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1. INTRODUCTION 

 

1.1 Motivation 

Cancers are one of the leading causes of morbidity and mortality worldwide. In 2012, 

approximately 14 million new cancer cases were diagnosed and 8.2 million people died from 

cancer related disease [1]. In the US, cancer related disease was the second most common cause 

of death in 2016, contributing about 25% of all deaths[2]. It is estimated that in 2017, there will be 

1.7 million new cancer cases diagnosed and 0.6 million cancer deaths in the US[2].  

          Strategy for cancer treatment varies depending on the type and stage of the tumor(s). 

Therapy options include: surgery, radiation, chemotherapy, immunotherapy, targeted therapy, 

hormone therapy and stem cell transplant, with most patients receiving a combination of these 

therapies.  A major clinical hurdle is the tendency for cancer to either not respond to the treatment 

provided or to recur after initially demonstrating response.   An ambitious goal of cancer modeling 

is to provide a platform to choose the optimal combination, including dose and timing, of therapies 

such that a patient’s tumors never grow. 

          While in some fields of physics it is possible to conceive of modeling from first principles 

with zero parameters, our current understanding of cancer biology is incomplete and any 

quantitative tumor model will necessarily contain parameters such as growth rate, mutation rate, 

drug transporter efficacy, etc that must be determined from experiment.  Populating these 

parameters for clinical purposes is problematic as many are not directly measurable and some 

fraction is likely to vary depending on conditions, such that the average literature values are 

insufficient.  
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          In this work, we explore whether clinical imaging can be leveraged to both populate model 

parameters and to identify poor responder patients early in the course of therapy.  Clinical imaging 

is currently the major tool in diagnosis, accessing staging, and evaluating cancer growth and 

treatment response. Advanced imaging techniques such as Computed Tomography (CT) scans, 

Magnetic Resonance (MR) imaging and Positron Emission Tomography (PET) are able to provide 

3D measurements of tumor cell number, metabolic activity, perfusion, and. Hence, clinical image 

provides a powerful set of measurements to refine mathematical models that capture and predict 

the treatment. 

 

1.2 Overview of thesis 

In chapter 2, we review current mathematical modeling work in the context of the development of 

cancer treatment, and highlight our contribution to this effort.  

          In chapter 3, we construct a simple two phenotype model for tumor growth under therapy. 

We prove that the simplified two state model can capture a wide spectrum of drug responses. 

Inspired by the work in ecological dynamics, we propose to apply a less known size exclusion 

diffusion model in multi-phenotype tumor’s cell-cell interaction in space.  

          In chapter 4, we extend this work to consider clinical imaging.   From ongoing work, we 

expect that tumor parameters, such as growth rate or drug induced death rate, are sensitive to 

environment and vary from patient to patient. We propose that serial imaging via non-invasive 

methods could be used to extract these parameters and to identify the presence of the resistant 

phenotype.  We determine the threshold for detecting resistance as a function of the imaging 

frequency, measurement noise and tumor composition. 
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          In chapter 5, we outline a set of intermediate experiments to test the model. We use 2D in 

vitro experiments to examine the spread and mixing of two tumor phenotypes. We find no 

significant advantage of either diffusion model, however, the experiment revealed a dependence 

of the cell diffusion and surprisingly, packing fraction, on cell type. 

          In chapter 6, we present an experimental study of non small cell lung cancer growth in 

different cell culture environments.  We find that the response to targeted therapy is sensitive to 

the stiffness of the environment, and point that stiffer environments increase the likelihood for a 

de novo resistant population.   

          In chapter 7, we summarize our findings and present new directions to further this study.   
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2. BACKGROUND 

 

This thesis contributes to a broader research goal of pushing mathematical models of tumor growth 

and treatment response towards relevance to clinical practice. In particular, in chapter 4 we 

consider whether a simple tumor model could be used to ascertain if a patient will exhibit resistance 

to a given drug therapy. Identifying resistance early in the course of drug therapy has clear benefits. 

Not only does it limit the exposure of the patient to toxicities that are not actually beneficial, it 

provides the patients the opportunity to switch to a potentially more efficacious treatment protocol. 

Indeed, there are a large number of potential treatments and treatment combinations available, but 

not a clear rationality on how to prescribe them. 

          In order to put our work in context, we use this chapter to (1) describe a subset of the variety 

of treatments available to patients and how they came about; (2) describe the general structure of 

mathematical models applied to tumor growth and therapy response; (3) motivate how clinical 

imaging can be incorporated in this effort; (4) introduce therapy resistance as an important clinical 

problem; (5) provide a brief overview of how other researchers are using mathematical models to 

manage resistance.  

 

2.1 Brief history of cancer treatment 

The earliest mention of breast cancer in recorded history dates to 1500 BC in Egypt; unfortunately 

for this patient, cancer then, was described as incurable. While science has learned much about the 

disease over the centuries, cancer remains the one of the leading cause of death in the world.  
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In the last century, multiple new treatments have emerged. Depending on the type and progression 

of cancer, a patient will undergo several forms of therapy including: surgery, radiation, 

chemotherapy, targeted therapy, hormone therapy, immunotherapy, and stem cell transplant.  In 

this chapter, we briefly describe the historical rationale for each of the above therapies. As there 

are so many treatments available and more to come, a key need is to rapidly assess whether a given 

therapy will be effective on a patient specific basis. We highlight therapy choices for which 

mathematical tumor models have or can play a role in developing.  

 

2.1.1 Surgery  

Treatment by surgical removal of the solid tumor from the patient has a history as old as cancer. 

Indeed, the Ancient Egyptians would remove tumors from under the skin. Along with the 

development of surgical technique, removal of the tumor and large amounts of surrounding tissue, 

such as a radical mastectomy for breast cancer, gained popularity in the 1880s[3, 4]. Breast cancer 

patients treated in the time period from the late 1890s through the 1970s routinely endured surgery 

that removed the whole breast, the surrounding lymph node, and the chest muscle, disfiguring the 

patient. The underlying hypothesis that led to radical mastectomies indicated that cancer was a 

local disease. Clinical trials in the 1970s[5, 6], however, proved no significant survival advantage 

for patients that underwent radical mastectomy compared with patients that received a more 

conservative surgical procedure. It became increasingly recognized that cancer has a systemic 

component and that surgery proceeded by and followed up with other therapies became the 

standard therapy regimen. Recent literature suggests that surgery in some cases may exacerbate 

metastasis by introducing more tumor cells into the blood stream, though these findings are 

controversial [7].  
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2.1.2 Radiation therapy 

Radiation therapy is commonly applied for tumors that are unable to be removed surgically or as 

part of adjuvant and neo-adjuvant therapy to shrink the tumor. Radiation therapy uses targeted 

high-energy photons (X-rays) to cause DNA damage inside the tumor cells through molecule 

ionization. The ionization process is predominantly caused by the Compton effect[8], where outer 

electrons in DNA molecules are scattered out by the injection of high-energy photons. It is one of 

the most widely used cancer therapies and is applied to ~ half of cancer cases. Unfortunately, both 

normal healthy cells and tumor cells are susceptible to DNA damage caused by radiotherapy, and 

radiotherapy is recognized as a carcinogen. Studies on radiotherapy suggest that cell sensitivity to 

radiotherapy depend on the position of the cell within the cell cycle (resting cells are more 

resistant), radiation dosing, and oxygen supply (as oxygen is a potent radio-sensitizer, resistance 

level is higher in hypoxia environment)[9-11]. These observations have inspired mathematical 

modeling in order to understand and optimize, phase dependent killing, dosing optimization, 

oxygen delivery related angiogenesis[12-15].  

 

2.1.3 Standard chemotherapy 

Chemotherapy uses chemical substances to cure or manage cancer; it can be divided into two major 

categories: the traditional standard chemotherapy and molecular targeted therapy. Standard 

chemotherapies are cytotoxic and act on both proliferating normal and proliferating cancerous 

cells. The first drug isolate found to have antitumor properties was Nitrogen mustard[16].  Soldiers 

who were exposed to an accidental spill of sulfur mustard during World War II were found to have 

depleted cell populations of the bone marrow and lymph nodes. Similar to sulfur mustard, Nitrogen 

mustard and other classes of alkylating agents, form bonds with single strand and double strand 
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DNA. This leads to DNA damage and prevents a proliferating cell from passing through replication 

or chromosome separation cell cycle check points, often triggering apoptosis. While cancer 

remission in response to mustard gas proved short, alkylating agents and platinum drugs that work 

through a similar mechanism are still used to treat aggressive cancers.  Unfortunately, these 

patients are at risk for development of leukemia[16].  

          Another common chemotherapy drug is Antimetabolite. It has similar structures to essential 

cell nutrients such as vitamins, nucleosides and amino acids. Antimetabolite competes with these 

nutrients for essential enzyme or receptor binding sites. This competition eventually leads to the 

inhibition of cell proliferation. The first discovery of antitumor antimetabolites is methotrexate, a 

folic acid antagonist, made by Farber and Kilte during the 1940s[16]. Derivatives of pyrimidine 

and purine also fall within this class. 

          Two chemotherapy drugs that are commonly used in modern cancer treatment are paclitaxel 

and doxorubicin. Paclitaxel, first isolated from the Pacific Yew tree, was discovered in the 1960’s 

as part of the National Institutes of Health natural products discovery. Paclitaxel interferes with 

cell division, most likely by stabilizing microtubules during mitosis and preventing cells from 

passing through cell cycle check points[17, 18]. Side effects from paclitaxel include nausea, 

reduced appetite, and toxicity of neurons. As the drug is not well soluble in water alone, it is often 

delivered intravenously dissolved in an ethanol water mixture and is responsible for the burning 

sensation patients feel. Despite these side effects, paclitaxel is widely prescribed and patients 

receiving paclitaxel after breast cancer surgery tend to do better than those who do not[19]. Like 

many other chemotherapy drugs, resistance to paclitaxel is an active area of research[17].  
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          Doxorubicin is a synthetic derivative of an antibiotic produced by the soil bacteria 

Streptomyces peucetius[20]. The full mechanism of action of doxyrubicin is still debated; however, 

it is known to fit within strands of DNA – a chemical process known as intercalation[21]. 

Doxorubicin impacts DNA replication by preventing regions of the double helix from resealing. 

Successful DNA replication and formation of chromosomes is required for cell cycle progression. 

Hence, doxorubicin sends proliferating cells into cell death.  As for side effects, doxorubicin is 

responsible for many of the side effects commonly associated with chemotherapy including 

nausea, hair loss, low immune response, and organ toxicity.  

  

2.1.4 Molecular targeted therapy 

Targeted therapies build on the paradigm that genetic mutations distinguish cancer from normal 

tissue. There was no systematic theory of carcinogenesis before Bishop and Varmus discovered 

the first oncogene in 1976[22], following the discovery of DNA by Watson and Crick in 1953[23]. 

Subsequently, more hallmarks of cancer at the genetic level have been discovered by molecular 

biologists [24, 25]. Targeted therapies are rationally designed drugs that bind or disrupt a specific 

mutation, gene amplification, or translocation associated with the cancer. The first such drug, 

Gleevec (imatinib), specifically targets the BCR-ABL fusion protein. A subset of patients with 

chronic myelogenous leukemia (CML), acute lymphoblastic leukemia (ALL), or acute 

myelogenous leukemia (AML), have a chromosome abnormality where the ABL gene from 

chromosome 9 joined the BRC gene from chromosome 22, and these cells produce a BCR-ABL 

fusion protein.  The BCR-ABL protein acts as a tyrosine kinase, a class of signaling molecules that 

relay phosphate groups from ATP to other substrates, increasing their activity and frequently 

promote cell proliferation over apoptosis. Imatinib acts as an inhibitor to BCR-ABL and other 
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tyrosine kinases by binding irreversibly near the phospho relay site, preventing the molecule from 

signaling. In addition, the molecule bound by imatinb is sequestered to the nucleus, further 

reducing its anti-apoptotic effect. A subset of patients treated with imlatinb do very well[26, 27], 

however, both de novo and acquired resistance to imatinb is a clinical problem. 

          In the last two decades, many other targeted drugs have been introduced into therapy. Drugs 

that act as growth factor inhibitors/ apoptosis inducers follow the imatinib model. Experiments 

presented in this thesis use the targeted drug erlotinib, a type of epidermal growth factor receptor 

(EGFR) inhibitor. EGFR is shown to have elevated expression in a range of cancers [28], and 

erlotinib blocks the EGFR tyrosine kinase activity and further signaling cascades by blocking its 

ATP binding site. In addition, drugs have been developed to target the supporting infrastructure 

for the tumors. For instance, angiogenesis inhibitors block the formation of new blood vessels to 

cut out tumors’ blood nutrition supply. Hormone therapies are prescribed for some breast and 

prostate cancers that require certain hormones to grow. Finally, monoclonal antibodies have been 

developed that specifically bind to a molecular target on the cancer cells and kill the cell either 

through exposure to a toxic chemical linked to the antibody or by identifying the cell for immune 

destruction.  

 

2.1.5 Other frontiers 

In this thesis, we will be concerned with detecting resistance to targeted and cytoxic therapies. 

Recently, new therapy avenues have been developed including immunotherapy and stem cell 

transplants. While exciting, they are not yet directly linked to this work and hence we refer the 

interested reader to the book by Mukherjee[29] and Documentary by Barak Goodman—Cancer: 

The Emperor of All Maladies[30]. 
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          As is evident from this discussion, research over the last a few decades have led to a rapid 

increase in the number and types of treatment available for patients and clinicians, see Figure 2.1 

that summarizes the development of tumor treatment since 1882. A key clinical question is what 

therapies and with what temporal and dosing strategy should be used in order to manage the cancer 

and minimize the toxicities to the patient. The basis for current treatment strategies can be found 

rooted in two discoveries from the 1950s and 1960s. Kahn and Furth’s murine experiment found 

that a single implanted leukemia cell is able to cause animal death, hence chemotherapy should be 

administered in adequate concentration and duration so that all cancer cells are killed[31]. The 

second strategy uses drugs in combination. Famous examples include the so-called VAMP 

combination (composed of vincristine, amethopterin, 6-mercaptopurine, and prednisone) for 

childhood leukemia and later improved version of MOMP and MOPP[32]. These two dosing 

strategies were applied to some cancers in the 1960’s and resulted in the first observed lasting 

complete remission by chemotherapy, a huge milestone for oncology. In the later part of the 20th 

century, researchers found new strategies to more efficiently design and discover cancer drugs 

from an extensive repertoire of chemicals as well as developed the massive and expensive clinical 

trial structure needed to test these drugs. Today the survival rate for both childhood leukemia and 

Hodgkin’s disease treated by chemotherapy are above 90%. As dosing and drug combination has 

been proved to have significant effect on treatment result, they have also been the active focus of 

mathematical modeling work to optimize treatment strategy to overcome acquired resistance to 

chemotherapy[33, 34] [35, 36]. 
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Figure 2.1 Recent progress in cancer therapy. Information are selected from 
reference [22]. 
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2.2 Modeling of cancer progression 

The major goal of clinical oncology is to diminish and eradicate cancer cells. Mathematical models 

of tumors are therefore constructed to predict the kinetics of tumor cell growth and death. Tumor 

modeling approaches to cancer can be loosely divided into two categories (1) models that consider 

how the physics of the environment, such as nutrition delivery and diffusion, the mechanical 

environment and the tumor morphology, influence the rates of cell growth and death; (2) models 

that consider biological variation and adaptation that impact the proportion of tumor cells growing 

and dying, such as the impact of genetic/epigenetic mutation, the position of cells within the cell 

cycle, and most recently, the growth of cancer stem cells. Here we briefly introduce the basic 

growth laws frequently used in tumor models, then, we provide examples from both model 

categories and discuss their current contribution to clinical oncology.  

 

2.2.1 Growth kinetics 

In vitro and in vivo [37-39] experimental observations find local tumor cell population growth 

follows a sigmoidal curve. Small tumors or low-density cell populations undergo exponential 

growth. Exponential growth does not last indefinitely; instead, the growth rate decreases and often 

plateaus.  The biological mechanism that saturates cell growth is not well understood [37, 40], but 

frequently the plateau is attributed to resource restriction or contact inhibition[41]. Commonly 

used models that capture these observations include: (1) the exponential model, (2) the Gompertz 

model, (3) the Bertalanffy model, and (4) the logistic growth model. Below we provide a short 

description of each of these models and, if possible, their biological interpretation. In chapter 3, 

we will compare the growth of non-small lung cancer cells to each of these models and connect 

the measured growth rates with the cell signaling networks and the surrounding environment.  



 13 

2.2.1.1 Exponential model  

The unregulated division and expansion is one of the most fundamental observations about 

tumor[24, 25]. From the simple assumption based on cell cycle that there is a constant fraction of 

cells that are in mitosis phase, it follows that the growth of a tumor cell population is exponential 

growth, as in equation  

 
(2.1) 

 (2.2) 

where k is the fraction cells in mitosis. This model predicts that the time for a tumor cell population 

to double in cell number is constant. The exponential model captures the growth pattern of cells at 

low density or low volume, however, all known observations have shown that the doubling time 

increases as tumor cells grow larger and denser. To account for the observed slowing down, 

Mendelson proposed a modification to the exponential model based on scaling. Briefly, the number 

of tumor cells grows as the tumor volume, while the surface area of the tumor grows as the volume 

to the power of 2/3. The model assumes that the cells at the tumor surface, which are in contact 

with nutrition and oxygen, are primarily responsible for the tumor growth.  Hence:  

 

(2.3) 

 (2.4) 

The above model was tested by Dethlefsen [42]. They monitored the growth of murine tumors 

through caliper measurements in three dimesions. The modified model improved the agreement 
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with experiment, however, it still predicts the tumor will grow infinitely and thus does not fit 

experimental observations on later tumor growth. 

 

2.2.1.2 Gompertz model 

The Gompertz model was introduced to model tumor growth by Anna Kane Laird in 1964 [43]. 

Instead of a growth rate that’s constantly proportional to total tumor cell number, the Gompertz 

model assumes that the proliferating cell fraction decreases exponentially in time.  

 

(2.5) 

 (2.6) 

The Gompertzian model predicts a sigmoidal growth curve and asymptotes to a constant cell 

number as t goes to infinity.  

 

 2.2.1.3 Bertalanffy model  

The Bertalanffy model was proposed by Ludwig von Bertalanffy in 1949 [44]. This model is 

similar to the modified exponential model proposed by Mendelshon, but with an additional term 

to account for cell death. 
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Where β is a scaling factor related to natural cell loss. The Bertalanffy growth curve is also sigmoid 

in shape, and tumor reaches a steady cell number when the growth and death term are balanced.  

 

2.2.1.4 Logistic growth  

The logistic growth model considers the competition between tumor cells for resources to support 

proliferation by introducing a carrying capacity, the maximum reachable cell density/volume set 

by the environmental conditions. The general form of logistic growth is  

 
(2.9) 

 (2.10) 

where θ is the carrying capacity. Both the logistic and the Gompertzian models predict sigmoidal 

growth that asymptotes to a constant cell number, however the models differ in shape —the logistic 

curve is symmetric about the inflection point, while the Gompertz model is not.  

 

2.2.1.5 Comparison to experiment 

Despite the ubiquity of these models in the mathematical literature, few direct comparisons to 

experiment have been made. Gompertz is one of the most widely used tumor models. Some have 

found that it is a better description of in vivo data and is convenient to relate to experimental data 

[40].  The exponential decrease rate b lacks a physiological basis, however recent observations 

and subsequent modeling work have linked b to the idea of tumor self-seeding [45]. A review 

paper in 1982 suggest the Bertanlanffy model gives the best fit for 7 out of 10 tumors grown in 
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mice (induced sarcoma), and the logistic model fit best for the patient data (untreated primary 

tumor of human lung) [39]. Later work finds that the logistic model is proven to be advantageous 

in describing in vivo tumor growth of breast, lung and liver [38]. In this thesis, we also employ the 

logistic model to account for the growth kinetics of tumors. 

 

2.2.2 Apoptosis kinetics 

Mathematical modeling of cancer has primarily focused on tumor cell growth, perhaps 

unsurprisingly, as therapies found to kill cancer cells arrived centuries past the first observations 

of cancer growth. The most widespread population model for cancer cell death was initially 

proposed in the 1980’s and takes a similar form to the exponential growth model. The log-kill 

model considers that an intervention, such as a drug, will decrease the cell population in proportion 

to the total cell number  

 
(2.11) 

where k can depend on environmental variables such as drug concentration or the presence of 

oxygen. Thinking from this model drives many of the current approaches to measuring drug 

efficacy in patients, such as the RECIST criteria which measures treatment efficacy by monitoring 

the change in volume of the tumor[46]. In addition, the log-kill hypothesis drives many of the 

approaches to prescribing chemotherapies. For example, prescribing maximally tolerated dosages 

of the chemotherapy drug is directly connected with considerations that a higher k will kill a larger 

proportion of drugs. Applying drugs in combination considers that if each treatment, given in 

isolation, has an efficacy of k, then the combined treatment should have an efficacy of k1+k2.  
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          Norton and Simons[47] proposed a revision to this model by taking into account the 

reduction in cell proliferation with increasing cell number (Gompertzian or Logistic growth). In 

this approach, anti-proliferative drugs would be effective against small rapidly dividing tumors at 

a lower concentration compared with larger tumors. Since the growth rate impacts the efficacy of 

the drug, the growth and death terms are not easily separable. Norton-Simon’s predicts that the 

tumor cell number will change as  

 (2.12) 

 

(2.13) 

F(t) includes the Gompertzian growth, k is the efficacy of the drug and C describes the time 

dependent concentrations of the drug.   

          The Norton – Simmons hypothesis dominates thinking for current treatment strategies to 

maximize patient’s quality of life under treatment. Initial treatment should be given in a dose dense 

fashion and remission can be maintained by a lower dose. Both of the above models are 

counterintuitive from the perspective of rationally designed targeted therapy. First, the motivation 

behind the model stems from considerations of cancer as a disease solely of excessive proliferation. 

This perspective is consistent with the mechanisms of action from the initially successful 

chemotherapies such as the anti-folates and taxol which interfere with the mechanics of cell 

mitosis. However, targeted therapies may require a subtle change in thinking when considering 

how to appropriately model their effects.  The rationale behind the development of many targeted 

therapies considers cancer as a disease where the balance between cell proliferation and cell death 

has been tipped in favor of proliferation. Drugs are designed not to inhibit mitosis (and hence 
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protect the healthy cell populations that divide frequently) but to restore the natural dominance of 

pathways associated with cell death in tissues[24].  Second, targeted therapies are molecular 

inhibitors and thinking in terms of molecular interactions would instead suggest that a given dose 

of drug should kill a fixed number of cells (those with sufficient number of drug molecules to 

inhibit the target) as opposed to a fixed fraction[34]. In short, more work is needed to improve 

treatment response models for targeted therapy. 

 

2.2.3 Solid tumor modeling 

The above models consider the growth of a one-dimensional tumor that grows without the 

restriction of the surrounding space. Considering the complexity of tumor and tissue interactions, 

it is surprising that these simple growth models are at all predictive of tumors growing in situ. 

Modeling for solid tumors that includes spatial components seeks to improve our understanding 

of tumor growth laws and the predictive power of models by incorporating more complexity. 

          The descriptor “solid” generally refers to benign or malignant tumor tissues that don’t 

contain a liquid volume or cyst. Examples of solid tumors include those found in breast, prostate, 

and the lung. The development of solid tumor modeling has evolved for decades [48-59], see 

Figure 2.2 for a summary of major progress in this field and detailed in later part of this section. 

Imaging techniques such as microscopy, CT and MRI provide essential data for solid tumor model 

development and refinement.  
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Figure 2.2 Recent progress in cancer modeling.  
 

 

One of the earliest and influential solid tumor models was developed by Greenspan [54] and 

colleagues.  They developed a model for avascular solid tumor spheroid growth thought to apply 
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to early stage tumor development. Using a system of ordinary differential equations that models 

the tumor radius, the diffusion of nutrition, and the generation and diffusion of a growth inhibitor 

(created form the necrotic core), their model successfully reproduced the three layers of tumor 

behavior observed in histological examination of tumor spheroids, namely: an outer layer 

containing a high fraction of proliferating cells, a middle layer with viable cells that are not-

proliferating, and the necrotic core, see Figure 2.3 (1). The model predictions for tumor growth, 

namely the predicted tumor outer radius versus time also agrees well with experimental 

observations. Their model could be applied to a wide range of experimental settings by changing 

the microenvironment parameters such as nutrient level and the rate of inhibitor generation. The 

model gives an explanation to the size equilibrium of a solid tumor: necrotic cells disintegrate 

while living cells continue to occupy their original space. However, the model assumes that the 

solid tumor is spherical and symmetric all the time, thus cannot account for the morphological 

variations observed in the experiments.  
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Ordinary differential equation descriptions of tumor growth are insufficient for tumors requiring 

more than one spatial variable.  To model the growth of tumors without spherical symmetry, 

Gatenby et al [60] proposed a reaction diffusion model (system of partial differential equations) 

to examine the impact of metabolism on pH and cancer cell migration.  The authors assume that 

the glycolytic metabolism of tumor cells creates an unfavorable high pH environment for normal 

tissue.  The high pH promotes the death of normal cells and the degredation of the ECM , hence, 

promoting the invasion of tumor cells into normal tissue. The reaction diffusion model considers 

the tumor tissue’s spatial distribution, normal tissue’s spatial distribution and the local pH level 

(see Figure 2.4.1), to describe the microscopic scale population interactions occurring at the tumor-

  

Figure 2.3 Examples of Tumor Morphologies. (1) Schematic plot of commonly 
observed solid tumor sphere: outside layer of fast proliferating cells, middle layer of 
non-division cells and inner most necrotic core. (2) Schematic plot of angeogenesis 
process: the tumor cells cluster secrete tumor angegenesis factor (TAF) that tract 
endothelial cells to migrate towards the cluster. The migration process is generally 
composed of directed growth towards tumor cluster through sprouting and branching. 
The loop formation of two sprouts contributes to the network formation of the 
endothelial cells.  
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host interface. They successfully reproduced the experimentally observed pH gradient extending 

from a tumor into surrounding tissue and found that the velocities of the expanding tumor front 

generated in the model are consistent with in vivo tumor growth rates. They predicted a previously 

unrecognized hypocellular interstitial gap later found experimentally both in vivo and in vitro. 

However, their model doesn’t account for the genetic changes and the appearance of central 

necrosis, and neither did they consider the environmental variations other than pH levels. 

 

 

 

 

The reaction diffusion model is a common backbone for explorations of tumor growth in tissues. 

The group led by Kristen Swanson[61] has extended the use of this model to describe glioma 

  

Figure 2.4 Illustration of experimentally observed chemical gradients. (1) NHE-1 
staining (darker brown) of up-regulated Na+/H+ transporters towards the necrotic 
core shows a decrease in PH. (2) Immunohistochemical staining of tumor spheroids 
where increasing darker brown (increasing positivity for pimonidazole protein 
adducts) in the outward center direction indicating the decrease in oxygen. n indicates 
the necrotic core, bar is 50um. Figures are taken from[51] with journal’s permission.  
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growth in the brain. Glioma is one of the most fatal cancer types that has a doubling time as little 

as 1 week and could expand throughout the central nervous system [62]. The Glioma is detectable 

by MRI at densities above 40,000 cells/cm3. Briefly, the tumor can both grow locally and extended 

into space. The tumor cell motion into space is random, but the mobility of the cells depends on 

the local composition of the tissue (mobility is higher on white matter than on grey matter).  The 

model then contains 3 parameters (two diffusion constants and one growth rate). To constrain the 

parameters, Swanson et al reexamined serial MRI scans reported by Tracqui [63]. From 

measurements of the growing tumor, they related the speed of the advancing boundaries to tow 

times of square root of diffusion coefficient times proliferation rate. From these parameter 

estimates, they compare the model predictions for the actual tumor boundary to the detection limits 

of clinical imaging and suggest that too many tumor cells are remaining behind from surgical 

removals guided by imaging margins. 

          The basis of the Swanson group’s efforts considers that a reaction diffusion model with 

constant parameters is a reasonable description of glioma growth, however the predictive power 

of the model and the parameter estimation by DW-MR images had not been examined. Motivated 

by the Swanson group’s approach, Hormuth et al [58] tested the accuracy of a similar model and 

DW-MRI (see Figure 2.5) constrained parameters applied the reaction-diffusion tumor growth 

model to glioma growing in rat brains. They first used an in silico study to test whether DW-MRI 

in the presence of experimental noise can constrain the model parameters sufficiently well to allow 

for the model to make predictions of tumor evolution at later times. They found that the predictions 

made by the model matched the original tumor evolution well (concordance correlation coefficient 

(CCC)>0.8).  However, the similarly constrained model applied to in vivo tumor growth was less 

successful in predicting subsequent growth (CCC < 0.33).  Later work by Weis et al [59] examined 



 24 

simple considerations to improve the model predictive power for in vivo data such as a including 

a mechanically coupled diffusion constant, such that the motility of the cancer cells depended on 

the displaced healthy tissue, and a carrying capacity that varies in space. Their biomechanical 

model projected the tumor residual after neo-adjuvant therapy with high person concordance 

correlation (PCC=0.84), indicating promising potential of predictive modeling using MRI and 

mathematical models.  

 

 

 

Figure 2.5 (1) Apparent Diffusion Coefficient (ADC) maps using diffusion 
weighted (DW) MRI overlaid on T1 structural image. (2) Converted cell number 
distribution based on image series in (1). Figure is extracted from [64]with journal’s 
permission. 

 

 

Reaction diffusion models of tumor growth can incorporate spatial variation in model parameters 
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(diffusion and cell growth). For instance, the Swason’s group considers a link between hypoxia 

and tumor aggressiveness using multimodality imaging technologies[11]. Hypoxia is often 

suggested to be causally linked with radiotherapy resistance and tumor malignancy, see Figure 2.4 

(2). They monitored 11 patients’ glioma progression prior to surgery by both sequential MRI and 

PET. Sequential MRI is combined with diffusion reaction of model of tumor growth to infer tumor 

proliferation rate (ρ) and invasiveness (diffusion coefficient D). F-fluoromisonidazole (FMISO) 

based PET is used to indicate the oxygen level related hypoxia inside the tumor. They found strong 

correlation between hypoxic burden and active proliferation, but not between hypoxic burden and 

invasiveness, indicating increased proliferation is more likely to cause hypoxia compare to the 

invasive capability. Their work was innovative in the employment of a multi-mode imaging 

technique, and the application of bio-mathematical models to draw insights on the cause of 

hypoxia.  

          The above models describe a tumor’s persistent growth into a relatively inert tissue. They 

are specifically formulated such that most of the parameters can be constrained by clinical imaging 

and hence models can be made patient specific. Another aspect of solid tumor modeling that is of 

vast interest is on angiogenesis. Angiogenesis can be found in wound healing, arthritis, and chronic 

inflammation. Folkman and Klagsbrun found solid tumor secretes a collection of chemicals now 

generally referred to as tumor angiogenic factors(TAF), which attract endothelial cells to migrate 

towards the solid tumor and eventually lead to the angiogenesis[65]. Works by Chaplain’s 

group[56] is representative of the deterministic modeling effort in this aspect. In their simplified 

model, they monitored the growth of tumor and endothelial cells, assuming that the flux of tumor 

cells originated from both diffusion and taxis towards higher capillary cell density, and that the 

proliferation and apoptosis of tumor cells depend critically on the nutrient level supplied by the 
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blood vessels. Though their model is too simple to explain the detailed spatial progression of 

angiogenesis, it gives quantitative estimate of the tumor expansion speed.  

          More recent modeling work on solid tumor angiogenesis includes more detailed vasculature 

formation process in solid tumor. At first, endothelial cells sense the TAF secreted by solid tumor 

cells, and begin to migrate towards the gradient of TAF. The migration and proliferation of 

endothelial cells lead to the formation of finger like capillary sprouts. These sprouts go on forming 

connected loops (the process known as anastomosis) and eventually the capillary network that 

gives rise to the eventual vascular structure, see Figure 2.3 (2) The interaction between endothelial 

cells and extracellular matrix (including collagen fiber, fibronectin, etc.) is also found to be critical 

for the directed migration and cell adhesion[55]. Anderson and Chaplain in 1998[48] use a 

combination of stochastic discrete model and deterministic continuum model that is capable of 

addressing the above observations. The continuum model assumes that the migration of endothelial 

cells is governed by random mobility, chemotaxis to TAF gradient, and haptotaxis in response to 

fibronectin gradients. The discrete stochastic part models the random work, sprouting, and loop 

formation of the endothelial cells. Both parts are necessary to generate overall expansion and 

specific form of capillary growth in the angiogenesis process. It is one of the earliest example of 

multi-scale modeling of solid tumor.  

          Finally, it is worth noting the unique approach by Cristini’s et al [50-53] to capture the 

complex morphologies during tumor growth. A continuum model of adhesion is created that is 

thermodynamically consistent—the authors introduce Helmholtz free energy to consider the cell 

movements resulting from cell-cell and cell-matrix adhesion forces. From numerical analysis, they 

conclude that for colonies with strong cell-cell adhesion, the colony boundaries tend to be smooth, 

while with weak cell-cell adhesion, it’s likely the boundaries become fractal like, and prone to 
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develop invasive fingers. Their modeling methods are strongly influenced by concepts in 

thermodynamics, and is a typical example of physics models applied in biology.  

 

2.2.4 Stellar example: linear quadratic model in Radiotherapy  

Note in this thesis, we do not consider radiotherapy, however mathematical modeling provided 

considerable insight into how to best apply radiation therapy and we wanted to include this 

beautiful work here.  

          One of the most prominent applications of mathematical modeling in clinical oncology is 

the linear quadratic model in radiotherapy. In vitro studies, mouse models, and human clinical 

trials have been conducted to apply and test the quantitative predictions of the dosing and 

fractionation’s effect on radiotherapy. We list the details of model framework, application, and 

contribution to clinical oncology here. We aim to show how mathematical modeling has been used 

in clinical oncology and point out its limitations to guide similar works in the future.  

 

2.2.4.1 The formula  

The inspiration for the linear quadratic model originated from the seminal work of Puck and 

Marcus[66] where they exposed in vitro mammalian cells to radiation and measured the cell 

survival rate S from a single radiation dose versus the amount of drug dosage D. The S vs D curve 

shows two regimes (1) a relative slow cell kill at low dosage (2) the linear (in log scale) drop of 

cell survival fraction at higher dosages.  
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The high dose response can be described by a linear model:  

cDSIn +−= α)(  (2.14) 

where c is a fitting constant. When D=0, S=1 (no treatment no death of tumor cells), implies that 

the fitting constant is 0 so that the surviving fraction depends exponentially on the dose,  

)exp( DS α−=  (2.15) 

A simple modification to the above expression includes a quadratic term to the model. This 

accounts for the relative slow cell kill (the so-called ‘shoulder’ in many literature, close to that of 

a quadratic function) at low dose delivery is to add the quadratic part  

2)( DDSIn βα −−=  (2.16) 

)exp( 2DDS βα −−=  (2.17) 

 

2.2.4.2 The application  

As was the case for the log kill model, the above simple and descriptive approach has profound 

practical implications on the scheduling of radiotherapy and the dose fractionation in order to 

optimize normal tissue preservation.  

(1) Dose Fractionation  

In external beam radiotherapy, the model can be used to consider how the therapy should be 

administered, for instance, total radiation dose D could be administered in n fractions, each a lower 

dose than the one before.  
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 (2.18) 

If tissue of interest is dominant by the linear kill, effect of a single total dose  

 (2.19) 

is equivalent to the effect of n fractions of radiation dose of the same total 

 (2.20) 

 (2.21) 

 (2.22) 

as . In comparison, if the tissue of interest is dominant by the quadratic kill, the effect of a 

single total dose  

 (2.23) 

has more cells killed than the fractionated dosing;  

 (2.24) 

 (2.25) 

 (2.26) 

as S1’< S2’. 

(2) Normal Tissue Preservation 

ndD =

)exp(1 DS α−=

)exp()...exp()exp(2 dddS ααα −−−=

)exp(2 ndS α−=

)exp(2 DS α−=

21 SS =

)exp(' 2
1 DS β−=

)exp()...exp()exp(' 222
2 dddS βββ −−−=

)exp(' 2
2 ndS β−=

)/exp(' 2
2 nDS β−=
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One widely used measure to illustrate the domination of linear or quadratic kill is the value of α/β, 

the so-called fractionation sensitivity. When α/β is high, tissue is relatively more dominant by 

linear kill, so that fractionated dosing has similar effect to a single high dosing. Consequently, 

when α/β is low, fractionated dosing is not as effective. As it turns out, many cancer tissues usually 

have higher α/β value, indicating the fractionated radiation dosing achieves similar effective kill 

of tumor cells while preserve the integrity of normal tissue. Here we listed in table the clinical 

reference of the estimated α/β value of various tumor tissue and healthy tissues. 

 

 

Normal Tissue Low α/β  

Lung 3.5 

Skin 3.7 

Cord(myelopathy) <3.3 

Tumor tissue High α/β 

Lung 50-90 

Skin 8.5 

Cervix >13.9 

Vocal Cord >9.9 

 
Table 2.1 α/β values for normal and tumor tissue. The listed information is extracted from reference 
[67].  
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(3) Biologically effective dose 

As an application of linear quadratic model, the concept of biologically effective dose (BED) is 

proposed in 1999[68]. The BED estimates the total dose required to achieve the same cell kill as 

the studied single dosing D and aims to generalize the result of any treatment regime in 

radiotherapy based on rate of fractionation, total dosing and total treatment time, talking the form: 

 (2.27) 

where n, d, α and βare same parameters described in previous sessions, adding T as the total 

treatment time, Tk (k is abbreviation of kick-off) is the delayed time for repopulation, and Tp for 

cell doubling time. 

 

2.2.4.3 The effectiveness and limitation 

The application of LQ model has proven to be effective in explaining tumor response, and used as 

a practical tool to guide radiotherapy[69]. Several treatment strategies have been since derived 

from LQ model including hyperfractionation, hypofractionation, and accelerated fractionation. In 

hyperfractionation, total radiation dose and treatment duration remains roughly the same, but dose 

per fraction is decreased and. The LQ model hypothesizes this strategy will conserve low (α/β) 

tissue while effectively kill high (α/β) tissue. Such prediction is validated by clinical trials on 

breast, neck and head tumor [70, 71]. On the other hand, hypofractionation that composes higher 

per fraction dose are recommend for tumors that have lower than normal tissue (α/β) index, such 

as prostate tumor [72, 73]. Such hypothesis is also validated by multiple clinical trials [74, 75].  

 

PK TTTIndnd αβα /)(2])//[1(BED −−+=



 32 

          Despite the popular application of radiation therapy in cancer treatment, the biological 

process involved in cell apoptosis under radiotherapy remains elusive. One popular hypothesis[69] 

to explain the linear-quadratic model is that the radiation caused double-stranded breaks of DNA 

that is proportional to radiation dose, and further damage is caused by chromosomal aberrations 

as consequence of mispairing the broken DNA. Many other hypothesized biological process can 

be explained by the mathematical equations of the same form. The view of LQ model is still 

controversial. Zaider[76] argues, the LQ is useful but this mathematical model doesn’t represent 

the cellular processes, while Box[77] famously stated ‘All models are wrong, but some are useful’. 

As more understanding on the molecular biology in cancer is needed, we take the value of the 

second as the motto of this thesis: we don’t aim to build the complete model of tumor drug 

response, but to have effective model to guide resistance detection.  

 

2.3 Biology of drug and radiation resistance 

For a given drug therapy to be effective, it is essential that an active form of the drug binds the 

targeted molecules in the cancer cells or on the surface of the cancer cells, see Figure 2.6. Each 

therapy except for surgical treatment must go through the pharmacokinetic process: (1) drug 

absorption, distribution, metabolism, and elimination; (2) be delivered inside cancer cell by cell 

membrane transporters; (3) maintain actively effective form upon arriving at targeted cells. 

Resistance to a given therapy could occur due to disruption at any of these steps. Even drugs can 

be delivered to the cancer cell, the de novo and acquired resistance of cancer cell can largely limit 

the effectiveness of therapy. The de novo resistance is referred to the intrinsic resistance to drug 

even before its administration. As tumor tissue is composed of a spectrum of tumor cells which 

vary in the types and number of proteins expressed, it is reasonable to consider some tumor cells 
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as are more resistance than others even before the drug is applied. Indeed, through single cell 

tracking, Tyson et al[78, 79] found that a commonly studied non-small cell lung cancer line (PC9), 

contains cells whose intermitotic follows exponentially modified Gaussian distribution, and 

distribution shifts systematically according to the external drug perturbations.  

 

 

 

Figure 2.6 The drug cycle and general mechanism of drug resistance. At first the 
pharmacokinetic process: absorption, distribution, metabolism and elimination 
decide the amount of drug reach to cancer cells. Then the cancer cell surface 
transporters limit the amount of drug effectively go inside cancer cells. Eventually, 
different levels of de novo and acquired resistance oppose effective cellular 
damage by the drug. Figure is adapted from reference [80] with journal’s 
permission.  
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Acquired resistance develops after drug administration when either the target changes itself 

through mutation, or the tumor activate another functionally equivalent pathway that doesn’t 

depend on the target, and in a broad sense, the evolved microenvironment that keeps the drug 

from the target. Below, we mention a few known mechanisms that contribute to resistance to 

cancer therapy.  We deliberately focus on mechanism which could contribute to de novo 

resistance, though there is overlap with acquired resistance pathways. 

          For many targeted and chemotherapies to be effective, the drugs must exist at sufficient 

concentrations within the cell in order to bind their cellular targets.  In multi-drug resistant tumors, 

a cell membrane transporter protein increases the transport of drug therapies out of the cell.  These 

transporter proteins, such as MBR1, may be over expressed in tumor cells prior to the 

administrated drug (de novo resistance), or their synthesis could be induced by the therapy 

(acquired resistance). Similarly, other observed resistance mechanisms for both cytotoxic 

chemotherapy and targeted molecular therapy include the increased drug target expressions, drug 

inactivation and elimination, induced activation of pro-survival signaling, deregulation of 

apoptosis, resilient DNA damage repair system. Drug resistance mechanism is a complex subject, 

and an evolving research field. Interested reader can refer to [80] for more detailed information on 

this subject.  

          Tumor heterogeneity and de novo resistance is also linked to the hypothesis that a small 

number of cancer stems cells (CSC) act as the driving force for cancer recurrence, and the 

elimination of CSCs is critical for the improvement of cancer survival. A cancer stem cell, as its 

name suggests, is the cancer cell that possesses stem cell like properties: infinite self-renewal, and 

the ability to differentiate into multiple cell types.  CSC’s were first reported in 1997 when 

researchers found cells within the tumor that share similar markers as stem cells that give rise to 
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the tissues of the same origin. Using these stem cell markers, such as the expression or depletion 

of cell surface markers (eg. CD34+, CD38), CSC’s have been found in a wide range of cancer 

types including acute myeloid leukemia, brain, breast, colon, ovary and so on[refs. The 

significance of the CSCs is still a topic of debate in the research field [81]. Targeted therapy on 

CSCs were subsequently discovered to control specifically the growth of CSCs.  

          The tumor microenvironment strongly influences treatment resistance. Regions with low 

oxygen (hypoxia) are widely observed in solid tumors due to tumor cells’ rapid growth and 

adaptability. As oxygen is a component of the apoptosis pathway, cells that continue to proliferate 

and thrive in hypoxic regions are often less sensitive to radiotherapy and drugs administered 

through the blood are less likely to reach their targets. Therapies that impact the vasculature, such 

as anti-angiogenesis treatment or radiotherapy can either cause or exasperate hypoxic regions.                                                                  

          Tyson’s group[82] examined another potential causes of tumor resistance through activation 

of redundant pathways, more specifically, the acquired resistance of breast cancer cell to endocrine 

therapies caused by the compensatory functions between estrogen receptor(ER)-regulated and 

growth factor receptor(GFR) regulated survival signaling pathways. In other words, inhibiting 

either of the two pathways will activate the other, resulting the survival of cancer cells under drug 

therapy. Experiments conducted by Liu et, al [83] showed that breast cancer MCF7 sub-closes 

transfected with GFR (HER/EGFR) displays three GRF distributions patterns that depending on 

the E2(primary estrogen in breast tumors) level. They modeled the three distribution patterns as a 

bi-stable biological switch with epigenetic component using system of ODEs and stochastic 

simulations. Their works shows how mathematical modeling can be used to draw insights on tumor 

resistance mechanism on the molecular level. 
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          One example of using mathematics to inspire biological study is presented by Levy’s 

group[84]. Their study is based on a clinical trial published in 2009 [85], where Chronic 

Myelogeneous Leukemia (CML) patients receives imatinib as main treatment, and achieves 

survival rate of 88% after 6 years follow up. Levy et al took the hypothesis that the death caused 

by drug resistance is mainly driven by cells that have self-renewal capability (such as the cancer 

stem cells), and use a stochastic growth model of cancer stem cells to explain the clinical data. 

After applying estimated parameters such as resistance mutations rate at 4e-7 per division, cell 

birth and death rate ratio (turnover rate) at [0.1-0.5], they concluded cancer stem cells in CML are 

more likely to divide symmetrically (into two cancer stem cells) rather than asymmetrically (into 

stem cell and progenitor cell), in order to account for the transition from chronic phase to acute 

phase of CML in the not survived patients. Though the estimated parameters such as mutation rate 

and turnover are difficult to measure and or test, their mathematical modeling work does provide 

an intriguing prediction to be tested by molecular biologist, and further our understanding of tumor 

drug resistance. 

 

2.4 Mathematical models of drug response and resistance management 

One of the earliest models of drug resistance can be found in Coldman’s paper in 1985[36]. At the 

time of the publication, surgery, radiotherapy, and chemotherapy were the major strategies for 

cancer treatment. While recognizing the existence of inherent resistance to chemotherapy, their 

model focuses on the acquired resistance that is due to random genetic mutation. The major 

assumptions in their model include constant rate of tumor cells growth rate and death rate for the 

sensitive tumor cells, and fixed mutation rate for drug resistance. Their simplified model predicts 

that as tumors grow larger, the number of resistance cells increases and likelihood of cure decreases 
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exponentially. The impact of these model discoveries can clearly be seen in clinical practice. 

Cancer is frequently staged based on the size of the solid tumor is consistent with thinking that 

large tumors are more likely to have more resistant mutations. Therapy should be given as early 

as possible as these tumors are less likely to have mutations leading to resistance. Drug 

combinations are as good as, if not better than, single-agent therapy and the order of application 

doesn’t matter.  

          Subsequent approaches consider the order in which drugs should be administered[15] [13, 

14, 36]. Day considers the evolution of tumor cells within a heterogeneous colony as a continuous 

stochastic multi-type branching process, where one cell type produces off-springs of random type 

according to certain probability distribution. Under the cyclic treatment of two drugs—drug A and 

B, the cells are divided into four types: sensitive to both A and B, resistant to either A or B, and 

resistant to both. The four cell types are related to their particular growth rate, death rate, and cell 

kills rate under each drug. Practical implementation rules are given first by Day[14], generally 

referred as ‘worst drug rule’, stating it’s better to apply less potent drugs at first and for longer 

period. Limited by computation cost at the time, Day only explored 16 treatment strategies of two 

non-cross-resistant drugs [14]. Work by Komarova et al [15] expand the investigation to cross-

resistant drugs, and find in most cases best-drug first and worst-drug longer is more suitable. 

Though these models lack biological complexity of drug intake, drug synergy and resistance 

development, their approach is logically rigorous and representative of rational planning for drug 

administration.  

          Recently this modeling approach has been extended to include tumors which reach a finite 

size due to logistic or Bettany model factors [86]. The authors consider that each cell that replicates 

has some probability of acquiring a mutation, some of which could confer resistance, but no 
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mutation is selected unless treatment is applied. Hence, many potentially resistant mutants die out 

before therapy. They compute the probability that a given treatment will completely kill a tumor 

and find the length of time required to kill all sensitive cells. Their model could be used to update 

the risks to the patient for delaying treatment.  

          Another promising approach to integrate tumor modeling with molecular biology test is 

presented by Michor’s group [87]. They compared genetic and phenotypic features of 47 breast 

cancer patients’ biopsies pre- and post- neo-adjuvant therapy. Genetic features are extracted from 

immunoFISH-based analysis of four commonly amplified chromosomal regions in breast cancer-

- 8q24.3, 10p13, 16p13.3, and 20q13.31. Epigenetic features are extracted from the staining of 

CD44 and CD24 surface marker. Based on their treatment response, patients are classified as 

pathological complete response (pCR) and pathological partial response (pPR) or stable disease 

(SD, in other words, no response). They found for partial and no response patients, the intra-tumor 

phenotypes shift significantly while intra-tumor genetic diversity maintains at the same level. Also 

interestingly, patients with completed pathological response have significant lower pretreatment 

genetic diversity. 

          The author proceeds to use proliferation marker Ki67 to constrain a 2D stochastic agent 

based tumor model, and found it’s necessary to add phenotypic switching term to the proliferation 

model to explain the phenotypic distribution presented in partial response and no response patient. 

No constant switching rate could account for the discrepancy between simulation and observed 

patient data, indicating the switching rate should be dependent on other factors such as cell 

migration. We recognize analysis on the selected a few genomes and surface protein markers is 

not fully representative on the whole-genome based clonal architecture within a tumor. Before the 

whole genome sequencing of bulk tumor and single cell becomes more accessible, such 
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quantitative approach shows a promising step to build tools that integrate mathematical model with 

patient-specific molecular information to predict the treatment response. 

          Recent modeling works [27, 88] related to Chronic Myeloid Leukaemia (CML) provide 

interesting insights in CML therapy strategy. In 2005, Michor’s group [27] studied the real-time 

PCR tracking of the BCR-ABL oncogene in 169 patients under imatinib therapy. They used 

deterministic ODEs to model CML as a four compartment system that consists of CML stem cells, 

progenitor cells, differentiated cells, and terminally differentiated cells. They proposed that 

imatinb works by preventing stem cells proliferation into progenitor cells, but is not as effective 

in eliminating stem cells. They argue that the probability of mutations increases with the treatment 

progression as leukemia stem cells grows in abundance. Their model successfully captured the 

drug response as well as relapse of CML. In the end, they recommended multiple drug therapy for 

rapidly growing disease. An interesting contrast to Michor’s work is presented by Loeffler’s group 

[88]. They used similar experimental method to track the CML cells in patients of two independent 

patient sets under imatinib treatment. Instead of modeling imatinib as limited elimination for CML 

stem cells, they assume imatinib works selectively on proliferating leukemia stem cells— 

accelerating their degradation and inhibiting their proliferation. Their model, too, successfully 

reproduced the key characteristics in the experimental data sets: the 5-7 years CML latency, bi-

phasic decline in malignant CML cells under imatinib and the rapid relapse of malignant CML 

cells after treatment ceases. The authors propose an unconventional strategy to improve imatinib 

efficacy by combing imatinib treatment with proliferation-stimulating treatment. They proved that 

diverse models can reproduce the similar experimental results, yet yield different and even 

surprising treatment recommendations. Nonetheless, they both provide unique insights to the 
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existing experimental data. More molecular biology experiments are needed to test the validity of 

the hypothesis proposed in these two models.  

 

2.5 Summary of the chapter 

As seen from the historical development, the field of cancer treatment has evolved from an 

empirical practice of trial and error (eg. early mastectomy, discovery of cytotoxic chemotherapy, 

the introduction of radiation therapy) into a more logical system that designs treatment based on 

the increasing understanding of cancer (eg. the clinical trials of adjuvant and neoadjuvant therapy, 

the discovery of molecular targeted therapy).  

          The view of tumors has shifted from masses of fast proliferating tumor cells into a complex 

tissue where multiple colonial subtypes function collaboratively for survival and expansion. After 

decades of study of this complex disease, a comprehensive framework of cancer development is 

beginning to emerge. As suggested in the milestone paper by Weinberg and Hanahan [24, 25]the 

development of cancer is a multi-step process that usually involves sustained proliferation, 

uninhibited growth, reduced cell death, unlimited replication, activation of angiogenesis, and 

metastasis. 

          Along with the development of cancer treatment and our understanding of the biology of 

cancer, tumor modeling has evolved address available experiments at the time and guide cancer 

therapy for better outcome. The application of Linear Quadratic model in radiation therapy sets 

promising example for addressing tumor models in chemotherapy and others for strategic optimal 

therapy. With the development and wide application of clinical imaging, we witness the emergence 

of more comprehensive patient specific tumor models that contain proliferation characteristics, 

function dynamics, and environmental factors. This interdisciplinary approach for better 
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understanding and management of tumor has proven to be one of the essential factor in cancer 

treatment. Our work in this thesis aligns with efforts in this direction.    
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3. EXPERIMENTS INSPIRED MODELS 

 

As outlined in chapter 2, a tumor is a complex system of cells that are diverse in functionality, 

heterogeneous in reproduction, capable of complicated evolution, and survive despite stressful 

environments.   Testing a comprehensive and clinically relevant mathematical model that 

addresses all these processes is made exceedingly difficult as the parameters matter and can not 

yet be determined for each patient.  In consequence, we propose to use a simplified model for 

tumor growth that can be constrained by available clinical imaging and used to predict therapy 

outcome. We first describe the ordinary differential equations (ODEs) used throughout the thesis 

to model tumor response to therapy. We demonstrate how a simplified two state model with 

sensitive and resistant phenotypes could be realistically applied to a wide range of tumor drug 

responses. Then we describe how the ODE models could be adjusted to partial differential 

equations (PDEs) to include spatial components. The PDE models can be used to capture tumor 

cells’ spatial interaction and overall morphological evolution. The current commonly used 

independent diffusion PDE model for multi-phenotypes interaction ignores the spatial occupation 

of foreign phenotypes. We introduce a new size-exclusion diffusion model to model cells’ 

migration taking into account of all phenotypes’ presence in space. 

 

3.1 Simplified two-state tumor progression model – ODE  

 

3.1.1 Model description 

Cancer is an extremely robust system, and survives under both internal and external 

perturbations[89]. One of the key contributors to this robustness is tumor heterogeneity: in both 
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functionality and proliferation [24, 25, 89]. Quaranta Lab shows that the sublines of Non-small 

cell lung cancer (NSCLC) PC9 parental cell line cell grows distinctively before and after targeted 

therapy, and in each case, cells exhibit a wide range of proliferation rates (see details in Chapter 

6). In our simplified two-state tumor model, we categorize cell sublines into either sensitive or 

resistant category based on their drug response. Without targeted therapy, we assume that all the 

cell lines grow logistically, which explains a fast exponential growth at low confluency and a slow 

proliferation at high confluency. Under targeted therapy, cell lines either follow the same logistical 

growth as they were without targeted therapy (we call these cells resistant to targeted therapy), or 

they go through apoptosis following the exponential decay (we call these cell lines sensitive). We 

use equation 3.1 to represent this differentiation among tumor cells.  

 (3.1) 

Where NT is the total number of cells, NS is the number of cells categorized as sensitive phenotype, 

and NR is the number of cells categorized as resistant phenotype. 

          It’s found both of tumor cell proliferation rates with and without targeted therapy are 

heterogeneous and span close to a continuous spectrum (see details in Chapter 6). Thus the growth 

of cell mixtures can be described by the summation of all the individual cell lines. For all sensitive 

phenotypes under drug treatment, we can capture the total sensitive phenotype’s growth as a 

summation of all sensitive cell lines with corresponding exponential decay rates, as shown in 

Equation (3.2) and (3.3) 
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(3.3) 

Where Ns is the total sensitive cell number, NS
(j) is the individual sub cell line at corresponding 

decaying rate kS,d
(j). 

          Correspondingly, for resistant phenotype under drug treatment, we can capture the total 

resistant phenotype’s growth as a summation of all resistant cell lines with corresponding logistic 

growth rate, see Equation (3.4) and (3.5) 

 

 (3.4) 

 

 (3.5) 

Where NR is the total resistant cell number, NR
(i) is the individual sub cell line with corresponding 

growth rate kR,p
 (j). 

          We simplify the multiple phenotypes model to a two state model, where each tumor tissue, 

even the individual cell lines involved may have distinct growth rates or death rates, can be 

described as two phenotypes grow or decay at averaged rate. That is, still following the 

conservation in (3.1), the growth of all sublines can be simplified to only two variables and two 

parameters, see Equation (3.6) and (3.7).  

 (3.6) 
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3.1.2 Simulation validation  

To further demonstrate the rationale of our approach, we compare the growth curve of the 

summation of ten individual growth curves with distinctive growth rate and that of one growth 

rate. As for sensitive cell lines’ drug response, we first generate 10 individual drug response curves 

with the decay rate ranging from -0.035/day to -0.08/day with -0.005/day interval. Each of the 

sublines has an initial cell number of 0.07θ. In Figure 3.1 (1), we show those drug response curves 

with distinct colors, and faster decaying curve corresponds to the smaller decay rate. We then use 

the summation of all the ten curves to fit into Equation (3.6) using MATLAB build-in function 

lsqnonlin(). We obtain a single decay rate of -0.547/day, meaning the optimized decay rate of the 

simplified model. As shown in Figure 3.1 (2), the summation of the individual response curves 

(black) and the response curve generated from the simplified model are nearly identical, indicating 

the validity of our hypothesis. In summary, sensitive phenotype that is composed of 10 distinct 

sensitive cell lines at decaying rate ranging from -0.035/day to -0.08/day can be described as one 

phenotype at decay rate -0.0547/day.  

          As for resistant cell lines that grow logistically under drug treatment, we first generate 10 

individual drug response curves with the growth rate ranging from 0.015/day to 0.06/day with 

0.005/day interval. Similarly, each of the sublines has an initial cell number of 0.07θ. In Figure 

3.1 (3), we show those drug response curves with distinct colors, and faster growing curve 

corresponds to the larger growth rate. We then again use the summation of all the ten curves to fit 

into Equation (4.7) using MATLAB build-in function lsqnonlin(). We obtain a single decay rate of 

0.038/day, which is the optimized growth rate of the simplified model. As shown in Figure 3.1 (4), 

the summation of the individual response curves (black) and the response curve generated from 

the simplified model are again nearly identical. In summary, resistant phenotype that is composed 
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of 10 distinct sensitive cell lines at growth rate ranging from 0.015/day to 0.06/day can be 

described as one phenotype at growth rate 0.038/day.  

 

 

 

Figure 3.1 (1) A series of ten sensitive tumor drug response curves following 
exponential decay at rate ranging from -0.035day-1 to -0.08day-1. (2) Comparison 
between summation of all curves in (1) (black) and one tumor response curve 
following exponential decay at rate -0.0547day-1 (red). (3) A series of ten resistant 
tumor drug response curves following logistic growth at rate ranging from 
0.015day-1 to 0.06day-1. (4) Comparison between summation of all curves in (1) 
(black) and one tumor response curve logistic growth at rate 0.038 day-1 (red).  

 

 

3.2 Single phenotype tumor progression in space – origin and application 

We can easily extend ODE models described in 3.1 into PDE model of higher dimension (1D, 2D   
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and 3D) by adding a spatial interaction term. As described in Chapter 2, one of the most widely 

used models to account for the expansion of tumor in continuum space (macro) is diffusion, and 

in discrete space (micro) is random walk [90]. The first study of random walk and diffusion 

equation dates back to 1827 when Robert Brown observed under microscope the random motion 

of pollens suspended in water. Such observation is later explained by random walk model, which 

states each molecule at every given moment has equal probability to move one step towards any 

possible direction. Using statistical method, one found that the probability of distance traveled by 

single molecule after a period of time is Gaussian distributed, and the standard deviation of such 

distribution is proportional to the square root of time. On the macro scale, such Gaussian 

distribution can be explained by Fick’s law. The Fick’s first law states solute molecules move from 

high concentration region to low one, with a flux proportional to the concentration gradient (see 

Equation 3.8).  

 
(3.8) 

where J(x) is the flux, Ф(x) is the solute molecules’ concentration, D is the Diffusion Coefficient, 

and x is the spatial coordinate. Constraining the first law by mass conservation, Fick’s second law 

states that change of concentration of the solute molecules in time is proportional to its second 

spatial derivative (see Equation 3.9). 

 
(3.9) 

          We apply the continuum diffusion model to the single phenotype cell growth in space. For 

simple demonstration, we take 1D model as an example, see Equation 3.10.  
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(3.10) 

Where N(x,t) is the cell density as a function of time and space, D is the diffusion coefficient, and 

f(N(r,t)) is the function related to cell number change through natural growth, drug response or 

both. When the tumor tissue density is heterogeneous, cells migrate along the density gradient at 

rate positively correlated with D.  

          This diffusion term can be used to reproduce tumor tissue’s morphological changes over 

time. As shown in Chapter 2, reaction diffusion equations have been applied in cancer modeling 

for more than two decades. It effectively captures the tumor spheroid growth in 3D [60], explains 

the tumor metastasis[61] and more recently matches the morphological evolution observed in 

clinical imaging[9, 10, 57, 58].  

 

3.3 Multi-phenotypes tumor progression in space  

For mixed phenotypes growing in space, the first intuitive approach is to model each species as 

independent to each other, such as what has been done previously by other groups [50, 52, 53, 61], 

see Equation 3.11 and 3.12.  

 

(3.11) 

 

(3.12) 

Where each cell phenotype migrates along its own density gradient. However, it ignores the factor 

that cell’s migration is restricted by the occupation of space from other phenotypes as well. Indeed, 
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cell random walk in space is rather different from molecule random motion in solute. According 

to the hard sphere model, the packing fraction of ideal gas is approximately zero, that of liquid 

ranges from zero to 0.494, and that of solid is above 0.494. Note the packing ratio of random 

spheres, similar to that of cells packing in space, is close to 0.638. Thus the random motion of cells 

in space is more similar to solid rather than liquid. The assumption that multi-phenotype cells 

migration in space in the way of ideal gas/ liquid will overestimate the extent of mixing (the depth 

of penetration into another phenotype) between species.  

          Another intuitive approach that attempts to damp the speed of diffusion is to assume the 

original diffusion term to be constrained by the ratio of each species of total cells, as shown in 

Equation 3.14 and 3.15 

  (3.13) 

        (3.14) 

 (3.15) 

Or similarly, one assumes that the second derivative of the diffusion term is constrained by the 

ratios of each species of total cells.  

 (3.16) 

   (3.17) 
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However, both of the above two approaches failed the mass conservation test in our simulation, 

and more fundamentally lack rigorous rationale.  

          Similar subject to multi species interaction has been identified by ecologists[91], and we 

take inspiration from modeling work by Burger et al [92] on population dynamics, where 

interactions of species are ubiquitous (eg. the predator and prey relation), and the spatial spread of 

multiple species in ecological system are similar to that of cells in microenvironment. On the micro 

level, the model suggests the probability of one specie’s migration to an adjacent space is 

proportional to the density at its local position, and the empty space in adjacent space. 

 

 (3.18) 

Where Pi
+ is the probability of migration into positive (arbitrary) direction for species i, Ni is the 

number of species i, N+
j is the number of species j in adjacent location at the positive direction, θ 

is the largest density allowed for all species. 

          Based on the described principal above, the derived diffusion term for two species system 

take the form: 

 

 (3.19) 

 
 (3.20) 

Compared to the first model (Equation 3.14 and 3.15), in regions where tumor tissue density reach 

confluency-- that is when NT is approximated to θ —both the first and second term on the right 

side of the equation have low values—meaning limited migration. In this model, the limited 
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migration is irrespective of heterogeneous distribution of any single species, while in the first 

model, cell migration is only correlated with the spatial heterogeneity of that specific species. 

 

3.4 Summary of the chapter 

In this chapter, we described and justified our simplified two state tumor model to capture tumor 

cells’ drug response to targeted therapy. We also introduced an application of size-exclusion 

diffusion model to cell-cell spatial interactions. In later chapters, we will demonstrate how to 

combine these ODEs and PDEs model with clinically available imaging for early detection of 

resistance to drug response. 
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4. DETECTING RESISTANCE FROM SERIAL MR IMAGES 

 

In chapter 2, we presented that medical imaging is not only beneficial for physicians to diagnose 

and monitor tumor treatment, but also is rising as an invaluable none-invasive tool that allows 

researchers to build the tumor models that captures both tumor drug response and morphological 

changes. In this chapter, we use tumor models introduced in chapter 3 to simulate clinical tumors 

assayed by medical imaging. We demonstrate how medical available imaging, such as diffusion-

weighted MRI, coupled with mathematical models of tumor drug response can be used as a 

powerful tool to achieve early detection of drug resistance and predict tumor drug response from 

early course of neo-adjuvant therapy.  

 

4.1 DW-MRI 

Central to the methodology we propose is the ability to obtain reasonable estimates of cell number 

as both a function of space and time. Fortunately, MRI methods have been developed to obtain 

estimates of cell density in vivo. Diffusion weighted MRI (DW-MRI) relies on the phenomenon 

that water molecules in tissues constantly undergo random Brownian motion and diffuse at a rate 

that is dependent on tissue microstructure. The rate of water diffusion within tissues measured by 

conventional MR methods are often summarized in terms of an apparent diffusion coefficient 

(ADC), which is a measure of the effective distance over which water can migrate within tissue 

within a specified time.  

          It has been shown that the ADC decreases linearly with cell volume fraction [93] and cell 

density [94-96].  Thus, one can write:   
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),(),( trNADCtrADC w
 λ−=  (4.1) 

where ),( trADC  is the measured ADC at position r and time t, ADCw is the ADC of free water 

(normally taken to be ~2.8 × 10-3 mm2/s at 37oC) [97], λ is a scale factor that (most likely) depends 

on tumor type, and ),( trN  is the total number of tumor cells at position r and time t. Yankeelov’s 

Lab has previously employed ADC measures of tumor density in simulations [98], pre-clinical 

[99] and clinical efforts [100] [59]. In the next session, we will detail the estimation of DW-MRI 

associated noise level as it is central to the effectiveness or methodology.  

 

4.2 Noise of DW-MRI 

Due to the wide application of DW-MR imaging, quantifying the reproducibility of the 

measurement is an active area of research. Typically, the reproducibility is measured in terms of 

the variation in signal from repeated test of the same subject. Measurements have been made in 

humans, animals, and ice-water mixtures[101] [102] [103] [104] [105] . While tests on humans 

and animals are of more practical value for clinical applications, the test on ice-water has unique 

advantages in measuring DW-MRI’s intrinsic noise. For example, ice-water stays at constant 

temperature around 0 C0, and is resilient to environmental changes due to water’s high heat 

capacity and the latent heat of solidification. A commonly used parameter to quantify the effect of 

noise is the coefficient of variation (cv), often expressed in percentages, and equal to the ratio of 

the standard deviation δ to the mean µ [101] [102] [103] [105] [106]:  

 

(4.2) 

In the DW-MRI studies, the cv is used to evaluate the mean ADC of tissue ROI (2D region of 

%100×=
µ
σ

vc
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interest) or VOI (3D volume of interest). In 2013, Malyarenko et al[105] tested reproducibility of 

ADC value of ice-water phantom on 35 DW-MRI scanners, and found the intra-exam cv to be less 

than 1%, and the inter-scanner cv to be less than 2%. In 2014, Yankeelov’s group [104] expanded 

the test to 11 female mice HER2+ breast xenografts, and found that within tumor ROI cv to be 

around 5%[106]. Later, Grech-Sollars et al [101] tested the DW-MRI reproducibility of multiple 

brain regions on 9 healthy adults. They reported the intra scanner VOI cv of 1.7% and 2.1% for 

white and grey matter respectively, and the inter scanner VOI cv of 1.5% for ice-water phantom. 

Another group[102] conducted tests on 17 solid tumors on children under the age of 16, and found 

VOI cv of 3.25%. In summary, ADC cv of ice water phantom falls below 2%, and ADC VOI cv of 

in vivo tissues is between 1.5% and 3.5%, and registered VOI cv is generally less than the ROI cv 

[103] .  

          For each of the above experiments, the ROI or VOI contained several voxels. Less known 

is the cv on the single voxel level. Because of the nature of the MRI signal (unlike the light based 

imaging technique, MRI related measurements are obtained after the Fourier transformation of 

received signals), there is no obvious relation between noise level and the number of voxels 

included in each measurement. However, the noise on the single voxel level is critical for the 

computational study presented later in the chapter. Thus we analyzed an empirical measure of 

noise level in a single voxel using sets of scans on an ice-water phantom prepared by Jennifer 

Whisenant in Thomas Yankeelov’s lab at Vanderbilt University. Images were acquired with a 

single-shot spin echo planar imaging sequence in three orthogonal diffusion encoding directions 

(x, y and z), with two b values (50 and 600 s/mm^2). The in-plane field of view is 192mm x 

192mm on a 96 x 96 matrix with 5mm thickness slice.  
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Figure 4.1 (1) representative slice of ADC map for two ice water tubes placed in a 
breast coil. The red boxes, chosen for their homogeneous signal denote ROI over 
which coefficient of variation is calculated. (2) The coefficient of variation (cv) as 
a function of size of selected ROI.  
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To determine the cv, we focus on ROIs extracted from four exams of two water tubes surrounded 

by ice each set inside a breast coils (Figure 4.1 A). Two VOIs of dimension 10mm x 10mm x 

20mm (8 x 8 x 5 voxels) are selected from each exam, and the cv are calculated based on aggregated 

ROI from both breast coils. Since we expect the same ADC value from all the voxels inside each 

ROI, cv can be directly determined via Equation 4.2. We find the cv on the single voxel level to be 

1.38% (see Figure 4.1 B). As expected, the coefficient of variance decreases as the number of 

voxels included increase. Combing the repeatability test from literatures of the overall VOI[101] 

[102] [104] [105] [106], and our empirical calculation of the single voxel level noise, we’ll mainly 

use the global  cv of 3.3%, with added single voxel cv of 1.5% as the noise level of the simulated 

MRI measures in this thesis. Occasionally, we introduce simulation with cv of 0.7% for comparison 

purpose.   

 

4.3 Methods to apply mathematical models to DW-MRI for diagnosis—parameter 

optimization and AIC 

We use the models described in Chapter 3 to generate simulated data and determine whether, under 

experimental conditions, the apoptosis (kS,d) and growth (kR,p) rates can be accurately extracted, 

and how early can resistant cells be detected. To predict the overall growth of a mixed phenotype 

tumor, we begin our study from a 1-D model for tumor growth and response to therapy. In the 

simulations performed in this session, we set kR,p =0.054day-1 and kS,d =-0.028day-1, corresponding 

to estimated growth and death rate in murine experiment (unpublished experiment from 

Yankeelov’s lab). We use the built-in MATLAB function ode45() to solve the Equation 3.6 and 

Equation 3.7. Figure 4.2 (1) displays simulated curves for a 1D two-component tumor model 
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grown under therapy for a range of initial tumor mixtures (i.e., the relative fractions of the tumor 

cell population that is resistant). 

 

 

 

Figure 4.2 Total tumor cell number as a function of time under therapy with 
kS,p=0.054day-1 and kR,d=0.028day-1. The initial fraction of resistant cells varies 
from 0% to 100% in 10% increments; asterisk denotes the maximal response time 
and filled circles the recovery point.  

 

 

In order to take advantage of the spatial information available from DW-MRI, we generated 

simulated DW-MR images from Equation 4.3 and Equation 4.4.  

),,()),,(),,()1((
),,(

,
22 tyxNktyxN

N
tyxNND

t
tyxN

SpST
S

S
TS +∇+∇−=

θθ∂
∂   (4.3) 



 58 

)1()),,(),,()1((
),,(

,
22

θθθ∂
∂ T

RpRT
R

R
TR N

NktyxN
N

tyxN
N

D
t

tyxN
−+∇+∇−=   (4.4) 

We set θ  as the maximal packing of cells in a voxel to be 5435cells/voxel (given a grid size dx 

= 1.25 mm, dy = 1.25 mm, dz = 4 mm and single cell volume = 1150 μm3) [107]. We generate a 

2D 10×10 grid with 100 voxels that simulate experimentally measured DW-MRI data. The tumor 

is initially seeded with an average cell number density NT(x,y,t0) = 0.7θ. We compare three 

realizations of the two-component tumor model: 1D tumor, the homogeneous 2D tumor, and the 

heterogeneous 2D tumor. To generate a heterogeneous distribution of resistant cells, we randomly 

selected 20 of the 100 voxels within the domain to contain a resistant fraction while keeping the 

overall NT = 0.7θ. The fraction of resistance in each of the chosen voxels varies from 5% to 100% 

at 5% intervals such that the total resistant fraction across all 100 voxels equals 10% of NT. The 

system is evolved by finite difference methods with no flux boundary conditions generating 

simulation for 120 days with a time step of 0.1 day.  

          To construct the simulated DW-MR images we use the MATLAB built-in random number 

generator normrnd() to imitate experimental noise with a mean of 0 and standard deviation of 

3.3%*0.7θ (where 0.7θ is the upper bound of the mean cell density) on the overall tumor and 

1.5%*0.7θ on single voxels. The noise levels are based on discussion in section 4.2.  

          To address the accuracy of parameter extraction early in therapy, we sample the noisy 

images every eight days over a duration of 32, 40, 48, and 56 days respectively. We fit the sampled 

data using the MATLAB function lsqnonlin() yielding the tumor growth parameters (i.e., NS(t = 0), 

NR(t = 0), D, kR,p, kS,d). Finally, we initialize the model with the extracted parameters, evolve the 

tumor forward in time and compare the model prediction to the original time course. We calculate 

the difference between the model prediction of NT(x,y,t) and the original time course and compute 
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the root mean squared deviation (RMSD) averaged over all voxels. We averaged the resulting 

RMSD over all model realizations and error bars are the standard deviation about the mean. 

Parameter distributions, determined from 500 realizations of the noise, are compared to the known 

values. 

          To determine how early resistant fractions can be identified, we fit the simulated NT time 

course in each pixel to two tumor types: one containing only sensitive cells (i.e., Eq. (3.6)), and 

the other containing both sensitive and resistant cells (i.e., Eqs. (3.6) and (3.7)).  

          We apply the Akaike Information Criteria (AIC)[108] to determine which tumor type best 

describes the temporal evolution of the system. Briefly, given a set of candidate models, the AIC 

selects the model which best balances goodness of fit with number of free parameters. AIC is 

computed via: 

 
 (4.5) 

where m is the number of parameters, n is the number of observations, and RSS is the residual sum 

of squares[108]. Thus, a minimum of 6 time points are required to evaluate the AIC for the two-

component tumor type.  To evaluate which model is most appropriate we compute the likelihood, 

L, as:   

  (4.6) 

where AICi is the AIC of the ith model and AICmin is the minimum AIC value for all models 

considered.  
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          We sample the simulated 2D time course from day 1 to day tf (tf = 10, 11, 12, …, 60). We 

fit the sampled data to the model that contains only sensitive cells and the model that contains both 

phenotypes. Resistant cells are detected when the two component model is 10 times more likely 

(as determined by Eq. (4.6) than the model containing only sensitive cells. The AIC evaluation 

process is repeated 100 times for each condition.  

 

4.4 Parameter extraction from 1D model 

We first explore if the tumor growth model parameters may be accurately extracted from noisy 

DW-MRI images with a limited number of scans. As expected, for tumors containing a mixture of 

both sensitive and de novo resistant cells, NT initially decreases until the maximal response time 

(indicated by the asterisk on each curve in Figure 4.2) at which point the growth of resistant cell 

number first exceeds the decay of sensitive cells.  To explore fitting with a limited number of DW-

MRI scans, we sample the simulated data every 8th day. Parameter extractions from fitting 1000 

noisy realizations (cv= 0.7% and cv=3.3% noise) of the 1D tumor growth model with the initial 

resistant fraction NR0 = 10% are displayed in Figure 4.3. As expected, the parameter precision 

increases as more scans are used to estimate model parameters. When cv=3.3%, with five scans, 

40 days after treatment and well before the tumor shows growth compared to the initial tumor 

number, 95% of extracted kS,d and NS0 parameter values lie within a range from 0.6 to 2 times the 

actual value. For this tumor mixture, kR,p and NR0 parameter extractions are less precise, with 95% 

of values falling in a range from 0 to 22 times the actual value.  Resistance is detected after seven 

scans (48 days) in 60% of the cases, determined by extracted parameters NR0 > 0.01 and kR,p > 

0.01.  
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Figure 4.3 Normalized distribution of parameters from 1D model (kR,p, kS,d , NR(t0) 

and NS(t0)) with (1) cv=0.7% and (2) cv=3.3% respectively. The total cell number 
data was sampled at 8 day intervals for a total of 32 (magenta), 40 (green), 48 
(blue), and 56 (black) days. The red dashed line marks the true parameter value. 

 

We use the extracted parameters to predict the tumor growth at a later time. As expected, the 95% 

confidence interval for the predicted total cell number increases as the noise level increases from 

cv=0.7% to 3.3%, and decreases as the number of sampling before projection increases (see Figure 

4.4). Without incorporating the detailed spatial cell density distribution, the prediction at the 

current clinical imaging noise level (cv=3.3%) is very poor. More specifically, even when the total 

tumor cell counts after tumor inflation (day 56) are used for constraining the model, the 95% 

confidence interval bounds exceeds 150% deviation from the true value by day 80, and the 

deviation escalates soon after. Thus, such prediction is not valid for evaluating treatment outcomes.  
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Figure 4.4 The 95% interval of projections of total tumor cell number NT with 
simulation noise (1) cv=0.7% and (2) cv=3.3% respectively. The projections are 
made using parameters extracted from sampling at 8 days intervals for a total of 
32 (magenta), 40 (green), 48 (blue), and 56 (black) days. The red line marks the 
true tumor growth.  

 

4.5 Parameter extraction from 2D model spatially homogeneous model 

DW-MR images provide NT measurements on multiple voxels at each time point. Figure 4.3 (2) 

shows the parameters’ density distribution extracted from the two-component tumor model 

implemented in 2D with the tumor mixture distributed homogeneously in space. The early time 

points were sampled every eight days and kS,d, kR,p, NS(t0), NR(t0), D were extracted. The 

distributions for the tumor growth parameters for 500 realizations are shown in Figure 4.5 (1). All 

four extracted parameters show improved precision over the 1D results.  For example, for the 
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sampling span of 40 days, the 95% confidence interval of kS,d and NS(t0) shrink to 0.72 and 1.6 

times the actual value and kR,p and NR(t0) to 0 and 4 times the actual value (see Table 4.1). The 

peaks in the distribution are shifted due to simultaneously fitting the diffusion constant in the 

presence of additive noise. Using the criteria for detection of resistance NR0 > 0.01 and kR,p > 0.01, 

seven 2D scans (48 days) are sufficient to identify resistance in 91% of tumors.  

 

4.6 Parameter extraction from 2D spatially heterogeneous model 

We apply similar methodology to spatially heterogeneous tumor model. Figure 4.5 (2) displays 

simulated 2D DW-MRI maps of cell number density. In this simulation, the “tumor” was 

initialized with a total 10% of resistant cells distributed randomly across the whole tumor. The 

tumor growth was simulated in the size-exclusion tumor model (Equation (4.3) and (4.4)). Noise 

was added to the subsequent images and the early time points were sampled every eight days.  

With the assumption that kR,p, and kS,d are constant in space, spatial heterogeneity in the initial 

distribution of resistant fraction moderately improves parameter extractions compared to the 2D 

spatially homogeneous model (Figure 4.5), decreasing the parameter distribution width by a factor 

of 2 (see  Table 4.1). Regions with high initial sensitive cell numbers help constrain kS,d for all fits, 

leading to more accurate extractions of all four tumor parameters (Table 4.1).   
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Figure 4.5 Normalized distribution of parameters from (1) 2D homogeneous 
mode (kR,p, kS,d , NR(t0), NS(t0), and D). (2) 2D heterogeneous model (kR,p, 
kS,d , NR(t0), NS(t0), and D).  The total cell number data was sampled at 8 days 
intervals for a total of 32 (magenta), 40 (green), 48 (blue), and 56 (black) days. 
The red dashed line marks the true parameter value. 
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When we use the extracted parameters to predict the tumor growth later, the 95% confidence 

interval for the predicted total cell number decreases significantly as the initial seeding density 

changes from homogeneously distributed to heterogeneously (see Figure 4.6). This illustrates that 

the high resolution MR imaging’s capability of capturing cell density variation would aid the 

property diagnosis of the tumor of interest. 

 

 

Figure 4.6 The 95% interval of projections of total tumor cell number, NT, with 
(1) homogeneous and (2) heterogeneous resistant phenotype seeding. Similar to 
Figure 4.4, projections are made using parameters extracted from sampling at 8 
days intervals for a total of 32 (magenta), 40 (green), 48 (blue), and 56 (black) 
days. The red line marks the true tumor growth. 
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We use the extracted parameters to seed the above 2D model. We then evaluate the model from 0 

to 100 days and compare to the original time course, and iterate the process for 500 times to 

estimate the stochasticity caused by clinical level sampling noise. Figure 4.7 (1) shows the forward 

projection for the spatial distribution of resistant phenotype for high signal-to-noise scans. Figures 

4.7 (2) and 4.7 (3) display comparisons between the true and projected NT time course for two 

voxels with low (voxel 1) and high (voxel 2) initial resistance fraction.  

          Overall, the extracted model quantitatively captures the growth and spatial expansion of the 

resistance phenotype. For tumor voxel 2 (highlighted in Figure 4.7 (2) and Figure 4.7 (3)) that 

contains high percentage of initial resistance phenotype, the projection of tumor growth fits well 

within desired range, where the 95% confidence interval yields less than 8% deviation from true 

value by Day 100. However, for tumor voxel 1, where the initial resistance phenotype ratio is low, 

the projection yields more than 25% deviation. This indicates the accuracy of local tumor growth 

projection depends on the phenotype composition of local cells and that of neighboring cells. As 

cell density information from all sub regions are aggregated and utilized to derive the diagnosis of 

the overall tumor, the overall prediction out-performs the one that utilizes only the total tumor cell 

counts, even at 4 times more noise.    
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Figure 4.7 (1) (Top) Simulated NT(t) maps without additive noise.  The simulation 
is initiated with a 10% initial resistant fraction distributed randomly across the 
field.  Six different time points are shown. Simulated data with added noise is 
sampled every 8th day during the first 48 days. Voxel specific composition and 
overall tumor growth parameters are extracted and used to project the subsequent 
evolution of NT(t).  (2) Magnified regions indicated by red box in (1). (3) Time 
course comparison of two voxels with low (voxel 1) and high (voxel 2) initial 
resistance fraction. Blue and red solid lines are corresponding to the value from 
true underlying model, and the green and magenta shades are the 95% confidence 
interval of the projections.  

 

 

4.7 Early detection of the resistant phenotype  

 We next investigated whether statistical methods comparing serial imaging to two simple tumor 

models could accelerate the detection of a resistant fraction. We define the minimum day resistance 

can be detected as the point where a two-component model (Equation (3.6) and (3.7)) becomes 10 

times more likely than a single component model (Equation (3.7) only). Figure 4.8 (1) summarizes 
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these results from the 1D model by plotting the log2 likelihood as a function of time after the 

initiation of therapy. Once each curve advances above the horizontal red line (at which point, L>10 

in Equation (4.6)), resistance has been identified. In the inset, we indicate how the time to diagnose 

resistance increases with decreasing initial fraction of resistant cells and decreasing sampling 

frequency. For tumors that are sampled (i.e., imaged with DW-MRI) each day, and contain 10% 

or more resistant cells, the resistant phenotype may be detected within 24 days of the initiation of 

treatment—a factor of two shorter than the maximal response time. Due to the requirement of 

having sufficient observation numbers, at least six for a four parameter fit, the earliest detection 

time point increases with lower sampling frequencies. For example, sampling a 10% tumor every 

eight days detects resistance within the same time frame as model fitting, after 48 days.  

 

 

 



 71 

 

 

Figure 4.8 (1) The likelihood that a 1D tumor contains a resistant fraction as a 
function of measurement time and initial fraction of resistant cells. The bold 
horizontal red line denotes the confidence threshold (log210) for identifying 
resistance. The minimum time needed to identify resistance as a function of initial 
resistant fraction using AIC criteria (Insert). The four lines represent tumors 
sampled at different frequency of every 1, 2, 4 and 8 days. (2) The sensitivity of 
each pixel from 2D MR images to be identified as containing resistant phenotypes 
through the AIC criteria.  
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As expected, the time for identifying resistance increases as the initial resistant fraction decreases; 

for example, for a tumor with an initial population of 4% resistant cells, it takes 52 days to identify 

resistance if measurements are acquired every eight days. We note that at these detection times, 

the total tumor cell number is well below the initial tumor cell number. Assuming symmetric and 

compact tumor growth, such that tumor volume V~NT
3, the RECIST criteria[46] would identify 

the tumor as progressive after the total cell number had increased beyond the initial cell number, 

> 136 days for the 10% initial resistant fraction (Figure 4.2).  

          We next apply the AIC to determine the presence of the resistant phenotype using the 2D 

information from a spatially heterogeneous simulated tumor. Figure 4.8 (2) shows the voxel based 

sensitivity for detecting the presence of a resistant fraction for the 10% tumor shown in Figure 4.7 

(1), as we increase the daily samples from 5 days to 25 days. As early as 20 days of observation, 

several voxels indicate the highly likely presence of a resistant fraction. By 25 days, most regions 

with initial resistance seeding were detected with high likelihood using AIC. The heterogeneous 

distribution of resistance in the 2D tumor leads to local regions with high initial resistant fractions 

reducing the time required to detect resistance via the AIC criteria. Currently, imaging based 

methodologies for assessing the effectiveness of cancer therapies is based on high-resolution MRI 

or X-ray computed tomography measurements of the change in tumor size during therapy.  In 

particular, the RECIST criteria[46] considers the change in the longest dimensions of “target” 

lesions before and after therapy and then places each patients’ response into one of four pre-defined 

bins: 1) complete response (disappearance of all target lesions), 2) partial response (>30% decrease 

in the sum of the target lesions’ diameters), 3) progressive disease (>20% increase in the sum of 

the target lesions’ diameters), and 4) stable disease (none of the above). By incorporating spatial 

information of a MR image and applying AIC criteria, we can substantially enhance our ability to 
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identify resistant populations from early course of therapy. Compared to RECIST criteria[46], we 

assume that a solid tumor grows symmetrically and that the tumor volume is reflective of the 

number of tumor cells, V~NT
3 and maximal dimension R~NT.  With this assumption, the method 

presented here identifies tumors containing a fraction of resistant cells well before the tumor 

increased in size, potentially outperforming RECIST[46] by several weeks.  

 

4.8 Summary of the chapter 

In this Chapter, we first introduce the use DW-MR imaging to measure tumor cell density 

distribution, and investigated the associated noise of such measure. We demonstrate how to apply 

those measurements to obtain estimate of tumor characteristics through 1D and 2D tumor models. 

The estimation accuracy increases as we increase the resolution and frequency of measurements, 

and introduce heterogeneity in the tumor.  

          Overall, we have presented a proof of principle study to use quantitative, noninvasive, and 

clinically obtainable imaging data to detect the presence of a resistant cell fraction.   Given serial 

imaging data within the current noise standards, the methodology can detect resistance 

substantially earlier than current standard-of-care methods. In addition, the method may be applied 

to testing mathematical descriptions of tumor growth and response to therapy for in situ tumors.   
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5. EXAMINING THE TUMOR MIXING MODELS IN 2D 

 

 

In Chapter 3, we motivated two possible models for the mixing and spread of a two component 

tumor, containing sensitive and resistant phenotypes. In Chapter 4, we explored whether such a 

two component tumor could be identified through DW-MR imaging and found that if the growth 

rates under therapy are significantly different then DW-MR imaging can determine the presence 

of resistance well before current clinical standards. As discussed, DW-MRI is only sensitive to 

total cell number, and the change in cell number over time is sensitive to all the parameters in the 

model, so DW-MRI is insufficient to determine which mixing model is most appropriate.  In this 

chapter, we present an experimental effort, based on fluorescence microscopy, aimed to determine 

whether the free diffusion or the constrained diffusion model is most appropriate for tumor mixing 

in 2D layers.  While examination of the cell scale fluorescence images does provide some support 

for the constrained diffusion model, global fitting to the data finds the two models produce equally 

poor RMS deviations from the data. We find that the resistant cell type shows much greater spread 

than the sensitive cell type, that the diffusion constant describing the spread of resistant cells 

decreases with cell density, and that the conversion from cell number to carrying capacity also 

depends on cell phenotype.  

 

5.1 Experiments to test the candidate diffusion models  

To experimentally test the efficacy of the diffusion model with size exclusion introduced in 

Chapter 3, we designed an experimental system that allowing observation of cell mixing process 
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of two phenotypes. Such experiments fill in the vacancy in the current literature to directly address 

the spatial interaction of multiple phenotypes. 

 

5.1.1 Cell lines and cell culture  

We use BR1 cell line and one discrete sublines DS9 for PC9 parental cell line obtained from Vito 

Quaranta lab (Vanderbilt University). The BR1 cell line is known for its resilient growth with or 

without erlotinib treatment. In contrast, DS9 is the most sensitive sublines to erlotinib among the 

PC9 sub cell line.  

          Both cell lines are fluorescently labeled with FUCCI (fluorescence ubiquitin cell cycle 

indicator) marker using lentivirus-mediated transduction [78]. FUCCI is a set of fluorescent 

probes: Fucci-G1-Orange that contains a fragment of human Cdt1 and Fucci-S/G2/M-Green that 

contains a fragment of human Geminin. The expression of Cdt1 and Geminin take turns to reach 

peak through each cell cyle, with Cdt1 during G1 phase and Geminin during S/G2/M phase.  

          Additionally, the BR1 and DS9 cell lines are labeled with CellTrackerTM Blue (Life 

Technologies) and CellTrackerTM Red (Life Technologies) fluorescent dyes respectively to allow 

differentiation from one another under fluorescent microscope. CellTrackerTM Red and Blue are 

molecular probes that once pass through cell membranes into cells can be retained in living cell 

cytoplasma for several generations. 

          Both cell lines were cultured in CO2 (5%), temperature (at 37°C) and humidity controlled 

incubators. Before use, the cells were confirmed to be negative for mycoplasma using MycoAlert 

PLUS kit (Lonza). Cells were cultured in RPMI 1640 media supplemented with 10% FBS (Atlanta 

Biologicals) and Antibiotic/Antimycotic mix (Gibco). During imaging, the media was substituted 
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for OPTI-MEM media (Gibco) supplemented with 2% FBS and Antibiotic/Antimycotic mix to 

reduce background auto-fluorescence.  

 

5.1.2 Experimental design 

To observe the diffusion and mixing process of two cancer cell phenotypes, we design the 

experiment that initially cultures the two cell phenotype at close proximity, but separated.  To 

observe the rate of mixing, we remove the barrier and image over time.   We place a silicone insert 

(Ibidi Insert Family) of approximately 6mm in width with a defined cell-free gap into the middle 

of a 2cm by 2cm well. We culture inside the left chamber of the insert BR1 cells with cyan 

florescent protein labeled in the cytoplasma, and place DS9 cells with red florescent protein labeled 

inside the right chamber.  Both cell lines are labeled with Histone B RGP at the nuclei.  After each 

cell line grows to the desired density, we remove the Ibidi insert and image multiple times over 14 

days.   Given the size of the inserts and the well, and assuming the inserts are placed in the middle 

of the well, it leaves about 7mm width of empty space on both end of the well. Right after removing 

the insert, both cell phenotypes occupy a 3mm wide space, and are separated by a gap of width 

0.5mm ( see Figure 5.1 for the illustrated scale and placement of BR1 and DS9 cell lines).  

 

 

 

Figure 5.1 Illustration of the experimental set up’s scale, and the corresponding 
BR1 and DS9 cell line placement. 
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Cells are seeded at three density levels before removal of the inserts (7x105 cells for well 1, 7x106 

cells for well 2, and 2.1x107 for well 3), and recorded by epifluorescent imaging daily. Figure 5.2 

(1), 5.3 (1), and 5.4 (1) shows the experimentally observed growth and cell mixing for three 

different initial seeding levels. Each image is a coarse grained composite, consisting of 78x34 

pixels with each pixel equivalent to 60μmx60μm in space. We set up multiple replicates with three 

initial plating densities. Cells were allowed to adhere for 24 hours, then the inserts were removed 

and the cells were imaged. Each imaging window was 258μm x 258μm, and we acquired multiple 

images at 20X resolution that were subsequently stitched for future analysis. The image collection 

was repeated for 14 consecutive days, except for day 6 and day 13. 

 

5.1.3 Expected outcome  

Based on our experimental setup and the previous knowledge of our cell lines, we parameterize 

both diffusion models to evaluate the expected outcome from the experiments. We set the initial 

seeding density for the two cell lines both as 10% of the carrying capacity, BR1’s growth rate kR,p 

as 0.6 day-1, DS9’s growth rate kS,p, as 0.35 day-1, BR1’s diffusion Rate DR as 3000 µm2/day, and 

DS9’s diffusion rate DS as 300 µm2/day. As shown in Figure 5.2, by 14th day of experiment, we 

expect to see significant wider expansion of the BR1 into DS9’s region from independent diffusion 

than from size-exclusion diffusion.  
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Figure 5.2 Expected 1D outcome of cell growth and diffusion in 14 days based on 
independent diffusion (1) and size-exclusion diffusion (2) model respectively. The 
thick lines are the outcome at 14th day, and the thinner lines are the initial seeding. 
Blue lines represent the BR1 cell line with blue cytoplasma, and red lines the DS9.   

 

 

5.1.4 Conversion from average intensity to cell counts 

The stitched images provide a day-to-day record of the intensity in each pixel in both the red, 

green, and blue channels. To compare to the model predictions, we need to map fluorescence 

intensity to cell density. As the background intensity varied from day to day, we first scaled all 

channels by their maximum then set the total dynamic range to be from 0 to 256. As both cell types 

have red fluorescence in the Nuclei, we followed the following procedure to account for each cell 

line’s density:  
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Figure 5.3 (1) Raw image from blue channel. (2) Binary mask created for blue 
cytoplasma BR1 cells. (3) Raw image from red channel of the same well (4) 
Binary mask created for red cytoplasma DS9 cells.  

 

 

(1) Set the red channel threshold. The DS9 cells (sensitive) have both the nuclei and cytoplasm 

labeled to emit fluorescence in the red channel, but no label to strongly emit fluorescence in the 

blue channel. To distinguish DS9 cells, we divide the red channel intensity by the blue channel 

intensity and find regions in the image that are greater than a threshold, typically 2.0. The actual 

values varied for each stitched images.  

(2) Set the blue channel threshold. The BR1 cells cytoplasm is labeled such that it fluoresces in 

the blue channel. Blue cells are then identified by being above a threshold intensity in the blue 

channel and the ratio of red intensity to blue intensity being significantly less than for a sensitive 

cell (typically < 1.0). The actual values varied for each stitched images.   

(3) Correct for the background. Background pixels may past both filters, such that if a pixel was 

found true for both the red mask and the blue mask, it was removed from either mask. Care was 

taken by the user to choose the threshold such that dim cells were not dropped from day to day and 
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that cells clearly identified as either red or blue in the time points before and after the current image 

remained identified as red or blue in the current image. 

(4) Set the conversion of nuclei intensity in the blue channel. Used a MATLAB script to identify 

the nuclei in 10 randomly chosen 100 by 100 portions of each stitched imaging multiplied by the 

blue mask. The sum of the red intensity over all 10 count of all 10 determined the conversion from 

intensity to cell number.  The red channel multiplied by the red mask was treated similarly. We 

checked the error in this by choosing 10 other random regions from each stitched imaging and 

comparing the human counted cell number with the cell number from intensity conversion.  

 

5.1.5 Error of cell counts 

We summarize the error analysis for cell counts in Figure 5.4. For regions where the number of 

cells are clearly identifiable, we show how the conversion matches a hand count. The two cell 

counts are strongly correlated with correlation coefficient (CC) equal to 0.93. The first degree 

linear model fitting returns an intercept of 0.59 and slope 1.13, and the r-square is 0.87. The 

average intensity conversion method has a mean 24% deviation from human identification. As the 

cells become denser, and possibly grow out of the plane, the above method is also subject to 

increased error in cell count by the user. 
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Figure 5.4 Comparison between human cell counts and cell counts from average 
intensity conversion method. Points sharing the same color denotes regions from 
the same stitched image. The correlation coefficient (CC) of the two counts is 
0.93, and linear correlated with r-square value of 0.87.  

 

 

 5.2 Parameterization for the two models 

In the above described experiment, as there is no drug treatment, we assume both BR1 and DS9 

follow logistic growth. Thus, we replace Equation 4.14-4.15 and Equation 4.19-4.20 with Equation 

5.1-5.2 and Equation 5.3-5.4.  
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 (5.3) 

 (5.4) 

Where NR is the cell density of resistant BR1 cell line, NS of the sensitive DS9 cell line, DR and DS 

diffusion rate, and kR,p and kS,p the growth rate respectively for the two cell lines.  

          From examination of the experimental images, we find that single cell size differs between 

BR1 and DS9. In an ideal 2D environment, the carrying capacity θ should be inversely proportional 

to cell’s projection area on the 2D surface. Thus, cells of different phenotype with different cell 

size will yield different carrying capacity θR and θS.  

θR=η/AR   (5.5) 

θS= η /AS (5.6) 

Where η =0.9069 is the packing fraction for 2D circles, AR the 2D area of BR1 and AS that of DS9.  

          The overall percentage occupancy of space ranging from 0 to 1 (thus, θ is normalized to 

1), and the normalized NT should be the sum of percentage occupancy of both phenotypes, hence 

NR/ θR =NR*AR/η (5.7) 

NS/ θS =NS*AS/η (5.6) 

NT=NR*AR/η+ NS*AS/η (5.9) 

Substitute 5.7-5.9 into Equation 5.1-5.4, and take  

κ= AS/AR   (5.10) 

γ=η/AR  (5.11) 

we arrive at for the independent diffusion:  
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(5.12) 

 
(5.13) 

and for the size exclusion diffusion:  

 (5.14) 

 (5.15) 

We combine Equation 5.12-5.15 and the three sets of 2D time series image of cell growth find 

optimal values for BR1’s growth rate kR,p, DS9’s growth rate kS,p, , BR1’s diffusion Rate DR , DS9’s 

diffusion rate DS, the cell size ratio κ, and carrying capacity γ of BR1. To optimally rule out the 

experimental noise, we drop certain days of experimental images based on overall image intensity 

normality and regional normality. As a result, 11 images from Well 1 and Well 2 respectively, and 

8 images from Well 3 are selected for model parameterization. We use first available day of images 

as initial condition, and use MATLAB build in function lsqnonlin() for optimization. 

 

5.3 Comparison of the two models 

In experimental setup, both BR1 and DS9 cells lines’ nuclei are labeled with red fluorescent 

protein. In addition, the BR1 cytoplasm is labeled with CFP and can be observed through the CFP 

dichroic; the DS9 cytoplasm is labeled with red fluorescent protein and can be observed through 

the RFP dichroic set. We use the previously described method to convert light intensity to cell 

number, and used the obtained cell density distribution for each cell lines to fit into tumor growth 
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model. For illustration purpose, in order to increase the contrast in the merged image of BR1 and 

DS9 density distribution, we use red color to mark the DS9 cell line, and the green to mark the 

BR1 cell line. The comparison between experiment and simulation of the two models are shown 

in Figure 5.5, 5.6, and 5.7. We hand drew the fronts of both cell lines, and marked the longest 

migration position in each horizontal direction where the cell density is at least 5 cells per pixel. 

Both models qualitatively capture the growth and spatial expansion of the two phenotypes, though 

the detailed density feature is lost in both models. 

 

 

 

Figure 5.5 Experimental images recorded at well 1 and the corresponding 
simulations. (1) 2D time series of BR1 and DS9’s growth. BR1 is highlighted in 
green and DS9 highlighted in red. (2) Simulation of the BR1 and DS9 using the 
size exclusion diffusion model. (3) Simulation of the BR1 and DS9 using the 
independent diffusion model. Cyan lines are the hand drawn fronts of BR1(green) 
cells, and the white lines are the hand drawn fronts of DS9 (red) cells. Each image 
is 4.68mm in height and 2.04mm in width.  
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Figure 5.6 Experimental images recorded at well 2 and the corresponding 
simulations. (1) 2D time series of BR1 and DS9’s growth. BR1 is highlighted in 
green and DS9 highlighted in red. (2) Simulation of the BR1 and DS9 using the 
size exclusion diffusion model. (3) Simulation of the BR1 and DS9 using the 
independent diffusion model. Cyan lines are the hand drawn fronts of BR1(green) 
cells, and the white lines are the hand drawn fronts of DS9 (red) cells. Each image 
is 4.68mm in height and 2.04mm in width. 
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Figure 5.7 Experimental images recorded at well 3 and the corresponding 
simulations. (1) 2D time series of BR1 and DS9’s growth. BR1 is highlighted in 
green and DS9 highlighted in red. (2) Simulation of the BR1 and DS9 using the 
size exclusion diffusion model. (3) Simulation of the BR1 and DS9 using the 
independent diffusion model. Cyan lines are the hand drawn fronts of BR1(green) 
cells, and the white lines are the hand drawn fronts of DS9 (red) cells. Each image 
is 4.68mm in height and 2.04mm in width. 

 

 

In Figure 5.8, we show the root mean squared deviation (RMSD) of the two models from the 

experimental observation.   The RMSD was determined by a voxel by voxel subtraction of the best 

fit model prediction  from the observed cell counts, the results were squared and the mean 

determined from the entire snapshot.  For all wells in observation, the two models have overlapping 

deviation for the first 9 days.  The independent diffusion model performs slightly better at long 

times, however the difference in the overall RMSD residuals are all less than 2%.  
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Figure 5.8 Root mean squared deviation (RMSD) between the model prediction 
and experimental observation. The solid blue line shows the RMSD of model 1 blue 
fluorescent cell BR1, the dashed blue line shows the RMSD of model 2 BR1, the 
solid red line of model 2 red fluorescent cell DS9, and the dashed red line of model 
1 DS9. Measurements before date specified by the black dashed line are used for  
parameter extraction and measurements after are used for prediction and 
observation comparison.  

 

 

We also quantify the difference between the model estimated location of the cell propagation fronts 

and the experimental observed location (see Figure 5.9). The difference between model estimation 

and experimental observation has no consistent bias. Positive mean difference represents that 

model predicted cell propagation is faster than experimental observed propagation. Negative mean 

difference represents that model predicted cell propagation is slower than experimental observed 

propagation Both tumor models tend to overestimate the propagation of DS9 cell line, and 
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underestimate that of BR1. As expected, standard deviation of the difference tends to increase in 

later days of experiment.  

 

 

 

Figure 5.9 Error bar of difference between model estimated fronts location and 

experimental observed one in (1) Well 1, (2) Well 2, and (3) Well 3 respectively. 

Red error bars correspond to the DS9 cell line, and blue error bars to the BR1.The 

thick and short error bars correspond to the size exclusion model, and thin and 

long error bars correspond to the independent diffusion model.  

 

 

From examination of the cell count data, we find two surprising features – the sensitive cells do 

not advance, and they grow to higher density. Such observations are reflected in the optimized 
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parameters summarized in Table 5.1: (1) the 2D size ratio κ (AS/AR) is consistently estimated to be 

less than 1, especially in well 3, it is estimated to be 0, meaning no constraint for the DS9 cells as 

they can potentially expand vertically to the third dimension. (2) The diffusion rates of resistant 

cells are 10, 20, and 1.5 times larger than the sensitive cells in well 1, well 2, and well 3 

respectively. As the initial seeding density increases from well 1 to well 3, the estimated diffusion 

rate decreases monotonically.  

 

 

 Well 1 Well 2 Well 3 

Model 
1 

Model 
2 

Model 
1 

Model 
2 

Model 
1 

Model 
2 

kR,p (/day) 0.56  0.56 0.74 0.74 0.58 0.59 

kS,p (/day) 0.67 0.70 0.37 0.38 0.01 0.01 

DR (µm2/day) 5019 6600 1401 1646 335 304 

DS (µm2/day) 637 481 79 61 271 215 

γ (cells/pixel) 10.5 10.8 7.4 7.3 7.3 7.2 

κ 0.85 0.87 0.39 0.39 0.00 0.00 
 

Table 5.1 Summarized optimal parameters for experiment conducted in Well 1, 
Well 2 and Well 3 using both size exclusion diffusion (Model 1) and independent 
diffusion (Model 2). 

 

 

Finally, we use Akaike Information Criteria (AIC) to determine the likelihood of these two models. 

We calculate a set 27 relative AIC (AIC2-AIC1) values through using subset of image series. For 

example, well 1 has in total 11 eligible images for parameter fitting, we choose a subset of first 

two to first eleven images for each relative AIC calculation, and end up with 10 relative AIC values 
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for well 1. We then plot the 27 relative AIC values against the ratio of overlapping area of for the 

two phenotypes in the image of last day (see Figure 5.10). We find that when the ratio of 

overlapping area is less than 0.025, the relative AIC values can be both positive and negative, with 

no strong preference toward either model. However, when the ratio of overlapping is larger than 

0.025, the relative AIC becomes definitely negative, favoring the independent diffusion model.  

 

 

 

Figure 5.10 The relative AIC (AIC2-AIC2) as a function of ratio overlapping Area 
for 27 sets of experimental image series.  

 

 

As the diffusion coefficient of BR1 is significantly larger than that of DS9, the overall fitting 

suggests, as the two phenotypes merge together into shared space, BR1 would grow into space 

occupied by DS9 with limited restriction. However, when we zoom in selected area in Well 2, we 

find that the initially closely seeded BR1 and DS9 tend to grow around each other and not 
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overlapping (see Figure 5.11). The size exclusion diffusion model captures such growth pattern 

more closely to the experiment than the independent diffusion model.  

 

 

  

Figure 5.11 Subsets of BR1 and DS9’s growth pattern time series comparison 
between the experiment and the two models from Day1 to Day5.  

 

 

As the two models are indistinguishable based on our current sets of experiment, we explore the 

two models’ influence on the framework proposed in chapter 4. The simulations are set up similar 

to methods and initial conditions described in section 4.3 for the heterogeneous model with a few 

exceptions. We use Equation 5.12 and Equation 5.13 for the independent diffusion, and Equation 

5.14 and Equation 5.15 for size exclusion diffusion. We also choose DR =2000 µm2/day, DR =300 

µm2/day, κ =0.40 based on the experimentally estimated values from this chapter. We first 

simulated the MRI measures assuming the true tumor growth model is the size exclusion model, 

and add experimental noise described in chapter 4. We apply the first 48 days of generated images 
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with an interval of 8 days to both models and find that the two models’ RMSD for a duration of 

80 days are nearly identical (Figure 5.12).  

 

 

Figure 5.12 RMSD for NT and NR of the two models based on images generated 
from size exclusion diffusion model. Red lines and error bars correspond to the 
fitting from independent diffusion model, and blue correspond to size exclusion 
model.   

 

 

Conversely, we simulate the MRI measures using independent diffusion model, apply them to the 

two models and find the same result (Figure 5.13). Our simulation indicates the influence of 

experimental noise exceed the influence of model difference. Under the current medical imaging 

condition, these two models are exchangeable.  
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Figure 5.13 RMSD for NT and NR of the two models based on images generated 
from independent diffusion model. Red lines and error bars correspond to the 
fitting from independent diffusion model, and blue correspond to size exclusion 
model.   

 

 

5.4 Summary of the chapter 

In this chapter, we present a set of 2D experiments based on fluorescence microscopy to test the 

efficacy of the two tumor mixing models outlined in chapter 3. We find that resistant and sensitive 

cells diverge both in carrying capacity and diffusion constant. The sensitive phenotype reaches 

higher cell density compared to the resistant phenotype, and the resistant phenotype spreads and 

mixes faster than the sensitive phenotype often by an order of magnitude. Although we find 

supporting evidence for the size-exclusion model through local microscopic examination, there is 

no significant advantage for either model from global parameter fitting. Under the noise level of 

current DW-MR imaging condition, these two models are exchangeable.  
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6. CELLS IN MICRO ENVIRONMENT 

with Halina Onishko, Austin Oleskie, Katie Jamenson, Darren Tyson, Vito Quaranta, and Erin 

Rericha 

 

In chapter 2, we presented research that indicated drug response to targeted therapy is 

heterogeneous from cell to cell and sensitive to the surrounding environment. In chapter 3 and 4, 

we demonstrate how simplified two component mathematical models and available imaging 

measurements could be combined for early detection of drug resistance. In this chapter, we present 

experimental data that bridge the theoretical hypothesis and the eventual implementation. Assayed 

by time-lapsed fluorescent microscopy, we monitor the cell proliferation under targeted therapy. 

More specifically, we introduce our study of PC9 cell line in 2D and 3D culture. We quantify the 

drug sensitivity of 4 PC9 sublines in the relation to stiffness of the extracellular matrix, and find 

that the cell lines become more resistant to the EGFR inhibitor erlotinib as the cell culture 

environment becomes stiffer. Work in this chapter provides experimental evidence for sensitivity 

of tumor model parameters on environmental conditions and further establishes the need for 

patient-specific modeling related to clinical imaging.  

 

6.1 Introduction  

The PC9 cell line is representative of non-small cell lung cancer (NSCLC), and is derived from 

human lung adenocarcinoma. Like many examples of clinical NSCLC, the PC9 cell line is 

oncogene addicted through mutations of the kinase domain of the Epidermal Growth Factor 

Receptor (EGFR). Continued proliferation of PC9 cells generally requires activity of the EGFR 
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receptor. As such, the PC9 cell line is sensitive to inhibitors of the EGFR such as erlotinib and 

gefitinib[109, 110].  

 

Previously, Quaranta’s lab isolated 89 single-cell derived discrete sublines (DS) from the 

commonly studied PC9 cell line by monitoring the distribution of cell fates (division, quiescence, 

and cell death) and the drug-induced proliferation (DIP) rate under erlotinib treatment. 

Interestingly, they found that cells that derived from the same parental PC9 cell line display 

heterogeneous proliferation and sensitivity to erlotinib[78, 79], with some sublines continuing to 

proliferate in the presence of erlotinib. These results point to de novo resistance due to 

heterogeneity as an important component to the poor long term treatment response for patients 

undergoing erlotib thereapy[111] (See Figure 6.1 from unpublished work by Quaranta Lab).  

 

 

  

Figure 6.1 (1) The doubling rate of PC9 parental cell lines and 9 discrete sublines 
in 2D petri dish culture. (2) The distribution of PC9 discrete sublines’ doubling rate. 
Lime colored lines are those without erlotinib treatment, and blue lines that under 
erlotinib treatment.  
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In this chapter, we present experimental data linking the DIP rate of PC9 sublines to the activity 

of known regulators of cell proliferation and cell fate e.g. EGFR, c-Met, integrins, and the carrying 

capacity. We focus on four of the 89 sublines: DS3, DS7, DS8 and DS9, that were found to span 

from most sensitive to most resistant to erlotinib treatment in 2D culture among the 89 sublines. 

We study how the change of environmental condition from 2D to 3D, as well as the stiffness of 

extracellular matrix, could influence the drug sensitivity. In addition, we find that c-Met expression 

positively correlates with DIP rate under therapy. Inspired by these results, we motivate a model 

for the heterogeneous DIP rate in PC9. While the model presented here is qualitative and in the 

spirit of many biological signaling models, we outline how to connect the model with quantitative 

predictions through progression of the cell cycle.  

          The experimental results and modeling presented in this chapter are preliminary and more 

experiments are required to provide solid evidence. However, my role in this work was to 

participate in experimental design, develop the data processing capability to analyze the data, 

perform the data analysis, and participate in the interpretation. In addition, these finding provide 

motivation for the modeling and analysis in the next two chapters. Here, we show that tumor cell 

growth and response to therapy is sensitive to the physical environment and is hence likely to vary 

from patient to patient. 

 

6.2 Results 

 

6.2.1 Tumor cell growth and drug response in 2D 

We first confirmed the Quaranta lab result for the DS8 and DS9 sublines. Briefly, cells were plated 

at low initially density onto cell culture plastic and the total cell number was measured as a function 
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of time. In Figure 6.2 we plot the growth of the culture in terms of population doublings. The slope 

of the straight line fit is then the population DIP rate. As expected, under the control DMSO 

conditions, both the DS8 and DS9 cell populations have positive DIP rate (0.047h-1 and 0.045h-1 

respectively) and under erlotinib therapy both DIP rates (0.019h-1 and -0.017h-1 respectively) 

decreased (see Figure 6.2 (1)). The negative DIP rate for the DS9 population corresponds to a 

shrinking culture and would hence be considered clinically sensitive. DS8 in contrast, continued 

to proliferate in the presence of DS8, though at a decreased rate, and is hence termed resilient.  

 

 

 

 

Figure 6.2 (1) Population doubling of DS8 and DS9 under 120 hrs observation for 
both without erlotinib treatment (DMSO) and with erlotinib treatment (ERL). (2) 
Percentage of DS8 and DS9 dead cells under 100 hours untreated condition and 
treated condition. Blue data points are corresponding to DS8, and Red to DS9.  
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To confirm the health of the culture, we use Trypan Blue which stains the nuclei of cells with 

compromised cell membranes. As expected, in the control conditions between 5%-10% of the cells 

are dead or dying. Under erlotinb therapy, the percent of DS9 cells that are dying increases with 

time. These results are consistent with the Quaranta lab finding, that DS8 is a resilient cell line 

under erlotinb therapy.  

 

6.2.2 Tumor cell in 3D Collagen, Matrigel and Hydrogel 

The cell culture environment, including composition and concentration of the extracellular matrix, 

frequently impacts the cell growth. To ascertain whether the PC9 sublines growth rate were 

sensitive to these environmental conditions, we observed cells embedded as single cells and at low 

density in three common extracellular matrices: type 1 collagen, 80% Matrigel, and HA Hydrogel. 

We find that both sublines grow in all three matrices, with mild differences in the cluster shape. 

Cells were found to grow to larger clusters in the 80% Matrigel.  
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Figure 6.3 2D projection of typical DS8 and DS9 cluster in 3D Collagen, Hydrogel 
and Matrigel extracellular matrices after 6 Days culturing.  

 

 

In order to compare the erlotinib treatment response of cells suspended in ECM to cells grown in 

2D on cell culture plastic, we first tracked the fraction of dead cells within the suspended culture. 

Similar to the 2D conditions, the control (DMSO) treated suspended cultures showed minimal 

accumulation of dead cells over time. The DS9 subline showed clear sensitivity to erlotinb therapy 

(cell death reaching 50% or more 4 days after treatment) in all three ECM’s examined. 

Surprisingly, the DS8 subline also acquired a substantial fraction of dead cells overtime in all three 

ECM’s, indicating that the DS8 resilience is modulated by cell culture condition. As the 80% 

Matrigel environment showed the least accumulation of cell death, we focused on this ECM for 

the remainder of the study. 
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Figure 6.4 Dead cell fractions of DS8 and DS9 under 10 days’ control and erlotinib 
treatment in Collagen (blue), Hydrogel (green) and Matrigel (red) ECM 
respectively.  

 

 

6.2.3 Tumor cell growth and drug response in 3D through single cluster tracking 

Instead of sacrificing the matrix each day for cell counting (as that used in Figure 6.4), we later 

improved the setup that allows the monitoring of the same 3D spheroid regions over time. We 

select 40 random cell clusters from four sublines DS3, DS7, DS8 and DS9, and track their growth 

through 3D confocal imaging on a daily basis. We also developed an algorithm to segment, count, 

and determine cell fate from confocal stacks of the PC9 clusters (see methods session at 6.4). Using 

the segmentation routine, we identify and count the viable cells within each cluster and compute 

the DIP rate based on 6 days of growth in the presence and absence of therapy for each cluster. 

Figure 6.5 displays the histograms of the data. We find that the spread in the DIP rate is substantial 

within each data set. Even in controlled conditions, more than 10% of the clusters of DS3, DS7, 
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and DS9 do not grow beyond 2 cells. Under the control conditions, the distributions are reasonably 

close: both p values from the T-test and Kolmogorov–Smirnov test (K-S test) dedicated to 

differentiate the DIP rate distribution of these four cell lines indicate that only DS7 and DS8 are 

significant different to each other. However, under erlotinib therapy, the p-values show that the 

DS9’s DIP rate is significantly more negative, and the rest three shows similar DIP distribution 

with a mean value of approximately -0.01 hr-1. Note that in 2D treated experiment (see, Figure 

6.1), the expected DIP rate for both DS7 and DS8 are positive, but in 3D culture they both exhibit 

reduced growth close to DS3 with overall negative proliferation. The solid green line indicates the 

measured DIP rate from the 2D culture conditions. In control, the cluster growth is slightly 

decreased compared with 2D, however, the 3D growth is substantially reduced for all conditions 

compared to 2D.  
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Figure 6.5 Comparison of tumor cell growth and drug response in 2D and 3D. Blue 
(DMSO) and red (ERL) histograms are based on the DIP rate of 40 clusters each, 
and are normalized to an area of 1. Green lines are the averaged DIP rate of tumor 
clusters in 2D.  

 

 

 

 

 

 

 

 



 103 

p-value 

t-test 

DS3 DS7 DS8 DS9 

DS3 1 0.179 0.100 0.551 

DS7 0.179 1 0.007 0.054 

DS8 0.100 0.007 1 0.261 

DS9 0.551 0.054 0.261 1 
 

p-value 

ks-test 
DS3 DS7 DS8 DS9 

DS3 1 0.423 0.228 0.674 

DS7 0.423 1 0.016 0.065 

DS8 0.228 0.016 1 0.653 

DS9 0.674 0.065 0.653 1 
 

Table 6.1 p-values from t-test and ks-test under controlled condition (DMSO). P 
values less than 0.05 are highlighted in red.  

 

 

p-value 

t-test 

DS3 DS7 DS8 DS9 

DS3 1 0.618 0.458 0.002 

DS7 0.618 1 0.860 0.000 

DS8 0.458 0.860 1 0.000 

DS9 0.002 0.000 0.000 1 
 

p-value 

ks-test 
DS3 DS7 DS8 DS9 

DS3 1 0.742 0.144 0.000 

DS7 0.742 1 0.481 0.000 

DS8 0.144 0.481 1 0.000 

DS9 0.000 0.000 0.000 1 
 

Table 6.2 p-values from t-test and ks-test under erlotinib treated condition. P values 
less than 0.05 are highlighted in red.  

 

 

6.2.4 Tumor cell in hanging drop 

Moving from 2D plate culture to 3D suspended culture in ECM modulates numerous factors 

including the chemistry of the environment, the amount of contact among cells, and the stiffness 

of the growth environment. We next sought to isolate these variables. Cells cultured in 3D hanging 

drop spheroids are devoid of ECM chemical stimulations, yet remain suspended and have 

increased cell-to-cell contact compared to 2D. We found that the fraction of dead cells substantially 

increased in the hanging drop culture compared to both 2D and 3D 80% Matrigel conditions. The 
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hanging drop experiment strongly suggests that the chemical composition of the ECM is not solely 

responsible to the shift in sensitivity.  

 

 

 

Figure 6.6 Dead cell percentage in 2D culture plate, 3D 80% Matrigel and 3D 
hanging drop for DS3, DS7, DS8 and DS9 after 4 Days and 7 Days of erlotinib 
treatment respectively.  

 

 

6.2.5 Change in 2D substrate stiffness recapitulates the increased sensitivity in 2D 

2D cell culture plastic provides a stiff substrate for cell growth (approximately 2-4GPa). It is well 

known that cells are mechanosensitive and that substrate stiffness influences a wide range of 

cellular behaviors including the actin cytoskeleton, the expression and activity of integrin, and the 

differentiation of the cells[112]. The hanging drop cell culture environment is substantially less 

stiff than the 80% Matrigel ECM which is less stiff than the 2D culture plastic, suggesting that 

erlotinb response might be strongly modulated by stiffness.  
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Human tissues vary substantially in stiffness. For example, brain and lung tissue are less than 

0.8kPa, skeletal muscle is around 12kPa, and bones are similar to that of plastic and glass(4MPa) 

[112]. We set up an experiment using polyacrylamide (PA) gels which allow for controllable 

stiffness of the surface for cultured cells when varied concentration. Inspired by Cretu [113], we 

cross linked PA gels with type 1 collagen to create 2D cell culture conditions with variable stiffness 

(0.68kp, 59kpa, 86kpa). In Figure 6.7, we summarize 11 sets of independent experiments used to 

obtain the DIP rate of DS8 and DS9 under erlotinb therapy in stiffness of 0.68kPa, 59kPa, 86kPa 

and that of Glass(4MPa). The DIP rates under erlotinib inversely correlate to substrate stiffness 

for both DS8 and DS9. From our preliminary experiments, the obtained DIP shows a linear 

correlation with the logarithm of surface stiffness.   

 

 

 

Figure 6.7 DIP rate under erlotinib treatment vs the logarithm of stiffness produced 
in PA gel and glass. Results from DS8 and DS9 are labeled with blue and red 
respectively.  
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6.2.6 Difference in morphology prior to treatment correlate with treatment?  

Through the tracking of DS3, DS7, DS8, and DS9 3D clusters, we find that cluster shape varies 

between sub cell lines and within sub cell lines. We consider whether the characteristics of 

morphology can be an indicator to treatment sensitivity. To quantify our observation, we use radial 

distribution function (RDF) to identify the most likely cell-cell distance within each cell cluster. 

Our analysis covers 40 clusters in each cell line in controlled conditions. Note that we only apply 

RDF analysis only to clusters that have more than 8 cells (usually after Day 4), so that first peaks 

in RDF is more distinct, thus, the interpretation more relevant. Figure 6.8 shows the captured most 

likely cell to cell distance in each cell line versus the number of cells in each cluster. We then 

perform linear fitting of the two variables as shown in the black solid line in the figure. The 

coefficient of determination (R-squared value) for all four linear fitting is less than 0.06, indicating 

no significant correlation between the cluster size and cell-cell distance. We find that DS3 and 

DS7 have relatively shorter cell-cell distance (around 11μm), while DS8 and DS9 have most likely 

cell-cell distance of 14μm. This indicates that the maximum carrying capacity—a key parameter 

in Chapter 4 and 5—should be a variable specific to each cell line. 
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Figure 6.8 Plot of the most likely cell-cell distance Vs the size (number of cells) of 
cluster. Black lines are the linear fitting of the green dots in each plot. 

 

 

6.2.7 Connection to in vivo 

In the last two decades, multiple cellular functions have been found to be sensitive to the substrate 

stiffness in monolayer culture conditions. Simultaneously, more methods have been developed for 

measurements of human tissue including indentation by AFM, tension, and elastography[114]. 

The elastic modulus of lung tissue typically falls within 400 -600 Pa and increases in stiffness with 

age.   At this stiffness, we would predict that DS8 cells had a slight negative DIP rate under erlotinb 

therapy with DS9 being primarily negative.   
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          In a complementary research effort, the Quaranta lab investigated whether the difference in 

DIP rate between DS8 and DS9 sublines observed in 2D culture, on cell culture plastic, persisted 

in vivo. They used the common subcutaneuous tumor model, where DS8 or DS9 cells are 

resuspended in Matrigel and injected between the muscle and the skin of the mouse’s back.   The 

growth of the subsequent tumor was monitored by capillary measurement as well as by ultrasound.   

Total tumor cell number was inferred from these measures of cell volume and the results shown 

in Figure 6.9. Under control (DMSO) both cell lines grew at approximately 1/6th the rate as the in 

vitro experiment.    

 

 

Figure 6.9 (1) Population doubling of DS8 and DS9 tumor cells in subcutaneous 
mouse model without erlotinib treatment. (2) Population doubling of DS8 and DS9 
tumor cells in subcutaneous mouse model under erlotinib treatment. 
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Four mice where tumors were allowed to initially grow, were treated with daily injections of 

erlotinib and the tumor size post treatment similarly monitored. Similar to the 2D stiff substrates 

condition, tumors composed entirely of DS9 decreased in volume whereas tumors composed 

entirely of DS8 on average increased. While it is difficult to infer the substrate of a subcutaneous 

tumor, measurements of the Young’s modulus of skeletal muscle report measurements from 12-

45 kPa[115]. At this stiffness, the polyacrylamide experiments above suggest that the DS8 DIP 

rate would be slightly positive, consistent with the in vivo measurements. 

 

6.2.8 Variations in protein concentration prior to treatment correlate with treatment 

outcome 

Interestingly, in all of the above perturbations, the DIP ordering of the cell lines was consistent. 

DS8 subline maintained a higher DIP rate than the DS9 subline, with the DS3 and DS7 remaining 

in between. Working with our collaborators, we next considered whether the ordering of DIP rates 

could be predicted by cell factors prior to treatment. The heterogeneous response to erlotinb 

therapy across the PC9 cell line could be understood in the context of regulators of the cell cycle 

and hence a platform for quantitatively testing cell cycle / cell fate models.  

          Evidence collected from Darren Tyson and Katie Jameson (see Figure 6.10) suggested that 

c-Met expression prior to drug treatment correlated with DIP rate under erlotinb therapy, with DS8 

having considerably higher c-Met expression than DS9. This result is consistent with previous 

findings in the literature suggesting that c-Met provides can confer resistance to erlotinb 

therapy[116].   
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Figure 6.10 Synchronized y axes plot of c-Met expression (red) and DIP rate (blue) 
under erlotinib treatment from DS1 to DS9 sub cell lines.  

 

 

          This data predicted that drug inhibition of c-Met in the presence of erlotinb should cause a 

reduction in DIP rate in all sublines.  Darren Tyson and Katherine Jameson applied foretinib, a c-

Met inhibitor, in the presence of erlotinb.  Under these condition DIP rates in general decreased, 

with the DS8’s asymptotic growth becoming negative (see Figure 6.11). 
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Figure 6.11 (1) Plot of population doubling for DS8 and DS9 under DMSO 
condition, erlotinib treatment, and Foretinib added erlotinib treatment. (2) Plot of 
corresponding DIP rate in (1). Red arrows highlight the shift in DS8 from positive 
to negative DIP rate once the c-Met inhibitor foretinib is added.  

 

 

          We next sought to confirm the c-Met DS8 link via Western blotting and asked whether 

increased c-MET activity continued to distinguish DS8 and DS9 in two culture conditions on 2D 

glass (stiff) and 3D Matrigel (soft) (see Figure 6.12). We find that the expression of pMet/Met and 

Met/tubulin is consistently higher in DS8 and in DS9 under both cell culture conditions, however, 

higher c-Met activity was not sufficient to predict DIP rate, as the ratio of pMet/Met substantially 

increased for DS8 in Matrigel, but the DIP rate under drug treatment decreased.  In contrast, the 
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expression of pAkt(Thr308)/Akt and FAK/Tubulin correlate with both the resistance level of each 

cell line and the stiffness of the external environment, suggesting a link to DIP rate. This analysis 

predicted that drug inhibition of c-Met in the presence of erlotinb should cause a reduction in DIP 

rate in all sublines, and potentially most strongly impact DS8.   

 

 

 

Figure 6.12 Quantified results of electrophoresis from western blotting 
experiments under four experimental conditions– DS8 stiff, DS8 soft, DS9 stiff 
and DS9 soft. The four quantification metrics used are pMet/Met, Met/tubulin, 
pAkt(Thr308)/Akt and FAK/Tubulin.  
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6.3 Experimental Setup 

 

6.3.1 Cell culture and cell lines 

PC9 discrete sublines were obtained from Vito Quaranta lab (Vanderbilt University School of 

Medicine). They were derived as single cell clones from parental PC9 cell line, expanded in drug-

free media, and fluorescently labeled with FUCCI marker (same as that used in Chapter 5 

experiments) using lentivirus-mediated transduction as previously described[78]. Cells were 

cultured in CO2 (5%), temperature (at 37°C) and humidity controlled incubators. On a daily basis, 

the cells were incubated with dead cell marker SYTOX blue (Life Technologies) for 10 minutes, 

washed with PBS and supplied with fresh media. Before use, the cells were confirmed to be 

negative for mycoplasma using MycoAlert PLUS kit (Lonza). Cells were cultured in RPMI 1640 

media supplemented with 10% FBS (Atlanta Biologicals) and Antibiotic/Antimycotic mix 

(Gibco). During imaging, the media was substituted for OPTI-MEM media (Gibco), supplemented 

with 2% FBS, and Antibiotic/Antimycotic mix to reduce background auto-fluorescence. The 

growth rate was confirmed to be the same for these sublines in both types of media. 

 

6.3.2 2D plastic and glass 

In 2D experiments, cells were plated on either plastic Falcon 96-well imaging plates (Corning, 

353219) or collagen-coated 25mm glass coverslips (Fisher) immobilized on 6-well culture plates. 

After an overnight incubation, cells were treated with either DMSO for 1 week or 1-3μM erlotinib 

for 2-3 weeks. Media was changed every 3 days.  
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6.3.3 Cells in 3D ECM 

We primarily use 80% Matrigel (Corning) as the base material to form 3D ECM. 5x104 cells/ml   

were embedded in either 4 or 8-well 1.5 glass bottom Lab Teck II chambers (Fisher). The ECM 

was reconstituted and polymerized according to the manufacturer’s instructions. OPTI-MEM 

media supplemented with 2% FBS and Antibiotic/Antimycotic mix (Gibco) was added on top after 

matrix polymerization, and generally it takes 3 days for cells to form 6-10 cell clusters. Distinct 

from 2D experiment, cells in 3D EGM can form organized yet diverse structures. Figure 6.13 

shows the cell cluster formation and spatial distribution in 3D EGM after 5 days of incubation. 

Cell locations are extracted from 49 (7 x 7) stitched confocal imaging Z-stacks using methods 

described in the cell segmentation section of the Chapter. Each stack is of dimension 258μm x 

258μm x 250μm. 0 in the z axis corresponds to the bottom of the well, where flat distribution of 

cells can be observed. As shown in Figure 6.13, cell clusters vary largely in shape and size. 
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In control conditions without treatment, cells in 3D ECM are allowed to grow for 7-10 days with 

daily media change. A typical 3D tumor cluster captured by confocal imaging is shown in Figure 

6.14 from day 1 to day 8 of incubation. This cluster is close to spheroid, and going through active 

growth indicated by the green fluorescent cells in the cluster.  

 

 

 

Figure 6.14 Projection of 3D cell cluster growth without drug treatment in 80% 
Matrigel captured by confocal imaging. Red (in S/M/G2 phase) and green 
fluorescence (in G1 phase) indicates cell nuclei location. 

 

 

As for the design of treated experiment (see Figure 6.15 (1)), cells are first allowed to grow without 

treatment for 3 days to form 6-10 cell cluster. Imaging (if applicable) begins at last day of untreated 

condition, and then 1μM erlotinib is added to the media daily for 3 weeks along with media change. 

Figure 6.15 (2) and (3) show the typical tumor cell clusters’ response for resilient (DS8) and 

sensitive (DS9) cell lines respectively from day 2 to day 14. The resilient DS8 cell line remains in 

active proliferation state through the course of treatment, as marked by the green fluorescent cells. 

The sensitive DS9 cell line starts to show cell disintegration as early as day 4 of the treatment, as 

indicated by the SYTOX blue fluorescent cells. By day 14, while there are still lingering cells in 

the DS8 cluster, all the cells in the DS9 cluster has dead and disintegrated.  
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Figure 6.15 (1) Experimental design of tumor cluster response to erlotinib. Experimental 
design of tumor cluster response to erlotinib. Cells are embedded three days before 
treatment, and imaging starts one day before. (2) and (3) are typical tumor cell cluster 
response drug treatment by resilient and sensitive cell lines respectively. Image are 
generated from z-projection of z stack images.  

 

 

Two methods of cell counting are used: 

(1) For fast quantification that doesn’t require spatial information, the matrix was disrupted with 

an appropriate agent on a daily basis. For example, Dispase (BD Biosciences) were used as the 

reagent to disrupt 3D Matrigel. Cells were dissociated, washed with PBS, and stained with 0.4% 

trypan blue dye (Fisher). Using hemocytometer, the viable (clear) and dead (blue) cell numbers 

were counted, and the dead cell fraction over time was determined.  
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(2) For quantification that includes cell spatial information, we use Zeiss confocal microscopy to 

acquire 3D stacks of the same cell clusters with 20X objective, and the total (H2B-RFP), 

proliferating (mAg-GFP) and dead (SYTOX blue-CFP) cells were counted using segmentation 

methods described in later chapter. 

 

6.3.4 Cells in 3D hanging drop spheroids 

3D hanging drop experimental design (see Figure 6.16 for the schematic drawing of experimental 

setup) allows cells to form 3D structure assisted by water pressure, yet is devoid of ECM’s 

chemical influence. 3D hanging drop spheroids are set up in Perfecta3D 96-well hanging drop 

plates according to the manufacturer’s specifications (3D Biomatrix). 5x103 cells/drop were 

suspended in 40μl of either RPMI (with 10% FBS and Antibiotic/Antimycotic) or OPTI-MEM 

(with 2% FBS and Antibiotic/Antimycotic) media with no ECM added. Similar to 3D ECM 

experiment, spheroids were allowed to form overnight, and the treatment started the next day with 

either DMSO or 1μM erlotinib for 7 days with daily media refreshment. Spheroids are harvested 

on day 4 and 7, dissociated with 0.25% trypsin, washed with PBS, and stained with 0.4% trypan 

blue. Using hemocytometer viable (clear) and dead (blue) cells were counted, and dead cell 

fraction within each sample was determined. 
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Figure 6.16 Schematic plot of the design of hanging drop experiment. (1) The 
overall layout of the hanging drop plate. Red ball shapes are the hanging water 
drops that culture the cell growth. The lid and reservoir keep the hanging drop 
protected from water evaporation. (2) Cell culturing within a single hanging drop. 
Initially the cells are suspended in the media, seeded into a single droplet, and later 
on cultured through media change.  

 

 

6.3.5 2D polyacrylamide (PA) gels 

The 2D PA gels experiment is conducted to test the impact of surface stiffness to erlotinib 

sensitivity, as the PA gels allows for controllable surface stiffness for cultured cells when varied 

concentration. The PA gels were set up as described in the reference [113]. Briefly, polyacrylamide 

gels of different stiffness (86kPa-0.68kPa) were cross-linked to 3-APTMS coated coverslips. 

Incorporation of N- hydroxysuccinimide ester into the PA solution allowed for cross-linking of 

ECM (collagen type I) to the gel. Coverslips with gels were immobilized on the bottom of the 6-

well plates, and cells were plated at the starting density of 1x105 cells/well in OPTI-MEM media 

supplemented with 2% FBS and Antibiotic/Antimycotic mix (Gibco). After an overnight 

incubation, the fixed positions (4x4 mosaic images) of cells were imaged daily on Zeiss confocal 

microscope (20X magnification) and then stitched and quantified using ImageJ software. Imaging 

(1) 

(2) 
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and treatment last for 7-10 days for DMSO and for 3 weeks for erlotinib treated cells with daily 

media change. 

 

6.3.6 Western blotting 

We conduct western blotting experiments to identify protein expressions that are closely related to 

cell-cycle signaling pathway. Cells were rinsed with PBS and scraped off the gels in M-PER lysis 

buffer (Pierce) supplemented with protease and phosphatase inhibitor cocktails (Sigma). Cell 

lysates of equal protein amount were separated on 10% NuPAGE Novex Bis-Tris SDS-PAGE gels 

(Life Technologies) and transferred to 0.2μm Pure Nitrocellulose Membrane (BioRad). 

Immunoblotting was performed with the following antibodies: Met (Cell Signaling, 8198), 

phospho-Met (Tyr1234/1235, Cell Signaling, 3126), Akt (Cell Signaling, 9272), phospho-Akt 

(Ser473, Cell Signaling, 4058), phospho-Akt (Thr308, Cell Signaling, 2965), FAK (Cell Signaling, 

3285), integrin beta 1 (Abcam, ab30394), and beta tubulin (Sigma, T0198). For visualization of 

signal, the blots were incubated for 1 minute with SuperSignal West Pico Chemiluminescent 

Substrate (Thermo Scientific), and images were acquired with ChemiDoc Touch Imaging System 

(BioRad), see Figure 6.17 and quantified with ImageJ. 
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Figure 6.17 Electrophoresis result from western blotting experiments used to test 
pathways that are related to proliferation. Four sets of experimental conditions– 
DS8 stiff, DS8 soft, DS9 stiff and DS9 soft– are set to determine the influence of 
sub cell lines and ECM stiffness.  

 

 

6.3.7 Image acquisition 

For 3D experiments, images are taken on Axio Observer Z1 spinning disk confocal microscope 

(Zeiss, serial # 3834004261). During imaging, the cells are maintained in incubation conditions of 

5% CO2, 37°C temperature and humidity. Z-stacks of 2μm per slice were acquired with 20X 

objective at the following laser settings – 561λ at 12% laser power and 100ms exposure, 488λ at 

1% laser power and 125ms exposure, and 458λ at 100% laser power and 400ms exposure. The 

volume of 258μm x 258μm x 250μm was imaged such that each spheroid was centered in the 

middle. The position of each cell cluster was marked and imaged daily for the duration of the 

DS8  
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DS8  
Soft 

DS9  
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DS9  
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treatment. For 2D and PA gel experiments, the magnification and laser settings are the same as 

that in 3D experiment.  

 

 

6.4 Quantification methods 

 

6.4.1 DIP rate and dead cell fraction 

We use drug induced proliferation (DIP) rate as our major quantification of drug response for our 

cell culture work. DIP rate is the doubling rate of cell proliferation as described in Equation 

 (6.1) 

where N(t) is the cell number at time t, and N0 is the seeding cell number at time t=0, kDIP is the 

DIP rate of cell proliferation. kDIP can be calculated as  

 (6.2) 

See Figure 6.18 as example of how DIP rate calculated for DMSO and drug response respectively. 

Notice only the exponential phase is considered for the calculation of DIP rate.  

          Under the drug treated condition, alternative to the DIP rate calculation, simple 

quantification of dead cells fraction can be used to determine the drug efficacy. We use the dead 

cells fraction to compare the cell drug sensitivity under three experimental conditions—2D glass, 

3D 80% Matrigel and hanging drop experiment.  

 

 

tkDIPNtN 2)( 0=

tNtNkDIP ∆−∆= /)(log))((log 022
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Figure 6.18 Example of DIP quantification. Blue and red dots represent log2 
(population doubling) of cell number change along time for DMSO growth 
environment and erlotinib treated. DIP rate are based on linear part of log2(N) 
change only. DIP rate is the slope of the fitted line shown. 

 

 

6.4.2 Radial distribution function 

Within a system of particles, such as molecules in liquid, Radial Distribution Function (RDF) is 

often used to describe how particles are radially packed around each other. We define the average 

density of other particles in distance r to a given particle is defined as ρ(r). We then normalize ρ(r) 

by the average density of the system, ρ, and obtain the dimensionless RDF g(r), defined as  

ρρ /)()( rrg =  (6.3) 

Notice that for an infinite system, because other particles cannot occupy the same space, as the 

given particle as r approaches to 0, g(r) is approximated to 0; because ρ(∞) is approximated to 

system ρ, as r approached to ∞, g(r) is approximated to 1. See Figure 6.19 (1) as example of the 
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radial distribution function for the monatomic Lennard-Jones liquid[117]. The first peak represents 

the most likely atom-to-atom distance.  

          For a homogeneous isotropic system, RDF only depends on the relative distance between 

particles. That is, we can further derive 

 

(6.4) 

 

(6.5) 

Consider the average number of particles inside the shells from distance r from every given 

particle:  
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Thus in practice, we can calculate g(r) as 
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In Figure 6.19 (2), we show the RDF of the 3D cell cluster. We use the location of the first peak 

as the estimated most likely cell to cell distance.  
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Figure 6.19 Examples of radial distribution function. (1) Typical radial 
distribution function for the monatomic Lennard-Jones liquid. Å stands for 
Angstrom. Solid line is from theoretical simulation, and dots are from 
experiments[117]. (2) Radial distribution function of a typical DS7 cell cluster 
with 69 cells. The peak, at approximately 14μm, marks the most likely cell-cell 
distance within this cluster.  

 

 

6.5 Summary of the chapter 

In this chapter, we presented the study of lung cancer growth and response to erlotinib therapy in 

both 2D and 3D culture. We find cells in 3D culture are generally more sensitive to erlotinib, with 

DS8 sub lines more significant than others. Our work shows that besides the structural changes 

from 2D to 3D, increased stiffness of the environmental are inversely correlated to increase in drug 

sensitivity. Further protein expression investigation points to a classic cell cycle model modulated 

by EGFR, integrin and c-Met. 
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7. CONCLUSIONS AND DISCUSSION 

 

We started this work aiming to extend the application of mathematical models in medical imaging 

to design rational treatment schedule that optimizes therapy output. We established the rationale 

of our approach through observations of the in vitro cell culture experiments, simulation test of 

modeling methods, and cross validation between experiments and modeling. We identified 

mathematical models that both capture a wide range of tumor cell growth, and yet simple enough 

to be used for parameter extraction and drug response prediction. We combined tumor models of 

drug response with in silico clinical DW-MR imaging to suggest frequency and constraints of 

tumor condition that allow effectively identifying resistance in early course of targeted therapy. 

To bridge the gap between model testing and experimental application, we studied the PC9 lung 

cancer cell lines in 3D environment in the vision of a 3D controllable cell culture that can be used 

to test and improve tumor model. We found that the PC9 lung cancer cell lines tend to be more 

sensitive to erlotinib in 3D culture compare to 2D, and obtained preliminary evidence that 

establishes the correlation between drug sensitivity and stiffness of cell environment. In this 

chapter, we will summarize the results of each chapter, and suggest further work needed in 

theoretical development, experiments and quantification methods.   

 

7.1 Two-state tumor model and cell diffusion model 

Cancer modeling research often suffers from the drawback that sophisticated models of tumor 

growth involve too many parameters that are unobtainable in a single experimental setup. As one 

step towards simplifying, yet preserving the effectiveness of tumor models, we proposed and 
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validated the efficacy of a two-state tumor model that composes of both sensitive and resistant 

phenotypes. We proved that for either sensitive phenotype that follows exponential decay curve, 

or resistant phenotype that has logistic growth curve, the summation of many cell lines with a 

range of growth or decay rates can be grouped and represented by a single growth or decay rate. 

This model is particularly helpful in the context of clinical imaging where information about the 

sub cell lines within the tumor tissue is often not measurable. The model can also be used in 

combination of multi-scale in vitro cell culture, where researchers can cross validate the 

observations from both micro and macro levels.  

 

7.2 Testing the diffusion models  

There is currently a vacancy in literature observing the spatial interaction of multi-phenotype 

cancer cells. The current widely used diffusion model is similar to that of ideal gas and unsuitable 

to describe the random motion of tumor cells on the macro scales, especially in cases where 

multiple phenotypes are present. We introduced a new application of diffusion model in cell 

culture. Our proposed model from Burger et al[92] assumes the random migration of one 

phenotype is constrained by others that occupy adjacent space, and yet conserves the cell counts 

for each phenotype. In this thesis, we introduced our preliminary experimental effort to test and 

compare these two diffusion models. The statistical analysis of the conducted experiments 

indicated no significant advantage of either model. There are two key aspects to improve the 

experimental setup. First, we need to create an effective blockage to prevent cells from growing in 

vertical dimension in the 2D setup or set up experiment in 3D.  We observed that in our 2D 

experimental setups, both cell lines tend to grow above the observation plane. It significantly 

increased the difficulty to obtain accurate cell counts as well as set the carrying capacity for the 
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2D model. Secondly, it’s preferable to use other separate method that narrows the initial set-up 

gap between two cell lines (currently around 500µm) to allow the immediate observation of cell 

invasions to adjacent space once the blockage is removed. 

 

7.3 Application of tumor modeling in clinical imaging 

Empowered by the advances in clinical imaging, such as MRI, physicians can conveniently obtain 

the 3D high resolution tumor information non-invasively. Using in silico simulations, we 

demonstrated how medical available imaging such as diffusion-weighted MRI coupled with 

mathematical models of tumor drug response can be used to achieve early detection of drug 

resistance and predict tumor drug response from early course of neo-adjuvant therapy.  

          One significant, yet often ignored, factor to consider is the type and level of noise in the 

MRI system, and the rigorous methods to simulate the MRI noise of the interested experimental 

system. We found that the level of MRI noise significantly influences the accuracy of detecting 

the tumor resistance to targeted therapy. Though there are several literatures  [101] [102] [103] 

[104] [105] that have investigated the noise level of DW-MRI in vitro and in vivo, they are mostly 

on the aggregated total tumor scale, not on the single pixel or voxel scale. As the use of 

mathematical modeling to diagnose and forecast tumor drug response becomes more ubiquitous 

and influential, it is important to establish more rigorous approach on simulating the fundamentals 

of MRI noise.  

 

7.4 Tumor cells in 3D environment 

From the series of experiments conducted in Chapter 6, a few key factors in modulating the DIP 
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rate stand out: ECM stiffness (manifested in integrin expression and activation), EGFR blockage 

(ie. erlotinib treatment), and the innate difference between discrete sub cell lines (highlighted by 

the difference in c-MET expression). Indeed, these factors are well recognized in cell-cycle related 

signaling pathways studied in molecular biology[118-120]. As shown in Figure 7.1, either the 

activation of c-Met, integrin, or EGFR could stimulate the FAK-PI3K-Akt pathway, thus 

promoting unlimited and deregulated cell proliferation though the activation of Cyclin B and D, 

and escape apoptosis through the eventual inhibition of BDX[121]. Similarly, either c-Met or 

EGFR expression could modulate the Ras-Raf-MEK-ERK pathway to achieve heightened cell 

proliferation and reduced apoptosis. There are existing quantitative cell proliferation cycle[122, 

123] and cell apoptosis models[124] available in the literature that take input from the core 

upstream factors such as Akt, ERK and BDX. These factors are known to be influenced by 

experimentally controllable conditions such as the ECM stiffness, EGFR inhibition, and c-Met 

activation.  
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Figure 7.1 Cell signaling pathways related to cell proliferation and apoptosis 
mediated by c-Met, integrin, EGFR and cadherin expression. The result graph is 
synthesized from reference[118-125].  

 

 

To further enhance the application of our cell studies result, we propose the following steps to 

build a comprehensive signaling pathway model that predicts tumor proliferation (ie. range of DIP 

rates) given biopsy or non-invasive imaging measurements.  

(1) Adapt and combine existing cell-cycle modules to our experimental needs. Cell cycle 

modeling is an extensively studied area. Cell phase transition can be modeled as sequential 

activation of the network of cyclin-dependent kinases (Cdks)[122, 123]. Correspondingly, cell 
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death can be modeled as the activation of proapoptotic protein BDX[124].  Factors such as 

focal adhesion kinase (FAK), protein kinase B (Akt), the MAPK/ERK pathway and YAP 

pathway are known to play a key role in the balance between apoptosis, quiescence, and 

proliferation. These factors are directly mediated by extracellular signals that are associated 

with experimental set up. A stochastic model modulated by FAK, Akt, and YAP pathway 

states and that generates cell fates such as mitosis, quiescence and apoptosis is important to 

bridge experimental conditions and the corresponding DIP rates.  

(2)  Map experimental stiffness with DIP rate for sub cell lines, and record the subsequent key 

protein expression using western blotting. In Chapter 6, we presented our preliminary 

experiments that investigate the influence of surface stiffness to DIP rate in DS8 and DS9. 

Erlotinib treatment blocks EGFR activation, and the consequent DIP rates are modulated 

mainly by integrin and c-Met expression level. For each discrete sub line (relatively controlled 

c-Met expression), we found the erlotinib treated DIP rates are positively and linearly 

correlated with the logarithm of surface stiffness (integrin activation). As we learned from 

previous experiments by the Quaranta group, one can add the c-Met inhibitor foretinib to 

isolate the influence from c-Met expression and establish direct mapping from ECM condition 

to corresponding DIP rates. Two more sets of experiments using PA gel modulated surface 

stiffness around 7.5kPa and 665kPa will further validate (or overturn) our existing finding. 

Additionally, in order to link the stiffness to DIP rates in modeling, it is important to record 

corresponding key protein expression such as c-Met, Akt, BDX and FAK under each 

experimental setting for later modeling analysis.  

(3) Reproduce step (2) measured DIP under each stiffness condition using models built in step 

(1). Through tuning parametersin models built in step (1), one can identify the corresponding 
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Akt and BDX expression levels that optimally reproduce experimentally observed DIP 

distribution in step (2). Through the mapping from stiffness condition and c-Met expression 

to Akt and BDX expressions, we not only can interpret the previous experiments, but use it 

for prediction of DIP distribution under unexplored conditions.  

(4) Predict DIP rates in new cell lines. As factors such as integrin expression are believed to be 

mostly the consequence of external stimuli, c-Met expression are distinctly and innately 

different in DS8 and DS9. c-Met is known for influencing proliferation, migration, invasion, 

and angiogenesis[120]. We propose to use measured c-Met activation and surface stiffness in 

Young’s modulus to predict the DIP rates in new cell lines.  

In addition to the above described future steps, it would also be interesting to investigate the 

influence of contact inhibition on carrying capacity. In this thesis, we used a logistic growth model 

to capture change in tumor growth rate, where cell growth is mediated by growth rate k at low cell 

density and proliferate significantly slower when tumor cells reach carrying capacity. From both 

previously conducted experiments in 2D and 3D, we found that carrying capacity is distinct 

between sub cell lines. By measuring the protein expression levels in Hippo-YAP pathways[125] 

of each sub line, it’s promising to interpret the difference in the observed carrying capacity.  This 

would overall provide the bridge to link long term cell population to the cell lines of interest.   

 

7.5 3D cell tracking  

In the course of spatial information extraction from 3D confocal images, we also developed 

segmentation methods to effectively obtain cell location information in 3D space. Our approach is 

logic based, and consequently is still vulnerable to significant changes in imaging condition and 

noise level. Recent development in machine learning, especially deep learning based image 
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analysis techniques, has shown robust accuracy against distinct image settings in other areas of 

visual recognition[126-128]. We suggest future development of image analysis techniques to 

incorporate methods such as linear regression classifier, supporting vector machine, and neural 

network[129-132] to address image analysis needs.  

 

7.6 Conclusions 

Our work showed the promise of harnessing non-invasive imaging and modeling towards early 

detection of tumor resistance to targeted therapy. We described our experimental findings in this 

direction that bridges the gap between theory and implementation. More direct experimentations 

are required to test the hypothesis proposed in the thesis. The project to build an in vitro system, 

such as bioreactor that cultures mammalian cells and allows for both Optical Microscopy and 

Magnetic Resonance Imaging, is ongoing under collaboration between Yankeelov, Quranta, and 

Rericha lab at Vanderbilt University. We can apply knowledge gained from our series of 2D in 

silico experiments described in this thesis to the bioreactor system, and use bioreactor system to 

directly test our framework of early resistance detection. 
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APPENDIX 

 

Cell Segmentation 

 

A.1 2D cell segmentation 

Key measures of the growth or drug response of tumor cells is the evolution of cell counts in time. 

For cells growing in the 2D environment, the cell nuclei labeled with Red Fluorescent Protein 

appear mostly to be spatially separated oval objects in the red channel. Occasionally, these oval 

objects can overlap with each other mainly due to two factors: (1) when cells go through the mitosis 

process (so called M phase), two nuclei are physically connected; (2) the point spread function 

[133] (the blurring of a point object due to the nature of the imaging system) of the imaging system 

creates the illusion of connected nuclei when two nuclei are close enough to each other.  

          To count the number of spatially separated cells, one can use MATLAB built-in function 

imfindcircles(): (1) create binary image by thresholding the original image; (2) clear out small 

noisy particles; (3) count the number of connected regions.  

          To count the number of spatially connected cells involves more steps. We create effective 

segmentation algorithm by combing and adjusting the segmentation algorithm described in 

references[130, 134, 135]. Briefly, one needs to first apply smooth filters to the image of interest, 

and this step will be helpful to obtain smoother boundaries at later stages. One can then create 

binary images and clear out small noisy particles. Next, as a critical step, one will need to find out 

the boundaries of the larger connected regions, and identify concave points at the boundary. If 



 135 

more than two concave points exist, one can create segmentation paths following rules described 

in the references[134, 135].  

 

A.2 3D cell segmentation 

As for cell segmentation in 3D, steps and functions used are similar to segmentation in 2D with a 

few exceptions. In the 3D stacks, z direction represents the vertical direction compared to the 

horizontal plane (x-y plane). Consequently, 3D stacks are also called z-stacks. At first, we loop 

through each x-y plane and segment each x-y plane’s 2D image using the 2D segmentation method. 

During testing, we found that for images at different horizontal planes, the 2D segmentation line 

may shift, and eventually results in the unsuccessful segmentation in 3D. We dealt with this issue 

using three steps (1) we applied stricter rules (such as higher convex value, and lower point to 

point distance) to generate segmentation lines. (2) in occasions where segmentation paths in the 

2D were generated based on the concave points, a vertical plane,Z plane (mathematically, a 2D 

matrix), that contains the segmentation path was generated. (3) generate a 3D segmentation by 

converting pixels that are both within the Z plane region and also contain the segmentation path 

from TRUE to FALSE. After all the regions in the x-y plane and each x-y plane in the z-stack are 

iterated, we filtered out small 3D objects (usually 10- 20 pixels) created during the process of 

segmentation. Refer to Figure A1 (3) for 3D segmentation steps.  

          We implemented segmentation methods inspired by works of [130, 134, 135]. The basic 

procedures employed in our segmentation method for 2D images are as follows. A typical raw 

gray image is shown in Fig A1 (1).  
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Figure A1 (1) progression of cell segmentation process. From left, the process starts 
with the original gray image. Secondly, the gray image is smoothed and thresholded 
into binary image. The red circle marked region is of interest to be further 
segmented into two individual cells. Finally, we show the result of using 
segmentation algorithm to generate cluster with independent and disconnected 
individual cells for further quantification and analysis. (2) The boundary processing 
of the segmentation algorithm. Starting with the connected two cells in the binary 
image, the first step is to identify the boundary for the region of interest (second 
from the left). Secondly, all the points at the boundary are ordered in a counter 
clock wise (third form the left) manner to establish the basis of identifying concave 
points (the right most). The concave points in the right most image are marked as 
red due high concave value. (3) Segmentation path generation and final 
segmentation based on the boundary processing in (2). From the left, binarized 
image on the Z-1 plane of the same region. Second from the left, binarized image 
on the Z+1 plane of the same region. Third from the left, Bresenham line is 
generated using the two concave points found in (2). Right most, view from the 
Bresenham line along the Z direction. The region shown in the final graph is 
nullified as no cell region to finalize the segmentation.  

 



 137 

 

(1) we filter the raw image using MATLAB built-in median filter medfilt2(). Based on the quality 

of image, one can adjust the length and height of the filtering window. In the work of this thesis, 

we generally used windows of 3x3 or 4x4 pixels.  

(2) we binarize the image after the smoothing process in step 1 by setting a threshold. Choosing a 

proper threshold is critical for later stages of boundary creation and segmentation. To achieve this 

effectively, we use MATLAB built-in function multithresh() and imquantize() to visualize 

automatically generated multi-level thresholds’ effect on the image using widely adopted Otsu 

method. After a proper threshold (a certain pixel intensity) is selected, we apply imquantize() again 

to finish up the binarization process. Imquantize takes in user specified threshold value between 0 

and the maximum value in the image. 

          Alternatively, one may also use im2bw() to choose a threshold between 0 and 1. Though 

im2bw() gives a more intuitive choice, through practice, we find imquantize() gives a more desired 

result.  

(3) we clear out small noise particles using MATLAB’s built-in function imopen() in combination 

with strel(). One can use strel() to create desired shapes, such as diamond and disc, and size of the 

noise particles to be eliminated, and then use imopen() to filter out the noise particles.  

(4) we use bwlabel() to label distinct connected regions in the binary image after it is processed in 

step 3. For example, in Figure A1 (1) and Figure A2 the original binary images are then converted 

double precision matrix, and each distinct color corresponds to different unconnected regions. The 

bwlabel() function employs standard and widely cited grouping procedure outlined in the 

reference.  



 138 

(5) We create loop through the distinct regions, to use bwmorph() in ‘erode’ mode to find out the 

boundaries of each region. Each loop contains step (5) to (8).  

(6) For each boundary of interest, we first re-order the boundary points in clockwise manner, see 

Figure A1 (2) and calculate the corresponding curvature value and convex property of each point, 

see Figure A1 (2).  

(7) If two or more convex points that above the convex value threshold (eg. 30 degree) appears 

within one boundary, see Figure A1 (2), we use opposition metrics described in previous 

work[134, 135] as well as the direct and peripheral distance between points to generate the pairing 

score[134, 135] that gives out the optimal pairing of all the convex points.  

(8) Each pair of convex points is used to generate connected lines as the segmentation line for the 

connected regions. We use Bresenham’s line algorithm[136] to generate the segmentation path. 

When pixels on the segmentation path are identified, they are converted from TRUE to FALSE, 

which creates a gap within the initially connected regions, thus segmented one region into two or 

more regions. Refer to Figure A1 (3) for generated Bresenham line.  

(9) After segmentation, we apply bwconncomp() to the binarized image, and it outputs connected 

components, CC. One can then use built-in MATLAB function regionprops() to collect the number 

of CC and their corresponding center of mass as well as other properties.  
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Figure A2 Y-Projection of the 3D cell cluster after segmentation. Each individual 
cells are labeled with distinct color to separate from the neighboring of the cells in 
the cluster. There are 104 cells in total in the shown cluster.  
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