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CHAPTER |

INTRODUCTION AND BACKGROUND

1.1 Introduction
The ability to accurately predict the thermodynamic properties and phase behavior of
fluids is central to product and process design, not only in traditional chemical
engineering fields such as petroleum refining, but also in environmental and biochemical
engineering in purification and separation processes. Since the energy crisis of the 1970s
interest in the ability to predict the thermodynamic properties of fluids has grown, with
industry increasingly looking for accurate theoretical tools to minimize costs. While
many equations of state have been suggested in the literature to correlate and predict the
thermodynamics of fluids, they often rely on effective parameters to describe the
molecular interactions and so, particularly for complex fluids, have limited applicability.
In order to develop a predictive approach to determine the thermophysical properties and
phase behavior of complex fluids, the effects of the size, shape and molecular-level
interactions need to be explicitly included into the equation of state (EOS). So called
molecular based equations of state such as the perturbed hard chain theory and the
statistical associated fluid theory (SAFT) have grown in popularity as they explicitly take
into account the effect of such interactions and have parameters that directly relate to
molecular level physical interactions.

Perhaps the most successful of these molecular-based equations of state (EOS) is
the SAFT approach proposed by Chapman [1, 2] and co-workers on the basis of

Wertheim’s thermodynamic perturbation theory (TPT) [3-6]. An important feature of the



SAFT theory is that it explicitly takes into account nonsphericity and association
interactions and provides a powerful method for investigating the phase behavior of both
non-associating and associating chain fluids. In the SAFT framework, the free energy

can be written as the sum of four separate contributions:

A A ideal A mono A chain A assoc
Nk,T Nk, T Nk, T Nk, T Nk,T

(1.1)

where N is the number of molecules, k, Boltzmann’s constant, and 7" the temperature.

Al s the ideal free energy, 4™ the contribution to the free energy due to the

Achain

monomer segments, the contribution due to the formation of bonds between

AQSSOC

monomer segments, and is the contribution due to association. Hence, a SAFT
fluid 1s a collection of monomers that can form covalent bonds; the monomers interact
via repulsive and attractive (dispersion) forces, and, in some cases, association
interactions [7]. The many different versions of SAFT essentially correspond to different
choices for the monomer fluid, and different theoretical approaches to the calculation of
the monomer free energy and structure. For an excellent overview the reader is directed
to a recent review [8]. In this work we focus on the SAFT-VR approach, which is a
recent extension of the theory that describes chain molecules formed from hard-core
monomers with attractive potentials of variable range (SAFT-VR) [9, 10], typically a
square well. The SAFT-VR equation has been successfully used to describe the phase
equilibria of a wide range of industrially important systems; for example, alkanes of low
molecular weight through to simple polymers [9, 11-14], and their binary mixtures [15-

23], perfluoroalkanes [24-26], hydrogen fluoride [27], boron triflouride [28], water [29,

30], refrigerant systems [31], carbon dioxide [22, 27, 32-34], and electrolyte solutions



[35-38], have all been studied. Further details of the SAFT and SAFT-VR equations of
state will be presented in section 1.2.

Although the SAFT equation in its many variations explicitly takes into account
the effect of molecular shape, size and hydrogen bonding interactions the effects of long-
range interactions, such as ion-ion, ion-dipole, dipole-dipole etc., are typically taken into
account in an effective way through the segment size and energy parameters. Since the
interactions are not described explicitly in the equation the predictive capability is
reduced and often large binary interaction parameters have to be fitted to experimental
data. In order to overcome this drawback of the SAFT equation and develop a more
predictive approach, in this work, versions of the statistical associating fluids theory
(SAFT) will be developed to model polar fluids and electrolyte solutions in which the
effects of the long range interactions are taken explicitly into account.

In chapter II, we present a statistical associating fluid theory for potentials of
variable range to model dipolar fluids. The new theory (SAFT-VR+D) explicitly accounts
for dipolar interactions through a combination of the SAFT-VR approach with integral
equation theory. Predictions for the thermodynamic properties and phase behavior of
dipolar square-well monomer and chain fluids, in which one or more segments are
dipolar, are considered and compared with new computer simulation data. In Chapter III,
the SAFT-VR+D approach is extended to study associating dipolar fluids. Predictions for
the thermodynamic properties and phase behavior of dipolar associating square-well
monomers with one, two and four association sites are considered and compared with
new isothermal-isobaric and Gibbs ensemble Monte Carlo simulations data. Finally, the

model is applied to model water. In Chapter IV, a SAFT-VR approach is developed to



describe the PV'T phase behavior of electrolyte fluids, in which the solvent molecules are
explicitly described as dipolar associating molecules. Again NPT MC simulations are
conducted to obtain simulation data to compare to the theoretical predictions. In Chapter
V, the SAFT-VR equation is extended to model ionic liquids. The correlations and
predictions of the thermodynamic properties for several ionic liquids studied are
presented and directly compared to experimental data. Finally, concluding remarks are

made and recommendation is discussed in Chapter VI.

1.2 Background

1.2.1 SAFT Equation of State

The development of accurate equations of state firmly based in statistical mechanics is
one of the main research fields in chemical engineering, since it allows for an accurate
description of the thermodynamic properties of real substances. The first equation of state
based on molecular theory was due to van der Waals (vdW). The vdW EOS, which
introduces two basic molecular features such as molecular size and attractive interactions,
gives a very good first approximation to the properties of real substances. However, some
molecules are highly non-spherical and/or possess highly directional attractive forces
such as hydrogen bonds, and the van der Waals’ approach tends to fail in such cases. In
recent years, considerable effort has been made in the development of theories for fluids
of associating chain molecules. The most successful theories for such systems originate
in the seminal work of Wertheim [3-6]. The statistical associating fluid theory (SAFT) [7,

39] is one such theory. The SAFT approach provides a molecular based EOS that has



been used extensively to correlate and predict experimental results for a wide variety of
substances. It is evident from even a brief overview of the recent literature that the SAFT
equation is becoming one of the most accurate and versatile tools in the description of
fluid phase equilibria. Excellent reviews of the SAFT EOS were recently published by
Gubbins and Muller [40] and Economou [41].

As reflected by Figure 1, a SAFT fluid can be considered to be a collection of
monomers that can form covalent bonds; the monomers can interact via repulsive and
dispersion forces, and, in some cases, association interactions. Since the SAFT EOS has a
firm basis in statistical mechanics, the theory offers several advantages. The first
advantage is that each of the approximations made in the development of SAFT, such as
the chain and association terms, can be tested against molecular simulation results. In this
way, the range of applicability of each term in the equation of state can be determined.
The second advantage is that we can systematically refine the equation of state by making
better approximations or by extending the theory. A third advantage is that the SAFT
parameters have real physical meaning. For example, associating or hydrogen-bonding
molecules are characterized by association energy and bonding volume (related to the
change in entropy on association) [42] which can be determined from spectroscopy or

from quantum mechanical calculations.
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Figure 1: Schematic picture of formation of SAFT chain associating fluids.
A collection of hard spheres which interact through dispersion interaction,
and those hard spheres tangibly bond together to form chain molecules, then
those molecules interact through association interaction.

'@

1.2.2 SAFT-VR Equation of State

In the past decade, several versions of the SAFT equation have been proposed. One of
these augmented SAFT EOSs is the SAFT-VR EOS [43, 44], which describes chain
molecules formed from hard-core monomers with attractive potentials of variable

attractive range (SAFT-VR), typically a square-well potential as given by equation (1.2).

+o0 if r<o,

uifW(r): —g; It o,<r<Ajo; (1.2)

0 if r> /11.].0',.].

The general form of the SAFT-VR Helmholtz free energy for associating chain molecules
is given by equation 1.1. The addition of the non-conformal parameter characterizing the
range of the potential greatly enhances the performance of the equation in describing the

phase behavior of real systems. In this theory the dispersion interactions are treated via a



second-order high-temperature perturbation expansion, which provides a more rigorous
description of the thermodynamics than found in simpler versions of the SAFT approach,
such as the SAFT-HS EOS [45] in which the mean-field approximation was used to
describe the attractive interaction between monomer segments. Detailed expressions for

each term of the equation 1.1 are presented in turn below.

1.2.2.1 Ideal contribution

The ideal contribution to the free energy is given by

IDEAL

NeT In(pA’)-1 (1.3)

where p= N /V is the number density of chain molecules, N the number of molecules, V'

the volume of the system, and A the thermal de Broglie wavelength. Since the ideal term

is separated out, the remaining terms are as residual free energies.

1.2.2.2 Monomer contribution
The contribution to the Helmholtz free energy due to the monomer segments is

A MONO. A MONO.

=m = ma" (1.4)
Nk, T N k,T

where N is the total number of square-well spherical monomers. Within the high
temperature perturbation theory of Barker and Henderson, in the inverse of the
temperature = 1/k,T , the isotropic term a" is given by,

aMzaHS+ﬂafW+ 2aZSW (1.5)



The isotropic contribution to the free energy is expressed as in the SAFT-VR approach by
S the free energy due to repulsive interactions between the hard cores, and @ and
", the first and second perturbative terms associated with the isotropic attractive

energy. The expression of Carnahan and Starling is used for the hard sphere term

_ 2
g = 31731 (1.6)

(1-ny
where 7 is the packing fraction, defined as 7 = (7[/ 6),03,03 . The first perturbative term of

the mean attractive energy corresponds to the average of the monomer-monomer

interaction calculated with the hard sphere structure. Using the mean-value theorem we
can obtain an expression for @ in terms of an effective packing fraction 1. evaluated at
contact [46],

= —4775(/13 - l)gHS (1; mff) (1.7)

where the Carnahan and Starling equation of state is used to evaluate g™ (1; Ny -

779/7/2

17, (1.8)
( ﬁ) (1 eff)3

For range 1.1< A <1.8, the effective packing fraction 7, is described by a function of 7
and 4, viz

Ny (M A)= e+ + ey (1.9)
where the coefficients ¢, are given by

(¢,) ( 225855 0249434 0249434 ) (1 )
{cz J:L—O.669270 ~0.827739 —0.827739 | x| A (1.10)
10.1576  5.30827  5.30827 e

C3



The second perturbation term a;" is obtained from the first density derivative of

a’” within the local compressibility approximation

1 6 Sw
@ =~ ekl (1.11)
2 on
where K is the hard-sphere isothermal compressibility of Percus-Yevick (PY)
1 _ 4
P el (1.12)

Cl+4n+4n°

1.2.2.3 Chain contribution
The contribution to the free energy due to chain formation from m dipolar square-well

monomers is given by,

A CHAIN

Nk, T

——(m-Diny” (o) (1.13)

A (r)is the dipolar square-well monomer background correlation function evaluated at
hard-core contact,

pad (r): exp [ﬂusw (r)]gSW (r) (1.14)
where g*” (r) is the pair distribution function for the square-well fluid. In the SAFT-VR

equation, a high-temperature perturbation expansion is used to determine the radial

distribution function for the square-well fluid g*” (r)

g (r)=g" (r)+ Peg,(r) (1.15)

where the radial distribution function g*” (r) at hard-core contact is given by

g” (0")=¢"(0)+ peg, (o) (1.16)



and g, (0') can be obtained from a self-consistent calculation of the pressure using the

Clausius virial theorem and the first derivative of the free energy with respect to the

density.

1.2.2.4 Association contribution
Based on the theory of Wertheim, the contribution due to association for s sites on a

molecule is obtained as [7]:

AASSOC s g

X
v = 2 X, =0+ (1.17)

a=1

where the sum is over all s sites of type @ on a molecule, and X, is the fraction of

molecules not bonded at site a:

X - 1 (1.18)

1+ pX A
b=1
The function A, which characterizes the association between site a and site b on

different molecules, can be written as

M
A=K, /.,& (o) (1.19)
where, gM(G) 1s the contact value of the monomer-monomer radial distribution function,

/, = CXp (—l//a’b / kT )»1 is the Mayer f function of the a-b site-site bonding interaction

wab, and K, 5 is the volume available for bonding [47].
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CHAPTER II

PHASE BEHAVIOR OF DIPOLAR FLUIDS FROM THE SAFT-VR+D
EQUATION OF STATE

2.1 Introduction

Anisotropic interactions can have a significant effect on the thermodynamic properties of
fluids, both for fluids of simple spherical molecules such as water to chain-like molecules
such as alcohols and ketones. While many equations of state have been used to describe
the thermodynamics of these systems, they often rely on effective parameters to describe
the molecular interactions, and so have limited applicability beyond the fluids and state
conditions to which the parameters were fitted. In order to develop a truly predictive
approach for the thermophysical properties and phase behavior of fluids the molecular-
level interactions need to be explicitly included into the equation of state.

As discussed in Chapter I, while the SAFT equation in its many variations have
been applied to the study of polar fluids, the molecular interactions between the
molecules are typically taken into account in an effective way through the segment size
and energy parameters [48-51]. In SAFT equations of state that have been specifically
developed for polar fluids, dipolar and/or quadrupolar interactions are generally
incorporated through the addition of the corresponding terms to equation 1. For the
dipolar term, both the s-expansion proposed by Gubbins and Gray[52], which describes
the interaction of dipolar hard sphere fluids using an angular pair correlation function,
and the more rapidly converging Pad¢é approximation of Stell and coworkers[53], have

been widely adopted. For example, Muller and Gubbins[50] applied the g-expansion to
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describe water as a hard, spherical, associating, dipolar fluid within Wertheim’s TPT
theory, achieving good agreement with simulation and experimental data and in a SAFT
like equation of state for alkanols and water Xu et al.[51] applied a Padé approximation
to describe dipole-dipole interactions.

A common feature of these equations of state is to treat non-spherical dipolar
molecules as spherical dipolar fluids. As a result, the orientation of the dipolar
interaction and the possibility of multiple polar sites within a molecule cannot be taken
into account. In contrast, Jog et al. [54, 55] developed a SAFT EOS for tangent hard
sphere chains with dipoles on alternate segments. This approach was subsequently used
by Tumakaka and Sadowski[56] to extend the PC-SAFT EOS to describe mixtures of
non-dipolar and polar molecules. Dominik et al.[57] later compared Polar PC-SAFT in
which the dipolar contribution of Jog is used with predictions using an alternate dipolar
term due to Saggar and Fischer [58, 59], and found that while both approaches yield
similar results the parameters for the original Polar PC-SAFT were more physically
meaningful. More recently, Gross and Vrabec [60] developed a contribution for dipolar
interactions based on third order perturbation theory which uses simulation data for the
vapor-liquid equilibria of the two-center Lennard-Jones plus point dipole fluid to
determine the model constants. The proposed term has been incorporated into the PC-
SAFT equation of state and has been shown to improve the description of pure
component and mixture phase equilibria for dipolar fluids over the original PC-SAFT
approach.

We note that in the SAFT EOS approaches summarized above, and to the best of

our knowledge, in those reported in the literature to date, the inclusion of dipolar
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contributions to the equation of state has been limited to adding a dipolar term to the free
energy and therefore the structural impact of the dipolar interactions on the
thermodynamics and phase behavior has not been considered.

An alternative approach to using perturbation theory to describe dipolar fluids is
through integral-equation theory. Wertheim[61] solved the Ornstein-Zernike (OZ)
equation using the mean spherical approximation (MSA) closure for dipolar hard spheres
and provided analytical expressions for the thermodynamic and structural properties of
the model. Patey and Valleau [62] and Verlet and Weis [63] subsequently performed
computer simulations for the dipolar hard-sphere system and found that the theoretical
MSA harmonic coefficients for dipolar spheres are in good agreement with simulation
data far from contact, but are too small at contact. Extensions, such as the optimized
random phase approximation (ORPA) [64] and the exponential approximation (EXP)
[64], have been proposed to systematically improve the results of the MSA for the pair
correlation function of dipolar hard spheres. In particular, the linearized version of the
EXP (LEXP), suggested by Verlet and Weis [63], provides considerable improvement for
the pair correlation function over the MSA result at contact. Subsequently, Adelman and
Deutch [65] in a similar approach to Wertheim, solved the OZ equation for simple polar
mixtures, in which the components are restricted to have equal diameters but may have
different dipole moments. Although other integral equation theories for dipolar fluids,
such as the reference hypernetted chain approximation of Patey and co-workers [66-68],
these do not provide analytical expressions and so require numerical solution methods.

Here, we present an equation of state to model chain molecules with one or

multiple dipolar sites embedded in specific segments of the chain through a combination

13



of the MSA theory for dipolar interactions and the statistical associating fluid theory for
potentials of variable range (SAFT-VR). We refer to the resulting theory and EOS as
SAFT-VR+D. In our model, the dipolar square-well monomer fluid is chosen as the
reference fluid within the framework of the SAFT approach. The potential of the
reference state therefore consists of two parts: an isotropic square well potential and an
anisotropic dipolar potential, for which we use the MSA and the SAFT-VR equation
respectively. Although the solution of the MSA for dipolar fluids is approximate, it
provides analytical expressions for the thermodynamic and structural properties, thus
permitting the development of a SAFT-VR equation of state for dipolar fluids in which
the effect of the dipole on the phase behavior is explicitly described in the monomer and
chain terms and not simply treated as a perturbation at the level of the monomer. In this
work, two specific systems are considered; molecules with a dipole moment embedded in
each segment and molecules in which dipole moments are embedded in specific
segments.

The remainder of the chapter is organized as follows: in section 2.2 we present the
SAFT-VR+D model and theory for dipolar square-well fluids. In section 2.3, details of
the molecular simulations performed are presented. Results for the phase behavior of
pure dipolar square-well fluids are presented and compared with simulation results in
section 2.4. Finally, concluding remarks are made and future work discussed in section

2.5.
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2.2 Model and theory

2.2.1 Pure Chain Fluids

We have developed an accurate equation of state to model dipolar square-well fluids
through a combination of the SAFT-VR approach and the generalized mean-spherical
approximation for dipolar fluids. As in the SAFT-VR approach, non-associating
molecules are described by four parameters; the size of the monomer segments o, the
depth ¢ and range A of the square-well potential characterizing the attractive dispersion
interactions between the monomer segments, and m which determines the number of
segments tangentially bonded together in the model chain. The inclusion of dipolar
interactions into the SAFT-VR EOS introduces three additional parameters; the dipole

moment x and the orientation of the dipoles which is determined by the azimuthal & and

polar ¢ angles of the inter-segment axis along 7, as shown in Figure 1.[69]

Figure 2: The inter-dipole site coordinate system, with polar axis along r
[69].

In the SAFT-VR+D approach, the reference fluid is a dipolar square-well fluid
with the dipole embedded in the center of the segment from which chain molecules of m

tangentially bonded segments can be formed, as shown schematically in Figure 2. Each
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segment has a hard-core diameter o and interacts through an intermolecular potential of

the form

u(ro®,)=u" (r,0)- ™ (;A)+u"" " (ro,0,) (2.1)
Here, r is the vector between the center of the two monomers, » =|r| and ®, = (Hi,¢i) 1s
the set of angles defining the orientation of the dipole in monomer i (see Figure 1). As in
the SAFT-VR equation the monomer-monomer isotropic potential consist of a hard
sphere repulsive interaction u ™, defined by

0 r<o

u™ (r;0)= { (2.2)

0 r>o

and an attractive square-well interaction of depth —& and shape ¢°” (;1), where A is a
parameter associated with the range of the attractive forces, viz

1 o<r<io

¢ (r;1)= { (2.3)

0 r>Ao

Figure 3: Schematic showing the molecular model used to describe a chain

fluid with dipole moments embedded in some segments.

The dipole-dipole potential is a long-range anisotropic interaction, which can be

expressed as,

2
u”" (ro,0, )= —'%D(n]nz?’) (2.4)
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where
D(nlnsz): 3(n, -)’)(n2 })— n, -n, (2.5)
Here T is the unit vector in the direction of r joining the center of the segments (Figure
1) and n, is a unit vector parallel to the dipole moment of segment i.
Within the SAFT framework, the Helmholtz free energy 4 for N chains formed

from m spherical segments, which in this work refers to spherical dipolar square-well

segments, can be written in the form

A A IDEAL A MONO A CHAIN

= + +
Nk, T Nk,T Nk, T ~ Nk,T

(2.6)

where 4™*"is the free energy of the ideal fluid, 4"’ is the contribution due to the

dipolar square-well monomer, and A" represents the free energy due to chain
formation. We have not included the contribution due to association interactions, as only
non-associating (i.e. hydrogen bond type association interactions) dipolar chain
molecules are considered in this first extension of the theory.

In order to understand the nature of the MSA solution and its relevance to the
current problem, we need to examine it briefly. The MSA for dipolar hard spheres arises

from the exact Ornstein-Zernike equation for linear molecules, given by
P
h (ro)loa2 )= c(roalo)2 )+ in I h (r120)10)3 )c(r230)3(02 )alr3a’co3 (2.7)

where h(rwlw 2) and c(rwlwz) are the total and direct correlation functions
respectively. The total correlation function is related to the pair distribution function
g(rcolo)z) by h(ra)lo)z): g(rmlco2)—1. The MSA closure for a hard core potential

states that
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h(roalcoz)= -1 r<o

1 2.8
(fo)= -~ ——u(row,) r>o 28)
k,T
Hence, the MSA for dipolar hard spheres becomes
h(rmlmz): -1 r<o
(2.9)

2
c(roo,)= #D(nln}) reo

B

Wertheim [61] showed that with this closure the total and direct correlation functions for

dipolar hard spheres in the MSA can be written in the simplified form,

h(l’(,ol(,oz): hy(r)+hy (r)A(nlnz)"' hy (’")D(nlnzz‘)
c(ro,)=c.(r)+ ey ()N, )+ ¢, (D (nnt)

(2.10)

where A(nln2)= n,-n, and A (r), h, (r) and 4, (r) and the corresponding direct
correlation quantities are functions of » only. Moreover, within the MSA,
h, (r) and c, (r) are given by their Percus-Yevick (PY) hard-sphere values, and
h,(r) and h,(r) are calculated from functions arising from the solution of the PY

approximation for hard spheres. We point out, however, that much of the Wertheim
solution holds true in more general cases. For example, consider the dipolar square-well

fluid in the generalized MSA (GMSA):[70, 71]

h(rcol(x)z): -1 r<o
2 (2.11)
c(rm,m2)= ™ (r)+ k;’ﬁ D(nlnz?’) r>o

where ¢ (r) is the direct correlation for the square-well fluid (i.e., the usual, non-

dipolar square-well fluid). With this GMSA closure, the solution of the Ornstein-Zernike

equation is given by
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W (ra,0, )= 1" (r)+ hy (F)A (0,0, )+ Ay, (F)D (R0, )

™ (r‘Dl@z): * (’")"' N (V)A(n1n2)+ ¢ (r)D(nlnz?f) (2.12)

where now #*” () and ¢*” (r) are the correlation functions for the square-well fluid and
h, (r) and 4, (r) are again obtained in terms of hard-sphere Percus-Yevick quantities.

This is because the GMSA closure on these quantities is the same as that for the MSA

dipolar hard sphere case, namely

h(r) = 0 r<o

hD(r) = 0 r<o

c,(r) = 0 r>co (2.13)
2
y7;

cD(r) = kBTr3 r>o

Note that #*" () and ¢*” () can be the exact such quantities or those calculated by some
approximate theory (such as perturbation theory). Hence, within the GMSA, the pair
distribution function g (r@,®,) and Helmholtz free energy of dipolar square-well

monomers are given by,

gDSW (F(DI(Dz;,D,T)Z gSW (r;p,T)+ hA (r;p’T)A(nlnz)'i' hD (V;,Oa T)D(nlnz})

2.14
AP (10,7 )= A" (r; 0,7 )+ A" (ro0, 0,5 0,T) 19

where g% (r) is the radial distribution function of the square-well monomer fluid and the
state dependence of the quantities on p and 7 is explicitly shown. Detailed expressions

for each new term of the SAFT- VR+D equation are presented below, while those in

common with the original SAFT-VR equation are given in the section 2 of Chapter 1.
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2.2.1.2 Monomer contribution
The contribution to the Helmholtz free energy due to the monomer segments is

AMONO. A MONO.

ma" (2.15)

=m =
Nk, T N k,T
where N, is the total number of dipolar spherical monomers. Within the GMSA the

excess Helmholtz free energy per monomer a | is given by

M DSW DIPOLE Isotropic
a’"=a"" =a +a™ "

— aD]POLE +aHS +ﬂaiS’W +ﬂ2a25W
where a”"" describes the contribution to the free energy due to the anisotropic dipolar

interaction and the isotropic term T given by equations (1.5) in section 1.2.

The contribution to the free energy due to the dipolar interaction is obtained from
Wertheim’s solution of the Ornstein-Zernike equation for dipolar hard spheres with the
MSA closure as given by equation (2.9) [61]; the excess free energy due to the dipolar

interactions is given by

DIPOLE _ _§ 2 (1 + 6)2 (2 — é:)z
a = " {(1_25)4 + 8(1+§)4:| (2.16)

where £=k7n and « is the scaling parameter. x is determined by y, the so-called
strength of the dipolar effect [61]
3y =qpy (KU)_ 9py (_’(77) (2.17)

and is a dimensionless function of density p, temperature f and dipole moment y

4z
y= ?Pﬁﬂz (2.18)

qpy 18 the dimensionless inverse compressibility of Percus-Yevick (PY), given by [61]
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qpy (77): (1 i 2772 (2.19)
1-7n

(1-7)
2.2.1.3 Chain contribution

The contribution to the free energy due to chain formation from m dipolar square-well

monomers is given by,

A CHAIN

T ~(m-1)ny"" (ow ,) (2.20)
B

y?" (ow,w,) is the dipolar square-well monomer background correlation function
evaluated at hard-core contact,
Y (ro@,;0.T)=exp| fu™ (rom,)]g™" (ro,0,:p.T) (2.21)

where g”" (r®,@,; p,T) is the pair distribution function for the dipolar square-well fluid

and obtained from the GMSA (equation (2.14)). In the SAFT-VR equation, a high-

temperature perturbation expansion is used to determine the radial distribution function

for the square-well fluid g* (r)
e (r) =g"™ (r)+ Peg, (r) (2.22)
where the radial distribution function g*” (r) at hard-core contact is given by
g (O'+ ): g™ (O')+ peg, (O') (2.23)
and g, (0) can be obtained from a self-consistent calculation of the pressure using the

Clausius virial theorem and the first derivative of the free energy with respect to the
density.
When compared with the Monte Carlo simulation data of Verlet et al. [63],

Wertheim’s solution with the MSA closure underestimates the spherical harmonic
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coefficients at contact. As discussed in the introduction, extensions such as ORPA, EXP

and LEXP have been suggested to improve the description of structural properties.

Among them, the LEXP approximation is the most attractive; the LEXP 5, (r; p,T ) and
h,, (r; p, T ) appear the most accurate in comparison with the simulation data, though the
LEXP result for /() shows little improvement over the MSA results. Within the

LEXP approximation, the radial distribution function of the square-well monomer is

given by
g (ro0,:pT)=g" (o T N1+ hy (52T )A (NN, )+ iy (3.7 )D (n‘nz}))(2.24)

The spherical harmonic coefficients, 5, (r; p,T )and hy, (r; p,T ), can be obtained from the

analytic solution of the PY approximation for the hard sphere fluid as

h, (r; 77,T)= 2K (hPY (—m],r)— hpy (2/(77,r))
I (hpy (<Km,7)+ 20y, (257,7) ) (2.25)
r;n, =K r r
P L—J-O By (K77, 7" )dr'— 2-[0 hyy (2cm,7")dr 'J

We note that x is a function of temperature, which is determined by the strength of the

dipolar effect as given by equations (2.17), (2.18) and (2.19). The spherical harmonic

coefficient #,, (p;r)is obtained by solving the OZ equation with the PY closure by

introducing the dimensionless quantities x=r/cand g, (x)z q, (x)/ o’
i 1
Xhpy (x)= -q,, (x)+ 1277'[0 dx Gy (x")(x = x"Yrpy qx - x'|) (2.26)

for all x >0, where ‘Zy (x)z 9, (xydx g, (x)is given by

1 s
aPY (x)zaa(x —1)+b(x—1) {xﬁl (227)

>
0 x2>1
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For x <1,

g, (x)=ax+b (2.28)
where
_1+2np
=
(1=m) (2.29)
R/
2(1-n)

The analytic expression of #,, (p; r) at contact can be obtained by setting x=1" in

equations (2.26) and (2.27)

I (,0)= 2C =21 (2.30)

2(1-n)
Both the LEXP approximation and GMSA are considered in the SAFT-VR+D equation

to determine the thermodynamic properties and phase behavior from the Helmholtz free

energy of dipolar fluids using standard thermodynamic relations.

2.2.2 Chains with Mixed Dipole Moments

While the expressions given above treat chain molecules formed from dipolar square-
well segments, each having the same dipolar strength, we can also consider chain
molecules that contain segments with different strength and orientation of dipole
moments.

Adelman and Deutch [65] provided an exact solution to the MSA for simple polar
mixtures with equal hard sphere radii and differing dipole moment, in which the structure

and thermodynamic properties are completely determined from the pure dipolar fluid
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result of Wertheim using an effective density p and dipole moment ,[t Substituting the

effective density and dipole moment into equations (2.16) and (2.25), the Helmholtz free
energy and radial distribution function due to dipolar interactions can easily be obtained
for chain molecules with mixed dipole moments. The limiting case of chain molecules
composed of a mixture of dipolar and non-dipolar segments can also be studied. In their
solution of the MSA Adelman and Deutch [65] determined that the pair correlation
function of the non-dipolar segments are unaffected by the presence of the dipoles on
dipolar segments, and vice versa. This is a direct result of the linearity in the MSA
approximation between the direct correlation function and the dipole-dipole interaction as
shown in equation (2.9). Hence, in the limiting case of a diatomic dipolar molecule in

which the dipole moments of one and/or two of the segments g, and/or u; are zero, the
anisotropic component of the direct correlation function of the dipolar hard sphere and
non-dipolar hard sphere is zero. Accordingly, within the GMSA, the pair distribution

function g™ (ro)lcoz) for a square-well diatomic molecule consisting of one dipolar

segment (sphere 1) and one non-dipolar segment (sphere 2) reduces to the pair

distribution function of non-dipolar molecules g* () for 3 (g,,,2,,,8,,) out of the 4

possible pair correlation functions. Correspondingly, the Helmholtz free energy due to
chain formation in the SAFT-VR+D EOS for chain molecules consisting of dipolar and

non-dipolar segments is given by

A CHAIN

Nk,T

=—(m-m'-Dny” ()= Y Iy (we,) @31

bonded dipole pairs ij
where m' is the number of bonds between two dipolar spheres (i.e., equal to the number

of terms in the sum). Hence, as in the hetero-SAFT-VR approach [72] the Helmholtz
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free energy directly reflects the structure of the chains through explicit dependence on the

magnitudes and relative orientation of dipoles in neighboring dipolar segments.

2.3 Computer Simulations

Monte Carlo simulations have been performed to study the thermodynamic properties of
dipolar square-well monomer and chain fluids. The simulations were performed in both
the isothermal-isobaric (NPT) and Gibbs ensembles. Intermolecular and non-bonded
intramolecular interactions, except for nearest neighbors along the chain, are taken into
account through the dipolar square well potential given by equation (2.1). The reaction
field [73-76] method, which has been shown to be adequate to calculate vapor-liquid
phase behavior for systems with long-range dipolar potentials [77], is applied to deal with
the long-range dipolar interactions. The reaction field approach replaces the molecules
beyond a cut-off distance by a dielectric continuum, the effect of which is taken into

account by including a new term into the dipolar potential, viz [78]

_(ﬂlﬂzj D— 2(8RF - l)lu]/u2
dipole 7"3

r<r
26, +1 1’ s r” (2.32)

0

where r, is the cut-off distance beyond which the pair potential vanishes and &, the
dielectric constant of the continuum. In the simulations, the value of 7, is set to2.50, and
gx-to 0o, In both the NPT ensemble and GEMC simulations, the usual periodic

boundary conditions and minimum image convention are used. In the NPT ensemble
simulations, one cycle consists of three kinds of trial moves: N trial displacements of
randomly chosen molecules, N trial rotations and one volume change. The extent of each

trial move is adjusted to give an individual acceptance probability of 30 - 40%. In the
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GEMC simulations, particle exchanges between two phases are performed in addition to
the three trial moves described above. The traditional Widom particle insertion method is
used to achieve particle exchanges. Each simulation was started from an initial
configuration in which 128 molecules are placed on a lattice in the simulation box. An
initial simulation of 100,000 - 500,000 cycles was performed to equilibrate the system,
before averaging for between 500,000 and 2,000,000 cycles. The thermodynamic
properties of the system were obtained as ensemble averages and the errors estimated by
determining the standard deviation.

Before studying the dipolar square-well fluids of interest in this work, to check
the accuracy of our simulation code, we calculated the coexistence curve of several
Stockmayer fluids using the GEMC technique and the reaction field method to treat the
long-range dipolar interactions. Good agreement was obtained with the results of Smit
and co-workers [79], who accounted for the long-range dipolar interactions with the

Ewald summation method.

2.4 Results and discussion

We have studied the phase behavior of several dipolar square well monomer fluids
(system 1 - 4), several dipolar diatomic fluids with a dipole moment in each segment
(system 5 - 12) and dipolar triatomic fluids with one non-dipolar segment (system 13 -
14). The details of these systems are listed in Table 1. Comparisons are made between
the theoretical predictions and NPT and Gibbs ensemble simulation data in order to

validate and test the predictive ability of the SAFT-VR+D EOS for dipolar monomer and
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chain molecules. The numerical results of the NPT simulations are reported in Tables 2 -

5 and those of the GEMC simulations in Table 6.

Table 1:Model parameters for the dipolar square well monomer and chain fluids studied.

System g" A c* m (,ul )2 (,u2 )Z (,u3 )Z
1 1 1.5 1 1 0.5 - -
2 1 1.5 1 1 1.0 - -
3 1 1.5 1 1 2.0 - -
4 1 1.8 1 1 1.0 - -
5 1 1.5 1 2 0.5* | 0.5° -
6 1 1.5 1 2 05> | 0.5° -
7 1 1.8 1 2 0.5* | 0.5° -
8 1 1.8 1 2 05> | 0.5° -
9 1 1.5 1 2 1.0* | 0.5° -
10 1 1.5 1 2 1.0° | 05 -
11 1 1.5 1 2 05> | 0.5° -
12 1 1.5 1 2 1.0° | 1.0° -
13 1 1.5 1 3 1.0 | 1.0° | 0.0
14 1 1.5 1 3 1.0° | 1.0° 0.0

“represents parallel dipole moments, ° perpendicular dipole moments
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Table 2: NPT MC simulation results for the monomer dipolar fluids studied (systems 1 —
4). The reduced temperature is given by 7* = kT / ¢, the pressure by P* = Po; / £, and
the energy is defined per segment as E*=E / N ¢,.

Sys. T* P* n E* Sys. T* P* n E*
1 1.0 02709 0361 0.009 -5.67 0.18 3 1.4 0.3998 0.325 0.015 -6.42 031
1.4247 0.402 0.008 -6.22 0.16 1.2344 0.368 0.010 -7.22 0.24
3.2068 0.438 0.007 -6.64 0.14 3.0338 0.412 0.007 -8.05 0.19

12 02607 0.308 0.015 -4.67 0.23 5.6074 0.448 0.007 -8.67 0.18
0.9319 0.357 0.010 -5.49 0.17 1.6 0.8584 0.315 0.013 -6.01 0.27
2.4438 0.402 0.007 -6.10 0.16 1.9303 0.364 0.010 -6.93 0.23
46508 0.438 0.007 -6.51 0.15 4.0910 0.409 0.008 -7.76 0.21

14 0.6980 0.309 0.013 -4.64 0.22 7.0897 0.446 0.007 -8.40 0.19
1.6034 0355 0.010 -5.33 0.17 1.8 0.9291 0.286 0.014 -5.32 0.29
3.4747 0.401 0.008 -5.98 0.16 2.1609 0.347 0.010 -6.46 0.26
6.1063 0.439 0.007 -6.44 0.14 4.6056 0.399 0.009 -7.41 0.21

1.6 1.1400 0304 0.011 -4.51 0.21 7.9677 0.438 0.009 -8.08 0.21
22812 0.353 0.009 -5.26 0.16 2.0 1.2979 0.283 0.012 -5.13 0.26
45127 0.400 0.007 -5.90 0.15 2.7495 0.335 0.010 -6.02 0.23
7.5688 0.440 0.007 -6.37 0.11 5.5369 0.396 0.008 -7.20 0.20

2 1.0 0.1114 0.365 0.011 -6.12 0.19 9.3085 0.438 0.007 -7.90 0.18
1.2336 0.404 0.008 -6.70 0.15 4 1.6 0.2207 0316 0.013 -7.78 0.31
2.9901 0.441 0.007 -7.20 0.12 1.2256 0.363 0.010 -8.79 0.23

1.2 0.1428 0313 0.016 -5.13 0.26 3.2759 0.414 0.009 -9.94 0.22
0.7840 0.358 0.010 -5.84 0.18 6.0884 0.456 0.008 -10.81 0.20
2.2650 0.403 0.008 -6.51 0.15 2.0 1.0840 0310 0.011 -7.47 0.26
44469 0.440 0.007 -7.01 0.13 2.5606 0.359 0.010 -8.52 0.23

14 0.5893 0.308 0.014 -4.92 023 5.3308 0.406 0.009 -9.47 0.21
1.4658 0.356 0.009 -5.67 0.17 8.9901 0.450 0.007 -10.33 0.19
33072 0.403 0.009 -6.38 0.15 2.4 2.0048 0305 0.011 -725 0.26
5.9143 0.440 0.007 -6.88 0.13 3.9679 0.355 0.010 -829 0.23

1.6 1.0668 0.309 0.013 -4.98 023 7.4716 0.405 0.008 -9.30 0.20
2.1874 0357 0.010 -5.75 0.18 11.9877 0.448 0.007 -10.13 0.19
43971 0.402 0.008 -6.43 0.15 2.8 2.9060 0303 0.011 -7.11 0.26
7.4351 0441 0.007 -6.94 0.13 5.3495 0.353 0.008 -8.16 0.21

9.5795 0.403 0.008 -9.17 0.19
14.9459 0.444 0.007 -9.96 0.18
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Table 3: NPT MC simulation results for the diatomic dipolar fluids studied (systems 5 -
10). See Table 1 for details.

Sys. T* P* n E* Sys. T* Pp* n E*
5 1.0 03721 0410 0.006 -554 0.09 8 2.0 0.7107 0.357 0.008 -7.86 0.18
1.8525 0.443 0.005 -5.94 0.08 2.9407 0.406 0.006 -8.88 0.15
1.2 0.0525 0.367 0.009 -4.84 0.13 6.1322 0.449 0.005 -9.73 0.13
1.1806 0.408 0.006 -5.40 0.10 2.4 0.3873 0.307 0.009 -6.68 0.21
3.0368 0.442 0.005 -5.82 0.08 1.7620 0.353 0.007 -7.67 0.17
1.4 0.5640 0.362 0.009 -4.69 0.13 4.6134 0.403 0.006 -8.70 0.15
2.0010 0.406 0.006 -5.31 0.10 8.5541 0.446 0.005 -9.52 0.13
42329 0442 0.005 -5.75 0.07 2.8 1.0455 0.304 0.009 -6.54 0.20
1.6 03239 0.308 0.012 -3.87 0.17 2.8189 0.353 0.007 -7.58 0.17
1.0817 0.358 0.008 -4.57 0.12 6.2931 0.403 0.006 -8.59 0.15
2.8285 0.404 0.006 -5.22 0.10 10.9833 0.445 0.005 -9.40 0.12
5.4361 0.442 0.005 -5.69 0.08 3.2 1.7063 0.303 0.008 -6.45 0.19
6 12 0.8442 0404 0.006 -5.72 0.11 3.8792 0.351 0.007 -7.49 0.16
2.6833 0.441 0.005 -6.21 0.09 7.9769 0.402 0.007 -8.50 0.15
1.4 02966 0.354 0.010 -4.85 0.16 13.4169 0.444 0.005 -9.31 0.13
1.6745 0.403 0.006 -5.58 0.11 9 1.2 0.9137 0.403 0.006 -5.43 0.11
3.8872 0.440 0.005 -6.09 0.09 2.7443 0.439 0.005 -5.90 0.08
1.6 0.1430 0.293 0.013 -3.91 0.19 1.4 0.3591 0.352 0.009 -4.62 0.14
0.8191 0.353 0.008 -4.74 0.14 1.7418 0.402 0.006 -5.33 0.10
2.5093 0.402 0.006 -5.47 0.11 3.9480 0.439 0.005 -5.81 0.08
5.0964 0.440 0.005 -6.00 0.09 1.6 0.1865 0.290 0.015 -3.70 0.20
1.8 0.4678 0.295 0.012 -3.83 0.18 0.8800 0.351 0.008 -4.52 0.13
1.3444 0.352 0.008 -4.65 0.14 2.5753 0.401 0.006 -5.25 0.10
3.3471 0.401 0.006 -538 0.11 5.1574 0.439 0.005 -5.75 0.08
6.3089 0.440 0.005 -5.92 0.09 1.8 0.5116 0.297 0.012 -3.71 0.17
7 20 09915 0361 0.008 -7.75 0.17 1.4044 0.351 0.008 -4.47 0.13
32433 0.409 0.006 -8.70 0.14 3.4125 0.400 0.006 -5.18 0.10
6.4371 0451 0.006 -9.48 0.13 6.3703 0.440 0.005 -5.70 0.08
24 06117 0315 0.009 -6.70 020 10 1.2 0.7878 0.408 0.007 -6.21 0.13
2.0353 0.358 0.008 -7.59 0.17 2.6037 0.444 0.005 -6.72 0.10
49118 0.407 0.006 -8.55 0.13 1.4 0.2655 0.360 0.009 -5.28 0.15
8.8584 0.448 0.006 -9.32 0.13 1.6298 0.406 0.006 -6.01 0.12
2.8 12649 0.008 -6.548 0.19 0.31 3.8213 0.443 0.005 -6.53 0.11
3.0867 0.007 -7.503 0.15 0.36 1.6 0.1211 0.302 0.015 -4.30 0.22
6.5881 0.006 -8.454 0.13  0.40 0.7974 0.358 0.009 -5.12 0.16
11.2869 0.006 -9.222 0.13  0.45 2.4750 0.404 0.006 -5.85 0.13
32 19221 0309 0.009 -6.46 0.19 5.0427 0.442 0.005 -6.40 0.10
41429 0355 0.007 -7.41 0.15 1.8 0.4541 0.303 0.012 -4.18 0.19
8.2693 0.404 0.006 -8.38 0.13 1.3309 0.356 0.008 -4.99 0.15
13.7198 0.445 0.005 -9.14 0.12 3.3221 0.404 0.006 -5.74 0.12

6.2661 0.442 0.005 -6.30 0.11
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Table 4: NPT MC simulation results for diatomic fluids with different orientation of
dipole moments (systems 11 - 12). See Table 1 for details.

System T* P* 1 E*
11 1.2 09646 0.404 0.006 -548 0.10
2.8011 0.440 0.005 -595 0.08
1.4 0.4001 0.356 0.009 -4.70 0.14
1.7903 0.403 0.006 -5.37 0.10
4.0025 0.440 0.005 -5.86 0.08
1.6 02181 0.298 0.014 -3.82 0.18
0.9190 0.355 0.009 -4.60 0.14
2.6218 0.402 0.006 -529 0.10
5.2098 0.441 0.005 -5.80 0.09
1.8 0.5415 0.298 0.011 -3.74 0.17
1.4417 0353 0.008 -4.52 0.13
3.4571 0.402 0.006 -523 0.10
6.4208 0.441 0.005 -5.74 0.09
12 1.2 0.8322 0.409 0.007 -6.06 0.12
2.6495 0444 0.005 -6.56 0.10
1.4 02993 0.360 0.008 -5.16 0.15
1.6669 0.407 0.006 -5.89 0.12
3.8606 0.442 0.005 -6.40 0.10
1.6 0.1449 0.299 0.014 -4.15 0.20
0.8254 0.359 0.008 -5.02 0.15
2.5066 0.405 0.006 -5.74 0.12
5.0766 0.443 0.005 -6.30 0.10
1.8 0.4737 0.302 0.012 -4.08 0.19
1.3544 0.355 0.008 -4.88 0.14
3.3491 0.404 0.006 -5.65 0.12
6.2955 0442 0.005 -6.20 0.10
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Table 5: NPT MC simulation results for diatomic fluids with different orientation of
dipole moments (systems 11 - 12). See Table 1 for details.

System T* P* | E*
11 1.2 09646 0.404 0.006 -548 0.10
2.8011 0.440 0.005 -595 0.08
1.4 0.4001 0.356 0.009 -4.70 0.14
1.7903 0.403 0.006 -5.37 0.10
4.0025 0.440 0.005 -5.86 0.08
1.6 02181 0.298 0.014 -3.82 0.18
0.9190 0.355 0.009 -4.60 0.14
2.6218 0.402 0.006 -529 0.10
5.2098 0.441 0.005 -5.80 0.09
1.8 0.5415 0.298 0.011 -3.74 0.17
1.4417 0353 0.008 -4.52 0.13
3.4571 0.402 0.006 -523 0.10
6.4208 0.441 0.005 -5.74 0.09
12 1.2 0.8322 0.409 0.007 -6.06 0.12
2.6495 0444 0.005 -6.56 0.10
1.4 02993 0.360 0.008 -5.16 0.15
1.6669 0.407 0.006 -5.89 0.12
3.8606 0.442 0.005 -6.40 0.10
1.6 0.1449 0.299 0.014 -4.15 0.20
0.8254 0.359 0.008 -5.02 0.15
2.5066 0.405 0.006 -5.74 0.12
5.0766 0.443 0.005 -6.30 0.10
1.8 04737 0.302 0.012 -4.08 0.19
1.3544 0.355 0.008 -4.88 0.14
3.3491 0.404 0.006 -5.65 0.12
6.2955 0442 0.005 -6.20 0.10
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Table 6: NPT MC simulation results for the triatomic fluids studied (systems 13 - 14).
See Table 1 for details.

System T* P* | E*

13 1.6 0.6205 0.362 0.007 -439 0.11
2.1968 0.408 0.006 -5.05 0.09
54991 0.455 0.004 -5.65 0.06

1.8 0.2949 0.305 0.010 -3.57 0.13
1.0942 0.358 0.007 -430 0.10
29655 0.407 0.005 -499 0.08
6.7409 0.456 0.004 -5.60 0.06

2.0 0.5857 0.308 0.009 -3.56 0.13
1.5699 0.358 0.006 -4.25 0.10
3.7365 0.406 0.005 -4.94 0.08
7.9847 0.451 0.004 -5.57 0.07

22 0.8773 0306 0.009 -3.48 0.13
2.0469 0.357 0.006 -420 0.10
45089 0.405 0.005 -4.89 0.08
9.2300 0.454 0.004 -5.52 0.06

14 1.6 03556 0.353 0.008 -4.86 0.14
1.8608 0.403 0.005 -5.62 0.11
5.1151 0.451 0.004 -6.29 0.08

1.8 0.1171 0.297 0.011 -3.88 0.16
0.8380 0.351 0.008 -4.73 0.14
2.6410 0.399 0.005 -549 0.10
6.3691 0.452 0.004 -6.21 0.08

2.0 04110 0.300 0.010 -3.80 0.15
1.3202 0354 0.007 -4.62 0.13
3.4209 0.400 0.005 -539 0.10
7.6229 0.451 0.004 -6.09 0.08

22 0.7049 0.301 0.009 -3.74 0.14
1.8023 0.351 0.007 -4.55 0.13
42007 0.402 0.005 -533 0.10
8.8765 0.454 0.004 -6.02 0.08
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In Figure 3, we present comparisons of the SAFT-VR+D predictions with
molecular simulation results for the PVT behavior of monomer fluids with different
dipole moments (systems 1 — 3). From the Figure we see that the system with the highest
reduced dipole moment (system 3) exhibits the highest density at a given pressure and
temperature, as would be expected due to the increase in attractive interactions between
the molecules. We observe good agreement between the simulation results and
theoretical predictions over a wide range of temperatures and pressures for systems 1 and
2, however the SAFT-VR+D EOS is seen to slightly under-predict the density at a given
temperature and pressure for system 3, which has the highest value of the reduced dipole
moment.

In order to obtain a more comprehensive understanding of the thermodynamic
properties of the systems studied and further test the SAFT-VR+D approach, we also
determined the fluid phase diagram for systems 1 and 2. The results are presented in
Figure 4 along with the phase diagram for a non-dipolar square-well fluid with the same
model parameters (i.e., e¥=1.0, 4=1.5, 0*=1.0) for comparison. From the Figure
we see that as the dipole moment increases the critical temperature of the system
increases, due to the increase in the attractive interactions. We also note from the Figure
that the SAFT-VR+D equation appears to over estimate the critical point; this is an
unavoidable feature of equations of state like SAFT that are based on analytical
expressions for the free energy [80]. Away from the critical region we see good
agreement between the theory and simulation for system 1 with the lowest dipole
moment. For fluids with larger reduced dipole moments, we notice a slight disagreement

between the SAFT-VR+D description and simulation data, particularly for the liquid
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density at low temperatures. Patey et al. [62] observed a similar trend, in that the GMSA
does not provide a good description of the thermodynamic properties of dipolar hard

spheres with large dipole moments.
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Figure 4: Isotherms for dipolar square-well monomer fluids with ¢*=1.0,
A=1.5, 6*=1.0 and (a) dipole moment x> =0.5, at T* = 1.0, 1.2, 1.4 and
1.6 (from bottom to top), (b) dipole moment £ > =1.0, T*=1.0, 1.2, 1.4 and

1.6 (from bottom to top) and (c) dipole moment x* =2.0, at T* = 1.4, 1.6,

1.8 and 2.0 (from bottom to top). The dashed lines represent predictions from
the SAFT-VR+D equation with the GMSA approximation and the squares
the NPT-MC simulation data.
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Figure 5: Coexisting densities for dipolar square-well monomer fluids with
g*=1.0, A=1.5, o*=1.0and dipole moment (a) x> = 0.5 and (b) u~ =
1.0. The squares represent the GEMC simulation data, the dashed lines
predictions from the SAFT-VR+D equation with the GMSA approximation

and the dotted lines predictions from the SAFT-VR+D equation for 4> =0.

In the original development of the SAFT-VR EOS Gil-Villegas et al.[81]
determined that SAFT-VR was in good agreement with Gibbs ensemble simulation data

for the vapor-liquid coexistence densities of square-well monomer fluids with potential
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ranges 1.1< A <1.8. In order to examine the effect of 4 on the phase behavior of dipolar

fluids, and further test the SAFT-VR+D approach, we have studied the PV'T behavior of
the dipolar square-well monomer fluid with 1 =1.8 and o*=1.0, &*=1.0 #*=1.0

(system 4) to compare to the results for system 2, for which A=1.5 with all other
parameters the same. The results are presented in Figure 5. Compared to the results for
system 2 (Figure 3b), we note that as K increases, the density of the system increases at a
given pressure and temperature. Good agreement is observed between the theoretical
predictions and simulation data; the new SAFT-VR+D approach is seen to capture the

effect of the potential range on the phase behavior.
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Figure 6: Isotherms for dipolar square-well monomer fluids with ¢*=1.0,
A=1.8, o*=1.0and dipole moment x> =1.0at T*=1.6, 2.0, 2.4 and 2.8

(from bottom to top). The squares represent NPT MC simulation results and
the dashed lines predictions from the SAFT-VR+D equation with the GMSA
approximation.
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Figure 7: Schematic model for diatomic dipolar fluids with dipole moments

embedded in every segment (a) perpendicular and (b) parallel to the vector

joining the centers of the monomer segments.

Having seen that SAFT-VR+D equation can accurately describe the fluid phase
behavior of dipolar square-well monomer fluids, we now turn to dipolar chain molecules.
We first focus on diatomic molecules with a dipole moment in the center of both

segments. In the SAFT-VR+D approach, the relative orientation of each dipole moment

can be specifically determined by the azimuthal € and polar ¢ angles of the inter-

segment axis (Figure 1). Here we consider two specific diatomic molecules in which the
dipole moments are both oriented perpendicular or parallel to the vector joining the
centers of the monomers, as illustrated in Figure 6a and Figure 6b. Since the radial
distribution function is dependent on the relative orientation of the dipole moments, here
we are examining the ability of the theory to capture the effect of dipole orientation on
the phase behavior of dipolar chain molecules. In Figure 7 we present the PV'T behavior

for dipolar square well diatomic fluids which have the same model parameters (£*=1.0,
A=15, o*=1.0, x”= 0.5) in each segment but in figure a the dipole moments are

aligned perpendicularly and figure b they are aligned in parallel. The corresponding
phase envelopes are presented in Figure 8. From the Figures, we find that the fluids with
the dipole moments aligned parallel exhibit a slightly higher density at a given pressure

and temperature, and a slightly lower critical temperature, than the fluids in which the
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dipoles are perpendicularly aligned. We find that the SAFT-VR+D EOS with the GMSA
provides good agreement with the simulation data for the isotherms studied and the
coexisting densities of the dipolar diatomic fluid with dipole moments in the
perpendicular (system 6) arrangement. However, for the dipolar diatomic fluid in which
the dipole moments are aligned parallel (system 5), the SAFT-VR+D EOS with the
GMSA approximation under-predicts the density at a given pressure and temperature
compared with the NPT ensemble simulations, particularly at low densities, and
underestimates the saturated liquid density compared with the GEMC simulations. We
believe that the main reason for the observed deviation is that, as stated earlier,
Wertheim’s solution for dipolar hard spheres with the MSA closure underestimates the
radial distribution function for dipolar fluids at contact. If the GMSA is replaced by the
LEXP approximation in the SAFT-VR+D EOS, a significant improvement in the
theoretical predictions in comparison with the simulation data is seen (Figure 7 and 8) for
both the PV'T and phase behavior. This result confirms that an accurate description of the
fluids structure is very important in determining the thermodynamic properties of chain
fluids. We have also studied the PVT behavior of the parallel and perpendicularly
aligned dipolar diatomic fluids with 4 =1.8 (Systems 7 and 8), the results of which are
presented in Figure 9. Again we observe that the SAFT-VR+D EOS with the LEXP
approximation provides good agreement with the simulation data for fluids with the
dipole moments arranged perpendicular and parallel, while the use of the GMSA results
in significant deviations for the fluids in which the dipolar segments are aligned in
parallel. The SAFT-VR+D equation is therefore able to capture both the effect of

potential range and orientation of the dipolar interactions on the phase behavior.
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Figure 8: Isotherms for dipolar square well diatomic fluids with *=1.0,
A=1.5, o*=1.0and dipole moments z~>= 0.5 (a) perpendicular at T*=1.2,

1.4, 1.6 and 1.8 (from bottom to top), and (b) parallel at T*=1.0, 1.2, 1.4, and
1.6. The squares represent MC simulation results, the solid lines predictions
from the SAFT-VR+D equation with the LEXP approximation and the
dashed lines from SAFT-VR+D approach with the GMSA approximation.
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Figure 9: Coexisting densities of dipolar square-well diatomic fluids with
g*=1.0, 1=1.5, o*=1.0and dipole moments z°= 0.5 (a) perpendicular
and (b) parallel. The squares represent MC simulation results, the solid lines
predictions from the SAFT-VR+D equation with the LEXP approximation,
the dashed lines from the SAFT-VR+D equation with the GMSA
approximation and approximation and the dotted lines predictions from the

SAFT-VR+D equation for x> =0.
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Figure 10: Isotherms for dipolar SW diatomic fluids with £¥=1.0, 1=1.8,
o*=1.0and dipole moments = 0.5 (a) perpendicular at T*=2.0, 2.4, 2.8

and 3.2 (from bottom to top), and (b) parallel at T*=2.0, 2.4, 2.8 and 3.2. The
squares represent MC simulation results, the solid lines predictions from the
SAFT-VR+D equation with the LEXP approximation and the dashed lines
from the SAFT-VR+D equation with the GMSA approximation.
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Figure 11: Schematic showing the diatomic molecular models used to describe a
chain fluid with different magnitude and orientation of dipole moments embedded
in the center of each segment.
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Since real fluids, such as ketones, alcohols and many polymers, are typically
composed of a mixture of polar and non-polar groups, it is desirable to be able to model
chain molecules comprised of segments that have different magnitudes and orientations
of dipole moments. To this end, we have studied the PV'T behavior of dipolar diatomic
fluids with different dipole moments in each segment (system 9, 10); in particular we
have studied diatomics in which the magnitude of the dipole in one segment is twice that
of the other segment (Figure 10). The results of which for perpendicular and parallel
orientations of the dipoles are shown in Figures 11a and 11b respectively. We again find
that, the SAFT-VR+D approach with the LEXP approximation provides good agreement
with the simulation data for diatomic fluids with different magnitude of dipole moments
arranged both perpendicular and in parallel. However, again, the SAFT-VR+D approach
with the GMSA approximation underestimates the densities at a given pressure and
temperature for the molecule with the dipole moments arranged perpendicularly. We
have also studied the PV'T behavior of diatomic dipolar fluids with different orientation of
dipole moments in each segment (system 11, 12), as shown in Figure 10c. In these fluids,

the pair distribution function due to the dipolar interaction will vanish since the angle-

related functions A(nlnz) and D(nlnzz‘) in equation (2.14) are zero for the 90° relative

orientation of the two dipoles (Figure 10c). In this case, the predictions from the SAFT-
VR+D approach with the LEXP approximation and the GMSA approximation are the
same. From Figure 12, we note that in all cases, good agreement is observed between the
predictions from the SAFT-VR+D approach and simulation data, indicating that the
theory can accurately describe the thermodynamic and phase behavior of fluids

composed of segments with differing dipole moments.
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Figure 12: Isotherms for dipolar square well diatomic fluids with &¥*=1.0,
A=1.5, o*=1.0 at T*=1.0, 1.2, 1.4, and 1.6. with (a) perpendicular dipole

moments of £ = 1.0 and x3=0.5 and (b) parallel dipole moments of ;=
1.0 and £3=0.5. The squares represent MC simulation results, the solid lines

predictions from the SAFT-VR+D equation with the LEXP approximation
and the dashed lines from the SAFT-VR+D equation with the GMSA

approximation.
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Figure 13: Isotherms for dipolar square well diatomic fluids with ¢*=1.0,
A=15, o*=1.0and (a) a perpendicular dipole moments of £~ = 0.5 and

parallel dipole moment of x>= 0.5 at T*=1.0, 1.2, 1.4, and 1.6. (b)
perpendicular dipole moment of ;= 1.0 and parallel dipole moment of

4>=1.0 at T*=1.0, 1.2, 1.4, and 1.6. The squares represent MC simulation

results and the solid lines predictions from the SAFT-VR+D equation with
the LEXP approximation.
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To illustrate the generality of this approach, we have also studied a model
triatomic fluid in which the dipole moments are arranged perpendicularly or in parallel in
the first two segments with the third segment having no dipole moment. Within the
solution of Adelman and Deutch [65] for polar mixtures with the MSA closure, the
SAFT-VR+D EOS describes a molecule consisting of a mixture of non-dipolar and
dipolar segments with an effective dipole moment and density for the dipolar interaction.
As mentioned before, due to the linearity in the MSA approximation, the anisotropic
contribution to the pair distribution function due to the dipolar interaction between
dipolar segments and non-dipolar segments equals zero. In the SAFT-VR+D approach,
the pair distribution function between dipolar square-well segments and non-dipolar
square-well segments is therefore equivalent to that between non-dipolar square-well
segments. In the case of the triatomic molecules shown in Figure 13, the pair distribution
function between segments 1 and 2 is ¢”* (r®,®, )and the pair distribution function

w

between segments 2 and 3 is g, (r) The Helmholtz free energy due to chain formation

is therefore given by equation (2.31), in which the total number of segments is 3 and the
number of pairs of dipolar segments is 1. This approach therefore describes a
heteronuclear fluid, as the chain is composed of unlike segments, and can be modeled as
in our previous work[82]. In Figure 14 we present isotherms predicted from the SAFT-
VR+D approach compared to NPT MC simulation data to for two triatomic fluids

(systems 13 and 14) with ¢*=1.0, A=1.5, o*=1.0and reduced dipole moments of
4= 1.0 in both segments and arranged in parallel (system 13) and perpendicular

(system 14). We find that the fluid with the dipole moments in the parallel arrangement

has a slightly higher pressure than the fluid with dipole moments arranged perpendicular
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at given density and temperature, when all other parameters are the same. Good
agreement is observed between the predictions from the SAFT-VR+D approach with the
GMSA approximation and simulation data for system 14 in which the dipole moments
are aligned perpendicular, while the SAFT-VR+D EOS with the LEXP approximation
again provides excellent predictions for both fluids. Hence the solution of Adelman and
Deutch when combined with the hetero-SAFT-VR approach is able to produce
satisfactory thermodynamic properties for dipolar square well chain fluids consisting of

dipolar and non-dipolar segments.

(0

Figure 14: Schematic illustrating the triatomic molecular model used to describe a
chain fluid with dipole moments embedded in the center of the first two segments.
Segments are labeled 1 — 3 from left to right.
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Figure 15: Isotherms for dipolar square well triatomic fluids with ¢*=1.0,
A=15, o*=1.0and dipole moments z°= 1.0 (a) perpendicular and (b)
parallel at T*=1.6, 1.8, 2.0 and 2.2 (from bottom to top). The squares
represent MC simulation results, the solid lines predictions from the SAFT-
VR+D equation with the LEXP approximation and the dashed lines from the
SAFT-VR+D equation with the GMSA approximation.

47



2.5 Conclusions

In this work, a SAFT-VR like equation of state, SAFT-VR+D, has been developed to
study dipolar chain fluids which takes the dipolar square well fluid as the reference state.
In this way, the SAFT-VR+D approach explicitly takes into account the magnitude and
orientation of dipole moments, all of which are found to affect the thermodynamics and
phase behavior of dipolar square well monomer and chain fluids. In order to gain a
comprehensive understanding of the thermodynamic properties of the systems studied,
and validate the SAFT-VR+D approach, both NPT MC and GEMC simulations were
performed to obtain simulation data to compare to the theoretical predictions. We found
that the SAFT-VR+D equation with the GMSA approximation provides good predictions
for the phase behavior of the dipolar monomer fluids studied, and chain fluids with a
perpendicular arrangement of the dipole moments. A more accurate approximation for
the radial distribution function of dipolar square well fluids (LEXP approximation) was
implemented to improve the performance of the SAFT-VR+D EOS for dipolar chain
fluids in which the dipole moments are parallel to the vector joining the centers of the
monomers. It is found that the SAFT-VR+D with the LEXP approximation is suitable for
fluids with both vertical and horizontal arrangements of the dipole moments.
Furthermore, using the solution of Adelman and Deutch for polar mixtures, the SAFT-
VR+D with LEXP approximation gives a good description of the thermodynamic
properties of dipolar chain fluids consisting of non-dipolar segments and dipolar

segments.

48



CHAPTER III

PHASE BEHAVIOR OF DIPOLAR ASSOCIATING FLUIDS FROM THE SAFT-
VR+D EQUATION OF STATE

3.1 Introduction

Fluids with anisotropic interactions, such as polar or hydrogen bonding interactions, are
important not only to the traditional oil and chemical industries, but also in energy
production and biological systems; water for example is essential to all known forms of
life and can be considered the universal solvent. An accurate description of the phase
behavior and thermodynamic properties of polar and associating fluids is therefore
important to a diverse range of fields and applications.

Conventional engineering equations of state such as cubic equation of state, which
provide a good description of the phase behavior of non-associating and/or non-polar
components and their mixtures, cannot easily be used to describe the phase equilibrium of
associating and/or polar components. For example, such models cannot be used to study
the simultaneous vapor-liquid equilibria (VLE) and liquid-liquid equilibria (LLE) of
alcohol-hydrocarbon mixtures with the same interaction parameters [83]. Increasingly
both industrial and academic interest is switching to the development and application of
more advanced thermodynamic models that explicitly account for anisotropic interactions
and so more accurately describe the physical nature of complex fluid systems.

Perhaps the simplest approach to modeling polar and/or associating fluids is the
cubic-plus-association (CPA) equation of state [84], which combines the Soave-Redlich-

Kwong (SRK) equation of state with Werthieim’s first order thermodynamic perturbation
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theory to describe different type of hydrogen-bonding interactions. The CPA equation of
state has been successfully applied to study a wide range of systems, including the VLE
of alcohol-water-aliphatic hydrocarbon ternary system using single interaction parameters
per binary system obtained from binary mixtures [85, 86]. However, to describe fluids
such as acetone, which are both polar and associating, self-association is used to mimic
the strong interactions within the fluid, since the theory does not explicitly account for
polar effects [87].

An alternative approach to modeling associating and/or polar components is to
use a true molecular based equation of state such as the associated perturbed anisotropic
chain theory (APACT) developed by Donohue et al. [88, 89]. APACT treats pure fluids
that associate through hydrogen bonding interactions and takes into account interactions
due to dipole and/or quadrupole moments [90], however, for systems involving
mulitpolar associating components, such as binary system ethanol and pentanol, an
analytical solution cannot be determined and the chemical and material equilibria must be
solved numerically. Though some simpler versions of the approach have been developed
[91], they are still complicated.

Several versions of the SAFT equation of state have been developed for polar
fluids in which dipolar and/or quadrupolar interactions are generally incorporated through
the addition of the corresponding terms to equation 1. For the dipolar term, both the z-
expansion proposed by Gubbins and Gray [52] (which describes the interaction of dipolar
hard sphere fluids using an angular pair correlation function), and the more rapidly
converging Padé approximation of Stell and coworkers [53], have been widely adopted.

For example, Muller and Gubbins [50] applied the s-expansion to describe water as a
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hard, spherical, associating, dipolar fluid within Wertheim’s TPT theory, achieving good
agreement with simulation and experimental data; Kraska et al. [48, 49] later extended
the Lennard-Jones-SAFT theory of Muller and Gubbins using the multipolar g-expansion
for the dipolar-dipolar interaction to study the phase behavior of alcohols and water and
their mixtures with n-alkanes. In the equation of state for alkanols and water Xu et al.
[51] applied a Padé approximation to describe dipolar contribution. However, a common
feature of these equations of state is to treat non-spherical dipolar molecules as spherical
dipolar fluids. As a result, the orientation of the dipolar interaction and the possibility of
multiple polar sites within a molecule cannot be taken into account.

In contrast, Jog et al. [54, 55] developed a SAFT EOS for tangent hard sphere
chains with dipoles on alternate segments. In this work, although the position of the
dipole moment is considered, the hard sphere pair correlation function is used to describe
the pair correlation function between non-dipolar and dipolar hard spheres at contact, and
so neglects the effect of the dipole and its orientation. Using the same approach to
describe dipolar interactions, Tumakaka and Sadowski [56] have extended the PC-SAFT
EOS to describe mixtures of non-dipolar and polar molecules and Dominik et al. [57]
have modeled the phase equilbria and thermodynamic properties of ethers and esters with
PC-SAFT + dipolar contribution due to Jog , Saggar and Fischer [58, 59]; the two
approaches were found to yield similar results for the systems studied. ~More recently,
Gross and Vrabec [60] developed a contribution for dipolar interactions based on third
order perturbation theory which uses simulation data for the vapor-liquid equilibria of the
two-center Lennard-Jones plus point dipole fluid to determine the model constants. The

proposed term has been incorporated into the PC-SAFT equation of state and has been

51



shown to improve the description of pure component and mixture phase equilibria for
dipolar fluids over the original PC-SAFT approach.

In chapter II, within the SAFT-VR framework, we developed a rigorous approach
with which to describe the phase behavior and thermodynamic properties of dipolar
fluids. Through a combination of the SAFT-VR approach, which is a recent extension of
the SAFT approach to model dispersion interactions through a potential of variable range,
and the generalized mean spherical approximation (GMSA), we presented the SAFT-
VR+D approach. In the approach, the reference fluid is chosen as dipolar square well
fluid, not square well fluid as used in the SAFT-VR EOS, so that the approach can
explicitly describe the position and orientation of dipole moment in the dipolar monomer
and chain fluids.

In this chapter, we extend the SAFT-VR+D approach to model dipolar associating
fluids. Constant NPT and Gibbs ensemble Monte Carlo simulations were performed to
test and validate the approach for dipolar associating fluids with one, two and four
association sites. The remainder of the chapter is organized as follows: in section 3.2 we
present the SAFT-VR+D model and theory for dipolar associating fluids. In section 3.3,
details of the molecular simulations performed are presented. Results for the phase
behavior of pure dipolar associating fluids are presented and compared with simulation
results and the new approach applied to study the phase behavior of water are presented
in section 3.4. Finally, concluding remarks are made and future work discussed in

section 3.5.
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3.2 Model and Theory
In this section we extend the SAFT-VR+D approach to study dipolar associating fluids.
The molecules are modeled as hard spheres of diameter o that can interact through a

dipole moment x embedded in the center of the sphere, a square well interaction to

describe the dispersion interactions, and one, two or four short-range attractive square-
well sites to describe association interactions that mimic hydrogen bonding (Figure 16).

Hence the pair potential for the dipolar associating fluids studied is defined by

u (rcoloaleQz )= u’" (r; o)+ uP"oE (I’oal(;)2 )+ ZZMAB (rQle) (3.1)
A B

where, ris the vector between the center of the two monomers, » =|r|and ®, = (Hi’¢i)

the set of angles defining the orientation of the dipole in monomer i, and €);is the

orientation of associating site i relative to vector . u° (r;o)andu”* (re,,)

represent the square-well potential and potential of dipolar interaction, and the definitions

of u" (r;0)and u”""* (r® , ) are referenced to our previous work. The u,, represents
> 1@, . AB

the association potential, which is modeled by an anisotropic short-ranged square well
interaction, where 4 and B represent interacting associating sites. As can be seen from

Figure 16 the association sites are situated at a distance », from the center of the sphere.
Sites of type A can bond to sites of type B on different molecules with attractive deep but
narrow square well like energy &”° when the two sites are closer than the distance 7, .

Sites of the same kind do not interact with each other.
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N 4/
Figure 16: Schematic representation of the model used to describe
associating fluids with four association sites.

Within the SAFT framework, the Helmholtz free energy 4 can be written as a

sum of separate contributions:

IDEAL MONO ASSOC
A A A A

= + +
Nk,T Nk, T Nk,T  Nk,T

(3.2)

Since in this work, we do not consider chain fluids, there is not chain term in the equation
(3.2). The ideal and association contributions to equation 3.2 are given by equations (1.3)
and (1.17) in section 2 of Chapter I, while the monomer term is as presented in Section

2.2.1.2 of Chapter II for the SAFT-VR+D equation.

3.3 Computer Simulations

We have performed Monte Carlo (MC) simulations in the isothermal-isobaric (NPT) and
Gibbs ensembles (GEMC) to determine the PV'T and phase behavior of several model
dipolar associating fluids in order to compare with the theoretical results from the SAFT-
VR+D equation for associating fluids. Molecular simulation studies of associating fluids

can be challenging due to the strong association interactions between the molecules,
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which can lead to the formation of stable clusters and poor sampling of phase space. As a
result, several biasing schemes have been proposed to ensure efficient sampling of phase
space in MC simulations of associating systems [92-96]. In particular, Tsangaris and De
Pablo [96] proposed the bond-bias MC method and compared results from regular GEMC
simulations with those from GEMC simulations using the bond biased move for
associating Lennard-Jones monomer fluids with various association strengths. They
concluded that regular GEMC simulations would fail for systems in which the association
energy is ten times or larger than the dispersion energy. In our work, we focus on
systems with low association energy compared to the dispersion interactions (i.e. &np <
10¢) and therefore we do not employ any biasing techniques in the simulations.

The reaction field method, which has been used previously to calculate the vapor-
liquid phase behavior of systems with long-range dipolar potential is applied to deal with
the long-range dipolar interactions. The reaction field approach replaces the molecules
beyond a cut-off distance by a dielectric continuum, the effect of which is taken into

account by including a new term into the dipolar potential, viz

r<r,
260 +1 1} > rc (3.3)

3
r

i _[ ﬂlﬂzj D— Z(ERF - l)lul,uz
0

where 7, 1s the cut-off distance beyond which the pair potential vanishes and &, the
dielectric constant of the continuum. In the simulations, the value of 7, is set to2.50, and
Epp 1000

In the NPT ensemble simulations, one cycle consists of three kinds of trial moves:
N trial displacements of randomly chosen molecules, N trial rotations and one volume

change. The extent of each trial move is adjusted to give an individual acceptance
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probability of 30 - 40%. In the GEMC simulations, particle exchanges between two
phases are performed in addition to the three trial moves described above. The traditional
Widom particle insertion method is used to achieve particle exchanges [97]. Each
simulation was started from an initial configuration in which 256 molecules are placed on
a lattice in the simulation box. An initial simulation of 100,000 - 500,000 cycles was
performed to equilibrate the system, before averaging for between 1,000,000 and
4,000,000 cycles. The thermodynamic properties of the system were obtained as
ensemble averages and the errors estimated by determining the standard deviation.

Before studying the dipolar associating fluids of interest in this work, to check the
accuracy of our simulation code, we performed NPT simulations for several hard
associating fluids and obtained good agreement with the results of Jackson et. al. [39] for
fluids with one and two association sites and Ghonasgi et. al. [98] for fluids with four

association sites.

3.4 Results and discussion

3.4.1 Model fluids

We have applied the SAFT-VR+D approach to study the PV'T and phase behavior of
dipolar associating fluids. In order to validate and test the predictive ability of the SAFT-
VR+D EOS for associating fluids, NPT and Gibbs ensemble Monte Carlo simulations
have been performed for several dipolar associating fluids with one associating site
(system 1), two associating sites (system 2), and four associating sites with different

strengths of the association energy (systems 3 - 5), association volume (systems 6 and 7)
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and dipole moment (systems 8 and 9). The details of each system studied are given in

Table 7. The results of the NPT simulations are reported in Tables 8 — 10 and those of

the GEMC simulations are given in Table 11.

Table 7: Model parameters for dipolar associating fluids studied. z~is the reduced

dipole moment, A the range of the potential, . the reduced cutoff radius, & the

reduced depth of square well potential, &, the reduced association energy.

System Sites s A v & &,
1 1 1.0 1.5 1.05 1 5
2 2 1.0 1.5 1.05 1 5
3 4 1.0 1.5 1.05 1 2
4 4 1.0 1.5 1.05 1 5
5 4 1.0 1.5 1.05 1 7
6 4 1.0 1.5 1.1 1 5
7 4 1.0 1.5 1.1 1 3
8 4 0.5 1.5 1.05 1 5
9 4 2.0 1.5 1.05 1 5
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Table 8: NPT MC simulation results for Systems 1 - 2. The reduced temperature is given by 7" = k,T / ¢, the reduced pressure is
given by P" = Po’ / & and the reduced energy is given by E" = E/ N¢.

System T P* n Error -E* Error System T pP* n Error -E* Error
1 1.2 0.1003 0.315 +0.011 5.42 +0.19 2 1.2 0.0262 0.346 +0.012 7.66 +0.31
0.6731 0.360 +0.008 6.13 +0.14 0.5231 0.378 +0.008 8.38 +0.25

2.0315 0.401 +0.006 6.80 +0.12 1.7509 0.415 +0.006 9.24 +0.23

4.7581 0.449 +0.005 7.48 +0.10 42774 0.456 +0.005 10.12 +0.21

1.4 0.5651 0.310 £0.010 5.16 £0.18 1.4 0.5113 0.328 £0.010 6.46 £0.25
1.3937 0.358 £0.007 5.95 £0.14 1.2845 0.368 £0.008 7.30 £0.23

3.1441 0.403 £0.005 6.65 £0.10 2.9360 0.410 £0.006 8.19 £0.21

6.4672 0.450 £0.005 731 £0.10 6.0980 0.456 £0.005 9.10 £0.20

1.6 1.0254 0.306 +0.009 4.97 +0.16 1.6 0.9835 0.316 +0.009 5.77 +0.21
2.1035 0.355 +0.006 5.78 +0.13 2.0188 0.362 +0.007 6.67 +0.20

4.2359 0.402 +0.005 6.50 +0.11 4.0733 0.406 +0.006 7.54 +0.20

8.1455 0.450 +0.005 7.17 +0.10 7.8511 0.452 +0.008 8.40 +0.22

1.8 1.4835 0.308 +0.009 4.90 +0.17 1.8 1.4492 0.310 +0.009 5.37 +0.20
2.8076 0.355 +0.006 5.68 +0.12 2.7385 0.359 +0.007 6.29 +0.19

5.3157 0.401 +0.005 6.39 +0.11 5.1827 0.404 +0.006 7.13 +0.17

9.8034 0.449 +0.005 7.06 +0.10 9.5597 0.452 +0.007 7.96 +0.19

2.0 1.9405 0.306 +0.008 4.79 +0.15 2.0 1.9112 0.308 +0.008 5.13 +0.18
3.5087 0.354 +0.007 5.57 +0.13 3.4500 0.357 +0.007 6.03 +0.18

6.3885 0.403 +0.006 6.33 +0.12 6.2756 0.403 +0.005 6.86 +0.16

11.4483 0.450 +0.005 6.98 +0.10 11.2401 0.452 +0.005 7.67 +0.16
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Table 9: NPT MC simulation results for Systems 3 - 6. The reduced temperature is given
byT" =k,T / ¢, the reduced pressure is given by P" = Po’ / & and the reduced energy is

givenbyE = E/N¢.

Sys. T* p* n Err. -E* Err. | Sys. T* p* n Err. -E* Err.
3 1.2 0.1257 0.328 +0.012 5.78 +0.21 5 1.4 04133 0.404 +0.007 13.36 +0.35
0.7180 0367 +0.007 6.45 +0.15 23741 0.449 +0.005 14.87 +0.32
2.0974 0.408 +0.006 7.13 +0.13 1.6 02593 0.315 =+0.015 898 +0.47
48272 0453 +0.005 7.80 +0.11 0.7120 0356 +0.010 10.13 +0.40
1.4 05748 0.317 +0.010 540 +0.19 1.8903 0.402 +0.007 11.58 +0.35
1.4097 0361 +0.007 6.15 +0.14 44842 0.448 +0.006 13.11 +0.33
3.1642 0.405 +0.006 6.88 +0.12 1.8 0.8579 0.306 +0.011 7.54 +0.38
6.4770 0.452 +0.005 7.56 +0.11 1.6498 0355 +0.009 8.87 +0.37
1.6 1.0261 0.313 +0.009 5.18 +0.17 33105 0.402 +0.007 10.29 +0.34
2.1027 0359 +£0.007 596 +0.15 6.5658 0.448 +0.005 11.73 +0.31
4.2283 0405 +£0.005 6.70 +0.12 2 1.4198 0306 +0.009 6.78 +0.31
8.1153  0.451 +0.005 7.39 +0.11 2.5321 0354 +0.007 8.02 +0.30
1.8 14789 0.309 +0.008 5.00 =+0.16 4.6624 0402 +0.007 9.36 +0.31
2.7969 0356 +0.007 5.79 +0.14 8.5854 0.448 +0.005 10.71 +0.30
52910 0.403 +0.006 6.55 +0.12| 6 1.4 0.3080 0.358 +0.010 8.86 +0.31
9.7472  0.450 +0.005 7.24 +0.11 1.2765 0399 +0.006 991 +0.26
2 1.9325 0306 +0.008 4.85 +0.16 3.5146 0.441 +0.006 11.02 +0.25
34917 0355 +0.007 5.67 0.14 1.6 0.5306 0.306 +0.014 6.71 +0.35
6.3529 0.402 +0.005 643 +0.12 1.1696 0354 +0.009 0.79 +0.27
11.3749 0.451 +0.005 7.13 +0.11 2.5931 0398 +0.007 892 +0.25
4 1.2 0.5921 0.406 +0.006 10.06 =+0.25 54651 0442 +0.005 9.99 +0.23
24482 0.449 +0.005 11.22 +0.24 1.8 1.0541 0.303 +0.009 6.12 +0.25
1.4 02353 0.316 +0.013 6.80 +0.31 1.9909 0352 +0.007 7.21 +0.24
0.7505 0362 +0.009 7.83 +0.27 3.8557 0398 +0.006 8.30 +0.23
1.9784 0.405 +0.006 8.89 +0.24 7.3631 0.444 +0.005 935 +£0.22
45180 0450 +0.005 10.03 +0.23 2 1.5602 0305 +0.009 5.79 +0.25
1.6 0.7587 0.309 +0.010 6.03 +0.25 27817 0.351 +0.007 6.79 +0.22
1.5802 0358 +0.008 7.08 +0.23 5.0741 0.398 +0.006 7.84 +0.22
3.2709 0.402 +0.007 8.10 +0.23 9.2108 0.445 +0.005 8.88 +0.21
6.4844 0.448 +0.005 9.17 +0.22 22 2.0539 0304 +0.008 5.52 +0.22
1.8 1.2596 0.308 +0.009 5.63 +0.23 3.5505 0351 +0.007 6.50 +0.21
23674 0.356 +0.007 6.62 +0.21 6.2585 0.398 +0.006 7.51 +0.21
4.4954 0.402 +£0.005 7.60 £0.20 11.0161 0.446 +0.005 8.50 +0.20
83632 0.449 +0.005 8.60 +0.20
2 1.7466 0306 +0.009 5.33 +0.22
3.1275 0354 +0.007 6.28 +0.19
5.6738 0.401 +0.006 7.24 +0.19
10.1765 0.449 +0.005 8.21 +0.19
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Table 10: NPT MC simulation results for Systems 8 - 9. The reduced temperature is
given byT" = k,T / ¢, the reduced pressure is given by P" = Pc’ /& and the reduced

energy is givenby E" = E/ N¢.

Sys T* p* n Err -E*  Err [ Sys T* pP* n Err -E* Err
8 1.2 0.7245 0400 =£0.008 9.14 £0.28 9 1.8 1.0610 0.328 =+0.010 7.69  £0.29
2.6045  0.445 +0.005 10.34 +0.24 2.1208 0369 +0.007 870  +0.26
14 03146 0306 =£0.013 6.05 £0.31 42000 0.410 +0.006 9.76  +0.25
0.8513  0.355 £0.008 7.08 £0.25 8.0186 0.456 £0.005 10.90 +0.24
2.1018 0.399 +0.007 8.11 +0.24 2 1.5572 0319 +0.009 7.07 +0.26
4.6646  0.445 +0.005 9.22 +0.22 2.8910 0365 +0.007 8.17 +0.24
1.6 08318 0306 +£0.010 5.52 +0.25 53891 0.408 +0.005 9.22 +0.22
1.6738  0.353 +0.007 648 +0.22 9.8429  0.454 +0.005 1030 +0.22
33861 0.400 £0.006 7.49 +0.21 22 20440 0315 +0.008 6.66 +0.24
6.6221  0.446 +0.006 849 +0.22 3.6431 0361 +0.007 7.74 +0.24
1.8 13273 0303 +0.009 5.15 +0.21 6.5466  0.407 +0.005 8.81  +0.22
24546 0353 +0.008 6.11 +0.21 11.6197 0453 £0.005 9.86  +0.22
4.6033 0399 +0.006 7.05 +0.19 24 25245 0312 $0.008 636  +0.23
8.4928 0.447 £0.005 8.00 £0.19 43831 0359 +0.006 742  +0.22
2 1.8097 0302 +0.008 4.93 £0.19 7.6825 0.405 +0.005 847 +0.21
32091 0352 +0.007 5.85 £0.18 13.3622  0.453 +0.005 9.52  +0.21
5.7752 0400 £0.006 6.77 £0.18 2.6 3.0004 0309 £0.008 6.11 £0.22
10.2988 0.447 +0.005 7.67 +0.18 5.1145 0357 +0.007 7.17 £0.22
9 1.2 02637 0.385 £0.007 878 £0.27 8.8029 0.406 +0.005 824  £0.20
2.0708 0.435 +0.006 10.08 +0.25 15.0798 0.452 £0.005 922  £0.20
1.4 0.0165 0358 £0.013 994 £0.39 2.8 34731 0309 £0.007 595 £0.22
0.4825 0.386 +0.007 10.68 £0.28 5.8399 0356 +0.006 6.98  10.21
1.6611 0.419 +0.005 11.64 +0.26 99122 0405 +0.006 8.03  £0.21
4.1513 0.458 +0.005 12.74 +0.26 16.7788 0.452 £0.005 9.00  +0.20
1.6 05503 0338 +0.009 853 £0.29
1.3231  0.377 +0.008 9.52  +0.29
2.9646 0.413 +0.006 10.50 +0.25
6.1288  0.457 +0.005 11.68 +0.25
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Table 11: GEMC simulation results for the dipolar associating fluids studied (systems 4 -
9). The fixed variables during the simulation are defined as for table 3 and 4. The

densities 77, number of molecules N and reduced energies Ein the coexisting vapor and

liquid phases are labeled v and /, respectively.

Sys T n, Err n, Err N ; Nv _ El* Err _ E: Err
4 09 0464 +0.004 0.001 +0.000 341 171 1424 +0.19 025 £0.19
1 0446 +0.005 0.004 +0.000 350 162 13.01 +0.23 042 +0.12
1.1 0417 +0.005 0.004 +0.000 458 54 1128 +0.21 0.28 +0.15
1.2 0381 +0.007 0.012 £0.001 452 60 945 +0.22 0.59 +0.19
1.3 0346 +0.009 0.030 +0.006 466 46 7.99 +0.24 1.19 +0.37
5 1 0473 +0.004 0.002 +0.000 296 216 19.58 +0.18 14.05 +0.27
1.1 0460 +0.005 0.001 +0.000 331 181 1821 #0.23 0.22  +0.09
1.2 0441 +£0.005 0.002 £0.000 322 190 1643 +0.26 043 +0.13
1.3 0417 £0.007 0.006 +0.000 365 147 14.68 +0.30 0.68 +0.17
14 0385 +0.007 0.014 £0.001 422 90 12.66 +0.30 1.07  +0.29
6 09 0460 +0.004 0.000 +0.000 368 144 1496 +0.16 0.11  £0.07
1 0445 +0.005 0.001 +0.000 375 137 1399 +0.19 0.11  #0.07
1.1 0424 +£0.005 0.002 +0.001 503 9 12,61 #0.19 0.21  +0.28
1.2 0398 +0.006 0.007 £0.000 365 147 11.03 +0.24 049 +£0.13
1.3 0367 +0.008 0.016 +0.002 334 178 9.59 +0.26 0.85 +0.18
7 0.8 0445 +0.004 0.000 +0.000 398 114 1024 +0.13 0.04 £0.03
0.9 0423 +0.005 0.002 +0.000 451 61 9.23  +0.13 0.11  +0.06
1 0399 +0.006 0.004 +0.000 387 125 843 +0.15 0.20 +0.07
1.1 0372 +0.006 0.010 +0.001 438 74 7.52  +0.14 0.39 +0.13
1.2 0339 +0.009 0.022 £0.002 350 162 6.54 +0.18 0.75 +0.13
1.3 0.288 +0.015 0.045 0.005 331 181 548 +0.25 1.35 +0.21
8 09 0461 +0.004 0.002 +0.000 396 116 1342 +0.19 0.19 +0.09
1 0435 +0.005 0.003 +0.000 430 82 11.70  +0.19 0.25 #0.11
1.1 0400 +0.006 0.007 +0.001 418 94 9.87 +0.23 0.36 +0.13
1.2 0364 +0.008 0.018 +0.002 355 157 825 +0.25 0.73  +0.17
1.3 0318 +0.012 0.046 +0.007 416 96 6.71  +0.27 1.50 +0.32
1.35 0278 +0.016 0.072 +0.012 354 158 5.76  +0.31 2.07 £0.40
9 09 0474 £0.005 0.001 +0.000 287 225 16.18 +0.21 8.86 1045
1 0464 +0.003 0.001 +0.000 452 60 16.16 +0.17 0.26 +0.15
1.1 0442 +£0.005 0.003 £0.003 503 9 1457 +0.20 090 +1.91
1.2 0410 £0.006 0.003 +0.000 413 99 12.19 +0.23 0.34 +0.14
1.3 0380 +0.007 0.008 +0.001 460 52 10.72  +0.22 0.59 +0.26
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In Figure 17 we present the PV'T behavior for dipolar associating fluids with one

associating site (system 1, Figure 17a) and two associating sites (system2, Figure 17b)
with the same parameters: ¢~ =1.0, A=1.5, 7. =1.05, ¢*=1.0and ¢, =5.0 . From

Figure 17, we find that the fluid with two association sites exhibits higher densities at a
given temperature and pressure than the fluid with one association site, which would be
expected given the greater cohesion energy between the molecules, and that good
agreement is obtained between the simulation results and theoretical predictions for each

of the systems studied.

00.1 0.2 0.3 0:4 0.5
n

Figure 17: (a) Isotherms for dipolar square-well associating monomer fluids

with one association site and (b) Isotherms for dipolar square-well

associating monomer fluids with two association sites, with &£*=1.0,

A=15, 0*=1.0, 4? =10, r =1.05and €, =5.0 at T* = 1.2, 1.4, 1.6,

1.8 and 2.0 (from bottom to top). The solid lines represent predictions from

the SAFT-VR+D equation and the symbols the NPT Monte Carlo simulation
data.
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In figure 18 we present the PV'T behavior for dipolar associating fluids with four
association sites and different association energies (system 3 - 5). For each system
studied the remaining SAFT-VR+D parameters are the same:

1£>=10,A=15, r =105, &=1.0 . From figure 18, we find that the fluids with

higher association energy exhibit higher densities at a given temperature and pressure
than those with lower association energy. Similarly, when compared with the PVT
behavior for dipolar associating fluids with one and two associating sites (system1 and 2),
the fluids with four associating sites remaining all other parameters the same (system 4)
exhibits higher densities at a given temperature and pressure. Again, good agreement is
observed between the simulation results and theoretical predictions for each of the
systems studied over a wide range of temperatures and pressures.

We have also determined the fluid phase diagram for systems 4 and 5 in order to

further test the SAFT-VR+D approach. From the results presented in Figure 19, and as
would be expected, we find that the fluid with higher association energy &, = 7, system
5) has a higher critical temperature and wider phase envelope than the fluid with a lower
association energy (&, =5.0, system 4). Additionally good agreement is obtained

between the simulation results and theoretical predictions for both systems studied. From
these results, we can conclude that the SAFT-VR+D approach provides a good

description of the thermodynamic properties of dipolar association fluid with one, two or

four association sites as a function of association energy (i.e. from ¢, =2to ¢, =7).
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P*

P

Figure 18: Isotherms for dipolar square-well associating monomer fluids
with four association sites withe*=1.0, 1=1.5, o*=1.0, x> =1.0,
7. =1.05and (a) ¢, =2.0 at T* =12, 1.4, 1.6, 1.8 and 2.0 (from bottom to
top), (b) £, =5.0 at T*=1.2, 1.4, 1.6, 1.8 and 2.0 (from bottom to top), (c)

g,=70 at T* = 1.4, 1.6, 1.8 and 2.0 (from bottom to top), The solid lines

represent predictions from the SAFT-VR+D equation and the symbols the
NPT Monte Carlo simulation data.

64



T*

0 0.2 0.4 0.6

Figure 19: Coexisting densities for dipolar square-well associating monomer
fluids with four association sites (a) system 4: 4 °=1.0, =15, r, =1.05,
e*=1.0,and £,=50 (bottom one) (b) system 5:
u>=10,A=15,r =105, &*=10,and ¢&,=7.0 (top one). The

symbols represent the GEMC simulation data and the solid lines predictions
from the SAFT-VR+D equation.

Since a square-well potential is applied to mimic the hydrogen bonding interaction in the
dipolar association fluids, the cutoff distance 7 plays an important role in the
thermodynamics properties of dipolar associating fluids. In order to examine the effect of
r. on the phase behavior of dipolar associating fluids and further test the SAFT-VR+D
approach, we have studied the PV'T behavior of the dipolar square-well associating fluid
with =15 ando*=1.0, &*=1.0 4> =1.0¢,=50 r =1.1 (system 6) to compare
to the results for system 4, for which 7. =1.05 with all other parameters the same. The

results are presented in Figure 20 and compared to those for system 4 (Figure 18b), we
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note that as 7. increases, the pressure of the system decreases at a given density and
temperature, which reflects the weaker intermolecular interactions between the molecules
for smaller values of 7. Good agreement is again observed between the theoretical

predictions and the simulation data. We have also studied the phase diagram for systems
6, the results of which are presented in Figure 21. From a comparison of Figures 21 and
19 (bottom line, system 4) we see that as the cutoff distance is increased the critical
temperature of the dipolar associating fluid increases, due to the increase in the attractive
association interaction. Good agreement is seen between the theoretical phase diagram
from the SAFT-VR+D approach and the GEMC simulation data, though we note slight
deviations are observed at low temperature (7*<1.1). The observed deviations could be
due to the association interactions prohibiting efficient sampling of phase space or a
shortcoming in the theory. We note that good agreement is obtained at low temperatures
for system 4 which has shorter association range and therefore overall weaker association
interactions. Furthermore, if we compare the results for system 6 with those for system 7
(figure 22), which has a lower association energy (&, = 3.0) with the other parameters
the same, we again see that the SAFT-VR+D approach provides good agreement with the
simulation data at low temperatures. We therefore believe, since the under-prediction is
only observed in the liquid density at low temperatures for system 6 in which the
association energy is at its strongest, that the association interactions are preventing the

efficient sampling of the system.
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Figure 20: Isotherms for dipolar square-well associating monomer fluids
with four association sites for system 4: ,u*2 =10, 4A=15, r: =1.05,
e*¥=1.0,and 5:,, =5.0at 7* = 1.2, 1.4, 1.6, 1.8, 2.0 (from bottom to top).

The solid lines represent predictions from the SAFT-VR+D equation and the
symbols the NPT-MC simulation data.

0 0.2 0.4 0.6

Figure 21: Coexisting densities for dipolar square-well associating monomer
fluids with four association sites and 4> =1.0, A=15, r =1.1,
g*=10,and ¢,=5.0 (system 6). The circles represent the GEMC
simulation data and the solid lines predictions from the SAFT-VR+D
equation.
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Figure 22: Coexisting densities for dipolar square-well associating monomer
fluids with four association sites and 4°=1.0,A=15, r: =1.1,

¢*=1.0,and ¢, =3.0 (system 7). The circles represent the GEMC

simulation data and the solid lines predictions from the SAFT-VR+D
equation.

We now turn to the effect of the strength of the dipole moment on the PVT and phase
behavior of dipolar associating fluids. In figure 23 we present the PVT behavior of the

dipolar associating fluids with four association sites with different dipole moments,
namely systems 8 and 9, which have different dipole moments, ¢ =0.5and x> =2.0
respectively, with other same parameters (41 =1.5, 7, =1.05, ¢*=1.0,and¢, =5.0).

From figure 23(a), we note that, excellent agreement is observed between the predictions
from the SAFT-VR+D approach and simulation data. However, the SAFT-VR+D

approach slightly under-predicts the pressure at a given temperature and density for high

dipole moment (z° = 2.0) as shown in Figure 23(b). In figure 24, the PV'T behavior of
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the dipolar associating fluid with four association sites of system 9 was presented at
higher temperature (7%=2.2, 2.4, 2.6, 2.8). From the figure, better agreement between
simulation results and theoretical prediction is seen than that of the same system at low
temperature. We have also studied the phase equilibria of the dipolar associating fluid
with different dipole moments, system 8 and 9 shown in figure 25. For system 8, obtain
excellent agreement between simulation results and theoretical prediction from the
SAFT-VR+D approach, however we see a slight deviation between the theoretical

predictions and simulation data for system 9 with the higher dipole moment.
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Figure 23: Isotherms for dipolar square-well associating monomer fluids
with four association sites for (a) 1 =0.5and (b)
1>=20,2=15,r, =105, e&*=1.0,and ¢, =5.0at T*= 1.2, 1.4, 1.6, 1.8,
and 2.0 (from bottom to top). The solid lines represent predictions from the
SAFT-VR+D equation and the symbols the NPT-MC simulation data.
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Figure 24: Isotherms for dipolar square-well associating monomer fluids
with four association sites of system 8: u°=20,A=1.5,r =1.05,
&*¥=1.0, and g:b =5.0 at T*= 2.2, 2.4, 2.6, 2.8 (from bottom to top) The

solid lines represent predictions from the SAFT-VR+D equation and the
cycles the NPT-MC simulation data.

T*

0.4 ‘ ‘
0 0.2 0.4 0.6

Figure 25: Coexisting densities for dipolar square-well associating monomer
fluids  with  four  association  sites for (a) system @ 5:

u>=05,1=15,r =105, &*=1.0,and ¢,=5.0and (b) system 6
u>=20,1=15,r =105, £&¥=1.0,and &, = 5.0 . The symbols represent
the GEMC simulation data and the solid lines predictions from the SAFT-
VR+D equation.
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3.4.2 Water

Having seen that SAFT-VR+D equation can accurately describe the fluid phase behavior
of dipolar square-well associating fluids with one, two and four association sites, we now
turn to the study of real fluids, and specifically water. The experimental dipole moment
for water is used in the calculations and the remaining parameters determined by fitting to
experimental vapor pressure and saturated liquid density data [99]. We compare the
results obtained with those from the original SAFT-VR approach in Figure 26. From the
figure, we can see that the critical temperature from the SAFT-VR+D approach is slightly
lower than that of the SAFT-VR EOS though both methods over-predict the critical point
due to the analytic nature of the equations of state [13, 14]. Although from a visual
inspection the agreement with experimental data from the two approaches is comparable,
the SAFT-VR+D approach provides a more accurate correlation of both the vapor
pressure and saturated liquid density of water than the SAFT-VR approach when the
absolute average deviations (AAD) are calculated: the AAD over the whole phase
diagram is 0.92% for the vapor pressures and 2.87% for saturated liquid densities for the
SAFT-VR+D approach, compared with 1.18% and 3.06% respectively for the SAFT-VR
equation. We also note from Figure 26 that both the SAFT-VR and SAFT-VR+D
equations cannot capture the experimentally observed density maximum at lower
temperature. We find that in order to capture this behavior a temperature-dependent
segment diameter is needed as shown in Figure 27. A similar result is obtained using the
SAFTI1 equation, which uses temperature-dependent parameters in it’s description of the

water phase diagram.
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Figure 26: Vapor pressures (a) and vapor - liquid coexistence densities (b)
for water compared with theoretical predictions. The results obtained from
the SAFT-VR EOS are represented as dashed lines and those from the SAFT-
VR+D as solid lines. The squares represent experimental data.
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Figure 27: Vapor pressures (a) and vapor and liquid coexistence densities (b)
for water compared with theoretical predictions from 283.15K to 400K. The
squares represent the experimental data. The results obtained from the SAFT-
VR+D EOS correspond to solid lines.

74



3.5 Conclusion

In this chapter, a SAFT-VR+D approach for associating fluids has been presented and
NPT MC and GEMC simulations performed to obtain simulation data with which to
compare and validate the SAFT-VR+D approach for associating fluids. For the systems
studied the theoretical predictions are in good agreement with simulation data. The effect
of the range of association energy and association volume has been studied and good
agreement is obtained, though slight deviations were seen between the theoretical
predictions and simulation data for the saturated liquid densities at low pressure for the
strongest association system studied. This is believed to be due to poor sampling in the
GEMC simulations due to the formation of clusters of associating molecules. The
comparison between the theoretical predictions and simulation data illustrates that the
SAFT-VR+D approach can accurately describe the thermodynamic properties of dipolar
associating fluids. Additionally, we have applied the SAFT-VR+D approach to water.
Although the improvement seen in the description of the fluid phase diagram is minimal
compared to the original SAFT-VR approach, the dipolar model for water allows us to

explicitly study the effect of the dipolar interactions on solvent properties.
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CHAPTER IV

PHASE BEHAVIOR OF ELECTROLYTE FLUIDS FROM THE SAFT-VR+DE
EQUATION OF STATE

4.1 Introduction

Electrolyte solutions, and in particular, aqueous electrolyte solutions, are central to
chemical, biological and environmental processes. The thermodynamic properties of
electrolyte solutions are therefore crucial to the design and operation of, for example,
aqueous protein separations, in addition to the more traditional processes in the chemical
and petroleum industries. The importance of understanding the thermodynamics of
electrolyte solutions is reflected by the significant body of work devoted to developing
theoretical tools to predict their thermodynamic and physical properties.

One of the key barriers to the development of predictive approaches for
electrolyte solutions is the complexity of the interactions and how to describe the long-
range charge-charge and charge-polar interactions. Several theoretical models have been
developed to specifically deal with these interactions in electrolyte solutions. In
particular, the Debye-Huckle theory was the first theory for electrolyte solutions and
considers the ions to be point charges, and so does not include the effect of the volume of
the ions and treats the solvent as a dielectric continuum. The Debye-Huckle approach
provides a good description of low concentration electrolyte solutions and has been used
to develop many semi-empirical equations of state (EOSs) for electrolyte systems such as

the Pitzer [100] equations and the electrolytic NRTL [101, 102] model.
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Perturbation theory was first applied to model electrolyte solutions by Stell and
Lebowitz [103] using the hard sphere as a reference state and Debye-Huckle theory to
deduce the perturbation term of the Helmholtz free energy for ion-ion interaction.
Henderson later [104] proposed a restricted perturbation theory in which the ion-ion
interaction is treated as a perturbation term. Both approaches treat the solvent as a
continuous medium and hence are McMillan-Mayer (MM) level of models (as opposed to
Born-Oppenheimer (BO) models that explicitly include the solvent). MM models, in
which the ions are hard spheres, are referred to as primitive models. Subsequently,
Henderson and coworkers [105] extended their approach to ion-dipole mixtures and Chan
[106] later applied this model to simple chloride solutions and found that the non-
primitive model, which explicitly models the solvent as dipolar molecules, did not give
better results than the primitive model, despite the more realistic nature of the model. The
apparent failure was attributed to inaccurate predicts of the reference hard-sphere fluid
properties. In an alternative approach Jin and Donohue [107-109] combined the
perturbed-anisotropic-chain theory [110] for short — range interactions between
molecules with Henderson’s primitive model for the long range Coulombic interactions
and studied a range of single and multiple electrolyte solutions.

As an alternative to perturbation theory, a number of theories for electrolyte
solutions have been proposed based on integral-equation theory. Within integral equation
theory, two important approximations, the hypernetted chain (HNC) and the mean
spherical approximation (MSA), have been used to solve the Ornstein-Zernike equation

for electrolyte fluids. However, while the HNC [111, 112] approximation is accurate it is
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mathematically complex and does not provide analytical solutions. For example, an
important HNC theory is the reference interaction site model (RISM), developed by
Chandler [113] and Hirata [114, 115] which takes into account the molecular shape of the
ions and solvent; however, it yields a trivial dielectric constant for the solvent in BO
models and the solution is not analytic, requiring numerical methods. In contrast, the
MSA allows for analytical solutions to be developed for a wide range of model fluids
[116]. Independently Waisman and Lebowitz [117, 118] and Blum [119] obtained
analytical expressions for the thermodynamic properties of the restricted and unrestricted
primitive MSA models respectively (restricted refers to primitive models in which the
hard spheres are of equal diameter and opposite sign).The primitive MSA (PMSA)
clearly accounts for the effect of the volume of the ions explicitly; when the diameters of
the ions vanish the MSA expression reduces to the D-H equation. The PMSA model has
been applied to develop equations of state for electrolyte fluids by several authors. For
example, Ball [120] established an EOS for electrolyte solutions that used the PMSA to
describe the long-range interactions, and Lu [121] et al. have used the PMSA to calculate
the activity coefficients of single and mixed aqueous electrolyte solutions using ionic-
strength-dependant effective diameters for the cation.

To explicitly account for the effect of the solvent, Blum [122, 123] and Adelman
and Deutch [124] developed analytic non-primitive MSA (NPMSA) expressions for the
thermodynamic properties of a mixture of equal sized ions and dipolar hard-spheres.
Blum and Wei [125] later extended the solutions to the system of arbitrary sizes of

charged and dipolar hard spheres. The solution of the NPMSA includes three types of
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interaction: ion-ion, ion-dipole and dipole-dipole interactions. Hoye and Stell [126, 127]
have used the approach of Blum and Wei to yield explicit forms for the ion-ion, ion-
dipole and dipole-dipole pair distribution functions. Li et al. [128] subsequently tested
the NPMSA against Monte Carlo simulation data and found that it provides a good
description of the ion-ion interaction but underestimates the ion-dipole interaction. Lvov
and Wood [129] applied the restricted NPMSA, which considers the ions and solvent to
be the same size, to correlate the density of aqueous NaCl systems and give reasonable
accuracy over a wide range of temperatures and pressures using 12 empirically adjustable
parameters. For a comprehensive review of theories developed for aqueous electrolyte
fluids the reader is directed to the excellent reviews of Loehe and Donohue [130] and
Anderko and coworkers [131].

In this chapter we propose a new equation of state for electrolyte fluids that
combines the analytical results of the MSA with an accurate model for the short-range
dispersion and association interactions, which also play an important role in determining
the thermodynamic properties of electrolyte systems. Through a combination of integral
equation theory and perturbation theory, within the framework of the statistical
associating fluid theory, we can develop a statistical mechanics based model that
accurately captures the key molecular level interactions. Within the SAFT framework,
many extensions of the original equations have been proposed and several variations have
been specifically developed to describe electrolyte solutions. For example, Liu [132] et
al. established an EOS for aqueous electrolyte fluids based on Wertheim’s theory for

association interactions and the semi-restricted NPMSA (i.e., equal sized hard spheres
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were used to model the cations and anions and a different sized hard sphere used for the
solvent); Wu and Prausnitz [133] calculated the phase equilibria for systems containing
hydrocarbons, water and salt by combining the Peng-Robinson EOS with the SAFT term
for association interactions and the MSA to describe the ion-ion interactions; Tan and
Radosz [134] have coupled SAFT1 with the restricted primitive model (RPM) to
represent aqueous strong electrolytes and Cameretti and coworkers [135] have extended
the PC-SAFT equation to model aqueous electrolyte solutions through the addition of a
Debye-Huckle theory ion-ion interaction term. Of particular relevance to the current work
Galindo et al. [35, 36] who first extended the SAFT-VR EOS to model electrolyte
solutions using an additive electrostatic term from the RPM with the MSA closure. The
SAFT-VRE approach has been used to predict the vapor pressures of electrolyte solutions
in good agreement with experimental data; however, deviations from the experimental
data are observed at high ion concentration ( > 10 molar), which may be due to the ion-
solvent interactions not being adequately represented by the dielectric constant of the
solvent. The SAFT-VRE approach has also been used to successfully study the salting
out of n-alkanes in water by strong electrolytes [37] using the experimental dielectric
constant for water as input to the calculations.

A common feature of these equations of state is that a McMillan-Mayer level of
theory is applied to describe the Coulombic interactions and therefore the effect of the
solvent is not been explicitly taken into account and values for the dielectric constant

must be obtained.
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Here, we present the SAFT-VR+D approach which is a BO level equation of state
that models electrolyte solutions through a combination of the MSA for the non-primitive
model and the statistical associating fluid theory for potentials of variable range (SAFT-
VR); the non-primitive model is used in order to explicitly take into account the effect of
the solvent. NPT Monte Carlo simulations have been performed and used to validate the
new approach. Additionally, to demonstrate the advantage of the use of the non-primitive
model, we compare results from the SAFT-VR approach and the non-primitive model
with those from the restricted non-primitive model, which constrains the size of the
cation, anion and solvent to be equal and the semi non-primitive model, in which only the
ions and solvent are of different sizes with the size of the cation and anion being equal.

The remainder of the chapter is organized as follows: in section 4.2 we present the
SAFT-VR+DE model and theory for electrolyte solutions. In section 4.3, details of the
molecular simulations performed are presented. Results for the phase behavior of
electrolyte solutions with different non-primitive models are presented and compared
with simulation results in section 4.4. Finally, concluding remarks are made and future

work discussed in section 4.5.

4.2 Model and Theory

In this chapter we extend the SAFT-VR approach to study the thermodynamic properties
of electrolyte solutions in which the solvent is explicitly taken into account as a dipolar
fluid. The electrolyte solutions are represented as a mixture of ions and solvent

molecules as shown in Figure 28. The ions are described as hard spheres, half with

charge +¢ and diameter o*, and half with charge —¢ and diameter o~ . The solvent is
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described as dipolar associating square-well molecules of diameter o, with dipole
moment x# embedded in the center of the molecule and four association sites to mimic

the hydrogen bonding. As shown in Figure 16 in Chapter III, the four association sites,

two of type a and two of type b, are situated off-center at a distance r, in a tetrahedral

arrangement on the hard sphere. Two sites interact through a square-well potential when

they are closer than a distance 7, apart. In the dipolar association model, there are two

types of association sites, type a and type b with interactions between sites of different
type only. In our model for electrolyte solutions, in addition to the dispersion and
association interactions between solvent molecules, electrostatic charge-charge, charge-
dipole and dipole-dipole interactions describe the interaction of the ions, the ions within

the solvent, and dipolar solvent-solvent interactions respectively.

@CD

Figure 28: Schematic showing the model used to describe electrolyte
solutions in which solvent molecules are explicitly described as dipolar
association molecule with four association sites.

82



Hence, the pair potential for the reference fluid is defined by
u(r): u” (r)+ u“ (r)+uCD (r)+uDD (r) (4.1)
where, u”" (r) represents the square-well potential, u“© (r) the Coulombic charge-

charge interaction, u“” (r)the charge-dipole interaction, and u””(r)the dipole-dipole
interaction. As in the original SAFT-VR equation the square-well potential is given by

+oo if r<o,

W (r)=1-¢, if o,<r<io; (4.2)

0 if rz A0,
where o is the diameter of the interaction, 4, the range and ¢; the depth of the square-

well potential and the inter- and intra-molecular cross interactions between segments are

obtained from standard combining rules, viz

Ci + 0
%=, (4.3)
/2
& = (1 —k; Xgﬁgy‘) (4.4)
- (/1”0'”. + ﬂ,jjaj/.\ @)
' O+ 0,

The Coulombic charge-charge potential between ions can be represented by

+o0 if r<o;

“;C(V) =1zz.€ (4.6)
' —— if r>o,
4 zrer !

83



where r is the center-to-center distance, e =1.602 x 10" C is the elementary charge, and

£1s the permittivity of the continuous dielectric medium. The charge-dipole potential can

be defined by
+oo if r<o;
i (r)= (4.7)
u; =1 z .
g 2 (ha) if >0,
4rer !
and the dipole-dipole potential as
oo if r<o,
u; P(r)= s (4.8)

i D(nln}) if r>o,

where
D(nlnsz): 3(n, })(nz -f')— n, -n, (4.9)
Here T is the unit vector in the direction of r joining the center of the segments and n; is

a unit vector parallel to the dipole moment of segment i .
Within the SAFT framework, the Helmholtz free energy 4 for the electrolyte

solutions studied in this work can be written in the form

A ~ Aideal . Amono. . Aassoa
Nk,T Nk, T Nk, T Nk,T

(4.10)

where A““is the free energy of the ideal fluid, 4””*is the contribution due to the

reference monomer fluid, and A4“*“ represents the free energy due to association
interactions. We have not included the contribution due to chain formation, as only
charged/dipolar monomer molecules are considered in this study. Here we present the
general expressions for each term in equation (4.10) in turn for the ternary mixture of

cations (component 1), anions (component 2) and solvent molecules (component 3).
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4.2.1 Ideal Contribution

The ideal contribution to the free energy is expressed as:

A ideal n

=) x.In(pA>H)-1
NKT Z} (A7) @.11)

= x, In(p A7)+ x, In(p,A, ") + x, In(p, A7)~ 1

where p, = N, / V' the number density, A, the thermal de Broglie wavelength of species i

and x, the mole fraction of component i .

4.2.2 Monomer Contribution

The monomer free energy is given by,

A mono. n A mono. oo
NkT [Z i j NkT [me] (4.12)

x=1 x=1

where N, is the total number of segments, determined from the product of the total

number of molecules N and the number of segments per molecule m,, which in this

mono

work is always equal to 1. a is the free energy per monomer segment of the reference
fluid which is a mixture of charged and dipolar hard spheres that interact through square-

well, and Coulombic charge-charge, charge-dipole and dipole-dipole interactions.

mono

can be separated into two terms, a" due to the square-well potential, and a™** due

to the anisotropic long-range interactions, viz.

amunu — aM + aMSA (413)
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4.2.2.1 Square-Well Attractive contribution
In the SAFT-VR equation " is approximated by a second order high temperature
expansion using Barker and Henderson’s perturbation theory for mixtures [136], viz

a" =a™ + Ba, + fa, (4.14)
where B=1/kT , a™ is the free energy of the hard sphere reference fluid and a, and a, are

the first and second perturbation terms respectively. The hard sphere reference term a™ is
determined from the expression of Boublik [137] and Mansoori and co-workers [138] for

multicomponent hard sphere systems,

w_ 6 [(& ) 36, G } “15)

= 2 &2 s ima-
| O e W A

where p, is the number density of segments, which is defined as the total number of

segments divided by the total volume N /V and ¢ is the reduced density given by a

sum over all segments i,

é/l = %ps |:Z1l:xs,i(o-[)lj|

T
:g Py [xs,l(al )l + xs,z(az )l + xs,3(0-3 )l]

(4.16)

where o, is diameter of segments of type i and x,; is the mole fraction of segments in
the mixture, and is given by

m;x; mXx,

X =X, (4.17)

S, i

= " =
m.x, + m,x, +m.,x
kaxk 1™ 242 33
k=1
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The first perturbation term «, describing the mean-attractive energy is obtained

from the sum of all pair interactions,

ZZ% ”(al)

i=1 j=1 (4.18)
= xi] (al )11 +2x,,x,, (al )12 + 2xs’]xs,3 (al ), + xiz (a] )22 + 2xs,2xs,3 (al ), + xi3 (a] )33

where (a1 )ij is obtained from the mean-value theorem as proposed by Gil-Villegas et al.

[9],
(al )l'j = _Zﬂpx z]J. Zg;is(rj)dr;j (4 19)
wZ ,,VDngS( 0,367
and
2
" = Ta;g,.j (x-1) (4.20)

In this work we use mixing rule MX3b as defined in reference [10] since we are concerned

with the phase behavior of electrolyte solutions and will not consider the critical region [ref

mccabe paper showing problems). Therefore gl/ (O'U,f 7 is given by

eff ol
g:[ U’gf(y)] = 3D,¢Y (Dl,?)2 @21

‘“) (-o) " (-o)

where D, is given by

D _ u jj z, 1 l
i =
i i E x,0°
” jj i=1 i

The effective packing fraction ¢ (/1 )can be written as,

(4.22)
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s (5 3 Ay ): G (’1@/ )53 +6 (’1?/ )C32 TG (/147 )C; (4.23)

and following the original SAFT-VR approach [10]

(c,) (225855 -1.50349 0.249434 N
{cz J :L-0.669270 1.40049 -0.827739J A (4.24)

ij
10.1576 -15.0427 5.30827 12
ij

C3

The second order perturbation term for the monomer excess free energy a, is

expressed as:

n n

a, = ZZ 5.i%s,) (az )l,

i=1 j=1

= xf’1 (a2 )” +2x,,X,, (az )12 +2x,,X, 5 (az )13 (4.25)

2 2
X, (az )22 +2X,X, 5 (“2 )23 T X3 (az )33

where (a2 )ij is obtained through the local compressibility approximation:

o(a,),
(a,) = %Kﬁsgij ) % (4.26)

N

and K™ is the Percus-Yevick expression for the hard-sphere isothermal compressibility,

KHS 40(1_43)4

= - . (4.27)
é/o(l - 4/3) + 64/14/2(1 - 4/3) + 94,2

4.2.2.2 MSA contribution
The non-primitive model is used in our description of electrolyte solutions in order to
explicitly take into account the effect of the solvent. Here we briefly summarize the

expressions of Blum’s solution for the non-primitive model within the mean spherical
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approximation [139]; the expressions for the other models considered for comparison are

listed in the appendix. In the MSA, the properties for the non-primitive model are

expressible with three parameters I', B' and b,, which correspond to the ion-ion, ion-
p p 2 p

dipole and dipole-dipole interactions respectively, and are given by the solution of three

algebraic equations, viz.

n—1

0710 1 11
_Zpiai kni + an (1 - pnknm ): a0a2
i=1

(oK) + 0,50 () =57 + o,
i=1

where the quantities in equations (4.28) - (4.30) are defined as
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(4.30)



273

1
fi=1+3b. fo=1-—b,
LB ho—
B ﬁ6(l+/1)

n—

1 pz.2
e zzll ﬂé (Gn + ﬂ’o-i )(1 T FO'I- )’

1 , n—1 pZZO'2
_ 2 B 11 l
W2 2 pnan 10; |:2ﬂ6 (O_n n AGZ_ )(1 " Fai ):IZ
Wy [Wl) 2 + 20
2 W2 T g U219, B

L = , Al =

n w, l 8136 (O-" + ﬂ’o-i)

F z,fs U”DiF

C2(lvor-ar)y (0,4 20)

—_ (1+F01. —AFZ»)D—l
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N. _ 2DlF + U;]pr1o-n33100-i | _i
" B.o, 24 (an + Ao, )_ o’
ai() — ﬂ()F;DiF , all1 — Dﬂ() GnBIO + Qlo/l (432)
Dac 2Dac L 2 DﬂG
10 _ 9, D/ v, QloFS n 0, B,
" 2DB| (o, + /10) D, 123,
- p k'l = {/1 £,0, 2,4, :|+ £,,B14,
" DBy 25 125,

In the mean spherical approximation, the internal energy is given by

w1 p2(D-1- oI _B.& 20p b,
ﬂE =L agzp’ ! ( )_pnaoBlo{ 109, % +2a } azpn (4 33)
v oa4r| 'S o(l+ol 123, o

and the ionic excess chemical potentials as:

2
Zi (aONi - aOaZani)

B, = (4.34)
4
The chemical potential of dipole molecule is given by:
(_aoazBlo B 2a§bz/0'j)
= 4.35

Pu, ypn (4.35)

Following Adelman [140] the dielectric constant can be written as

282 (1+ A)'

g, =1+ XA AGR) (4.36)

16

The Helmholtz free energy is presented by

91



IBA 1 { 20[2”2‘14,0,«2,«2 (D_l_o-fr;) (—3100'30{0
0

\ '
Vo 12x P @@+0Jf) +RﬂJ%L 124 +2ad}+J (4.37)

where

zz,olp/ (2l+1)_ [h’””l(r—a }

7T i ij

hooo( o, )_
hO]l ( m)_

QHL‘ +24'
o (G )= 2\/_720

J10
(o) )

37r0'

V3 Q,,?‘

H‘l

(4.38)

where
—b,(A+3)
O+ﬂf

Ql'joo 2”(0-1,‘ + ”O-io_jfz} _ lDiFDF(

L

0,020 47T
D,Bﬁ(a +/10')(0' +/10) DD, J

A 4A 2
: 27z( 7o, ¢
‘00 — '00 o + i~n 2]
an Q}'ll A m 4A
Df ( Av,
D,B’6 La + Ao,
0" - Df ( Av,
" Dﬂ6 O-n + /10-1'
24 pnanloa;\ c,B"a) 2
2 Lﬂ“ + 2 J + o 2
Dpno-n 2ﬂ6 2ﬂ6 pno-n

(4.39)

01 _ s 1\
Qin - +2rian)

+ 2Ffaf1\
)

'11
an =

Since in the MSA, the excess Gibbs free energy equals the excess internal energy, then

the pressure is given by
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= ﬁ(E—_A) (4.40)

4.2.3 Association contribution
Based on the theory of Wertheim, the contribution due to association of s,sites on

species i is obtained as [7]:

AASSOC n S; Xa : Sl-
s =ZX{Z(1HXW- —7)+5} (4.41)

i=1 a=1

where the first sum is over the number of species 7 and the second sum is over all s, sites
of type a on species i, and X . is the fraction of molecules of type i not bonded at site a,

which is obtained from the numerical solution of the mass action equations :

1

I+ Zszij,jAa,b,i.j

j=1b=1

X

a,i

(4.42)

The function A, | ;o which characterizes the association between site @ on molecule i,

and site b on molecules j, can be written as

Aa,b,z:j = Ka,b,i,jf;z,b,i,ng(O-zj;é;) (4.43)

where, g" (0,:¢;)is the contact value of the monomer-monomer radial distribution
function, f, b =exp(—(//ab” / kT )»1 is the Mayer f function of the a-b site-site

bonding interaction W i and K i is the volume available for bonding [47]. The

radial distribution function is obtained from a temperature expansion as
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" (0,6 e (0,56 ) ey, (0,:4.) (4.44)

where the hard-sphere radial distribution function is given by the Boublik hard-sphere

contact value

3., (D)

&' (06 )= (-2) (-¢) +2(1—§3)3

In our model for electrolyte solutions only the solvent molecules are modeled as

(4.45)

associating molecules with four association sites. Therefore, the association contribution
to the free energy for a fluid with a four-site associating component can be simplified

from equation (4.41) to

4Assoc ( X ‘\
i S 4UHX3_73J +2 (4.46)

Since all four sites are equivalent the fraction of solvent molecules not bonded is given

by

1

= (4.47)
1+2px, XA,

3

where A,; defined by equation (4.43).

4.3 Computer Simulations

Monte Carlo simulations have been performed to study the thermodynamic properties of
several model electrolyte solutions and provide data with which to test the new
theoretical approach. The simulations were performed in the isothermal-isobaric (NPT)

ensemble. And the reaction field method, which truncates the potential at a finite distance
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from each ion and dipolar molecule is used to describe the long-range charge-charge,
charge-dipole and dipole-dipole interactions [74, 141]. The reaction field approach
replaces the molecules beyond a cut-off distance by a dielectric continuum, the effect of
which is taken into account by including an additional term into the long-range charge-

charge, charge-dipole and dipole-dipole interactions, viz

1 Mﬁ}

€ — 9.4, {_"' r<r,

r Qe +1)r} o (4.48)
0 ‘
!
2(eee—1) 7 3
— <3 d4. r<r,
u® = Qe h (4.49)
0 - c
_[W@]D_ 2060 - Dy,
DD 3 3 ¢
u = r 26 +1 1, s (4.50)

0

where 7, is the cut-off distance beyond which the pair potential vanishes and &,. the
dielectric constant of the continuum. In our simulations, the value of r, is set to3.00,
and &,.tooo. The usual periodic boundary conditions and minimum image convention
are used. One simulation cycle consists of three kinds of trial moves: N trial
displacements of randomly chosen molecules, N trial rotations and one volume change.
The extent of each trial move is adjusted to give an individual acceptance probability of
30 - 40%. Each simulation was started from an initial configuration in which 256
molecules are placed on a lattice in the simulation box. An initial simulation of 100,000 -
500,000 cycles was performed to equilibrate the system, before averaging for between

500,000 and 1,000,000 cycles. The thermodynamic properties of the system were
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obtained as ensemble averages and the errors estimated by determining the standard
deviation.

Due to the simplicity and the speed of the reaction field method, several
comparisons have been performed in the literature to the Ewald summation technique
[73, 142, 143]. For dipolar fluids, the reaction field method has been shown to be
provide results in agreement with the Ewald summation [[77], [142]. Additionally,
several authors have applied the reaction field method to study ionic fluids, for example,
Cummings et al. [144] performed molecular dynamics simulations to determine the
equilibrium structure and properties of supercritical water and supercritical aqueous
solutions and Zhu and Robbinson [145] applied have studied the solvation structure in a
moderately concentrated salt solution. The reaction field method has also been used to
simulate mixtures of ions and dipoles. For example, Bandura et .al [146] performed MC
simulations to determine ion solvation thermodynamics and the structure of ion-dipole
systems and confirmed that the reaction field method is accurate for mixtures of ions and

dipolar solvents with moderate values of dipole moments and charges.

4.4 Results and discussion

We have studied the phase behavior of several model electrolyte solutions. In particular
comparisons are made between theoretical predictions and NPT ensemble Monte Carlo
simulation data for several model systems in order to test the new SAFT-VR+DE
approach. The model systems studied are detailed in Table 12 and the results of the NPT

MC simulations are reported in Table 13 and 14. Systems 1-4 are so-called symmetric
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electrolyte solutions, in that they have equal sized ions and solvent molecules, system 5

represents a semi-symmetric electrolyte solution in which the ions are of equal size, but

differ from the size of the solvent, and system 6 describes an asymmetric electrolyte

solution with different sized cation, anion and solvent molecules.

Table 12: Model parameters for electrolyte fluids studied. ,,c" and o " are the

reduced diameter of solvent molecule, cation and anion, x the reduced dipole moment,

& the reduced depth of square well potential , A the range of the potential, y the

reduced association energy, 7 the reduced cutoff radius, N'® number of ions and

c

N number of solvent molecules .

System O_d U+* O_—* Iu*Z 8* 2’ W r: N]ON NSolvent
1 1 1 1 0.5 1 1.5 5 1.05 8 248
2 | 1 | 1.0 1 1.5 5 1.05 8 248
3 1 1 1 0.5 1 1.5 5 1.05 4 252
4 1 1 1 0.5 1 1.5 5 1.05 16 240
5 1 0.5 0.5 1.0 1 1.5 5 1.05 8 248
6 | 1/3 2/3 1.0 | 1.5 5 1.05 8 248
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Table 13: NPT MC simulation results for Systems 1 - 4. The reduced temperature is
given by 7" =k,T /¢, the reduced pressure is given by P" = Pc’ /& and the reduced

energy is given by E" = E/ Ns.

SYS. T* pP* eta ERR. -E* ERR. |SYS. T* P* eta ERR. -E*  ERR.
1 1.2 03208 0402 0.008 1747 0.28 3 1.2 04947 03982 0.0059 12.15 0.24
2.1922 0451 0.005 1920 0.23 23668 0.4458 0.0064 13.40 0.25

1.4 04548 0357 0.008 1526 0.25 1.4 0.6295 03508 0.0068 10.06 0.23
1.6788 0.402 0.007 1631 033 1.8628 0.3996 0.0061 11.19 0.22

4.2295 0.447 0.006 17.11 0.23 44158 0.4472 0.0048 1233 0.22

1.6 12669 0353 0.007 14.70 0.22 1.6 0.6315 0.3068 0.0080 859 0.21
29478 0.401 0.005 1533 0.20 1.4475 03513 0.0067 9.48 0.21

6.1674 0451 0.006 1646 0.22 3.1401 0.4012 0.0061 10.57 0.21

1.8 0959 0.294 0.008 1337 0.50 6.3641 0.4464 0.0049 11.58 0.21
2.0401 0.352 0.014 1392 0.80 1.8 1.1258 03041 0.0078 8.19  0.20

4.1532 0398 0.012 14.64 0.70 2.2254 03503 0.0066 9.08  0.19

8.0221 0.450 0.015 16.57 0.73 43522 0.4002 0.0054 10.11 0.19

2 1.2 0.1859 0411 0.008 18.96 0.42 8.2274 0.4470 0.0039 11.08 0.18
2.0379 0452 0.004 1993 0.22 4 1.2 0.5878 0.419 0.005 2977 0.22

1.4 03421 0359 0.007 1648 0.24 1.8917  0.456 0.003  30.40 0.20
1.5471 0.406 0.006 17.82 0.27 1.4 0.1432 0348 0.004 2535 0.19

4.0785 0.454 0.004 18.80 0.22 1.3541  0.405 0.004 2839 0.21

1.6 03773 0295 0.009 14.03 0.23 3.9055 0.457 0.004 3047 0.21
1.1570  0.353 0.008 15.19 0.24 1.6 0.1738  0.318 0.011 22.61 0.80

2.8190 0.408 0.005 1734 0.21 0.9429  0.350 0.009 2470 0.35

6.0196 0.452 0.005 1794 0.23 2.6061  0.406 0.005 2774 0.20

1.8 0.8709 0.299 0.007 13.64 0.20 5.8224  0.458 0.004 2972 0.20
1.9329 0.357 0.007 1481 0.22 1.8 0.6583  0.292 0.009 21.44 0.73

4.0273  0.405 0.006 16.50 0.32 1.7062  0.357 0.01 2599  1.59

7.8772 0453 0.005 1739 0.21 3.7977  0.404 0.005 2723 0.20

7.6592 0457 0.006 28.19 0.46
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Table 14: NPT MC simulation results for Systems 5 - 6. The reduced temperature is
given by T" =k,T /¢, the reduced pressure is given by P'=Po’ /¢ and the reduced

energy is given by E" = E/ N¢.

SYSTEM T* pP* eta ERROR -E* ERROR

5 1.4 0.0724 0.334 0.010 18.95 0.29
1.1905 0.395 0.005 20.40 0.30

3.6384 0.446 0.006 21.12 0.24

1.6 0.2337 0.279 0.005 16.68 0.19

0.9472 0.338 0.005 18.67 0.20

2.5400 0.396 0.006 19.54 0.23

5.6772 0.448 0.006 20.30 0.23

1.8 0.7658 0.285 0.005 16.17 0.29

1.7745 0.347 0.005 18.01 0.19

3.8157 0.397 0.005 19.09 0.20

7.6213 0.450 0.005 19.73 0.21

6 1.4 0.0656 0.350 0.003 19.65 0.20
1.1802 0.391 0.007 19.82 0.25

3.6225 0.442 0.005 20.35 0.42

1.6 0.2289 0.306 0.015 17.26 0.33

0.9399 0.343 0.007 17.30 0.29

2.5288 0.399 0.006 19.24 0.22

5.6596 0.444 0.005 19.59 0.33

1.8 0.7607 0.302 0.007 16.29 0.40

1.7666 0.356 0.005 17.31 0.66

3.8033 0.398 0.006 18.68 0.21

7.6018 0.446 0.006 18.91 0.36

In figure 29, we present a comparison between predictions from the SAFT-
VR+DE approach with the NPT ensemble simulation results for the PV'T behavior of the
model restricted electrolyte solution in which the cation, anion and solvent molecules are
all of the same size (i.e., systems 1 and 2). Two different dipolar solvents are considered;

system 1 with 4% = 0.5 and system 2 with > =1.0 . From the Figure 29 we see that the

system with the highest reduced dipole moment (system 2) exhibits the highest density at
a given pressure and temperature, as would be expected due to the increase in attractive
interactions between the solvent molecules. We observe good agreement between the

simulation results and theoretical predictions over a wide range of temperatures and
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pressures, though the proposed approach is seen to slightly under-predict the simulation
data at high densities. This could be due to inadequate sampling in the Monte Carlo
simulations at high densities due to the strong association interactions. A similar trend

was observed in a recent study of dipolar associating systems.

A 1
0.2 0.3 04 0.5
n

Figure 29: Symmetric electrolyte solution withg =1.0, A=1.5,
o' =0"=0,=10, ¥ =5.0,7r, =1.05, charge g =1, ions concentration
8/256 and (a) dipole moment 4 =05, at T* = 1.2, 1.4 and 1.6 (from
bottom to top), (b) dipole moment 2> =1.0, T* =1.2, 1.4, 1.6 and 1.8 (from

bottom to top). The solid lines represent predictions from the SAFT-VR+DE
equation and the squares the NPT-MC simulation data.
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Since the concentration of ions in electrolyte solutions plays an important role in
determining their thermodynamic properties, we have studied the PVT behavior of
electrolyte solution with differing ion concentrations; namely 0.79%, 1.59% and 3.2%
which correspond to systems 1, 3 and 4 respectively. The concentrations reported are in
the form of mol % of salt; for comparison, a 1 M NaCl solution corresponds to 1.77 mol
%. The results for systems 3 and 4 are presented in Figure 30. From Figures 29 and 30 we
note that as the concentration of the ions increases the density at a given pressure and
temperature increases, since the attractive ion-ion interaction is stronger than the dipole-
dipole interaction. Good agreement is obtained in all cases between the simulation data
and theoretical predictions for the systems. We have not examined more concentrated
solutions in this work, since we have used the reaction field method to describe the
Coulombic interactions; such systems will be the focus of a more detailed study to test
the SAFT-VR+DE approach in future work. We note however that Wei and Blum [139]
have demonstrated that their non-primitive model solution is valid for moderate sized

differences in ion diameters and for moderate to low concentrated solutions.
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Figure 30: Symmetric electrolyte solution withe =1.0, A=1.5,
c"=0"=0,=10, v =50,r, =1.05, charge ¢=1, dipole moment
17 =0.5and (a) 4/256, at T* = 1.2, 1.4 and 1.6 (from bottom to top), (b)

16/256, T* = 1.2, 1.4, 1.6 and 1.8 (from bottom to top). The solid lines
represent predictions from the SAFT-VR+DE equation and the squares the
NPT-MC simulation data.

In order to obtain a more comprehensive understanding of the thermodynamic
properties of the systems studied we have also examined different models for the long-
range interactions, namely the Debye-Huckel theory, and the primitive and non-primitive
models. In Figure 31, we present a comparison of the theoretical predictions from these
different electrolyte models, with the results from the SAFT-VR+DE approach and the
NPT ensemble MC simulation data for system 2 at T* = 1.8. As mentioned previously,

for the Debye-Huckel theory and the primitive models, we need to pre-determine the
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dielectric constant of the dipolar solvent, which depends on the dipole moment,
temperature and the composition of the electrolyte solution. In applications of the
primitive model the determination of the dielectric constant can be problematic and often
introduces additional approximations. For example in the SAFT-VRE approach [35], the
experimental value of the dielectric constant of pure water at each temperature is used in
the study of aqueous electrolyte solutions instead of that of the mixture, while Wu and
Prausnitz [133] proposed a correlation for the dielectric constant of mixtures of
hydrocarbons and aqueous salt solution based on the dielectric constant of water, the
composition of the mixture and an adjustable constant for each hydrocarbon. In the
SAFT-VR+DE approach the dielectric constant is not required as an input to the
calculations. However, we must determine the dielectric constant for the Debye-Huckel
and primitive models studied for comparison purposes only. Since dielectric constant
data is not available for model solutions, we calculate the diclectric constant Adelman’s
formula for the dielectric constant from the non-primitive model. We note from the figure
that, the theoretical prediction from the Debye-Huckel theory (dash-dot line) under-
predicts the density at given pressure and temperature; the theoretical prediction from the
SAFT-VR approach with the primitive models under-predicts the density at a given
pressure and temperature (RPM and PM provide the exact same theoretical prediction for
the symmetric system studied). The prediction from the SAFT-VR+DE approach (i.e.
non-primitive model) is in good agreement with the simulation data illustrating the need

for an accurate dielectric constant. As expected for the symmetric system studied the
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restricted non-primitive model and the semi non-primitive model provide the same

solutions.
10.0 ———
8.0 | i
6.0 | ]
P* 40 _

2.0 |
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Figure 31: Symmetric electrolyte solution withe =1.0, A=1.5,
o =0"=0,=10, y =50, r =1.05, charge ¢ =1, ions concentration
8/256 and dipole moment 4 =1.0 at T =1.8 from different models The solid
line represents the non-primitive model, the dash-point line the Debye-
Huckel theory, the point line the restricted primitive model, the small dash
the primitive model, the long dash line the restricted non-primitive model, the
middle dash line the semi non-primitive model.
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Having seen that the SAFT-VR+DE equation with the non-primitive model to
describe the long-range interactions can accurately describe the PVT behavior of
symmetric electrolyte solutions, we now turn to semi-symmetric electrolyte solutions,
which have ions of the same size but different sized solvent molecules. In Figure 32 we
present the PV'T behavior for a semi-symmetric electrolyte solution (system 5), which has
the same model parameters as system 2 but the size of the ions are now half that of the
solvent. From the figures (Figure 32 and 29b), we find that the semi-symmetric
electrolyte solution exhibits a slightly higher density at a given pressure and temperature
than the symmetric electrolyte solution (figure 29b) and that the SAFT-VR+DE EOS

provides good agreement with the simulation data for the isotherms studied.
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Figure 32: Semi-asymmetric model electrolyte solution withg =1.0,
A=15,0,=10, 6" =07 =05,y =50, r =1.05, charge g =1, ions
concentration 8/256 and dipole moment #?=1.0, at T = 1.4, 1.6 and 1.8

(from bottom to top), The solid lines represent predictions from the SAFT-
VR+DE equation and the squares the NPT-MC simulation data.

In order to demonstrate the advantages and accuracy of the SAFT-VR+DE
approach and the difference between the non-primitive model and other MSA models for
the long-range electrostatic interactions we have again compared the isotherms predicted
from the SAFT-VR+DE approach with predictions from the SAFT-VR approach
combined with the Debye-Huckel theory and the primitive model (RPM and PM). The

results from the different models studied for system 5 at T*=1.8.are shown in Figure 33,
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along with the to NPT ensemble MC simulation data for comparison. It can be seen from
the figure that the predictions using Debye-Huckle theory and the restricted non-primitive
model (RNPM), in which the same effective diameters are used for the ions and solvent,
show the greatest deviations from the simulation data, which illustrates the importance of
correctly accounting for the effect of the size of the ions and solvent in the non-primitive
model. The results using the RPM and PM model both under-predict the density at a
given temperature and pressure, and result in identical predictions since both models do
not explicitly take into account the solvent but mimic the solvent as a dielectric
continuum. Again the prediction from the SAFT-VR+DE EOS is in good agreement
with the simulation data for the studied system, illustrating the need for both an accurate
value of the dielectric constant and accurate representation of the size asymmetry

between the solvent and ions.
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Figure 33: Semi-symmetric model electrolyte solution withg" =1.0,4=1.5,
0,=10, o =0"=05, y =50,r, =105, charge ¢=1, ions
concentration 8/256 and dipole moment x” =1.0 at T =1.8 from different
models. The solid line represents the non-primitive model, the dash-point line

the Debye-Huckel theory, the point line the restricted primitive model, the

small dash the primitive model, the long dash line the restricted non-primitive

model, the middle dash line the semi non-primitive model.

Since real electrolyte solutions, such aqueous solutions of NaCl, are typically
composed of ions of different size, it is desirable to be able to model asymmetric
electrolyte solutions that are comprised of ions and solvent of different diameters. To test

the ability of the SAFT-VR+DE equation in this respect we have studied the PVT

behavior of an asymmetric electrolyte solution in which the solvent, cation, and anion
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diameters are in the ratio 3:1:2 (system 6). The results are presented in Figure 34, where
again we see that the SAFT-VR+DE approach provides good agreement with the
simulation data. From Figure 29b, Figure 32 and Figure 34, we note that the asymmetric
system exhibits the highest density at a given pressure and temperature, while the
symmetric system has the lowest density. We again compare the theoretical predictions
obtained from the SAFT-VR+DE equation with different MSA models for the system 6
at T* = 1.8 with the NPT MC simulation data in Figure 35. From the figure we note
similar trends to those observed for the semi-asymmetric system studied: namely, the
predictions from the Debye-Huckel and the restricted non-primitive model exhibit the
poorest agreement with the NPT MC simulation data, indicating that the effect of the size
of the ions and solvent plays an important role in determining the thermodynamic
properties of electrolyte solutions; a slight difference is observed between the theoretical
predictions obtained with the primitive model and the restricted primitive model, in
which an effective diameter for the ions is used, and the dielectric constant, which has to
be pre-determined for the primitive models, is calculated from the MSA theory of the
dielectric constant for dipolar hard spheres. From the comparison, it can also be seen that
the predictions using the semi non-primitive model, in which the effective size of ions is
used, only slightly under-predicts the density at a given pressure and temperature in

comparison with the simulation data and SAFT-VR+DE approach.
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Figure 34: Asymmetric model electrolyte solution withe =1.0,4=1.5,
0,=1.0, o =1/3,67=2/3,y =50,r, =1.05, charge ¢=1, ions
concentration 8/256 and dipole moment #?=1.0, at T = 1.4, 1.6 and 1.8

(from bottom to top), The solid lines represent predictions from the SAFT-
VR+DE equation and the squares the NP7-MC simulation data.
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Figure 35: Aymmetric model electrolyte solution withe =1.0,4=1.5,
0,=10, o7 =1/3,0"=2/3, w =5.0,r =1.05, charge g=1, ions
concentration 8/256 and dipole moment 2 =1.0 at T=1.8 from different

models. The solid line represents the non-primitive model, the dash-dot line
the Debye-Huckel theory, the dotted line the restricted primitive model, the
small dash the primitive model, the long dash line the restricted non-primitive
model, the middle dash line the semi non-primitive model.
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4.5 Conclusion

In this work, the SAFT-VR+DE approach has been developed through a combination of
the SAFT-VR equation and the MSA solution of the non-primitive model, in which the
solvent molecules are explicitly described. The theoretical expressions needed to study
the ion-ion, ion-dipole and dipole-dipole interactions have been presented. NPT MC
simulations were performed to obtain simulation data with which to compare to the
theoretical predictions and test the new theoretical approach. We find that the SAFT-
VR+DE equation provides a good description of the PV'T behavior of the electrolyte
systems studied. We have also compared the non-primitive model with five other models
for the long-range interactions; namely the Debye-Huckel theory, the primitive model
(RPM and PM) in which the dielectric constant is obtained from the MSA theory for
dipolar hard spheres, the restricted non-primitive model and the semi-restricted-non-
primitive model. We find that the restricted non-primitive model shows the largest
deviations from the Monte Carlo simulation data, indicating the importance of properly
accounting for the differences in size of the ions and solvent if the thermodynamics of
real electrolyte solutions are to be accurately described. We have also shown the
importance of an accurate description of the dielectric constant and how the predictive
capability of the primitive model and the Debye-Huckel theory strongly depends on the
value of dielectric constant. By using the non-primitive model in the SAFT-VR+DE
approach we avoid the need to find experimental data for the dielectric constant or
develop correlations in mixed solvent electrolyte systems, and so expand the flexibility of

the theory considerably over other SAFT based approaches for electrolytes solutions. We
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also find that the predictions obtained from the semi-restricted non-primitive model are
very similar to those from the non-primitive model, indicating that the assumption of
equal sized ions is reasonable. Given the relative simplicity of the semi-restricted non-
primitive model, it may be advantageous to use this approximation when developing
engineering equations of state for electrolyte solutions. Although we have only tested the
proposed SAFT-VR+DE approach for relatively dilute electrolyte solutions and monomer
ions and solvent, our approach is generally applicable and can easily be applied to more
concentrated electrolyte solutions with the consideration of ion-ion association and chain-
like 1ons and/or solvent through the addition of a chain term in which the pair distribution

function can be derived from the mean spherical approximation.

4.6 Appendix

Due to the complexity of the Wei and Blum’s solution of the MSA, discrepancies in the
implementation of the solution of the NPM can be found in the literature. In order to
verify our implementation of the solutions of the non-primitive model, we reproduce the
results presented in Figures 1 and 2 of reference [129]. For the system studied,

0,=0.19nm, o =0.365 nm,o0, =0.276 nm, x=2.21D, T =298.15 K and the

density of water is set to 1.0g /cm’. The results are presented in Figure 36. From Figure

36a, we can see the value of b2 agrees well with that in the literature, however the values

of I' and B,, are bigger than those in the literature. The values of I'and B,,in the

literature are less than 1.0 which we think it is unreasonable low, especially for the I". In

Figure 36b, the dielectric constants as function of molality are compared with the value in

112



the paper of Wei and Blum. From the comparison, they match each other very well.
Based on these comparisons, we believe that our implementation of the solution is correct
and the discrepancy between the restricted NPM and semi NPM and NPM may come

from the approximation introduced during the extension of the MSA solution.
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Figure 36: Comparison to the results in Wei and Blum’s paper for aqueous
NaCl witho" =0.19nm,0” =0.365nm,0, =0.276nm,u=2.21D, and the

density of water is set to 1.0g/cm’atT =298.15K (a), the value of three

parameters as function of ionic concentration, and (b) the dielectric constant
as a function of ionic concentration.
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Other models except the non-primitive model studied in this chapter:
1. Debye-Huckel

The Helmholtz free energy is given by

DH
A K’

NKT  127p

where x is the inverse Debye screening length

47726
2= wz e pp
&

1. RPM of MSA

The Helmholtz free energy is given by

AP 3 1 6x 42— 2(1+2x)

NKT 12700’
with x = ko
2. The primitive model of MSA

The Helmholtz free energy can be expressed by

A™ __l{ﬂez PiZk [sz+ﬂf)r:6kj FS}

NKT ~ p|4ze“1+To, 24 ) 3z

where A =1-¢,; and T is the scaling parameter that can be calculated from

Fz_ﬂez PiZ ( _”Pno-/f\z
4e T(+To YUt 24

with
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3. Semi non-primitive model (SNPM) of MSA
The electrolyte solution is modeled as a mixture of ions and dipoles. The ions are hard

spheres of diameter of o,, half with charge +q and half with charge —q. The dipoles are
hard spheres of diameter o,, with a central point dipole of magnitude . The ration

between the diameter of dipoles and diameter of ions is defined

o
p= %

The solution is decided by two independent variables, which represent the intensity of the

ions and the dipoles, respectively

d 2 — 47z-q210iai2
0 kT

42— 4mi’p, _
2 3kT

The solution of MSA is given in terms of the three energy parameters b, (ion-ion), b, (ion-
dipole) and b, (dipole-dipole), and the three parameters satisfy the following set of
equations

alz + a22 = a’o2
a K, —a[l-K]=dd,
Klo2 +[1 _K11]2 _y12 = d22

where
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The excess Helmholtz free energy is given by

AMSA 1
NKT 127po,
J'= p3Qii2 +p(p+ l)Qidz + Qdd2 + 2‘]'2
where
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The excess chemical potential for ion and dipole are expressed as

MSA
/“li — (q*)Z (bo _ del]
KT d,p
w™ Wy . dbp )
KT 3 |7 d,

The excess internal energy of the system is

UMSA 1
NKT  4npo,

- p’d,’by — 2p’dydyb, — 2d,’b, |

In MSA, the excess Gibbs free energy equals the excess internal energy, thus, the

compressibility factor can be given as

MSA MSA MsA
s P U™ -4

PKT NKT
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CHAPTER V

THERMODYNAMIC PROPERTIES OF IMIDAZOLIUM-BASED IONIC
LIQUIDS FROM THE SAFT-VR EQUATION OF STATE

5.1 Introduction

Ionic liquids (ILg) are liquids comprised entirely of ions with melting points around or
below room temperature [147]. During the past decade ILs have received great attention
as environmentally benign solvent replacements due to their negligible vapor pressure,
low melting point and broad liquid range [147-149]. ILs typically consist of a large,
organic cation with a weakly coordinating inorganic anion, which frustrates packing and
lowers the melting point. The most common ILs are those composed of imidazolium or

pyridinium cations with alkyl substitute groups and bulky inorganic anions such as

[PF,].[BE,], [NO3 ]f [150]. Since both the cation and anion can be varied, the term

“designer solvent”[151] is often used to describe these chemicals since their properties,
such as the melting point, viscosity, density, hydrophobicity and miscibility in water, can
be adjusted through changes to the type and structure of the ions. Figure 37 shows some
examples of typical cations and anions of ILs. ILs are widely used in electrochemistry
[150], biochemistry [152] and as solvents in synthetic catalysis [153-155] and separations
[156, 157]. However, one of the barriers preventing more widespread adoption of ILs by
industry is that there is little data on their thermodynamic and thermophysical properties,

despite the recent explosion of ILs studies reported in the literature. Experimental
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measurements of fundamental properties which enable the characterization of ionic
liquids are still quite scarce and knowledge of binary and ternary mixture data, invaluable
in the design of industrial processes, is even more limited [158]. The main reason for this
is the sheer number of ILs that can be synthesized through different cation and anion

combinations.

“‘"N@ H//\WJr

-/ -/

BF," PF,-

Figure 37: Some examples of typical ionic liquid cations and anions.

An alternative approach to obtain information on the physical properties of ionic
liquids is to use theoretical models, or equations of state. In the literature, there are few
approaches with which to correlate or predict the thermodynamics properties of ILs. One
of the approaches is the Tait equation which is an excellent model for high-pressure
density correlation [159, 160]. Gu et. al [159] have applied the Tait equation to correlate
the densities of ILs such as [bmim][PF6], [omim][PF6] and [omim][BF4] at different
temperatures and pressures up to 206.94 MPa. Jacquemin et al. [161] used a linear
equation based on the Tait equation to express the correlation of densities with
temperature for six ILs. While such approaches can accurately correlate experimental

data they cannot be used to predict the densities and other properties of ILs as the
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parameters in the correlations depend strongly on the temperatures and pressures to
which they were fitted.

Equations of state have only recently been applied in the literature to correlate and
predict the thermodynamic properties of ILs. In perhaps the first application, Camper and
coworkers [162-164] applied regular solution theory to model gas solubilities, such as
CO; and light hydrocarbons in ILs containing imidazolium rings with the assumption that
short-range forces dominate in room-temperature ILs. It was found that regular solution
theory could be used to model gas solubility at low pressure with empirically determined
constants that depend only on the gas. Also they observed that for hydrocarbons, the
solubility increases as the number of carbon atoms increases and the number of double
bond increases. Kato et al. [165] have measured vapor liquid equilibrium and excess for
imidazolium-based ILs and predicted their thermodynamic behavior using the NRTL and
UNIQUAC models. They [166] also applied group contribution methods such as the
original and modified UNIFAC approaches to predict the vapor liquid equilibria and
activity coefficients at infinite dilution for various solutes in the ILs studied. In their
work, a modified COSMO approach, COSMO-RS(O1) was used to predict activity
coefficients and the temperature dependence for systems containing ILs. They found that
the modified UNIFAC method provided a reliable description of the vapor liquid
equilibria, activity coefficients and excess enthalpies and qualitative agreement was
obtained with experimental data using the COSMO-RS solvation model. Shariati et al
[167] extended the Peng-Robinson equation of state to model the vapor liquid equilibria

of binary systems of [emim][PF6] and fluoroform. Shiflett et. al [168] applied the
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Redlich-Kwong equation of state to model CO, solublility in [bmim][BF4] and
[bmim][PF6] at pressures under 2 MPa, but found that the approach cannot accurately
predict the phase behavior of the systems studied at high pressure.

Approaches based on perturbation theory have also been applied to correlate and
predict the thermodynamics properties of ILs. Qin et al [169] reported the correlation of
Henry’s constants for 20 solutes such as hydrocarbons in ionic liquids based on a
perturbed-hard-sphere theory. In their approach, the solution is considered to be a
dielectric continuum, which is perhaps reflected in the poor accuracy of the correlation
obtained. Recently Kroon et al. [170] extended the truncated perturbed chain polar
statistical associating fluid theory to predict the phase behavior of ionic liquid and CO,
systems. In their approach, they assumed that the cation and the anion of the ILs form an
ion pair due to Coulombic interactions; therefore, IL molecules were considered to be
highly asymmetric neutral ion pairs with a large dipole moment. The equation was
applied to model the phase behavior of several imidazolium-based IL + CO, systems
using binary interaction parameters fitted to experimental data. However, one drawback
of this approach is that they do not explicitly consider Coulomb interactions; by
approximating the ionic nature of the fluid with multipolar interactions such as dipole-
dipole, dipole-quadrupole, and quadrupole-quadrupole the complexity of the equation
and the number of parameters in the equation is increased substantially.

In this work, we extend the SAFT-VR approach to study the densities of
imidazolium-based ILs up to high pressure by using the heteronuclear SAFT-VR model.

In our approach the charge-charge Coulombic interactions are taken into account through
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the mean spherical approximation. The remainder of the chapter is organized as follows:
in section 5.2 we present the SAFT-VR approach for ILs. In section 5.3, details of the
parameterization of the equation are presented. Results for isotherms of several
imidazolium-based ILs are presented in section 5.4. Finally, concluding remarks are

made and future work discussed in section 5.5.

5.2 Model and Theory

In this work we extend the SAFT-VR approach to study ionic liquids. Within the
framework of SAFT, the ionic liquids are represented by a flexible heteronuclear chain,
which consists of two homonuclear chains with charged hard spheres/hard spheres, which
tangibly bond together. As Figure 38 shows, the cation is represented as a homonuclear
chain composed of m, —1 hard spherical segments, with one segment carrying a single
positive hard sphere charge of diameter o,. The anion is described by a homonuclear
chain of m, —1 hard spheres of diameter o, , again with one segment carrying a negative
charge; these two chains bond together tangentially to form heteronuclear chain due to
the high concentration of ion in the ILs system and relative strong attractive interaction
between cation and anion. The number density and the carried charge are p, and z e for
the positive segment, p and z e for the negative segment, and p,and 0 for the
uncharged segment. In terms of the charge neutrality condition, the relation
p.z, + p z_ =0 is always true. The total number of segment is given by m = m, + m, and

the number density is given by
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(5.1)

Figure 38: Schematic of the model for ionic liquids.

In our approach, the reference fluid is a mixture of square-well spheres and square-well

charged spheres. Hence, the pair potential for the reference fluid is defined by

u (r) =u’" (r; 0)+ y COVOME (r) (5.2)
Here, u"" (r;0)and u“"" " () represent the square-well potential and Coulombic
potential respectively. u " (r; 0') is given by

+o0 if r<o,

uw’ (r;0)=1-¢, if o,<r<io, (5.3)

0 if rz 4,0,
where o, is the diameter of the interaction, 4, the range and ¢, the well depth of the

SW potential. The inter- and intra-molecular cross interactions between segments are

obtained from the standard Lorentz-Berthelot combining rules, viz
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o)== (5.4)
/2
& = (1 —ky Xgngﬂj (5.5)
o (2,0,+2,0,) (5.6)
’ O T 0y

The Coulombic potential between two charges is represented by

+o if r<o,

u[]C_‘oulomh (7,.) — Z[Zjez ‘ (57)

where 7 is the center-to-center distance, e =1.602 x 10""°C the elementary charge, and &
is the permittivity of the continuous dielectric medium, which is an adjustable parameter
in the model. Within the framework of the SAFT-VR approach, the excess Helmholtz
free energy can be divided into two contributions from, respectively, the

charged/uncharged square-well spheres, and chain formation.

A excess A csw A chain
= +
NKT NKT NKT

(5.8)

Since in this work, we do not consider associating fluids, there is not association term in

the equation. We will summarize each contribution in turn.

5.2.1 Charged/uncharged square-well monomer contribution

Within the GMSA the excess Helmholtz free energy per monomer a®” | is given by

CSw N4 Columbi,
a” =a" +a """ (5.9

124



where a*” describes the contribution to the free energy due to dispersion interactions and

Columbic

the contribution due to Coulombic interactions. Within the high temperature

perturbation theory of Barker and Henderson, in the inverse of the temperature
B=1/k,T, the square-well term a*” is given by,

a" =a™ + pa, + fa, (5.10)

The hard sphere reference term a™ is determined from the expression of Boublik

[137] and Mansoori and co-workers [138] for multicomponent hard sphere systems, viz

HS
a

_6(e N
_”Ps Lﬁ g“oJln(l &)+ (5.11)

%6 _ & }
1_4,3 43(1_53)2

where p, is the number density of segments, which is defined as the total number of
segments divided by the total volume N /V and ¢ is the reduced density given by a

sum over all segments 7,

6= %ps {anxs,,»(a,»)’}

v
:gps [xs,l (Gl )[ + xs,2 (62 )l]

(5.12)

where o, is diameter of segments of type i and x ; is the mole fraction of segments in
the mixture given by

x =—0 (5.13)
’ m,+m,

The first perturbation term a, describing the mean-attractive energy is obtained

from the sum of all pair interactions,
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ZZ% u(al)

i=1 j=1 (5.14)

_ .2 P
=X (al )11 +2X,%, 5 (al )12 X5 (al )22

where (a1 )l,j is obtained from the mean-value theorem as proposed by Gil-Villegas et al.

[9],
(a ),j =2mp.e,[ g (), 519
- pa; g (0,87
where
27
VDW 3 3
@ == e, (4 -1) (5.16)

Within the van der Waals one fluid theory the radial distribution function gl] 5( U,ggff ) is

approximated by that for a pure fluid, viz
_ VDW HS off
( )1,——/?; i [Gx, o )] (5.17)

where gHS( 0;5¢; ) is obtained from the Carnahan and Starling equation of state,[171]

g o (4)]= 1-g’ /2 (5.18)

)
The effective packing fraction ¢ (/1?/ )is obtained within the van der Waals one fluid

theory from the corresponding packing fraction of the mixture ¢ _given by,

& (élx’ﬂ”ii )= ¢ (’147 ){x 6 (/147 )ﬁ +G (’14'/ )5*3 (5-19)

where
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(c,) (225855 -1.50349 0.249434 V1)
{ch :L-0.669270 1.40049 -0.827739J A (5.20)

y

;) \10.1576 -15.0427 530827 )| ;°
ij
and
¢ =Zpo (5.21)
6
with

n n
3 3
Gx - szs,ixs,io-ij

i=1 j=1 (5.22)
= xilngl + 2xs,1xs,2(7132 + xizgsz
This corresponds to mixing rule MXIb in the original SAFT-VR approach for
mixtures.[10]

The second order perturbation term for the monomer excess free energy a, is

expressed as:

n

n
a, = szs,ixs,j (az ),y

i=1 j=1 (5.23)

— 42 2
=X (aZ )11 + 2xs,1xs,2 (a2 12 + X2 (aZ )22

where (a2 )ij is obtained through the local compressibility approximation:

1

(@), = EK “ep,

op

N

(5.24)

and K" is the Percus-Yevick expression for the hard-sphere isothermal compressibility,

KHS é/o(l _4/3)4

= - . (5.25)
4/0(1 - §3) + 6411;2(1 - §3) + 942
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In our work, Blum’s primitive model is applied to represent the

Columbic

charged/uncharged hard sphere. The free energy due to the Coulomb interaction a is
given by:

Columbic Zzez r3
a _ + (5.26)
el+o,I)) 3pz

with I' calculated by

(1+20,6)2 -

20,

r= (5.27)

5.2.2 Chain Contribution
The contribution to the free energy due to chain formation from m square-well

charged/uncharged monomers is given by,

i = Z(m ~Ding™" (o) (5.28)
csw : . . .
where g (O'U) is represented by the LEXP approximation:

(0 aop )

cercelZig) e

The radial distribution function for the square well monomers ggw (O'[j) is approximated

by a first-order high-temperature perturbation expansion:
SW( Uaé/s) g ( U9§3)+ﬂgygl (O-[j) (5.30)
where the contact value of the radial distribution function g ( U,§3) at the actual

packing fraction ¢ is obtained from the expression of Boublik [137],
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(Dué)z
3(1 §3) +2 (1 43)3 (5.31)

glj (Gy’é,:i) =

and

o ,]Zx” o;
( +0'”)qu Ti (5.32)

0.0 (xslgll—'—x 2022)

o;,to, xs,lo-ll + xs,20-22)

s (0,-/-,5 3) is determined using the Clausius virial theorem and the first derivative of the

free energy with respect to the density [9] giving:

(a(a‘)i/\ A a(al)z/'
(”)_ 278, 3[ L op, J_; oA, (5.33)

If we consider [bmim][BF4] as an example, our model consists of m —2 uncharged
segments, one positively charged segment and one negatively charged segment. The free

energy due to the chain formation is therefore given by,

a®" =—(m, -1)lng" (o,,)- (m, - DIng" (o, )~ Ing“" (o,,) (5.34)

5.3 Parameterization of the SAFT-VR EOS

In this work, the SAFT-VR approach is extended to correlate and predict isotherms of ILs
through the combination of the SAFT-VR approach and the mean spherical
approximation. The ILs studied are 1-butyl-3-methylimidazolium tetrafluoroborate

([bmim][BF4]), 1-butyl-3-methylimidazolium hexafluoroborate ([bmim][PF6]), 1-butyl-
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3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([bmim][NTf2]), I1-hexyl-3-
methylimidazolium  bis(trifluoromethylsulfonyl)amide  ([hmim][NTf2]), 1-octyl-3-
methylimidazolium tetrafluoroborate ([omim][BF4]) and 1-octyl-3-methylimidazolium
hexafluoroborate (Jomim][PF6]). In Figure 37, a schematic representation of these ILs is
shown. In our approach, these ILs are modeled as heteronuclear charged chains, which
consist of two homonuclear square-well chains to represent the cation and anions
respectively. In the original SAFT-VR EOS four parameters are needed to model non-
associating homonuclear chain molecules, i.e., the diameter of the segment o, the number
of segments m , the depth of the square-well potential ¢and the range of the square-well
potential 4. To describe ILs eight SAFT-VR parameters have to be determined, which
are the size, shape and square-well potential parameters for the cations and the anions.
Additionally in the primitive model of the mean spherical approximation the dielectric
constant must be determined and is used as an adjustable parameter in this work. For the
cations [bmim], [hmim] and [omim], the SAFT-VR parameters are obtained by fitting to
experimental vapor pressures and saturated liquid density data for butylbenzene,
hexylbenzene and octylbenzene respectively The vapor pressure curve and coexisting
densities of butylbenzene, hexylbenzene and octylbenzene are shown in the Figure 39-41
and the parameters are listed in Table 15. Other SAFT-VR parameters involved in each
ILs, that is the size, shape and depth and range of square well potential, and the dielectric
constant, are determined by fitting to the isotherm of each ILs at the highest temperature
available in the literature. Then the isotherms of the ILs at other temperatures are

predicted using the parameters obtained for each ILs at the highest temperature.
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Figure 39: (a) Vapor pressure and (b) Coexisting densities for butylbenzene.
Solid lines represent the results from the SAFT-VR approach and circles the
experimental data taken from [172].
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Figure 40: (a) Vapor pressure and (b) Coexisting densities for hexylbenzene.
Solid lines represent the results from the SAFT-VR approach and circles
experimental data taken from [172].
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Figure 41: (a) Vapor pressure and (b) Coexisting densities for octylbenzene.
Solid lines represent the results from the SAFT-VR approach and circles the
experimental data taken from [172].
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Table 15: SAFT-VR parameters for ionic liquids studied in this work

Cation Anion

M, o m elk A o m elk A &

(g/mol) ,31 - K - 1‘; - K - -
[bmim][BF4]  226.02 3.8452 3.59 250.47 1.6339 | 4.3787 1.0 564.86 1.6959 1.0
[bmim][PF6]  284.18 3.8452 3.59 250.47 1.6339 5.0717 1.0 787.69 1.157 1.0
[bmim][NTf2] 419.34 3.8452 3.59 250.47 1.6339 5.002 2.0 496.4 1.3784 1.0
[hmim][NTf2] 447.39 3.8 4.34 228.38 1.6883 5.186 2.0 471.88 1.1963 0.7
[omim][BF4]  282.13 3.8598 5.0 229.51 1.6803 3.6998 2.0 736.94 1.172 1.06
[omim][PF6]  340.29 3.8598 5.0 229.51 1.6803 4.0706 2.0 812.99 1.1697 1.06
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5.4 Results

Isotherms for several alkylmethylimidazolium ILs have been studied using the SAFT-VR
approach in combination with the primitive model of the mean spherical approximation.
In Figure 42, isotherms for [bmim][BF,4] at temperatures of 332.73 K, 322.85 K, 313.01
K, 303.23K and 298.34 K are presented. The experimental isotherm at 332.73K was used
to fit the SAFT-VR parameters for the [BF4] anion. The isotherms at other temperatures
are then predicted using these parameters. From the figure, it is seen that good agreement
between experimental data and the theoretical calculation from the model is obtained.
The dielectric constant for the ionic liquid is 1.0. The value of the dielectric constant
obtained from the theory is less than the experimental value, which is usually around 5-
12. One possible reason for the lower value used in this work, is the simple way in which
we take into account the long-range ion-ion interactions in the ionic liquids. Since ILs are
highly asymmetric neutral ion pairs, the molecules are polarizable and as such will have
dipole moments and/or quadrupolar moments as a result of the charge distribution over
the ion pairs. It may be possible to obtain the dielectric constant closer to the
experimental value if the ionic liquids are considered as charged polar chain molecules,
with the polar interactions included through the SAFT-VR+D approach [173]. Figure 43
and 44 presents isotherms for [bmim][PFs] and [bmim][NTf,] at different temperatures
and pressures up to 100 MPa. The SAFT-VR parameters used for the cation are the same
as those used to decribe [bmim][BF4] since the parameters for the cation are transferable.
Again, we see that the theoretical results are in good agreement with the experimental

data.
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Figure 42: Isotherm of the density of [bmim][BF4] at temperature 332.73K,
322.85K, 313.01K, 303.23K and 298.34K. The circles represent the
experimental data [160] and the curves from the SAFT-VR equation of state.
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Figure 43: Isotherm of the density of [bmim][PF6] at temperature 323.15K,
318.15K, 313.15K, 308.15K, 303.15K and 298.15K. The circles represent the
experimental data [160] and the curves from the SAFT-VR equation of state.
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Figure 44: Isotherm of the density of [bmim][NTf2] at temperature 328.2K,
323.14K, 318.14K, 313.15K, 308.09K, 303.14K and 298.15K. The circles
represent the experimental data [174] and the curves from the SAFT-VR
equation of state.

In Figure 45, isotherms for [hmim][NTf;] are presented at temperature 333.15K,
323.15K, 313.15K, 303.15K and 298.15K. Similarly, the SAFT-VR parameters for the
anion were obtained by fitting to the experimental data of isotherm for [hmim][NTf,] at
333.15 K. Isotherms at other temperatures are predicted using these parameters. We find
that, the dielectric constant for this ionic liquid is less than 1.0 (0.7), which is obtained by

fitting to experimental data, and good agreement is observed between the experimental

data and theoretical results.
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Figure 45: Isotherm of the density of [hmim][NTf2] at temperature 333.15K,

323.15K, 313.15K, 303.15K and 298.15K. The circles represent the

experimental data [174] and the curves from the SAFT-VR equation of state.

We have also studied isotherms for ionic liquids [omim][BF4] and [omim][PF¢]
up to very high pressures (more than 200MPa). For these ionic liquids, the SAFT-VR
parameters for the anions were obtained by fitting to the experimental data at 298.15K
and 323.15K. The correlations for both [omim][BF4] and [omim][PFs] are presented in
Figure 46 and 47. The same dielectric constant is used for both ILs. From the figures, it is

seen that, the correlations from the SAFT-VR approach are in good agreement with the

experimental data, especially for [omim][PFg].
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Figure 46: Isotherm of the density of [omim][BF4] at temperature 323.15K
and 298.15K. The circles represent the experimental data [159] and the
curves from the SAFT-VR equation of state.
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Figure 47: Isotherm of the density of [omim][PF6] at temperature 323.15K
and 298.15K. The circles represent the experimental data [159] and the
curves from the SAFT-VR equation of state.

139



5.5 Conclusion

In this work, the SAFT-VR approach is extended to model of the PVT behavior of
several alkylmethylimidazolium ILs using the primitive model of mean spherical
approximation to describe the Coulombic interactions. In the approach, ILs are modeled
as heteronuclear charged chain molecules composed of two homonuclear chain with unit
positive and negative charge respectively. Compared with experimental data, the
approach provides a good way to correlate and predict the densities of the ILs studied in

this work.
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CHAPTER VI

CONCLUSION AND RECOMMENDATION

Understanding the thermodynamics and phase behavior of polar and electrolyte fluids is
central to a wide range of processes in chemical, environmental and biological
engineering. As a result, several groups have focused on the development of theoretical
models for such systems. Within the family of SAFT equations of state, attention has
primarily focused on the development of additional terms to describe the polar or/and
electrostatic interactions that exist in polar and electrolyte fluids. When we started this
project, our goal was to rigorously incorporate the effect of anisotropic interactions such
as polar and electrostatic interactions on the thermodynamics properties of fluids through
modification of the reference fluid within the SAFT-VR framework. Within statistical
mechanics, integral equation theory with the mean spherical approximation provides a
way to describe the structure of anisotropic interactions and gives analytical solutions for
the thermodynamics and structural properties of simple potentials. Thereafore, in this
project, we developed equations of state for polar and electrolyte fluids through a
combination of the SAFT-VR approach with the mean spherical approximation, in which
the structure of these fluids is explicitly accounted for.

For dipolar fluids, in Chapter II, a SAFT-VR like approach, SAFT-VR+D, has
been developed to study dipolar chain fluids that uses the dipolar square well fluid as the
reference state. In this way, the SAFT-VR+D approach explicitly takes into account the
magnitude and orientation of the dipole moment, both of which are found to affect the

thermodynamics and phase behavior of dipolar square well monomer and chain fluids. In
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order to gain a comprehensive understanding of the thermodynamic properties of the
systems studied, and validate the SAFT-VR+D approach, both NPT MC and GEMC
simulations were performed to obtain simulation data with which to compare the
theoretical predictions. We found that the SAFT-VR+D equation with the GMSA
approximation provides good predictions for the phase behavior of the dipolar monomer
fluids studied, and chain fluids with a perpendicular arrangement of the dipole moments.
A more accurate approximation for the radial distribution function of dipolar square well
fluids (LEXP approximation) was implemented to improve the performance of the
SAFT-VR+D EOS for dipolar chain fluids in which the dipole moments are parallel to
the vector joining the centers of the monomers. It is found that the SAFT-VR+D with the
LEXP approximation is suitable for fluids with both vertical and horizontal arrangements
of the dipole moments. Furthermore, using the solution of Adelman and Deutch for polar
mixtures, the SAFT-VR+D with LEXP approximation gives a good description of the
thermodynamic properties of dipolar chain fluids consisting of non-dipolar segments and
dipolar segments.

In chapter III, the SAFT-VR+D approach has been used to study associating
fluids. To gain a comprehensive understanding of the thermodynamic properties of the
systems we studied, both NPT MC and GEMC simulations were performed to obtain
simulation data to compare to the theoretical predictions. A comparison between the
theory and the NPT MC simulation data shows that the theory accurately describes the
PVT and phase behavior of the fluids studied over a range of association energies and
association volumes; at relative low dipole moment, the agreement is very good, however

for high dipole moments (~ > a reduced dipole moment of 2), we see some discrepancy
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between the theory and simulation results. Furthermore we find that the SAFT-VR+D
approach provides a more accurate description of the phase behavior of water than the
SAFT-VR approach.

For electrolyte fluids, in Chapter 1V, the SAFT-VR+DE approach has been
developed through a combination of the SAFT-VR equation and the MSA solution of the
non-primitive model, in which the solvent molecules are explicitly modeled as a dipolar
associating fluid. The theory has been tested through the description of the PV'T phase
behavior of several model electrolyte solutions. In order to gain a good understanding of
the thermodynamic properties of the systems studied, and validate the SAFT-VR+DE
approach, NPT MC simulations were conducted to obtain simulation data to compare to
the theoretical predictions. We found that the SAFT-VR equation with the MSA solution
of the non-primitive model provides good predictions for the phase behavior of the
electrolyte solutions we studied. We have also compared the non-primitive model with
five other models for the long-range electrostatic interactions; namely the Debye-Huckel
theory, the primitive model (RPM and PM) in which the dielectric constant is obtained
from the non-primitive model, the restricted non-primitive model and semi-non-primitive
model. It is found that the restricted non-primitive model and the Debye-Huckel theory
show the largest deviations compared with the Monte Carlo simulation data. The
predictive capability of the primitive model strongly depends on the value of dielectric
constant and the prediction obtained from the semi non-primitive model is close to that of
non-primitive model. For the sake of the relative simplicity of the semi non-primitive
model, it may be a practical replacement of the non-primitive in the development of

engineering equation of state for electrolyte solution.

143



In chapter V, the SAFT-VR approach is extended to model isotherms of the
density for several alkylmethylimidazolium ionic liquids using the primitive model
within the mean spherical approximation. In our approach, ionic liquids are modeled as
heteronuclear charged chain molecules composed of two homonuclear chains with
positive and negative charge respectively, and the pair distribution function of ions is
included into the chain term. Compared with experimental data, the approach provides a
good way to correlate and predict the density of the ionic liquids studied. We also find
that the SAFT-VR parameters for the cations studied can be used transferably

For polar fluids, our results have shown that the structure of the dipolar
interaction does have an effect on the thermodynamics of dipolar fluids. In future work
the SAFT-VR EOS may be extended to accurately model quadrupolar fluids in a similar
fashion through the combination with the mean spherical approximation. It has been
shown that the SAFT-VR+D approach can describe the position and orientation of dipole
moments within the chain molecules. Therefore, the approach can potentially be extended
to model polymers with dipolar functional groups.

For electrolyte fluids, in the SAFT-VR+DE approach we presented in Chapter IV,
we have explicitly considered the solvent effect with the non-primitive model and self-
association with Wertheim’s theory. However, as the ion concentration increases, the ions
can associate with each other and so it will be important in future work to account for

10n-ion association.
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