
ESSAYS ON THE ECONOMETRICS OF DISCRETE GAMES OF COMPLETE

INFORMATION

By

Li Zhao

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Economics

May, 2016

Nashville, Tennessee

Approved:

Tong Li, Ph.D.

Yanqin Fan, Ph.D.

Federico H. Gutierrez, Ph.D.

Alejandro Molnar, Ph.D.



Copyright © 2016 by Li Zhao
All Rights Reserved



ACKNOWLEDGMENTS

I would like to express my deepest gratitude towards my advisor and mentor, Profes-

sor Tong Li, for his invaluable encouragement, guidance, academic feedback and moral

support. This dissertation is based on extensive discussion with Professor Li. His wealth

of knowledge and keen insight greatly deepen my understanding about economics and re-

search. With his wisdom, enthusiasm, hard-working and kindness, Professor Li has been

an inspiration and an incredible role model.

I extend my profound thanks to professors Yanqin Fan and Shiu-Yuen Cheng, whose

extraordinary classes in econometrics and game theory sparked my own excitement in the

these two areas. A big thank you goes to my committee, professors Alejandro Molnar, Yan-

qin Fan and Federico Gutierrez, for the constant guidance and support. Their constructive

suggestions and advices improved my approach to research, writing and presenting.

I would also like to thank faculty, staff and students at Vanderbilt Economics Depart-

ment for their support throughout my graduate study. In particular, I thank professors An-

drew Daughety, William Collins, Eun Jeong Heo, Dong-Hyuk Kim, Jennifer Reinganum,

John Weymark, and Myrna Wooders for their invaluable comments and discussions. I am

grateful to Ms. Kathleen Finn for her extraordinary assistance to the graduate program.

I am also thankful for the academic inspiration and close friendship of Craig Benedict,

Nayana Bose, Brantly Callaway, Dong Chen, Heng Chen, Kan Chen, Kate Fritzdixon,

Difei Geng, Matthew Gentry, Zhengfeng Guo, Ziyi Guo, Peter Griffin, Alper Hayri, Kai

Hong, Zhongzhong Hu, Michael Mathes, Michael Moody, Sebastian Tello Trillo, Nam

Tuan Vu and Ying Zheng. Additionally, I gratefully acknowledge financial support from

the Economics Department throughout my study.

Finally, I would like to thank my family for their endless love and encouragement. To

my parents and my husband, thank you for being extremely supportive of my academic

endeavors. To my grandpa, your love is always with me. And to my daughter, Emily, thank

you for being a sweet girl and for bringing me joy.

ii



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter

1 Equilibrium Selection in Discrete Games of Complete Information: An Applica-

tion to the Home Improvement Industry . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Empirical Complications . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Identification and Estimation in the Previous Literature . . . . . . . . . 8

1.2.4 Equilibrium Selection and Identification . . . . . . . . . . . . . . . . . 9

1.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 A Quick Review of Bayesian Inference, Gibbs Sampling and Data Aug-

mentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.2 Bayesian Algorithm for the Game-Theoretic Model . . . . . . . . . . . 14

1.3.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Monte Carlo Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5.1 Industry Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5.2 Data and Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . 24

1.5.3 Empirical Finding on Entry . . . . . . . . . . . . . . . . . . . . . . . . 26

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iii



Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 A Unifying View of Partial Identification Approaches in Discrete Games of Com-

plete Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Econometric Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.3 Empirical Challenges of Estimating Games with Multiple Equilibria . . 41

2.3 Partial Identification Approaches . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.1 The Sensitivity Analysis Approach . . . . . . . . . . . . . . . . . . . . 43

2.3.2 Bound Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.3 Modified Bound Estimation . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.4 Momoment Inequalities with Sharp Identification . . . . . . . . . . . . 49

2.4 Equivalence among the Partial Identification Approaches . . . . . . . . . . . 50

2.4.1 Equivalence between ΘMBE
I and ΘGH

I . . . . . . . . . . . . . . . . . . . 50

2.4.2 Equivalence between ΘSA
I and ΘMBE

I . . . . . . . . . . . . . . . . . . . 51

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3 A Partial Identification Subnetwork Approach to Discrete Games in Large Net-

works: An Application to Quantifying Peer Effects . . . . . . . . . . . . . . . . . 66

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2.1 Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2.2 Empirical Challenges of Estimating Discrete Games in Large Networks 74

3.3 Identification and Inference via Subnetworks . . . . . . . . . . . . . . . . . . 76

3.3.1 An Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.2 Moment Conditions in General Cases . . . . . . . . . . . . . . . . . . 79

iv



3.3.3 Inference and Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4 Monte Carlo Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

v



LIST OF TABLES

Table Page

1.1 Truncation of c Given s∗ and the Data . . . . . . . . . . . . . . . . . . . . . 17

1.2 Frequency of the Outcomes in the Monte Carlo Experiment . . . . . . . . . 20

1.3 Probit and MLE of the Experiment . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Descriptive Statitics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5 Population and Entry Patterm . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.6 Probit Regression on Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.7 MLE on Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.8 Bayesian Estimation of the Entry Game . . . . . . . . . . . . . . . . . . . . 29

3.1 Upper Bounds and Parameter Values . . . . . . . . . . . . . . . . . . . . . . 84

3.2 Identified Set of Varying Full and Sub Networks . . . . . . . . . . . . . . . 84

3.3 Full Network Size and Confidence Interval . . . . . . . . . . . . . . . . . . 85

3.4 Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.5 Probit Estimation of Smoking . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.6 Number of Nominated Friends . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.7 Partial Identification of Peer Effects in Friend Network . . . . . . . . . . . . . . 88

vi



LIST OF FIGURES

Figure Page

1.1 Equilibrium of the 2-Player Social Interaction Game . . . . . . . . . . . . . 7

1.2 s∗ and c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

A.1 Sampling of Posterior Distribution Using the Bayesian z Approach . . . . . 31

A.2 Maps of HD and LOW Stores in the Contiguous United States . . . . . . . . 32

A.3 Sampling of Posterior Distribution in the Entry Game . . . . . . . . . . . . 33

2.1 Equilibria of Jovanovic (1989) . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Equilibria of the 2-Person Entry Game . . . . . . . . . . . . . . . . . . . . 39

2.3 Equilibria of the Asymmetric Entry Game . . . . . . . . . . . . . . . . . . 41

3.1 A Graph of 4-Person Network . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2 An Illustration of Subnetwork . . . . . . . . . . . . . . . . . . . . . . . . . 77

vii



Chapter 1

Equilibrium Selection in Discrete Games of Complete Information: An Application to the

Home Improvement Industry

1.1 Introduction

Although game theory has been developed for a long time as a powerful means for

modeling the interaction of agents, empirical studies on games did not emerge until the last

decades. The most challenging issue in estimating games with discrete outcomes is the

existence of multiple equilibria: if the model primitives are not able to provide a unique

outcome, it will be very difficult to use outcomes to infer the underling game structure.

Building on the benchmark model of discrete game of complete information formulated

by Bresnahan and Reiss (1991a), this chapter proposes an econometric framework that

achieves point identification without relying on pre-specified equilibrium selection. We

show equilibrium selection can be revealed from the data if an additional equation is added

to characterize how equilibrium is selected. We discuss identification of the model and

propose an estimation strategy based on the MCMC algorithm. The framework is then

implemented using a Monte Carlo experiment and a real-world application.

The additional equation added in our framework models the selection of equilibrium as

a discrete choice problem. Witnessing the significant difference in game outcomes across

geographic regions or groups of people, we believe the selection of equilibrium is not a

universal rule, but rather an empirical question that is worthy to be addressed. Therefore,

we allow the equation to have covariates that may include some features of the game, the

characteristics of the players, or other relevant information. To the best of our knowledge,

Bajari, Hong and Ryan (2010, henceforth BHR) is the only paper before ours that includes

equilibrium selection in a structural model. We further deepen the understanding of iden-

tification and estimation of discrete games by discussing the consequence of neglecting
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variables in the selection equation and the effect of endogenous selection.

Adding a selection equation is desirable because it allows for point estimates of the

parameters. Ciliberto and Tamer (2009) propose a partial identification approach that gives

set identification of the model. From a policy point of view, it is much easier to conduct

counterfactual analysis using the point estimates of the parameters rather than using the

interval estimates.

Compared with other approaches, the point estimates of our framework is achieved

by utilizing more information from the data. Most existing methods either pre-specify

a selection mechanism or allow for any form of equilibrium selection, yet they neglect

the fact that equilibrium selection can be estimated. Intuitively, some outcomes are more

likely to be a unique equilibrium for some games, hence their frequencies provide more

information about the payoff functions; the frequencies of other outcomes that are more

affected by the selection mechanism reveal how equilibrium is selected.

Including equilibrium selection also improves efficiency and generality. The original

work by Bresnahan and Reiss (1991a) discusses a way (which we later refer as the “group-

ing method”) of avoiding the issue of multiple equilibria by grouping outcomes together

such that the likelihood of the new event is uniquely determined regardless of how the

equilibrium is selected. In our framework, because the probabilities of individual out-

comes rather than their combination are considered, more information is extracted hence

efficiency is improved. Moreover, modeling equilibrium selection allows a more general

framework of the model. The “grouping method” only works in some cases, while our

framework allows for asymmetry (e.g. individual specific coefficients) and a greater num-

ber of players.

In addition to proposing an econometric framework, we also provide a computationally

attractive procedure to estimate the model. When the number of parameters increases, mak-

ing maximizing the likelihood function and minimizing the distance function difficult, the

Bayesian method can be more convenient. Moreover, there has been recent work on identi-
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fication of random coefficient games. The Bayesian method is well-known for its flexibility

in estimating random coefficient models. To the best of our knowledge, little attention has

been paid to conducting Bayesian analysis of economic games. One exception is the work

by Narayanan (2013), which uses a Bayesian model selection technique to evaluate a set

of models under various assumptions of equilibrium selection. His method is essentially

a Metropolis-Hastings algorithm that requires simulating the likelihood function at every

iteration. By taking advantage of a data augmentation technique and the properties of the

Gibbs sampler, we propose an algorithm that requires sampling from standard distributions

only.

A Monte Carlo experiment is conducted to investigate the finite sample performance of

the proposed estimation method. Various approaches are implemented and compared. As

predicted, adding selection equation helps to point identify game primitives. Furthermore,

a degenerate selection equation also helps to identify the model.

The last part of the chapter applies the framework to study entry competition in the

home improvement industry, which is led by two large firms: Home Depot and Lowe’s.

Population is shown to be the biggest influencing factor of market structure while the effect

of income is much smaller. There seems a strong similarity between the two firms in

response to the market characteristics or opponent’s entry. Empirical findings suggest an

equilibrium selection favoring Lowe’s. This may because Lowe’s has a longer history than

Home Depot therefore it has a first-move advantage.

This chapter is most related to empirical games of complete information. We adopt

a similar parametric setup to Bresnahan and Reiss (1990), Bresnahan and Reiss (1991a),

Tamer (2003), Krauth (2006), Ciliberto and Tamer (2009) and BHR (2010). Within the

complete information paradigm, recent work has made much progress in relaxing many

assumptions of the game: for example, Kline (2014, 2015), Kline and Tamer (2012) study

non-parametric and semi-parametric identification of the game; Dunker, Hoderlein and

Kaido (2013) study identification and estimation of a random coefficient model; Kline and
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Tamer (2012) allow players to have other levels of rationality rather than playing Nash

equilibrium. There are also extensive studies on games with other information structures,

e.g. the incomplete information games (e.g. Bajari et. al. 2010, Aradillas-Lopez 2010)

or games with both private and common information (e.g. Greico 2014). This chapter

is also related to the entry literature, such as the work by Berry (1992), Seim (2006), Jia

(2008) and Holmes (2011), etc. Because we propose an MCMC algorithm for estimation,

this paper is related to the Bayesian literature, including Bayesian algorithms for games

(e.g. Narayanan 2013, Hartmann 2010), Bayesian algorithms for selection models (e.g.

van Hasselt 2011) and the literature on Gibbs sampling and data augmentation (Albert and

Chib 1993).

The chapter proceeds as follows: Section 2 describes the model setup, the econometric

complication and our empirical strategy. Section 3 proposes our estimation procedure. Sec-

tion 4 uses a Monte Carlo example to show the benefits of our modeling approach. Section

5 applies the framework to study entry competition in the home improvement industry. The

last section concludes.

1.2 Model

1.2.1 Model Setup

We consider a simultaneous-move game with complete information. There are N play-

ers, each has two choices, yi ∈ {0,1}. The utility of action yi = 0 is normalized to be 0 for

identification. The utility of action yi = 1 is a function of player i’s characteristics Xi, the

actions of the rest of players y−i, and a shock εi. In a complete information game, individual

payoff functions (including shocks) are observed by all players but not the econometrician.

Players choose the action that gives the higher payoff. The action yi = 1 will be chosen
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if and only if the utility of action 1 is positive:

yi = 1(βiXi + γiy−i + εi > 0). (1.1)

Assume εi ∼ N(0,1). Individual shocks can be correlated.

Many economic activities can be characterized as games of complete information. For

example, this framework has been used to study labor force participation of household

members (Bjorn and Vuong 1984), the initiation of risky behavior in a friend group (Krauth

2006, Card and Guiliano 2013), the entry decision among competing firms (Berry 1992, Jia

2008, Ciliberto and Tamer 2009), among others.

The complete information model is favored over incomplete information models if

agents have capabilities to coordinate. Complete games are used to study the fertility de-

cision among groups of co-workers, the labor force participation in a household, plans for

holiday for a couple, etc. In these cases, co-workers or family members could coordinate

with each other and ensure no one wants to deviate after the coordination.

Another situation where complete information games are used is when we believe what

observed are the outcomes of long run equilibrium. Social interaction and firm competition

are two examples. Incomplete information makes more sense to model games with “ex-

post regret.” In a social interaction game, individuals respond to friend’s action, such as

whether or not to take a healthy or risky behavior. If time is long enough for them to make

adjustment, the final choice individuals make can be described as a game of complete

information. Likewise, when firms are competing with each other in a technology adoption

game or in an entry game, if time is long enough, firms take an action only if the utility

of doing so is higher than the utility of the alternative. Therefore, firm competition can be

modeled as a game of complete information.

In the rest of the chapter, we refer to the game as a social interaction game if γ > 0.

When γ > 0, player i is more likely to choose action 1 if the other participants choose action
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1, as in the case of social interaction where there exists conformity within a group. Also,

we refer to the game as an entry game if γ < 0. When γ < 0, an agent is less likely to

choose an action if the opponent takes the action. Entry games fit this pattern.

1.2.2 Empirical Complications

Discrete games often have multiple equilibria. A classic example from the entry liter-

ature is that the size of a market may be large enough for one entrant but not two. The

multiple equilibria then consist of all the market structures with only one entrant, of which

there are as many as the number of firms. An example from the social interaction literature

is that teenagers have the tendency to imitate each other, therefore the multiple equilibria

may consist of a group of people having the same action, regardless of which action it is.

A game empiricist’s objective is to quantify various factors that influce decisions. In

this subsection we use a 2-person social interaction game to illustrate how the existence of

multiple equilibria challenges empirical studies.

Consider a 2-person symmetric social interaction game (γ > 0):

y1 = 1(βX1 + γy2 + ε1 > 0);

y2 = 1(βX2 + γy1 + ε2 > 0).

The solution of the game can be obtained by enumerating all outcomes and checking if

each player plays a best response given the actions of others. This games has four possible

outcomes yi ∈ {0,1}, i = 1,2. (0,0) is an equilibrium if c1 =
βX1+ε1

γ
< 0 and c2 =

βX2+ε2
γ

<

0, similarly (1,1) is an equilibrium if c1 >−1 and c2 >−1. Repeating this process for all

the outcomes, we plot a figure showing the equilibrium of the game characterized by c.
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Figure 1.1: Equilibrium of the 2-Player Social Interaction Game
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Region M in Figure 1.1 have multiple equilibria: (0,0) and (1,1). If we think of the

action as whether or not to smoke, in this region, (smoke, smoke) and (not smoke, not

smoke) are the two equilibria. This makes sense because Region M represents the case

where c = βx+ε

γ
∈ [−1,0]. A game will fall into this region if the utility of being the single

smoker (βx+ ε) is not too high or too low, or if the peer effect λ is very strong. In such

game, best response highly depends on the actions of friends, therefore (smoke, smoke)

and (not smoke, not smoke) are the two possible outcomes.

Multiple equilibria are prevalent in discrete games and they become more complicated

in games other than the one illustrated in Figure 1.1. In general, the number of regions

having multiple equilibria grows much faster than the number of players. For example, in

a 4-person game, there are a total of 17 regions having multiple equilibria. In addition, the

composition of multiple equilibria differs by region,1 making it difficult to group outcomes

together such that the probability of the “group” is unique predicted. Moreover, if asym-

metry is allowed, the multiple equilibria in an entry game do not have the same number of

entrants.2 Given the variety of multiple equilibria in different games, empirical strategies

need to be general enough to account for all those variations.

1For example, in 4-person social interaction game, the outcomes (0,0,0,0) and (0,0,1,1) are the multiple
equilibria in some games and the outcomes (0,0,1,1) and (1,1,1,1) are the multiple equilibria in some other
games.

2If firm 1 is a big firm and firms 2 and 3 are smaller, the multiple equilibria include the outcome where
the big firm enters as a monopoly (1,0,0) and the outcome where the two small firms enter as the oligopolist
(0,1,1).
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Complications arise if some regions admit two or more outcomes as equilibria. If the

game does not predict a unique outcome, as in the case of multiple equilibria, it will be

very difficult to recover the underlying data generation process using observations.

1.2.3 Identification and Estimation in the Previous Literature

A number of methods have been proposed in the entry literature to address the issue

of multiple equilibria. One simple way is just to assume a selection mechanism.3 By

doing so, the outcome is uniquely predicted so all the complications caused by multiple

equilibria no longer exist. At the expense, however, the assumed equilibrium may not be

the true underlying mechanism and the estimators will be affected.

The second approach, which we later refer to as the “grouping method,” circumvents the

problem by defining probabilities on events that are not affected by equilibrium selection

(Bresnahan and Reiss 1991a, Berry 1992). For example, in the 2-person entry game where

outcomes (1,0) and (0,1) are the multiple equilibria, one may define a new event called

“monopoly” that consists of the two outcomes. This approach’s advantage in robustness

comes at a cost. Information is lost by aggregation, affecting the efficiency of the estimator.

Moreover, this approach is not feasible universally. As illustrated at the end of the previous

subsection, when the number of players grows, or a game is asymmetric, we are not able

to find a simple way to group outcomes together into events that are free from equilibrium

selection.4

The third approach, proposed by Ciliberto and Tamer (2009), constructs bounds for

the probabilities. Specifically, the probability of observing an outcome is no less than the

probability of playing a game where this outcome is a unique equilibrium; likewise, the

3For example, Jia (2008) studies entry competition between Kmart and Walmart and assumes the equilib-
rium favors Kmart. She then uses different assumptions of equilibrium selection as robustness checks.

4For example, in a 4-person social interaction game, one region admits (0,0,0,0) and (0,0,1,1) as multiple
equilibria, but we cannot group the two outcomes together because in another region, (0,0,0,0) and (0,1,1,0)
are the multiple equilibria. We cannot group the three outcomes together because in a third region, (0,1,1,0)
and (1,1,1,1) are the multiple equilibria. This process could repeat.
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probability of observing this outcome is no greater than the probability of being in a game

where the outcome is an equilibrium. By constructing both lower and upper bounds for the

probability of observing the outcome, the “partial approach” provides set estimation of the

game-theoretic model.

1.2.4 Equilibrium Selection and Identification

We want to argue that equilibrium selection can be revealed from the data. By exploring

the selection of equilibrium using the data, the payoff functions can be identified.

Assume equilibrium is selected according to a Probit function:

S = 1(λZ +u > 0). (1.2)

Assume u ∼ N(0,1). For the purposes of the present discussion, we assume u ⊥ ε . Later

we will allow selection to be endogenous.

Here are a few examples of how we follow Equation 1.2 to model equilibrium selection.

In a two-person entry game, (1,0) and (0,1) are the multiple equilibria. We could model

the selection of outcome (1,0) against (0,1) as S01. In a two-person social interaction

game, we could model S11. In the four person game, even though different regions have

different equilibria, the multiple equilibria could be ranked by the total number of 1s. The

selection of the “high equilibrium” Shigh can be modeled by a Probit function.

To capture heterogeneous equilibrium selection among games, our model adds covari-

ate Z in the selection equation. The covariate Z may include features of the game, char-

acteristics of the players, or other factors that are believed to affect equilibrium selection.

When studying the rate of smoking, researchers find very different rates among peers of

different social groups, so we may wonder if the selection of equilibrium varies by social

background. In an entry game, some researchers believe the equilibrium selection depends

on a firm’s distance to its headquarters, so Z could account for that. In later discussion, we
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will shows that even if researchers are not able to consider all covariates in the selection

equation, modeling equilibrium is still desirable, because the neglected variables can be

absorbed into the error term (u) and our model allows for endogenous selection.

To the best of our knowledge, BHR is the only paper besides ours that explicitly models

equilibrium selection. They assume a Logit equation of equilibrium selection that depends

on the properties of the equilibrium (for example, whether the outcome is dominated).

In many games (such as social interaction games, or 2-person entry games), our setup

and theirs are similar with the exception that ours allows for covariates and endogenous

selection. When many features are considered, a multinomial Logit equation is needed.

The main idea of our procedure that involves iteratively sampling the parameters from the

utility and equilibrium selection works for the Logit case, though the specific sampling

distribution needs to be modified to accommodate the different distributional assumption

of the selection mechanism.

Identification When Selection is Modeled Explicitly

Identification of the game follows BHR. They proposes two identification approaches.

The first one is based on identification at infinity. If the support of the covariates is large

enough, there is a positive chance that all players but one play a certain action for sure. The

decision for the remaining player reduces to a single-agent problem therefore the utility

function is identified. The second identification approach proposed by BHR uses an ex-

clusion restriction. If there exist some covariates that shift the utility of one player but the

utility of the other players is not affected, the model is also identified.

We use a 2-person social interaction game as an example to provide intuition why the

model can be identified. Recall that in this game, two persons decide whether or not to take

an action. The two possible equilibria are (0,0) and (1,1).

Equilibrium selection is identified by the frequencies of the outcomes that are highly

affected by the selection of equilibrium. For example, in the social interaction game, the

10



frequencies of (0,0) and (1,1) depend on equilibrium selection but the frequencies of (0,1),

(1,0) and y1 = y2 do not. Suppose we have two samples with similar covariates, but the

first sample has more outcome (1,1) than the second sample has. This suggests that the

(1,1) equilibrium is more often selected in sample 1. By exploring the frequencies of these

outcomes, parameters in the selection equation can be identified.

Payoff functions are identified as well. Coefficients in the utility function can be iden-

tified by varying the exogenous variable X. Correlation between the error terms can be

identified by checking if the two people choose the same action or not. If it is more often

to observe (0,0) or (1,1) than observing (0,1) or (1,0), it is likely that payoffs are highly

correlated.

Discussion: Neglected Heterogeneity in Selection Equation

If the true selection equation depends on covariates, a natural question is what happen

if some of the factors influencing the selection are neglected? Suppose the true selection

equation depends on W , but it is not observed in the data:

S = 1(λZ +δW +η > 0). (1.3)

Assume W ⊥ η , η ∼ N(0,1) and W ∼ N(0,σ2
W ).

We want to illustrate that missing covariates in selection equation in not a problem in

terms of consistency as long as the neglected variable is not correlated with existing co-

variates. The intuition is as follows. In a standard Probit model S = 1(λZ +δW +η > 0),

the conditional probability E(S|Z) is consistently estimated if the neglected variable W is

independent of the controlled variable Z.5 In the game-theoretic model, the likelihood of

the outcome is the expectation of the probability that the outcome is an equilibrium and is

5A sketch of proof: Consider a Probit model S = 1(λZ+δW +η > 0) where Z ⊥W . The true probability
of observing S given Z is given by E(S|Z) = P(δW +η >−λZ|Z) = Φ(λZ

σ
) where σ2 = 1+δ 2σ2

w. If Probit
estimation of S on Z is run instead, the estimator we get is λ̃ , which is a consistent estimator of λ

σ
. We then

get Ê(S|Z) = Φ(λ̃Z)
p→Φ( λ

σ
Z) = E(S|Z) because λ̃

p→ λ

σ
.
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selected. Applying this logic, if the missing covariate W in the selection equation is inde-

pendent of Z, the probability of selecting a given outcome conditional on Z is consistently

estimated, thus the likelihood function is not affected by neglecting W .

A corollary of the proposition is that a degenerate equilibrium selection equation that

only contains a constant but no covariates may still be considered. Even if we do not have

much information about how the equilibrium is selected, we may avoid using the partial

approach by assuming the selection mechanism follows a binomial distribution.

Discussion: Endogenous Equilibrium Selection

In some cases, one may worry that equilibrium selection may be endogenous. Our model

could account for endogenous selection by allowing correlation between selection equation

(u) and payoff function (ε). For example, in a social interaction game, we may believe the

selection of the high equilibrium is correlated with taking the action, so error terms are

correlated:

εi = ρu+νi,

where νi is independent across individuals.

An endogenous selection model is identified because model predictions are different

for different degrees of endogeneity. For example, consider the social interaction game

again. If selection of the high equilibrium and payoffs are positively correlated, the chance

of observing (1,1) increases for two reasons: because it is selected more often, and be-

cause payoff of taking the action is high. As a consequence we will observe a lot of (1,1).

Conversely, if the correlation between selection and payoffs is negative, one mechanism

increases the chance of observing (1,1) and the other mechanism decreases the chance.

Therefore we will not observe as many (1,1) as if the correlation between selection and

payoff were positive.
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1.3 Estimation

This section discusses the estimation procedure for the game. In principle, the system

of equations could be estimated by MSL or MSM. These two approaches rely on calculat-

ing the likelihood function, which can be approximated using simulation. We propose an

alternative procedure strategy: the Bayesian approach.

The Bayesian method does not require doing maximization, thus it is attractive when the

parameter space is of large dimension. As will be shown shortly, we develop an algorithm

that require random number generation from standard distributions only. To the best of

our knowledge, little work has been done on estimating game-theoretic models using the

Bayesian approach. One exception is the paper by Narayanan (2013) which uses a Bayesian

method to compare multiple equilibrium selection mechanisms. For a given mechanism,

he uses a Metropolis-Hastings algorithm that samples all the parameters at the same time.

Our procedure takes advantage of the Gibbs Sampling algorithm and draws a subset of

parameters at a time.

This section starts with a brief introduction to the Bayesian method and the two tech-

niques used to develop the sampling algorithm. Then we describe the Bayesian algorithm.

The algorithm is an iteration of four steps. The first two steps of the algorithm can be used

for games with given selection mechanisms. In the end of this section we discuss potential

ways of generalizing our procedure to other setups.

1.3.1 A Quick Review of Bayesian Inference, Gibbs Sampling and Data Augmentation

The Bayesian approach thinks of parameters of interest as a random vector and uses

Bayes’ rule to update the distribution of the random vector based prior beliefs and the

likelihood function. The posterior distribution p(θ |X) is usually approximated by the

MCMC algorithm that samples parameters from the density function p(θ |X)= f (X |θ) f (θ)
f (X) ∝

f (X |θ) f (θ), where f (θ) is the prior belief for the parameters and f (X |θ) is the likelihood

13



function.

Gibbs sampling is an MCMC algorithm for drawing a sequence of random vectors. It is

appealing in the case where the joint distribution of the parameters is difficult to be sampled

from, but the distribution of one set of parameters conditional on the rest of parameters is

much easier to deal with. Instead of drawing all entries of the random vector simultane-

ously, Gibbs sampling allows one to divide the entries into blocks and sequentially draw

one block conditional on the rest of the blocks. The final sequence follows the same dis-

tribution as if the blocks are draw simultaneously from their joint distribution. Concretely,

if we divide a random vector θ into three subvectors and denote them as (θ1,θ2,θ3), let

the subscript denote the iteration, Gibbs sampling says one can draw θ
(r)
1 |θ

(r−1)
2 ,θ

(r−1)
3 ,

θ
(r)
2 |θ

(r)
1 ,θ

(r−1)
3 , θ

(r)
3 |θ

(r)
1 ,θ

(r)
2 and θ

(r+1)
1 |θ (r)

2 ,θ
(r)
3 , so on and so forth. In our algorithm,

our iteration includes four steps. The first two steps are for the utility function and the last

two steps are for the selection equation.

Data augmentation refers to the method that introduces additional variables (such as

latent variables in a discrete model) as the augmented variables. The augmented variables

connects observables with the underlying data generating process, making the posterior

distribution of parameters easier to be sampled from. For example, in the Probit model

y = 1(xβ + ε > 0), this method introduces the augmented data y∗ = xβ + ε . The original

problem of calculating the posterior distribution of β conditional on binary variable y is

difficult, while the posterior distribution of β conditional on continuous y∗ is mush easier

and reduces to a simple linear model. In our sampling algorithm, the left hand side of

the utility function and selection equation are all discrete. We borrow the idea of data

augmentation and introduce the latent variables as the augmented data.

1.3.2 Bayesian Algorithm for the Game-Theoretic Model

In what follows, we present the Bayesian algorithm for our model. The Gibbs Sampling

algorithm iteratively samples four blocks of parameter. The first two blocks are the latent
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variable and the parameters in the utility function, and the last two blocks are the latent

variables and the parameters in the selection equation. If the selection mechanism is known,

one can just repeat the first two steps to estimate the utility function.

Let y∗i = βxi + γy−i + εi, and s∗ = λZ + δW +η represent the latent variables of the

utility function and selection equation respectively. We are interested in the posterior dis-

tribution of y∗, θU ≡ {β ,γ}, s∗, and θS ≡ {λ} . The following algorithm describes the

general steps of Bayesian procedure for the structural model:

Algorithm I (General Model)

For given starting values of s∗, θU and θS, the Gibbs sampler involves repeating the

following 4 steps iteratively:

1. Sample y∗|s∗,θU ∼ T N , where T N stands for truncated normal distribution;

2. Sample θU |y∗ ;

3. Sample s∗|y∗,θS ∼ T N;

4. Sample θS|s∗ ∼ N .

Note that Gibbs sampling requires sampling one subset of parameters conditional on

the rest of the parameters. We drop the parameters that do not affect the conditional distri-

bution. For example, since y∗ is independent of θS given s∗, θS can be dropped in step 1.

The argument applies for the rest of the steps.

An easy way to understand Algorithm I is to relate it to Bayesian estimation of the

Probit model. Consider a Probit model where the latent variable is expressed as a linear

function. In the first step, the latent variable follows a normal distribution truncated from

below at 0 if the outcome is 1 and follows a normal distribution truncated from above

at zero if the outcome is 0. In the second step, the parameter is sampled from a normal

distribution as in the linear model of the latent variable. Our sampling procedure “repeats”

Porbit two times: one for utility functions and one for selection equation. The first two

steps of our sampling algorithm focus on the utility function, where we first draw the latent
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utility and then draw the parameters. We then do Probit again, draw the latent value for the

selection equation and then draw the parameters of the selection equation.

A few remarks about the algorithm: First, by using Gibbs sampling, data augmentation

and reparameterization, all the steps require sampling from standard distributions only.

Second, the starting value will not affect the limiting distribution that the Markov Chain will

finally converge to. In practice, we use the naive Probit estimator as the initial value for θU

, set the initial value in the selection equation to be 0 and randomly draw the initial value of

s∗ from a Bernoulli distribution. Third, the algorithm assumes away mixed strategies. For

applications such as social interaction and entry competition, assuming only pure strategies

are played is not controversy. In the entry game, if mixed strategies are being played, there

is a positive chance that both firms enter. In the region allowing for mixed strategies, firms

get negative profit if both enter. In the social interaction game, if the mixed strategy is being

played, there is a positive chance that only one takes the action. After observing such case,

both individuals want to change their actions. If firms and individuals have time to adjust

their actions, they will finally reach to a state where none of them wants to deviate. Such

state can be characterized by a complete information game where only pure strategies are

played.

Example: 2-Person Game of Strategic Complements This subsection uses the 2-person

social interaction game as an example to illustrate how the sampling algorithm works. We

make a slight modification. Instead of using y∗i = βxi + γy− j + εi, we sample ci =
βxi+εi

γ

which has a one-to-one mapping to y∗ given the parameter θU and the data y− j. We can

stick to the algorithm discussed in the previous subsection. Here we sample c instead of y

because the relationship between c and the outcome is more direct and has been discussed

in Figure 1.1. The next algorithm summarizes the procedure.

Algorithm II (2-Person Game)

In the 2-person social interaction game, for given starting values of s∗, θU and θS, the
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Gibbs sampler involves repeating the following 4 steps iteratively:

1. Sample c|s∗,θU ∼ T N(βx
γ
, 1

γ
I);

2. Sample β̂ |c ∼N(b, σ̃2(X ′X)−1) and σ̃i ∼ IG(n
2 ,

v·s2

2 ) , and recover (β ,γ) from (β̃ , γ̃),

where β̃ = β

γ
, σ̃ = 1

γ
, v , s2, b are the degrees of freedom, the sum of square errors and the

coefficient of the OLS estimation of ci on Xi ;

3. Sample s∗|c,θS ∼ T N(λZ,1);

4. Sample θS|s∗ ∼ N(λZ,1) .

Figure 1.2: s∗ and c
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Step 1: The sampling distribution of c depends on s∗ drawn in the last iteration and

the data. Figure 1.2 shows the relationship between the sign of s∗ and the outcomes

of the game. Note c = β

γ
x+ 1

γ
ε . c follows a truncated multivariate normal distribution

T N(β

γ
X , 1

γ
I) where the truncation depends on s∗ and the data. The truncation values are

listed in Table 1.1.

Table 1.1: Truncation of c Given s∗ and the Data

(0,0) (0,1) (1,0) (1,1)

s∗ < 0 c ∈ R3∪M c ∈ R1 c ∈ R4 c ∈ R2

s∗ > 0 c ∈ R3 c ∈ R1 c ∈ R4 c ∈ R2∪M
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Step 2: Let β̃ = β

γ
and σ̃ = 1

γ
, so c can been expressed using the reduced form param-

eters: c = β

γ
x+ 1

γ
ε = β̃x+ σ̃ε . The posterior distribution of (β̃ , σ̃) can be derived using

the results from linear model. Once the reduced form parameters β̃ , σ̃ are sampled, the

structural parameters β ,γ can been recovered.

Step 3: The truncation of s∗ depends on c drawn in the first step. If c falls into a region

where only a unique equilibrium is predicted (c ∈ R1∪R2∪R3∪R4), it doesn’t provide any

information about the selection of the equilibium, so s∗ is not truncated. If c ∈M and the

data is (0,0), it must be the case that the low equilibrium is selected, so s∗ is truncated from

above at 0 (s∗ ∈ (∞,0]); similarly, if c ∈M and the data is (1,1), s∗is truncated from below

at 0 (s∗ ∈ [0,∞)).

Step 4: This step is a linear problem of s∗ = λZ +u.

1.3.3 Extensions

Note that a few assumptions are made in the previous example: we assume ε ∼ N(0, I)

and ε ⊥ u. In this subsection, we relax the assumptions in three ways: allow correlation

in payoffs, allow endogenous selection, and allow alternative distributional assumptions

about ε .

Correlation in ε

The first two steps of our sampling algorithm needs to be modified slightly if we allow for

correlation between payoff functions. Let Σ represent the variance and covariance matrix

of vector ε , Σ has 1 in its diagonal entries and ρ in its off-diagonal entries. In the first step

of Gibbs sampling, y∗ will be drawn from a truncated normal distribution with covariance

matrix. In the second step, once y∗ is augmented, we have a systems of payoffs which form

a seemingly unrelated regressions (SUR) model. The posterior distribution of Σ follows a

Wishard distribution, and the posterior distribution of (β ,γ) follows normal distribution.
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Endogenous Selection

Suppose selection is endogenous according to the formula ε = ρu+ ν . In the second

step of the previous algorithm, y∗|s∗,θU ,θS is the same as y∗|s∗,θU because payoff functions

depend on the selection equation only through equilibrium selection s∗. If ε and u are

correlated, the conditional distribution of ε given u follows ε|u ∼ N(ρu,σ2
ν ). In Step 1

of our sampling algorithm, we need to first recover u(r−1) from the previous interaction

using s∗(r−1) = λZ + u, then draw y∗ = βx+ γy+ ε conditional on u(r−1). Similarly, the

conditional distribution of u given ε is u|ε ∼ N( ρ

1+ρ2 (ε1 + ε2),
1−ρ2

1+ρ2 ). Therefore in Step 3

we need to recover ε first and then draw u conditional on ε .

Logit Selection Equation

Using data augmentation, a Logit model for the selection equation can be estimated us-

ing the Bayesian method. A more complicated issue is when the selection of multiple

equilibria is characterized by a multinomial Logit model. There are mature algorithms for

estimating multinomial Logit using data augmentation and MCMC. Because our main mes-

sage regarding identification and estimation can be delivered using a selection equation of a

Probit form, we leave a formal distribution about game-theoretic models with multinomial

Logit selection function for future research.

1.4 Monte Carlo Study

In the Monte Carlo experiment, we consider the following game:

yi = 1(β0 +β1xi + γy j + εi > 0).

When γ > 0, the two outcome (0,0) and (1,1) could be the multiple equilibria for some

game. The high equilibrium (1,1) is selected according to a Probit function

S11 = 1(λ0 +λ1Z +u > 0).
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We set x ∼ N(0,1), z ∼U(0,1) and u ∼ N(0,1). The parameters are β = (−1.5,1),

γ = 3, and λ = (−0.5,2). The sample size equals 2000. The parameters are chosen such

that half of the observations comes from the game with multiple equilibria. Table 1.2 shows

the percentage of each outcome in our sample:

Table 1.2: Frequency of the Outcomes in the Monte Carlo Experiment

(0,0) (0,1) (1,0) (1,1)

Single 21.65% 1.9% 1.3% 22.80%
Multiple 17.65% 34.70%

Total 39.30% 1.90% 1.30% 57.50%

In the sample, 52.35% of games have multiple equilibria. Among them 67.2% of the

games select the high equilibrium. We know this because it is generated data. In the real

world, researchers are not able to tell how many games have multiple equilibria, neither do

they know if the observed outcome comes from the region of multiple equilibria or not. For

example, the observation (0,0) may be from a game where it is the unique equilibrium, or it

may come from a game where (0,0) and (1,1) are both equilibrium and players coordinate

to play (0,0).

Table 1.3 collects coefficients and standard errors estimated by MLE approaches. The

MLE low approach assumes (0,0) is always selected if the game has multiple equilibria

and the MLE high approach assumes (1,1) is always selected. The MLE group approach

uses the “grouping method” that calculates the likelihood function of the event “(0,0) or

(1,1)”. The MLE p uses a probabilistic equation for the selection but neglects the true co-

variates Z. It assumes the high equilibrium (1,1) is selected with probability p. The MLE z

approach uses the information on Z. It includes Z in the selection equation. Likewise, the

Bayesian p approach assumes the selection follows a Bernoulli distribution with mean p,

and the Bayesian z uses a Probit selection equation with covariate Z.

Many features of estimating games are illustrated in Table 1.3. First, the bias of Probit

regression highlights the already well-known importance of using a structural model that
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is robust to strategic interactions between agents. A shock to player i’s utility affects the

action of the player i, which in turn affects the action of player j, therefore the magnitude

of the strategic interaction (in absolute value) is upward biased if Probit regression is used.

Table 1.3: Probit and MLE of the Experiment

β0 β1 γ λ1 λ2 p

True -1.5 1 3 -0.5 2 (0.7)

Probit -1.958 0.892 4.147

(0.073) (0.057) (0.120)

MLE low -0.397 0.649 2.267

(0.026) (0.032) (0.071)

MLE high -1.670 0.689 2.485

(0.068) (0.033) (0.077)

MLE group -1.286 0.952 2.944

(0.165) (0.078) (0.136)

MLE p -1.478 1.010 3.041 0.640

(0.097) (0.057) (0.127) (0.040)

MLE z -1.513 1.006 3.031 -0.558 2.053

(0.089) (0.056) (0.125) (0.132) (0.251)

Bayesian p -1.480 1.008 3.138 0.616

(0.127) (0.077) (0.174) (0.045)

Bayesian z -1.477 0.982 3.046 -0.644 2.189

(0.192) (0.088) (0.204) (0.410) (0.703)

Second, different assumptions of the selection of the equilibrium lead to different esti-

mators. In this example, we set the parameters such that half of the sample falls into the

region of multiple equilibria. Having a correct specification of the equilibrium selection

mechanism is especially important in this case. In our experiment, the high equilibrium
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(1,1) is selected with probability approximately equal to 0.7. Neither the assumption used

in MLE low or MLE high is correct, therefore neither MLE low nor MLE high are con-

sistent..

Third, the “grouping method” is consistent, but the variance of the estimator is larger

than the estimators using other approaches. The parentheses in Table 1.3 collect the stan-

dard errors of the MLE estimators. The standard error of the MLE group estimator is

larger than standard error of the other MLE estimators. In the next section, we will see the

efficiency loss of the “grouping method” is so strong that we are not able reject the null

hypothesis that the parameter equals zero.

Fourth, payoff functions are correctly estimated if an equilibrium selection equation

is included in the model. MLE z uses a Probit selection equation with covariate Z. The

model is correctly specified. MLE z estimates coefficients that are very closed to the true

data generating process. In addition, even if the selection equation is degenerate, the payoff

functions are still well estimated. The MLE p approach assumes the probability of select-

ing the high equilibrium follows a Bernoulli distribution with mean p. It gives a decent

estimation of the utility function even though the variable Z is neglected.

The last few rows of Table 1.3 collect the results from the Bayesian method. The

Bayesian p approach neglects the covariate Z. The posterior distribution of a Bernoulli

coefficient follows a beta distribution, so we modify Step 4 of the Bayesian procedure

accordingly. The Bayesian z approach includes Z in the selection equation. In Figure A.1

in the appendix, we plot the draws from the posterior distribution. It can been seen from

Table 1.3 and Figure A.1 that the Bayesian method is able to a provide a good estimation

of the model.

1.5 Application

This section applies the econometric framework to study entry competition in the home

improvement industry. Entry competition is a classic example of a discrete game of com-
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plete information; therefore, we would like to study a real-world entry game to discuss new

insights this chapter provides relative to the previous literature. We first provide a brief

overview of the industry and the two key players. After that we present the empirical find-

ings of the competition effect and equilibrium selection. We find an interesting result that

equilibrium selection always favors one firm.

1.5.1 Industry Overview

The U.S. home improvement retail industry comprises retailers that sell appliances,

building materials, hardware, lawn and garden products, and home supplies. The industry

is highly concentrated. The annual sales of the industry are about 300 billion dollars, half

of which is generated by the two largest players, Home Depot (HD) and Lowe’s (LOW).

Both Home Depot and Lowe’s have around 2000 stores across the U.S. The third largest

firm in the industry, Menard’s, has less than 400 stores and does not do business nation-

wide. Because of the high concentration, studying entry competition is interesting because

consumer welfare is affected by the number and the identity of the firm in the market.

Lowe’s was founded in the 1940s. It has expanded since the 1950s through opening

throughout North Carolina. Home Depot opened its first store in 1978 in Georgia. Home

Depot’s proposition was to build home improvement superstores so it adopted the big-box

format since its start. Facing strong competition from Home Depot, Lowe’s switched to

the big-box format in the 1980s. Since then, the two companies have grown rapidly and

expanded nationally.

Today, the home improvement industry is a mature industry. Both Home Depot and

Lowe’s have stores in all U.S. states. The number of stores has been stable for the past

few years. Home Depot is currently the largest retailer in the industry with more than

2200 stores nationwide. Lowe’s is the second largest retailer and has around 1800 stores.

Despite some minor differences, the two companies have very similar business structures.

The products and services provided by these two companies are very similar as well. Fig-
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ure A.2 in the appendix shows two maps of all stores of the two firms in the contiguous

United States. It can be seen that the two stores have very similar national-wide geographic

distributions.

1.5.2 Data and Summary Statistics

The market is defined as a Core Based Statistical Area (CBSA). CBSA is a commonly

used notion of geographic area. It is defined as an urban core whose population exceeds 10

thousand. Our data comes from two sources. First, we collect the addresses of all stores

owned by Home Depot or Lowe’s in the U.S. We use the addresses to determine which

market each store belongs to. Second, we refer to the U.S. census to collect information on

the characteristics of the market, such as population and income.

Our sample consists of 919 CBSA areas. Table 1.4 shows the descriptive statistics of the

data. We provide the descriptive statistics of the number of stores of each type, the dummy

variable indicating whether the firm enters, and market conditions including log population

and log per capita income. There is skewness in the data. Most CBSAs have only 0 or 1

store opened by each company, but the mean number of stores is much larger because a few

CBSAs have 20 or more stores. Table 1.4 also shows significant variation in population and

strong correlation between population and market structure. The population of the CBSA

at the 90% percentile is about 20 times larger than the population of the CBSA at the 10th

percentile. The variation in per capita income is much smaller. In the empirical analysis,

we focus on the subsample of CBSAs whose population does not exceed 100 thousand. It

is very rare that a firm opens more than two stores in a market of this size. We limit our

attention to areas of small population because these are the places where the entry decision

is strategic.
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Table 1.4: Descriptive Statitics

Whole Sample Pop<100k

Mean Stdev 10% Median 90% Mean Stdev

Obs 919 538

# of HD 1.402 4.021 0 0 3 0.193 0.400

# of LOW 1.308 2.838 0 0 4 0.242 0.433

EntryHD 0.442 0.497 0 0 1 0.191 0.394

EntryLOW 0.486 0.500 0 1 1 0.240 0.427

Log population 11.524 1.251 10.235 11.234 13.286 10.692 0.456

Log pcincome 10.517 0.186 10.307 10.493 10.744 10.483 0.189

In order to take a closer look at the entry pattern, we divide the markets into popula-

tion brackets and count the frequency of different market structures in each group. Table

1.5 shows three features. First, as expected, the number of stores grows with population.

Second, it is very rare that one firm opens two stores but the other firm does not enter. This

suggests that the two firms do act strategically. Third, in most of the population brackets,

there are more markets having LOW as the single entrant than markets having HD as the

single entrant. Even though Home Depot has more stores nationwide, it does not enter as

many small markets as Lowe’s does.
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Table 1.5: Population and Entry Patterm

(HD,LOW ) [10,30) [30,40) [40,60) [60,90) [90,120) [120,200) [200,400) ≥ 400

Obs 113 114 160 119 78 118 85 132

(0,0) 91.2 73.7 60.6 33.6 25.6 12.7 1.2 9.1

(0,1) 0.9 14.0 22.5 32.8 30.8 14.4 2.4 0.0

(1,0) 7.1 11.4 16.9 21.0 5.1 9.3 4.7 0.0

(1,1) 0.9 0.9 0.0 11.8 30.8 39.0 20.0 0.8

(≥ 2,0) 0.0 0.0 0.0 0.8 1.3 1.7 1.2 2.3

(0,≥ 2) 0.0 0.0 0.0 0.0 1.3 3.4 1.2 0.0

(≥ 1,≥ 1)\(1,1) 0.0 0.0 0.0 0.0 5.1 19.5 69.4 87.9

To sum up, the summary statistics show the close connection between population and

entry. We do find evidence of strategic action between Home Depot and Lowe’s, and

Lowe’s is more likely to be the only firm in the market. Next, we would like to explore

more about the magnitude of the entry effect and the selection of equilibrium using the

structural approach.

1.5.3 Empirical Finding on Entry

We first regress the entry of one firm on the entry of the other firm using Probit. Probit

regression shows negative effect from opponent’s entry, confirming that the entry game

is indeed a game of strategic substitutes. The magnitude of the entry coefficient in the

regression of HD and LOW are around 0.4, which is upward biased if there exists strategic

interaction between the two firms.
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Table 1.6: Probit Regression on Entry

Entryi

Constant -18.912

(3.055)

L 0.111

(0.105)

Entry−i -0.487

(0.160)

L·Entry−i 0.145

(0.222)

Log population 1.167

(0.174)

Log pcincome 0.878

(0.166)

Probit Regression provides evidence of symmetry between the two firms. The coeffi-

cients for the identity dummy are not significant, suggesting that the two firms’ responses

to opponent’s entry are similar. Given the moderate sample size of the data and the simi-

larities between the two Probit regressions, we adopt a symmetric version of the model in

our structural analysis and assume the two firms have the same utility function.

Specifically, we consider an entry game with the following utility function:

yi = 1(β0 +β1 ln(population)+β2 ln(pcincome)− γy−i + εi > 0).

Table 1.7 collects our main results from MLE using different assumptions about equi-

librium. The four methods from top to bottom are the grouping method, a deterministic rule

assuming LOW is always selected, a deterministic rule assuming HD is always selected,
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and a probabilistic rule assuming HD is selected with probability p.

A few findings should be noted in Table 1.7. First, as expected, bias of the competition

effect has been corrected using the structural approach. Compared with the result from

Probit estimation, the competition effect estimated by MLE drops from 0.37 to 0.20-0.25.

Second, though in principle the grouping method is robust to equilibrium selection, its ef-

ficiency loss is a big concern. In our application, summary statistics show clearly how

population affects market structure, but the standard error in the grouping method is so

large that the coefficient for population is not significant. Third, the results from two ex-

treme assumptions about equilibrium selection differ slightly. In our application, the issue

of multiple equilibria is not as strong as in the Monte Carlo experiment. Finally, when esti-

mating equilibrium selection empirically, our finding suggests the probability of selecting

LOW is approaching one, meaning that LOW always enters the market that admits multiple

equilibria.

Table 1.7: MLE on Entry

β0 β1 β2 γ p01

MLE group -17.957 1.362 0.241 0.226

(3.017) (2.185) (3.180) (0.090)

MLE 01 -18.045 1.371 0.240 0.250

(3.020) (0.122) (0.256) (0.094)

MLE 10 -17.867 1.353 0.240 0.204

(3.013) (0.121) (0.256) (0.085)

MLE p -18.043 1.371 0.240 0.250 0.999

(2.892) (0.125) (0.250) (0.100) (0.984)

Because MLE suggests an extremely high probability of selecting LOW, we conduct

Bayesian estimation by assuming a deterministic rule such that LOW enters if the market

has multiple equilibria. Table 1.8 reports the sample mean and sample standard deviation of
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sampling from the posterior distribution. The Bayesian approach gives the same conclusion

that the entry effect is around 0.2, which is lower than the Probit estimator.

Table 1.8: Bayesian Estimation of the Entry Game

β0 β1 β2 γ

Bayesian 01 -17.902 1.358 0.239 0.206

(2.978) (0.119) (0.255) (0.062)

One surprising result of the model is that one firm dominates. Our finding suggests that

if either of the firms could enter a market but not both, Lowe’s is the firm that enters. This

may because Lowe’s has a longer history and may have had a first-move advantage in many

markets.6 The first Lowe’s store opened 20 years before the start of Home Depot. Even

though the rapid expansion of Lowe’s did not began until Home Depot was established, as a

more experienced firm, Lowe’s may have more knowledge about the potential profitability

of the market, thus it quickly entered the markets where either firm could be the monopoly.

1.6 Conclusion

As discussed above, this chapter illustrates the feasibility and benefits of including equi-

librium selection in empirical games. Our econometric framework achieves point identifi-

cation by using more information from the data than is common using a structural approach.

We consider both exogenous and endogenous selection mechanisms, and we analyze the

consequences of having neglected variables in the selection equation. In addition, we de-

velop an estimation procedure that uses an MCMC algorithm rather than MLE or MSM.

Doing this may not be straightforward at first glance, but it overcomes the computational

issues of searching for a global maximizer or minimizer of a simulated objective function.

6Jia (2008) studies the entry competition between Kmart and Walmart. She assumes the selection of
equilibrium favors Kmart because Kmart was derived from an established entity. Our finding provides support
of the assumption used in her paper, because we find the equilibrium selection favors the firm that has a long
history.
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A Monte Carlo experiment illustrates the performance of our modeling strategy and esti-

mation procedure. Finally, using the framework proposed in this chapter, we estimate the

entry effect in the competition between Home Depot and Lowe’s and find an interesting

equilibrium selection mechanism. Our framework could be adapted to more complicated

models. For example, we may allow random coefficients in the payoff function or consider

generalizations on the selection equation. We believe adding a selection equation is fruitful

in many of these generalizations. More studies on identification and estimation need to be

done along this direction.
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Appendix

Figure A.1: Sampling of Posterior Distribution Using the Bayesian z Approach

β0 =−1.5 β1 = 1

γ = 3

λ0 =−0.45 λ1 = 2
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Figure A.2: Maps of HD and LOW Stores in the Contiguous United States

Home Depot Stores
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Figure A.3: Sampling of Posterior Distribution in the Entry Game

β0 β1

β2 γ
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Chapter 2

A Unifying View of Partial Identification Approaches in Discrete Games of Complete

Information

2.1 Introduction

Games of complete information have wide applications in empirical industrial organi-

zation, labor and health economics, among others. In recent years, several partial identifi-

cation approaches have been proposed to estimate games of complete information. Partial

identification approaches are attractive because they do not rely on additional assumptions

of equilibrium selection mechanism. To the best of our knowledge, however, there exists

no discussion about the relationship among various partial identification approaches.

The econometric framework we consider dates back to the work of Bjorn and Vuong

(1984), Jovanovic (1989), and Bresnahan and Reiss (1991a, 1991b). Identification could

pose challenging problems due to the lack of information of how game outcomes are se-

lected when a game has multiple equilibria. Point identification could be achieved in cer-

tain ways with strong assumptions or/and restrictive structures. Examples include making

assumptions of an equilibrium selection mechanism (Bjorn and Vuong 1984, Jia 2008),

looking for a statistic that is invariant to equilibrium selection rules (Berry 1992), estimat-

ing equilibrium selection (Bajari, Hong and Ryan 2010, Narayanan 2013), among others.

If no assumption of the equilibrium selection mechanism is imposed, the game is generally

not point identified. Partial identification approaches have recently drawn much attention

because of their flexibility in dealing with a variety of game-theoretic models without mak-

ing strong assumptions on the equilibrium selection mechanism. However, the various

partial identification methods were proposed independently and little is known about their

relationship.

The goal of this chapter is to study the relationship among the existing partial identifica-
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tion approaches for discrete games of complete information. We divide the existing meth-

ods into three categories and aim to present them in a unifying framework. Specifically,

we consider the three most influential approaches in the literature. The first is the sensitiv-

ity analysis approach as in Grieco (2014). This approach treats the equilibrium selection

mechanism as an infinite dimensional nuisance parameter, following a general sensitivity

analysis approach proposed in Chen, Tamer and Torgovitsky (2011). The identified set col-

lects parameters such that there is at least one valid equilibrium selection mechanism that

could predict the moments of the data. The second category is the bound estimation ap-

proach proposed by Ciliberto and Tamer (2009) and Andrews, Berry and Jia (2004). They

construct upper and lower bounds of choice probabilities based on sufficient and necessary

conditions of the model. The identification set is the set of parameters that satisfy these

bounds. The third category establishes sharp identification of the model. Galichon and

Henry (2011) introduce the concept of generalized likelihood function defined on sets of

outcomes. The generalized likelihood differs from the standard likelihood because its inte-

gration exceeds one. The identified set is the set of parameters whose generalized likelihood

is no less than the probability of observing the set of outcomes. Beresteanu, Molchanov and

Molinari (2011) use the random set theory to make set inference and show their method has

the same identified set as in Galichon and Henry (2011) within the complete information

framework.

We first propose a modified version of bound estimation. This modified approach is a

natural extension of Ciliberto and Tamer (2009), who construct bounds of the probability of

individual outcomes. Andrews, Berry and Jia (2004) discuss the idea of constructing prob-

ability bounds on combinations of outcomes. We further the idea in Andrews, Berry and Jia

(2004) by exploring restrictions on the probability of all combinations of outcomes. Com-

pared with Ciliberto and Tamer (2009), the modified approach explores more predictions

from the data, therefore its identification set is tighter.

We then establish the equivalence of the identified sets of the aforementioned three
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approaches using the modified bound estimation approach as a bridge. We show that not

all bounds in modified bound estimation are needed because imposing upper bound on a

set is the same as imposing lower bound on its complement. This naturally leads to the

equivalence between the modified bound estimation method and the sharp identification

approach proposed in Galichon and Henry (2011). We then show that the identified set

from the sensitivity analysis is neither larger nor smaller than the identified set from the

modified bound estimation method, therefore these two sets are identical. As a result, the

three partial identification approaches are proven to be equivalent in the sense of drawing

inference on the same identified set.

The chapter is organized as follows. Section 2 outlines the econometric framework.

Several examples are included to illustrate the econometric problems. In Section 3 we de-

scribe in detail the sensitivity analysis approach, the bound approach, and the sharp identi-

fication approach, in sequence. Section 4 is devoted to comparing these three approaches

and establishing our main results. Section 5 concludes.

2.2 Econometric Framework

2.2.1 Model

We consider a static game of complete information. There are N players, each has a

finite set of actions. For player i, the utility of playing action yi depends on the observed

explanatory variable xi, the actions of other players y−i, and a random shock εi:

ui(yi;xi,εi,y−i,θ). (2.1)

The functional form of the utility function is given. It does not necessarily need to be

linear in all its inputs. Under the complete information framework, shocks are common

knowledge to all players.

In many circumstances, the game may have more than one Nash equilibrium. Let
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E (ε,x;θ) denote the set of equilibria of the game described by (ε,x;θ), where letters

without subscripts denote vectors of all game players. E (ε,x;θ) may contain multiple

outcomes depending on where individual characteristics and shocks locate.

Discrete games of complete information have a wide range of applications. For exam-

ple, Bjorn and Vuong (1984) use this framework to study husband-wife labor force partic-

ipation. The decision of whether or not to work depends on the decision of an individual’s

spouse. This framework is especially popular in the entry literature (e.g. Bresnahan and

Reiss 1991a, 1991b, Berry 1992, Ciliberto and Tamer 2009). Entry decision is strategic

because the underlying profit of one potential entrant depends on the actions of competing

firms. This framework could also be used to model peer effects (Krauth 2006), because

the utility of taking an action is affected by the actions of peers. In all of these cases, it

is reasonable to assume complete information and pure strategy. If individuals and firms

have enough time to adjust their actions, the realized action of one player is the best re-

sponse to the realized action of all other players. Such feature can be captured by a model

of complete information game with pure strategy Nash equilibria.

2.2.2 Examples

Example 1: Jovanovic (1989) The first example we discuss is from Jovanovic (1989).

This model assumes a simple version of (2.1) that does not have an explanatory variable x

. Jovanovic (1989) considers a 2-person game with payoff functions

u1 = (θy2− ε1)y1,

u2 = (θy1− ε2)y2,

where yi ∈ {0,1} is player i’s action, ε1 and ε2 are assumed to independently follow a

uniform distribution U [0,1]. The remaining structural parameter is θ , which is assumed to

be in the interval (0,1].
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Given the restrictions on the support of ε and θ , y = (0,1) and y = (1,0) can never

be an equilibrium of a game. y = (0,0) is an equilibrium if ε ∈ [0,1]2. y = (1,1) is an

equilibrium if ε ∈ [0,θ ]2. A game has multiple equilibria E (ε,x;θ) = {(0,0),(1,1)} if

ε ∈ (0,θ ]2, and has unique equilibrium otherwise.

Figure 2.1: Equilibria of Jovanovic (1989)

This game nests in a broader set of models that only impose a positive sign restriction

on θ but no restrictions on the support of θ and ε . These models are popular in the literature

of social interactions. In social interactions, people gain extra utility when taking the same

activity as the rest of peers do; this justifies the use of game-theoretic models. For social

interaction games, multiple equilibria differ by having a set of players switch from one

action to another simultaneously. The combination of multiple equilibria becomes difficult

to tract when the number of players grows.1 It is hard to find a reasonable assumption of

equilibrium selection for all combinations of multiple equilibria.

Example 2: 2-Person Entry Game The second example is from Bresnahan and Reiss

(1991a). It is a classic model in the entry literature.

1For example, in the game discussed above, y = (0,0) and y = (1,1) are the multiple equilibria. In a 3-
person social interaction game, there are 7 different combinations of multiple equilibria depending on where
ε is.
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Two firms simultaneously decide whether or not to enter a market. Their profit functions

are

y1 = 1(α1x1 +δ2y2 + ε1 ≥ 0);

y2 = 1(α2x2 +δ1y1 + ε2 ≥ 0).

where εi follows independently a standard normal distribution. Further assume δi < 0 for

i = 1,2.

In entry games, observables include market conditions and specific characteristics. Un-

observables εi and ε j represent fixed costs that are known to both firms but not to the

researcher. A negative coefficient δ captures the feature that profit decreases with the entry

of other firms.

In this game, y = (0,1) is an equilibrium of games such that ε1 <−α1x1−δ2 and ε2 >

−α2x2; y = (1,0) is an equilibrium of games such that ε1 > −α1x1 and ε2 < −α2x2−δ2.

These two regions are overlapping. If neither firm has too big or too small fixed costs, the

game has two equilibria, y = (0,1) and y = (1,0).

Figure 2.2: Equilibria of the 2-Person Entry Game
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Example 2 can be generalized to allow for more players. We say an entry game is

symmetric if entry effect δi is the same for all firms. In a symmetric entry game, the total

number of entrants is the same among multiple equilibria, therefore the likelihood on the

number of entrants could be used to estimate the model. When a game is asymmetric,

as discussed in the next example, the number of entrants varies across multiple equilibria,

therefore the likelihood approach based on the number of entrants cannot be used.

Example 3: Entry Game with 2 Types of Players The third example is taken from

Berry and Tamer (2007) and Galichon and Henry (2011). There are two types of firms in

the market. Each type has two firms. The profits of Type 1 firms depend on the total number

of firms in the market whereas the profits of Type 2 firms depend both on the number and

on the type of firms present in the market:

u1 = α0 +α1(y1 + y2)+α2x1− ε1,

u2 = β0 +β1y1 +β2y2 +β3x2− ε2.

where the latent variable εi is assumed to be uniformly distributed over [0,1]. Further

assume α1,β1,β2 < 0 and β2 > β1.

Each type of firms could have zero, one or two entrants, so this game has 9 potential

outcomes. Y = {(i, j) : i, j = 0,1,2}. The following graph, taken from Galichon and Henry

(2011), shows the set of equilibria of different games.

In this case, competition effects (α1,β1,β2) are different depending on firm types. As

noted before, when a game allows for asymmetric competition effects, multiple equilibria

do not necessarily share the same number of entrants. For example, there are games whose

equilibria are (1,2) and (2,0). Also, the game is complicated in the sense that the compo-

sition of multiple equilibria differs significantly when the unobservable ε changes. These

features make identification difficult.
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Figure 2.3: Equilibria of the Asymmetric Entry Game

2.2.3 Empirical Challenges of Estimating Games with Multiple Equilibria

The objective of the empirical analysis of game-theoretic models is to infer on the

underlying utility function from actions chosen by game players. Understanding how indi-

viduals interact with each other is important in conducting counterfactual analyses.

A data set usually includes the outcome of each game, together with attributes of play-

ers. A usual way of estimating a discrete game is to find parameters that can predict the

same probability distribution of the game outcomes. The probability of observing an out-

come is an integration function over shocks, which are not observed by the econometrician:

Pr(y|x;θ) =
∫

Pr(y|ε,x;θ)dF(ε;θ).
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The main challenge of obtaining the moment equation for Pr(y|x;θ) is the lack of

knowledge of Pr(y|ε,x;θ). These are two cases that are easy to handle. For games where

y is not the equilibrium, the probability of observing y is zero. For games where y is the

unique equilibrium, the probability of observing y is 1. However, if both y and other out-

comes are equilibria of a game, it is not known which outcome will be observed. Estimation

methods such as maximum likelihood or method of moments are therefore not applicable,

because Pr(y|x;θ) is not well-defined.

Though the value of Pr(y|ε,x;θ) is not known, in practice there exists a probability

distribution over multiple equilibria. An equilibrium selection mechanism is a conditional

probability over the equilibria of a game.2 Equilibrium outcomes are played with a non-

negative probability; non-equilibrium outcomes are never played. A formal definition of

equilibrium selection is as follows.

Definition 2.1 let Y be the set of all possible outcomes of the game, an equilibrium selection

mechanism λ (y|ε,x;θ) is a conditional probability distribution on y ∈ Y such that

1) λ (y|ε,x;θ)≥ 0 for ∀y ∈ Y ;

2) λ (y|ε,x;θ) = 0 for ∀y /∈ E (ε,x;θ);

3) ∑y∈E (ε,x;θ)λ (y|ε,x;θ) = 1.

Lacking knowledge of equilibrium selection is the main reason why point identification

is difficult. Point identification could be achieved in a few circumstances. The simplest

way is to make an assumption of the equilibrium selection rule (Bjorn and Vuong 1984,

Jia 2008, Krauth 2006). Alternatively, one could make parametric assumptions of the equi-

librium selection mechanism (Bajari, Hong and Ryan 2010, Narayanan 2013). In some

special cases, such as the symmetric entry game in Example 2, point identification could

be achieved because there are some statistics (e.g. the number of entrants) that are not

affected by equilibrium selection mechanism.
2Note that we only consider a pure strategy equilirbium. It is an assumption maintained in the three partial

identification approaches discussed in this chapter. Galichon and Henry (2012) also discuss mixed strategy
equilirbium as an extension. We leave mixed strategy equilibrium for future research.
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If no assumption of equilibrium selection mechanism is made, the model is generally

not point identified. Partial identification approaches attract a growing attention because

they do not rely on assumptions of the selection of multiple equilibria. The next section

reviews the three partial identification approaches that have been developed in the literature.

The notations used in this chapter are slightly different from those in the original papers as

we want to provide a unifying framework for all the three approaches.

2.3 Partial Identification Approaches

2.3.1 The Sensitivity Analysis Approach

Sensitivity analysis generally refers to the study of how uncertainty in outputs is af-

fected by uncertainty in inputs. In the context of discrete games, the output - the parameter

of interest - is affected by the input - equilibrium selection mechanism. The sensitivity

analysis approach is used by Grieco (2014) in a more general model that allows both pri-

vate and public shocks. We apply the same idea to games of complete information where

all shocks are public and common knowledge to the players.

Sensitivity analysis treats equilibrium selection mechanism λ as an infinite dimensional

nuisance parameters. It identifies the set of parameters that can be rationalized by at least

one equilibrium selection mechanism. The identified set defined in the sensitivity analysis

approach is

Θ
SA
I = {θ ∈Θ : ∀x,∃λ ∈ Λ s.t. P(y|x) =

∫
λ (y|ε,x;θ)dF(ε;θ) f or ∀y}, (2.2)

where,

Λ = {λ : ∀ε,x;θ , λ (e|ε,x;θ)≥ 0 ∀e ∈ Y ; λ (e|ε,x;θ) = 0 f or ∀e /∈ (ε,x;θ) and

∑
e∈E (ε,x;θ)

λ (e|ε,x;θ) = 1}
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is the set of valid equilibrium selection mechanisms. Inference of the identified set can

be made by using the profiled sieve likelihood ratio method discussed in Chen, Tamer and

Torgovitsky (2011).

2.3.2 Bound Estimation

Bound estimation is a method that collects parameters such that the moments of the

data are inside the lower and upper bounds predicted by the parameters. Lower and upper

bounds are calculated based on sufficient and necessary conditions of the model. The

parameter of true data generating process satisfies these bounds. See Ciliberto and Tamer

(2009) and Andrews, Berry and Jia (2004).

Before presenting the bound estimation approach, let us first introduce a few notations.

Let A be a subset of Y , and define three sets

R(A|x;θ) := {ε : E (ε,x;θ) = A},

S(A|x;θ) := {ε : E (ε,x;θ)⊆ A},

and

H(A|x;θ) := {ε : E (ε,x;θ)∩A 6= /0}.

R(A|x;θ) denotes the set of games whose equilibrium set is the same as set A. S(A|x;θ)

denotes the set of games whose equilibrium set equals A or is a subset of A. H(A|x;θ) is the

set of games that contains at least one equilibrium in A. H(A|x;θ) may contain equilibria

outside A. Clearly, R(A|x;θ)⊆ S(A|x;θ)⊆H(A|x;θ). When A contains only one outcome,

R(A|x;θ) = S(A|x;θ). For simplicity we write R(A) instead of R(A|x;θ) from now on. We

use the same notation simplification for S(A|x;θ) and H(A|x;θ).
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When constructing bounds for outcome y, the support of unobservables is partitioned

into three regions. In the first region, R(y), outcome y is the unique equilibrium of the

game. The probability of observing y is one. In the second region, H(y)\R(y), y is one

of the multiple equilibria. The likelihood of playing y is determined by the equilibrium

selection rule. The last region, RN\H(y), denotes the regions where y is not the equilibrium

of the game. The probability of observing y is zero. The original problem of calculating

the probability of observing y is an integration function over these three regions:

Pr(y|x;θ) =
∫

Pr(y|ε,x;θ)dF(ε;θ)

=
∫

R(y)
λ (y|ε,x;θ)dF(ε;θ)+

∫
H(y)\R(y)

λ (y|ε,x;θ)dF(ε;θ)

+
∫
RN\H(y)

λ (y|ε,x;θ)dF(ε;θ)

=
∫

R(y)
dF(ε;θ)+

∫
H(y)\R(y)

λ (y|ε,x;θ)dF(ε;θ).

where H(y)\R(y) denotes the case where y is one of the multiple equilibria of the game.

Ciliberto and Tamer (2009) construct lower bounds of Pr(y|x;θ) by assuming λ (y|ε,x;θ)=

0 for all games in this region; they construct upper bounds of Pr(y|x;θ) by assuming

λ (y|ε,x;θ) = 1. Mathematically, Pr(y|x;θ) is bounded by:

∫
R(y)

dF(ε;θ)≤ Pr(y|x;θ)≤
∫

R(y)
dF(ε;θ)+

∫
H(y)\R(y)

dF(ε;θ) =
∫

H(y)
dF(ε;θ). (2.3)

The identified set of bound estimation is the set of parameters such that the inequalities in

(2.3) hold for all outcomes :

Θ
BE
I = {θ ∈Θ : ∀y,x,

∫
R(y)

dF(ε;θ)≤ Pr(y|x;θ)≤
∫

H(y)
dF(ε;θ).} (2.4)

Let Pr(Y |x;θ) denote the vector of Pr(y|x;θ) (y ∈ Y ) and let H1(θ ,x) and H2(θ ,x) be the

vector of lower and upper bounds for all outcomes. The inequalities could be written in the
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following vector notation,

H1(θ ,x)≤ Pr(Y |x;θ)≤ H2(θ ,x).

Inference is based on the criterion function

Q(θ) =
∫
[‖ (P(Y |x)−H1(θ ,x))−||+ ‖ (P(Y |x)−H2(θ ,x))+||]dFx,

where (·)− keeps the negative part of a vector, (·)+ keeps the positive part, and || · || is a

distance measure, P(Y |x) is a vector of conditional choice probabilities. The confidence

region of the identified set is calculated via the subsampling method, as in Chernozhukov,

Hong and Tamer (2007).

Andrews, Berry and Jia (2004) construct bounds in a similar way. In addition to con-

structing bounds on an individual outcome y, they also mention that there could be addi-

tional bounds on collections of outcomes. We will first explain why the identified set based

on individual outcomes is not sharp. In the next section we will introduce a modified ver-

sion of bound estimation that extends Ciliberto and Tamer (2009) and Andrews, Berry and

Jia (2004).

Non-sharpness of bound estimation based on individual outcomes

Identified set of bound estimation is not sharp, meaning that parameters in the identified

set may not satisfy all the restrictions predicted by the model. To see this, consider outcome

y1 = (0,2) and y2 = (2,2) in Example 3. By the discussion above, the left bounds for these

two outcomes are

∫
R(2,0)

dF(ε;θ) ≤ P((0,2)|x); (2.5)∫
R(0,2)

dF(ε;θ) ≤ P((2,0)|x). (2.6)

For simplicity, in the rest of the paper, we write dFε instead of dF(ε,θ), and write λ (y)
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instead of λ (y|ε,x;θ).

Consider set A = {(0,2),(2,0)} that consists of two outcomes:

Pr(A|x;θ) = Pr((0,2)|x;θ)+Pr((2,0)|x;θ)

=
∫

R(2,0)
dFε +

∫
R(A)

λ (0,2) ·dFε +
∫
R2\R(2,0)\R(A)

λ (0,2) ·dFε

+
∫

R(0,2)
dFε +

∫
R(A)

λ (2,0) ·dFε +
∫
R2\R(0,2)\R(A)

λ (0,2) ·dFε

≥
∫

R(2,0)
dFε +

∫
R(0,2)

dF(ε;θ)+
∫

R(A)
(λ (0,2)+λ (2,0)) ·dFε

=
∫

R(2,0)
dFε +

∫
R(0,2)

dFε +
∫

R(A)
dFε

>
∫

R(2,0)
dFε +

∫
R(0,2)

dFε. (2.7)

Compared with inequalities (2.5) and (2.6), inequality (2.7) is more restrictive. This sug-

gests that parameters satisfying inequalities of individual outcomes (2.5) and (2.6) do not

necessarily satisfy the inequalities of collections of outcomes. There may exist parameters

in the identified set ΘBE
I that cannot be the true data generating process.

2.3.3 Modified Bound Estimation

The above example also sheds light on how a simple modification can give more con-

straints on the identified set. The identified set will shrink if moment conditions are im-

posed on combinations of outcomes.

Let A⊂ Y denote a set of outcomes. For each outcome y in A,

Pr(y|x;θ) =
∫

S(A)
λ (y) ·dFε +

∫
H(A)\S(A)

λ (y) ·dFε +
∫
RN\H(A)

λ (y) ·dFε.
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The probability of event A is

Pr(A|x;θ) = ∑
y∈A

Pr(y|x;θ)

= ∑
y∈A

(
∫

S(A)
λ (y) ·dFε +

∫
H(A)\S(A)

λ (y) ·dFε +
∫
RN\H(A)

λ ·dFε)

=
∫

S(A)
dFε + ∑

y∈A

∫
H(A)\S(A)

λ (y) ·dFε.

The last line follows from the fact that ∑e∈E (ε,x;θ)λ (e|ε,x;θ) = 1 for ∀ε ∈ S(A) and

λ (y|ε,x;θ) = 0 for ε ∈ RN\H(A).

Let MA denote an indicator vector of the same size of Yi. The ith element of MA takes

value 1 if y is in A. For example, in a 2-person entry game such that Y = {(0,0),(0,1),(1,0),(1,1)},

M{(0,0),(1,1)} = [1,0,0,1]. The probability of observing event A is the sum of probabilities

of observing each of A’s elements,

Pr(A|x;θ) = MA ·Pr(Y |x;θ).

The modified bound estimation imposes moment inequalities on event A:

∫
S(A)

dFε ≤MA ·Pr(Y |x;θ)≤
∫

S(A)
dFε +

∫
H(A)\S(A)

dFε =
∫

H(A)
dFε. (2.8)

The identified set of modified bound estimation is

Θ
MBE
I = {θ ∈Θ : ∀A,x,

∫
S(A|x;θ)

dFε ≤MA ·P(Y |x)≤
∫

H(A|x;θ)
dFε}. (2.9)

Inference can follow Ciliberto and Tamer (2009) or Andrews, Berry and Jia (2004).
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2.3.4 Momoment Inequalities with Sharp Identification

Galichon and Henry (2011) and Beresteanu, Molchanov and Molinari (2011) show

that sharp identification of a complete information game can be achieved by defining a

collection of finite inequalities.

Let A be an event, Galichon and Henry (2011) interpret the generalized likelihood func-

tion

L (A|x;θ) =
∫

H(A|x;θ)
dF(ε;θ)

as a Choquet capacity function, which is a notion in set theory. The identified set equals

the set of parameters such that the probability of events do not exceed their generalized

likelihood functions,

Θ
GH
I = {θ ∈Θ : ∀A,x, P(A|x)≤L (A|x;θ)}.

In the case of pure strategy equilibria, Galichon and Henry (2011) show that the gen-

eralized likelihood is a submodular function. The original problem of checking whether a

distribution is less than the generalized likelihood function is equivalent to minimizing a

submodular function. Galichon and Henry (2011) recommend to use the algorithms in the

optimal transformation literature to solve the minimization problem.

Beresteanu, Molchanov and Molinari (2011) characterize the identified set by the ran-

dom set theory. In the case of pure strategy equilibrium, they prove that the random set

theory and the approach in Galichon and Henry (2011) impose the same set of moment

inequalities and the two methods coincide.
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2.4 Equivalence among the Partial Identification Approaches

2.4.1 Equivalence between ΘMBE
I and ΘGH

I

With the introduction of notations R(A), S(A) and R(A), the identification set of mod-

ified bound estimation is very similar to that of Galichon and Henry (2011) except the

former has both upper and lower restrictions.

Consider the complement of A, denoted as Ac. Because

{ε : E (ε,x;θ)∩Ac 6= /0}= {ε : E (ε,x;θ)* A},

Ac and A are related by ∫
H(Ac)

dFε = 1−
∫

S(A)
dFε.

The lower bound of event A and the upper bound of its complement have the following

relationship:

∫
S(A)

dFε ≤ Pr(A|x;θ)

⇐⇒ 1−
∫

H(Ac)
dFε ≤ 1−Pr(Ac|x;θ)

⇐⇒ Pr(Ac|x;θ)≤
∫

H(Ac)
dFε. (2.10)

Note that
∫

S(A) dFε is the lower bound of A and
∫

H(Ac) dFε is the upper bound of Ac. This

finding is summarized in Proposition 2.1.

Proposition 2.1 In modified bound estimation, the lower bound of set A is equivalent to

the upper bound of its complement.

Proposition 2.1 suggests that half of the moment inequalities in modified bound estima-

tion could be dropped. Note that the identified set ΘGH
I used in Galichon and Henry (2011)
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includes upper bounds only. By Proposition 2.1, the entire lower bounds can be removed as

long as all upper bounds are kept. This suggests the equivalence between modified bound

estimation and optimal transport approach.

Theorem 2.1 The modified bound estimation and the sharp identification approach have

the same identified set. (ΘMBE
I = ΘGH

I ).

Define another bound estimation that imposes lower bound restrictions only:

Θ
MBE−L
I = {θ ∈Θ : ∀A,x,

∫
S(A)

dFε ≤MA ·Pr(Y |x;θ)} (2.11)

By Proposition 2.1, Θ
MBE−L
I = ΘMBE

I .

2.4.2 Equivalence between ΘSA
I and ΘMBE

I

In the previous discussion we show that the upper bound of an event is the same as the

lower bound of its complement. In what follows, we drop all upper bounds in the modified

bound estimation approach because Θ
MBE−L
I and ΘMBE

I are the same. The objective of this

subsection is to show the equivalence between the identified set of sensitive analysis (ΘSA
I )

and the identified set of modified bound estimation imposing lower bounds only (ΘMBE−L
I ).

The equivalence of the two sets is achieved by proving that one set is a subset of the other

and the vice versa. We start with showing all elements in ΘSA
I belong to Θ

MBE−L
I .

Proposition 2.2 If θ ∈ ΘSA
I , P(A|x) ≥

∫
S(A) dFε for ∀(y,x) and ∀A. Therefore, ΘSA

I ⊆

Θ
MBE−L
I .

Intuitively, if parameter θ is in the identified set of sensitivity analysis, there exists an

equilibrium selection mechanism that rationalizes parameter θ . If all the equilibria of a

game belong to event A (ε ∈ S(A)), by the second criterion in the definition of equilibrium

selection mechanism, event A will be observed with probability 1. The chance of having
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a game whose equilibria all belong to A is therefore no greater than the probability of

observing A. This means
∫

S(A) dFε ≤ Pr(A|x). A formal proof is in Appendix.

The proof of the reverse relationship is less obvious. We proceed as follows: For a

fixed θ in identified set Θ
MBE−L
I , the set of probability distributions satisfying moment in-

equalities is a convex polytope. The observed choice probabilities P(Y |x), which is inside

the polytope, can be represented by a convex combinations of the vertexes of the polytope.

We first prove by construction that each of the vertexes can be rationalized by an equilib-

rium selection mechanism that takes value 0 and 1 only. We then show P(Y |x), a convex

combination of vertexes, can be rationalized by a valid equilibrium selection mechanism.

To start, for a fixed θ ∈Θ
MBE−L
I , consider the set of T such that

T := {t ∈ RN : ∀A, MA · t ≥
∫

S(A|x;θ)
dFε}. (2.12)

Set T is not empty, as it has at least one element t = P(Y |x). Given θ , the above inequalities

impose linear restrictions on t, therefore T is a polytope. Let the vertexes of T be V .

For each v ∈ V , some of the moment inequalities are binding. Denote the set of A that

are binding as A B. Because v is uniquely determined by the binding constraints, there is

only one solution to

MA · t =
∫

S(A|x;θ)
dFε (2.13)

for ∀A ∈A B.

Not every combination of lower bounds can be achieved simultaneously. Next propo-

sition discusses a necessary condition under which inequality constraints can be binding at

the same time. This property enables us to construct equilibrium selection mechanism for

v.

Lemma 2.1 If inequalities of events Ar1 ,Ar2, ...Ark are binding, the set B := {ε : Ai ⊂

E (ε,x;θ) and E (ε,x;θ) = ∪rk
i=r1

Ari, ∀i = r1,r2, ..rk} has zero measure.

An implication of Lemma 2.1 is that if outcomes y1 and y2 are multiple equilibria for
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the, the lower bounds for y1 and y2 cannot be achieved simultaneously. This can be shown

in Eq (2.7). If the lower bounds of y1 = (0,2) and y2 = (2,0) are binding and there are

games with positive measure such that y1 and y2 are both equilibria, the inequality of event

A = {y1,y2} is not satisfied. A necessary condition for lower bounds for y1 and y2 to

achieve simultaneously is when no game has an equilibrium set identical to A = {y1,y2}.

Lemma 2.1 generalizes this discussion to the case of multiple events.

Now we are ready to construct equilibrium selection mechanism for v .

Algorithm 1: Procedure of Constructing Equilibrium for Vertex v

Step 1: For each ε , calculate its equilibrium set E (ε,x;θ);

Step 2: For all A∈A B such that E (ε,x;θ)*A, set λv(y|ε,x;θ)= 0 for ∀y∈ (E (ε,x;θ)∩

A));

Step 3: After repeating the process for all A⊂ E (ε,x;θ), set λv(y|ε,x;θ) = 1 for one of

the remaining y in E (ε,x;θ). If there is no outcome left after Step 2, assign λv(y|ε,x;θ) = 1

for one y ∈ E (ε,x;θ) ;

Step 4: Assign λv(y|ε,x;θ) = 0 for the rest of y ∈ Y .

By construction, function λv(y|ε,x;θ) is non-negative. In addition, λv(y|ε,x;θ) = 1 for

only one y ∈ E (ε,x;θ), thus the sum of probabilities of outcomes in E (ε,x;θ) equals 1.

By definition, λv(ε,x;θ) is a valid equilibrium selection mechanism.

Furthermore, Lemma 2.1 guarantees that with probability 1 that there will be one re-

maining outcome after Step 2. Therefore, except for a case with zero probability, outcomes

in A will not be selected as long as the equilibrium set contains elements outside A. The

next lemma shows that the probability of observing A ∈ A B achieves its lower bound if

equilibrium is selected according to λv.

Lemma 2.2 The equilibrium selection mechanism λv(y|ε,x;θ) constructed by Algorithm

1 satisfies

∑
y∈A

∫
λv(y|ε,x;θ)dFε =

∫
S(A)

dFε,∀A ∈A B.
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Let λv(Y |ε,x;θ) denote the vector of λv(y|ε,x;θ) for y ∈ Y . By the definition of MA,

we have MA ·λv(Y |ε,x;θ) = ∑y∈A λ (y|ε,x;θ). Therefore

MA ·
∫

λv(Y |ε,x;θ) ·dFε = ∑
y∈A

∫
λv(y|ε,x;θ)dFε =

∫
S(A)

dFε,∀A ∈A B.

Because there is a unique solution to (2.13) and both v and
∫

λv(Y |ε,x;θ) · dFε are the

solution of (2.13) ,

v =
∫

λv(Y |ε,x;θ) ·dFε. (2.14)

This suggests that each v can be rationalized by a equilibrium selection mechanism λv(y|ε,x;θ)

.

Since P(Y |x) belongs to set T , it can be represented as a convex combination of vertexes

of T :

P(Y |x) =
NV

∑
i=1

µivi,

where NV is the number of vertexes, ∑
NV
i=1 µi = 1 and µi ≥ 0 (i = 1,2, ...NV ) . Substituting

vi with Eq. (2.14), we get

P(Y |x) =
NV

∑
i=1

µivi

=
NV

∑
i=1

µi

∫
λi(y|ε,x;θ)dFε

=
∫
[

NV

∑
i=1

µiλi(y|ε,x;θ)]dFε. (2.15)

Define λY (y|ε,x;θ) = ∑
NV
i=1 µiλi(y|ε,x;θ) for ∀y. Eq. (2.15) can be written as P(Y |x) =∫

λY (y|ε,x;θ)dFε . Lemma 2.3 further shows that λY (y|ε,x;θ) satisfies the definition of

equilibrium selection mechanism, therefore is a valid equilibrium selection mechanism.

Lemma 2.3 If λi(y|ε,x;θ) (∀i = 1,2, ...Nv) satisfy the properties in the definition of equi-
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librium selection mechanism, ∑
NV
i=1 µi = 1 and µi ≥ 0, then

λY (y|ε,x;θ) =
NV

∑
i=1

µiλi(y|ε,x;θ)

satisfies these properties as well.

Proposition 2.3 summarizes above findings and shows that all parameters in Θ
MBE−L
I

belong to ΘSA
I .

Proposition 2.3 For each θ ∈Θ
MBE−L
I , there exist a valid equilibrium selection λ (y|ε,x;θ)

such that P(y|x) =
∫

λ (y|ε,x;θ)dFε . In other words, Θ
MBE−L
I ⊂ΘSA

I .

Based on Proposition 2.2 and Proposition 2.3, the two sets Θ
MBE−L
I and ΘSA

I are equal.

Because Θ
MBE−L
I and Θ

MBE−L
I are identical, we further conclude that ΘMBE

I and ΘSA
I are

identical.

Theorem 2.2 The modified bound estimation and the sensitivity analysis approach have

the same identified set. (ΘMBE
I = ΘSA

I ).

2.5 Conclusion

This chapter provides a unifying framework for partial identification approaches in dis-

crete games of complete information. These approaches were developed independently;

little was known about the relationship among them.

We review the three main approaches, namely, the sensitivity approach as in Grieco

(2014), the bound estimation approach in Ciliberto and Tamer (2009) and Andrews, Berry

and Jia (2004), and the sharp identification appraoch in Galichon and Henry (2011) and

Beresteanu, Molchanov and Molinari (2011). One novelty of this chapter is to introduce

concepts such as R(A|x;θ), S(A|x;θ) and H(A|x;θ). Even though the original approaches

in Ciliberto and Tamer (2009) and Galichon and Henry (2011) look very different, with
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the newly introduced concepts, we characterize the identified sets of these two approaches

using the same framework.

A key idea in our paper is to propose a modified version of Ciliberto and Tamer (2009),

which we call modified bound estimation. The benefits of introducing the modified ap-

proach are three folds. First, by comparing the moment inequalities in the new and original

approaches, we show why the identified set in the original approach is not sharp. The

model imposes further restrictions through collections of outcomes that are multiple equi-

libria, but this information is not used if moment conditions are constructed on individual

outcomes only.

The modified approach also demonstrates the computational cost of achieving sharp

identification. Suppose a game has k outcomes, the bound estimation approach checks 2k

upper and lower bounds combined, and the modified approach, even dropping all upper

bounds, need to check k2 outcomes. As a result, sharp identification may not always be

more desirable, because the number of moments needed in the modified bound estimation

is much greater than the number of moments checked in Ciliberto and Tamer (2009).

The third benefit of introducing a modified version of bound estimation is to establish

the relationship among the three existing partial identification approaches in the literature.

We show that the modified bound estimation, the sensitive approach, and the sharp identi-

fication approach, draw inference on the same identification set.

A takeaway of this chapter is that, because the identified sets are equal, it is not the case

that one partial identification approach is superior to the other. In practice, the choice of

approach should be based on computational concerns rather than the size of the identified

set. The modified bound estimation method and the approaches in Galichon and Henry

(2011) and Beresteanu, Molchanov and Molinari (2011) are suitable for the case where the

number of outcomes is small, because these approaches check moments of all combinations

of outcomes. The sensitivity approach is feasible in the case where the multiple equilibria

are relatively easy to characterize, as it searches over the space of selection mechanism
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to find parameters that can predict choice probabilities of the model. If the number of

outcomes is large and the characterization of multiple equilibria is more involved, it may

be more practical to check fewer moment inequalities as in Ciliberto and Tamer (2009) and

Andrews, Berry and Jia (2004) because the cost of conducting the other approaches is high.
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Appendix

Proof of Proposition 2.2 If θ ∈ΘSA
I , ∃λ ∈ Λ such that

P(y|x) =
∫

λ (y|ε,x;θ) ·dFε

holds for ∀(y,x).

Consider an event A. Let the space of unobservables be divided into S(A) and its complement:

P(A|X) = ∑
y∈A

P(y|x;θ)

= ∑
y∈A

(
∫

S(A)
λ (y|ε,x;θ) ·dFε +

∫
RN\S(A)

λ (y|ε,x;θ) ·dFε)

=
∫

S(A)
(∑

y∈A
λ (y|ε,x;θ)) ·dFε +

∫
RN\S(A)

(∑
y∈A

λ (y|ε,x;θ)) ·dFε. (2.16)

If ε ∈ S(A), E (ε,x;θ) ⊆ A. Because ∑y∈E (ε,x;θ) λ (y|ε,x;θ)) = 1 and λ (y|x;θ) = 0 for y /∈

E (ε,x;θ),

∑
y∈s(A)

λ (y|ε,x;θ) = ∑
y∈E (ε,x;θ)

λ (y|ε,x;θ)+ ∑
y∈A\E (ε,x;θ)

λ (y|ε,x;θ)

= 1+0

= 1.

Equation (2.16) becomes

P(A|x) =
∫

S(A)
1 ·dFε +

∫
RN\S(A)

(∑
y∈A

λ (y|ε,x;θ)) ·dFε

≥
∫

S(A)
dFε.

Above discussion holds for any event A⊂ Y , therefore θ ∈Θ
MCT−L
I .
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Proof of Lemma 2.1 We first prove a special case of Lemma 2.1 with two sets. Suppose the

lower bounds of Ai and A j are binding.

Define

g(ε) = 1(ε ∈ S(Ai∪A j))−1(ε ∈ S(Ai))−1(ε ∈ S(A j))+1(ε ∈ S(Ai∩A j)).

Consider the following exclusive and exhaustive partition of ε:

a.) If E (ε)* (Ai∪A j):

g(ε) = 0+0+0+0 = 0;

b.) If E (ε)⊆ (Ai∪A j) and E (ε)⊆ (Ai∩A j),

g(ε) = 1−1−1+1 = 0;

c.) If E (ε)⊆ (Ai∪A j) but E (ε)* (Ai∩A j), 1(ε ∈ S(Ai))+1(ε ∈ S(A j))≤ 1 because otherwise

E (ε)⊆ (Ai∩A j) . Therefore

g(ε)≥ 1−1+0 = 0.

(a), (b) and (c) suggest that

∫
S(Ai∪A j)

dFε−
∫

S(Ai)
dFε−

∫
S(A j)

dFε +
∫

S(Ai∩A j)
dFε

=
∫
[1(ε ∈ S(Ai∪A j))−1(ε ∈ S(Ai))−1(ε ∈ S(A j))+1(ε ∈ S(Ai∩A j))] ·dFε

=
∫

g(ε) ·dFε ≥ 0. (2.17)

Equivalently,

∫
S(Ai∪A j)

dFε ≥
∫

S(Ai)
dFε +

∫
S(A j)

dFε−
∫

S(Ai∩A j)
dFε. (2.18)
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On the other hand, because the lower bound of Ai and A j are binding,

∫
S(Ai)

dFε = MAi · v,∫
S(A j)

dFε = MA j · v.

The lower bound of Ai∩A j may or may not be binding, therefore

∫
S(Ai∩A j)

dFε ≤ MAi∩A j · v.

Combining these three equalities and inequalities together, we get

∫
S(Ai)

dFε +
∫

S(A j)
dFε−

∫
S(Ai∩A j)

dFε ≥ MAi · v+MA j · v−MAi∩A j · v

= MAi∪A j · v. (2.19)

(2.18) and (2.19) suggest that

∫
S(Ai∪A j)

dFε ≥
∫

S(Ai)
dFε +

∫
S(A j)

dFε−
∫

S(Ai∩A j)
dFε ≥MAi∪A j · v. (2.20)

However, because the lower bound of Ai∪A j holds,

∫
S(Ai∪A j)

dFε ≤MAi∪A j · v,

it must be the case that all the inequalities in (2.20) are equalities,

∫
S(Ai∪A j)

dFε =
∫

S(Ai)
dFε +

∫
S(A j)

dFε−
∫

S(Ai∩A j)
dFε = MAi∪A j · v. (2.21)

This proves part (1) of Lemma 2.1 for k = 2 that A∗ = Ai∪A j achieves its lower bound.

Furthermore, in order to achieve (2.21), by expression (2.17) it must be the case that
∫

g(ε) ·

dFε = 0.
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Let

B2 := {ε : E (ε,x;θ)⊆ (Ai∪A j), E (ε,x;θ)* Ai, and E (ε,x;θ)* A j}.

If ε ∈ B2,

g(ε) = 1(ε ∈ S(Ai∪A j))−1(ε ∈ S(Ai))−1(ε ∈ S(A j))+1(ε ∈ S(Ai∩A j))

= 1−0−0+0

= 1.

In order to get
∫

g(ε) ·dFε = 0, it must be the case such that
∫

ε∈B2
dF = 0. This proves part (2)

of Lemma 2.3 for k = 2.

Having proved the lemma at k = 2, we now prove it for the rest of k by induction.

Suppose Lemma 2.1 holds for case k = t (t ≥ 2).

Let A∗p = ∪t
i=1Ai. The set

Bt := {ε : E (ε,x;θ)⊆ A∗p, and E (ε,x;θ)* Ai ∀i = 1,2, ...t}

satisfies ∫
Bt

dFε = 0.

Because the lower bound of A∗p is binding by the lemma at k = t, by part (1) at k = 2, the lower

bound of (A∗p∪At+1) is achieved. This proves part (1) of the lemma at k = t +1.

Part (2) of the lemma at k = 2 also implies that for two events A∗p and At+1 whose lower bounds

are binding,

Bp,(t+1) := {ε : E (ε,x;θ)⊆ (A∗p∪At+1),E (ε,x;θ)* A∗p, and E (ε,x;θ)* At+1},

satisfies ∫
Bp,(t+1)

dFε = 0.
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Let Bt+1 be the case of k = t +1,

Bt+1 := {ε : E (ε,x;θ)⊆ (A∗p)∪At+1, E (ε,x;θ)* Ai, ∀i = 1,2, ...t, and E (ε,x;θ)* At+1}.

Consider Bt+1\Bp,(t+1):

Bt+1\Bp,t+1 = {ε : E (ε,x;θ)⊆ (A∗p)∪At+1, E (ε,x;θ)⊆ A∗p, E (ε,x;θ)* Ai, ∀i = 1,2, ...t,

and E (ε,x;θ)* At+1}.

Because Bt+1\Bp,t+1 ⊆ Bt and
∫

Bt
dFε = 0, we have

∫
Bt+1\Bp,t+1

dFε = 0.

Further because
∫

Bp,(t+1)
dFε = 0,

∫
Bt+1

dFε =
∫

Bt+1\Bp,t+1

dFε +
∫

Bp,(t+1)

dFε = 0.

This proves part (2) of the lemma at k = t +1.

By induction, Lemma 2.1 holds for any k ≥ 2.

Proof of Lemma 2.2 Consider

∫
(∑

y∈A
λv(y|ε,x;θ)) ·dFε =

∫
S(A)

(∑
y∈A

λv(y|ε,x;θ)) ·dFε +
∫

Bk

(∑
y∈A

λv(y|ε,x;θ)) ·dFε +∫
RN\S(A)\Bk

(∑
y∈A

λv(y|ε,x;θ)) ·dFε. (2.22)

Let’s consider the following three cases one by one:

a.) ε ∈ S(A) is equivalent to E (ε,x;θ)⊆A. By construction, λv(y|ε,x;θ) = 1 for one element in

E (ε,x;θ) and λv(y|ε,x;θ) = 0 for other elements in Y . Therefore ∑y∈A λv(y|ε,x;θ) = 1 if ε ∈ S(A).
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b.) If ε /∈ S(A), for the majority of the case, λv(y|ε,x;θ) = 0 for ∀y ∈ A. The only exception

is when all elements are assigned in Step 1. When there is no outcome left after the first step,

λv(y|ε,x;θ) = 1 may be assigned to one of y ∈ A. There will be no outcome left if there exist a set

of binding constraints for A1,...Ak such that

E (ε,x;θ)* Ai,

for ∀i = 1,2, ...k and

∪k
i=1(E (ε,x;θ)∩Ai) = E (ε,x;θ).

Or equivalently, it will occur if E (ε,x;θ)* Ai and ∪k
i=1Ai ⊇ E (ε,x;θ).

By Lemma 2.1,

Bk := {ε : Ai ⊆ E (ε,x;θ) and E (ε,x;θ) = ∪k
i=1Ai, ∀i = 1,2, ...k}

satisfies ∫
Bk

dFε = 0.

By the algorithm of constructing λv, λv(y|ε,x;θ) = 1 for at most one element in A, so 0 ≤

∑y∈A λv(y|ε,x;θ)≤ 1 for ε ∈ Bk. Because
∫

Bk
dFε = 0,

0≤
∫

Bk

(∑
y∈A

λv(y|ε,x;θ)) ·dFε ≤
∫

Bk

1 ·dFε = 0,

which suggests ∫
Bk

(∑
y∈A

λv(y|ε,x;θ))dFε = 0.

c.) If ε /∈ S(A) and ε /∈ Bk, there is at least one element left after Step 1, therefore λv(y|ε,x;θ) =

1 for one y ∈ E (ε,x;θ)\A and λv(y|ε,x;θ) = 0 for the rest of outcomes. This suggests that

∑
y∈A

λv(y|ε,x;θ) = 0
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for ε ∈ RN\S(A)\Bk

By the above discussion, (2.22) can be written as

∫
(∑

y∈A
λv(y|ε,x;θ)) ·dFε =

∫
S(A)

(∑
y∈A

λv(y|ε,x;θ)) ·dFε +
∫

Bk

(∑
y∈A

λv(y|ε,x;θ)) ·dFε +∫
RN\S(A)\Bk

(∑
y∈A

λv(y|ε,x;θ)) ·dFε

=
∫

S(A)
dFε +0+

∫
RN\S(A)\Bk

0 ·dFε

=
∫

ε∈S(A)
dFε.

This proves Lemma 2.2.

Proof of Lemma 2.3 a.) If λi(y|ε,x;θ) (∀i = 1,2, ...NV ) is a valid equilibrium selection mech-

anism, then λi(y|ε,x;θ)≥ 0 for ∀y ∈ Y and ∀i = 1,2, ..NV . Further because µi ≥ 0,

λY (y|ε,x;θ) =
NV

∑
i=1

µiλi(y|ε,x;θ)≥ 0

for ∀y ∈ Y and ∀i.

λY (y|ε,x;θ) satisfies the first requirement of equilibrium selection mechanism.

b.) If λi(y|ε,x;θ) = 0 for ∀y /∈ E (ε,x;θ), ∀i,

λY (y|ε,x;θ) =
NV

∑
i=1

µiλi(y|ε,x;θ) = 0

holds for ∀y /∈ E (ε,x;θ).

λY (y|ε,x;θ) satisfies the second requirement of equilibrium selection mechanism.

c.) If ∑y∈E (ε,x;θ) λi(y|ε,x;θ) = 1 holds for ∀i = 1,2, ...NV ,
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∑
y∈E (ε,x;θ)

λY (y|ε,x;θ) = ∑
y∈E (ε,x;θ)

NV

∑
i=1

µiλi(y|ε,x;θ)

=
NV

∑
i=1

µi ∑
y∈E (ε,x;θ)

λi(y|ε,x;θ)

=
NV

∑
i=1

µi ·1

= 1.

Therefore λY (y|ε,x;θ) satisfies the last properties of equilibrium selection mechanism.

Combing (a), (b) and (c), we can conclude that λY (y|ε,x;θ) is a valid equilibrium selection

mechanism.
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Chapter 3

A Partial Identification Subnetwork Approach to Discrete Games in Large Networks: An

Application to Quantifying Peer Effects

3.1 Introduction

Peer effects play a central role in influencing individual behaviors. In recent years,

there is an exploding interest in studying interactions in social networks. For example,

there is empirical evidence of peer effects on educational achievements (Zimmerman 2003,

Calvó-Armengol, Patacchini and Zenou 2009), employment (Calvo-Armengol and Jackson

2004), health outcomes (Cohen-Cole and Fletcher 2008, Krauth 2006, Nakajima 2007,

Badev 2013), risky behavior taking (Gaviria and Raphael 2001, Clark and Loheac 2007),

adoption of new technology (Conley and Udry 2010), among others. Social interaction can

be modeled as a system of equations where each equation is a regression of one person’s

action on the actions of his or her peers. This framework is widely used in studying peer

effects on a continuous outcome. Whereas the identification of peer effects model with

continuous outcomes has been studied by Manski (1993) and Bramoullé, Djebbari and

Fortin (2009), identification and estimation issues of the model with discrete outcomes are

not well addressed.

This chapter develops an empirical method to study peer effects on discrete choices

in large social networks. Our framework extends the linear network model in Bramoullé,

Djebbari and Fortin (2009) to the case of binary outcomes. Our model belongs to a large

and growing literature on discrete games of complete information, which includes entry

game as a special case. It has been well known in the entry literature that due to the presence

of multiple equilibria, estimating strategic interaction of discrete outcomes requires either

strong assumptions or special econometric tools (Bjorn and Vuong 1984, Bresnahan and

Reiss 1991a, Berry 1992, Tamer 2003, Ciliberto and Tamer 2009, Andrews, Berry and
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Jia 2004). While both peer effects model and entry model study strategic interaction of

discrete choices, existing methods for entry games is not suitable to estimate games in

networks because the peer effects model is different from the entry model in a number of

ways.

One empirical challenge that is new to games in networks is due to the large number

of agents in a network. To the best of our knowledge, all applications in discrete games

of complete information study strategic interaction among a handful of agents (Bjorn and

Vuong 1984, Bajari, Hong and Ryan 2010, Jia 2008, Krauth 2006). There are three reasons

why identification and inference of large games are difficult. First, point identification relies

on the knowledge of all the equilibria of a game. In practice the set of equilibria is usually

calculated by enumerating all outcomes of the game and checking whether each of them

is an equilibrium. The number of outcomes grows at an exponential rate of the number

of agents. Therefore, obtaining the set of equilibrium for games in networks is computa-

tionally demanding. Second, when a game is played by many agents, the sets of equilibria

vary significantly across games, making it harder to find a reasonable assumption of equi-

librium selection mechanism that is needed for point identification. Third, existing partial

identification approaches could not handle large games as they check moment conditions

of all outcomes of the game. Each moment condition needs to be consistently estimated by

a large number of networks of the same outcome. Since the number of outcomes is enor-

mous, the number of networks needed for constructing moment conditions are enormous.

Our data could allow one single network that connects everyone. We don’t assume a large

number of networks of same size and outcome are observed in data.

The variation in the network structure adds further challenges in estimating peer ef-

fects. An individual’s action depends on whom he or she connects with. This is in contrast

to entry games, in which the “network” is fixed in the sense that every firm interacts with

all others firms in a market. The peer effects model has an additional variation in friend

relationship. The moment conditions, in the partial identification approach, need to be con-
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structed for each network structure. For the same reason as above, there may not be enough

observation of the same friend relation to calculate empirical probabilities, therefore partial

identification approaches based on moment conditions of full networks are not feasible in

practice.

The novelty of this chapter is to address computational and consistency issues by par-

tially identifying peer effects via subnetworks. Though the number of outcomes of full

network is enormous, the number of outcomes in subnetworks is tractable. There is one

additional issue we need to address. Because people in a subnetwork interact with people

outside the subnetwork, moment conditions of subnetworks need to consider these poten-

tial interactions. Moment conditions developed in this chapter are constructed by requiring

individuals inside subnetwork to play best response to whatever players outside the subnet-

work act. Since moment conditions do not rely on the information outside the subnetwork,

the number of moments needed to check depends on the features of the subnetwork only.

In the Monte Carlo study, we demonstrate that moment conditions of subnetworks are

not only computable, but also informative. The subnetwork approach successfully excludes

parameter values that are far from the true parameters of the data generating process. By

using the Monte Carlo examples, we also illustrate the factors that influence the perfor-

mance of our subnetwork approach. Generally, the subnetwork approach performs better

if the number of links connected to individual inside and outside networks is small. This is

because our approach cuts the dependence between agents in and outside the subnetwork

in exchange for computation tractability. Since many of the real world applications have

sparse networks, our approach will be well suited for these applications.

The final part of this chapter studies peer effects on smoking using data from the Na-

tional Longitudinal Study of Adolescent to Adult Health (Add Health). Add Health is a

nation-wide survey of health related questions. This data set also contains information

on friend nomination, from which we could form friend networks. The friend network

revealed in Add Health data is very sparse. Using our econometric method, we find signif-
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icant and positive peer effects of smoking.

This chapter contributes to the peer effects literature by proposing a computationally

feasible way of estimating peer effects on discrete outcomes. Our framework is closely re-

lated to Manski (1993) and Bramoullé, Djebbari and Fortin (2009) except that we consider

discrete actions. Multiple equilibria is not an issue if individuals choose continuous actions.

As described in Bramoullé, Djebbari and Fortin (2009), the action of friends’ friend could

be served as an instrumental variable for the peer effect in the linear model. Unfortunately,

the instrumental variable approach could not be extended to the case of discrete choices. In

the peer effects literature, most of the empirical studies on discrete choices follow Brock

and Durlauf (2001) and Brock and Durlauf (2007), who model individual behavior as a best

response to the expected behavior of peer group. We assume individuals play best response

to the realized action of their peer group instead.

This chapter also adds to the growing literature of identification and inference of dis-

crete games of complete information. For the best of knowledge, all discussions of discrete

games focus on small number of agents. For tractable number of players, point identifica-

tion could be achieved in symmetric entry games (Berry 1992), by assuming or estimating

equilibrium selection mechanism (Bjorn and Vuong 1984, Bajari, Hong and Ryan 2010), or

by a large support condition (Tamer 2003). Partial identification approaches are discussed

in Andrews, Berry and Jia (2004), Ciliberto and Tamer (2009), Galichon and Henry (2011),

Beresteanu, Molchanov and Molinari (2011) and Henry, Meango and Queyranne (2015).

We contribute to this literature by considering games in large but sparse networks. Though

sharp identification is achievable in Galichon and Henry (2011), Beresteanu, Molchanov

and Molinari (2011) and Henry, Meango and Queyranne (2015), because of the variation

in network structure and the large size of the network, sharp identification is extremely

difficult in the case we consider. Therefore, this chapter seeks necessary but not sufficient

conditions of the model as in Ciliberto and Tamer (2009).

Last but at least, our work contributes to the very new literature on the econometrics
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of networks. One topic in this area focuses on network formation; some studies model

network formation as a complete information game (Sheng 2012, Uetake 2012) and others

model network as an incomplete information game (Leung 2015). Badev (2013) studies

both network formation and interactions in networks. This chapter contributes to the lit-

erature by studying interactions in networks. Our work is most related to Sheng (2012)

in the sense that both papers explore information from subnetwork to conduct inference.

The objective of our paper and Sheng (2012) are very different because her work considers

network formation while we study interactions in networks.

The rest of chapter is organized as follows. Section 2 describes our econometric frame-

work and discusses the empirical challenges caused by the network features. Section 3

starts with an example of constructing moment conditions for a 2-person network game

when the full network is of size 4. Then we discuss identification and inference in gen-

eral cases. Section 4 is devoted to studying the performance of the subnetwork approach.

Section 5 conducts an empirical exercise of peer effects on smoking. Section 6 concludes.

3.2 Model

3.2.1 Model Setup

Network A network can be described as a graph of nodes and edges. Each node repre-

sents an agent, which can be a person or a firm. Each edge connects one pairs of nodes and

represents a relationship, such as friendship.

Let V = {1,2, ..N} be the set of agents in the network. Links are non-directional.1 Let

gi j = g ji = 1 if i and j are connected, gi j = g ji = 0 otherwise. The collection of links forms

a n× n matrix called G, which filled with zeros and ones. We study interaction between

agents, taking the formation of network as given.2

1Our model can easily extend to a directional network. Because our focus is to study peer effects in a
network, the assumptions of non-directional friend relationship is more appropriate.

2Estimating network formation is computationally intensive and often relies on partial identification ap-
proach. See Sheng (2012) and Uetake (2012). In this chapter, we assume network is exogeneouly determined.
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Figure 3.1: A Graph of 4-Person Network

Figure 3.1 illustrates a friend network of 4 individuals. Each link denotes a friend

relationship. In this example g12 = g21 = 1 because person 1 and 2 are connected. g13 =

g31 = 0 because person 1 and 3 are not connected.

In the discussion later, we will develop our identification strategy using the information

about subnetworks. A subnetwork consists of a subset of agents and the links associated

with these agents. The subnetwork A contains three types of information: 1) a set of

players A; 2) the links between agents in A: GA = {gi j}, (i, j) ∈ A; and 3) the number

of links connecting to agents outside the subnetwork nA = {nA,i} for ∀i ∈ A, where nA,i =

∑gi j ·1( j 6/∈ A).

For example, we may be interested in the subnetwork that consists of agents 2 and 3.

Let A = {2,3} denote the set of agents inside the subnetwork. GA =

 0 1

1 0

 reveals

that agents 2 and 3 are connected. nA = [1, 1] because both agents 2 and 3 have one

link connecting to agents outside the subnetwork. In inference, we will use (A,GA,nA) to

construct moment inequalities.

Utility Function Agents play a simultaneous game of complete information. Each indi-

vidual i chooses a binary action yi ∈ {0,1}. Normalize the utility of action 0 to 0. The

71



utility of the alternative action is affected by person i’s characteristics xi, individual shock

εi, and the average actions taken by individuals that are connected with i:

u(yi,xi,y−i;β ,γ) = βxi + γ
∑ j∈V gi jy j

∑ j∈V gi j
+ εi. (3.1)

Assume γ > 0. Under the framework of games of complete information, ε =(ε1,ε2, ...εN)

is observed by all game players. As in Probit models, each component of ε follows a stan-

dard normal distribution independently.

Agent i chooses the action that has a higher utility, hence

yi = 1(u(yi,xi,y−i;β ,γ)> 0).

In this chapter, we adopt the standard form of utility function that assumes a linear

functional form and homogeneous effects. This is the model used in early studies, e.g.

Bresnahan and Reiss (1991a) and Berry (1992). Our identification result can extend to

non-linear utility functions and cases where the interaction effects are heterogeneous. For

example, we can let γ vary across i or j as in Ciliberto and Tamer (2009). In addition,

our framework could be extended to the case of negative strategic interactions, only by a

minor change in moment conditions. It is also feasible to allow for a correlation between

shocks, if we consider the correlation as one additional parameter to be estimated. For

the illustrative purpose, in what follows, we keep the simple form of utility function with

a positive and homogeneous interaction effect γ . We will also discuss how to extend our

identification strategy to more general cases.

It should also be noted that we focus on games of complete information. Actions are

made in response to actual actions of others rather than to the belief of actions derived from

the distribution of other players’ types. Complete information is a reasonable assumption

in applications such as the peer effects model, because an individual plays best response

to the realized action of his or her peers. The second reason why we focus on complete
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information is because the equilibrium solutions to complete and incomplete games differ

from each other significantly. To the best of our knowledge, the bound estimation approach

has not yet be fully developed to estimate games of incomplete information.

Equilibrium We focus on pure strategy Nash equilibrium. An outcome is a Nash equi-

librium if all players play best response to each other. Let x be the matrix of observed

characteristics of all agents and let ε be the vector of unobserved characteristics. The pos-

sible Nash equilibrium of a game is determined by the utility function, which is a function

of individual characteristics (x,ε) and the set of parameters θ = {β ,γ}. Let E (ε,x;θ)

denote the set of Nash equilibria, E (ε,x;θ) is defined as

E (ε,x;θ) = {y ∈ {0,1}N : yi = 1(βxi + γ
∑ j∈V gi jy j

∑ j∈V gi j
+ εi > 0), ∀i ∈V ),

E (ε,x;θ) may contain one or more outcomes, depending on the realization of ε and

x. In the example above, both y1 = (0,0,0,0) and y2 = (1,1,1,1) are equilibria of games

such that −(βxi + γ)< εi <−βxi, ∀i ∈V . There are many other combinations of multiple

equilibria for games with different utility profiles.3

The presence of multiple equilibria is not a special feature of games in network, but

rather a common feature in discrete games. Various approaches have been proposed to

estimate discrete games (Bjorn and Vuong 1984, Bresnahan and Reiss 1991a, Berry 1992,

Tamer 2003, Andrews, Berry and Jia 2004, Ciliberto and Tamer 2009, Galichon and Henry

2011, and Beresteanu, Molchanov and Molinari 2011). An entry game can be thought of as

a special case of games in networks, where all agents connect to each other. When agents

are not necessarily linked to all other agents, the property of multiple equilibria is much

harder to describe, because the set of equilibria depends on the network structure as well.

More importantly, in applications, we usually deal with networks with a large number of

nodes and varying sizes. In the next subsection we elaborate on the reasons that make the

3For example, both y1 = (0,0,0,0) and y3 = (0,1,1,0) are equilibria of games such that εi <−(βxi +
1
2 ),

∀i ∈ {1,4} and −(βxi +
1
2 )< εi <−βxi, ∀i ∈ {2,3}.
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estimation of games in network more challenging.

3.2.2 Empirical Challenges of Estimating Discrete Games in Large Networks

As discussed in Bresnahan and Reiss (1991a), Tamer (2003) and Ciliberto and Tamer

(2009), when a game has multiple equilibria, the probability of outcomes are not well-

defined without information on equilibrium selection. Traditional methods such as the

likelihood approach and the method of moments cannot be used. Games in networks have

other features that complicate identification and estimation. The network we consider con-

tains more than a few agents. Data may contain networks of different sizes and structures.

In this subsection we will explain why existing approaches for estimating discrete games

are not easily extendable for games in networks.

In principle, point identification could be achieved if equilibrium selection mechanism

is given (Bjorn and Vuong 1984, Jia 2008), or estimated (Bajari, Hong and Ryan 2010,

Narayanan 2013). Point identification requires the calculation of all the equilibria of a

game. A standard way of obtaining the set of equilibria is to enumerate all the possible out-

comes of the game and check if each of them is an equilibrium. This method is not feasible

in practice if the number of agents is large, because the number of possible outcomes that

need to be checked grows at an exponential rate. For example, in a binary game with 20

agents, the number of possible outcomes is 220 ≈ 106. In the data we consider, the majority

of friend networks have sizes range from 70 to 90. It will be computationally costly to

check such large number of outcomes for a network. Moreover, even if we are able to find

ways to calculate all the possible equilibria of all games, point identification is still ques-

tionable because the composition of multiple equilibria varies significantly across games.

It is hard to justify that the assumed selection mechanism is the true selection mechanism

of the data generating process.

The partial identification approach does not rely on assumptions on equilibrium selec-

tion or calculation of all equilibria of the model. Thus it is more suitable for the model that
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is considered in this chapter. Following the idea of Ciliberto and Tamer (2009), moment

conditions could be constructed by imposing bounds on the probability of the game out-

comes. In the 4 person example, y = {0,0,0,0} will be observed only if every players play

best response. The upper bound of observing y is the probability that ui < 0, ∀i, therefore

Pr(y)≤ Pr(ui < 0,∀i). In a game with N players, there are a total of 2N upper bounds that

could be used to construct moment conditions.

There are a number of concerns that can arise from constructing bounds like this. First,

because the number of possible outcomes increases exponentially, the number of moment

inequalities that we need to check grows at the exponential rate as well. In a network with

70 agents, the total number of outcomes of full network is more than 1021. It is computa-

tionally infeasible to check so many number of moment conditions. More seriously, each

individual moment condition cannot be consistently estimated if the number of outcomes is

enormous. We consider the case where the number of agents is large in data, but we don’t

require the number of networks to be large. There will not be enough networks of the same

outcome available in data to construct the empirical probability of each outcome, therefore

moment conditions cannot be verified.

Another problem arising from games of network is the variation of structure among

networks. In an entry game, each market has the same number of potential entrants, whose

decision is affected by all the rest of players in the market. In the peer effects model,

each disconnected network is an analogue of a market in an entry game. However, the

number of people and the friendship relationship among them are generally different across

disconnected networks. The outcome of a network depends on how players are linked. If a

moment inequality is placed on the outcome of the full network, there may not be enough

number of networks of the same size and structure to construct moment conditions of the

game.

In this chapter, instead of constructing moment conditions of outcomes of full networks,

we address the computation and consistency issues by exploring properties of subnetworks.
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Because there are links that connect agents inside and outside the subnetwork, we have to

consider the interaction between agents inside and outside the subnetwork as well. The

novelty of our method is to find conditions of subnetwork that are satisfied regardless of

which actions people outside the network take. By this additional relaxation in constructing

upper bounds, the moment conditions can be easily verified. We detail our identification

strategy in the next section.

3.3 Identification and Inference via Subnetworks

3.3.1 An Illustration

In the 4-person peer effects model in Figure 3.1, assuming no control variable x, agents’

actions are characterized by the following set of equations:

y1 = 1(γ · y2 + ε1 > 0),

y2 = 1(γ · y1 + y3

2
+ ε2 > 0),

y3 = 1(γ · y2 + y4

2
+ ε3 > 0),

y4 = 1(γ · y3 + ε4 > 0).

As before, assume ε
i.i.d.∼ N(0,1). We temporarily assume γ > 0.

Consider a subnetwork that consists of agents 2 and 3. Our goal is to find moment

inequalities for outcomes of the subnetwork, for example, the probability of observing the

event

A := (y2 = 0,y3 = 1).

(y2 = 0,y3 = 1) is observed if and only if one of the following outcomes of the full

network is observed.
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Figure 3.2: An Illustration of Subnetwork

B1 := (y1 = 0,y2 = 0,y3 = 1,y4 = 0),

B2 := (y1 = 0,y2 = 0,y3 = 1,y4 = 1),

B3 := (y1 = 1,y2 = 0,y3 = 1,y4 = 0),

B4 := (y1 = 1,y2 = 0,y3 = 1,y4 = 1).

By checking the best response functions for each agents, it is verifiable that B1 is an Nash

equilibrium of a game if and only if ε ∈ R1, where

R1 := {ε ∈ R4 : γ ·0+ ε1 < 0;γ · 1
2
+ ε2 < 0;γ ·0+ ε3 > 0;γ ·1+ ε4 < 0}.

If ε /∈ R1, B1 cannot be observed because it is not a Nash equilibrium of the game. If

ε ∈ R1, the game may have other equilibria in addition to B1. Whether or not observing B1

depends on how multiple equilibria are selected. Therefore ε ∈ R1 is a necessary condition

of observing B1.

Similarly, ε ∈ R2 is a necessary condition of observing B2, where

R2 := {ε ∈ R4 : γ ·0+ ε1 < 0;γ · 1
2
+ ε2 < 0;γ · 1

2
+ ε3 > 0;γ ·1+ ε4 > 0};
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ε ∈ R3 is a necessary condition of observing B3, where

R3 := {ε ∈ R4 : γ ·0+ ε1 > 0;γ ·1+ ε2 < 0;γ ·0+ ε3 > 0;γ ·1+ ε4 < 0};

And ε ∈ R4 is a necessary condition of observing B4, where

R4 := {ε ∈ R4 : γ ·0+ ε1 > 0;γ ·1+ ε2 < 0;γ · 1
2
+ ε3 > 0;γ ·1+ ε4 > 0}.

Define H as

H := {ε ∈ R4 : γ · 1
2
+ ε2 < 0;γ · 1

2
+ ε3 > 0}.

It is easy to check that Ri ⊂ H,∀i = 1,2,3,4.

Putting these together, we get

Pr(A) = Pr(B1 or B2 or B3 or B4)

≤ Pr(ε ∈ (R1∪R2∪R3∪R4))

≤ Pr(ε ∈ H). (3.2)

By replacing H and A with their expressions, the following inequality for the probability

of the outcome in subnetwork A = {2,3} is satisfied :

Pr(y2 = 0,y3 = 1)≤ Pr(γ · 1
2
+ ε2 < 0;γ · 1

2
+ ε3 > 0). (3.3)

Note that because y2 = 1(γ · y1+y3
2 + ε2 > 0) and y3 = 1, γ · 1

2 + ε2 < 0 is a necessary

condition for y2 = 0 when y1 = 0. Similarly, because y3 = 1(γ · y2+y4
2 + ε3 > 0) and y2 =

0, γ · 1
2 + ε3 > 0 is a necessary condition for y3 = 1 when y4 = 1. The upper bound is

constructed by requiring each player i to play best response to the hypothetical scenario
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such that player i’s all friends outside subnetwork A take the same action as player i does.

3.3.2 Moment Conditions in General Cases

For the full network consists of notes V = {1,2, ...N}, let yV denote the outcome of all

players in V . yV is a Nash equilibrium of a game if each individual in V plays best response

given the actions of all other players in the network. Player i chooses action 1 if the utility

of choosing action 1 is positive, because the utility of the alternative is normalized to 0.

Player i chooses the alternative if the utility of action 1 is negative.

Let

R(yV ;x;θ) := {ε ∈ RN : u(yi,xi,y−i;θ)≥ 0, ∀yi = 1, i ∈V ;

u(yi,xi,y−i;θ)≤ 0, ∀yi = 0, i ∈V}, (3.4)

denote the set of games of which yV is a Nash equilibrium. If the utility function takes

the form as in Eq. (3.1) , R(yV ;x;θ) is equivalent to

R(yV ;x;θ) = {ε ∈ RN : (2 · yi−1) · (βxi + γ
∑ j∈V gi jy j

∑ j∈V gi j
+ εi)≥ 0, ∀i ∈V}. (3.5)

yV will only be observed if it is an equilibrium of the game. Hence

Pr(yV |x)≤ Pr(ε ∈ R(yV ;x,θ)). (3.6)

This is an example of moment inequalities of full network. As discussed in the previous

section, moment conditions of full network cannot be consistently estimated if the size of

network is large, or if the interaction matrix varies across networks. Therefore we need to

seek alternative moment conditions.

Recall that a subnetwork contains three types of information: the list of agents A, the
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connects among agents in the subnetwork GA, and the number of connections to agents

outside the subnetwork nA. Theorem 3.1 shows how moments of subnetwork are bounded

above by moments predicted by the model. Moment inequalities like this could be used to

make partial identification of the original model.

Theorem 3.1 Consider a simultaneous game of complete information in network V =

{1,2, ...N} with the utility function

yi = 1(βxi + γ
∑ j∈V gi jy j

∑ j∈V gi j
+ εi > 0),

where γ > 0 and εi
i.i.d.∼ N(0,1), ∀i ∈V . Let A be a subset of V . Define

H(yA;x,GA,nA,θ)

:= {ε ∈ RN : (2 · yi−1) · (βxi + γ
∑ j∈V gi j[1( j ∈ A) · y j +1( j /∈ A) · yi]

∑ j∈V gi j
+ εi)≥ 0, ∀i ∈ A}

= {ε ∈ RN : (2 · yi−1) · (βxi + γ
∑ j∈A gi j · y j +nA,i · yi

∑ j∈A gi j +nA,i
+ εi)≥ 0, ∀i ∈ A}

The following inequality holds for any A⊂V :

Pr(yA|x,GA,nA,θ)≤ Pr(ε ∈ H(yA;x,GA,nA,θ)). (3.7)

H(yA;x,GA,nA,θ) is the key innovation of our subnetwork approach. Besides that the

conditions of ε are placed on the agents in the subnetwork rather than all agents, what is

special about H(yA;x,GA,nA,θ) is that y j in R(yV ,x;θ) is replaced by 1( j ∈ A) · y j +( j /∈

A) · yi. Mathematically, this new term takes value y j for agent j inside the subnetwork and

takes value yi for j outside the subnetwork. In other words, for individual i, we assume all

of his or her friends outside the subnetwork takes the same value as i takes, regardless of

what their true actions are. This is because when we focus on actions in the subnetwork,

we look for conditions that will be satisfied regardless of what action agents outside the

subnetwork take. When we construct the upper bound for Pr(yA), we seek actions that
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will make yA most likely to happen. When γ > 0, individual i will gain extra utility of

taking an action if a larger percent of his or her friends take the same action. Following this

intuition, for i ∈ A who has friends outside the subnetwork, yi = 0 is more likely to occur

if i’s “outside friends” all take action 0; alternatively, yi = 1 is more likely to occur if i’s

“outside friends” all take action 1, that is why we replace the actions of agents outside the

network by the action of player i in the definition of H(yA;x,GA,nA,θ).

As an extension of Theorem 3.1, we can also consider the case where the interaction

effect is negative. In this case, we replace the actions of agents outside the network by the

opposite of player i’th action. This is summarized in the next corollary:

Corollary 3.1 Consider a simultaneous game of complete information in network V =

{1,2, ...N} with the utility function

yi = 1(βxi− γ
∑ j∈V gi jy j

∑ j∈V gi j
+ εi > 0), (3.8)

where γ > 0 and εi
i.i.d.∼ N(0,1), ∀i ∈V . Let A be a subset of V . Define

H̃(yA;x,GA,nA,θ)

:= {ε ∈ RN : (2 · yi−1) · (βxi− γ
∑ j∈V gi j[1( j ∈ A) · y j +1( j /∈ A) · (1− yi)]

∑ j∈V gi j
+ εi)≥ 0, ∀i ∈ A}

= {ε ∈ RN : (2 · yi−1) · (βxi− γ
∑ j∈A gi j · y j +nA,i · (1− yi)

∑ j∈A gi j +nA,i
+ εi)≥ 0, ∀i ∈ A}

The following inequality holds for any A⊂V :

Pr(yA|x,GA,nA,θ)≤ Pr(ε ∈ H̃(yA;x,GA,nA,θ)). (3.9)

3.3.3 Inference and Estimation

Our inference procedure is based on subnetworks. For each subnetwork A, the model

predicts moment inequality (3.7) if the interaction effect is positive.
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Suppose we are interested in subnetwork A, let yA denote all the possible outcomes of

A. The identified set is

ΘI = {θ : P(yA|x,GA,nA)≤ Pr(ε ∈ H(yA;x,GA,nA,θ)) ∀yA ∈ YA},

where P(yA|x,GA,nA) is the choice probability of the data.

Let m(yA,x,GA,nA;θ) = P(yA|x,GA,nA)−Pr(ε ∈ H(yA;x,GA,nA,θ)), the model pre-

dicts m(yA,x,GA,nA;θ) ≤ 0. Let m(x,GA,nA;θ) be the vector of of these moment condi-

tions for all outcomes of subnetwork A. Our inference procedure uses the objective function

Q(θ) = E(x,GA,nA)||(m(x,GA,nA;θ))+||

where (·)+ takes the positive part of the vector and || · || is the Euclidean norm.

To make inference, we use the sample analogue of Q(θ). We randomly select T (T →

∞. ) subnetworks of the same size as A. The sample analogue of criterion function is

ΘT (θ) =
1
T

T

∑
t=1
||(mt(x,GA,nA;θ))+||,

where mt(x,GA,nA;θ) is an empirical analogue of m(x,GA,nA;θ) evaluated at obser-

vation t. The elements in mt(x,GA,nA;θ) are

mt(yA,x,GA,nA;θ) = P(yA|x,GA,nA)−Pr(ε ∈ H(yA;x,GA,nA,θ)),

where yA ∈ YA, P(yA|x,GA,nA) is an empirical conditional distribution of yA given x,

GA and nA of observation t, Pr(ε ∈H(YA;xt ,GA,t ,nA,t ,θ) is calculated using the expression

in Theorem 3.1.

Inference could be made by subsampling as discussed in Chernozhukov, Hong and

Tamer (2007) and Ciliberto and Tamer (2009). The confidence interval is
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Θ̂I = {θ : T ·ΘT (θ)≤ cτ}.

3.4 Monte Carlo Study

In this section, we conduct a sequence of Monte Carlo experiments to study finite sam-

ple properties of our subnetwork approach. For simplicity, we make inference on one

parameter. The utility function contains the interaction effect only,

u(yi,xi,y−i;β ,γ) = γ
∑ j∈V gi jy j

∑ j∈V gi j
+ εi.

The true parameter is γ0 = 1. We set the number of networks to be1000. For each

network, we generate individual shocks ε and calculate its set of equilibria. If the game

has multiple equilibria, each one is selected with equal probability. Inference is based on

a 80% confidence interval of 200 re-samples. Upper bounds are approximated by 1000

simulations.

First, we find that upper bounds on outcomes of subnetwork are informative. Table 3.1

collects the empirical probabilities of outcomes of subnetwork {1,2}, and upper bounds

calculated by different hypothetical values of parameter γ in a 4-person network described

in Figure 3.1. The numbers in blue show cases where moment inequalities are violated.

When γ is too low, the upper bound predicts too small share of outcome (y1,y2) = (1,1);

when γ is too large, it predicts too small share of outcomes (y1,y2) = (0,1) and (y1,y2) =

(1,0). Only when the value is near the true value γ0 = 1 all the moment inequalities are

satisfied.

The second sets of example show the impact of the structure of full network on the

performance of our approach. Table 3.2 collects the identified set of four networks using

four choices of subnetworks. From the left to the right, we generate full networks with

decreasing number of edges. The performance of our approach improves when there are
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Table 3.1: Upper Bounds and Parameter Values

Outcome Emp. Prob. Upper Bound
(y1,y2) P(yA) γ = 0.1 γ = 0.5 γ = 1 γ = 1.5 γ = 2 γ = 3 γ = 5
(1,1) 0.642 0.291 0.478 0.708 0.870 0.955 0.997 1
(0,1) 0.102 0.240 0.201 0.154 0.113 0.080 0.033 0.003
(1,0) 0.100 0.239 0.185 0.110 0.052 0.020 0.001 0
(0,0) 0.155 0.250 0.250 0.250 0.250 0.250 0.250 0.250

Table 3.2: Identified Set of Varying Full and Sub Networks

Subnetwork Identification Set

{1,2} (0.834,3.001) (0.716,3.001) (0.680,2.669) (0.771,1.601)
{1,2,3} (0.823,2.987) (0.737,3.001) (0.758,1.659) (0.780,1.337)
{1,2,3,4} (0.830,1.861) (0.832,1.578) (0.812,1.612) (0.877,1.240)
{1,2,3,4,5} (1.027,1.037) (0.900,0.903) (0.827,1.210) (0.911,1.001)

fewer links connecting individuals inside and outside subnetworks. For example, in the first

network, agent 1 is connected with all others in the network, but in the last network, agent

1 is connected to agent 2 only. When we construct upper bounds for subnetwork {1,2},

we relax our upper bounds more in the first network because we ignore many connections.

Our upper bounds are tighter if the network is sparse.

Table 3.2 also illustrates the relationship between the choice of subnetwork and the size

of the confidence interval. From the top to the bottom, we increase the size of subnetworks.

When the size of subnetwork increases, the confidence interval shrinks. This is because

more information is used to construct moment conditions. However, it is not the case

that the performance is the best if we make inference based on the full-subnetwork, which

has the largest number of agents. This is because with a large number of outcomes, the

probability of each individual outcome may not be precisely estimated for a fixed sample

size.

The last sets of examples show the performance of our approach when the size of full
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Table 3.3: Full Network Size and Confidence Interval

Subnetwork Identification Set

{1,2} (0.743,1.276) (0.712,1.605) (0.771,1.601) (0.734,1.678)
{1,2,3} (0.899,1.081) (0.834,1.410) (0.780,1.337) (0.846,1.391)
{1,2,3,4} (0.865,1.136) (0.877,1.240) (0.904,1.350)

network increases. As shown in Table 3.3, for a given choice of subnetwork, confidence

interval increases slightly with the size of full network, but the magnitude is small. This

is because for a given choice of subnetwork, the links whose end points are outside the

subnetwork do not affect moment conditions. The moment conditions are still informative

even if the network is of large size.

3.5 Application

In this application, we study peer effects on smoking using the data from the National

Longitudinal Study of Adolescent to Adult Health (Add Health). Add Health is a nation-

wide longitudinal survey of adolescent health. We use Wave I in Home Survey, which

collects social, economic and physical information of teenagers from grades 7 to 12 in year

1993 and 1994. Add Health is one of the most commonly used data set in studying peer

effects (e.g. Gaviria and Raphael 2001 on juvenile behavior, Calvó-Armengol, Patacchini

and Zenou 2009 on education, Trogdon, Nonnemaker and Pais 2008 on overweight, Cohen-

Cole and Fletcher 2008 on obesity). What is special about Add Health is that respondents

are asked to nominate their friends. The information on family, social background, activ-

ities together with friend nomination provides a unique opportunity to study interactions

among friends controlling for other social and economic influences.

Table 3.4 reports summary statistics of our key variables. There are a total of 20745
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Table 3.4: Summary Statistics

Full Sample Regression Sample
Mean Stdev Mean Stdev

Obs 20,745 8,865
Smoke 0.26 0.44 0.26 0.44
Grade 9.67 1.64 9.73 1.63
log(Income) 45.73 51.62 3.57 0.82
Gender 0.49 0.50 0.49 0.50
Race 0.72 0.45 0.62 0.49
Parent smoke 0.26 0.44 0.24 0.43
School program 0.92 0.27 0.93 0.26
NumMF 0.80 1.12
NumFF 0.85 1.13

observations in the survey. The key dependent variable, smoke, is an indicator of whether

a correspondent smokes on a regularly basis. On average 26% of the respondents are

smokers. The control variables include age, gender, race, parents’ smoking behavior and

household income. We further include a dummy variable indicating whether a person’s

school has prevention programs for smoking.

The goal of our study is to identify factors that influence smoking decision, especially

the peer effects. Our model is as follows

yi = 1(βxi + γ
∑ j∈V gi jy j

∑ j∈V gi j
+ εi),

where V is the set of all individuals in the data set, εi ∼ i.i.d. N(0,1). yi = 1 if person i

smokes, yi = 0 otherwise. xi are control variables. We set gi j = g ji = 1 for {i, j} ∈ V as

long as one of person i and j nominates the other as a friend.

Our estimation starts with a naive Probit estimation of smoking. The sample contains

individuals that have at least one friend. Coefficients, standard errors and marginal effects

at mean are reported in Table 3.5. People are more likely to smoke if their peers or parents

smoke. The rate of smoking also differs by gender and race. Because in the Probit regres-

sion, the coefficient for grade, parents’ smoking, and race are significant, we include these
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Table 3.5: Probit Estimation of Smoking

(1) (2)
Coef. Std.Err. Marg.Eff. Coef. Std.Err. Marg.Eff.

Obs 6,421 8,865
Peer effect 1.259∗∗∗ 0.057 0.358 1.186∗∗∗ 0.048 0.338
Birth year −0.013 0.010 −0.004
Grade 0.064∗∗∗ 0.015 0.020 0.076∗∗∗ 0.010 0.022
School program 0.043 0.070 0.012
Gender 0.022 0.036 0.006
Log income −0.004 0.023 −0.001
Race 0.420∗∗∗ 0.041 0.119 0.430∗∗∗ 0.033 0.122
Parent smoke 0.248 0.042 0.070 0.240∗∗∗ 0.035 0.068
Constant −0.930 0.937 −2.022∗∗∗ 0.101

three control variables in our partial identification approach.

Results from the Probit estimation show that the marginal effect of peer effects is 30%,

which means if half of a person’s friends smoke, that person’s probability of smoking

would increase by 15%. However, Probit estimation could be misleading because it treats

friend’s smoking behavior exogenous. If there is indeed peer effects on smoking, an un-

observed factor that influences person i’s behavior can be correlated with the behavior of

his/her friends’, because his/her friends’ actions are affected by his/her behavior via peer

effects. To deal with the endogeneity problem of friends’ actions, we next turn to our partial

identification approach.

We make inference using subnetwork of size 2 for computational tractability. The spar-

sity of the data set also supports our choice of using small subnetworks. The last two rows

of Table 3.4 show that the average number of male and female friends nominated by an

individual is 0.80 and 0.85, respectively. Table 3.5 reports more information about friend

nomination. About 2/3 of respondents nominate zero of one friend. 83% of people nomi-

nate two friends or fewer. This suggests that each individual only connects to a few people.

Inference based on small subnetworks is therefore informative.

The moment conditions are tested by 11,492 pairs of agents that are friends. For sub-
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Table 3.6: Number of Nominated Friends

Obs Frequency
NumF = 0 6045 29.13%
NumF = 1 6738 32.48%
NumF = 2 4453 21.47%
NumF ≤2 17206 83.09%

Table 3.7: Partial Identification of Peer Effects in Friend Network

Confidence Interval
Peer effect (0.872,1.493)

Grade (-0.018,0.104)
Parent smoke (-0.150,0.290)

Race (-0.001,0.391)
Constant (-2.145,-1.027)

networks of 2 agents, there are two adjacency matrix GA, either the two connects or dis-

connects. The upper bounds are higher if agents are not connected because the percentage

of fiends outside subnetwork is larger. Moment inequalities are more likely to be violated

for pairs of agents who are connected. Due to computational concerns, we only check in-

equalities for pairs of agents that are friends. This is equivalent to checking the conditional

moment inequalities given a fixed GA.

The final result is reported in Table . The confidence interval of peer effects estimated

by the structural approach is (0.872, 1.493). This suggests positive and significant peer

effects on smoking. Though the subnetwork approach concludes larger confidence intervals

as compared to Probit estimation, it produces more convincing results because it takes into

account the endogeneity of friends actions due to social interaction. It should also be noted

that the criterion function evaluated at the Probit estimator is 0.016, while the minimum of

criterion function is 0.003. Probit estimator lies outside the confidence set, and is therefore

unlikely to be the true parameter of the data generating process.
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3.6 Conclusion

This chapter studies identification and estimation of peer effects on binary choices in

social networks. Our framework belongs to discrete games of complete information. As is

well-known in the entry literature, identifying discrete games is difficult in general because

the model often yields multiple equilibria. The inherited network feature of our model

makes identification and estimation even more challenging.

The existing econometric methods that rely on the choice probabilities of the full game

are not feasible in our case because we consider networks that are large and have varying

friendship relationships. Not only does the number of outcomes grow exponentially, the

number of observations of the same network structure is not sufficient to construct moment

conditions. Therefore, we seek alternative moment conditions that can be consistently

estimated.

The novelty of our identification strategy is the use of subnetworks. A subnetwork is

a collection of agents, whose actions depend on actions of their friends, both inside and

outside the subnetwork. Because we seek conditions that hold regardless the behavior of

the agents outside the subnetwork, the bound of an outcome of a subnetwork is constructed

to require each agents i inside the subnetwork to play best response to their friends’ actions,

assuming all “outside friends” of agent i take the same action as agent i takes. Because peer

effects are positive, such bound gives the highest probability of observing an outcome. We

therefore get a set of moment inequalities that could be used to partially identify the model.

Our estimation strategy is closely related to Ciliberto and Tamer (2009). The criterion

function penalizes a parameter if upper bounds predicted by the parameters are less than the

empirical choice probabilities of the subnetwork. The identified set is the set of parameters

whose criterion function is less than a threshold, calculated by subsampling.

The Monte Carlo examples presented in this chapter study the performance of our ap-

proach. The subnetwork approach is able to provide an informative inference on parame-

ters of the model, especially when the network is sparse. We apply our identification and
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estimation strategy to study peer effects on smoking using the data from the National Lon-

gitudinal Study of Adolescent to Adult Health. The identified set suggests positive and

significant peer effects on smoking.

A limitation of our approach is that we treat the network formation as given. This is

a concern in peer effects models because friend relationships are endogenous. A possible

approach to address this concern is to allow correlation among individual unobserved char-

acteristics. Furthermore, extension of our approach to structural model taking into account

the endogenous network formulation is left for future research.

Another extension of this chapter concerns with sharper identification. The moment

conditions used in this chapter are only a small part of conditions implied by the model. The

identification set could shrink further if more informative and easily verifiable conditions

are considered.
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Appendix

Proof of Theorem 3.1: For a given subnetwork A, let yA and y−A denote the actions of all

players inside and outside A. Define

R(yA,y−A|x,GA,nA,θ) := {ε ∈ RN : (2 · yi−1) · (βxi + γ
∑ j∈V gi jy j

∑ j∈V gi j
+ εi)≥ 0 ,∀i ∈ A}

A necessary condition for (yA,y−A) being an outcome of the game is that ε ∈R(yA,y−A|x,GA,nA,θ).

Otherwise players in A don’t play best response to the actions of other players, therefore (yA,y−A)

is not a Nash equilibrium of the game.

On the other hand, for i ∈ A such that yi = 0, we have yi ≤ y j for ∀ j ∈V , therefore

βxi + γ
∑ j∈V gi j[1( j ∈ A) · y j +1( j /∈ A) · yi]

∑ j∈V gi j
+ εi ≤ βxi + γ

∑ j∈V gi j · y j

∑ j∈V gi j
+ εi.

When yi = 0, 2 · yi−1 =−1. The above inequality is equivalent to

(2 ·yi−1) ·(βxi+γ
∑ j∈V gi j[1( j ∈ A) · y j +1( j /∈ A) · yi]

∑ j∈V gi j
+εi)≥ (2 ·yi−1)(βxi+γ

∑ j∈V gi j · y j

∑ j∈V gi j
+εi).

(3.10)

Similarly, for i ∈ A such that yi = 1, we have yi ≥ y j for ∀ j, therefore

βxi + γ
∑ j∈V gi j[1( j ∈ A) · y j +1( j /∈ A) · yi]

∑ j∈V gi j
+ εi ≥ βxi + γ

∑ j∈V gi j · y j

∑ j∈V · gi j
+ εi,

which is equivalent to

(2 ·yi−1) ·(βxi+γ
∑ j∈V gi j[1( j ∈ A) · y j +1( j /∈ A) · yi]

∑ j∈V gi j
+εi)≥ (2 ·yi−1)(βxi+γ

∑ j∈V gi jy j

∑ j∈V gi j
+εi).

(3.11)
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Note the left hand sides of inequalities (3.10) and (3.11) appear in the definition of H(yA;x,GA,nA,θ).

The right hand sides appear in R(yA,y−A|x,GA,nA,θ). If ε ∈ R(yA,y−A|x,GA,nA,θ), the left hands

of inequalities (3.10) and (3.11) are greater than 0, therefore the left hands are greater than 0. Hence

ε ∈ H(yA;x,GA,nA,θ). In other words,

R(yA,y−A|x,GA,nA,θ)⊂ H(yA;x,GA,nA,θ).

If ε /∈H(yA;x,GA,nA,θ), ε /∈R(yA,y−A|x,GA,nA, ,θ) for ∀y−A. As a consequence, there doesn’t

exist y−A such that (yA,y−A) is an outcome of the game. Therefore, yA cannot be observed. This

suggests that

Pr(ε /∈ H(yA;x,GA,nA,θ))≤ 1−Pr(yAx,GA,nA,θ),

or equivalently,

Pr(yA|x,GA,nA,θ)≤ Pr(ε ∈ H(yA;x,GA,nA,θ)).
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