT1Cr (Nicklaus et al., 1988). However, studies to follow addressed the issue 

of SCH-23390 D1 receptor specificity by demonstrating that in vivo, the Kd for D1r 

is approximately .2nM whereas for 5-HT1Cr, it is approximately 24nM (Bourne, 

2001; Kaufman et al.. 1996).  Most importantly, it was demonstrated that doses 

of SCH-23390 required to produce similar response at either the 5-HT1C or 2r in 

vivo are greater than 10-fold higher than those required to induce a D1-mediated 

response (Bourne, 2001). It is also critical to note that most of the rational for 5-

HTr involvement in aggression comes from regions of interest outside the NAc 

and in our study, we targeted only the NAc.  Thus, at the doses we used in our 

study, we believe that it is highly unlikely that the decreased response rates 

following local NAc SCH-23390 infusions were mediated through 5-HT receptors.  
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CHAPTER IV 

 

SPECIFIC AIM 3: ARE THERE ANY ENDOGENOUS DIFFERENCES IN 

MESOLIMBIC DA BETWEEN AGGRESSIVE AND NON-AGGRESSIVE MICE?  

 

Rational 

 It is often asked about violent offenders weather the reason they are 

aggressive is primarily influenced by ‘nature’ or ‘nurture’.  The former idea 

suggests that there are innate biological circuits that enable a propensity towards 

aggression.  The latter idea suggests that the individual’s environment was such 

that the individual learned to be aggressive.  While there has been substantial 

evidence demonstrating the role of environment in the production of aggressive 

individuals, the question: ‘is there endogenous differences between aggressive 

and non-aggressive individuals’, still remains unresolved. 

Individual differences in aggression have both genetic and environmental 

determinants, and neurobiological experiments suggest that there is conservation 

across species in the neurochemical and anatomical systems that are activated 

during aggressive behavior in humans and non-human animals (for review, see 

Nelson & Trainor, 2007).  Strong evidence exists implicating roles for both DA 

and 5-HT in the modulation of aggression.  Specifically, increased 

mesocorticolimbic dopamine and decreased cortical and systemic serotonin have 
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been linked with aggressive phenotypes (Mann et al., 1995; Mann, 1999; Ryan, 

2000; Couppis & Kennedy, 2007; Wallace et al., 2006)   

Though these findings have been relatively consistent in neurobiology of 

aggression literature, it remains, however, unclear if the mesocorticolimbic DA 

system modulates reinforcing aggression as a result of plasticity from learned 

aggressive behavior or if endogenous, pre-association differences between 

aggressive and non-aggressive mesocorticolimbic dopamine systems exist. 

 As an initial attempt to address this issue, two strains of mice that differ 

significantly in presentation of aggressive behavior, A/J and BALB/cJ, were 

chosen for examination.  A/J mice have been noted for their docile behavior, 

while BALB/cJ mice are so aggressive that they will attack on almost every 

encounter (Roubertoux et al., 2005; Roubertoux et al., 1999 Kessler et al., 1977).  

While these mice differ greatly in aggressive behavior, they share important 

behavioral characteristics including relatively low locomotor behavior, high 

emotional reactivity and low ethanol consumptive behavior (Whalsten et al., 

2006; Crawley et al., 1997). These shared behavioral characteristics are of 

interest due to the fact that DA and 5-HT have also been strongly associated with 

their modulation (Gendreau et al., 2000; Wood et al.., 2007; Short et al., 2006; 

Izco et al., 2007; Waddington & O’Boyle, 1989; Kuczenski & Segal, 1989; Boyce-

Rustay JM et al., 2006; Griebel G et al., 1994).  As a result of the fact that 

BALB/cJ and A/J mice are similar in these DAergic and 5-HTergic mediated 

behaviors, but are very different in aggressive behavior make BALB/cJ and A/J 

mice ideal for isolating the endogenous neurobiology of aggression.   
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  Three experiments were conducted to address the question of ‘Are there 

any endogenous differences between aggressive and non aggressive mice’.  

First, a behavioral assessment was conducted to ascertain each strain of mice’s 

level of aggression.  Next, tissues extracted from the nucleus accumbens (NAc) 

and PFC of each strain of mice were compared for contents of biogenic amines 

including DA, 5-HT and their respective metabolites. Finally, quantitative receptor 

autoradiography was conducted to compare the expression levels and patterns 

of DA D1 and D2 receptors in the NAc.    

 

Aggression Screening Rational 

 Prior to comparing the endogenous biology of A/J mice and BALB/cJ 

based on their reported differences in level of aggression, it is important to gain a 

more complete view of how these mice differ in aggression levels.  Due to this, 

an initial behavioral assessment of aggression in each strain of mice was 

conducted.  In addition to evaluating the differences in aggression between A/J 

and BALB/cJ mice, a brief comparison of the % of aggressive subjects in each 

strain was made to the % of aggressive CFW mice.   

 

Aggression screening Materials and Methods 

Subjects 

6 male BALB/cJ and 6 male A/J mice were used in aggression screening 

tests.  Each mouse was approximately 4 months old and housed with female 

mate 2 weeks prior to testing.  Mice were maintained on ad libitum food and 
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water and 12:12 hr light/dark cycle.  Mice were housed in standard 12 in X 8 in 

plastic cages with paper bedding.   

For the comparison to CFW mice, male CFW mice (n = 39) approximately 

4 months old were used.  These mice were housed identically to the A/J and 

BALB/cJ, as described above.  

 

Behavioral Test 

 Aggression screening consisted of 3 test sessions that were each 

separated by 3 days and is similar to the aggression screening method used in 

Couppis and Kennedy, 2007.  Briefly, prior to each session, the female mate was 

removed from home cage for the duration of the session.  The session consisted 

of a male intruder mouse of the same strain being placed in the home cage.  The 

intruder mouse was placed at a consistent distance and orientation in relation to 

resident mouse; approximately 3 in away from resident’s snout.  The latency to 

social approach and attack the intruder mouse was measured by an observer’s 

stopwatch. The observer was the same observer for all trials.  If the resident 

attacked the intruder, the session ended after first attack in order to limit the 

resident’s experience with aggression.  If there was no attack, the session ended 

after 10 min.  Social approach was defined by the resident contacting the intruder 

with either the snout or a paw.  An attack was defined as the resident biting or 

hitting the intruder.  If the resident attacked the intruder without prior social 

approach, the attack was also counted as social approach.   Latencies for social 

approach and to attack were compared using two-tailed Students t-test.   

 72



Statistics 

 Latency to attack and latency to social approach values were compared 

between genotypes using t-tests.   

 

Aggression Screening Results 

In the aggression screening, 100% of BALB/cJ mice were aggressive on all three 

trials.  None of the A/J mice were aggressive on any of the three trials.  When 

latency to social approach was compared between strains, there were no 

significant differences between BALB/cJ and A/J mice on any of the three trials 

(Fig. 19).  On each of the three trials, all subjects approached the intruder within 

1 min (see fig. 19).  All BALB/cJ mice attacked the intruder within 45 sec on each 

of the three trials, whereas every session for A/J mice was terminated by 

investigator at 10 min due to no aggressive activity (Fig. 20).  As expected, 

latency to attack by BALB/cJ mice decreased during their second and third trials, 

as compared to the first exposure, although this failed to reach statistical 

significance, p= .11 

When tallying the % of CFW mice qualifying as aggressive, it was 

determined that 86.35% of subjects were aggressive (see table 3).   

 

HPLC Rational 

HPLC followed by fluorescent and/or electrochemical detection is the method of 

choice for the quantitative assessment of amino acids, amino acid 

neurotransmitters, biogenic amines and metabolites (Cohen & Michaud, 1993; 
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Lindley et al.; 1998). When used with internal standards, the techniques have the 

ability to detect fentiomole to picomole quantities of amino acids (all 20 naturally 

occurring plus GABA) and major amine neurotransmitters (DA, NE, 5-HT) and 

metabolites with high accuracy and reproducibility. Although dialysates can be 

reasonably argued to be more informative of the releasable pools of these 

substances, dialysis approaches are clearly not suited for high-throughput 

analyses and are best left for investigations exploring in detail.  Tissue levels are 

an indicator of the integrity of neurotransmitter systems and the general 

metabolic health of the tissue. For example, deficits in GABA, dopamine or 5-HT 

synthesis or storage will be evident via analyses of tissue levels and metabolites 

and then are likely to impact release and signaling. These measures may also 

suggest structural deficits in neurochemically defined pathways that can be 

explored in the anatomy core.  Amino acid measures may point to insults to the 

nervous system in nutritional supply to the brain or metabolic disorders that are 

underlying behavioral or physiologic abnormalities. 

 

HPLC Materials and Methods 

 

Aggression screening  

Subjects 

6 male BALB/cJ and 6 male A/J mice were used in aggression screening 

tests.  Screenings occurred between 1200 hr and 1400 hr on each testing day, 

using the resident-intruder model (DeAlmedia et al., 1997).  Each mouse was
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approximately 4 months old and housed with a female mate 2 weeks prior to testing.  

Mice were maintained on ad libitum food and water and 12:12 hr light/dark cycle.  Mice 

were housed in standard 30 cm X 20 cm plastic cages with paper bedding.   

 

Behavioral Test 

 Aggression screening consisted of 3 test sessions that were each separated by 3 

days and is similar to the aggression screening method used in Couppis and Kennedy 

(2007).  Briefly, prior to each session, the female mate was removed from home cage 

for the duration of the session.  The session consisted of a male intruder mouse of the 

same strain being placed in the home cage.  The intruder mouse was placed at a 

consistent distance and orientation in relation to resident mouse; approximately 7.5 cm 

away from resident’s snout.  The latency to social approach and attack the intruder 

mouse was measured by an observer’s stopwatch. The observer was the same 

observer for all trials.  If the resident attacked the intruder, the session ended after first 

attack in order to limit the resident’s experience with aggression.  If there was no attack, 

the session ended after 10 min.  Social approach was defined by the resident contacting 

the intruder with either the snout or a paw.  An attack was defined as the resident biting 

or hitting the intruder.  If the resident attacked the intruder without prior social approach, 

the attack was also counted as social approach.   Latencies for social approach and to 

attack were compared using two-tailed Students t-test.   
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                 Table 3. % of Aggressive A/J and BALB/cJ Subjects on Each Aggression Screening Trial. 

 
 

 Trial 1 Trial 2 Trial 3 

% BALB/cJ to 
Attack 

100 100 100 

% A/J to Attack 0 0 0 
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Figure 19. Mean time in sec for each strain of resident mice to socially approach 
an intruder mouse across 3 trials. Error bars denote SEM.  Asterisks denote 
significant differences between strains.  A/J mice are depicted in black.  BALB/cJ 
are depicted in white.  
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Figure 20. Mean time in sec for resident BALB/cJ mice to attack intruder mice 
across 3 trials. Error bars denote SEM 
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Neurochemistry 

Subjects 

 13 BALB/cJ and 14 A/J male mice that were approximately 4 months old 

were used for the HPLC analysis.  Mice were group-housed with 3-4 per cage, 

fed ad libitum and maintained on a 12:12 hr light/dark cycle.  Mice were housed 

in standard 30 cm X 20 cm plastic cages with paper bedding.   

 

Tissue Dissection 

 Animals were quickly decapitated without anesthesia using surgical grade 

shears.  Skull cavity was peeled back to remove fresh brain tissue.  Whole brain 

was removed and sliced at approximately AP = 2.8 mm and AP = 1.7 mm.  Small 

samples of tissue were removed from pre-frontal cortex and nucleus accumbens.  

The samples were immediately frozen in centrifuge tubes on dry ice.   

 

Biogenic Amine Analysis by HPLC 

 Tissue samples were transferred to Vanderbilt University’s Center for 

Molecular Neuroscience HPLC core facility for processing using methods similar 

to those previously described (Gale & Perkel, 2005; Hackler et al., 2006; Perez 

and Palmiter, 2005). The brain sections are homogenized in 100-750 μl of 0.1M 

TCA, which contains 10-2 M sodium acetate, 10-4 M EDTA and 10.5 % methanol 

(pH 3.8).  Samples are spun in a microcentrifuge at 10000 g for 20 min.  The 

supernatant is removed and stored at –80 ˚C.  The pellet is saved for protein 
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analysis.  Supernatant is then thawed and spun for 20 min.  Samples of the 

supernatant were then analyzed for biogenic monoamines  

Three HPLC systems are employed in the Vanderbilt Neurochemistry 

Core Lab.  The HPLC systems used for biogenic amine measurement consist of 

a Waters Model 515 pump, Waters 717+ Autosampler and an Antec Decade II 

Electrochemical Detector.  The model 515 pump is a high quality HPLC pump 

that delivered solvent at a constant flow at 0.1 to 9.9 ml/min.  The Waters 717+ 

Autosampler automatically injected 1-1000 μl samples from 96-sample trays to 

the HPLC column, and maintained samples at temperatures selectable from 5-37 

˚C (Cransac et al. 1998). The Antec Decade II Electrochemical Detector is 

equipped with a HPLC column oven and electronic shield. The HPLC instruments 

are controlled by the central Compaq Computer equipped with Millennium 32 

software.  This software allows for system control, data acquisition and 

processing, and results reporting. 

Biogenic amines are determined by a specific HPLC assay utilizing an 

Antec Decade II (oxidation: 0.5) electrochemical detector operated at 33° C.  

Twenty μl samples of the supernatant are injected using a Water 717+ 

autosampler onto a Phenomenex Nucleosil (5u, 100A) C18 HPLC column (150 

mm x 4.60 mm).  Biogenic amines are eluted with a mobile phase consisting of 

89.5% 0.1M TCA, 10-2 M sodium acetate, 10-4 M EDTA and 10.5% methanol 

(pH 3.8).  Solvent is delivered at 0.6 ml/min using a Waters 515 HPLC pump.  

Using this HPLC solvent the following biogenic amines elute in the following 

order: dihydroxyphenylacetic acid (DOPAC), dopamine, 5-Hydroxyindoleacetic 
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acid (5-HIAA), homovanillic acid (HVA) and 5-HT.  HPLC control and data 

acquisition are managed by Millennium 32 software. 

Total protein concentration of the brain extracts are determined using BCA 

Protein Assay Kit purchase from Pierce Chemical Company (Rockford, IL).  The 

frozen pellets are allowed to thaw and reconstituted in a volume of 0.5 N HCl that 

equals that previously used for tissue homogenization.  On hundred μl of this 

solution is combined with 2 ml of color reagent and allowed to develop for 2 

hours.  A standard curve of bovine serum albumin is run at the same time 

spanning the concentration range of 20-2000 μg/ml.  Absorbances of standard 

and samples are measured at 562 nm. 

 Statistical analyses of µg of compound per mg of protein values between 

genotypes were conducted using t-tests.  Prior to t-test, outliers were determined 

using Grubb’s analysis.   

 

HPLC Results 

Significant differences between BALB/cJ and A/J mice using independent 

groups t-test were seen both in the NAc and the PFC.  In the NAc, NAc 

dopamine (t(24) = 4.2, p = .0003), NAc DOPAC/DA (t(19) = -3.5, p = .002), NAc 

HVA (t(24) = 3.57, p = .001), NAc 5-HIAA (t(24) =  -2.56, p = .02), and NAc 5-

HIAA/5-HT (t(16) = -3.01, p = .008) differed between strains (see Fig. 21 & 22).  In 

addition to differences seen in the NAc, differences between A/J and BALB/cJ 

mice were also measured in the PFC.  In the PFC, these two strains of mice 

differed in PFC DA (t(17) = 2.94, p = .01), PFC DOPAC/DA (t(17) = -2.55, p = .01), 
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PFC HVA/DA (t(14) = -2.06, p = .03), PFC 5-HT (t(17) = -2.8, p = .01) and PFC 5-

HIAA (t(17) = -2.12, p = .04) (see Fig. 23 &24). 

 

Autoradiography Rational 

Autoradiography is the localization of radiolabel within a solid specimen.  

This localization is detected by covering decaying radioactive material (such as 

14C, 3H, 35S, 125I) with photographic emulsified film. When radioactive isotopes 

decay, they emit a beta particle (an energetic electron). If a layer of photographic 

emulsion such as that found on x-ray film, is placed over a cell that contains 3H, 

a chemical reaction takes place involving silver halide ions, wherever a beta 

particle strikes the emulsion. The emulsion can then be developed like a 

photographic print so that the emission path of the beta particle appears as a 

black spot or silver grain. In effect, autoradiography is a process in which 

radioactively labeled molecules imprint themselves on film.   

Autoradiography can be performed on a wide variety of solid specimens 

from whole organisms to ultra-thin tissue sections.  Scientists use 

autoradiography to investigate a wide variety of biological specimen from DNA to 

receptors.  Rather than being a single technique, autoradiography is a collection 

of methods that utilize the imprint decaying radioisotopes make on film.  

Between them, these techniques can supply information at the macroscopic, 

microscopic, and ultrastructural levels.  
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Autoradiography Materials and Methods 

Subjects 

11 BALB/cJ and 11 A/J male mice approximately 4 months old were used for the 

autoradiography analysis.  Mice were group-housed with 3-4 per cage, fed ad 

libitum and maintained on a 12:12 hr light/dark cycle.  Mice were housed in 

standard 12 in X 8 in plastic cages with paper bedding.   

 

Tissue Dissection and Histology 

 Animals were quickly decapitated without anesthesia using surgical grade 

shears.  Skull cavity was peeled back to remove fresh brain tissue.  Whole brains 

were immediately frozen in ice cold 2-methyl-butene.  Tissue was stored long 

term in at -78ºC.  Brains were then sliced at 20 µm on a cryostat at -32ºC and 

mounted in triplicate on probe-on plus (VWR International) during slicing.  After 

slicing and mounting, sections were left at room temperature for 15 min to allow 

for maximum drying and adhesion to the slide.  After this time, slides were 

transferred back to -78ºC.  

 

Radioligand Binding 

We used methods similar to those described previously (Stanwood et al.., 

2001a, 2001b, Stanwood & Levitt 2007).  For D1-like receptor labeling (D1 + D5), 

brain sections were pre-incubated at room temperature for 20 min in a buffer 

solution containing 50 mM Tris HCl buffer (pH 7.4) containing 120 mM NaCl, 5 

mM KCl, 100 mM EDTA and 100 mM MgCl2.  Sections were then transferred into 
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one of two treatments; specific binding or non-specific binding.  For specific 

binding, three slides (with three sections on each) from approximately AP = 1.80 

mm-1.54 mm; 1.42 mm-1.18 mm; 1.10 mm-.90 mm were incubated in the above 

described buffer solution with the addition of 3 nM [3H]-SCH-23390 for 90 min.  

For non-specific binding, two slides (with three sections on each) from 

approximately AP = 1.80 mm-1.54 mm and 1.10 mm-.90 mm were incubated in 

the above described radioactive buffer solution with the addition of 2 mM 

butaclamol for 90 min.  After the 90 min incubation of specific and non-specific 

bound sections, slides were washed in ice-cold wash buffer containing 50 mM 

Tris and distilled water, 2 X 20 min.  Slides were then rapidly dried using 

industrial dryer.   

For D2/D3 labeling brain sections were pre-incubated at room temperature 

for 20 min in a buffer solution containing 50 mM Tris HCl buffer (pH 7.4) 120 mM 

NAcl, 5 mM KCl, 100 mM EDTA and 100 mM MgCl2.  Sections were then 

transferred into one of two treatments; specific binding or non-specific binding.  

For specific binding, three slides (with three sections on each) from 

approximately AP = 1.80 mm-1.54 mm; 1.42 mm-1.18 mm; 1.10 mm-.90 mm 

were incubated in the above described buffer solution with the addition of 3 nM 

[3H]-raclopride for 90 min.  For non-specific binding, two slides (with three 

sections on each) from approximately AP = 1.80 mm-1.54 mm and 1.10 mm-.90 

mm were incubated in the above described radioactive buffer solution with the 

addition of 2 mM butaclamol for 90 min.  After the 90 min incubation of specific 

and non-specific bound sections, slides were washed in ice-cold wash buffer 
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containing 50 mM Tris and distilled water, 2 X 20 min.  Slides were then rapidly 

dried using industrial dryer.   

 

Autoradiography 

 Radio-labeled and dried slides were laid into light-tight 10 X 12 cassettes 

with 4 subjects per cassette.  Subjects’ positioning in cassette, top to bottom, 

was counterbalanced across cassettes based on subject genotype.  For each 

group (D1 and D2) of slides, 1 standard slide was placed in a cassette.  This 

standard slide contained a spectrum of swatches of known radioactive content. 

After slides were arranged in light-tight cassettes, slides were secured with clear 

office-grade tape.  In a dark room, Amersham Hyperfilm™ 3H (GE Healthcare, 

USA) was placed in cassettes with emulsion side in contact with the radioactive 

slides.  For the D1 experiment, cassettes were kept sealed for 21 days.  For the 

D2 experiment, cassettes were kept sealed for 6 weeks.  After image-film 

processing time, film was developed in a dark room using Kodak GBX developer 

and fixer diluted to 160ml solution: 420 ml distilled water.  To develop, film was 

placed in developer for 3 min, and then washed in distilled water for 30 sec.  

Next, film was placed in fixer for 5 min and washed for 15 min in distilled water.  

After completed development, films were hanged to dry.   

 

Analysis of Receptor Density 

 Dried film was scanned using an Epson scanner at 2400 dpi.  Scanned 

film was analyzed using the free software, ImageJ.  Prior to film analysis, ImageJ 
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was calibrated using the standard slide for each experiment.  Regions of interest 

(ROI) in each section were outlined individually by a blinded researcher.  ROI’s 

were dorsal-medial dorsal striatum, dorsal-lateral dorsal striatum, ventral-lateral 

dorsal striatum, ventral-medial dorsal striatum and core, shell, rostral pole and 

total area of NAc.  In sections where the complete ROI was not present, a 

measurement was excluded.  Since no counter-staining was completed, ROI’s 

were approximate.  Measurements from non-specific binding were subtracted 

from specific binding sections to obtain the total binding.   Total binding 

measurements at each separate AP level were averaged together in each strain 

of mice and compared to each other using t-tests.   

 

Autoradiography Results 

As described above in the methods section, we analyzed three distinct 

anterior-posterior levels of the NAc in coronal sections.  For simplicity, we refer to 

these as “Anterior”: AP = 1.80 mm-1.54 mm, “Mid”: 1.42 mm-1.18 mm, and 

“Posterior”: 1.10 mm-0.90 mm. 

 D1: There were no differences seen between A/J and BALB/cJ mice in 

[3H]-SCH-23390 binding in the Mid or Posterior levels of the NAc.  However, 

there was a significant increase in [3H]-SCH-23390 binding in the Anterior region 

(i.e. rostral pole) of the NAc in A/J as compared to BALB/cJ mice (t(2.70, 15.88) = 

2.67; p < .02, Fig 3).  The mean µCi/g for A/J in the rostral pole was 74.86 with a 

SEM of 4.38. The mean µCi/g for BALB/cJ in the rostral pole was 54.62 with a 

SEM of 6.15 (see Fig. 25 & 27)  At this level it was not possible to distinguish 
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shell v. core.  At each of the other levels where it was possible to distinguish 

between shell and core, there were no differences in the mean µCi/g between 

strains.  

D2:  There were significant differences seen in [3H]-raclopride labeling between 

A/J and BALB/cJ mice at all AP levels of the NAc (t(2, 20.9) = 5.01; t(2,21.97) = 5.26; 

t(2,19.3) = 5.31; respectively p < .001, Fig. 4 and 6).  The mean µCi/g for A/J 

was1.63 (±0.17)), 1.75 (±0.18), and 1.7 (±0.16) at Anterior, Mid, and Posterior 

levels, respectively. In contrast the mean [3H]-raclopride binding for BALB/cJ 

mice was 2.83 (±0.17), 3.12 (±0.19), and 3.2 (±0.23) (see Fig. 26 & 28).  At the 

mid and posterior levels, where it was possible to distinguish between core and 

shell, there were differences in both core (t(2,17) = 3.90, p = .006; t(2,21) = 3.71, p = 

.001; respectively) and shell (t(2, 15.14) = 2.96, p = .005; t(2,16.7) = 4.75, p = .0002; 

respectively) between A/J and BALB/cJ mice.   
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Figure 21.  Mean monoamine content and monoamine metabolite content 
(expressed in ug/mg protein) in the NAc of A/J and BALB/cJ mice. Error bars 
denote SEM.  Asterisks denote significant differences between strains.  A/J mice 
are depicted in black.  BALB/cJ are depicted in white.  
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Figure 22.  Mean metabolite/monoamine ratios in the NAc for A/J and BALB/cJ 
mice. Error bars denote SEM.  Asterisks denote significant differences between 
strains.  A/J mice are depicted in black.  BALB/cJ are depicted in white.  
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Figure 23.  Mean monoamine content and monoamine metabolite content 
(expressed in ug/mg protein) in the PFC of A/J and BALB/cJ mice. Error bars 
denote SEM.  Asterisks denote significant differences between strains.  A/J mice 
are depicted in black.  BALB/cJ are depicted in white. 
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Figure 24.  Mean metabolite/monoamine ratios in the PFC for A/J and BALB/cJ 
mice. Error bars denote SEM.  Asterisks denote significant differences between 
strains.  A/J mice are depicted in black.  BALB/cJ are depicted in white.  
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Specific Aim 3 Discussion 

 Our behavioral screening confirmed previous studies suggesting that A/J 

mice are far less aggressive towards each other than are mice of BALB/cJ strain 

(Roubertoux et al., 2005; Roubertoux et al., 1999 Kessler et al., 1977).   

Comparing two very behaviorally different strains of mice provides several 

inherent advantages. As with any complex behavior, the development of animal 

models is crucial due to the high level of experimental control that model 

organisms afford.  Due to the powerful methods available in studying mouse 

genetics, using mice for initial exploratory studies offers the advantage of future 

analysis utilizing a vast array of genetic tools. Finally and most importantly, 

comparing two strains of mice allows us to view two systems that naturally vary 

in aggression.  This is a unique advantage as opposed to externally manipulating 

aggression in one strain; which offers several extraneous experimental variables 

and does not offer any insight about the ‘nature’ component of aggressive 

behavior.  

In the above described HPLC experiments there were significant 

differences in biogenic amine levels both in the NAc and the PFC between A/J 

and BALB/cJ mice.  It was determined that in the NAc, A/J mice had reduced DA 

levels compared to BALB/cJ.  Also in the NAc, A/J mice displayed elevated 

DOPAC/DA ratios, 5-HIAA, 5-HIAA/5-HT ratios as compared to BALB/cJ mice.   
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Figure 25.  Mean µCi/gin the NAc for [H]-3-SCH-23390 binding in A/J and 
BALB/cJ mice at three different anterior-posterior regions.  * Denotes significant 
differences between strains.  Error bars denote +/- SEM.  A/J means are 
depicted in black, BALB/cJ means are depicted in white.  Please note that no 
alterations in brightness, contrast, or other variables were applied before 
quantitative analysis  
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Figure 26. Mean µci/g in the NAc for [H]-3-Raclopride binding in A/J and 
BALB/cJ mice at three different anterior-posterior regions.  * Denotes significant 
differences between strains.  Error bars denote +/- SEM.  A/J means are 
depicted in black, BALB/cJ means are depicted in white.  Please note that no 
alterations in brightness, contrast, or other variables were applied before 
quantitative analysis. 
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Figure 27.  Representative autoradiographs reflecting [3H]-SCH-23390 binding.  
A-C are Anterior, Mid and Posterior autoradiographs from non-aggressive A/J 
mice (respectively).  D-F are Anterior, Mid and Posterior autoradiographs from 
aggressive BALB/cJ mice (respectively). Images were enhanced for illustration 
purposes only using Photoshop CS™. 
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Figure 28. Representative autoradiographs reflecting [3H]-raclopride labeling.  A-
C are Anterior, Mid and Posterior autoradiographs from non-aggressive A/J mice 
(respectively).  D-F are Anterior, Mid and Posterior autoradiographs from 
aggressive BALB/cJ mice (respectively). Images were enhanced for illustration 
purposes only using Photoshop CS™.   
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In the PFC, A/J mice had reduced DA level as compared to BALB/cJ mice.  

However, in the PFC, A/J mice displayed elevated DOPAC, DOPAC/DA ratio, 5-

HT and 5-HIAA as compared to BALB/cJ mice.  Taken together, it is apparent 

that A/J mice have reduced DA, elevated DOPAC/DA ratios and altered 5-HT 

systems as compared to BALB/cJ mice across the sampled brain regions. 

The results of our neurochemical study suggests that the non-aggressive 

A/J mice display characteristics of a highly efficient 5-HT system and increased 

5-HT tone in the NAc and PFC, as compared to aggressive BALB/cJ mice.  This 

parallels several lines of research suggesting anti-aggressive effects of 5-HT 

activation and increased aggression associated with 5-HT deficient systems. 

Mann et al. first brought attention to a 5-HT deficiency as a trait marker for 

aggressive behavior in humans, a claim later substantiated by many groups 

(Mann et al., 1995; Mann, 1999, Brown et al., 1982; Linnoila et al., 1983; Kruesi 

et al., 1990; Coccaro, 1992; Virkkunen et al., 1996; Kavoussi et al., 1997).  In 

compliment to these data are data from juvenile monkeys demonstrating lowered 

CSF 5-HIAA content in individuals with high risk-taking behavior (Higley et al.., 

1992, 1994; Mehlman, 1994).  Also, in rodents, aggression is effectively reduced 

with 5-HT agonists (5-HT1A and 5-HT1B) and is increased in 5-HT1B receptor 

knockout mice (Olivier and Mos, 1986; Olivier et al., 1987; Saudou et al., 1994; 

De Almeida & Lucion, 1997; Miczek et al., 1978; Simon et al., 1998; de Boer et 

al., 1999; Ferris et al., 1999; Fish et al., 1999). 

There is also a rich body of literature exploring the role of 

mesocorticolimbic DA in aggression.  Increased dopaminergic tone in aggression 
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has been suggested by the clinical efficacy of DA antagonists to reduce 

aggressive outbursts in some disorders (Ryan, 2000).  DA antagonists have also 

been shown to reduce the positively reinforcing properties of aggression in 

animal models (Couppis & Kennedy, 2007; Wallace et al., 2006).  Further, 

amphetamine and cocaine (indirect DA agonists) commonly induce aggression in 

a wide array of mammals (Steensland, 2005; Darmani et al., 1990; Mickzek & 

O’Donnell, 1978).   

  In contrast to the 5-HT data provided from the HPLC experiment, the DA-

ergic system data provided by the above experiments appear to be more 

complicated.  The non-aggressive A/J mice exhibited higher NAc and PFC DA 

utilization, higher [3H]-SCH-23390 binding in the rostral pole of the NAc, and 

lower [3H]-raclopride binding across all of the NAc as compared to aggressive 

BALB/cJ mice.  The functional consequences of this combination of greater DA 

turnover with higher D1-like receptor expression and lower D2/D3 receptor 

expression is unclear, but these data produce testable hypotheses.  Microdialysis 

or in vivo voltammetry probes directed to accumbal subregions could provide 

intriguing data regarding anatomical heterogeneity in the regulation of 

extracellular dopamine by aggressive tendencies or behavior. 

Moreover, our data on [3H]-SCH-23390 binding differences between the 

two strains suggests the presence of an anterior/posterior heterogeneity on D1 

receptor-mediated responses.  We observed a significant decrease in D1 

receptor expression in aggressive BALB/CJ mice only in the rostral pole of the 

NAc.  Recent evidence by Berridge and colleagues support our finding that 
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biologically based reinforcers may utilize an AP functional heterogeneity as well 

as traditional shell/core anatomical heterogeneity within the NAc.  In a unique 

series of studies, these authors have utilized microinjection of glutamatergic and 

GABAergic drugs into select subregions of the NAc to determine that the rostral 

shell (as opposed to caudal shell) preferentially channel appetitive information 

about stimulus valence (Reynolds and Berridge, 2001; 2003).  There are also 

several differences between rostral and caudal shell with regard to anatomical 

connectivity and neurochemical composition (Van Dogen et al., 2005; Delfs et al., 

1998; Groenewegen et al., 1999). 

Differences seen in DA turnover and D2 receptor densities also offer 

information about possible mechanistic differences between these two strains of 

mice.  A/J mice, along with their increased DA turnover, have lower D2 receptor 

levels throughout the NAc.  This might result in greater D2 receptor occupancy in 

A/J mice as compared to BALB/cJ.  Due to the fact that we do not see behaviors 

indicative of a highly efficient/functioning DA system (for example, 

hyperlocomotion), it is possible that this greater ratio of DA:D2 receptor binding in 

A/J mice as compared to the aggressive BALB/cJ mice may result in some 

mechanism of receptor desensitization in A/J mice. This functional outcome is 

not only consistent with what is seen in A/J motor behavior (i.e. A/J mice are 

slightly less motorically active than BALB/c lines; Wahlsten et al., 2006) but is 

also consistent with what we know about the role DA plays in aggression.  

In stark contrast to what is seen in the non-aggressive A/J mice, the 

aggressive BALB/cJ mice have an abundance of DA2rs in combination with low 
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baseline DA turnover.  This is the opposite neurobiological framework from what 

was seen in A/J mice. In reflection of this opposing neurobiological framework 

between A/J and BALB/cJ mice, we might also see in the BALB/cJ, a functional 

opposition to the proposed desensitization in A/J mice. Based on what is known 

about the relation between aggression and DA, it is plausible that the abundant 

DA2r’s in the aggressive BALB/cJ mice might become sensitized to DA, due to 

its low turnover in these mice.   

Weather the receptors in A/J mice become desensitized and receptors in 

BALB/cJ mice become sensitized is not able to be concluded from our 

experiment.  However, what can be concluded from our studies is that these 

mice displaying opposite aggressive phenotypes have very different underlying 

biology of mesocorticolimbic DA and 5-HT systems. Taken in conjunction with 

the body of literature on DA, 5-HT and aggression, our neurochemistry and 

receptor expression data allow us to generate plausible hypotheses regarding 

the complicated interdependencies of neurobiology and behavior that may 

underlie the contrasting behavioral phenotypes seen in these animals and are 

congruent with a role of ‘pre-wired’ system in the exhibition of aggressive 

behavior.   

However, there is one substantial caveat to the above discussed 

conclusions.  The experiments conducted above were conducted on naïve 

animals with no experience with aggression.  There is a very good possibility that 

the data harvested from these animals has no connection to aggressive 

behaviors but instead might reflect basal differences between two strains of mice.  
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The fact that our data is in accord with the greater body of literature on biogenic 

amines and aggression adds a significant contribution to the literature, but in no 

way conclusively demonstrates endogenous differences in DA and 5-HT systems 

between individuals who engage in aggressive behavior and those who do not.  

In order to demonstrate this, further investigation of the subject matter is 

necessary.  A good way to approach the topic of endogenous differences 

between aggressive and non-aggressive individuals is to repeat the experiment 

conducted above but include several mouse strains that vary on a continuum of 

aggression.  If it could be demonstrated that aggression co-varies in the 

appropriate direction with basal biogenic amine levels it would add great support 

for the idea that there is a significant ‘nature’ component to aggressive 

individuals. 

Our data are generally in accord with the greater body of literature on 

biogenic amines and aggression, but clearly is correlational in nature.   In order 

to demonstrate causal links, further investigation of the subject matter using 

functional assays is necessary.  Finally, there are of course many other brain 

circuits that contribute to aggression, including (but not limited to) amygdalar, 

hypothalamic, and hippocampal pathways (for review, see Nelson & Trainor, 

2007).  Whether similar differences in activation or patterning are present in 

those systems is still an open question. 
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CHAPTER V 

 

FINAL CONCLUSIONS 

 

In specific aim 1 of this project, it was determined that aggression as a 

reinforcer can be brought under stimulus control.  This finding is important for 

several reasons.  First, this phenomena has never been demonstrated using 

classical definitions of stimulus control.  While aggression has been used as a 

positively reinforcing stimuli in several studies, it has never been demonstrated 

that a) an aggressive encounter is positively reinforcing (i.e. demonstrating that 

upon removal of the reinforcing contingency, the trained response stops) and b) 

what part of the positively reinforcing event is the positively reinforcing stimuli. 

 In specific aim 1, we have clearly shown that upon the removal of the 

response-reinforcement contingency, the subjects extinguish responding.  In 

addition, when the response-reinforcement contingency is re-established, 

subjects begin robustly responding.   

 In addition to demonstrating by classical definitions the positively 

reinforcing efficacy of an aggressive encounter, specific aim 1 demonstrated that 

the actual physical aggression in an aggressive encounter was the positively 

reinforcing stimuli.  As any social interaction is a complex scenario, diverse in 

olfactory, visual, activity and novel cues, it is important for the study of 

aggression to determine which of these cues results in hedonic positive 

reinforcement.  By careful isolation of the physical aggression component of the 
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aggressive encounter, it was able to be concluded that in these subjects, 

physical aggression was necessary to maintain the response-reinforcement 

contingency.  

 Implications of this work are far-reaching.  The most salient and important 

implication of this work is that physical aggression is a primary reinforcer, much 

like food, water and sex.  Like these other primary reinforcers, physical 

aggression serves a biological and evolutionally important purpose.  Due to this, 

it is likely that the mechanism behind aggression’s conservation across 

generations and species is through its innately reinforcing properties.  While 

these primary reinforcing behaviors serve biologically necessary needs, they can 

also lead to pathological addictions such as eating addictions resulting in obesity 

and sex additions which result in a host of personal and societal problems.  Due 

to the enlightenment that pathological aggression should also be viewed in such 

a way, we must consider treatment for addicted individuals in the same manner 

as we do other addicted individuals.   

 Currently, the heath care and legal systems deal with aggression and 

other addictions much differently.  Medically, aggression is viewed as a symptom 

to another, more pervasive mental or physical disease as opposed to a disorder 

in its own right. Thus medications and behavior/environmental therapies are not 

aimed at the aggression, but instead at this more pervasive medical condition.  In 

the treatment of other addictions such as addictions to food or drugs, the medical 

treatments prescribed to these individuals are designed specifically to eliminate 

these problems, not some other condition that may be interacting with the 
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problem addiction.  For example, when an obese person seeks medical council, 

the doctor will prescribe daily exercise, a healthy diet and in extreme cases, 

medication that will reduce the amount of fat absorbed from food.  When an 

aggressive individual is under the care of a physician, the physician might 

diagnose them with depression or bi-polar disorder or any number of mental 

disorders and prescribe to them medication to treat said disorder.  In this 

situation, the actual aggression never gets targeted, but may simultaneously go 

down due to therapies that might coincidently lower aggression.  In the case of 

the obese person, the problem of excessive caloric intake is targeted directly.   

 By recognizing aggression as an addiction, or being innately positively 

reinforcing, our criminal justice system may rethink correctional efforts.  

Currently, aggression is punished by a graduated system; whereby on your first 

offense the punishment is less sever and becomes more severe upon repeated 

offenses.  These punishments usually consist of community service all the way 

up to lifetime prison sentences and the death penalty.  When viewing 

pathological aggression as an addiction, these graduated punishments might be 

changed to reflect more of what is done in drug addicts.  While there is still a 

graduated system of punishment for drug offenders, the punishments often 

include an element of personal behavioral rehabilitation; such admittance into a 

clinic specifically designed to give the individual medical and behavioral support 

aimed at decreasing the problem behavior.  An important quality of the legal 

processes behind punishing drug offenders is that this rehabilitation is initialized 

early in the process of graduated punishment; a quality that has proven useful in 
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the reduction of all addictions, and would likely do so in pathological aggression 

as well.  

 In specific aim 2 of this project, we extended the finding from aim 1 to 

investigate the biological system that modulates the positively reinforcing 

properties of aggression.  In these experiments, two DA antagonists, both D1-like 

and D2-like specific, reduced motivation to gain access to aggression.  This 

finding is of great merit to the understanding of the biology behind aggression for 

several reasons.  First, until this study, experiments examining dopamine and 

aggression were always hindered by generalized movement side effects.  In 

these studies, we were not only able to demonstrate a reduced responding for 

the opportunity to aggress, but we were also able to demonstrate that aggressive 

motivation can be modified without generalized movement effects.  The next, and 

possibly the most interesting implication of specific aim 2, is that while both DA 

antagonists reduced responding for aggression with out effecting movement, 

they did not reduce the actual level of aggression during an aggressive 

encounter.  This demonstrates that not only have we dissociated the effects of 

DA antagonists on responding for aggression, but we have also been able to 

dissociate the motivation to engage in aggression with the actual reduction in the 

performance of aggressive behavior.  This point becomes important when one 

thinks about the practical application of behavioral and medical therapies in 

human societies.  Currently in the science of aggression, the focus has been on 

serenics (5-HT1 agonists); agents that reduce the subject’s level of emitted 

aggression during an aggressive confrontation.  However, in human society, 
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there are not artificial situations set up to test one’s level of aggression or amount 

of aggressive behaviors emitted during an aggressive bout.  Thus, creating 

medical therapies aimed at reducing the frequency of emitted aggressive 

behavior during an aggressive bout is neither reasonable nor useful. For 

example, reducing how much a person punches during a fight does not equal a 

successful behavior modification plan, nor is it ethologically adaptive not to fully 

engage in aggression once a bout has begun.  Instead, what we see in human 

interactions, are aggressive individuals instigating aggressive encounters; i.e. 

demonstrating a motivation to engage in aggression.  Most aggressive 

encounters that people have would not occur unless the instigator was motivated 

to engage in aggression.  Thus, in a real-life scenario, reducing motivation to 

engage in aggression offers practical therapeutic potential.   

 Possible strategies utilizing the ability to differentiate the motivation to 

engage in aggression from the actual emission of aggressive behavior comes in 

the form therapies akin to those used to treat heroin and alcohol addictions.  

When an individual is addicted to heroine, he/she is prescribed methadone.  

Similarly, when one is addicted to alcohol, he/she is prescribed some form of 

Antabuse.  Each of these strategies is aimed at reducing the positively 

reinforcing effects of the addictive substance.  The studies outlined in aim 2 offer 

the infant stages of research for developing such therapies for aggression 

addiction; both behavioral and pharmacological.  Demonstrating that the 

reinforcing properties of aggression are modulated by the same systems as other 

addictions offers numerous avenues of research governed by the hypothesis that 
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what has helped reduce other DA modulated addictions, may also help reduce 

pathological aggression.    

 The studies in specific aim three demonstrate that there is a significant 

‘nature’ component to aggressive behavior.  These studies were important due to 

the fact that all of the neurochemical/biological assays, until those described in 

aim 3, were completed in subjects with some experience of aggression.  Thus, in 

all the previous biology of aggression literature, conclusions about biological 

states were massively effected by experience; in effect, the differences in the 

biology of these animals could be due to how each aggressive experience 

shaped their biology.  In aim 3, we gain evidence congruent with the idea that 

there are neurochemical differences in individuals who are likely to become 

aggressive as compared to those who are not.  These data in conjunction with 

data collected on humans that reach the same conclusion, could lead to early 

medical/genetic screening exams, much like what has been proposed for other 

diseases such as cancer.  Though like with these other diseases, early genetic 

screening in order to identify ‘high-risk’ individuals suffers from an enormous 

amount of ethical issues.  If these ethical issues can be resolved and the early 

genetic screening could identify with some respectable accuracy those who may 

have aggression problems later in life, it would prove to be a great asset to both 

the future victims of aggression and the aggressors themselves.   

 Regardless of the feasibility and practicality of early genetic screenings,  

the ability for science to demonstrate biologically based differences between 

those who are pathologically aggressive and those who are not would lead to a 
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paradigm shift in the medical and legal bodies surrounding aggression.  If clear 

neurochemical substrates are characteristic of pathologically aggressive 

individuals, it would likely lead to viewing aggression not as a symptom common 

among several diseases, but a disorder unto itself that is co morbid with several 

other disorders.  As outlined above, this philosophy of aggression offers many 

practical rehabilitation advantages over the current philosophy of aggression.   

 In synthesis, the data gleaned from specific aims 1, 2 and 3 suggest that 

aggression is understandable and charaterizable.  From these experiments, we 

can conclude that physical aggression is a positively reinforcing stimuli, that both 

D1 and D2 receptors can modulate these positively reinforcing effects and that 

there may be biological differences between aggressive individuals and those 

that are not.  These findings suggest problematic aggression has the potential to 

be controlled, as other behavioral addictions have demonstrated an ability to be 

controlled.  Finally, and possibly the most striking implication of the above 

experiments on species atypical aggression, is that they reflect a growing need 

for both the legal and medical fields to change the way they think about 

managing aggression.   
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