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CHAPTER I 

 

INTRODUCTION AND BACKGROUND 
 

1.1 Introduction 

The ability to accurately predict the thermodynamic properties and phase behavior of 

m re

Wertheim’s thermodynamic perturbation theory (TPT) [3-6]. An important feature of the 

fluids is central to product and process design, not only in traditional chemical 

engineering fields such as petroleu fining, but also in environmental and biochemical 

engineering in purification and separation processes. Since the energy crisis of the 1970s 

interest in the ability to predict the thermodynamic properties of fluids has grown, with 

industry increasingly looking for accurate theoretical tools to minimize costs. While 

many equations of state have been suggested in the literature to correlate and predict the 

thermodynamics of fluids, they often rely on effective parameters to describe the 

molecular interactions and so, particularly for complex fluids, have limited applicability.  

In order to develop a predictive approach to determine the thermophysical properties and 

phase behavior of complex fluids, the effects of the size, shape and molecular-level 

interactions need to be explicitly included into the equation of state (EOS).  So called 

molecular based equations of state such as the perturbed hard chain theory and the 

statistical associated fluid theory (SAFT) have grown in popularity as they explicitly take 

into account the effect of such interactions and have parameters that directly relate to 

molecular level physical interactions.   

Perhaps the most successful of these molecular-based equations of state (EOS) is 

the SAFT approach proposed by Chapman [1, 2] and co-workers on the basis of 
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SAFT theory is that it explicitly takes into account nonsphericity and association 

interactions and provides a powerful method for investigating the phase behavior of both 

 

non-associating and associating chain fluids.  In the SAFT framework, the free energy 

can be written as the sum of four separate contributions: 

A
NkBT

Aideal

NkBT
Amono

NkBT
Achain

NkBT
Aassoc

NkBT
= + + +  (1.1) 

ases, association 

interact

where N is the number of molecules, kB  Boltzmann’s constant, and T the temperature.  

Aideal is the ideal free energy, Amono  the contribution to the free energy due to the 

monomer segments, Achain the contribution due to the formation of bonds between 

monomer segments, and Aassoc is the contribution due to association.  Hence, a SAFT 

fluid is a collection of monomers that can form covalent bonds; the monomers interact 

via repulsive and attractive (dispersion) forces, and, in some c

ions [7].  The many different versions of SAFT essentially correspond to different 

choices for the monomer fluid, and different theoretical approaches to the calculation of 

the monomer free energy and structure.  For an excellent overview the reader is directed 

to a recent review [8]. In this work we focus on the SAFT-VR approach, which is a 

recent extension of the theory that describes chain molecules formed from hard-core 

monomers with attractive potentials of variable range (SAFT-VR) [9, 10], typically a 

square well. The SAFT-VR equation has been successfully used to describe the phase 

equilibria of a wide range of industrially important systems; for example, alkanes of low 

molecular weight through to simple polymers [9, 11-14], and their binary mixtures [15-

23], perfluoroalkanes [24-26], hydrogen fluoride [27], boron triflouride [28], water [29, 

30], refrigerant systems [31], carbon dioxide [22, 27, 32-34], and electrolyte solutions 

 2



[35-38], have all been studied.  Further details of the SAFT and SAFT-VR equations of 

state will be presented in section 1.2. 

 Although the SAFT equation in its many variations explicitly takes into account 

the effect of molecular shape, size and hydrogen bonding interactions the effects of long-

range interactions, such as ion-ion, ion-dipole, dipole-dipole etc., are typically taken into 

account in an effective way through the segment size and energy parameters.  Since the 

interactions are not described explicitly in the equation the predictive capability is 

reduced and often large binary interaction parameters have to be fitted to experimental 

overcome this drawback of the SAFT equation and develop a more 

redictive approach, in this work, versions of the statistical associating fluids theory 

odel polar fluids and electrolyte solutions in which the 

data. In order to 

p

(SAFT) will be developed to m

effects of the long range interactions are taken explicitly into account.  

In chapter II, we present a statistical associating fluid theory for potentials of 

variable range to model dipolar fluids. The new theory (SAFT-VR+D) explicitly accounts 

for dipolar interactions through a combination of the SAFT-VR approach with integral 

equation theory. Predictions for the thermodynamic properties and phase behavior of 

dipolar square-well monomer and chain fluids, in which one or more segments are 

dipolar, are considered and compared with new computer simulation data. In Chapter III, 

the SAFT-VR+D approach is extended to study associating dipolar fluids. Predictions for 

the thermodynamic properties and phase behavior of dipolar associating square-well 

monomers with one, two and four association sites are considered and compared with 

new isothermal-isobaric and Gibbs ensemble Monte Carlo simulations data. Finally, the 

model is applied to model water. In Chapter IV, a SAFT-VR approach is developed to 
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describe the PVT phase behavior of electrolyte fluids, in which the solvent molecules are 

explicitly described as dipolar associating molecules. Again NPT MC simulations are 

conducted to obtain simulation data to compare to the theoretical predictions. In Chapter 

V, the SAFT-VR equation is extended to model ionic liquids. The correlations and 

predictions of the thermodynamic properties for several ionic liquids studied are 

/or possess highly directional attractive forces 

such as hydrogen bonds, and the van der Waals’ approach tends to fail in such cases. In 

recent years, considerable effort has been made in the development of theories for fluids 

of associating chain molecules. The most successful theories for such systems originate 

in the seminal work of Wertheim [3-6]. The statistical associating fluid theory (SAFT) [7, 

39] is one such theory. The SAFT approach provides a molecular based EOS that has 

presented and directly compared to experimental data. Finally, concluding remarks are 

made and recommendation is discussed in Chapter VI. 

 

1.2 Background 

 

1.2.1 SAFT Equation of State 

The development of accurate equations of state firmly based in statistical mechanics is 

one of the main research fields in chemical engineering, since it allows for an accurate 

description of the thermodynamic properties of real substances. The first equation of state 

based on molecular theory was due to van der Waals (vdW). The vdW EOS, which 

introduces two basic molecular features such as molecular size and attractive interactions, 

gives a very good first approximation to the properties of real substances. However, some 

molecules are highly non-spherical and
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been used extensively to correlate and predict experimental results for a wide variety of 

substances. It is evident from even a brief overview of the recent literature that the SAFT 

equation is becoming one of the most accurate and versatile tools in the description of 

fluid phase equilibria. Excellent reviews of the SAFT EOS were recently published by 

Gubbins and Muller [40] and Economou [41]. 

 As reflected by Figure 1, a SAFT fluid can be considered to be a collection of 

monomers that can form covalent bonds; the monomers can interact via repulsive and 

dispersion forces, and, in some cases, association interactions. Since the SAFT EOS has a 

firm b rst 

advanta pment of SAFT, such as 

e chain and association terms, can be tested against molecular simulation results. In this 

way, the range of applicability of each term in the equation of state can be determined. 

The second advantage is that we can systematically refine the equation of state by making 

better approximations or by extending the theory. A third advantage is that the SAFT 

parameters have real physical meaning. For example, associating or hydrogen-bonding 

molecules are characterized by association energy and bonding volume (related to the 

change in entropy on association) [42] which can be determined from spectroscopy or 

from quantum mechanical calculations. 

asis in statistical mechanics, the theory offers several advantages. The fi

ge is that each of the approximations made in the develo

th
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F
A

d. One of 

ese augmented SAFT EOSs is the SAFT

=
r < σ ij

ij ij ≤ r < λijσ ij

0 if

⎧

⎨
⎪

⎩
⎪

 (1.2) 

is g

re treated via a 

igure 1: Schematic picture of formation of SAFT chain associating fluids. 
 collection of hard spheres which interact through dispersion interaction, 

and those hard spheres tangibly bond together to form chain molecules, then 
those molecules interact through association interaction. 

 

1.2.2 SAFT-VR Equation of State 

In the past decade, several versions of the SAFT equation have been propose

th -VR EOS [43, 44], which describes chain 

molecules formed from hard-core monomers with attractive potentials of variable 

attractive range (SAFT-VR), typically a square-well potential as given by equation (1.2).  

 uSW (r)
+∞ if
−ε if σij

r ≥ λijσ ij

The general form of the SAFT-VR Helmholtz free energy for associating chain molecules 

iven by equation 1.1. The addition of the non-conformal parameter characterizing the 

range of the potential greatly enhances the performance of the equation in describing the 

phase behavior of real systems. In this theory the dispersion interactions a
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se expansion, which provides a more rigorous cond-order high-temperature perturbation 

1.2.2.1 Ideal contribution 

The ideal contribution to the free energy is given by 

 

description of the thermodynamics than found in simpler versions of the SAFT approach, 

such as the SAFT-HS EOS [45] in which the mean-field approximation was used to 

describe the attractive interaction between monomer segments. Detailed expressions for 

each term of the equation 1.1 are presented in turn below. 

 

AIDEAL

NkBT
= ln ρΛ3( )− 1 (1.3) 

where ρ = / V is the number density of ch  molecules, N the number of molecules, V N ain

e volume of the system, and  the thermal

e as residual free energies.  

n 

o the monomer segments is 

th  de Broglie wavelength. Since the ideal term Λ

is separated out, the remaining terms ar

 

1.2.2.2 Monomer contributio

The contribution to the Helmholtz free energy due t

AMONO.

NkBT
= m

A
MONO .

NskBT
= maM  (1.4)  

where s  is the total number of square-well spherical monomers. WithiN n the high 

mperature perturbation theory of Barker and H

temperature 

te enderson, in the inverse of the 

β = 1 kBT , the isotropic term  is given by, 

  (1.5) 

 aM

  a
M = aHS + βa1

SW + β 2a2
SW
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The isotropic contribution to the free energy is expressed as in the SAFT-VR approach by 

ond perturbative terms associated with the isotropic attractive 

 
1 − η( )2

aHS , the free energy due to repulsive interactions between the hard cores, and a1
SW and 

aSW , the first and sec2

energy.  The expression of Carnahan and Starling is used for the hard sphere term 

aHS =
4η − 3η2

 (1.6) 

herew  η  is the packing fraction, defined as η = π 6( )ρsσ
3 . The first perturbative term of 

the me ractive energy corresponds to the average of the monomer-monomer 

interaction calculated with the hard sphere structure. Using the mean-value theorem we 

can obtain an expression for a1
SW in terms of an e

an att

ffective packing fraction ηeff evaluated at 

ontact [46], c

 a1
SW = −4ηε λ 3 − 1( )gHS 1;ηeff( ) (1.7) 

here the Carnahan and Starling equation of state is used to

( )=

w  evaluate gHS (1;η ) . eff

 eff

1
gHS 1;η

− ηeff 2

1 − ηeff( )3  (1.8) 

For range 1.1 ≤ λ ≤ 1.8 , the effective packing fraction ηeff is described by a function of η  

and λ , viz 

 ηeff (η,λ) = c1η + c2η
2 + c3η

3  (1.9) 

where the coefficients cn are given by 

 (1.10) 
c1

c2

c3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=
2.25855 0.249434 0.249434

−0.669270 −0.827739 −0.827739
10.1576 5.30827 5.30827

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
⎟

×
1
λ

λ2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
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The second perturbation term a2
SW  is obtained from the first density derivative of  

 aSW  within the local compressibility approximation 1

 a2
SW =

1
2

εK HSη
∂a1

SW

∂η
 (1.11) 

K HSwhere is the hard-sphere isothermal compressibility of Percus-Yevick (PY) 

 K HS =
1 − η( )4

1 + 4η + 4η2  (1.12) 

 
1.2.2.3 Chain contribution 

The contribution to the free energy due to chain formation from m dipolar square-well 

onomers is given by, 

 

m

ACHAIN

NkBT
= − m − 1( )ln ySW σ( ) (1.13) 

is the dipolar square-well monomer background correlation function evaluated at 

hard-core contact,  

 

SW r( )y

ySW r( )= exp βuSW r( )⎡⎣ ⎤⎦ gSW r( ) (1.14) 

where -VR 

quati gh-temperature perturbation expansion is used to determine the radial 

n for the square-well fluid 

 gSW r( ) is the pair distribution function for the square-well fluid. In the SAFT

e on, a hi

gSW r( ) distribution functio

 gSW r( )= gHS r( )+ βεg1 r( ) (1.15) 

 

 g σ

where the radial distribution function at hard-core contact is given by 

+

gSW (r)

( )= g σHS ( )+ βεg1 σ( )  (1.16) SW
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and g1 σ( ) can be obtained from a self-consistent calculation of the pressure using the 

Clausius virial theorem and the first derivative of the free energy with respect to the 

density. 

 
1.2.2.4 Association contribution 

Based on the theory of Wertheim, the contribution due to association for s sites on a 

molecule is obtained as [7]: 

 

  NkT
AASSOC

= (ln Xa − a

2
X

)
a=1
∑ +

2

s s
 (1.17)

 

 Xa =

b=1

s

∑

where the sum is over all s sites of type a on a molecule, and Xa is the fraction of 

molecules not bonded at site a:  

1

1+ ρXb∆a,b

 (1.18) 

The function ∆ , which characterizes the association between site a and site b on 

different molecules, can be written as 

 ∆ M (σ )  (1.19) 
where, g

a,b

a,b a,b

a ,b = Ka ,b fa ,bg
M(σ) is the contact value of the monomer-monomer radial distribution function, 

f = exp −ψ kT( )− 1 is the Mayer 
  

f function of the a-b site-site bonding interaction 

ψa,b, and Ka,b is the volume available for bonding [47]. 
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EQUATION OF STATE 

CHAPTER II 

 

PHASE BEHAVIOR OF DIPOLAR FLUIDS FROM THE SAFT-VR+D 

 

2.1 Introduction 

Anisotropic interactions can have a significant effect on the thermodynamic properties of 

fluids, both for fluids of simple spherical molecules such as water to chain-like molecules 

such as alcohols and ketones.  While many equations of state have been used to describe 

the thermodynamics of these systems, they often rely on effective parameters to describe 

the molecular interactions, and so have limited applicability beyond the fluids and state 

conditions to which the parameters were fitted.  In order to develop a truly predictive 

approach for the thermophysical properties and phase behavior of fluids the molecular-

level interactions need to be explicitly included into the equation of state.   

As discussed in Chapter I, while the SAFT equation in its many variations have 

been applied to the study of polar fluids, the molecular interactions between the 

molecules are typically taken into account in an effective way through the segment size 

and energy parameters [48-51]. In SAFT equations of state that have been specifically 

developed for polar fluids, dipolar and/or quadrupolar interactions are generally 

incorporated through the addition of the corresponding terms to equation 1.  For the 

dipolar term, both the µ-expansion proposed by Gubbins and Gray[52], which describes 

the interaction of dipolar hard sphere fluids using an angular pair correlation function, 

and the more rapidly converging Padé approximation of Stell and coworkers[53], have 

been widely adopted.  For example, Muller and Gubbins[50] applied the µ-expansion to 
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describe water as a hard, spherical, associating, dipolar fluid within Wertheim’s TPT 

theory, achieving good agreement with simulation and experimental data and in a SAFT 

like equation of state for alkanols and water Xu et al.[51] applied a Padé approximation 

to describe dipole-dipole interactions.   

A common feature of these equations of state is to treat non-spherical dipolar 

molecules as spherical dipolar fluids.  As a result, the orientation of the dipolar 

interaction and the possibility of multiple polar sites within a molecule cannot be taken 

into account.  In contrast, Jog et al. [54, 55] developed a SAFT EOS for tangent hard 

sphere chains with dipoles on alternate segments.  This approach was subsequently used 

by Tumakaka and Sadowski[56] to extend the PC-SAFT EOS to describe mixtures of 

non-dipolar and polar molecules. Dominik et al.[57] later compared Polar PC-SAFT in 

which the dipolar contribution of Jog is used with predictions using an alternate dipolar 

term due to Saggar and Fischer [58, 59], and found that while both approaches yield 

similar results the parameters for the original Polar PC-SAFT were more physically 

meaningful.  More recently, Gross and Vrabec [60] developed a contribution for dipolar 

interactions based on third order perturbation theory which uses simulation data for the 

vapor-liquid equilibria of the two-center Lennard-Jones plus point dipole fluid to 

determine the model constants. The proposed term has been incorporated into the PC-

SAFT equation of state and has been shown to improve the description of pure 

component and mixture phase equilibria for dipolar fluids over the original PC-SAFT 

approach.  

We note that in the SAFT EOS approaches summarized above, and to the best of 

our knowledge, in those reported in the literature to date, the inclusion of dipolar 
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contributions to the equation of state has been limited to adding a dipolar term to the free 

energy and therefore the structural impact of the dipolar interactions on the 

thermodynamics and phase behavior has not been considered. 

An alternative approach to using perturbation theory to describe dipolar fluids is 

 harmonic coefficients for dipolar spheres are in good agreement with simulation 

ata far from contact, but are too small at contact. Extensions, such as the optimized 

ndom phase approximation (ORPA) [64] and the exponential approximation (EXP) 

4], have been proposed to systematically improve the results of the MSA for the pair 

dipolar hard spheres.  In particular, the linearized version of the 

XP (LEXP), suggested by Verlet and Weis [63], provides considerable improvement for 

n over the MSA result at contact.  Subsequently, Adelman and 

through integral-equation theory.  Wertheim[61] solved the Ornstein-Zernike (OZ) 

equation using the mean spherical approximation (MSA) closure for dipolar hard spheres 

and provided analytical expressions for the thermodynamic and structural properties of 

the model. Patey and Valleau [62] and Verlet and Weis [63] subsequently performed 

computer simulations for the dipolar hard-sphere system and found that the theoretical 

MSA

d

ra

[6

correlation function of 

E

the pair correlation functio

Deutch [65] in a similar approach to Wertheim, solved the OZ equation for simple polar 

mixtures, in which the components are restricted to have equal diameters but may have 

different dipole moments.  Although other integral equation theories for dipolar fluids, 

such as the reference hypernetted chain approximation of Patey and co-workers [66-68], 

these do not provide analytical expressions and so require numerical solution methods. 

Here, we present an equation of state to model chain molecules with one or 

multiple dipolar sites embedded in specific segments of the chain through a combination 
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of the MSA theory for dipolar interactions and the statistical associating fluid theory for 

potentials of variable range (SAFT-VR). We refer to the resulting theory and EOS as 

SAFT-VR+D.  In our model, the dipolar square-well monomer fluid is chosen as the 

reference fluid within the framework of the SAFT approach. The potential of the 

reference state therefore consists of two parts: an isotropic square well potential and an 

anisotropic dipolar potential, for which we use the MSA and the SAFT-VR equation 

respectively. Although the solution of the MSA for dipolar fluids is approximate, it 

provides analytical expressions for the thermodynamic and structural properties, thus 

itt ich 

e effe  is explicitly described in the monomer and 

chain term

each segment and molecules in which dipole moments are embedded in specific 

ainder of the chapter is organized as follows: in section 2.2 we present the 

D model and theory for dipolar squa

 

perm ing the development of a SAFT-VR equation of state for dipolar fluids in wh

ct of the dipole on the phase behaviorth

s and not simply treated as a perturbation at the level of the monomer.  In this 

work, two specific systems are considered; molecules with a dipole moment embedded in 

segments.  

 The rem

SAFT-VR+ re-well fluids. In section 2.3, details of 

the molecular simulations performed are presented. Results for the phase behavior of 

pure dipolar square-well fluids are presented and compared with simulation results in 

section 2.4.  Finally, concluding remarks are made and future work discussed in section 

2.5. 
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2.2 Model and theory 

 

.2.1 Pure Chain Fluids 

e have developed an accurate equation of state to model dipolar square-well fluids 

through cal 

pproximation for dipolar fluids. As in the SAFT-VR approach, non-associating 

2

W

 a combination of the SAFT-VR approach and the generalized mean-spheri

a

molecules are described by four parameters; the size of the monomer segments σ , the 

depth ε  and range λ  of the square-well potential characterizing the attractiv ion 

tera ns between the monomer segments, and m which

segments tangentially bonded together in the model chain.  The inclusion of dipolar 

interactions into the SAFT-VR EOS introduces three additional parameters; the dipole 

moment 

e dispers

in  determines the number of ctio

µ  and the orientation of the dipoles which is determined by the azimuthal θ  and 

polar φ  angles of the inter-segm

 

e formed, as shown schematically in Figure 2. Each 

ent axis along r, as shown in Figure 1.[69]  

φ2

r

z θ1

φ1

θ2

 
Figure 2: The inter-d rdinate system, with polar axis along r 
[69]. 

 
In the SAFT-VR+D approach, the reference fluid is a dipolar square-well fluid 

with the dipole embedded in the center of the segment from which chain molecules of m 

tangentially bonded segments can b

ipole site coo
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se t has a hard-core diameter gmen σ  and interacts through an intermolecular potential of 

the form 

 u rω1ω2( )= u HS r;σ( )− εφSW r;λ( )+ uDIPOLE rω1ω2( )  (2.1) 

ere,  is the vector between the center of the  and ω = θ ,φ( ) is = rH two monomers, r r i i i

al consis a

  (2.2) 

and an attractive square-well interaction of depth 

the set of angles defining the orientation of the dipole in monomer i (see Figure 1).  As in 

the SAFT-VR equation the monomer-monomer isotropic potenti t of  hard 

sphere repulsive interaction u HS , defined by 

uHS r;σ( )=
∞ r < σ
0 r > σ

⎧
⎨
⎩

−ε  and shape  where φSW (r;λ) , λ  is a 

 forces, viz  

 
⎧
⎨  (2.3) 

parameter associated with the range of the attractive

σ < r < λσ
φ SW r;λ( )=

1
0 r > λσ⎩

 

 

 
Figure 3: Schematic showing the molecular model used to describe a chain 
fluid with dipole moments embedded in some segments. 

 

 The dipole-dipole potential is a long-range anisotropic interaction, which can be 

expressed as, 

 uDIPOLE rω1ω 2( )= −
2µ

r3 D n1n2
)r( ) (2.4) 
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where 

  D n1n2
)r( )= 3 n1 ⋅ )r( ) n2 ⋅ )r( )− n1 ⋅ n2  (2.5) 

Here  
)r  is the unit vector in the direction of r joining the center of the segments (Figure 

) an is a unit vector parallel to the dipole m

in the SAFT fram

fr

1 oment of segment i .  d ni

With ework, the Helmholtz free energy A for N chains formed 

om m spherical segments, which in this work refers to spherical dipolar square-well 

segments, can be written in the form 

 
A

NkBT
=

AIDEAL

NkBT
+

AMONO

NkBT
+

ACHAIN

NkBT
 (2.6) 

where is the free energy of the ideal fluid,  is the contribution due to the 

ipolar square-well monomer, and  represents th

formation.  We have not included the contribution due to association interactions, as only 

 In order to understand the nature of the MSA solution and its relevance to the 

current problem, we need to examine it briefly.  The MSA for dipolar hard spheres arises 

from the exact Ornstein-Zernike equation for linear molecules, given by 

( )

AIDEAL AMONO

d e free energy due to chain ACHAIN

non-associating (i.e. hydrogen bond type association interactions) dipolar chain 

molecules are considered in this first extension of the theory. 

ρ
 h rω1ω 2 1ω 2 +( )= c rω

4π
h r12ω1ω 3∫ c r23ω 3ω 2 dr3dω 3  (2.7) 

where h rω1ω 2( ) and c rω1ω 2( ) are  the total and direct correlation functions 

respectively.  The total correlation function is related to the pair distribution function 

g rω ω( ) by h rω ω( )= g rω ω( )− 1 .  The MSA closure for a hard c

( ) ( )

2 2 ore potential 1 2 1 1

states that  
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h rω(
 

c rω1ω 2( )

)= −1 r < σ

= −
B

1ω 2

1
k T

u rω1ω 2( ) r > σ
 (2.8) 

Hence, the MSA for dipolar hard spheres becomes  

 

 

h rω1ω 2( )= −1 r < σ

c rω1ω 2( )=
Tr

µ2

kB
3 D n1n2r( ) r) > σ

 (2.9) 

ertheim [61] showed that with this closure th

 

W e total and direct correlation functions for 

dipolar hard spheres in the MSA can be written in the simplified form, 

h rω1ω 2( )= h r( )+ h∆ r( )∆ n1n2( )+ hD r( )D n1n2
)r( )s

 
c rω1ω 2( )= cs r( )+ c∆ r( )∆ n1n2( )+ cD r( )D n1n2

)r( )

where ∆ n1n2( )= n1 ⋅ n2  and hs r

 (2.10) 

( ),  h∆ r( ) and hD r( ) and the corresponding direct 

correlation quantities are functions of r only. Moreover, within the MSA, 

h r( ) and c r( )  are gis s ven b k (PY) hard-sphere values, and 

 are calculated from functions arising from 

approximation for hard spheres.  We point out, however, that much of the Wertheim 

solution holds true in more general cases.  For example, consider the dipolar square-well 

fluid in the generalized MSA (GMSA):[70, 71]  

ω( )= −1 r < σ

c rω1ω 2( )= cSW r( )+
kBTr 3

y their Percus-Yevic

h the solution of the PY ∆ r( ) and hD r( )

 
1 2

µ2

 

h rω

D n1n2r( ) r > σ
(2.11) 

where  is the direct correlation for the square-well fluid (i.e., the usual, non-

dipolar square-well fluid).  With this GMSA closure, the solution of the Ornstein-Zernike 

equation is given by 

)  

cSW r( )
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D n1n2
)r

 

hDSW rω1ω 2( )= hSW r( )+ h∆ r( )∆ n1n 2( )+ hD r( ) ( )
cDSW rω1ω 2( )= cSW r( )+ c∆ r( )∆ n1n2( ) D 1 2

 are the correlation functions for the square-well fluid and 

D

This is because the GMSA closure on these quantities is the same as that for the MSA 

dipolar hard sphere case, namely 

+ c r( )D n n )r( )
 (2.12) 

where now hSW r( ) and cSW r( )

h ( ) and h r( ) are again obtained in terms of hard-sphere Percus-Yevick quantities.  ∆ r

h∆ r( ) = 0 r < σ
hD r( ) = 0 r < σ
c∆ r( ) = 0 r > σ

2

  (2.13) 

cD r( ) =
kBTr 3

µ
r > σ

Note that hSW r( ) and cSW r( ) can be the exact such quantities or those calculated by some 

approximate theory (such as perturbation theory).  Hence, within the GMSA, the pair 

distribution function gDSW rω1ω 2( ) and Helmholtz free energy of dipolar square-well 

monomers are given by, 

 

gDSW rω1ω 2;ρ,T( )= gSW r;ρ,T( )+ h∆ r;ρ,T( )∆ n1n2( )+ hD r;ρ,T( )D n1n2
)r( )

ADSW r;ρ,T( )= ASW r;ρ,T( )+ ADIPOLE rω1ω 2;ρ,T( )
  (2.14) 

wher  gSW r( ) is the radial distribution function of the square-well monomer fluid and the 

state dependence of the quantities on 

e

ρ  and T  is explicitly shown. Detailed expressions 

for each new term of the SAFT- VR+D equation are presented below, while those in 

common with the original SAFT-VR equation are given in the section 2 of Chapter I. 
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2.2.1.2 Monomer contribution 

he contribution to the Helmholtz free energy due to the monomer segments is 

 
AMONO.

T

= m
A

MONO .

s BN k T
= maM  (2.15) 

NkBT

where  is the total number of dipolar spherical monomers.  Within the GMSA the 

excess Helmholtz free energy per monomer , is given by 

1 2
SW

  

where  describes the contribution to the free energy due to the anisotropic dipolar 

inte nd the isotropic term  is given by equations (1.5) in section 1.2. 

interactions is given by 

Ns

aM

 
= aDIPOLE + aHS + βaSW + β 2a

aM = aDSW = aDIPOLE + aIsotropic

aDIPOLE

raction a  aIsotropic

The contribution to the free energy due to the dipolar interaction is obtained from 

Wertheim’s solution of the Ornstein-Zernike equation for dipolar hard spheres with the 

MSA closure as given by equation (2.9) [61]; the excess free energy due to the dipolar 

aDIPOLE = −
8
η

ξ2 1+ ξ( )2

1−
 

2ξ)4(
+

2 − ξ( )2

8 1+ ξ( )4

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (2.16) 

ξ = κη  and where  is the scaling parameter.  κ κ  is determined by y, the so-called 

rength of the dipolar effect [61]  st

 3y = qPY κη( )− qPY −κη( ) (2.17) 

and is a dimensionless function of density ρ , temperature β  and dipole moment µ  

y =
4π
9

ρβµ 2  (2.18) 

 is the dimensionless inverse compressibility of Percus-Yevick (PY), given by [61] qPY
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qPY η( )=
1+ 2η( )2

1− η( )4  (2.19) 

2.2.1.3 Chain contribution 

 by, 

The contribution to the free energy due to chain formation from m dipolar square-well 

monomers is given

ACHAIN

NkBT
= − m − 1( )ln yDSW σω1ω 2( ) (2.20)  

y 1 2 )  is the dipolar square-well monomer background correlation function 

evaluated at hard-core contact,  

DSW (σω ω

yDSW rω1ω 2;ρ,T( )= exp βuDSW rω1ω 2( )⎡⎣ ⎤⎦ gDSW rω1ω 2;ρ,T( )  (2.21) 

where ω ;ρ,T( ) is the pair distribution function for the dipolar square-well fluid 

and obtained from the GMSA (equation (2.14)). In the SAFT-VR equation, a high-

temperature perturbation expansion is used to determine the radial distribution function 

gDSW rω1 2  

SW r( ) for the square-well fluid g

 gSW r( )= gHS r( )+ βεg1 r( ) (2.22) 

where the radial distribution function gSW (r)  at hard-core contact is given by 

 gSW σ +( )= gHS σ( )+ βεg1 σ( )  (2.23) 

g1 σ( )and  can be obtained from a self-consistent calculation of the pressure using the 

Clausius virial theorem and the first derivative of the free energy with respect to the 

density. 

 When compared with the Monte Carlo simulation data of Verlet et al. [63], 

Wertheim’s solution with the MSA closure underestimates the spherical harmonic 
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coefficients at contact.  As discussed in the introduction, extensions such as ORPA, EXP 

and LEXP have been suggested to improve the description of structural properties. 

Among them, the LEXP approximation is the most attractive; the LEXP h∆ r;ρ,T( ) and 

h r;ρ,T( ) appear the most accurate in comparison with the simulation data, though the 

h

  ∆

D

LEXP result for  shows little improvement over the MSA

LEXP approximation, the radial distribution function of the square-well monomer is 

given by 

r;ρ,T

s r( )  results.  Within the 

gDSW rω1ω 2;ρ,T( )= gSW r;ρ,T( ) 1+ h ( )∆ n n1 2( )+ h r;ρ,T( )D n nD 1 2
)r( )( )(2.24) 

The spherical harmonic coefficients, h∆ r;ρ,T( )and hD r;ρ,T( ), can be obtained from the 

analytic solution of the PY approximation for the hard sphere fluid as 

 

h∆ r;η,T( )= −2κ hPY −κη,r( )− hPY 2κη,r( )( )

h r;η,T( )= κ
hPY −κη,r( )+ 2hPY 2κη,r( )

rr

⎛
⎜

⎞
⎟

 (2.25) 
D − hPY −κη,r '( )dr '− 2 hPY 2κη,r '( )dr '

0∫0∫⎝⎜ ⎠⎟

e note that is a function of temperature, which is determined by the strength of the W κ

dipolar effect as given by equations (2.17), (2.18) and (2.19). The spherical harmonic 

coefficient hPY ρ;r( )is obtained by solving the OZ equation with the PY closure by 

introducing the dimensionless quantities x = r / σ and q x
PY

( )= q x
PY

( )/ σ 2  

xhPY x( )= −q
PY

' x( )+ 12η dx '
0

1

∫ qPY x '( ) x − x '( )hPY x − x '( ) (2.26)  

dq
PY

x( )
dx . for all x ≥ 0 , where q

PY

' x( )≡ q
PY

(x) is given by 

 q
PY

x( )=
1
2

a x2 − 1( )+ b x − 1( )
0

x ≤ 1⎧
x ≥ 1⎨

⎩
 (2.27) 
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For x < 1,  

 q
PY

' x( )= ax + b  (2.28) 

where 

 

1
a =

+ 2η
1− η( )2

b = −
2 1− η( )2

3η
 (2.29) 

hPY ρ;r( ) at contact can be obtained by setting x = 1+The analytic expression of  in 

equations (2.26) and (2.27) 

 hPY η,σ( )=
η 5 − 2η( )
2 1− η( )2  ( .30) 

Both the LEXP approximation and GMSA are considered in the SAFT-VR+D equation 

ete mine the thermodynamic properties and phase behavior from the Helmholtz free 

energy of dipolar fluids using standard thermodynamic relations. 

 

While the expressions given above treat chain molecules formed from dipolar square-

molecules that contain segments with different strength and orientation of dipole 

mixtures with equal hard sphere radii and differing dipole moment, in which the structure 

2

to d r

2.2.2 Chains with Mixed Dipole Moments 

well segments, each having the same dipolar strength, we can also consider chain 

moments.  

Adelman and Deutch [65] provided an exact solution to the MSA for simple polar 

and thermodynamic properties are completely determined from the pure dipolar fluid 
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result of Wertheim using an effective density ρ̂  and dipole moment µ̂ . Substituting the 

effective density and dipole moment into equations (2.16) and (2.25), the Helmholtz free 

energy 

 versa. This is a direct result of the linearity in the MSA 

approximation between the direct correlation function and the dipole-dipole interaction as 

ence, in the limiting case of a diatomic dipolar molecule in 

and radial distribution function due to dipolar interactions can easily be obtained 

for chain molecules with mixed dipole moments. The limiting case of chain molecules 

composed of a mixture of dipolar and non-dipolar segments can also be studied. In their 

solution of the MSA Adelman and Deutch [65] determined that the pair correlation 

function of the non-dipolar segments are unaffected by the presence of the dipoles on 

dipolar segments, and vice  

shown in equation (2.9).  H

which the dipole moments of one and/or two of the segments µ  and/or µ ji are zero, the 

anisotropic component of the direct correlation function of the dipolar hard sphere and 

non-dipolar hard sphere is zero. Accordingly, within the GMSA, the pair distribution 

function  for a square-well diatomic molecule consisting of one dipolar 

segment (sphere 1) and one non-dipolar segm

distribution function of non-dipolar molecules 

gDSW rω1ω 2( )

ent (sphere 2) reduces to the pair 

gSW r( ) for 3 ( g g ) out of the 4 

ly, the Helmholtz free energy due to 

hain formation in the SAFT-VR+D EOS for chain molecules consisting of dipolar and 

 
T

g12 , 21, 22

possible pair correlation functions. Corresponding

c

non-dipolar segments is given by 

ACHAIN

NkB

= − m − ′m − 1( )ln ySW σ( )− ln yij
DSW σω iω j( )

bonded dipole pairs ij
∑  (2.31) 

where  is the num r of bo between two dipolar spheres (i.e., equal to the number 

of terms in the sum) Hence in the etero- FT-V proac 72] the Helmholtz 

be nds 

.  , as  h SA R ap h [

′m
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free energy directly r cts th cture  the c ns thr  expl t depen nce on the 

magnitudes and relative orientation of di les in ghbo ents. 

 

2.3 Computer Simulations 

Monte Carlo simulations have been performed to study the therm mic properties of 

dipolar squ -well m er and chain fluids. The sim ons w perfo ed in both 

the isother -isoba (NPT  Gib  ensem es.  molecular and non-bonded 

intramolec intera ns, ex  for rest n hbor

account through the dipolar squa quation (2.1).  The reaction 

field [73-76] method, which has been shown to be adequate to calculate vapor-liquid 

phase b to deal with 

the long-range dipolar interactions. The reaction field approach replaces the molecules 

beyond a cut-off distance by a dielectric continuum, the effect of which is taken into 

account by including a new term into the dipolar potential, viz [78] 

 

efle e stru  of hai ough ici de

po nei ring dipolar segm

odyna

are onom ulati ere rm

mal ric ) and bs bl Inter

ular ctio cept nea eig s along the chain, are taken into 

re well potential given by e

ehavior for systems with long-range dipolar potentials [77], is applied 

udipole =
−

µ1µ2

r3
⎛
⎝⎜

⎞
⎠⎟

D −
2 εRF − 1( )
2εRF + 1

µ1µ2

rc
3

0

⎧

⎨
⎪

⎩
⎪

r < rc

r ≥ rc

 (2.32) 

where is the cut-off distance beyond which the pair potential vanishes and rc εRF  the 

dielectric constant of the continuum. In the simulations, the value of  is set torc 2.5σ , and 

εRF to .  In both the NPT ensemble and GEMC simulations, the usual periodic 

boundary conditions and minimum image convention are used.  In the NPT ensemble 

simulations, one cycle consists of three kinds of trial moves: N trial displacements of 

randomly chosen molecules, N trial rotations and one volume change.  The extent of each 

trial move is adjusted to give an individual acceptance probability of 30 - 40%.  In the 

∞
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GEMC simulations, particle exchanges between two phases are performed in addition to 

the three trial moves described above.  The traditional Widom particle insertion method is 

used to achieve particle exchanges. Each simulation was started from an initial 

co gu ace o  

initial simu s w s p rf  

bef re e d 0 n  

properties o em le a er  

determi

B fo ell luid  o  

the cc alculated the coexistence curve of several 

Stockma r e a d t  r  

long-range dipolar interactions. Good agreemen wa o  

and co-w r e l g- n  

Ew ld su m

 

2.4 esu s

We hav s ver  d ol  

(system 1 - 4), several dipolar diatom ids ith   

(system -  

14). The details of these systems are listed in T ble .  

the theoretical predictions and NPT and Gibbs ensemble simulation data in order to 

validate and test the predictive ability of the SAFT-VR+D EOS for dipolar monomer and 

nfi ration in which 128 molecules are pl d n a lattice in the simulation box.  An

lation of 100,000 - 500,000 cycle a e ormed to equilibrate the system,

o av raging for between 500,000 an 2, 00,000 cycles. The thermody amic

f the system were obtained as ens b v ages and the errors estimated by

n gin  the standard deviation. 

e re studying the dipolar square-w  f s f interest in this work, to check

 a uracy of our simulation code, we c

ye  fluids using the GEMC techniqu n he eaction field method to treat the

t s btained with the results of Smit

 o kers [79], who accounted for th on ra ge dipolar interactions with the

a m ation method. 

 R lt  and discussion 

 e tudied the phase behavior of se al ip ar square well monomer fluids

ic flu w  a dipole moment in each segment

5  12) and dipolar triatomic fluids with one non-dipolar segment (system 13 -

a  1  Comparisons are made between
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chain molecules. The numerical results of the NPT simulations are reported in Tables 2 - 

5 and those of the GEMC simulations in Table 6.  

 

Ta e s e la are ell o
 

σ  

bl 1:Model parameter  for th  dipo r squ  w m nomer and chain fluids studied. 

System   ε＊ λ * m µ*
1( )2

 µ*
2( )2

 µ*( 3)2
 

1 1 1.5 1 1 0.5 - - 

2 1 1.5 1 1 1.0 - - 

3 1 1.5 1 1 2.0 - - 

4 1 1.8 1 1 1.0 - - 

5 1 1.5 1 2 0.5a 0.5a - 

6 1 1.5 1 2 0.5b 0.5b - 

7 1 1.8 1 2 0.5a 0.5a - 

8 1 1.8 1 2 0.5b 0.5b - 

9 1 1.5 1 2 1.0a 0.5a - 

10 1 1.5 1 2 1.0b 0.5b - 

1  1 1 1.5 1 2 0.5b 0.5a - 

1  2 1 1.5 1 2 1.0b 1.0a - 

1  3 1 1.5 1 3 1.0a 1.0a 0.0 

14 1 1.5 1 3 1.0b 1.0b 0.0 
a rep p l e  per end uresents aralle  dipole mom nts, b p ic lar dipole moments 

 27



Table 2: NPT MC simulation results for the monomer dipolar fluids studied (systems 1 – 
4). The reduced temperature is given byT * = kT / ε1 , the pressure by , and 
the energy is defined per segment as

P* = Pσ1
3 / ε1

E* = E / Nsε1 . 
 

 

 

 

 

Sys. T* P* η y  E* E* S s. T* P* η
1 1.0 0.2709 0.361 0.009 . 3  0.015 -6.42 0.31 -5.67 0 18  1.4 0.3998 0.325
  1.4247 0.4 2 0  .  0.010 -7.22 0.24 
  3.2068 0.4 8 0.007 .  0.007 -8.05 0.19 
 1.2 0.2607 0.308 0  .  0.007 -8.67 0.18 
  0.9319 0.3 7 0  .  0.013 -6.01 0.27 
  2.4438 0.402 0.007 .  0.010 -6.93 0.23 
  4.6508 0.4 8 0.007 .  0.008 -7.76 0.21 
 1.4 0.6980 0.3 9 0  .  0.007 -8.40 0.19 
  1.6034 0.355 0.010 .  0.014 -5.32 0.29 
  3.4747 0.4 1 0.008 .  0.010 -6.46 0.26 
  6.1063 0.439 0.007 .  0.009 -7.41 0.21 
 1.6 1.1400 0  0  .  0.009 -8.08 0.21 
  2.2812 0.3 3 0.009 .  0.012 -5.13 0.26 
  4.5127 0.4 0 0  .  0.010 -6.02 0.23 
  7.5688 0.440 0.007 .  0.008 -7.20 0.20 

2 1.0 0.1114 0.3 5 0.011 .  0.007 -7.90 0.18 

0 .008 -6.22 0 16   1.2344 0.368
3 -6.64 0 14   3.0338 0.412

.015

.0 0
-4.67 0 23   5.6074 0.448

5 1 -5.49 0 17  1.6 0.8584 0.315
-6.10 0 16   1.9303 0.364

3 -6.51 0 15   4.0910 0.409
0 .013 -4.64 0 22   7.0897 0.446

-5.33 0 17  1.8 0.9291 0.286
0 -5.98 0 16   2.1609 0.347

-6.44 0 14   4.6056 0.399
.304 .011 -4.51 0 21   7.9677 0.438

5 -5.26 0 16  2.0 1.2979 0.283
0 .007 -5.90 0 15   2.7495 0.335

-6.37 0 11   5.5369 0.396
6 -6.12 0 19   9.3085 0.438

  1.2336 0.4 4 0  . 4  0.013 -7.78 0.31 0 .008 -6.70 0 15  1.6 0.2207 0.316
  2.9901 0.4 1 0.007 .  0.010 -8.79 0.23 
 1.2 0.1428 0.3 3 0.016 .  0.009 -9.94 0.22 
  0.7840 0.358 0  .  0.008 -10.81

4 -7.20 0 12   1.2256 0.363
1 -5.13 0 26   3.2759 0.414

.010 -5.84 0 18   6.0884 0.456  0.20 
  2.2650 0.4 3 0.00  .  0.011 -7.47 0.26 
  4.4469 0.4 0 0.007 .  0.010 -8.52 0.23 
 1.4 0.5893 0.3 8 0.014 .  0.009 -9.47 0.21 
  1.4658 0.356 0.009 -5.67 0.17   8.9901 0.450 0.007 -10.33

0 8 -6.51 0 15  2.0 1.0840 0.310
4 -7.01 0 13   2.5606 0.359
0 -4.92 0 23   5.3308 0.406

 0.19 
  3.3072 0.403 0.009 -6.38 0.15  2.4 2.0048 0.305 0.011 -7.25 0.26 
  5.9143 0.440 0.007 -6.88 0.13   3.9679 0.355 0.010 -8.29 0.23 
 1.6 1.0668 0.309 0.013 -4.98 0.23   7.4716 0.405 0.008 -9.30 0.20 
  2.1874 0.357 0.010 -5.75 0.18   11.9877 0.448 0.007 -10.13 0.19 
  4.3971 0.402 0.008 -6.43 0.15  2.8 2.9060 0.303 0.011 -7.11 0.26 
  7.4351 0.441 0.007 -6.94 0.13   5.3495 0.353 0.008 -8.16 0.21 
         9.5795 0.403 0.008 -9.17 0.19 
         14.9459 0.444 0.007 -9.96 0.18 
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Table 3: NPT MC simulation results for the diatomic dipolar fluids studied (systems 5 - 
10). See Table 1 for details.  
 

Sys. T* P* η E* Sys. T* P* η E* 
5 1.0 0.3721 0.410 0.006 -5.54 0.09 8 2.0 0.7107 0.357 0.008 -7.86 0.18 
  1.8525 0.443 0.005 -5.94 0.08   2.9407 0.406 0.006 -8.88 0.15 
 1.2 0.0525 - 0.13  6.13 90.367 0.009 4.84  22 0.44  0.005 -9.73 0.13 
  1.1806 0.408 0  0.006 -5.40 .10  2.4 0.3873 0.307 0.009 -6.68 0.21 
  3.0368 0.442 0.005 0-5.82 .08   1.7620 0.353 0.007 -7.67 0.17 
 1.4 0.5640 0.362 00.009 -4.69 .13   4.6134 0.403 0.006 -8.70 0.15 
  2.0010 0.406 0.006 0-5.31 .10   8.5541 0.446 0.005 -9.52 0.13 
  4.2329 0.442 0  0.005 -5.75 .07  2.8 1.0455 0.304 0.009 -6.54 0.20 
 1.6 0.3239 0.308 00.012 -3.87 .17   2.8189 0.353 0.007 -7.58 0.17 
  1.0817 0.358 0.008 0-4.57 .12   6.2931 0.403 0.006 -8.59 0.15 
  2.8285 0.404 0.006 0 3-5.22 .10   10.983 0.445 0.005 -9.40 0.12 
  5.4361 0.442 0  0.005 -5.69 .08  3.2 1.7063 0.303 0.008 -6.45 0.19 

6 1.2 0.8442 0.4  0.0 6 .04 0 -5.72 0 11   3.8792 0.351 0.007 -7.49 0.16 
  2.6833 0.4  0.0 5 .41 0 -6.21 0 09   7.9769 0.402 0.007 -8.50 0.15 
 1.4 0.2966 0.3  0.0 0 . 954 1 -4.85 0 16   13.416 0.444 0.005 -9.31 0.13 
  1.6745 0. 0 . 9  403 .006 -5.58 0 11  1.2 0.9137 0.403 0.006 -5.43 0.11 
  3.8872 0.4  0.0 5 .40 0 -6.09 0 09   2.7443 0.439 0.005 -5.90 0.08 
 1.6 0.1430 0.2  0 .  93 .013 -3.91 0 19  1.4 0.3591 0.352 0.009 -4.62 0.14 
  0.8191 0.3  0.0 8 .53 0 -4.74 0 14   1.7418 0.402 0.006 -5.33 0.10 
  2.5093 0.4  0.0 6 .02 0 -5.47 0 11   3.9480 0.439 0.005 -5.81 0.08 
  5.0964 0.4  0 .  40 .005 -6.00 0 09  1.6 0.1865 0.290 0.015 -3.70 0.20 
 1.8 0.4678 0.2  0.0 2 .95 1 -3.83 0 18   0.8800 0.351 0.008 -4.52 0.13 
  1.3444 0.3  0.0 8 .52 0 -4.65 0 14   2.5753 0.401 0.006 -5.25 0.10 
  3.3471 0.4  0 .01 .006 -5.38 0 11   5.1574 0.439 0.005 -5.75 0.08 
  6.3089 0.4  0.  .  40 0 50 -5.92 0 09  1.8 0.5116 0.297 0.012 -3.71 0.17 

7 2.0 0.9915 0.361 0.008 0-7.75 .17   1.4044 0.351 0.008 -4.47 0.13 
  3.2433 0.409 0.006 0-8.70 .14   3.4125 0.400 0.006 -5.18 0.10 
  6.4371 0.451 0.006 -9.48 0.13   6.3703 0.440 0.005 -5.70 0.08 
 2.4 0.6117 0.315 0.009 -6.70 0.20 10 1.2 0.7878 0.408 0.007 -6.21 0.13 
  2.0353 0.358 0.008 -7.59 0.17   2.6037 0.444 0.005 -6.72 0.10 
  4.9118 0.407 0.006 -8.55 0.13  1.4 0.2655 0.360 0.009 -5.28 0.15 
  8.8584 0.448 0.006 -9.32 0.13   1.6298 0.406 0.006 -6.01 0.12 
 2.8 1.2649 0.008 -6.548 0.19 0.31   3.8213 0.443 0.005 -6.53 0.11 
  3.0867 0.007 -7.503 0.15 0.36  1.6 0.1211 0.302 0.015 -4.30 0.22 
  6.5881 0.006 -8.454 0.13 0.40   0.7974 0.358 0.009 -5.12 0.16 
  11.2869 0.006 -9.222 0.13 0.45   2.4750 0.404 0.006 -5.85 0.13 
 3.2 1.9221 0.309 0.009 -6.46 0.19   5.0427 0.442 0.005 -6.40 0.10 
  4.1429 0.355 0.007 -7.41 0.15  1.8 0.4541 0.303 0.012 -4.18 0.19 
  8.2693 0.404 0.006 -8.38 0.13   1.3309 0.356 0.008 -4.99 0.15 
  13.7198 0.445 0.005 -9.14 0.12   3.3221 0.404 0.006 -5.74 0.12 
     6.2661 0.442 0.005 -6.30 0.11 
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Table 4: NPT MC simulation results for diatomic fluids with different orientation of 
dipole moments (systems 11 - 12). See Table 1 for details. 

System T* P* η E* 

 

11 1.2 0.9646 0.404 0.006 -5.48 0.10 
  2.  0.440 5 -5.95 .08 

12 

8011  0.00  0
 1.4 0.4001 0.356 0.009 -4.70 0.14 
  1.7903 0.403 0.006 -5.37 0.10 
  4.0025 0.440 0.005 -5.86 0.08 
 1.6 0.2181 0.298 0.014 -3.82 0.18 
  0.9190 0.355 0.009 -4.60 0.14 
  2.6218 0.402 0.006 -5.29 0.10 
  5.2098 0.441 0.005 -5.80 0.09 
 1.8 0.5415 0.298 0.011 -3.74 0.17 
  1.4417 0.353 0.008 -4.52 0.13 
  3.4571 0.402 0.006 -5.23 0.10 
  6.4208 0.441 0.005 -5.74 0.09 

1.2 0.8322 0.409 0.007 -6.06 0.12 
  2.6495 0.444 0.005 -6.56 0.10 
 1.4 

1.6 

1.8 

0.2993 0.360 0.008 -5.16 0.15 
  1.6669 0.407 0.006 -5.89 0.12 
  3.8606 0.442 0.005 -6.40 0.10 
 0.1449 0.299 0.014 -4.15 0.20 
  0.8254 0.359 0.008 -5.02 0.15 
  2.5066 0.405 0.006 -5.74 0.12 
  5.0766 0.443 0.005 -6.30 0.10 
 0.4737 0.302 0.012 -4.08 0.19 
  1.3544 0.355 0.008 -4.88 0.14 
  3.3491 0.404 0.006 -5.65 0.12 
  6.2955 0.442 0.005 -6.20 0.10 
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Table 5: NPT MC simulation results for diatomic fluids with different orientation of 

 

 

System T* P* η E* 

dipole moments (systems 11 - 12). See Table 1 for details. 

11 1.2 0.9646 0.404 0.006 -5.48 0.10 
  2.8011 0.440 0.005 -5.95 0.08 

  1.7903 0.403 0.006 -5.37 0.10 

 1.6 0.2181 0.298 0.014 -3.82 0.18 

  2.6218 0.402 0.006 -5.29 0.10 

 1.8 0.5415 0.298 0.011 -3.74 0.17 

 1.4 0.4001 0.356 0.009 -4.70 0.14 

  4.0025 0.440 0.005 -5.86 0.08 

  0.9190 0.355 0.009 -4.60 0.14 

  5.2098 0.441 0.005 -5.80 0.09 

  1.4417 0.353 0.008 -4.52 0.13 
  3.4571 0.402 0.006 -5.23 0.10 
  6.4208 0.441 0.005 -5.74 0.09 

12 1.2 0.8322 0.409 0.007 -6.06 0.12 
  2.6495 0.444 0.005 -6.56 0.10 

  0.443
1.8  0.302

 1.4 0.2993 0.360 0.008 -5.16 0.15 
  1.6669 0.407 0.006 -5.89 0.12 
  3.8606 0.442 0.005 -6.40 0.10 
 1.6 0.1449 0.299 0.014 -4.15 0.20 
  0.8254 0.359 0.008 -5.02 0.15 
  2.5066 0.405 0.006 -5.74 0.12 
 5.0766  0.005 -6.30 0.10 
 0.4737  0.012 -4.08 0.19 
  1.3544 0.355 0.008 -4.88 0.14 
  3.3491 0.404 0.006 -5.65 0.12 
  6.2955 0.442 0.005 -6.20 0.10 
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Table 6: NPT MC simulation results for the triatomic fluids studied (systems 13 - 14). 

 
See Table 1 for details. 

 

System T* P* η E* 
13 1.6 0.6205 0.362 0.007 -4.39 0.11 

  2.1968 0.408 0.006 -5.05 0.09 
  5.4991 0.455 0.004 -5.65 0.06 
 1.8 0.2949 0.305 0.010 -3.57 0.13 
  1.0942 0.358 0.007 -4.30 0.10 
  2.9655 0.407 0.005 -4.99 0.08 
  6.7409 0.456 0.004 -5.60 0.06 
 2.0 0.5857 0.308 0.009 -3.56 0.13 
  1.5699 0.358 0.006 -4.25 0.10 
  3.7365 0.406 0.005 -4.94 0.08 
  7.9847 0.451 0.004 -5.57 0.07 
 2.2 0.8773 0.306 0.009 -3.48 0.13 
  2.0469 0.357 0.006 -4.20 0.10 
  4.5089 0.405 0.005 -4.89 0.08 
  9.2300 0.454 0.004 -5.52 0.06 

14 1.6 0.3556 0.353 0.008 -4.86 0.14 
  1.8608 0.403 0.005 -5.62 0.11 
  5.1151 0.451 0.004 -6.29 0.08 
 1.8 0.1171 0.297 0.011 -3.88 0.16 
  0.8380 0.351 0.008 -4.73 0.14 
  2.6410 0.399 0.005 -5.49 0.10 
  6.3691 0.452 0.004 -6.21 0.08 
 2.0 0.4110 0.300 0.010 -3.80 0.15 
  1.3202 0.354 0.007 -4.62 0.13 
  3.4209 0.400 0.005 -5.39 0.10 
  7.6229 0.451 0.004 -6.09 0.08 
 2.2 0.7049 0.301 0.009 -3.74 0.14 
  1.8023 0.351 0.007 -4.55 0.13 
  4.2007 0.402 0.005 -5.33 0.10 
  8.8765 0.454 0.004 -6.02 0.08 
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 In Figure 3, we present comparisons of the SAFT-VR+D predictions with 

molecular simulation results for the PVT behavior of monomer fluids with different 

dipole moments (systems 1 – 3). From the Figure we see that the system with the highest 

reduced dipole moment (system 3) exhibits the highest density at a given pressure and 

temperature, as would be expected due to the increase in attractive interactions between 

the molecules.  We observe good agreement between the simulation results and 

theoretical predictions over a wide range of temperatures and pressures for systems 1 and 

2, however the SAFT-VR+D EOS is seen to slightly under-predict the density at a given 

temperature and pressure for system 3, which has the highest value of the reduced dipole 

moment.   

In order to obtain a more comprehensive understanding of the thermodynamic 

properties of the systems studied and further test the SAFT-VR+D approach, we also 

determined the fluid phase diagram for systems 1 and 2. The results are presented in 

Figure 4 along with the phase diagram for a non-dipolar square-well fluid with the same 

model parameters (i.e., ε* = 1.0 , λ = 1.5 , σ* = 1.0 ) for comparison.  From the Figure 

we see that as the dipole moment increases the critical temperature of the system 

increases, due to the increase in the attractive interactions. We also note from the Figure 

that the

unavoid cal 

express the crit al region we see good 

agreem t between the theory and simulation for system 1 with the lowest dipole 

momen

 SAFT-VR+D equation appears to over estimate the critical point; this is an 

able feature of equations of state like SAFT that are based on analyti

ions for the free energy [80].  Away from ic

en

t. For fluids with larger reduced dipole moments, we notice a slight disagreement 

between the SAFT-VR+D description and simulation data, particularly for the liquid 
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density t low temperatures. Patey et al. [62  observed a similar trend, in that the GMSA 

does not provide a good description of the thermodynamic properties of dipolar hard 

spheres with large dipole moments. 

a ]

Figure 4: Isotherms for dipolar square-well monomer fluids with ε* = 1.0 , 
λ = 1.5 , σ* = 1.0  and (a) dipole moment = 0.5, at T* = 1.0, 1.2, 1.4 and 
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1.6 (from bottom to top), (b) dipole moment µ*2 = 1.0, T*= 1.0, 1.2, 1.4 and 
1.6 (from bottom to top) and (c) dipole moment µ*2 = 2.0, at T* = 1.4, 1.6, 
1.8 and 2.0 (from bottom to top). The dashed lines represent predictions from 
the SAFT-VR+D equation with the GMSA approximation and the squares 
the NPT-MC simulation data. 
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Figure 5: Coexisting densities for dipolar square-well monomer fluids with 
ε* = 1.0 , λ = 1.5 , σ* = 1.0 and dipole moment (a)  = 0.5 and (b)  = 

predictions from the SAFT-VR+D equation with the GMSA approximation 

for the vapor-liquid coexistence densities of square-well monomer fluids with potential 

µ*2 *2

1.0. The squares represent the GEMC simulation data, the dashed lines 

and the dotted lines predictions from the SAFT-VR+D equation for µ*2 = 0 . 
 

In the original development of the SAFT-VR EOS Gil-Villegas et al.[81] 

determined that SAFT-VR was in good agreement with Gibbs ensemble simulation data 

µ
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ranges 1.1 ≤ λ ≤ 1.8 . In order to examine the effect of λ  on the phase behavior of dipolar 

fluids, and further test the SAFT-VR+D approach, we have studied the PVT behavior of 

the dipolar square-well monomer fluid with λ = 1.8  and σ* = 1.0 , ε* = 1.0  µ*2 = 1.0  

(system 4) to compare to the results for system 2, for which λ = 1.5  with all other 

parameters the same.  The results are presented in Figure 5.  Compared to the results for 

system 2 (Figure 3b), we note that as increλ ases, the density of the system increases at a 

given pressure and temperature. Good agreement is observed between the theoretical 

predictions and simulation data; the new SAFT-VR+D approach is seen to capture the 

effect of the potential range on the phase behavior.  

0
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15

20

0 0.1 0.2 0.3 0.4 0.5

P*

η
 

Figure 6: Isotherms for dipolar square-well monomer fluids with ε* = 1.0 , 
λ = 1.8 , σ* = 1.0 and dipole moment t T*=1.6, 2.0, 2.4 and 2.8 
(from bottom to top). The squares represent NPT MC simulation results and 
the dashed lines predictions from the SAFT-VR+D equation with the GMSA 
approximation. 

µ*2 = 1.0 a
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Figure 7: Schematic model for diatomic dipolar fluids with dipole moments 
embedded in every segment (a) perpendicular and (b) parallel to the vector 
joining the centers of the monomer segments. 

 

 Having seen that SAFT-VR+D equation can accurately describe the fluid phase 

behavior of dipolar square-well monomer fluids, we now turn to dipolar chain molecules. 

We first focus on diatomic molecules with a dipole moment in the center of both 

segments.  In the SAFT-VR+D approach, the relative orientation of each dipole moment 

can be specifically determined by the azimuthal θ  and polar φ  

ic mo

 th

angles of the inter-

segment axis (Figure 1). Here we consider two specific diatom lecules in which the 

dipole moments are both oriented perpendicular or parallel to e vector joining the 

centers of the monomers, as illustrated in Figure 6a and Figure 6b. Since the radial 

distribution function is dependent on the relative orientation of the dipole moments, here 

we are exa

the phase ha ior 

for dip

mining the ability of the theory to capture the effect of dipole orientation on 

 behavior of dipolar c in molecules. In Figure 7 we present the PVT behav

olar square well diatomic fluids which have the same model parameters (ε* = 1.0 , 

λ = 1.5 , σ* = 1.0 , µ*2 = 0.5) in each segment but in figure a the dipole moments are 

aligned perpendicularly and figure b they are aligned in parallel. The corresponding 

phase envelopes are presented in Figure 8.  From the Figures, we find that the fluids with 

the dipole moments aligned parallel exhibit a slightly higher density at a given pressure 

and temperature, and a slightly lower critical temperature, than the fluids in which the 
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dipoles are perpendicularly aligned. We find that the SAFT-VR+D EOS with the GMSA 

provides good agreement with the simulation data for the isotherms studied and the 

coexisting densities of the dipolar diatomic fluid with dipole moments in the 

perpendicular (system 6) arrangement. However, for the dipolar diatomic fluid in which 

the dipole moments are aligned parallel (system 5), the SAFT-VR+D EOS with the 

GMSA approximation under-predicts the density at a given pressure and temperature 

compared with the NPT ensemble simulations, particularly at low densities, and 

underestimates the saturated liquid density compared with the GEMC simulations.  We 

believe that the main reason for the observed deviation is that, as stated earlier, 

Wertheim’s solution for dipolar hard spheres with the MSA closure underestimates the 

radial distribution function for dipolar fluids at contact. If the GMSA is replaced by the 

LEXP approximation in the SAFT-VR+D EOS, a significant improvement in the 

theoretical predictions in comparison with the simulation data is seen (Figure 7 and 8) for 

both the PVT and phase behavior.  This result confirms that an accurate description of the 

fluids structure is very important in determining the thermodynamic properties of chain 

fluids.  We have also studied the PVT behavior of the parallel and perpendicularly 

aligned dipolar diatomic fluids with λ = 1.8

e tha

 (Systems 7 and 8), the results of which are 

presented in Figure 9. Again we observ t the SAFT-VR+D EOS with the LEXP 

approximation o the 

dipole lts 

in sign in 

arallel R+D equation is therefore able to capture both the effect of 

potential range and orientation of the dipolar interactions on the phase behavior.  

pr vides good agreement with the simulation data for fluids with 

moments arranged perpendicular and parallel, while the use of the GMSA resu

ificant deviations for the fluids in which the dipolar segments are aligned 

.  The SAFT-Vp
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Figure 8: Isotherms for dipolar square well diatomic fluids with ε* = 1.0 , 
λ = 1.5 , σ* = 1.0 and dipole moments µ*2 = 0.5 (a) perpendicular at T*=1.2, 
1.4, 1.6 and 1.8 (from bottom to top), and (b) parallel at T*=1.0, 1.2, 1.4, and 
1.6. The squares represent MC simulation results, the solid lines predictions 
from the SAFT-VR+D equation with the LEXP approximation and the 
dashed lines from SAFT-VR+D approach with the GMSA approximation. 
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Figure 9: Coexisting densities of dipolar square-well diatomic fluids with 
ε* = 1.0 , λ = 1.5 , σ* = 1.0 and dipole moments µ*2 = 0.5 (a) perpendicular 

predictions from the SAFT-VR+D equation with the LEXP approximation, 

approximation and approximation and the dotted lines predictions from the 

 

and (b) parallel. The squares represent MC simulation results, the solid lines 

the dashed lines from the SAFT-VR+D  with the GMSA 

SAFT-VR+D equation for  

 equation

µ*2 = 0 .
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Figure 10: Isotherms for dipolar SW diatomic fluids with ε* = 1.0 , λ = 1.8 , 
σ* = 1.0 and dipole moments = 0.5 (a) perpendicular at T*=2.0, 2.4, 2.8 
and 3.2 (from bottom to top), and (b) parallel at T*=2.0, 2.4, 2.8 and 3.2. The 
squares represent MC simulation results, the solid lines predictions from the 
SAFT-VR+D equation with the LEXP approximation and the dashed lines 
from the SAFT-VR+D equation with the GMSA approximation. 

 

Figure 11: Schematic showing the diatomic molecular models used to describe a 
chain fluid with different magnitude and orientation of dipole moments embedded 
in the center of each segment. 

µ*2
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 Since real fluids, such as ketones, alcohols and many polymers, are typically 

composed of a mixture of polar and non-polar groups, it is desirable to be able to model 

chain molecules comprised of segments that have different magnitudes and orientations 

of dipole moments. To this end, we have studied the PVT behavior of dipolar diatomic 

fluids with different dipole moments in each segment (system 9, 10); in particular we 

have studied diatomics in which the magnitude of the dipole in one segment is twice that 

of the other segment (Figure 10). The results of which for perpendicular and parallel 

orientations of the dipoles are shown in Figures 11a and 11b respectively.  We again find 

that, the SAFT-VR+D approach with the LEXP approximation provides good agreement 

with the simulation data for diatomic fluids with different magnitude of dipole moments 

arranged both perpendicular and in parallel.  However, again, the SAFT-VR+D approach 

with the GMSA approximation underestimates the densities at a given pressure and 

temperature for the molecule with the dipole moments arranged perpendicularly.  We 

have also studied the PVT behavior of diatomic dipolar fluids with different orientation of 

dipole moments in each segment (system 11, 12), as shown in Figure 10c. In these fluids, 

the pair distribution function due to the dipolar interaction will vanish since the angle-

related functions  and ∆ n1n2( )  D n1n2
)r( ) in equation (2.14) are zero for the 90˚ relative 

orientation of the two dipoles (Figure 10c). In this case, the predictions from the SAFT-

VR+D approach with the LEXP approximation and the GMSA approximation are the 

same. F e betwee the 

predicti  

theory ely ids 

compo

rom Figure 12, we note that in all cases, good agreement is observ d n 

ons from the SAFT-VR+D approach and simulation data, indicating that the

can accurat  describe the thermodynamic and phase behavior of flu

sed of segments with differing dipole moments.  
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ε* = 1.0Figure 12: Isotherms for dipolar square well diatomic fluids with , 

λ = 1.5 , σ* = 1.0  at T*=1.0, 1.2, 1.4, and 1.6. with (a) perpendicular dipole 
moments of µ 1 = 1.0 and 2 =0.5 and (b) parallel dipole moments of 1 = 
1.0 and µ*2 =0.5. The square  simulation results, the solid lines 
predictions from the SAFT-VR+D equation with the LEXP approximation 

approximation. 
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and the dashed lines from the SAFT-VR+D equation with the GMSA 
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Figure 13: Isotherms for dipolar square well diatomic fluids with ε* = 1.0 , 
λ = 1.5 , σ* = 1.0 and (a) a perpendicular dipole moments of = 0.5 and 
parallel dipole moment of = 0.5 at T*=1.0, 1.2, 1.4, and 1.6. (b) 
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the LEXP approximation. 
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 To illustrate the generality of this approach, we have also studied a model 

triatomic fluid in which the dipole moments are arranged perpendicularly or in parallel in 

the first two segments with the third segment having no dipole moment. Within the 

solution of Adelman and Deutch [65] for polar mixtures with the MSA closure, the 

SAFT-VR+D EOS describes a molecule consisting of a mixture of non-dipolar and 

dipolar segments with an effective dipole moment and density for the dipolar interaction. 

As mentioned before, due to the linearity in the MSA approximation, the anisotropic 

contribution to the pair distribution function due to the dipolar interaction between 

dipolar segments and non-dipolar segments equals zero. In the SAFT-VR+D approach, 

the pair distribution function between dipolar square-well segments and non-dipolar 

square-well segments is therefore equivalent to that between non-dipolar square-well 

segments. In the case of the triatomic molecules shown in Figure 13, the pair distribution 

function between segments 1 and 2 is gDSW rω1ω 2( )and the pair distribution function 

between segments 2 and 3 is g23
SW r( )

segm

. The Helmholtz free energy due to chain formation 

is therefore given by equation (2.31), in which the total number of segments is 3 and the 

number of pairs of dipolar ents is 1. This approach therefore describes a 

heteron  as 

in our T-

VR+D ids 

ystems 13 and 14) with 

uclear fluid, as the chain is composed of unlike segments, and can be modeled

previous work[82]. In Figure 14 we present isotherms predicted from the SAF

 approach compared to NPT MC simulation data to for two triatomic flu

(s ε* = 1.0 , λ = 1.5 , σ* = 1.0 and reduced dipole moments of 

= 1.0 in both segments and arranged in parallel (system 13) and perpendicular 

(system 14). We find that the fluid with the dipole moments in the parallel arrangement 

has a slightly higher pressure than the fluid with dipole moments arranged perpendicular 

µ*2
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at given density and temperature, when all other parameters are the same. Good 

 

chain fluid with dipole moments embedded in the center of the first two segments. 

 

agreement is observed between the predictions from the SAFT-VR+D approach with the 

GMSA approximation and simulation data for system 14 in which the dipole moments 

are aligned perpendicular, while the SAFT-VR+D EOS with the LEXP approximation 

again provides excellent predictions for both fluids.  Hence the solution of Adelman and 

Deutch when combined with the hetero-SAFT-VR approach is able to produce 

satisfactory thermodynamic properties for dipolar square well chain fluids consisting of 

dipolar and non-dipolar segments.  

 

Figure 14: Schematic illustrating the triatomic molecular model used to describe a 

Segments are labeled 1 – 3 from left to right. 
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Figure 15: Isotherms for dipolar square well triatomic fluids with ε* = 1.0 , 
λ = 1.5 , σ* = 1.0 and dipole moments µ = 1.0 (a) perpendicular and (b) 
parallel at T*=1.6, 1.8, 2.0 and 2.2 (from bottom to top). The squares 
represent MC simulation results, the solid lines predictions from the SAFT-
VR+D equation with the LEXP approximation and the dashed lines from the 
SAFT-VR+D equation with the GMSA approximation. 
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2.5 Conclusions  

In this work, a SAFT-VR like equation of state, SAFT-VR+D, has been developed to 

study dipolar chain fluids which takes the dipolar square well fluid as the reference state.  

In this way, the SAFT-VR+D approach explicitly takes into account the magnitude and 

orientation of dipole moments, all of which are found to affect the thermodynamics and 

phase behavior of dipolar square well monomer and chain fluids. In order to gain a 

comprehensive understanding of the thermodynamic properties of the systems studied, 

and va

AFT-VR+D with the LEXP approximation is suitable for 

fluids 

lidate the SAFT-VR+D approach, both NPT MC and GEMC simulations were 

performed to obtain simulation data to compare to the theoretical predictions. We found 

that the SAFT-VR+D equation with the GMSA approximation provides good predictions 

for the phase behavior of the dipolar monomer fluids studied, and chain fluids with a 

perpendicular arrangement of the dipole moments. A more accurate approximation for 

the radial distribution function of dipolar square well fluids (LEXP approximation) was 

implemented to improve the performance of the SAFT-VR+D EOS for dipolar chain 

fluids in which the dipole moments are parallel to the vector joining the centers of the 

monomers. It is found that the S

with both vertical and horizontal arrangements of the dipole moments. 

Furthermore, using the solution of Adelman and Deutch for polar mixtures, the SAFT-

VR+D with LEXP approximation gives a good description of the thermodynamic 

properties of dipolar chain fluids consisting of non-dipolar segments and dipolar 

segments. 
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CHAPTER III 

 

PHASE BEHAVIOR OF DIPOLAR ASSOCIATING FLUIDS FROM THE SAFT-

 

3.1 Introduction 

Fluids with anisotropic interactions, such as polar or hydrogen bonding interactions, are 

important not only to the traditional oil and chemical industries, but also in energy 

production and biological systems; water for example is essential to all known forms of 

life and can be considered the universal solvent.  An accurate des

VR+D EQUATION OF STATE 

cription of the phase 

behavior and thermodynamic properties of polar and associating fluids is therefore 

important to a diverse range of fields and applications.  

Conventional engineering equations of state such as cubic equation of state, which 

provide a good description of the phase behavior of non-associating and/or non-polar 

components and their mixtures, cannot easily be used to describe the phase equilibrium of 

associating and/or polar components. For example, such models cannot be used to study 

the simultaneous vapor-liquid equilibria (VLE) and liquid-liquid equilibria (LLE) of 

alcohol-hydrocarbon mixtures with the same interaction parameters [83].  Increasingly 

both industrial and academic interest is switching to the development and application of 

more advanced thermodynamic models that explicitly account for anisotropic interactions 

and so more accurately describe the physical nature of complex fluid systems.   

Perhaps the simplest approach to modeling polar and/or associating fluids is the 

cubic-plus-association (CPA) equation of state [84], which combines the Soave-Redlich-

Kwong (SRK) equation of state with Werthieim’s first order thermodynamic perturbation 
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theory to describe different type of hydrogen-bonding interactions. The CPA equation of 

state has been successfully applied to study a wide range of systems, including the VLE 

of alco

ugh hydrogen bonding interactions and takes into account interactions 

due to

fluids using an angular pair correlation function), and the more rapidly 

onverging Padé approximation of Stell and coworkers [53], have been widely adopted.  

For example, Muller and Gubbins [50] applied the µ-expansion to describe water as a 

hol-water-aliphatic hydrocarbon ternary system using single interaction parameters 

per binary system obtained from binary mixtures [85, 86]. However, to describe fluids 

such as acetone, which are both polar and associating, self-association is used to mimic 

the strong interactions within the fluid, since the theory does not explicitly account for 

polar effects [87].  

An alternative approach to modeling associating and/or polar components is to 

use a true molecular based equation of state such as the associated perturbed anisotropic 

chain theory (APACT) developed by Donohue et al. [88, 89]. APACT treats pure fluids 

that associate thro

 dipole and/or quadrupole moments [90], however, for systems involving 

mulitpolar associating components, such as binary system ethanol and pentanol, an 

analytical solution cannot be determined and the chemical and material equilibria must be 

solved numerically.  Though some simpler versions of the approach have been developed 

[91], they are still complicated. 

Several versions of the SAFT equation of state have been developed for polar 

fluids in which dipolar and/or quadrupolar interactions are generally incorporated through 

the addition of the corresponding terms to equation 1.  For the dipolar term, both the µ-

expansion proposed by Gubbins and Gray [52] (which describes the interaction of dipolar 

hard sphere 

c
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hard, spherical, associating, dipolar fluid within Wertheim’s TPT theory, achieving good 

s spherical 

ipolar fluids.  As a result, the orientation of 

. 

dipole moment is considered, the hard sphere pair correlation function is used to describe 

the pair correlation function between non-dipolar and dipolar hard spheres at contact, and 

app

eveloped a contribution for dipolar interactions based on third 

rder perturbation theory which uses simulation data for the vapor-liquid equilibria of the 

two-center Lennard-Jones plus point dipole fluid to determine the model constants. The 

proposed term has been incorporated into the PC-SAFT equation of state and has been 

agreement with simulation and experimental data;  Kraska et al. [48, 49] later extended 

the Lennard-Jones-SAFT theory of Muller and Gubbins using the multipolar µ-expansion 

for the dipolar-dipolar interaction to study the phase behavior of alcohols and water and 

their mixtures with n-alkanes. In the equation of state for alkanols and water Xu et al. 

[51] applied a Padé approximation to describe dipolar contribution.  However, a common 

feature of these equations of state is to treat non-spherical dipolar molecules a

d the dipolar interaction and the possibility of 

multiple polar sites within a molecule cannot be taken into account

In contrast, Jog et al. [54, 55] developed a SAFT EOS for tangent hard sphere 

chains with dipoles on alternate segments. In this work, although the position of the 

so neglects the effect of the dipole and its orientation. Using the same approach to 

describe dipolar interactions, Tumakaka and Sadowski [56] have extended the PC-SAFT 

EOS to describe mixtures of non-dipolar and polar molecules and Dominik et al. [57] 

have modeled the phase equilbria and thermodynamic properties of ethers and esters with 

PC-SAFT + dipolar contribution due to Jog , Saggar and Fischer [58, 59]; the two 

roaches were found to yield similar results for the systems studied.    More recently, 

Gross and Vrabec [60] d

o
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shown to improve the description of pure component and mixture phase equilibria for 

dipolar fluids over the original PC-SAFT approach.   

In chapter II, within the SAFT-VR framework, we developed a rigorous approach 

with which to describe the phase behavior and thermodynamic properties of dipolar 

fluids. Through a combination of the SAFT-VR approach, which is a recent extension of 

the SAFT approach to model dispersion interactions through a potential of variable range, 

nd the generalized mean spherical approximation (GMSA), we presented the SAFT-

VR+D ll 

uid, not square well fluid as used in the SAFT-VR EOS, so that the approach can 

explicit

In this chapter, we extend the SAFT-VR+D approach 

association sites. The remainder of the chapter is organized as follows: in section 3.2 we 

details of the molecular simulations performed are presented. Results for the phase 

ciating fluids are presented and compared with simulation 

the phase behavior of water are presented 

in section 3.4.  Finally, concluding remarks are made and future work discussed in 

 

a

approach. In the approach, the reference fluid is chosen as dipolar square we

fl

ly describe the position and orientation of dipole moment in the dipolar monomer 

and chain fluids.  

to model dipolar associating 

fluids. Constant NPT and Gibbs ensemble Monte Carlo simulations were performed to 

test and validate the approach for dipolar associating fluids with one, two and four 

present the SAFT-VR+D model and theory for dipolar associating fluids. In section 3.3, 

behavior of pure dipolar asso

results and the new approach applied to study 

section 3.5. 
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3.2 Model and Theory 

In this section we extend the SAFT-VR+D approach to study dipolar associating fluids. 

The molecules are modeled as hard spheres of diameter σ  that can interact through a 

dipole moment µ  embedded in the center of the sphere, a square well interaction to 

describe the dispersion interactions, and one, two or four short-range attractive square-

well sites to describe association interactions that mimic hydrogen bonding (Figure 16). 

Hence the pair potential for the dipolar associating fluids studied is defined by 

 u rω ω Ω Ω( )= u SW r;σ( )+ uDIPOLE rω ω1 2( )+ u rΩ ΩAB 1 2( )
B
∑

A
∑  (3.1) 1 2 1 2

where, is the vector between the center of the two monomers, r r = r and = θ i ,φi( )  

the set of angles defining the orie

ω i

ntation of the dipole in monomer i, and Ωi is the 

orientation of associating site i relative to vector r. u SW r;σ( )anduDIPOLE rω1ω 2( ) 

represent the square-well potential and potential of dipolar interaction, and the definitions 

of u SW r;σ( )and uDIPOLE rω1ω 2( ) are referenced to our previous work. The uAB represents 

the association potential, which is modeled by an anisotropic short-ran  well 

her nt interac

narrow square well like energy when the two sites are closer th ce 

Sites o

ged square

in ting associating sites. As can be seen from teraction, w e A and B represe

Figure 16 the association sites are situated at a distance rd  from the center of the sphere. 

Sites of type A can bond to sites of type B on different molecules with attractive deep but 

ε HB an the distan rc . 

f the same kind do not interact with each other.  
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d µ
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r

 
Figure 16: Schematic representation of the model used to describe 
associating fluids with four association sites. 

 

Within the SAFT framework, the Helmholtz free energy A can be written as a 

sum of separate contributions: 

 
 

A
NkBT

=
AIDEAL

NkBT
+

AMONO

NkBT
+

AASSOC

NkBT
  (3.2) 

 
Since in this work, we do not consider chain fluids, there is not chain term in the equation 

(3.2).  The ideal and association contributions to equation 3.2 are given by equations (1.3) 

the monomer term is as presented in Section 

2.2.1.2 of Chapter II for the SAFT-VR+D equation. 

 

3.3 Computer Simulations 

We have performed Monte Carlo (MC) simulations in the isothermal-isobaric (NPT) and 

Gibbs ensembles (GEMC) to determine the PVT and phase behavior of several model 

dipolar associating fluids in order to compare with the theoretical results from the SAFT-

VR+D equation for associating fluids.  Molecular simulation studies of associating fluids 

can be challenging due to the strong association interactions between the molecules, 

 

and (1.17) in section 2 of Chapter I, while 
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which can lead to the formation of stable clusters and poor sampling of phase space. As a 

result, several biasing schemes have been proposed to ensure efficient sampling of phase 

d 

mulations with those from GEMC simulations using the bond biased move for 

associating Lennard-Jones monom luids w various iation ngths. ey 

concluded that regular GEMC simu ns woul or sys n which the assoc on 

energy is ten times or larger than the dispersion energy.  In our work, we focus on 

system ith low asso tion ener mpared to the dispersion interactions (i.e.  < 

10ε) and therefore we do not employ any biasin hniques  simulations.  

The reaction field method, which has been used previously to calculate the vapor-

liquid phase behavior of systems with long-range dipolar potential is applied to deal with 

the long-range dipolar interactions. The reaction field approach replaces the molecules 

beyond a cut-off distance by a dielectric continuum, the effect of which is taken into 

account by including a new term into the dipolar potential, viz 

 

space in MC simulations of associating systems [92-96]. In particular, Tsangaris and De 

Pablo [96] proposed the bond-bias MC metho and compared results from regular GEMC 

si

er f ith assoc stre Th

latio d fail f tems i iati

s w cia gy co εhb

g tec  in the

udipole =
−

µ1µ2

r3
⎛
⎝⎜

⎞
⎠⎟

D −
2 εRF − 1( )
2εRF + 1

µ1µ2

rc
3

0

⎧

⎨
⎪

⎩
⎪

r < rc

r ≥ rc

 (3.3) 

where is the cut-off distance beyond which the pair potential vanishes and rc εRF  the 

dielectric constant of the continuum. In the simulations, the value of  is set torc 2.5σ , and 

εRF to . 

In the NPT ensemble simulations, one cycle consists of three kinds of trial moves: 

N trial displacements of randomly chosen molecules, N trial rotations and one volume 

change.  The extent of each trial move is adjusted to give an individual acceptance 

∞
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probability

56

 of e exchanges between two 

phases are performed in addition to the three trial moves described above. The traditional 

Wid parti

sim on wa 6 molecules are placed on 

a lattice in the simulation box.  An initial simulation of 100,000 - 500,000 cycles was 

performed to

4,000,000 cycles. The thermodynamic properties of the system were obtained as 

ensem le averages and the erro

ciating fluids of interest in this work, to check the 

accuracy of our simulation code, we performed NPT simulations for several hard 

associating fl  good agreement with the results of Jackson et. al. [39] for 

flui ith one and two association sites and Ghonasgi et. al. [98] for fluids with four 

associa ites. 

 

3.4 ults a

 

3.4.1 Model fluids 

We  and phase behavior of 

dipola ciating fluids. In order to validate and test the predictive ability of the SAFT-

VR+D EOS for associating fluids, arlo simulations 

have been performed for several dipolar associating fluids with one associating site 

(system  tw sociati  sites stem  and four associating sites with different 

streng sociation energy (systems 3 - 5), association volume (systems 6 and 7) 

 30 - 40%.  In the GEMC simulations, particl

om 

ulati

b

Before studying the dipolar asso

ds w

tion s

 Res

 have applied the S

r asso

 1),

ths of the as

cle insertion method is used to achieve particle exchanges [97]. Each 

s started from an initial configuration in which 25

 equilibrate the system, before averaging for between 1,000,000 and 

rs estimated by determining the standard deviation. 

uids and obtained

nd discussion 

AFT-VR+D approach to study the PVT

NPT and Gibbs ensemble Monte C

o as ng (sy 2),



and

Table 7.  The results of the NPT simulations are reported in Tables 8 – 10 and those of 

the GE  s o    

Ta le 7  M a  ati g s s d  
dip le m

 dipole moment (systems 8 and 9). The details of each system studied are given in 

MC imulati ns are given in Table 11. 

b : odel p rameters for dipolar associ n fluid  studied. µ*2 i  the re uced
o  mo ent, λ  the ran t t the red u a

red ced ep u t u d a oc n
 

System

ge of he po ential, rc
*   uced c toff r dius, ε*   the 

u  d th of sq are well poten ial, εab
* the red ce ss iation e ergy. 

 Sites µ*2  rc
*  ελ  *  εab

*  
1 1 1.0 1.5   1.05 1 5 
2 2 1.0 1.5  

.5  

.5  

.5  

.5  

.5  

.5  

.5  

 1.05 1 5 
3 4 1.0 1  1.05 1 2 
4 4 1.0 1  1.05 1 5 
5 4 1.0 1  1.05 1 7 
6 4 1.0 1  1.1 1 5 
7 4 1.0 1  1.1 1 3 
8 4 0.5 1  1.05 1 5 
9 4 2.0 1  1.05 1 5 
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NPT MC simulation results for System - 2. The reduced temperature is given by T / ε , the red
given by 
 

System T* P* η Error -E -E* 

s 1 T * = kB uced pressure is 

Error 

P* = Pσ 3 / ε  and the reduced energy is given by E* = E / Nε . 

* Error System T* P* η Error 
1 1.2 0.1003 0.315 ±0.011 5. .66 ±042 ±0.19 2 1.2 0.0262 0.346 ±0.012 7 .31 
  0.6731 0.360 ±0.008 6. 8.38 ±013 ±0.14   0.5231 0.378 ±0.008  .25 
  2.0315 0.401 ±0.006 6.80 ±0.12   1.7509 0.415 ±0.006 9.24 ±0.23 
  4.7581 0.449 ±0.005 7. 0.12 ±048 ±0.10   4.2774 0.456 ±0.005 1 .21 
 1.4 0.5651 0.310 ±0.010 5.16 6.46  ±0.18  1.4 0.5113 0.328 ±0.010 ±0.25 
  1.3937 0.358 ±0.007 5.9 7.30 5 ±0.14   1.2845 0.368 ±0.008 ±0.23 
  3.1441 0.403 ±0.005 6. .19 65 ±0.10   2.9360 0.410 ±0.006 8 ±0.21 
  6.4672 0.450 ±0.005 7. 9.10 31 ±0.10   6.0980 0.456 ±0.005 ±0.20 
 1.6 1.0254 0.306 ±0.009 4.97 ±0.16 1.6 0.9835 0.316 ±0.009 5.77  ±0.21 
  2.1035 0.355 ±0.006 5. .67 78 ±0.13   2.0188 0.362 ±0.007 6 ±0.20 
  4.2359 0.402 ±0.005 6. 7.54 50 ±0.11   4.0733 0.406 ±0.006 ±0.20 
  8.1455 0.450 ±0.005 7.17 ±0.10   7.8511 0.452 ±0.008 8.40 ±0.22 
 1.8 1.4835 0.308 ±0.009 4. .37 90 ±0.17  1.8 1.4492 0.310 ±0.009 5 ±0.20 
  2.8076 0.355 ±0.006 5. 6.29 68 ±0.12   2.7385 0.359 ±0.007 ±0.19 
  5.3157 0.401 ±0.005 6.39 ±0.11   5.1827 0.404 ±0.006 .13 7 ±0.17 
  9.8034 0.449 ±0.005 7.06 .96  ±0.10   9.5597 0.452 ±0.007 7 ±0.19 
 2.0 1.9405 0.306 ±0.008 4.79 ±0.15  2.0 1.9112 0.308 ±0.008 5.13 ±0.18 
  3.5087 0.354 ±0.007 5.57 .03  ±0.13   3.4500 0.357 ±0.007 6 ±0.18 

±0.16   6.3885 0.403 ±0.006 6.33 ±0.12   6.2756 0.403 ±0.005 6.86 
  11.4483 0.450 ±0.005 6.98 ± 7.67 ±0.10   11.2401 0.452 ±0.005 

 

Table 8: 

0.16 



Table 9: NPT MC simulation results for Systems 3 - 6. The reduced temperature is given 
byT * = kBT / ε , the reduced pressure is given by P* = Pσ 3 / ε  and the reduced energy is 
given by E* = E / Nε .  
 

Sy η Err. Sys. T* P* η Err. -E* T* P* Err. -E* Err. s. 
3  0.12 7 0.3 8 ±  5.78 ±0.21 5  0 3  404 0.00 .36  1.2 5 2 0.012   1.4 .41 3 0.  ± 7 13  ±0.35
 0. ±0 74 005 7 2  7180 0.367 ±0.007 6.45 .15   2.3 1 0.449 ±0.  14.8  ±0.3
  2.09 ±0  59 015 7 74 0.408 ±0.006 7.13 .13  1.6 0.2 3 0.315 ±0.  8.98 ±0.4
  4. ±0 12 010 3 0 8272 0.453 ±0.005 7.80 .11   0.7 0 0.356 ±0.  10.1  ±0.4
 4 0. ±0 903 007 8 5 1. 5748 0.317 ±0.010 5.40 .19   1.8  0.402 ±0.  11.5  ±0.3
  1. ±0 842 006 1 3 4097 0.361 ±0.007 6.15 .14   4.4  0.448 ±0.  13.1  ±0.3
 3.16 ±0  57 01 8  42 0.405 ±0.006 6.88 .12  1.8 0.8 9 0.306 ±0. 1 7.54 ±0.3
  6. ±0 49 009 7 4770 0.452 ±0.005 7.56 .11   1.6 8 0.355 ±0.  8.87 ±0.3
 6 1. ±0 10 007 9 4 1. 0261 0.313 ±0.009 5.18 .17   3.3 5 0.402 ±0.  10.2  ±0.3
  2. ±0 65 005 3 1 1027 0.359 ±0.007 5.96 .15   6.5 8 0.448 ±0.  11.7  ±0.3
  4. ±0 19 009 1 2283 0.405 ±0.005 6.70 .12  2 1.4 8 0.306 ±0.  6.78 ±0.3
 8. ±0 32 007 0  1153 0.451 ±0.005 7.39 .11   2.5 1 0.354 ±0.  8.02 ±0.3
 8 1.47 ±0 62 007 1 1. 89 0.309 ±0.008 5.00 .16   4.6 4 0.402 ±0.  9.36 ±0.3
  2. ±0 85 005 1 0 7969 0.356 ±0.007 5.79 .14   8.5 4 0.448 ±0.  10.7  ±0.3
  5. ±0   08 010 1 2910 0.403 ±0.006 6.55 .12 6 1.4 0.3 0 0.358 ±0.  8.86 ±0.3
  9. ±0 765 006 6 7472 0.450 ±0.005 7.24 .11   1.2  0.399 ±0.  9.91 ±0.2
  1. ±0 14 006 2 5 2 9325 0.306 ±0.008 4.85 .16   3.5 6 0.441 ±0.  11.0  ±0.2
  3. ±0  306 014 5 4917 0.355 ±0.007 5.67 .14  1.6 0.5  0.306 ±0.  6.71 ±0.3
  6.35 ±0 696 009 7 29 0.402 ±0.005 6.43 .12   1.1  0.354 ±0.  0.79 ±0.2
  11  ±0 931 007 5 .3749 0.451 ±0.005 7.13 .11   2.5  0.398 ±0.  8.92 ±0.2

4 2 0. 1 ±0 651 005 3 1. 5921 0.406 ±0.006 0.06 .25   5.4  0.442 ±0.  9.99 ±0.2
  2. 1 ±0.  541 009 5 4482 0.449 ±0.005 1.22 24  1.8 1.0  0.303 ±0.  6.12 ±0.2
  0. ±0 90 007 4 1.4 2353 0.316 ±0.013 6.80 .31   1.9 9 0.352 ±0.  7.21 ±0.2
  0.75 ±0 55 006 3 05 0.362 ±0.009 7.83 .27   3.8 7 0.398 ±0.  8.30 ±0.2
  1. ±0 631 005 2 9784 0.405 ±0.006 8.89 .24   7.3  0.444 ±0.  9.35 ±0.2
  4. 1 ±0 602 009 5 5180 0.450 ±0.005 0.03 .23  2 1.5  0.305 ±0.  5.79 ±0.2
 6 0. ±0 817 007 2 1. 7587 0.309 ±0.010 6.03 .25   2.7  0.351 ±0.  6.79 ±0.2
  1 ±0 741 006 2 .5802 0.358 ±0.008 7.08 .23   5.0  0.398 ±0.  7.84 ±0.2
 3. ±0 10 005 1  2709 0.402 ±0.007 8.10 .23   9.2 8 0.445 ±0.  8.88 ±0.2
  6.48 ±0  53 008 2 44 0.448 ±0.005 9.17 .22  2.2 2.0 9 0.304 ±0.  5.52 ±0.2
 8 1. ±0 50 007 1 1. 2596 0.308 ±0.009 5.63 .23   3.5 5 0.351 ±0.  6.50 ±0.2
  2. ±0 58 006 1 3674 0.356 ±0.007 6.62 .21   6.2 5 0.398 ±0.  7.51 ±0.2
  4. ±0 1 005 0 4954 0.402 ±0.005 7.60 .20   11.0 61 0.446 ±0.  8.50 ±0.2
  8.3632 0.449 ±0.005 8.60 ±0.20        
 2 1.7466 0.306 ±0.009 5.33 ±0.22        
  3.1275 0.354 ±0.007 6.28 ±0.19        
  5.6738 0.401 ±0.006 7.24 ±0.19        
  10.1765 0.449 ±0.005 8.21 ±0.19        
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Table 
given by T / ε , the reduced pressure is given by  and the reduced 

r -E* Err Sys T* P* η 

10: NPT MC simulation results for Systems 8 - 9. The reduced temperature is 
B

energy is given by E* = E / Nε . 
 
Sys T* P* η Er Err -E* Err 

T * = k P* = Pσ 3 / ε

8 1.2 0.7245 0.400 ±0.008 9.14 ±0.28 9 1.8 1.0610 0.328 ±0.010 7.69 ±0.29 
  2.6045 0.445 ±0.005 10.34 ±0.24   2.1208 0.369 ±0.007 8.70 ±0.26 
 1.4 0.3146 0.306 ±0.013 6.05 ±0.31   4.2000 0.410 ±0.006 9.76 ±0.25 
  0.8513 0.355 ±0.008 7.08 ±0.25   8.0186 0.456 ±0.005 10.90 ±0.24 
  2.1018 0.399 ±0.007 8.11 ±0.24  2 1.5572 0.319 ±0.009 7.07 ±0.26 
  4.6646 0.445 ±0.005 9.22 ±0.22   2.8910 0.365 ±0.007 8.17 ±0.24 
 1.6 0.8318 0.306 ±0.010 5.52 ±0.25   5.3891 0.408 ±0.005 9.22 ±0.22 
  1.6738 0.353 ±0.007 6.48 ±0.22   9.8429 0.454 ±0.005 10.30 ±0.22 
  3.3861 0.400 ±0.006 7.49 ±0.21  2.2 2.0440 0.315 ±0.008 6.66 ±0.24 
  6.6221 0.446 ±0.006 8.49 ±0.22   3.6431 0.361 ±0.007 7.74 ±0.24 
 1.8 1.3273 0.303 ±0.009 5.15 ±0.21   6.5466 0.407 ±0.005 8.81 ±0.22 
  2.4546 0.353 ±0.008 6.11 ±0.21   11.6197 0.453 ±0.005 9.86 ±0.22 
  4.6033 0.399 ±0.006 7.05 ±0.19  2.4 2.5245 0.312 ±0.008 6.36 ±0.23 
  8.4928 0.447 ±0.005 8.00 ±0.19   4.3831 0.359 ±0.006 7.42 ±0.22 
 2 1.8097 0.302 ±0.008 4.93 ±0.19   7.6825 0.405 ±0.005 8.47 ±0.21 
  3.2091 0.352 ±0.007 5.85 ±0.18   13.3622 0.453 ±0.005 9.52 ±0.21 
  5.7752 0.400 ±0.006 6.77 ±0.18  2.6 3.0004 0.309 ±0.008 6.11 ±0.22 
  10.2988 0.447 ±0.005 7.67 ±0.18   5.1145 0.357 ±0.007 7.17 ±0.22 

9 1.2 0.2637 0.385 ±0.007 8.78 ±0.27   8.8029 0.406 ±0.005 8.24 ±0.20 
  2.0708 0.435 ±0.006 10.08 ±0.25   15.0798 0.452 ±0.005 9.22 ±0.20 
 1.4 0.0165 0.358 ±0.013 9.94 ±0.39  2.8 3.4731 0.309 ±0.007 5.95 ±0.22 
  0.4825 0.386 ±0.007 10.68 ±0.28   5.8399 0.356 ±0.006 6.98 ±0.21 
  1.6611 0.419 ±0.005 11.64 ±0.26   9.9122 0.405 ±0.006 8.03 ±0.21 
  4.1513 0.458 ±0.005 12.74 ±0.26   16.7788 0.452 ±0.005 9.00 ±0.20 
 1.6 0.5503 0.338 ±0.009 8.53 ±0.29        
  1.3231 0.377 ±0.008 9.52 ±0.29        
  2.9646 0.413 ±0.006 10.50 ±0.25        
  6.1288 0.457 ±0.005 11.68 ±0.25        
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Table 
9). The fixed variables during the simulation are defined as for table 3 and 4. The 

11: GEMC simulation results for the dipolar associating fluids studied (systems 4 - 

densitiesη , number of molecules N and reduced energies E* in the coexisting vapor and 

 
liquid phases are labeled v and l, respectively.  

Sys T *  ηl  Err ηv  Nl  Nv  - El  - Ev  Err Err Err * *

4 0.9 0.464 ±0.004 0.001 ±0.000 341 171 14.24 ±0.19 0.25 ±0.19 
 1 0.446 ±0.005 0.004 ±0.000 350 162 13.01 ±0.23 0.42 ±0.12 
 1.1 0.417 ±0.005 0.004 ±0.000 458 54 11.28 ±0.21 0.28 ±0.15 

2 
 1.3 0.346 ±0.009 0.030 ±0.006 466 46 7.99 ±0.24 1.19 ±0.37 
 1.2 0.381 ±0.007 0.01 ±0.001 452 60 9.45 ±0.22 0.59 ±0.19 

5 1 0.473 ±0.004 0.002 ±0.000 296 216 19.58 ±0.18 14.05 ±0.27 
 1.1 0.460 ±0.005 0.001 ±0.000 331 181 18.21 ±0.23 0.22 ±0.09 

 1.3 0.417 ±0.007 0.006 ±0.000 365 147 14.68 ±0.30 0.68 ±0.17 
 1.4 0.385 ±0.007 0.014 ±0.001 422 90 12.66 ±0.30 1.07 ±0.29 

6 0.9 0.460 ±0.004 0.000 ±0.000 368 144 14.96 ±0.16 0.11 ±0.07 

 1.2 0.441 ±0.005 0.002 ±0.000 322 190 16.43 ±0.26 0.43 ±0.13 

 1 0.445 ±0.005 0.001 ±0.000 375 137 13.99 ±0.19 0.11 ±0.07 
 1.1 0.424 ±0.005 0.002 ±0.001 503 9 12.61 ±0.19 0.21 ±0.28 
 1.2 0.398 ±0.006 0.007 ±0.000 365 147 11.03 ±0.24 0.49 ±0.13 

7 0.8 
 1.3 0.367 ±0.008 0.016 ±0.002 334 178 9.59 ±0.26 0.85 ±0.18 

0.445 ±0.004 0.000 ±0.000 398 114 10.24 ±0.13 0.04 ±0.03 
 0.9 0.423 ±0.005 0.002 ±0.000 451 61 9.23 ±0.13 0.11 ±0.06 
 
 

9 

1 0.399 ±0.006 0.004 ±0.000 387 125 8.43 ±0.15 0.20 ±0.07 
1.1 0.372 ±0.006 0.010 ±0.001 438 74 7.52 ±0.14 0.39 ±0.13 

 1.2 0.339 ±0.009 0.022 ±0.002 350 162 6.54 ±0.18 0.75 ±0.13 
 1.3 0.288 ±0.015 0.045 0.005 331 181 5.48 ±0.25 1.35 ±0.21 

8 0.9 0.461 ±0.004 0.002 ±0.000 396 116 13.42 ±0.1 0.19 ±0.09 
 1 0.435 ±0.005 0.003 ±0.000 430 82 11.70 ±0.1  0.25 ±0.11 

 1.2 0.364 ±0.008 0.018 ±0.002 355 157 8.25 ±0.25 0.73 ±0.17 

 1.35 0.278 0.072 ±0.012 354 158 5.76 ±0.31 2.07 ±0.40 
9 0.9 0.474 0.001 ±0.000 287 225 16.18 ±0.21 8.86 ±0.45 

9
 1.1 0.400 ±0.006 0.007 ±0.001 418 94 9.87 ±0.23 0.36 ±0.13 

 1.3 0.318 ±0.012 0.046 ±0.007 416 96 6.71 ±0.27 1.50 ±0.32 
±0.016 
±0.005 

 1 0.464 ±0.003 0.001 ±0.000 452 60 16.16 ±0.17 0.26 ±0.15 
 1.1 0.442 ±0.005 0.003 ±0.003 503 9 14.57 ±0.20 0.90 ±1.91 

 1.3 0.380 ±0.007 0.008 ±0.001 460 52 10.72 ±0.22 0.59 ±0.26 
 1.2 0.410 ±0.006 0.003 ±0.000 413 99 12.19 ±0.23 0.34 ±0.14 
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In Figure 17 we present the PVT behavior for dipolar associating fluids with one 

associating site (system 1, Figure 17a) and two associating sites (system2, Figure 17b) 

with the same parameters: µ*2 = 1.0 , λ = 1.5  ,  rc
* = 1.05 , ε* = 1.0 and .  From 

Figure 17, we find that the fluid with two association sites exhibits higher densities at a 

given temperature and pressure than the fluid with one association site, which would be 

expected given the greater cohesion energy between the molecules, and that good 

agreement is obtained between the simulation results and theoretical predictions for each 

of the systems studied.   

one association site and (b) Isotherms for dipolar square-well 
associating monomer fluids with two association sites, with 

εab
* = 5.0  

0

5

10

15

P*

0

5

0.1 0.2 0.3 0.4 0.5

η

10

P*

a

b

Figure 17: (a) Isotherms for dipolar square-well associating monomer fluids 
with 

ε* = 1.0 , 
λ = 1.5 , σ* = 1.0 , µ*2 = 1.0 , and  at T* = 1.2, 1.4, 1.6, 
1.8 and 2.0 (from bottom to top). The solid lines represent predictions from 
the SAFT-VR+D equation and the symbols the NPT Monte Carlo simulation 
data. 

rc
* = 1.05 εab

* = 5.0
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In figure 18 we present the PVT behavior for dipolar associating fluids with four 

association sites and different association energies (system 3 - 5). For each system 

studied the remaining SAFT-VR+D parameters are the same: 

µ*2 = 1.0 , λ = 1.5  ,  , rc
* = 1.05 ε* = 1.0  .  From figure 18, we find that the fluids with 

higher association energy exhibit higher densities at a given temperature and pressure 

than those with lower association energy. Similarly, when compared with the PVT 

behavior for dipolar associating fluids with one and two associating sites (system1 and 2), 

the fluids with four associating sites remaining all other parameters the same (system 4) 

exhibits higher densities at a given temperature and pressure. Again, good agreement is 

observe the 

system emperatu s d pressu s

ram for systems 4 and 5 in order to 

as

s, we c  conclude that the S

d between the simulation results and theoretical predictions for each of 

s studied over a wide range of t re  an re .   

We have also determined the fluid phase diag

further test the SAFT-VR+D approach. From the results presented in Figure 19, and as 

would be expected, we find that the fluid with higher association energy εab
* = 7 , system 

5) has a higher critical temperature and wider phase envelope than the fluid with a lower 

sociation energy (εab
* = 5.0 , system 4). Additionally good agreement is obtained 

between the simulation results and theoretical predictions for both systems studied. From 

these result an AFT-VR+D approach provides a good 

description of the thermodynamic properties of dipolar association fluid with one, two or 

four association sites as a function of association energy (i.e. from εab
* = 2 to b = 7 ).  εa

*
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Figure 18: Isotherms for dipolar square-well associating monomer fluids 
with four association sites withε* = 1.0 , λ = 1.5 , σ* = 1.0 , µ*2 = 1.0 , 

c
*

ab
*

top), (b) εab
* = 5.0  at T* = 1.2, 1.4, 1.6, 1.8 and 2.0 (from bottom to top), (c) 

εab
* = 7.0  at T* = 

represent predictions from

r = 1.05 and (a) = 2.0

1.4, 1.6, 1.8 and 2.0 (from  to top), The solid lines 
 the SAFT-VR+D equation and the symbols the 

PT Monte Carlo simulation data. 
 

 

ε  at T* = 1.2, 1.4, 1.6, 1.8 and 2.0 (from bottom to 

 bottom

N
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Figure 19: Coexisting densities for dipolar square-well associating monomer 
fluids with four association sites (a) system 4: µ*2 = 1.0 , λ = 1.5 , rc

* = 1.05 , 
ε* = 1.0 ,and εab

* = 5.0  (bottom one) (b) system 5: 
µ*2 = 1.0 , λ = 1.5 , rc

* = 1.05 , ε* = 1.0 ,and . The 
symbols represent the GEMC simulation data and the solid lines predictions 
from the SAFT-VR+D equation. 

 
Since a square-well potential is applied to mimic the hydrogen bonding interaction in the 

dipolar association fluids, the cutoff distance  plays an important role in the 

thermodynamics properties of dipolar associating fluids. In order to examine the effect of 

 on the phase behavior of dipolar associating fluids and further test the SAFT-VR+D 

approach, we have studied the PVT behavior of the dipolar square-well associating fluid 

ith 

εab
* = 7.0  (top one)

rc
*

rc
*

w λ = 1.5 σ* = 1.0 , ε* = 1.0and  ab c

esults for system 4, for which rc
* = 1.05  with all other param the ame. T

are presented in Figure 20 and compared to those for syste

µ*2 = 1.0 ε* = 5.0 * = 1.1 (system 6) to compare 

to the r eters  s he 

results m 4 (Figure 18b), we 

 r

 65



note that as increases, the pressure of the system decreases at a given density and 

temperature, ich reflects the weaker intermolecular interactions between the molecules 

for sm  Good agreement is again observed between the theoretical 

predictions and the sim lation data. We have also studied the phase diagram for systems 

6, the results of which a e presented in Figure 21.  From a comparison of Figures 21 and 

19 (bottom line, syst  4) we see that as the cutoff distance is increased the critical 

temperature of the dipolar associating fluid increases, due to the increase in the attractive 

association interaction.  Good agreement is seen between the theoretical phase diagram 

om the SAFT-VR+D approach and the GEMC simulation data, though we note slight 

deviatio . he o r  deviati u  be 

due to r a 

ortcoming in the theory.  We note that good agreement is obtained at low temperatures 

ent with the 

efore b e , since t

rc
*
 

 wh

aller values of rc
* .

u

r

em

fr

ns are observed at low temperature (T*<1 1). T bse ved ons co ld

 the association interactions prohibiting efficient sampling of phase space o

sh

for system 4 which has shorter association range and therefore overall weaker association 

interactions.  Furthermore, if we compare the results for system 6 with those for system 7 

(figure 22), which has a lower association energy ( ε* = 3.0 ) with the other parameters 

the same, we again see that the SAFT-VR+D approach provides good agreem

simulation data at low temperatures. We ther eli ve he under-prediction is 

only observed in the liquid density at low temperatures for system 6 in which the 

association energy is at its strongest, that the association interactions are preventing the 

efficient sampling of the system.   

 

ab
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igure 20: Isotherms for dipolar square-well associating monomer fluids 

with four association sites for system 4: 
F

µ*2 = 1.0 , λ = 1.5  ,   rc
* = 1.05 ,

ε* = 1.0 , and t T* = 1.2, 1.4, 1.6, 1.8, 2.0 (from bottom to top). 
The solid lines represent predictions from the SAFT-VR+D equation and the 
symbols the NPT-MC simulation data. 

 

Figure 21: Coexisting densities for dipolar square-well associating monomer 
fluids with four association sites and 

 εab
* = 5.0 a

3

9

0.5
η

0.4

0.8

1.2
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η

µ*2 = 1.0 , λ = 1.5  ,   rc
* = 1.1,

ε* = 1.0 , and  (system 6). The circles represent the GEMC 
simulation data and the solid lines predictions from the SAFT-VR+D 
equation. 

εab
* = 5.0
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Figure 22: ciating monomer  Coexisting densities for dipolar square-well asso
fluids with four association sites and µ*2 = 1.0 , λ = 1.5  ,  , rc

* = 1.1
ε* = 1.0 , and  (system 7). The circles represent the GEMC 
simulation data and the solid lines predictions from the SAFT-VR+D 
equation. 

 

We now turn to the effect of the strength of the dipole moment on the PVT and phase 

behavior of dipolar associating fluids.  In figure 23 we present the PVT behavior of the 

dipolar

namely e  moments,  

respect

εab
* = 3.0

 associating fluids with four association sites with different dipole moments, 

 systems 8 and 9, which have differ nt dipole µ*2 nd µ*2 = 2.0

ively,  with other same parameters (

= 0.5 a  

λ = 1.5  ,  rc
* = 1.05 , ε* = 1.0 , andεab

* = 5.0 ). 

rom figure 23(a), we note that, excellent

from the SAFT-VR+D approach and simu ever, the SAFT-VR+D 

approach slightly under-predicts the pressure at a given tem erature and density for high 

dipole moment (  as shown in Figure 23(b). In figure 24, the PVT behavior of 

F  agreement is observed between the predictions 

lation data. How

p

µ*2 = 2.0 )

 68



the dipolar associating fluid with four association sites of system 9 was presented at 

higher temperature (T*=2.2, 2.4, 2.6, 2.8). From the figure, better agreement between 

simulation results and theoretical prediction is seen than that of the same system at low 

temperature. We have also studied the phase equilibria of the dipolar associating fluid 

with different dipole moments, system 8 and 9 shown in figure 25. For system 8, obtain 

excellent agreement between simulation results and theoretical prediction from the 

SAFT-VR+D approach, however we see a slight deviation between the theoretical 

predict

 

ions and simulation data for system 9 with the higher dipole moment.  
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Figure 23: Isotherms for dipolar square-well associating monomer fluids 
*2

µ*2 = 2.0 ,
with f nd (b) = 0.5 aour association sites for (a) µ

λ = 1.5 , rc
* = 1.05 , ε* = 1.0 , and εab

* = 5.0 at T*= 1.2, 1.4, 1.6, 1.8, 
and 2.0 (from bottom to top). The solid lines represent predictions from the 
SAFT-VR+D equation and the symbols the NPT-MC simulation data. 
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Figure 24: Isotherms for dipolar square-well associating monomer fluids 
with four association sites of system 8: µ*2 = 2.0 , λ = 1.5 , rc

* = 1.05 , 
ε* = 1.0 , and  at T*= 2.2, 2.4, 2.6, 2.8 (from bottom to top) The 
solid lines represent predictions from the SAFT-VR+D equation and the 
cycles the NPT-MC simulation data. 
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Figure 25: Coexisting densities for dipolar square-well associating monomer 
fluids with four association sites for (a) 
µ*2 = 0.5 , λ = 1.5 , rc

* = 1.05 , ε* = 1.0 , and nd (b) system 6 εab
* = 5.0 a

µ*2 = 2.0 , λ = 1.5 , rc
* = 1.05 , ε* = 1.0 , and  The symbols represent 

the GEMC simulation data and the solid lines predictions from the SAFT-
VR+D equation. 

εab
* = 5.0 .
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3.4.2 Water 

Having seen that SAFT-VR+D equation can accurately describe the fluid phase behavior 

of dipolar square-well associating fluids with one, two and four association sites, we now 

turn to the study of real fluids, and specifically water.  The experimental dipole moment 

for water is used in the calculations and the remaining parameters determined by fitting to 

experimental vapor pressure and saturated liquid density data [99]. We compare the 

results obtained with those from the original SAFT-VR approach in Figure 26.  From the 

figure, we can see that the critical temperature from the SAFT-VR+D approach is slightly 

lower than that of the SAFT-VR EOS though both methods over-predict the critical point 

due to the analytic nature of the equations of state [13, 14]. Although from a visual 

inspection the agreement with experimental data from the two approaches is comparable, 

the SAFT-VR+D approach provides a more accurate correlation of both the vapor 

pressure and saturated liquid density of water than the SAFT-VR approach when the 

absolute average deviations (AAD) are calculated: the AAD over the whole phase 

diagram is 0.92% for the vapor pressures and 2.87% for saturated liquid densities for the 

SAFT-VR+D approach, compared with 1.18% and 3.06% respectively for the SAFT-VR 

equation. We also note from Figure 26 that both the SAFT-VR and SAFT-VR+D 

equations cannot capture the experimentally observed density maximum at lower 

perature.  We find that in order to capture this behavior a temperature-dependent 

segmen

SAFT1  the 

ater phase diagram. 

tem

t diameter is needed as shown in Figure 27. A similar result is obtained using the 

 equation, which uses temperature-dependent parameters in it’s description of

w
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Figure 26: Vapor pressures (a) and vapor - liquid coexistence densities (b) 
for water compared with theoretical predictions. The results obtained from 
the SAFT-VR EOS are represented as dashed lines and those from the SAFT-
VR+D as solid lines. The squares represent experimental data. 
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Figure 27: Vapor pressures (a) and vapor and liquid coexistence densities (b) 

squares represent the experimental data. The results obtained from the SAFT-

 

 

for water compared with theoretical predictions from 283.15K to 400K. The 

VR+D EOS correspond to solid lines. 
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3.5 Conclusion 

In this chapter, a SAFT-VR+D approach for associating fluids has been presented and 

NPT MC and GEMC simulations performed to obtain simulation data with which to 

compare and validate the SAFT-VR+D approach for associating fluids. For the systems 

studied the theoretical predictions are in good agreement with simulation data. The effect 

of the range of association energy and association volume has been studied and good 

agreement is obtained, though slight deviations were seen between the theoretical 

predictions and simulation data for the saturated liquid densities at low pressure for the 

strongest association system studied. This is believed to be due to poor sampling in the 

GEMC simulations due to the formation of clusters of associating molecules. The 

comparison between the theoretical predictions and simulation data illustrates that the 

SAFT-VR+D approach can accurately describe the thermodynamic properties of dipolar 

associating fluids.  Additionally, we have applied the SAFT-VR+D approach to water. 

Although the improvement seen in the description of the fluid phase diagram is minimal 

compared to the original SAFT-VR approach, the dipolar model for water allows us to 

explicitly study the effect of the dipolar interactions on solvent properties. 
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CHAPTER IV 

 

EQUATION OF STATE 
PHASE BEHAVIOR OF ELECTROLYTE FLUIDS FROM THE SAFT-VR+DE 

 

4.1 Introduction 

Electrolyte solutions, and in particular, aqueous electrolyte solutions, are central to 

chemical, biological and environmental processes. The thermodynamic properties of 

electrolyte solutions are therefore crucial to the design and operation of, for example, 

aqueous protein separations, in addition to the more traditional processes in the chemical 

and petroleum industries.  The importance of understanding the thermodynamics of 

electrolyte solutions is reflected by the significant body of work devoted to developing 

theoretical tools to predict their thermodynamic and physical properties.   

One of the key barriers to the development of predictive approaches for 

electrolyte solutions is the complexity of the interactions and how to describe the long-

range charge-charge and charge-polar interactions.  Several theoretical models have been 

developed to specifically deal with these interactions in electrolyte solutions. In 

particular, the Debye-Huckle theory was the first theory for electrolyte solutions and 

considers the ions to be point charges, and so does not include the effect of the volume of 

the ions and treats the solvent as a dielectric continuum. The Debye-Huckle approach 

provides a good description of low concentration electrolyte solutions and has been used 

to develop many semi-empirical equations of state (EOSs) for electrolyte systems such as 

the Pitzer [100] equations and the electrolytic NRTL [101, 102] model.   
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Perturbation theory was first applied to model electrolyte solutions by Stell and 

Lebowitz [103] using the hard sphere as a reference state and Debye-Huckle theory to 

deduce the perturbation term of the Helmholtz free energy for ion-ion interaction. 

Henderson later [104] proposed a restricted perturbation theory in which the ion-ion 

interaction is treated as a perturbation term. Both approaches treat the solvent as a 

continuous medium and hence are McMillan-Mayer (MM) level of models (as opposed to 

Born-Oppenheimer (BO) models that explicitly include the solvent). MM models, in 

which the ions are hard spheres, are referred to as primitive models. Subsequently, 

Henderson and coworkers [105] extended their approach to ion-dipole mixtures and Chan 

[106] later applied this model to simple chloride solutions and found that the non-

primitive model, which explicitly models the solvent as dipolar molecules, did not give 

better results than the primitive model, despite the more realistic nature of the model. The 

apparent failure was attributed to inaccurate predicts of the reference hard-sphere fluid 

properties. In an alternative approach Jin and Donohue [107-109] combined the 

perturbed-anisotropic-chain theory [110] for short – range interactions between 

molecules with Henderson’s primitive model for the long range Coulombic interactions 

and studied a range of single and multiple electrolyte solutions.   

 As an alternative to perturbation theory, a number of theories for electrolyte 

solutions have been proposed based on integral-equation theory. Within integral equation 

theory, two important approximations, the hypernetted chain (HNC) and the mean 

spherical approximation (MSA), have been used to solve the Ornstein-Zernike equation 

for electrolyte fluids. However, while the HNC [111, 112] approximation is accurate it is 
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mathematically complex and does not provide analytical solutions. For example, an 

important HNC theory is the reference interaction site model (RISM), developed by 

Chandler [113] and Hirata [114, 115] which takes into account the molecular shape of the 

ions and solvent; however, it yields a trivial dielectric constant for the solvent in BO 

models and the solution is not analytic, requiring numerical methods. In contrast, the 

MSA allows for analytical solutions to be developed for a wide range of model fluids 

[116]. Independently Waisman and Lebowitz [117, 118] and Blum [119] obtained 

analytical expressions for the thermodynamic properties of the restricted and unrestricted 

primitive MSA models respectively (restricted refers to primitive models in which the 

hard spheres are of equal diameter and opposite sign).The primitive MSA (PMSA) 

clearly accounts for the effect of the volume of the ions explicitly; when the diameters of 

the ions vanish the MSA expression reduces to the D-H equation.  The PMSA model has 

been applied to develop equations of state for electrolyte fluids by several authors. For 

example, Ball [120] established an EOS for electrolyte solutions that used the PMSA to 

describe the long-range interactions, and Lu [121] et al. have used the PMSA to calculate 

the activity coefficients of single and mixed aqueous electrolyte solutions using ionic-

strength-dependant effective diameters for the cation.   

5] later extended the solutions to the system of arbitrary sizes of 

charged and dipolar hard spheres. The solution of the NPMSA includes three types of 

To explicitly account for the effect of the solvent, Blum [122, 123] and Adelman 

and Deutch [124] developed analytic non-primitive MSA (NPMSA) expressions for the 

thermodynamic properties of a mixture of equal sized ions and dipolar hard-spheres. 

Blum and Wei [12
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interac

d 

Anderk

tion theory, within the framework of the statistical 

ssociating fluid theory, we can develop a statistical mechanics based model that 

accurately captures the key molecular level interactions. Within the SAFT framework, 

many extensions of the original equations have been proposed and several variations have 

been specifically developed to describe electrolyte solutions.  For example, Liu [132] et 

al. established an EOS for aqueous electrolyte fluids based on Wertheim’s theory for 

association interactions and the semi-restricted NPMSA (i.e.,  equal sized hard spheres 

tion: ion-ion, ion-dipole and dipole-dipole interactions. Hoye and Stell [126, 127] 

have used the approach of Blum and Wei to yield explicit forms for the ion-ion, ion-

dipole and dipole-dipole pair distribution functions.   Li et al. [128] subsequently tested 

the NPMSA against Monte Carlo simulation data and found that it provides a good 

description of the ion-ion interaction but underestimates the ion-dipole interaction. Lvov 

and Wood [129]  applied the restricted NPMSA, which considers the ions and solvent to 

be the same size,  to correlate the density of aqueous NaCl systems and give reasonable 

accuracy over a wide range of temperatures and pressures using 12 empirically adjustable 

parameters.  For a comprehensive review of theories developed for aqueous electrolyte 

fluids the reader is directed to the excellent reviews of Loehe and Donohue [130] an

o and coworkers [131].  

In this chapter we propose a new equation of state for electrolyte fluids that 

combines the analytical results of the MSA with an accurate model for the short-range 

dispersion and association interactions, which also play an important role in determining 

the thermodynamic properties of electrolyte systems. Through a combination of integral 

equation theory and perturba

a
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were used to model the cations and anions and a different sized hard sphere used for the 

solvent); Wu and Prausnitz [133] calculated the phase equilibria for systems containing 

hydrocarbons, water and salt by combining the Peng-Robinson EOS with the SAFT term 

for association interactions and the MSA to describe the ion-ion inte actions; Tan and 

Radosz [134] have coupled SAFT1 with the restricted primitive model (RPM) to 

represent aqueous strong electrolytes and Cameretti and coworkers [135] have extended 

the PC-SAFT equation to model aqueous electrolyte solutions through the addition of a  

Debye-Huckle theory ion-ion interaction term. Of particular relevance to the current work 

Galindo et al. [35, 36] who first extended the SAFT-VR EOS to model electrolyte 

solutions using an additive electrostatic term from the RPM with the MSA closure.  The 

SAFT-VRE approach has been used to predict the vapor pressures 

r

of electrolyte solutions 

in good agreement with experimental data; however, deviations from the experimental 

data are observed at high ion concentration ( > 10 molar), which may be due to the ion-

solvent interactions not being adequately represented by the dielectric constant of the 

solvent. The SAFT-VRE approach has also been used to successfully study the salting 

out of n-alkanes in water by strong electrolytes [37] using the experimental dielectric 

constant for water as input to the calculations.  

 A common feature of these equations of state is that a McMillan-Mayer level of 

theory is applied to describe the Coulombic interactions and therefore the effect of the 

solvent nt 

must b

 is not been explicitly taken into account and values for the dielectric consta

e obtained.  
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Here, we present the SAFT-VR+D approach which is a BO level equation of state 

at models electrolyte solutions through a combination of the MS

VR); the non-primitive model is used in order to explicitly take into account the effect of 

the solvent.  NPT Monte Carlo simulations have been performed and used to validate the 

new approach. Additionally, to demonstrate the advantage of the use of the non-primitive 

odel, we compare results from the SAFT-VR approach and the non-primitive model 

with those from the restricted non-primitive model, which constrains the size of the 

 size of the cation and anion being equal. 

The remainder of the chapter is organi

AFT-VR+DE model and theory for electrolyte soluti

olecular simulations performed are prese

d compared 

with simulation results in section 4.4.  Finally, concluding remarks are made and future 

ork discussed in section 4.5. 

e solutions in which the solvent is explicitly taken into account as a dipolar 

uid.  The electrolyte solutions are repre

. The ions are described as hard spheres, half with 

charge +q and diameter , and half with charge –q and diameter . The solvent is 

th A for the non-primitive 

model and the statistical associating fluid theory for potentials of variable range (SAFT-

m

cation, anion and solvent to be equal and the semi non-primitive model, in which only the 

ions and solvent are of different sizes with the

zed as follows: in section 4.2 we present the 

S ons. In section 4.3, details of the 

m nted. Results for the phase behavior of 

electrolyte solutions with different non-primitive models are presented an

w

 
4.2 Model and Theory 

In this chapter we extend the SAFT-VR approach to study the thermodynamic properties 

of electrolyt

fl sented as a mixture of ions and solvent 

molecules as shown in Figure 28

σ + σ −
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described as dipolar associating square-well molecules of diameter σ d with dipole 

moment µ  embedded in the center of the molecule and four association sites to mimic 

rogen bonding. As shown in Figure 16 in Chapter III, the four association sites, 

o of type a and two of type b, are situated

odel, there are two 

types of association sites, type a and type b with interactions between sites of different 

type only. In our model for electrolyte solutions, in addition to the dispersion and 

association interactions between solvent molecules, electrostatic charge-charge, charge-

e in

 
Figure 2
solutions o

iation sites.  

the hyd

tw  off-center at a distance r  in a tetrahedral d

arrangement on the hard sphere. Two sites interact through a square-well potential when 

they are closer than a distance r  apart. In the dipolar association mc

dipole and dipole-dipole interactions describe th teraction of the ions, the ions within 

the solvent, and dipolar solvent-solvent interactions respectively.  

8: Schematic showing the model used to describe electrolyte 
in which solvent m lecules are explicitly described as dipolar 

association molecule with four assoc
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Hence, the pair potential for the reference fluid is defined by 

 u r( )= u SW r( )+ uCC r( )+ u CD r( )+ u DD r( ) (4.1) 

-well potential, 
 
where, u r( ) represents the squareSW uCC r( ) the Coulombic charge-

harge interaction, the charge-dipole i

 SW (r) = −ε if σ ≤ r < λ σ⎨  (4.2) 

c nteraction, and uDD r( )the dipole-dipole uCD r( )

interaction.  As in the original SAFT-VR equation the square-well potential is given by 

ij

+∞ if r < σ ij

ij ij ij ij

0 if r ≥ λijσ ij

⎧
⎪

⎩
⎪

 
where 

u

 is the diameter of the interaction, λ  the range and εσ ij ij ij  the depth of the square-

obtained from standard comb viz 

well potential and the inter- and intra-molecular cross interactions between segments are 

ining rules, 

σ ij =
σ ii + σ jj 

2
 (4.3) 

ε ij = 1− kij( ) εiiε jj( )1/2
 (4.4)  

 λij =
σ ii + σ jj

λiiσ ii + λ jjσ jj⎛ ⎞

The Coulombic charge-charge potential between ions can be represented by 

4πεr

⎝
⎜

⎠
⎟  (4.5) 

+∞ if r ≤ σ ij

 uij
CC (r) = ziz je

2

if r > σ
⎨
⎪

 (4.6) 

 

ij

⎧
⎪

⎩
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e = 1.602 × 10−19 C is the elementary charge, and where r is the center-to-center distance, 

ε is the permittivity of the continuous dielectric medium. The charge-dipole potential can 

be defined by 

uij
CD (r) =

+∞ if r ≤ σ ij

zieµ
4πεr2 r̂.n̂( ) if r > σ ij

⎧
⎨
⎪

⎩⎪
  (4.7) 

 
nd the dipole-dipole potential as 

DD

+∞ if r ≤ σ ij
2

4πεr

a

 ij (r) =
−

µ
3

 

u
D n1n2

)r( ) if r > σ ij

⎨
⎪

 (4.8) 

where 

⎧
⎪

⎩

 
 D n1n2

)r( )= 3 n1 ⋅ )r( ) n2 ⋅ )r( )− n1 ⋅ n2  (4.9) 

Here  
)r  is the unit vector in the direction of r joining the center of the segments and is 

a unit v o

 the Helmholtz free energy A for the electrolyte 

solutions studied in this work can be written in the form 

 

ni

ector parallel to the dipole m ment of segment i .  

Within the SAFT framework,

A
NkBT

=
Aideal

NkBT
+

Amono.

NkBT
+

Aassoc.

NkBT
 (4.10) 

 

reference monomer fluid, and y due to association 

teractions.  We have not included the contribution due to

charged/dipolar monomer molecules are considered in this study. Here we present the 

general expressions for each term in equation (4.10) in turn for the ternary mixture of 

ations (component 1), anions (component 2) an

where ideal is the free energy of the ideal fluid, Amono. is the contribution due to theA

Aassoc.  represents the free energ

in  chain formation, as only 

c d solvent molecules (component 3). 
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4.2.1 Ideal Contribution 

The ideal contribution to the free energy is expressed as: 

Aideal

NkT
= xi ln(ρiΛi

3) − 1
i=1

n

∑
= x1 ln(ρ1Λ1

3) + x2 ln(ρ
 

2 2 3 3 3Λ 3) + x ln(ρ Λ 3) − 1
 (4.11) 

herw e ρi i= N / V  the number density, Λ i  the thermal de Broglie wavelength of species

and  the mole fraction of component 

 

4.2.2 Monomer Contribution 

he monomer free energy is given by, 

 

 i  

xi i . 

 T

Amono.

NkT
= x m

n

∑⎛
⎜

⎞
⎟

Amono.

i i
x=1⎝ ⎠ NskT

= x
n

∑ m
⎛
⎜

⎞
⎟ amono.  (4.12) 

the total number of segments, determined from the product of the total 

numb olecules 

i
x=1

i⎝ ⎠

where Ns  is 

er of m N  and the number of segments per molecule , which in this 

ork is always equal to 1.  is the free energy per monomer segm

fluid which is a mixture of charged and dipolar hard spheres that interact through square-

ipol interactions. 

can be separated into two terms, due to the square-well potential, and  due 

viz. 

mi

w ent of the reference amono

well, and Coulombic charge-charge, charge-dipole and dipole-d e 

amono. aM aMSA

to the anisotropic long-range interactions, 

 amono = aM + aMSA  (4.13) 
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4.2.2.1 Square-Well Attractive contribution 

 the SAFT-VR equation  is approximated by a second order high temperature 

Henderson’s perturbation theory for mixtures [136], viz 

2

where 

aMIn

expansion using Barker and 

 aM = aHS + βa 2a  (4.14) 1 + β

β = 1 kT , aHS  is the free energy of the hard sphere reference fluid and  and  are 

multicomponent hard sphere systems,  

a1 2

the first and second perturbation terms respectively.  The hard sphere reference term a  is 

determined from the expression of Boublik [137] and Mansoori and co-workers [138] for 

 aHS =
6

a

HS

ζ2
3

2ζ3

− ζ0

⎛
⎜

⎞
⎟ ln(1 − ζ3 ) +

3ζ1ζ2

⎝ ⎠ 1 − ζ3

+
ζ2

3

2ζ3(1 − ζ3 )
⎡
⎢

⎤
⎥  (4.15) 

πρs ⎣ ⎦

where ρs  is the number density of segments, which is defined as the total number of 

ents divided by the total volume segm Ns V  and ζ l  is the reduced density given by a 

um over all segments 

 

i , s

ζ l =
π
6

ρs xs,i (σ i )
l

i=1

n

∑⎡

⎣
⎢

⎤

⎦
⎥

=
π
6

ρs[xs,1(σ1)l xs,2 (σ 2 )l + xs,3(σ 3)l ]
 (4.16) 

+

where σ i  is diameter of segments of type i  and xs,i  is the mole fraction of segments in 

the mixture, and is given by 

 xs,i =
mi xi

mk xk
k =1

n

∑
=

mi xi

m1x1 + m2x2 + m3x3

= xi  (4.17) 
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The first perturbation term  describing the mean-attractive energy is obtained 

from the sum of all pair interactions,  

(4.18) 

where  is obtained from the mean-value theorem as proposed by Gil-Villegas et al. 

[9], 

  (4.19) 

VDW =
2

 a1

a1 = xs,i
j =1

n

∑
i=1

n

∑ xs, j a1( )ij

= xs,1
2 a1( )11

+ 2xs,1xs,2 a1( )12
+ 2xs,1xs,3 a1( )13

+ xs,2
2 a1( )22

+ 2xs,2xs,3 a1( )23
+ xs,3

2 a1( )33

a1( )ij

a1( )ij
= −2πρsεij rij

2

σ ij

∞

∫ gij
HS (rij )drij

        = − ρsα ij
VDW gij

HS (σ ij;ζ3
eff )

and 

α ij
π
3

 σ ij
3ε ij λij

3 − 1( ) (4.20) 

In this work we use mixing rule MX3b as defined in reference [10] since we are concerned 

with the phase behavior of electrolyte solutions and will not consider the critical region [ref 

 is given by mccabe paper showing problems).  Therefore gij
HS (σ ij;ζ3

eff )

 gij
HS σ ij ;ζ3

eff λij( )⎡⎣ ⎤⎦ =
1

1− ζ eff( )3

+ ij 3

1− ζ eff( )2

3D ζ eff

3

+ 2
Dijζ3

eff( )
− ζ3

eff )3

2

1(
 (4.21) 

here is given by 

 jj

σ ii + σ

 Dijw

σ iiσ xiσ ii

2
i=1

n∑Dij =
xiσ ii

3
i=1

n∑jj

 (4.22) 

ective packing fraction
 

 ζ3
eff λij( )can be written as, The eff
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ζ3
eff ζ3,λij( )= c1 λij( )ζ3 + c2 λij( )ζ3

2 + c3 λij( )ζ3
3  (4.23) 

and following the original SAFT-VR approach [10] 

⎟

The second order perturbation term for the monomer excess free energy is 

expressed as: 

2 a( ) + 2x x a( ) + 2x x a( )
s,2 2 22

2 s,2 s,3 2 23 s,3 2 33

 (4.25) 

where  is obtained through the local compressibility approximation:  

 
⎟
⎟  (4.24) 

c1

c2

c3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=
2.25855  -1.50349  0.249434
-0.669270  1.40049  -0.827739
10.1576   -15.0427  5.30827

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1
λij

λij
2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

a2

a2 = xs,i
j =1

n

∑
i=1

n

∑ xs, j a2( )ij

= x s,1 2 11 s,1 s,2 2 12 s,1 s,3 2 13

+x2 a( ) + x x a( ) + x2 a( )

a2( )ij

a2( )ij
=

1
2

K HSε ijρs

∂ a1( )ij

∂ρs

  (4.26) 

 
and K HS  is the Percus-Yevick expression for the hard-sphere isothermal compressibility, 

ζ0 (1− ζ3)2 + 6ζ1ζ2 (1− ζ3) + 9ζ2
3 

4

K HS =
ζ0 (1− ζ3)

 (4.27) 

4.2.2.2 MSA contribution 

d

n spherical 

 

The non-primitive model is used in our description of electrolyte solutions in or er to 

explicitly take into account the effect of the solvent. Here we briefly summarize the 

expressions of Blum’s solution for the non-primitive model within the mea
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a other models considered for comparison are pproximation [139]; the expressions for the 

listed in the appendix. In the MSA, the properties for the non-primitive model are 

expressible with three parameters Γ , B10  and , which correspond to the ion-ion, ion-

ipole and dipole-dipole interactions respectively, and are given by the solution of three 

+ an
1 1− ρnknm

11( )= α0α2  (4.29) 

  (4.30) 

 

here the quantities in equations (4.28) - (4.30) are defined as 

 b2

d

algebraic equations, viz. 

 ρi ai
0( )2∑ + ρn an

1( )2
= α0

2  (4.28) 

 −
i=1

n−1

∑

i=1

n−1

ρiai
0kni

10

1− ρnknm
11( )2

+ ρn ρi kni
10( )2

i=1

n−1

∑ = y1
2 + ρnα2

2

 
w
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α0
2 2 2 4πβµ2

= 4πβe , α2 =
3

β3 = 1 +
3
1

b2 , β6 = 1−
6
1

b2

β3

β6

λ = , y =1
4

β6 1+ λ( )2

w = i i
1

ρ z2

β6 σ n + λσ i( ) 1+ Γσ i( )i=1

n−1

w2
1
2

∑ ,

= ρ σ 2 i i i
n n B10

ρ z2σ 2

2β6 σ n + λσ i( ) 1 + Γσ i( )⎡⎣ ⎤⎦
2

i=1

n−1

−
w1

2

∑

υη =
+

w1

2
⎛
⎝⎜

⎞
⎠⎟

+
2B10w2

β 2

                       (4.31) 
2

6

w2

, ∆Γ η n n
2σ i

2B10
i =

8β6 σ n + λσ i( )
υ ρ σ

Di
F =

ziβ6

2 1 + σ iΓ − ∆Γ i( ), mi =
υηDi

F

σ n + λσ( )i

D = 1+ υηρnσ n
2 2 ρiσ i

2 Di
F( )2

2β6 σ n + λσ i( )⎡⎣ ⎤⎦
2

i=1

n−1
F 2

i=1

n−1

i

1+ Γσ − ∆Γ )D − 1
σ i

∑ , Dac = ρi Di( )∑

Γ s = i i(
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= υΩ10 η

ρiσ i Di
F( )2

σ n + λσ i( )i=1

n−1

2Di
F

β6σ i

∑ ,
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υηρnσ n
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⎦
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2Di
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6
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s
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⎦
⎥ +

σ n
3B10ai
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612β

1− ρnknm
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1
Dβ6
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2Ω10an
1

22β6

⎡
⎢

⎤
⎥ +

ρnσ n
3B10an

1

⎣ ⎦ 12β6

 (4.32) 

 

 βE
V

In the mean spherical approximation, the internal energy is given by 

=
1

4π
α0

2 ρizi D − 1 − σ iΓ i

σ 1 + σ Γ s( )
2 s( )

i i i

− ρnα0B10
−B10σ nα0

12β

3

6

+ 2α2

⎛
⎝⎜

⎞
⎠⎟

−
2α2 ρnb2

σ 3

2

ni=1

n−⎧

⎩⎪

⎫

⎭⎪

and the ionic excess chemical potentials as: 

1

∑⎨
⎪

⎬
⎪ (4.33) 

 

 βµi =
zi α0 i − α0α2ρnmi

2N( )
4π

 (4.34) 

 
The chemical potential of dipole molecule is given by: 

 βµn =
−α0α2B10 − 2α2

2b2 σ n
3( )

4π
 (4.35) 

e dielectric constant can be written as 

= + n 2 6

 
Following Adelman [140] th

 A 1
ρ α 2β 2 1+ λ

ε ( )4

16
 (4.36) 

The Helmholtz free energy is presented by 
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 βA
V

=
1

12π
−2α 2

0

ρizi
2 D − 1 − σ iΓ i

s( )
σ i 1 + σ iΓ i

s( ) + ρ α B 10 n 0
n 0 10

−B σ 3α
12β6

+ 2α∑⎨ ⎬ + J '  (4.37) 
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 (4.38) 
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 (4.39) 

 
Since in the MSA, the excess Gibbs free energy equals the excess internal energy, then 

the pressure is given by 
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β E − A( )
 βP =

V
 (4.40) 

 

4.2.3 Association contribution 

 th heo f h  o t du o a iat f e

species i is obtained as [7]: 

 

Based on e t ry o  Wert eim, the c ntribu ion e t ssoc ion o si sit s on 

  

AASSOC

NkT
= xi (ln Xa,i −

Xa,i

2
)

a=1

si

∑ +
si

2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i=1

n

∑  (4.41)

where the first sum is over the number of species i and the second sum is over all sites 

of type a on species i, and is the fraction of molecules of type i not bonded at site a, 

which is obtained from the numerical solution of the mass action equations :  

 
+ j Xb, a

=1

si

si

  
Xa,i  

1
Xa,i =

1 ρx j∆ ,b,i. j
bj=1
∑∑

n
 (4.42) 

The fun ti r the ssociati te  u

and site  on molecules j, can be written as 

  (4.43) 
 

where, is the contact value of the monomer-monomer radial distribution 

function, 

c on ∆
  a ,b,i. j , which characte izes a on between si  a on molec le i, 

 b

∆a,b,i. j = Ka,b,i, j fa,b,i, j g
M (σ ij ;ζ3)

  
g M (σ ij ;ζ3)

  
fa ,b,i, j = exp −ψ a,b,i, j kT( )− 1 i

bonding interaction 
  
ψ a,b,i, j ,  and Ka ,b,i, j

s the Mayer f function of the a-b site-site 

is the volume available for bonding [47]. The 

radial distribution function is obtained from a temperature expansion as  
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g M σ ij ;ζ3( )= g0

HS σ ij ;ζ3( )+ βε ij g1 σ ij ;ζ3( )  (4.44) 

here the hard-sphere radial distribution function is given by the Boublik hard-sphere 

contact value 

 ij ;ζ

w

g0
HS σ( 3 )=

1
− ζ3 )1( +

3Dijζ

1− ζ3( )
3

2 + 2
Dijζ3( )2

1−( )ζ3

3  (4.45) 

In our model for electrolyte ns the t m les a odeled as 

associating mo cules w fou iatio s. Therefore, the association contribution 

to the free ene gy for a uid w fou ponent can be simplified 

from equation (4.41) to 

 
N

 solutio only solven olecu re m

le i  th r assoc n site

r fl ith a r-site associating com

  

AASSOC

kT
= x3 3 −

X
4 ln X 3

2
⎛

⎝⎜
⎞

⎠⎟
+ 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (4.46) 

Since all four sites are equivalent the fraction of solvent molecules not bonded is given 

by 

 X3 =
1

1 + 2ρx3X3∆33

 (4.47) 

where  defined by equation (4.43). 

 
4.3 Computer Simulations 

Monte Carlo simulations have been performed to study the thermodynamic properties of 

several model electrolyte solutions and provide data with which to test the new 

theoretical approach. The simulations were performed in the isothermal-isobaric (NPT) 

ensemble. And the reaction field method, which truncates the potential at a finite distance 

∆33
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from each ion and dipolar molecule is used to describe the long-range charge-charge, 

charge-dipole and dipole-dipole interactions [74, 141]. The reaction field approach 

replaces the molecules beyond a cut-off distance by a dielectric continuum, the effect of 

which is taken into account by including an additional term into the long-range charge-

harge, charge-dipole and dipole-dipole interactions, viz  

 

c

uCC =
qiqj

1
r

+
εRF − 1( )
2εRF + 1( )

r2

rc
3

⎡

⎣
⎢

⎤

⎦
⎥

0

⎧

⎨
⎪

⎩
⎪

r < rc

r ≥ rc

 (4.48) 

 

 

uCD =
−

2 εRF − 1( )
2εRF + 1( )

rr
rc

3 q.µ

0

⎧

⎨
⎪

⎩
⎪

r < rc

r ≥ rc

 (4.49) 

 uDD =
−

µ1µ2

r3
⎛
⎝⎜

⎞
⎠⎟

D −
2 εRF − 1( )
2εRF + 1

µ1µ2

rc
3

0

⎧

⎨
⎪

⎩
⎪

r < rc

r ≥ rc

 (4.50) 

where is the cut-off distance beyond which the pair potential vanishes and rc εRF  the 

dielectric constant of the continuum. In our simulations, the value of  is set torc 3.0σ , 

and εRF to . The usual periodic boundary conditions and minimum image convention 

are used. One simulation cycle consists of three kinds of trial moves: N trial 

displacements of randomly chosen molecules, N trial rotations and one volume change.  

The extent of each trial move is adjusted to give an individual acceptance probability of 

30 - 40%. Each simulation was started from an initial configuration in which 256 

molecules are placed on a lattice in the simulation box.  An initial simulation of 100,000 - 

500,000 cycles was performed to equilibrate the system, before averaging for between 

500,000 and 1,000,000 cycles. The thermodynamic properties of the system were 

∞
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obtained as ensemble averages and the errors estimated by determining the standard 

deviation. 

Due to the simplicity and the speed of the reaction field method, several 

comparisons have been performed in the literature to the Ewald summation technique 

[73, 142, 143].  For dipolar fluids, the reaction field method has been shown to be 

provide results in agreement with the Ewald summation [[77], [142].  Additionally, 

several authors have applied the reaction field method to study ionic fluids, for example, 

Cummings et al. [144] performed molecular dynamics simulations to determine the 

equilibrium structure and properties of supercritical water and supercritical aqueous 

solutions and Zhu and Robbinson [145] applied have studied the solvation structure in a 

moderately concentrated salt solution.  The reaction field method has also been used to 

simulate mixtures of ions and dipoles. For example, Bandura et .al [146] performed MC 

simulations to determine ion solvation thermodynamics and the structure of ion-dipole 

systems and confirmed that the reaction field method is accurate for mixtures of ions and 

dipolar solvents with moderate values of dipole moments and charges.   

  

4.4 Results and discussion 

We have studied the phase behavior of several model electrolyte solutions. In particular 

comparisons are made between theoretical predictions and NPT ensemble Monte Carlo 

simulation data for several model systems in order to test the new SAFT-VR+DE 

approach. The model systems studied are detailed in Table 12 and the results of the NPT 

MC simulations are reported in Table 13 and 14.  Systems 1-4 are so-called symmetric 
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electrolyte solutions, in that they have equal sized ions and solvent molecules, system 5 

represents a semi-symmetric electrolyte solution in which the ions are of equal size, but 

differ from the size of the solvent, and system 6 describes an asymmetric electrolyte 

solution with different sized cation, anion and solvent molecules.  

 

Table 12: Model parameters for electrolyte fluids studied. and are the 
reduced diameter of solvent molecule, cation and anion,  the reduced dipole moment, 

 the reduced depth of square well potential ,

σ d
* ,σ +* σ −*

µ*2

ε*  λ  the range of the potential, the 
reduced association energy,  the reduced cutoff radius, 

ψ *

rc
* N ION  number of ions and 

N Solvent  number of solvent molecules . 
 
 
System σ d

*  σ +*  σ −*  µ*2  ε*  λ  ψ *  rc
*  N ION  N Solvent  

1 1 1 1 0.5 1 1.5 5 1.05 8 248 
2 1 1 1 1.0 1 1.5 5 1.05 8 248 
3 1 1 1 0.5 1 1.5 5 1.05 4 252 
4 1 1 1 0.5 1 1.5 5 1.05 16 240 
5 1 0.5 0.5 1.0 1 1.5 5 1.05 8 248 
6 1 1/3 2/3 1.0 1 1.5 5 1.05 8 248 
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given by T * = kBT / ε , the reduced pressure is given by P* = Pσ 3 / ε  and the reduced 
energy is given by E E / Nε . 
 
 
 
SYS. T* P* eta ERR. -E* ERR. SYS. T* P* eta ERR. -E* ERR. 

Table 13: NPT MC simulation results for Systems 1 - 4. The reduced temperature is 

* =

1 1.2 0.3208 0.402 0.008 17.47 0.28 3 1.2 0.4947 0.3982 0.0059 12.15 0.24 
  2.1922 0.451 0.005 19.20 0.23   2.3668 0.4458 0.0064 13.40 0.25 
 1.4 0.4548 0.357 0.008 15.26 0.25  1.4 0.6295 0.3508 0.0068 10.06 0.23 
  1.6788 0.402 0.007 16.31 0.33   1.8628 0.3996 0.0061 11.19 0.22 
  4.2295 0.447 0.006 17.11 0.23   4.4158 0.4472 0.0048 12.33 0.22 
 1.6 1.2669 0.353 0.007 14.70 0.22  1.6 0.6315 0.3068 0.0080 8.59 0.21 
  2.9478 0.401 0.005 15.33 0.20   1.4475 0.3513 0.0067 9.48 0.21 
  6.1674 0.451 0.006 16.46 0.22   3.1401 0.4012 0.0061 10.57 0.21 
 1.8 0.9596 0.294 0.008 13.37 0.50   6.3641 0.4464 0.0049 11.58 0.21 
  2.0401 0.352 0.014 13.92 0.80  1.8 1.1258 0.3041 0.0078 8.19 0.20 
  4.1532 0.398 0.012 14.64 0.70   2.2254 0.3503 0.0066 9.08 0.19 
  8.0221 0.450 0.015 16.57 0.73   4.3522 0.4002 0.0054 10.11 0.19 

2 1.2 0.1859 0.411 0.008 18.96 0.42   8.2274 0.4470 0.0039 11.08 0.18 
  2.0379 0.452 0.004 19.93 0.22 4 1.2 0.5878 0.419 0.005 29.77 0.22 
 1.4 0.3421 0.359 0.007 16.48 0.24   1.8917 0.456 0.003 30.40 0.20 
  1.5471 0.406 0.006 17.82 0.27  1.4 0.1432 0.348 0.004 25.35 0.19 
  4.0785 0.454 0.004 18.80 0.22   1.3541 0.405 0.004 28.39 0.21 
 1.6 0.3773 0.295 0.009 14.03 0.23   3.9055 0.457 0.004 30.47 0.21 
  1.1570 0.353 0.008 15.19 0.24  1.6 0.1738 0.318 0.011 22.61 0.80 
             2.8190 0.408 0.005 17.34 0.21  0.9429 0.350 0.009 24.70 0.35
  6.0196 0.452 0.005 17.94 0.23   2.6061 0.406 0.005 27.74 0.20 
 1.8 0.8709 0.299 0.007 13.64 0.20   5.8224 0.458 0.004 29.72 0.20 
  1.9329 0.357 0.007 14.81 0.22  1.8 0.6583 0.292 0.009 21.44 0.73 
  4.0273 0.405 0.006 16.50 0.32   1.7062 0.357 0.01 25.99 1.59 
              7.8772 0.453 0.005 17.39 0.21 3.7977 0.404 0.005 27.23 0.20
         7.6592 0.457 0.006 28.19 0.46 
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Table 14: NPT MC simulation results for Systems 5 - 6. The reduced temperature is 
given by , the reduced pressure is given by  and the reduced 
nergy is given by

 
SYSTEM T* P* eta ERROR -E* ERROR 

T * = kBT / ε P* = Pσ 3 / ε
e  E* = E / Nε . 

5 1.4 0.0724 0.334 0.010 18.95 0.29 
  1.1905 0.395 0.005 20.40 0.30 
  3.6384 0.446 0.006 21.12 0.24 
 1.6 0.2337 0.279 0.005 16.68 0.19 
  0.9472 0.338 0.005 18.67 0.20 
  2.5400 0.396 0.006 19.54 0.23 
  5.6772 0.448 0.006 20.30 0.23 
 1.8 0.7658 0.285 0.005 16.17 0.29 
  1.7745 0.347 0.005 18.01 0.19 
  3.8157 0.397 0.005 19.09 0.20 
  7.6213 0.450 0.005 19.73 0.21 
6 1.4 0.0656 0.350 0.003 19.65 0.20 
  1.1802 0.391 0.007 19.82 0.25 
  3.6225 0.442 0.005 20.35 0.42 
 1.6 0.2289 0.306 0.015 17.26 0.33 
  0.9399 0.343 0.007 17.30 0.29 
  2.5288 0.399 0.006 19.24 0.22 
  5.6596 0.444 0.005 19.59 0.33 
 1.8 0.7607 0.302 0.007 16.29 0.40 
  1.7666 0.356 0.005 17.31 0.66 
  3.8033 0.398 0.006 18.68 0.21 
  7.6018 0.446 0.006 18.91 0.36 

 
 

In figure 29, we present a comparison between predictions from the SAFT-

VR+DE approach with the NPT ensemble simulation results for the PVT behavior of the 

model restricted electrolyte solution in which the cation, anion and solvent molecules are 

all of the same size (i.e., systems 1 and 2). Two different dipolar solvents are considered; 

system 1 with nd system 2 with   From the Figure 29 we see that the 

stem with the highest reduced dipole moment (system 2) exhibits the highest density at 

µ*2 = 0.5 a µ*2 = 1.0 .

sy

a given pressure and temperature, as would be expected due to the increase in attractive 

interactions between the solvent molecules. We observe good agreement between the 

simulation results and theoretical predictions over a wide range of temperatures and 
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pressures, though the proposed approach is seen to slightly under-predict the simulation 

data at high densities. This could be due to inadequate sampling in the Monte Carlo 

simulations at high densities due to the strong association interactions. A similar trend 

was observed in a recent study of dipolar associating systems.  
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Figure 29: Symmetric electrolyte solution withε * = 1.0 , λ = 1.5 , 
 , charge σ +* = σ −* = σ d

* = 1.0 , ψ * = 5.0 , rc
* = 1.05 q = 1 , ions concentration 

8/256 and (a) dipole moment  at T* = 1.2, 1.4 and 1.6 (from 
bottom to top), (b) dipole mo  T* = 1.2, 1.4, 1.6 and 1.8 (from 
bottom to top). The solid lines represent predictions from the SAFT-VR+DE 
equation and the squares the NPT-MC simulation data. 

 

µ*2 = 0.5 ,
ment µ*2 = 1.0 ,
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 Since the concentration of ions in electrolyte solutions plays an important role in 

determining their thermodynamic properties, we have studied the PVT behavior of 

electrolyte solution with differing ion concentrations; namely 0.79%, 1.59% and 3.2% 

which correspond to systems 1, 3 and 4 respectively.  The concentrations reported are in 

the form of mol % of salt; for comparison, a 1 M NaCl solution corresponds to 1.77 mol 

%. The results for systems 3 and 4 are presented in Figure 30. From Figures 29 and 30 we 

note that as the concentration of the ions increases the density at a given pressure and 

temperature increases, since the attractive ion-ion interaction is stronger than the dipole-

dipole interaction. Good agreement is obtained in all cases between the simulation data 

and theoretical predictions for the systems. We have not examined more concentrated 

solutions in this work, since we have used the reaction field method to describe the 

Coulombic interactions; such systems will be the focus of a more detailed study to test 

the SAFT-VR+DE approach in future work.  We note however that Wei and Blum [139] 

have demonstrated that their non-primitive model solution is valid for moderate sized 

differences in ion diameters and for moderate to low concentrated solutions. 
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Figure 30: Symme ε * = 1.0 , λ = 1.5 , 

, charge σ +* = σ −* = σ * = 1.0 , d ψ * = 5.0 , rc
* = 1.05 q = 1 , dipole moment 

nd (a) 4/256, at T* = 1.2, 1.4 and 1.6 (from bottom to top), (b) 
16/256, T* = 1.2, 1.4, 1.6 and 1.8 (from bottom to top). The solid lines 
represent predictions from the SAFT-VR+DE equation and the squares the 
NPT-MC simulation data. 
 

In order to obtain a more comprehensive understanding of the thermodynamic 

properties of the systems studied we have also examined different models for the long-

range interactions, namely the Debye-Huckel theory, and the primitive and non-primitive 

models. In Figure 31, we present a comparison of the theoretical predictions from these 

different electrolyte models, with the results from the SAFT-VR+DE approach and the 

NPT ensemble MC simulation data for system 2 at T* = 1.8.  As mentioned previously, 

for the Debye-Huckel theory and the primitive models, we need to pre-determine the 

µ*2 = 0.5 a
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dielectric constant of the dipolar solvent, which depends on the dipole moment, 

temperature and the composition of the electrolyte solution. In applications of the 

primitive model the determination of the dielectric constant can be problematic and often 

introduces additional approximations.  For example in the SAFT-VRE approach [35], the 

experimental value of the dielectric constant of pure water at each temperature is used in 

the study of aqueous electrolyte solutions instead of that of the mixture, while Wu and 

Prausnitz [133] proposed a correlation for the dielectric constant of mixtures of 

hydrocarbons and aqueous salt solution based on the dielectric constant of water, the 

composition of the mixture and an adjustable constant for each hydrocarbon.  In the 

SAFT-VR+DE approach the dielectric constant is not required as an input to the 

calculations.  However, we must determine the dielectric constant for the Debye-Huckel 

and primitive models studied for comparison purposes only.  Since dielectric constant 

data is not available for model solutions, we calculate the dielectric constant Adelman’s 

formula for the dielectric constant from the non-primitive model. We note from the figure 

that, the theoretical prediction from the Debye-Huckel theory (dash-dot line) under-

predicts the density at given pressure and temperature; the theoretical prediction from the 

SAFT-VR approach with the primitive models under-predicts the density at a given 

pressure and temperature (RPM and PM provide the exact same theoretical prediction for 

the symmetric system studied). The prediction from the SAFT-VR+DE approach (i.e. 

non-primitive model) is in good agreement with the simulation data illustrating the need 

for an accurate dielectric constant.  As expected for the symmetric system studied the 
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restricted non-primitive model and the semi non-primitive model provide the same 

solutions. 
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Figure 31: Symmetric electrolyte solution withε * = 1.0 , λ = 1.5 , 
σ +* = σ −* = σ d

* = 1.0 , ψ * = 5.0 , rc
* = 1.05 , charge q = 1 , ions concentration 

8/256 and dipole moment µ*2 = 1.0 at T*=1.8 from different 
line represents the non-primitive model, the dash-point line th

models The solid 
e Debye-

Huckel theory, the point line the restricted primitive model, the small dash 
the primitive model, the long dash line the restricted non-primitive model, the 
middle dash line the semi non-primitive model. 
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 Having seen that the SAFT-VR+DE equation with the non-primitive model to 

describe the long-range interactions can accurately describe the PVT behavior of 

symmetric electrolyte solutions, we now turn to semi-symmetric electrolyte solutions, 

which have ions of the same size but different sized solvent molecules. In Figure 32 we 

present the PVT behavior for a semi-symmetric electrolyte solution (system 5), which has 

the same model parameters as system 2 but the size of the ions are now half that of the 

solvent.  From the figures (Figure 32 and 29b), we find that the semi-symmetric 

electrolyte solution exhibits a slightly higher density at a given pressure and temperature 

than the symmetric electrolyte solution (figure 29b) and that the SAFT-VR+DE EOS 

provides good agreement with the simulation data for the isotherms studied. 
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Figure 32: Semi-asymmetric model electrolyte solution withε * = 1.0 , 
λ = 1.5 , = 1.0 , = σ = 0.5 = 5.0 , = 1.05 , charge 

 

In order to demonstrate the advantages and accuracy of the SAFT-VR+DE 

approach and the difference between the non-primitive model and other MSA models for 

the long-range electrostatic interactions we have again compared the isotherms predicted 

from the SAFT-VR+DE approach with predictions from the SAFT-VR approach 

combined with the Debye-Huckel theory and the primitive model (RPM and PM).  The 

results from the different models studied for system 5 at T*=1.8.are shown in Figure 33, 

σ d
* +* −* *

c
*

concentration 8/256 and dipole moment µ*2 = 1.0 , at T
 σ ,ψ  r q = 1 , ions 

* = 1.4, 1.6 and 1.8 
(from bottom to top), The solid lines represent predictions from the SAFT-
VR+DE equation and the squares the NPT-MC simulation data. 
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along with the to NPT ensemble MC simulation data for comparison.  It can be seen from 

the figure that the predictions using Debye-Huckle theory and the restricted non-primitive 

model (RNPM), in which the same effective diameters are used for the ions and solvent, 

show the greatest deviations from the simulation data, which illustrates the importance of 

correctly accounting for the effect of the size of the ions and solvent in the non-primitive 

model. The results using the RPM and PM model both under-predict the density at a 

given temperature and pressure, and result in identical predictions since both models do 

not explicitly take into account the solvent but mimic the solvent as a dielectric 

continuum.  Again the prediction from the SAFT-VR+DE EOS is in good agreement 

with the simulation data for the studied system, illustrating the need for both an accurate 

alue of the dielectric constant and accurate representation of the size asymmetry 

vent and ions. 

v

between the sol

 

 107



-2.0

0.0

2.0

4.0

6.0

0.2 0.25 0.3 0.35 0.4 0.45 0.5

η

P*

8.0

10.0

Figure 33: Semi-symmetric model electrolyte solution withε * = 1.0 , λ = 1.5 , 
 , charge  ions 

concentration 8/256 and dipole moment  at T*=1.8 from different 
models. The solid line represents the non-primitive model, the dash-point line 
the Debye-Huckel theory, the point line the restricted primitive model, the 
small dash the primitive model, the long dash line the restricted non-primitive 
model, the middle dash line the semi non-primitive model. 
 

Since real electrolyte solutions, such aqueous solutions of NaCl, are typically 

composed of ions of different size, it is desirable to be able to model asymmetric 

electrolyte solutions that are comprised of ions and solvent of different diameters.  To test 

the ability of the SAFT-VR+DE equation in this respect we have studied the PVT 

etric electrolyte solution in which the solvent, cation, and anion 

σ d
* = 1.0 , σ +* = σ −* = 0.5 , ψ * = 5.0 , rc

* = 1.05 q = 1 ,
µ*2 = 1.0

behavior of an asymm
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diameters are in the ratio 3:1:2 (system 6).  The results are presented in Figure 34, where 

gain we see that the SAFT-VR+DE approach provides good agreement with the 

that the asymmetric 

tem ighest density at a given pressure and temperature, while the 

ty. We again compare the theoretical predictions 

obtained from the SAFT-VR+DE equation with different MSA models for the system 6 

at T* = 1.8 with the NPT MC simulation data in Figure 35.  From the figure we note 

metric system studied: namely, the 

predictions from restricted non-primitive model exhibit the 

poorest agreement with the NPT MC simulation data, indicating that the effect of the size 

of the ions and solvent plays an important role in determining the thermodynamic 

properties of electrolyte solutions; a slight difference is observed between the theoretical 

predictions obtained with the primitive model and the restricted primitive model, in 

which an effective diameter for the ions is used, and the dielectric constant, which has to 

be pre-determined for the primitive models, is calculated from the MSA theory of the 

dielectric constant for dipolar hard spheres. From the comparison, it can also be seen that 

the predictions using the semi non-primitive model, in which the effective size of ions is 

used, only slightly under-predicts the density at a given pressure and temperature in 

omparison with the simulation data and SAFT-VR+DE approach. 

 

a

simulation data.  From Figure 29b, Figure 32 and Figure 34, we note 

sys  exhibits the h

symmetric system has the lowest densi

similar trends to those observed for the semi-asym

 the Debye-Huckel and the 

c
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Figure 34: Asymmetric model electrolyte solution withε * = 1.0 , λ = 1.5 , 
 σ d

* = 1.0 , σ +* = 1 3 ,σ −* = 2 3 ,ψ * = 5.0 , rc
* = 1.05 , charge  ions 

concentration 8/256 and dipole moment  at T* = 1.4, 1.6 and 1.8 
(from bottom to top), The solid lines represent predictions from the SAFT-

Figure 35: Aymmetric model electrolyte solution with

q = 1 ,
µ*2 = 1.0 ,

VR+DE equation and the squares the NPT-MC simulation data. 
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ε * = 1.0 , λ = 1.5 , 
σ d

* = 1.0 , σ +* = 1 3 ,σ −* = 2 3 , ψ * = 5.0 , rc
* = 1.05 , charge  ions 

concentration 8/256 and dipole moment  at T*=1.8 from different 
models. The solid line represents the non-primitive model, the dash-dot line 
the Debye-Huckel theory, the dotted line the restricted primitive model, the 
small dash the primitive model, the long dash line the restricted non-primitive 
model, the middle dash line the semi non-primitive model. 

q = 1 ,
µ*2 = 1.0
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4.5 Conclusion 

In this work, the SAFT-VR+DE approach has been developed through a combination of 

the SAFT-VR equation and the MSA solution of the non-primitive model, in which the 

solvent molecules are explicitly described.  The theoretical expressions needed to study 

the ion-ion, ion-dipole and dipole-dipole interactions have been presented. NPT MC 

simulations were performed to obtain simulation data with which to compare to the 

theoretical predictions and test the new theoretical approach. We find that the SAFT-

VR+DE equation provides a good description of the PVT behavior of the electrolyte 

systems studied. We have also compared the non-primitive model with five other models 

for the long-range interactions; namely the Debye-Huckel theory, the primitive model 

(RPM and PM) in which the dielectric constant is obtained from the MSA theory for 

dipolar hard spheres, the restricted non-primitive model and the semi-restricted-non-

primitive model. We find that the restricted non-primitive model shows the largest 

of the ions and solvent if the thermodynamics of 

real electrolyte solutions are to be accurately described. We have also shown the 

portance of an accurate description of the dielectric constant and how the predictive 

capability of the primitive model and the Debye-Huckel theory strongly depends on the 

alue of dielectric constant.  By using the non-primitive model in the SAFT-VR+DE 

pproach we avoid the need to find experimental data for the dielectric constant or 

evelop correlations in mixed solvent electrolyte systems, and so expand the flexibility of 

e theory considerably over other SAFT based approaches for electrolytes solutions. We 

deviations from the Monte Carlo simulation data, indicating the importance of properly 

accounting for the differences in size 

im

v

a

d

th
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also find that the predictions obtained from the semi-restricted non-primitive model are 

ery similar to those from the non-primitive model, indicating that the assumption of 

equal sized ions is reasonable.  Given the relative simplicity of the semi-restricted non-

primitive model, it may be advantageous to use this approximation when developing 

engineering equations of state for electrolyte solutions. Although we have only tested the 

oposed SAFT-VR+DE approach for relatively dilute electrolyte solutions and monomer 

ions ore 

ncentrated electrolyte solutions with the consideration of ion-ion association and chain-

like ions and/or solvent through the addition of a chain term in which the pair distribution 

function can be derived from the mean spherical approximation. 

 

4.6 Appendix 

Due to the complexity of the Wei and Blum’s solution of the MSA, discrepancies in the 

implementation of the solution of the NPM can be found in the literature. In order to 

verify our implementation of the solutions of the non-primitive model, we reproduce the 

results presented in Figures 1 and 2 of reference [129]. For the system studied, 

v

pr

 and solvent, our approach is generally applicable and can easily be applied to m

co

σ + = 0.19 nm,  σ − = 0.365 nm ,σ n = 0.276 nm,  µ = 2.21 D,  T = 298.15 K and the 

density of water is set to . The results are presented in Figure 36. From Figure 

36a, we can see the valu  that in the literature, however the values 

of  and  are bigger than those in the literature. The values of and in the 

literature are less than 1.0 which we think it is unreasonable low, especially for the 

 1.0g / cm3

e of b2 agrees well with

Γ B10  Γ B10

Γ . In 

Figure 36b, the dielectric constants as function of molality are compared with the value in 
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the paper of Wei and Blum. From the comparison, they match each other very well. 

Based on these comparisons, we believe that our implementation of the solution is correct 

and the discrepancy between the restricted NPM and semi NPM and NPM may come 

from the approximation introduced during the extension of the MSA solution.  

 
Figure 36: Comparison to the results in Wei and Blum’s paper for aqueous 
NaCl withσ + = 0.19nm ,σ − = 0.365nm ,σ n = 0.276nm , µ = 2.21D , and the 
density of water is set to at1.0g / cm3 T = 298.15K  (a), the value of three 
parameters as function of ionic concentration, and (b) the dielectric constant 
as a function of ionic concentration. 
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Other models except the non-primitive model studied in this chapter: 

1. Debye-Huckel 

The Helmholtz free energy is given by 

ADH

NKT
= −

κ 3

12πρ
 

where  is the inverse Debye screening length κ

κ 2 =
4πz2e2ρβ

ε
 

1. RPM of MSA 

The Helmholtz free energy is given by 

ARPM

NKT
= −

3x2 + 6x + 2 − 2(1+ 2x)
3

2

12πρσ 3  

x = κσ  with 

2. The primitive model of MSA  

The Helmholtz free energy can be expressed by 

APM

NKT
= −

1
ρ

βe2

4πε
ρkzk

1+ Γσ k

Γzk +
πPnσ k

2∆
⎛
⎝⎜

⎞
⎠⎟

−
Γ3

3πk
∑⎡

⎣
⎢

⎤

⎦
⎥  

where ∆ = 1− ξ3  and is the scaling parameter that can be calculated from 

 

Γ

Γ2 =
βe2

4ε
ρkzk

1+ Γσ k( )2
k

∑ zk −
πPnσ k

2

2∆
⎛
⎝⎜

⎞
⎠⎟

2

 

with  
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Pn =

ρkσ kzk

1 + Γσ kk
∑

1 +
π

2∆
ρkσ k

3

1 + Γσ kk
∑

  

3. Semi non-primitive model (SNPM) of MSA 

The electrolyte solution is modeled as a mixture of ions and dipoles. The ions are hard 

spheres of diameter of σ i

eter 

, half with charge +q and half with charge –q. The dipoles are 

hard spheres of diam σ d , with a central point dipole of magnitude µ . The ration 

between the diameter of dipoles and diameter of ions is defined 

p = σ d
σ i

 

The solution is decided by two independent variables, which represent the intensity of the 

ions and the dipoles, respectively 

d0
2 =

4πq2ρiσ i
2

kT

d2
2 =

4πµ2ρd

3kT
= y

 

The solution of MSA is given in terms of the three energy parameters (ion-ion), (ion-

dipole) and (dipole-dipole), and the three parameters satisfy the following set of 

equations 

where 

b0 b1

b2

a1
2 + a2

2 = d0
2

a1K10 − a2[1− K11] = d0d2

K10
2 + [1− K11]2 − y1

2 = d2
2

 

 115



a1 =
∆ − 2β6DF

2DF
2

a2
−b

2β6DF
2= 1 ∆

2
+ 3 Fβ D

p
⎡

⎣
⎢

⎤

⎦
⎥

K10 = p
b1

2∆
1+ a1Λ[ ]

11

β3 −
p

1− K = 2
a2b1Λ

∆

y1 = 6

β12
2

β

DF =
1
2

β6 (1+ b0 ) −
b1 p
12

⎡
⎢

⎤
⎥

 

⎣ ⎦
= b1

2 / 4 + β6
2∆

Λ =
1+ b0

2
+

p
6

β6

β3 = 1+ b2 / 3

6 2

β = 1+ b / 12
β24 = 1− b2 / 24

 

The excess Helmholtz free energy is given by 

AMSA

β = 1− b / 6

12 2

NKT
=

1

d12πρσ 3 p3d 2b − 2 p2d d b − J⎡⎣

J ' = p3Q p + 1)Q 2 + Q 2 + 2q '2

where

Qii = −a1 + 2 + 6

DF

0 0 0 2 1 '⎤⎦

ii
2 + p( id dd

β

Qid =
b1

∆
β3 + +a1(3Λ − 2DF )[ ]

Qdd =
1
∆

2β3
2 − pb1a2 Λ − 2 F )⎡⎣ ⎤⎦ − 2

q ' = b2β24 / β12
2

 

(3 D
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The excess chemical potential for ion and dipole are expressed as 

µi
MSA

KT
= (q*)2 b0 −

d2b1

d0 p
⎛
⎝⎜

⎞
⎠⎟

µd
MSA

KT
= −

(µ*)2

3
2b2 +

d0b1 p2

d2

⎛
⎝⎜

⎞
⎠⎟

 

The excess internal energy of the system is 

U MSA

NKT
=

1
4πρσ d

3 p3d0
2b0 − 2 p2d0d2b1 − 2d2

2b2⎡⎣ ⎤⎦  

In MSA, the excess Gibbs free energy equals the excess internal energy, thus, the 

compressibility factor can be given as 

Z MSA =
PMSA

ρKT
=

U MSA − AMSA

NKT
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CHAPTER V 

  

THERMODYNAMIC PROPERTIES OF IMIDAZOLIUM-BASED IONIC 
LIQUIDS FROM THE SAFT-VR EQUATION OF STATE 

5.1 Introduction 

Ionic liquids (ILS) are liquids comprised entirely of ions with melting points around or 

below room temperature [147]. During the past decade ILs have received great attention 

as environmentally benign solvent replacements due to their negligible vapor pressure, 

low melting point and broad liquid range [147-149]. ILs typically consist of a large, 

organic cation with a weakly coordinating inorganic anion, which frustrates packing and 

lowers the melting point. The most common ILs are those composed of imidazolium or 

pyridinium cations with alkyl substitute groups and bulky inorganic anions such as 

icals since their properties, 

ch as the melting point, viscosity, density, hydrophobicity and miscibility in water, can 

 Figure 37 shows some 

ed in istry 

[150], biochemistry [152] and as solvents in synthetic catalysis [153-155] and separations 

industry is that there is litt

despite the recent explosion of ILs studies reported in the literature. Experimental 

 

[ ] [ ]6 4,PF BF , NO
3

⎡⎣ ⎤⎦ [150]. Since both the cation and anion can be varied, the term 

“designer solvent”[151] is often used to describe these chem

− − −

su

be adjusted through changes to the type and structure of the ions.

examples of typical cations and anions of ILs.  ILs are widely us  electrochem

[156, 157]. However, one of the barriers preventing more widespread adoption of ILs by 

le data on their thermodynamic and thermophysical properties, 
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measurements of fundamental properties which enable the characterization of ionic 

 still quite scarce and k owledge of bliquids are n inary and ternary mixture data, invaluable 

in the design of industrial processes, is even more limited [158]. The main reason for this 

is the 

Figure 37: Some examples of typical ionic liquid cations and anions.  
 

A

etical models, or equations of state. In the literature, there are few 

approaches with which to correlate or predict the thermodynamics properties of ILs. One 

of the ti

al [159] have applied the Tait equation to correlate 

the densities of ILs such as [bmim][PF6], [omim][PF6] and [omim][BF4] at different 

temperatures and pressures up to 206.94 MPa. Jacquemin et al. [161] used a linear 

equation based on the Tait equation to express the correlation of densities with 

temperature for six ILs. While such approaches can accurately correlate experimental 

data they cannot be used to predict the densities and other properties of ILs as the 

sheer number of ILs that can be synthesized through different cation and anion 

combinations.  

 

n alternative approach to obtain information on the physical properties of ionic 

liquids is to use theor

approaches is the Tait equa on which is an excellent model for high-pressure 

density correlation [159, 160]. Gu et. 
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parameters in the correlations depend strongly on the temperatures and pressures to 

which they were fitted. 

 perhaps the first application, Camper and 

coworkers [162-164] applied regular solution theory to model gas solubilities, such as 

umption that 

short-range forces dominate in room-temperature ILs. It was found that regular solution 

theory could be used to model gas solubility at low pressure with empirically determined 

ber of double 

bond increases.  Kato et al. [165] have measured vapor liquid equilibrium and excess for 

imidazolium-based ILs and predicted their thermodynamic behavior using the NRTL and 

UNIQUAC models. They [166] also applied group contribution methods such as the 

original and modified UNIFAC approaches to predict the vapor liquid equilibria and 

activity coefficients at infinite dilution for various solutes in the ILs studied. In their 

work, a modified COSMO approach, COSMO-RS(O1) was used to predict activity 

coefficients and the temperature dependence for systems containing ILs. They found that 

the modified UNIFAC method provided a reliable description of the vapor liquid 

bria, activity coefficients and excess enthalpies and qualitative agreement was 

obtained with experimental data using the COSMO-RS solvation model.  Shariati et al 

[167] extended the Peng-Robinson equation of state to model the vapor liquid equilibria 

of binary systems of [emim][PF6] and fluoroform. Shiflett et. al [168] applied the 

Equations of state have only recently been applied in the literature to correlate and 

predict the thermodynamic properties of ILs. In

CO2 and light hydrocarbons in ILs containing imidazolium rings with the ass

constants that depend only on the gas. Also they observed that for hydrocarbons, the 

solubility increases as the number of carbon atoms increases and the num

equili
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Redlich-Kwong equation of state to model CO2 solublility in [bmim][BF4] and 

[bmim][PF6] at pressures under 2 MPa, but found that the approach cannot accurately 

predict

ches based on perturbation theory have also been applied to correlate and 

predict the thermodynamics properties of ILs. Qin et al [169] reported the correlation of 

Henry’s constants for 20 solutes such as hydrocarbons in ionic liquids based on a 

perturbed-hard-sphere theory. In their approach, the solution is considered to be a 

 of the correlation 

obtained.  Recently Kroon et al. [170] extended the truncated perturbed chain polar 

statistical associating fluid theory to predict the phase behavior of ionic liquid and CO2 

 an 

ion pair due to Coulombic interactions; therefore, IL molecules were considered to be 

highly asymmetric neutral ion pairs with a large dipole moment. The equation was 

applied

proach is that they do not explicitly consider Coulomb interactions; by 

approximating the ionic nature of the fluid with multipolar interactions such as dipole-

dipole, dipole-quadrupole, and quadrupole-quadrupole the complexity of the equation 

equation is increased substantially. 

In this work, we extend the SAFT-VR approach to study the densities of 

idazolium-based ILs up to high pressure by using the heteronuclear SAFT-VR model. 

charge Coulombic interactions are taken into account through 

 the phase behavior of the systems studied at high pressure. 

Approa

dielectric continuum, which is perhaps reflected in the poor accuracy

systems. In their approach, they assumed that the cation and the anion of the ILs form

 to model the phase behavior of several imidazolium-based IL + CO2 systems 

using binary interaction parameters fitted to experimental data. However, one drawback 

of this ap

and the number of parameters in the 

im

In our approach the charge-
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the mean spherical approximation. The remainder of the chapter is organized as follows: 

in section 5.2 we present the SAFT-VR approach for ILs. In section 5.3, details of the 

parameterization of the equation are presented. Results for isotherms of several 

ly, concluding remarks are 

made and future work discussed in section 5.5. 

 

5.2 Model and Theory 

In this work we extend the SAFT-VR approach to study ionic liquids. Within the 

framework of SAFT, the ionic liquids are represented by a flexible heteronuclear chain, 

 as a homonuclear 

chain composed of  hard spherical segments, with one segment carrying a single 

positive hard sphere charge of diameter 

imidazolium-based ILs are presented in section 5.4.  Final

which consists of two homonuclear chains with charged hard spheres/hard spheres, which 

tangibly bond together. As Figure 38 shows, the cation is represented

m1 − 1

σ1 . The anion is described by a homonuclear 

chain of  hard spheres of diameter m2 − 1 σ 2 , again with one segment carrying a negative 

charge; these two chains bond together tangentially to form heteronuclear chain due to 

the high con

between cation and anion. The number density and the carried charge are 

centration of ion in the ILs system and relative strong attractive interaction 

ρ+ and  for 

the positive segment, 

z+e

ρ− and  for the negative segment, and z−e ρn and  for the 

uncharged segment. In terms of the charge neutrality condition, the relation 

0

ρ+z+ + ρ−z− = 0  is always true. The total number of segment is given by m = m1 + m2 and 

the number density is given by 
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 ρ =
ρ+ + ρ− + ρn( )

m
 (5.1) 

Figure 38: Schematic of the model for ionic liquids. 
 

In our approach, the reference fluid is a mixture of square-well spheres and square-well 

charged spheres. Hence, the pair potential for the reference fluid is defined by 

 u r( )= u SW r;σ( )+ uCOULOMB r( ) (5.2) 

Here, and u SW r;σ( ) uCOULOMB r( )

u SW r;σ( )

 represent the square-well potential and Coulombic 

potential respectively.  is given by 

  (5.3) 

where 

u
ij

SW (r;σ ) =
+∞ if r < σ ij

−ε ij if σ ij ≤ r < λijσ ij

0 if r ≥ λijσ ij

⎧

⎨
⎪

⎩
⎪

σ ij  is the diameter of the interaction, λij  the range and ε ij  the well depth of the 

SW potential. The inter- and intra-molecular cross interactions between segments are 

obtained from the standard Lorentz-Berthelot combining rules, viz 

1 2 

σ2

+ m1

1 
2 

3 
σ1

- 

m2



σ ij =
σ ii + σ jj

2
  (5.4) 

 ε ij = 1− kij( ) εiiε jj( )1/2
 (5.5) 

 λij =
λiiσ ii + λ jjσ jj

σ ii + σ jj

⎛

⎝
⎜

⎞

⎠
⎟  (5.6) 

The Coulombic potential between two charges is represented by 

 uij
Coulomb (r) =

+∞ if r ≤ σ ij

ziz je
2

4πεr
if r > σ ij

⎧

⎨
⎪

⎩⎪
 (5.7) 

where r is the center-to-center distance, e = 1.602 × 10−19 C  the elementary charge, and ε  

is the permittivity of the continuous dielectric medium, which is an adjustable parameter 

in the model. Within the framework of the SAFT-VR approach, the excess Helmholtz 

free energy can be divided into two contributions from, respectively, the 

charged/uncharged square-well spheres, and chain formation. 

 
Aexcess

NKT
=

ACSW

NKT
+

Achain

NKT
 (5.8) 

Since in this work, we do not consider associating fluids, there is not association term in 

the equation.  We will summarize each contribution in turn. 

 

5.2.1 Charged/uncharged square-well monomer contribution 

Within the GMSA the excess Helmholtz free energy per monomer , is given by 

 

aCSW

aCSW = aSW + aColumbic  (5.9) 
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where describes the contribution to the free energy due to dispersion interactions and 

 the contribution due to Coulombic interactions. Within the high temperature 

perturbation theory of Barker and Henderson, in the inverse of the temperature 

aSW

aColumbic

β = 1 kBT , the square-well term is given by, 

  (5.10) 

The hard sphere reference term  is determined from the expression of Boublik 

[137] and Mansoori and co-workers [138] for multicomponent hard sphere systems, viz 

 

 aSW

aSW = aHS + βa1 + β 2a2

 aHS

aHS =
6

πρs

ζ2
3

ζ3
2 − ζ0

⎛

⎝⎜
⎞

⎠⎟
ln(1 − ζ3 ) +

3ζ1ζ2

1 − ζ3

+
ζ2

3

ζ3(1 − ζ3 )2

⎡

⎣
⎢

⎤

⎦
⎥  (5.11) 

where ρs  is the number density of segments, which is defined as the total number of 

segments divided by the total volume Ns V  and ζ l  is the reduced density given by a 

sum over all segments 

 

i , 

ζ l =
π
6

ρs xs,i (σ i )
l

i=1

n

∑⎡

⎣
⎢

⎤

⎦
⎥

=
π
6

ρs[xs,1(σ1)l + xs,2 (σ 2 )l ]
 (5.12) 

where σ i  is diameter of segments of type  and  is the mole fraction of segments in 

the mixture given by 

i xs,i

xs,i =
mi

m1 + m2

  (5.13) 

The first perturbation term  describing the mean-attractive energy is obtained 

om the sum of all pair interactions,  

 a1

fr
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a1 = xs,i
j =1

n

∑
i=1

n

∑ xs, j a1( )ij

= xs,1
2 a1( )11

+ 2xs,1xs,2 a1( )12
+ xs,2

2 a1( )22

  (5.14) 

where  is obtained from the mean-value theorem as proposed by Gil-Villegas et al. 

[9], 

  (5.15) 

where  

 

a1( )ij

a1( )ij
= −2πρsεij rij

2

σ ij

∞

∫ gij
HS (rij )drij

        = − ρsα ij
VDW gij

HS (σ ij;ζ3
eff )

α ij
VDW =

2π
3

σ ij
3ε ij λij

3 − 1( ) (5.16) 

Within the van der Waals one fluid theory the radial distribution function  is 

approximated by that for a pure fluid, viz 

 

gij
HS (σ ij;ζ3

eff )

a1( )ij
= − ρsα ij

VDW g0
HS σ x;ζ x

eff λij( )⎡⎣ ⎤⎦  (5.17) 

where  is obtained from the Carnahan and Starling equation of state,[171] 

  

gij
HS (σ ij;ζ3

eff )

g0
HS σ x;ζ x

eff λij( )⎡⎣ ⎤⎦ =
1 − ζ x

eff / 2

1 − ζ x
eff( )3  (5.18) 

The effective packing fraction ζ x
eff λij( )is obtained within the van der Waals one fluid 

theory from the corresponding packing fraction of the mixture ζ x given by, 

 ζ x
eff ζ x ,λij( )= c1 λij( )ζ x + c2 λij( )ζ x

2 + c3 λij( )ζ x
3  (5.19) 

where 
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⎛
⎜
⎜

⎞

⎠

⎟
⎟

=
2.25855  -1.50349  0.249434
-0.669270  1.40049  -0.827739

5. 7 827

⎛
⎜
⎜

⎞

⎠

⎟
⎟

1
λij

λij
2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 (5.20) 

and 

 

c1

c2

c3⎝ 10.1576⎝    -1 042  5.30

ζ x =
π
6

ρs x (5.21) 

with 

 
3 = x

j =

n

∑
n

∑ x σ 3

= xs,1
2 σ11

3 + 2xs,1xs,2σ12
3 + xs,2

2 σ 22
3

 (5.22) 

This corr on to in u  th riginal SAFT-VR approach for 

mixtures.[10] 

The second order perturbation term for the monomer excess free energy is 

expressed as: 

 
s,i

j =1i=1

a

,1
2

11 s a( ) + xs,2
2 a2( )22

 (5.23) 

where  is obtained through the local compressibility approximation: 

 

σ 3  

σ x s,i
1i=1

s,i ij

esp ds mix g r le MX1b in e o

a2

=
n

∑ x
n

∑ xs, j ( )2 ij

= xs a2( ) + 2x ,1xs,2 2 12

a2

a2( )ij

HSε ijρs
1∂ a(

a2( )ij
=

1
2

K
)ij

∂ρs

 (5.24) 

and K HS is the P s- c p o  t a thermal compressibility, 

 =
−

− 2
1 ζ3) + 9ζ2

3

ercu Yevi k ex ressi n for he h rd-sphere iso

HS ζ0 (1
+ 6ζ

ζ3)4

ζ2 (1−ζ0 (1 ζ3)
K  (5.25) 
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In our work, Blum’s primitive model is applied to represent the 

charged/uncharged hard sphere. The free energy due to the Coulomb interaction is 

given by: 

 

aColumbic

aColumbic = −
z2e2βΓ

ε(1+ σ12Γ)
+

Γ3

3ρπ
 (5.26) 

with  calculated by 

 

Γ

Γ =
(1+ 2σ12κ )

1
2 − 1

2σ12

 (5.27) 

 

5.2.2 Chain Contribution 

The contribution to the free energy due to chain formation from m square-well 

charged/uncharged monomers is given by, 

 aChain = − mi − 1( )
ij
∑ ln gCSW σ ij( ) (5.28) 

where gCSW σ ij( ) is represented by the LEXP approximation: 

 gij
CSW σ ij( )= gij

SW σ ij( ) 1+
ziz je

2β

εσ ij 1+ σ ijΓ( )2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (5.29) 

The radial distribution function for the square well monomers gij
SW σ ij( ) is approximated 

by a first-order high-temperature perturbation expansion: 

 gij
SW σ ij ;ζ3( )= gij

HS σ ij ;ζ3( )+ βε ijg1
SW σ ij( ) (5.30) 

where the contact value of the radial distribution function  at the actual 

packing fraction 

gij
HS σ ij ;ζ3( )

ζ3  is obtained from the expression  of Boublik [137], 
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gij
HS (σ ij ;ζ3 ) =

1
1 − ζ3

+ 3
Dijζ3

1 − ζ3( )2 + 2
Dijζ3( )2

1 − ζ3( )3  (5.31) 

and 

 

Dij =
σ iiσ jj xs,iσ ii

2

i=1

n

∑

σ ii + σ jj( ) xs,iσ ii
3

i=1

n

∑

    =
σ iiσ jj xs,1σ11

2 + xs,2σ 22
2( )

σ ii + σ jj( ) xs,1σ11
3 + xs,2σ 22

3( )

 (5.32) 

g1
SW σ ij ,ζ 3( ) is determined using the Clausius virial theorem and the first derivative of the 

free energy with respect to the density [9] giving: 

 g1
SW σ ij( )=

1
2πεijσ ij

3 3
∂ a1( )ij

∂ρs

⎛

⎝
⎜

⎞

⎠
⎟ −

λij

ρs

∂ a1( )ij

∂λij

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (5.33) 

 we consider [bmim][BF4] as an example, our model consists of  uncharged 

segments, one positively charged segment and one negatively charged segment. The free 

energy due to the chain formation is therefore given by, 

 

m − 2If

achain = − m1 − 1( )ln gSW σ11( )− m2 − 1( )ln gSW σ 22( )− ln gCSW (σ12 )  (5.34) 

 

5.3 Parameterization of the SAFT-VR EOS 

In this work, the SAFT-VR approach is extended to correlate and predict isotherms of ILs 

through the combination of the SAFT-VR approach and the mean spherical 

approximation. The ILs studied are 1-butyl-3-methylimidazolium tetrafluoroborate 

([bmim ethylimidazolium hexafluoroborate ([bmim][PF6]), 1-butyl-][BF4]), 1-butyl-3-m
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3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([bmim][NTf2]), 1-hexyl-3-

ethylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim][NTf2]), 1-octyl-3-

methylimidazolium tetrafluoroborate ([omim][BF4]) and 1-octyl-3-methylimidazolium 

hexafluoroborate ([omim][PF6]). In Figure 37, a schematic representation of these ILs is 

shown. In our approach, these ILs are modeled as heteronuclear charged chains, which 

consist of two homonuclear square-well chains to represent the cation and anions 

respectively. In the original SAFT-VR EOS four parameters are needed to model non-

associating homonuclear chain molecules, i.e., the diameter of the segment

m

σ , the number 

of segments , the depth of the square-well potential m ε and the range of the square-well 

potential λ . To describe ILs eight SAFT-VR parameters have to be determined, which 

re the size, shape and square-well potential parameters for the cations and the anions. 

Additionally in the primitive model of the mean spherical approximation the dielectric 

constant must be determined and is used as an adjustable parameter in this work. For the 

cations [bmim], [hmim] and [omim], the SAFT-VR parameters are obtained by fitting to 

experimental vapor pressures and saturated liquid density data for butylbenzene, 

hexylbenzene and octylbenzene respectively  The vapor pressure curve and coexisting 

densities of butylbenzene, hexylbenzene and octylbenzene are shown in the Figure 39-41 

and the parameters are listed in Table 15. Other SAFT-VR parameters involved in each 

ILs, that is the size, shape and depth and range of square well potential, and the dielectric 

constant, are determined by fitting to the isotherm of each ILs at the highest temperature 

 the literature. Then the isotherms of the ILs at other temperatures are 

predicted using the parameters obtained for each ILs at the highest temperature.  

a

available in
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les the 
Figure 39: (a) Vapor pressure and (b) Coexisting densities for butylbenzene. 
Solid lines represent the results from the SAFT-VR approach and circ
experimental data taken from [172]. 
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Figure 40: (a) Vapor pressure and (b) Coexisting densities for hexylbenzene. 
Solid lines represent the results from the SAFT-VR approach and circles  
experimental data taken from [172]. 
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Figure 41: (a) Vapor pressure and (b) Coexisting densities for octylbenzene. 
Solid lines represent the results from the SAFT-VR approach and circles the 
experimental data taken from [172]. 
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Table 15: SAFT-VR parameters for ionic liquids studied in this work 

 

C n A     atio  nion

 M w  σ  m  ε / k  λ  σ  m  ε / k  λ  ε0  

 (g l) /mo A
0

 - K - A
0

 - K - - 

[b ] 4 226.02 3.8452 2 7 1. 9 4. 7  .6  0 mim [BF ] 3.59 50.4  633  378  1.0 564.86 1 959 1.

[ 6] 284.18 3.8452 2 7 1. 9 5. 7  0 bmim][PF  3.59 50.4  633  071  1.0 787.69 1.157 1.

[b 3 2 2 7 1. 9 5 49  .3  0 mim][NTf2] 419.34 .845  3.59 50.4  633  .002 2.0 6.4 1 784 1.

[h 2 8 1. 3 5 .1  7 mim][NTf2] 447.39 3.8 4.34 28.3  688  .186 2.0 471.88 1 963 0.

[o ] 4 282.13 3.8598 5.0 2 1 1. 3 3. 8  6 mim [BF ] 29.5  680  699  2.0 736.94 1.172 1.0

[ 6] 340.29 3.8598 5.0 2 1 1. 3 4. 6  .1  6 1.029.5  680  070  2.0 812.99 1 697omim][PF  

 

 

 



5.4 Results 

Isotherms for several alkylmethylimidazolium ILs have been studied using the SAFT-VR 

approach in combination with the primitive model of the mean spherical approximation. 

In Figure 42, isotherms for [bmim][BF4] at temperatures of 332.73 K, 322.85 K, 313.01 

K, 303.23K and 298.34 K are presented. The experimental isotherm at 332.73K was used 

to fit the SAFT-VR parameters for the [BF4]- anion. The isotherms at other temperatures 

are then predicted using these parameters. From the figure, it is seen that good agreement 

between experimental data and the theoretical calculation from the model is obtained. 

The dielectric constant for the ionic liquid is 1.0. The value of the dielectric constant 

obtained from the theory is less than the experimental value, which is usually around 5-

12. One possible reason for the lower value used in this work, is the simple way in which 

we take into account the long-range ion-ion interactions in the ionic liquids. Since ILs are 

highly asymmetric neutral ion pairs, the molecules are polarizable and as such will have 

dipole moments and/or quadrupolar moments as a result of the charge distribution over 

the ion pairs. It may be possible to obtain the dielectric constant closer to the 

 

experimental value if the ionic liquids are considered as charged polar chain molecules, 

with the polar interactions included through the SAFT-VR+D approach [173]. Figure 43 

and 44 presents isotherms for [bmim][PF6] and [bmim][NTf2] at different temperatures 

and pressures up to 100 MPa. The SAFT-VR parameters used for the cation are the same 

as those used to decribe [bmim][BF4] since the parameters for the cation are transferable. 

Again, we see that the theoretical results are in good agreement with the experimental 

data.  
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Figure 42: Isotherm of the density of [bmim][BF4] at temperature 332.73K, 
322.85K, 313.01K, 303.23K and 298.34K. The circles represent the 
experimental data [160] and the curves from the SAFT-VR equation of state. 

 

 

 
Figure 43: Isotherm of the density of [bmim][PF6] at temperature 323.15K, 
318.15K, 313.15K, 308.15K, 303.15K and 298
experimental data [160] and the curves from the SAFT-VR e
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Figure 44: Isotherm of the density of [bmim][NTf2] at temperature 328.2K, 

represent the experimental data [174] and the curves from the SAFT-VR 

 

data of isotherm for [hmim][NTf2] at 

333.15

 

 

323.14K, 318.14K, 313.15K, 308.09K, 303.14K and 298.15K. The circles 

equation of state. 

In Figure 45, isotherms for [hmim][NTf2] are presented at temperature 333.15K, 

323.15K, 313.15K, 303.15K and 298.15K. Similarly, the SAFT-VR parameters for the 

anion were obtained by fitting to the experimental 

 K. Isotherms at other temperatures are predicted using these parameters. We find 

that, the dielectric constant for this ionic liquid is less than 1.0 (0.7), which is obtained by 

fitting to experimental data, and good agreement is observed between the experimental 

data and theoretical results.  
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Figure 45: Isotherm of the density of [hmim][NTf2] at temperature 333.15K, 
323.15K, 313.15K, 303.15K and 298.15K. The circles represent the 
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experimental data [174] and the curves from the SAFT-VR equation of state. 

We have also studied isotherms for ionic liquids [omim][BF4] and [omim][PF6

ery high pressures (more than 200MPa). For these ionic liquids, the SAFT-

ters for the anions were obtained by fitting to the experimental data at 298.15

4 6

46 and 47. The same dielectric constant is used for both ILs. From the figures, i

seen that, the correlations from the SAFT-VR approach are in good agreement with t

ental da 6
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Figure 46: Isotherm of the density of [omim][BF4] at temperature 323.15K 
and 298.15K. The circles represent the experimental data [159] and th
curves from the SAFT-VR equation of state. 
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Figure 47: Isotherm of the density of [omim][PF
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5.5 Conclusion 

work, the SAFT-VIn this R approach is extended to model of the PVT behavior of 

several l 

 

as hete nit 

tive  the 

approa s studied in 

this wo

 

 

 alkylmethylimidazolium ILs using the primitive model of mean spherica

approximation to describe the Coulombic interactions. In the approach, ILs are modeled

ronuclear charged chain molecules composed of two homonuclear chain with u

posi  and negative charge respectively. Compared with experimental data,

ch provides a good way to correlate and predict the densities of the IL

rk.  
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CHAPTER VI 

 

 

Unders s 

ical 

enginee retical 

primarily focused on the development of additional terms to describe the polar or/and 

electro ed this 

uch 

as pola ids through 

modific atistical 

a 

way to describe the structure of anisotropic interactions and gives analytical solutions for 

the the n this 

 

bin  which 

the stru  fluids is explicitly accounted for.  

  has 

s the 

e 

magnit e 

thermodynamics and phase behavior of dipolar square well monomer and chain fluids. In 

CONCLUSION AND RECOMMENDATION 

tanding the thermodynamics and phase behavior of polar and electrolyte fluids i

central to a wide range of processes in chemical, environmental and biolog

ring. As a result, several groups have focused on the development of theo

models for such systems. Within the family of SAFT equations of state, attention has 

static interactions that exist in polar and electrolyte fluids. When we start

project, our goal was to rigorously incorporate the effect of anisotropic interactions s

r and electrostatic interactions on the thermodynamics properties of flu

ation of the reference fluid within the SAFT-VR framework. Within st

mechanics, integral equation theory with the mean spherical approximation provides 

rmodynamics and structural properties of simple potentials. Thereafore, i

project, we developed equations of state for polar and electrolyte fluids through a

com ation of the SAFT-VR approach with the mean spherical approximation, in

cture of these

For dipolar fluids, in Chapter II, a SAFT-VR like approach, SAFT-VR+D,

been developed to study dipolar chain fluids that uses the dipolar square well fluid a

reference state.  In this way, the SAFT-VR+D approach explicitly takes into account th

ude and orientation of the dipole moment, both of which are found to affect th
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order to gain a comprehensive understanding of the thermodynamic properties of the 

m C 

simulat h to compare the 

theoret tion with the GMSA 

approx

ents. 

ore well 

SAFT- which the dipole moments are parallel to 

the vec  the 

LEXP ents 

of the d ments. Furthermore, using the solution of Adelman and Deutch for polar 

mixture e 

o  and 

dipolar

 associating 

fluids. nsive understanding of the thermodynamic properties of the 

system

lat  

theory ata shows that the theory accurately describes the 

PVT and phase behavior of the fluids studied over a range of association energies and 

association volumes; at relative low dipole moment, the agreement is very good, however 

for hig  some discrepancy 

syste s studied, and validate the SAFT-VR+D approach, both NPT MC and GEM

ions were performed to obtain simulation data with whic

ical predictions. We found that the SAFT-VR+D equa

imation provides good predictions for the phase behavior of the dipolar monomer 

fluids studied, and chain fluids with a perpendicular arrangement of the dipole mom

A m  accurate approximation for the radial distribution function of dipolar square 

fluids (LEXP approximation) was implemented to improve the performance of the 

VR+D EOS for dipolar chain fluids in 

tor joining the centers of the monomers. It is found that the SAFT-VR+D with

approximation is suitable for fluids with both vertical and horizontal arrangem

ipole mo

s, the SAFT-VR+D with LEXP approximation gives a good description of th

therm dynamic properties of dipolar chain fluids consisting of non-dipolar segments

 segments.  

 In chapter III, the SAFT-VR+D approach has been used to study

To gain a comprehe

s we studied, both NPT MC and GEMC simulations were performed to obtain 

simu ion data to compare to the theoretical predictions. A comparison between the

and the NPT MC simulation d

h dipole moments (~ > a reduced dipole moment of 2), we see
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betw n the theory and simulation results.  Furthermore we find that the SAFT-VR+D 

h provides a more accura

ee

approac te description of the phase behavior of water than the 

SAFT-

  

f the 

non-pri polar 

 of 

the the mic properties of the systems studied, and validate the SAFT-VR+DE 

approa  

 

of the ior of the 

electrol n-primitive model with 

five oth

d 

from th l and semi-non-primitive 

model. eory 

show e 

predictive capability of the primitive model strongly depends on the value of dielectric 

constant and the prediction obtained from the semi non-primitive model is close to that of 

non-pr

 of 

engine

VR approach.  

For electrolyte fluids, in Chapter IV, the SAFT-VR+DE approach has been

developed through a combination of the SAFT-VR equation and the MSA solution o

mitive model, in which the solvent molecules are explicitly modeled as a di

associating fluid.  The theory has been tested through the description of the PVT phase 

behavior of several model electrolyte solutions. In order to gain a good understanding

rmodyna

ch, NPT MC simulations were conducted to obtain simulation data to compare to

the theoretical predictions. We found that the SAFT-VR equation with the MSA solution

non-primitive model provides good predictions for the phase behav

yte solutions we studied. We have also compared the no

er models for the long-range electrostatic interactions; namely the Debye-Huckel 

theory, the primitive model (RPM and PM) in which the dielectric constant is obtaine

e non-primitive model, the restricted non-primitive mode

 It is found that the restricted non-primitive model and the Debye-Huckel th

the largest deviations compared with the Monte Carlo simulation data. Th

imitive model. For the sake of the relative simplicity of the semi non-primitive 

model, it may be a practical replacement of the non-primitive in the development

ering equation of state for electrolyte solution.  
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 In chapter V, the SAFT-VR approach is extended to model isotherms of t

 for several alkylmethylimidazol

he 

density ium ionic liquids using the primitive model 

within eled as 

heteron  

tiv ns is 

include roach provides a 

good w  find 

 r fluids, our results have shown that the structure of the dipolar 

interaction does have an effect on the thermodynamics of dipolar fluids. In future work 

the SA n a similar 

fashion herical approximation. It has been 

shown ntation of dipole 

momen tended 

For electrolyte fluids, in the SAFT-VR+DE approach we presented in Chapter IV, 

ia s 

ount for 

 

 

the mean spherical approximation. In our approach, ionic liquids are mod

uclear charged chain molecules composed of two homonuclear chains with

posi e and negative charge respectively, and the pair distribution function of io

d into the chain term. Compared with experimental data, the app

ay to correlate and predict the density of the ionic liquids studied. We also

that the SAFT-VR parameters for the cations studied can be used transferably 

For pola

FT-VR EOS may be extended to accurately model quadrupolar fluids i

 through the combination with the mean sp

that the SAFT-VR+D approach can describe the position and orie

ts within the chain molecules. Therefore, the approach can potentially be ex

to model polymers with dipolar functional groups.  

we have explicitly considered the solvent effect with the non-primitive model and self-

assoc tion with Wertheim’s theory. However, as the ion concentration increases, the ion

can associate with each other and so it will be important in future work to acc

ion-ion association.  
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