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CHAPTER I 

Introduction to epilepsy and GABAA receptors 

Introduction 

The literal meaning of the Greek word seizure is “to take hold”
1
. Although the understanding of epilepsy 

has come a long way; the first description of an epileptic seizure appears in a text from 2000 BC written 

in Akkadian language
2
. Despite the observed association with brain injury, as early as 400 BC, epilepsy is 

still believed to occur in individuals possessed by „evil spirits‟ in many cultures. 

Today, The International League Against Epilepsy (ILAE) defines a seizure as a sudden and transient 

occurrence of abnormally excessive or synchronous neuronal activity in the brain, possibly accompanied 

by altered state of consciousness and other neurological and behavioral manifestations. The occurrence of 

two or more unprovoked seizures is defined as epilepsy
3
. Epilepsy is a common disease and its worldwide 

prevalence is 0.5-1%
4
. Furthermore the cumulative lifetime risks of epilepsy and unprovoked seizures are 

3.1% and 4.1% respectively
5
. Epilepsy causes serious physical, psychological, social and economic 

consequences
6
. 

 

Classification of seizures 

Seizures are broadly classified as generalized or focal (table 1). Generalized seizures are believed to 

originate at some location within bilaterally distributed networks, while focal seizures originate in 

networks limited to one cerebral hemisphere
7
. Furthermore, based on electroencephalographic (EEG) 

recordings and behavioral changes, seizures are described as clinical (that have identifiable behavioral 

manifestations along with EEG changes) or subclinical (that only have EEG changes)
8
. Among the 

clinical seizures, the generalized seizures can further be classified based on the associated behavioral 

change
7
 (table 1-1).  
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Table 1-1. Classification of seizures (adapted from Berg et.al. 2010) 

Gross 

classification 

Classification Subclassification Behavioral Manifestation 

Generalized 

seizure 

Tonic-clonic  Tonic phase consists of stiffening of body 

while clonic phase consists of jerking of 

upper and/or lower limbs 

 Absence Typical Non-convulsive abrupt cessation of motor 

activity along with loss of consciousness.  

  Atypical Relatively longer lasting cessation of motor 

activity as compared to a typical absence 

seizure. They occur with loss, or partial loss, 

of consciousness and have a more insidious 

start and end. 

 Myoclonic  Sudden shock-like jerk, usually of the upper 

body  

 Atonic   Sudden loss of posture 

Focal 

seizures 

  Depends on the region of the brain involved. 

For example, motor seizures and 

hippocampal seizures 

Unknown Epileptic 

spasms 

 Unprovoked epileptic movements not 

classified in any of the above mentioned 

categories. These events are re-classified on 

the basis of their EEG patterns 
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Classification of epilepsy 

Epilepsy has been classified historically as idiopathic, symptomatic and cryptogenic. It has been proposed 

to replace these classifications with the following terms (adapted from Berg et.al. 2010)
9
: 

Genetic: The term “genetic” encompasses all the epilepsy syndromes that are known or presumed to be 

associated with genetic defect(s) and have seizures as their core symptoms. Genetic epilepsies are 

estimated to represent 20-30% of all epilepsy cases
10

.This classification will further be discussed in the 

next section. 

Structural/metabolic: The terms “structural or metabolic” include distinct structural or metabolic 

conditions or diseases that have been demonstrated to be associated with a substantially increased risk of 

developing epilepsy. Examples of such structural or metabolic conditions and diseases are any type of 

brain insult, including traumatic brain injury, infections, brain tumors and stroke etc. 

Unknown: This includes conditions in which the underlying cause is “as yet unknown”. Epilepsy 

syndromes belonging to this category are meant to be viewed neutrally until the underlying genetic or 

structural/metabolic cause is identified; following which, that group is reassigned to its appropriate 

classification.  

Genetic epilepsy 

The term, “genetic” is proposed to replace the previously described term, “idiopathic”
11

. A number of 

genes that influence the risk for distinct forms of epilepsy have been identified, although this search is 

complicated by several factors, including reduced penetrance of mutations, genetic heterogeneity of 

epileptic syndromes, variable expressivity of single gene mutations and gene-environment interactions
12

. 

Genetic epilepsies include
13

: 
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1: Benign neonatal familial convulsions: Dominantly inherited disorder that presents in second and third 

day of life with clonic and apneic (respiratory arrest) seizures with no specific EEG criteria. 14% of these 

patients continue to have seizures later in life. 

2: Benign neonatal convulsions: These patients present with clonic and apneic seizures at fifth day of life 

but there is no recurrence of seizures later in life. EEG often shows characteristic sharp theta waves (4-

8Hz).  

3: Benign myoclonic epilepsy in infancy: These patients have brief bursts of myoclonic seizures during the 

first and second year of life. EEG shows generalized spike waves occurring in brief bursts during early 

stages of sleep.  

4: Childhood absence epilepsy: It occurs in 6-8 year old children and is characterized by frequent absence 

seizures that also show a 3 Hz spike wave discharge on EEG. These seizures usually remit with age. 

5: Juvenile absence epilepsy: Juvenile absence epilepsy is similar to childhood absence epilepsy except 

that onset of symptoms occurs around puberty, the frequency of seizures is lower and it is more 

commonly associated with GTCS than childhood absence epilepsy.  

6: Juvenile myoclonic epilepsy: These patients present with bilateral, single or repetitive, arrhythmic or 

irregular myoclonic jerks. GTCS also occur frequently in these patients while absence seizures may also 

occur. The onset of symptoms is around puberty. The EEG often shows irregular spike-waves and 

polyspike-waves. 

7: Epilepsy with Generalized Tonic Clonic Seizures (GTCS) on awakening: The onset of this disease is 

usually in the second decade of life and presents with GTCS, predominantly after awakening.     
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Animal models of epilepsy 

Animals models for seizures and epilepsy have played a fundamental role in our understanding of 

physiological and behavioral changes associated with human epilepsies, along with their treatments
14

. 

However the validity of animal models has been challenged for three main reasons
14

: 1) Often 

mechanistic conclusions about epilepsy are drawnbased on studies performed on animal models with 

normal, but not epileptic, brains. 2) Behavioral manifestations associated with each model can vary from 

subtle to extremely complex and not replicate human behavior. 3) The complexity of cellular mechanisms 

of seizure origination and pathways of seizure propagation can differ based on species studied. For 

example, seizure propagating networks may differ in primates and rodents. What are the criteria of a good 

animal model of epilepsy? It is recommended that before an animal can be considered a model for human 

seizures or epilepsy it should satisfy the most of the following six general criteria
14-16

: 

1) Age of onset: If the human condition is characterized by a unique age of onset, then the proposed 

animal model should scale to or reflect a similar age to humans. For example, childhood absence epilepsy 

usually has earlier onset compared to juvenile myoclonic epilepsy
17

. 

2) Etiology: The underlying cause of seizure or epilepsy, i.e. genetic or acquired, should be similar to that 

of human condition that the model is replicating.  

3) Seizure phenotype and EEG abnormalities: The animal model should exhibit similar 

electrophysiological patterns as seen in human. For example in human absence seizures have 

characteristic 3-4Hz spike and wave pattern on EEG. The abnormality noted on the animal EEG should 

be similar in morphology to that observed in humans. 

4) Pathological insult: If the human condition is characterized by a specific pathological change, such as 

unilateral hippocampal sclerosis seen in some patients with temporal lobe epilepsy, the animal should also 

carry a similar pathological change. 
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5) Response to typical treatment: Although the pharmacological treatment has not been developed for 

every human condition, the more „classical‟ drugs used to treat humans (for example ethosuximide is used 

to treat absence seizures) should also be effective in the animal model. 

6) Behavioral characteristics: Seizure induced behavioral manifestations observed in humans (for 

example behavioral arrest during absence seizures, or automatisms observed in some complex partial 

seizure in patients with temporal lobe epilepsy) should, in some way, be reflected in the animal model.  

Currently, the majority of the animal models of epilepsy replicate only some of the above mentioned 

criteria. A brief summary of some of the commonly used models of genetic and acquired epilepsies is 

summarized in the table 1-2 and 1-3 respectively.  

Table 1-2: Examples of commonly used animal models of genetic epilepsy 

Species Line/mutation Model of Reference 

Rat WAG/Rij (Wistar Albino Glaxo rats 

from Rijswijk) 

Absence seizures Coenen et.al.
18

 

Rat GAERS (Genetic absence epilepsy rats 

from Strasbourg) 

Absence seizures Vergnes et.al.
19

 

Rat GEPRs (Genetically epilepsy-prone 

rats 

Tonic-clonic seizures Epps et.al.
20

 

Mouse Stargazer  

 

Absence seizures Letts et.al.
21

 

Mouse Lethargic Focal motor and absence seizures Burgess et.al.
22

 

Mouse Tottering 

 

Focal motor and absence seizures Noebels et.al.
23

 

Mouse ARX (Aristaless-related homebox) Infantile spasms (West syndrome) Marsh et.al.
24
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Table 1-3: Examples of commonly used animal models of acquired epilepsy 

Approach Method/ material used Epilepsy/ seizure types References 

Chemical Pentylenetetrazole Tonic-clonic seizures  

 

Zhang et.al.
25

 

Chemical Kainic Acid Temporal lobe epilepsy 

 

Vincent et.al.
26

 

Chemical Pilocarpine Temporal lobe epilepsy 

 

Curia et.al.
27

 

Chemical Flurothyl Myoclonic jerks and tonic-clonic 

seizures 

Velisek et.al.
28

 

Chemical Bicuculline Myoclonic jerks and tonic-clonic 

seizures 

Velisek et.al.
28

 

Chemical Picrotoxin Myoclonic jerks and tonic-clonic 

seizures 

Veliskova 

et.al.
29

 

Kindling Electrical kindling Focal seizures depending on the site of 

depth electrode 

Epps et.al.
20

 

Kindling Maximum electric 

shock 

Generalized seizures Epps et.al.
20

 

Kindling Corneal electric 

kindling 

Clonic seizure Rowley et.al.
30

 

Hypoxia Exposure to hypoxic or 

anoxic gas mixture 

Tonic-clonic seizures Jensen et.al.
31

 

Temperature Acute hyper-thermia Tonic-clonic seizures 

 

Bender et.al.
32
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Mechanism of seizure generation 

Synchronized firing among groups of neurons within a network is required for normal brain function. For 

example, synchronized thalamocortical oscillatory activity generates sleep spindles
33

, but under 

pathological conditions, these networks can be used to generate aberrant oscillatory network activity 

associated with disease states such as schizophrenia and epilepsy
34

. Some groups have also put forward 

the view that spike-wave discharges, a characteristic of absence seizures, are a “perverted” form of sleep 

spindles
35

. So in order to better understand the mechanism of seizure generation, it is important to first 

understand the initiation and continuation of physiologic rhythms of neuron firing. 

The initiation and generation of sleep-related thalamocortical spindle oscillations have been studied 

extensively in vitro and in vivo
33

. Here, I will briefly describe how the modulation of firing due to 

reciprocal connections among cortical neurons, reticular thalamic (RT) neurons and thalamocortical 

neurons (TC) of dorsal thalamic nucleus results in spindle-like oscillatory activity(description adapted 

from Beenhakker et.al.
33

) (figure 1-1 A). The GABAergic RT neurons project to dorsal thalamic nucleus 

to inhibit TC neurons that express GABAA and GABAB receptors. The TC neurons in turn send excitatory 

glutamatergic input to both cortical neurons and RT neurons. The cortical neurons send excitatory input to 

both TC and RT neurons, although the cortical input to RT neurons is much stronger. When RT neurons 

fire a burst of action potentials they release GABA onto TC neurons and inhibits them. This decreases the 

excitatory input to the cortical neurons which eventually decreases the activation on RT and TC neurons. 

The inhibition of TC neurons hyperpolarizes them and de-inactivates low-threshold T-type Ca
2+

 channels, 

enabling the TC neurons to fire post-inhibitory rebound burst of action potentials. This sends excitatory 

input to both RT and cortical neurons. The RT neurons again send inhibitory GABAergic input to 

hyperpolarize the TC neurons, creating this physiologic spindle rhythm of excitation and inhibition. It 

must also be kept in mind that the activation of RT GABAergic neurons not only silences the TC neurons 

but also results in intra-RT neuron inhibition via the activation of GABAA receptors, present on RT 

neurons. How does RT send any inhibitory signal to TC neurons? It is thought that a centrally located RT 
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neuron fires a strong burst of action potentials releasing GABA onto neighboring RT neurons and also the 

TC neurons. This “limited activation” of RT neurons restricts the number of neurons that contribute to 

any one cycle and reduces the feed forward disinhibition of TC neurons.  

Dysregulation of the above explained circuitry has been implicated in seizure generation (figure 1-1 B). It 

has been hypothesized that blockade of GABAA receptors (by genetic or pharmacological factors) 

eliminates the intra-RT neuron inhibition resulting in a greater number of RT neurons firing and a 

stronger inhibition of TC neurons by activating the GABAB receptors. The resulting de-inactivation of 

low-threshold T-type Ca
2+

 channels, present on TC neurons, is even greater which results in an increased 

activation signal to the cortical neurons. This causes a highly robust and synchronized activity of cortical 

neurons which is reflected in high amplitude spike-wave discharges seen on EEG, a characteristic of 

absence seizures. 

Figure 1-1: Simplified schematic of thalamocortical circuitry involved in generation of (A) sleep 

spindles and (B) absence seizures 

 

 

 



 
 

10 

 

The above described circuitry and the effects of its dysregulation show how important it is to maintain the 

physiology of neurotransmitters and their receptors. Therefore it is very essential to study the modulation 

of the physiology of neurotransmitter regulated ion channels (in other words study the “channelopathies”) 

because any aberration in this can possibly be involved in the generation of seizures and epilepsy. 

 

Some genetic epilepsies are “channelopathies” 

Genetic epilepsies account for almost 20-30% of all epilepsies
10

. Recently a number of genes that 

influence the risk for distinct forms of epilepsy have been identified, although this search is complicated 

by several factors, including reduced penetrance of mutations, genetic heterogeneity of epileptic 

syndromes, variable expressivity of single gene mutations and gene-environment interactions
36

. It is now 

thought that the mutations in transmembrane ligand- and voltage-gated ion channel genes are associated 

with a significant number of these epilepsy syndromes
37

. Furthermore, rare cases of monogenic mutations 

in transmembrane ion channels have been identified in several large pedigrees and sporadic cases of 

epilepsy
36, 38, 39

. Over the last 10 years rare forms of familial epilepsy, where the mode of inheritance is 

clearly Mendelian, have been reported to be associated with mutations in GABAA receptors
40

. It is 

important to note that patients suffering from these rare forms of familial epilepsies also present with 

similar symptoms as those suffering from polygenic epilepsies. Therefore, these rare familial epilepsies, 

with associated mutations in GABAA receptors, are phenotypically identical to the more common 

polygenic forms of epilepsy and serve as important models for them. A better understanding of the 

GABA system can help us further our knowledge about the pathology of seizures 
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Introduction to GABA  

γ-aminobutyric acid (GABA) is an amino acid neurotransmitter that is synthesized by decarboxylation of 

glutamate by the enzyme glutamic acid decarboxylase. It was discovered in 1950 by Eugene Roberts and 

Jorge Awapara
41

. It is the major inhibitory neurotransmitter in mammalian central nervous system
42

. In 

the brain, 17-20% of all neurons make GABA and are hence called GABAergic neurons
43

. GABA binds 

to two separate classes of receptors, namely GABAA and GABAB receptors
41

. GABAA receptors are 

ionotropic receptors that consist of heteropentameric protein complexes consisting of five subunits, which 

are arranged pseudo-symmetrically around a central chloride selective channel
44

. Although they are 

excitatory in nature early in development, they become the major inhibitory neurotransmitter receptors in 

mammalian brain later in development
45

. This phenomenon is explained in more detail in later sections. 

GABAB receptors, however, are G protein coupled receptors that constitute of heterodimer of two 

subunits, R1 and R2
46

. Although their role is not completely understood it is known that GABAB 

receptors are present on both pre and post-synaptic membranes. It has been reported that on the 

presynaptic membrane they inhibit the release of other neurotransmitters through a decrease in membrane 

Ca
2+

 conductance (by modulating the activity of P/Q-, N- and possibly L- type Ca
2+

 channels
46

) and an 

increase in membrane potassium conductance (by rectifying the activity of GIRK or Kir3 potassium 

channels
47, 48

).  

GABA synthesis, storage, release and inactivation 

The principal precursor of GABA is glucose. The Krebs cycle forms α-ketoglutarate, which is then 

converted to the amino acid glutamate by the enzyme GABA-transaminase (GABA-T)
49

. In GABAergic 

neurons (GABA synthesizing neurons), glutamate is further converted to GABA by the enzyme glutamic 

acid decarboxylase (GAD)
50

. GAD appears to be present exclusively in GABAergic neurons and hence 

serves as a good immunohistochemical marker to identify them
51

.  
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GABA is then packaged into vesicles by vesicular GABA transporter (VGAT)
52

. It is then released into 

synaptic cleft upon depolarization of GABAergic neurons
50

. The release of GABA is regulated by 

GABAB autoreceptors located of GABAergic axon terminals
50

 by the inhibition of Ca
2+

 and potassium 

conductance, as explained earlier.  

Exocytosed GABA is removed from the synaptic cleft both by diffusion and active reuptake.  Reuptake, 

via GABA transporters (GAT) present on GABAergic and surrounding glial cells, is the primary mode of 

inactivation of GABA signaling
50, 53

. When GABA is taken up into surrounding glial cells, the enzyme 

GABA-T combines it with α-ketoglutarate to form succinic semialdehyde that is further converted to 

succinic acid by succinic semialdehyde dehydrogenase (SSAD) and eventually returned to the Krebs 

cycle that produces glutamate
49

. Since GAD is not present in glial cells, glutamate is converted to 

glutamine by glutamine synthetase
54

. Glutamine is then pumped into the extrasynaptic space, by sodium-

coupled neutral amino acid transports (SNAT3/5) from which it is taken up into neurons by SNAT1/2
55

. 

In the neuron, glutamine is converted back to glutamate by the enzyme phosphate activated glutaminase
56

. 

This „renewed‟ glutamate can then be converted to GABA by the action of GAD, hence completing the 

cycle which has classically been described as the “GABA shunt”
49, 57

. On the other hand, when GABA is 

imported by GAT present on GABAergic neurons themselves, it can be packaged into vesicles again. 

GABA can also be metabolized to succinic semialdehyde by GABA-T present in the GABAergic 

neurons, which is further converted to succinic acid by SSAD and returned to the Krebs cycle
49

. This 

entire process is summarized in figure 1-2. 
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Figure 1-2: Schematic depiction of GABA synthesis, storage, release and recycling (adapted from 

Mackenzie et.al. 2004, Bak et.al. 2006, Seigel et.al. 1998 and Squire et.al. 2008) 
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GABAA receptors  

GABAA receptors are the most abundant and important inhibitory neurotransmitter receptors in the 

CNS
58

. They are located throughout the mammalian nervous system and are involved in almost all of 

brain physiological functions
59

. GABAA receptors are chloride ion channels that can be opened by GABA 

and modulated by a variety of different drugs such as benzodiazepines, barbiturates, neuroactive steroids, 

anesthetics and convulsants
58, 60-62

. In addition to their use as anticonvulsants, GABAA receptor targeting 

drugs are used in the treatment of hyperalgesia, anxiety, depression and other neuropsychiatric disorders
63, 

64
.   

GABAA receptors are members of the cys-loop family of ligand-gated ion channels that also includes 

nicotinic, cholinergic, serotonin 5-HT3 and glycine receptors
65, 66

. GABAA receptors are pentameric 

assemblies of 19 different subunit subtypes (α1–α6, β1–β3, γ1–γ3, δ, ε, π, θ, and ρ1–ρ3)
59, 62, 65, 67, 68

. 

Additional diversity of receptor structure is generated by alternative splicing of some of these subunit 

mRNAs
69

. Based on these factors, it is theoretically possible to assemble more than 10,000 pentameric 

combinations
67

. However, the majority of GABAA receptors are composed of two α subunits, two β 

subunits, and a γ or δ subunit
70

. All of the subunits share a common ancestral structure that includes a 

large extracellular N-terminal domain, four transmembrane domains (TM1-4) and an extended 

cytoplasmic loop region between TM3 and TM4 that mediates interactions with trafficking and signaling 

factors
71

 (figure1-3).  
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Figure 1-3: Schematic diagram of GABAA receptor subunits (adapted from Macdonald et.al. 2010
72

). 

 

 

The central pore of GABAA receptors is lined by M2 transmembrane domains of each subunit (figure 1-

4)
42

. The arrangement of subunits around the channel pore is γβαβα counterclockwise, when viewed from 

the synaptic cleft
44, 73

. Interestingly, GABAA receptors consisting of two α, two β and one δ subunits are 

present on exclusively in extrasynaptic membrane
74, 75

, while the GABAA receptors consisting of two α, 

two β one γ subunits are present on both synaptic and extrasynaptic membrane
76

. Furthermore, it has been 

shown that postsynaptic clustering of GABAA receptors requires the γ2 subunit
77, 78

. 
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Figure 1-4:  Schematic diagram of GABAA receptor (adapted from Macdonald et.al. 2010
72

). 2 α 

subunits (red complexes), 2 β subunits (green complexes) and δ/γ subunits (blue complex) surround a 

central Cl
-
 ion channel. 

 

Full activation of GABAA receptor requires the binding of two GABA molecules at βα subunit 

interfaces
79, 80

 (figure 1-4). Upon activation, chloride (Cl
-
) and bicarbonate ions flow down their 

concentration gradient into the postsynaptic neurons causing hyperpolarization (in mature brains 
81, 82

) or 

out of the postsynaptic neurons causing depolarization (in immature brains
83

).  

GABAA receptors play different roles in immature and mature brains 

Na
+
-K

+
-2Cl

-
 cotransporter (NKCC1) expression is high in neurons during early development and lasts 

until the first week of postnatal life in rodents
84, 85

. NKCC1 imports Cl
-
 ions into immature neurons 

creating a higher concentration of Cl
-
 ions in the cytoplasm than is found in mature neurons (figure 1-5 

A). At this point activation of GABAA receptor results in an efflux of Cl
-
 ions, resulting in depolarization 

of the neuron
83

 (figure 1-5 B). Hence during early development GABA act as an excitatory 

neurotransmitter. As the brain ages the expression of NKCC1 declines and the expression of the K
+
-Cl

-
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cotransporter (KCC2) increases
86

. KCC2 extrudes Cl
-
 ions from neurons, decreasing their intracellular 

concentration (figure 1-5 C). The activation of GABAA receptors in these mature neurons allows the Cl
-
 

ions to flow down their concentration gradient back into the neuron, resulting in its hyperpolarization 

(figure 1-5 D). Hence after the early period of development GABA act as inhibitory neurotransmitter. 

Figure 1-5: Activation of GABAA receptors results in depolarization of neurons during early 

development (A and B) but hyperpolarization later in development (C and D). A) Early in 

development, resting state NKCC1 transports Cl- ions into the neurons increasing Cl- ion concentration in 

the cytoplasm and hyperpolarizing the neuron. B) Activation of GABAA receptors in these young neurons 

results extrusion of Cl- ion from the cytoplasm and depolarization of the neuron. C) In adult brain KCC2 

extrudes the CL- ions out of the neuron, D) but activation of GABAA receptors results in allowing the Cl- 

ions to flow back into the neurons and hyperpolarizes them. 
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GABAA receptor synthesis assembly and trafficking 

 A summary of GABAA receptor assembly and transport is illustrated in figure 1-6. GABAA receptor 

assembly occurs in the endoplasmic reticulum (ER) and involves the chaperon proteins, calnexin and 

binding immunoglobulin protein (BiP)
87

. Furthermore, it has been shown, using forced expression in 

heterologous cells, that the receptors composed of α, β and γ or α and β or αβδ, and other subunits are 

capable of oligomerizing and can be transported to cell surface, while other combinations of subunits are 

retained in the ER and subsequently degraded
87, 88

. When α, β and γ subunits are expressed in 

heterologous cells, receptors containing all three subunits preferentially assemble as compared to α and β 

subunits alone
89

. 

The first step in the assembly of complexes that are eventually translocated to the cell surface, begins in 

the ER and involves the initial formation of α and β subunit heterodimers, which is principally controlled 

by the N-terminal/ luminal domain of these subunits
90

. This process requires chaperone proteins calnexin 

and BiP
87

. Interestingly, in vitro studies show that treatment with GABA itself appears to increase the 

surface expression of GABAA receptors
91

. If the GABAA receptor is improperly organized or the 

constituting subunits are improperly folded, the GABAA receptor is quickly subjected to ubiquination and 

subsequent ER associated degradation (ERAD) 
90, 92

. Furthermore, blockade of neuronal activity also 

enhances the processes of degradation
93, 94

.  

After GABAA receptors are assembled, inhibition of their polyubiquitination by protein linking integrin-

associated protein with cytoskeleton-1 (PLIC-1)
95

 (a protein that interacts with GABAA receptor subunits 

α1-3, α6 and β1-3
96

) increases their stability. The GABAA receptors are then transported out of the ER 

and reach the Golgi apparatus where γ2 subunit is palmitoylated at its cytoplasmic cysteine-rich domain 

by Golgi-specific DHHC zinc finger protein (GODZ)
97, 98

. If this process is interrupted by reducing the 

expression of GODZ, for example by GODZ specific shRNA vectors, it causes selective loss of GABAA 

receptors at synapses
99

.  
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Next brefeldin A-inhibited GDP/GTP exchange factor 2 (BIG2) binds to the intracellular loop of GABAA 

receptor β subunit at the site that overlaps with binding site of PLIC-1
100

 and catalyzes activation of the 

class I ADP-ribosylation factors (ARF), which allows the budding of vesicles from the Golgi apparatus
71

. 

It is also suggested that another population of BIG2, associated with recycling endosomes, might play a 

role in receptor recycling
101

.   

Two factors, namely GABA receptor associated protein (GABARAP) (which interacts with the 

intracellular loop of γ subunits
102

), and N-ethylmaleimide-sensitive factor (NSF) (which binds to both 

GABARAP and intracellular loop of β subunits
103

), enhance surface expression of GABAA receptor 

clusters upon activation of the glutamate receptor NMDA
104

. In addition to GABARAP and NSF, this 

process might also involve Ca
2+

 calmodulin-dependant kinase II (CaMKII), glutamate receptor 

interacting protein (GRIP)
71

 and phospholipase C-related inactive protein (PRIP1/2)
105

.  
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Figure 1-6: GABAA receptor assembly and trafficking (adapted from Luscher et.al. 2011 and Tretter 

et.al. 2008)  

 

 

GABAA receptor stability at synapse  

Proteins embedded in lipid bilayer of a neuron can have a relatively high mobility unless it is associated 

with anchoring proteins
96

. In cultured neurons, assembled GABAA receptors are likely delivered to the 

plasma membrane at an extrasynaptic site, from which they later migrates to their final destination
106, 107

. 

The proteins discussed below might play a role as scaffold to allow the distribution of GABAA receptors 

between synaptic and extrasynaptic sites (figure 1-7). 
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Gephyrin 

Gephyrin, a 93-kDa protein, was originally discovered as a copurified protein associated with glycine 

receptors expressed in rat spinal cord
108

. It has also been identified at GABAergic synapses
109

. Gephyrin 

is most probably associated with the intracellular loop between third and fourth transmembrane domain of 

GABAA receptor α subunits
110

. It is also hypothesized that interaction between GABAA receptor γ2 

subunit and gephyrin exists and plays a role in synaptic anchoring of GABAA receptor clusters
96, 111

. In 

vitro studies using neuronal cultures from gephyrin knockout mice, show significant loss of GABAA 

receptor clusters
109

. Similarly, gephyrin clusters are significantly reduced in γ2 subunit knockout mice
77

.  

In vitro studies have also demonstrated a direct interaction between α1 and gephyrin
112

 and α3 and 

gephyrin
113

, that requires collybistin to form a stable ternary complex
114

. The N terminal portion of 

gephyrin (known as G-gephyrin) associates with N terminal portion of other gephyrin monomers to form 

a trimeric structure
115

 while the C terminal portion (known as the E domain) of gephyrin associates with 

other gephyrin monomers to form a dimer
116

; eventually leading to the formation of  hexagonal lattice
117

 

(figure 1-7 B). It is hypothesized that GABAA receptor α1, α2 and α3 subunits and glycine receptor β 

subunit all bind to the same site on E domain of gephyrin
118

.  

Collybistin 

Collybistin is a cytoplasmic protein that binds to gephyrin and facilitates gephyrin clustering and 

transport to cell membrane
119

. It is also suggested that the cell adhesion molecules, neuroligins (NL-2/4), 

activate collybistin
111

. Collybistin knock-out mice show a loss of GABAA receptor clusters in 

hippocampus and basolateral amygdala
120

. Moreover, an in vitro study showed that co-transfection of 

collybistin and gephyrin resulted in the formation of numerous and larger synaptic clusters (which the 

writers described as “superclusters”
121

).  
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Radixin 

Radixin is required for the clustering of GABAA receptors containing α5 subunits on membrane in the 

extrasynaptic space
122

. Phosphorylation of radixin causes a structural change which allows the binding of 

f-actin, a prerequisite for clustering of GABAA receptors containing α5 subunit
122

.  

Figure 1-7 A and B: GABAA receptor clustering and stability at synapses (Tretter et.al. 2012, 

reproduced with permission of Dr. Hermann Schindelin) 

 

  

 

GABAA receptor endocytosis, recycling and degradation 

Receptor endocytosis is known to regulate the cell surface expression of neurotransmitter receptors
123

. 17-

25% of GABAA receptors undergo constitutive endocytosis
124

. Internalization of GABAA receptors is 

mediated by clathrin-dependent endocytosis
125

. This interaction is made possible by the adaptor protein 2 

(AP-2 complex) that binds to GABAA receptor and clathrin. First the μ and ζ subunits of AP-2 interact 

with the intracellular loops of GABAA receptor β and γ subunits
123, 125-127

. The phosphorylation of the AP-

2 interaction site on β1 and β3 subunits by protein kinase A (PKA) and protein kinase C (PKC) prevents 

their interaction with AP-2 and thus reduces GABAA receptor internalization
128

 
129

. On the other hand, 
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differential activation of protein phosphatases (PP1α and PP2A) by phospholipase C-related catalytically 

inactive proteins 1 (PRIP1)
130, 131

 results in dephosphorylation of AP-2 interacting sites on GABAA 

receptor β and γ subunits and facilitates receptor internalization.      

After AP2 binds to GABAA receptors, clathrin is recruited to the plasma membrane. The polymerization 

of clathrin causes the membrane to bend into a pit
127, 132

. Next dynamin, (a protein in the GTPase family), 

assembles around the neck of the clathrin coated pits and assists in pinching vesicles from the plasma 

membrane into the cytoplasm
133

.  

Upon internalization, vesicles are either subjected to rapid recycling to the cell surface or targeted for 

lysosomal degradation. The Huntingtin associated protein 1 (HAP1) inhibits degradation of internalized 

vesicles and hence facilitates recycling
124, 134

. HAP1 also acts as an adapter protein that links the 

internalized GABAA receptors to kinesin family motor protein 5 (KIF5), which provides the machinery 

that controls the transport of GABAA receptors along the microtubules in the dendrites allowing the 

recycling of GABAA receptors
135

. Interestingly the disruption of the GABAA receptor/ HAP1/ KIF5 

complex and it‟s dissociation from microtubules has been reported in a mouse model of Huntington 

disease
136

.  In a separate study, it was shown Calcium-modulating cyclophilin ligand (CAML) interacts 

with γ2 subunit of GABAA receptor and is selectively involved in the recycling of endocytosed GABAA 

receptors
137

.   

It is estimated that of all the internalized GABAA receptors almost 30% are rapidly recycled back to the 

cell surface
96

. The internalized GABAA receptors that do not get recycled to the cell membrane undergo 

slow lysosomal degradation
138

. This degradation pathway is facilitated by ubiquitination of lysine residues 

between amino acid 317-328 in the intracellular domain of the γ2 subunit
139

. The process of GABAA 

receptor internalization, recycling and degradation is summarized in figure 1-8. 
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Figure 1-8: GABAA receptor endocytosis, recycling and degradation (adapted from Luscher et.al. 

2011, Tretter et.al. 2008, Tretter et.al. 2012 and McMahon et.al. 2011).  

 

 

 

 

GABAA receptor temporal and spatial expression 

The temporal and spatial expression of different GABAA receptor subunits is tightly regulated in the brain 

but the expression of GABAA receptor subunits in human brain has not been studied in detail
140

. It is 

generally believed that brain development in rats at postnatal day (P) 8-10 is equivalent to a newborn 

human brain, P7-21 is the infantile stage, P21-32 is the juvenile stage, 32-37 is the onset of puberty and 

adult begins at two months
141

. Therefore studies on rodent brains have been very useful in understanding 
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the transcript and protein expression of GABAA receptors. A summary of findings from studies that 

looked at mouse and rat brains are discussed below. 

GABAA receptor α1 subunit 

Expression of the α1 subunit is low early in development and restricted to a few areas including brainstem 

and basal forebrain
142

 (figure 1-9). The levels of the α1 subunit dramatically increases in the first 

postnatal week and the mRNA and protein levels of α1 subunits begin to be expressed widely throughout 

all brain regions with age
143

, except for the reticular nucleus of thalamus, CA3 region of hippocampus, 

nucleus accumbens and striatum where expression remains very low
143-146

 (figure 1-10).     

 

Figure 1-9: Relative expression of GABAA receptor subunits across development (adapted from 

Galanopoulou 2008)
141

. 
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Figure 1-10: Expression of GABAA receptor α1 subunit mRNA in adult mouse brain (reproduced 

from ©2012 Allen Institute for Brain Science. Allen Developing Mouse Brain Atlas). 

 

 

GABAA receptor α2 subunit 

The expression of the α2 subunit is high early in development but begins to decline progressively with 

age
142

 (figure 1-9). In adult mouse brain, the α2 subunit is highly expressed in hippocampus, amygdala, 

striatum, nucleus accumbens and hypothalamus
143-146

. In the thalamus, the α2 subunit is expressed only in 

paraventricular nucleus and reticular nucleus; it is also weakly expressed in anterodorsal nucleus, 

laterodorsal nucleus and rhomboid nucleus
143-146

. In the cerebellum and substantia nigra, it is completely 

absent or very weakly expressed
143-146

. 
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GABAA receptor α3 subunit 

Expression of the α3 subunit is high early in development but declines with age
147

. In adult brain, α3 

subunit expression is higher in the inner layers of the cortex. In mouse hippocampus, the α3 subunit is 

only expressed in CA3, and not in the dentate gyrus or CA1
146

. In the thalamus, the α3 subunit is 

expressed highly in the reticular nucleus (a region of thalamus where α1 subunit is not expressed) and the 

midline nuclei
146

 (figure 1-11). It is also strongly expressed in the Purkinjee cell layer of the 

cerebellum
146

. 

 

Figure 1-11: Expression of GABAA receptor α3 subunit mRNA in adult mouse brain (reproduced 

from ©2012 Allen Institute for Brain Science. Allen Developing Mouse Brain Atlas). 
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GABAA receptor α4 subunit 

Expression of the α4 subunit is high in the superficial layers of cortex
143, 144

. In the thalamus, the α4 

subunit is highly expressed in all regions except the reticular nucleus
146

. It is also highly expressed in the 

striatum, and nucleus accumbens and the dentate gyrus
143

. It is almost completely absent in the 

hypothalamus
143, 144, 146

 (figure 1-12).    

Figure 1-12: Expression of GABAA receptor α4 subunit mRNA in adult mouse brain (reproduced 

from ©2012 Allen Institute for Brain Science. Allen Developing Mouse Brain Atlas). 
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GABAA receptor α5 subunit 

The expression of α5 subunit is considerably less prominent than the previously discussed α subunits
145

. It 

is expressed mainly in the deeper layers of cortex and the hypothalamus
143-146

. In the hippocampus it is 

expressed in the CA3 and dentate gyrus
146

 (figure 1-13). 

Figure 1-13: Expression of GABAA receptor α5 subunit mRNA in adult mouse brain (reproduced 

from ©2012 Allen Institute for Brain Science. Allen Developing Mouse Brain Atlas). 

 

 

GABAA receptor α6 subunit 

The α6 subunit is only found the granule cell layer of the cerebellum
143, 146

 and the cochlear nucleus
148

. 
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GABAA receptor β subunits 

All 3 β subunit subtypes are expressed highly in all regions of cortex (figure 1-14). β1 and β3 subunits are 

expressed more strongly than the β2 subunit
145, 149

 
146

. In the striatum and hippocampus, the β3 subunit is 

more highly expressed as compared to other β subunits
145, 146, 149

. The β2 subunit expression is high in 

most thalamic nuclei except for the reticular nucleus; the β1 and β3 subunits are considerably less 

abundant throughout the remainder of the thalamus
149

.   

Figure 1-14: Expression of GABAA receptor β1 (A), β2 (B) and β3 (C) subunit mRNA in adult 

mouse brain (reproduced from ©2012 Allen Institute for Brain Science. Allen Developing Mouse Brain 

Atlas).  
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GABAA receptor γ subunits 

Among the γ subunits, the γ2 subunit appears to be the most widely distributed in cortex, hippocampus, 

amygdala, globus pallidus and hypothalamus
145, 146, 149

 (figure 1-15). All three γ subunits are weakly 

expressed in thalamus
149

. 

Figure 1-15: Expression of GABAA receptor γ2 subunit mRNA in adult mouse brain (reproduced 

from ©2012 Allen Institute for Brain Science. Allen Developing Mouse Brain Atlas). 

 

GABAA receptor δ subunits 

The δ subunits are expressed in the cortex, striatum and nucleus accumbens. It is also expressed highly 

throughout the thalamus except for the reticular nucleus
146

. The distribution of δ subunits in hippocampus 

is almost exclusively restricted to the dentate gyrus
146

. In the cerebellum it is only expressed in the 

granule cell layer
146, 150

. 
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Mutations in GABAA receptor subunits associated with genetic epilepsies 

Although most genetic epilepsies are associated with complex inheritance
38

, there are many families in 

which genetic epilepsy syndromes are associated with monogenic inheritance. The mutations in 

transmembrane ligand- and voltage-gated ion channel genes are associated with a significant number of 

these monogenic epilepsies
37

.  Some of the key human mutations in the GABAA receptor subunits 

associated with different forms of genetic epilepsies are summarized in tables I-III A and B and discussed 

in detail separately.  
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Table 1-4 A: Summary of mutations in GABAA receptor subunits and their association with 

epilepsy  

Subunit Mutation Seizure/ Epilepsy References 

α1 subunit A322D Juvenile myoclonic epilepsy Cossette et.al.
151

 

 

α1 subunit S326fs328X Childhood absence epilepsy Maljevic et.al.
152

 

 

α1 subunit K353delins18X Idiopathic generalized epilepsy Lachance-Touchette 

et.al.
153

 

α1 subunit D219N Febrile seizure and idiopathic generalized 

epilepsy 

Lachance-Touchette 

et.al.
153

 

α6 subunit R46W Childhood absence epilepsy and atonic epilepsy Dibbens et.al.
154

 

 

β3 subunit P11S Childhood absence epilepsy  Tanaka et.al.
155

 

 

β3 subunit S15F Childhood absence epilepsy  Tanaka et.al.
155

 

 

β3 subunit G32R Childhood absence epilepsy  Tanaka et.al.
155

 

 

δ subunit E177A Generalized epilepsy with febrile epilepsy plus Dibbens et.al.
154

 

 

δ subunit R220C Generalized epilepsy with febrile epilepsy plus Dibbens et.al.
154

 

 

δ subunit R220H Generalized epilepsy with febrile epilepsy plus Dibbens et.al.
154
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Table 1-4 B: Summary of mutations in GABAA receptor subunits and their association with 

epilepsy  

Subunit Mutation Seizure/ Epilepsy References 

γ2 subunit K328M Generalized epilepsy with febrile epilepsy plus Baulac et.al.
156

 

 

γ2 subunit R82Q Childhood absence epilepsy and febrile 

seizures 

Wallace et.al.
157

 

γ2 subunit R177G Febrile seizures Audenaert et.al.
158

 

 

γ2 subunit P83S Idiopathic generalized epilepsy and febrile 

seizures 

Lachance-Touchette 

et.al.
153

 

γ2 subunit Q390X Idiopathic generalized epilepsy and febrile 

seizures 

Harkin et.al.
159

 

γ2 subunit W429X Generalized epilepsy with febrile epilepsy plus Sun et.al.
160

 

 

γ2 subunit S443delC Idiopathic generalized epilepsy and febrile 

seizures 

Tian et.al.
161

 

γ2 subunit IVS6+2TG Childhood absence epilepsy and febrile 

seizures 

Kananura et.al.
162

 

 

 

 

 



 
 

35 

 

Mutations in the GABAA receptor α1 subunit associated with genetic epilepsies (figure 1-16) 

A322D Missense Mutation 

The A322D missense mutation was identified in a large French-Canadian family suffering with an 

autosomal dominant form of juvenile myoclonic epilepsy (JME)
151

. This mutation results in the 

replacement of alanine with a charged aspartate in the third transmembrane domain of the GABAA 

receptor α1 subunit
65

. Further in vitro studies showed that this mutation destabilizes the insertion of third 

transmembrane domain of α1 subunit in the lipid bilayer and hence causes its gross misfolding
163

. In vitro 

studies also showed that mutant α1 subunits have significantly reduced total and surface expression
164

. 

This reduced expression has been associated with degradation due to endoplasmic reticulum associated 

degradation (ERAD)
165

 and lysosomal degradation
166

. It was further shown that residual assembled 

GABAA receptor containing the mutant α1 subunit reduced the surface expression of wild type subunits 

possibly by oligomerizing with and trapping wild type subunits in the endoplasmic reticulum; hence 

causing a small but significant dominant negative effect
165

.   

S326fs328X Frameshift Mutation 

This mutation was originally described in one patient (de novo, the unaffected parents were negative for 

the mutation) suffering with childhood absence epilepsy (CAE)
152

. It causes a single base pair deletion 

(975delC) which eventually results in a frameshift mutation (S326fs328X)
152

. This mutation is situated in 

the third transmembrane domain of α1 subunit. In vitro studies showed that it completely abolished 

GABA-evoked current
167

. In vitro studies also showed that mutant mRNA was degraded through 

nonsense-mediated mRNA decay (NMD) and the small amount of protein produced from the remaining 

mRNA that escaped NMD was degraded by ERAD
167

. These two mechanisms completely eliminated the 

α1 subunit expression making S326fs328X a null mutation. These findings also make the GABAA 

receptor α1 subunit knock out mouse model a very relevant model to study this form of genetic epilepsy. 
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K353delins18X Mutation 

Three patients suffering with IGE and one obligated carrier, all belonging to the same French-Canadian 

family, were reported to carry the K353delins18X mutation in the GABAA receptor α1 subunit gene
168

. 

The mutation resulted in the insertion of 25 nucleotides in the intron close to the splice acceptor site of 

exon 11
168

. This splice mutation is predicted to rearrange the α1 subunit transcript such that the fourth 

transmembrane is deleted as well as 18 amino acids and a premature stop codon is inserted
168

. In vitro 

studies, conducted on transfected HEK-293 cells using surface biotinylation assay and electrophysiology, 

show that the mutant α1 subunit is expressed but not transported to the plasma membrane
168

.   

D219N Missense Mutation 

Four out of five individuals belonging to the same French-Canadian family, suffering with either febrile 

seizures or IGE, were reported to carry a missense mutation (D219N) that resulted in the replacement of 

the negatively charged amino acid aspartate with a non-charged polar amino acid asparagine
168

. In vitro 

studies showed that the mutant GABAA receptor α subunits were able to assemble as part of GABAA 

receptor and transported to cell membrane, although there was a 50% reduction in the ratio of surface to 

total expression of mutant D129N α1 subunit as compared to controls
168

. 
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Figure 1-16: GABAA receptor α1 subunit mutations associated with genetic epilepsies (adapted from 

Macdonald et al 2010 and Lachance-Touchette et al 2011) 

 

 

Mutations in GABAA receptor α6 subunits associated with genetic epilepsies 

R46W Missense Mutation 

A novel mutation in GABAA receptor α6 subunit, described in a patient suffering from CAE and atonic 

seizures, results in substitution of arginine at position 46 with tryptophan(R46W)
169

. This mutation causes 

impaired functioning of the receptor, as determined by electrophysiology experiments, and decreased 

surface expression of GABAA receptor
170

.   
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Mutations in GABAA receptor β subunits associated with genetic epilepsies 

Three missense de novo mutations in GABAA receptor β3 subunit gene (P11S, S15F and G32R) have 

been identified in four cases of CAE
171

. P11S and S15F are located on exon 1a and are part of the β3 

subunit signal peptide, while G32R is located at amino acid 10 from the N terminus in mature protein and 

located on exon 2
171

. Initial in vitro studies showed that each of these three mutations were associated 

with hyperglycosylation and decreased peak amplitude of GABA-evoked whole-cell currents
171

. Further 

in vitro studies done on the G32R mutation showed three changes: 1) co-expression of β3 (G32R) subunit 

with α1 or α3and γ2L subunits resulted in an increased surface expression of β3 subunits and reduced 

surface expression of γ2L subunits; 2) G32R β3 subunits were more likely to be glycosylated at Asn-33 

than in controls and finally 3) GABAA receptors assembled with α1, β3(G32R) and γ2L subunits had 

reduced macroscopic current density relative to controls
172

. Interestingly, another study showed an 

association of the P11S mutation and autism
173

. It should also be noted that studies conducted on β3 

subunit knockout mouse model have shown that homozygous β3 knockout mice have a high mortality, 

stunted growth, cleft palate and numerous neurological symptoms including hyperactivity and seizures
174

. 

GABAA receptor δ subunits associated with genetic epilepsies (figure 1-17) 

Two missense mutations in GABAA receptor δ subunit gene, E177A and R220C, have been identified in 

two separate small families suffering with generalized epilepsy with febrile epilepsy plus (GEFS+)
175

. 

Both of these substituted amino acid residue in the extracellular domain of the amino terminal of GABAA 

receptor δ subunit, however it should be noted that E177A is located adjacent to one of the two invariant 

cysteines that form the disulfide bond
175

 (figure1-17). 

It was also shown that although the EC50 of GABA was not shifted by heterozygous and homozygous 

expression of E177A but a significantly reduced maximal current in saturating concentrations of GABA 

occurs
175

. Although no functional effect of R220C was reported, heterozygous expression of another 

variant, R220H, found in GEFS+ and febrile seizure (FS) patients and controls, also showed significantly 
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decreased peak current; indicating that R220H could be a modifier or susceptibility gene
175

. No change in 

the total receptor protein has been reported but the surface expression was significantly reduced for both 

E177A and R220H mutation carrying GABAA receptor
176

. Although it should be noted that association 

analysis done as part of another study has also shown that there is no evidence of association of R220H 

with IGE susceptibility
177

. 

Figure 1-17: GABAA receptor δ subunit mutations associated with genetic epilepsies (adapted from 

Macdonald et al 2010) 
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Mutations in GABAA receptor γ2 subunits associated with genetic epilepsies (figure 1-18) 

A large number of mutations in the GABAA receptor γ2 subunit gene have been reported. Some of these 

mutations will be discussed here based on their classification. 

Missense mutations of GABAA receptor γ subunits 

Autosomal dominant missense mutation in GABAA receptor γ2 subunit (K328M) was identified in a 

family suffering from GEFS+
178

. The K328M mutation causes the substitution of a residue located in the 

short extracellular loop between the M2 and M3 transmembrane segment of the γ2 subunit. This mutation 

causes a reduced amplitude of GABA currents in oocytes
178

, but studies in HEK cells show an accelerated 

deactivation and  no change in amplitude
179

. This mutation does not have any effect on GABAA receptor 

cell surface expression at normal room temperature
180

 but a recent in vitro study showed that upon 

elevation of temperature, by a few degrees, the postsynaptic aggregation of the mutant K328M γ2 subunit 

was significantly reduced
181

. This finding makes K328M a strong candidate for further studies on GEFS+. 

The R82Q, a missense mutation that resides in the extracellular domain of the amino terminal of the 

GABAA receptor γ2 subunit gene, has been reported in a large Australian family suffering with CAE and 

FS
182, 183

. In vitro studies have shown that, when expressed with α1 and β2 subunit, this mutation causes a 

slow GABAA receptor deactivation and increased rate of desensitization
184

. When mutant γ2 subunit was 

expressed with α1and β3 subunits, in another in vitro experiment, no such change was seen
179

. The R82Q 

mutation also causes reduced surface expression of GABAA receptors
185

. R82Q knock-in mice have 

absence seizures while cortical neuronal cultures of these mutant mice showed reduced surface expression 

of γ2 subunits
186

. 

Another missense mutation, R139G in GABAA receptor γ2 subunit gene, has been identified in a family 

suffering with autosomal dominant form of FS
158

. In vitro studies showed that this substitution of the 

highly conserved arginine with glycine caused a rapid desensitization but no change in peak current 

amplitude
158

. 
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In a large French-Canadian family, suffering from FS and genetic epilepsy (GE) over three generations, 

another missense mutation (P83S) in GABAA receptor γ2 subunit gene has been identified
168

. In vitro 

electrophysiology studies, however, did not identify any significant functional deficit, but the high degree 

of penetrance and conservation shows that further studies should be conducted to study this mutation 

better. 

Nonsense mutations of GABAA receptor γ2 subunits 

An Australian family suffering from GEFS
+
, FS and IGE has been identified in which a single base pair 

substitution in the γ2 subunit gene caused a premature stop codon at Q390, which is present in the large 

cytoplasmic loop between the third and fourth transmembrane domains
187

. In vitro studies showed that the 

application of GABA failed to activate current responses, indicating a failure of surface expression of 

assembled GABAA receptor
187

. This could be attributed to the retention of the mutant γ2 subunit and the 

wild type α and β subunits in the endoplasmic reticulum
188

. The mutant γ2 subunit has been shown to 

have a stable conformation and a slow rate of degradation than wt γ2 subunits
189

. 

An autosomal dominant nonsense mutation (W429X), present in the large intracellular loop between third 

and fourth transmembrane domain of γ2 subunit, with 87.5% penetrance was reported in a Chinese family 

suffering with GEFS
+190

.  

Frameshift mutations of GABAA receptor γ2 subunits 

In a non-consanguineous Italian family a frameshift mutation γ2S(S443delC) was reported in four 

patients suffering from mild generalized seizures and febrile seizures
191

.  In vitro studies showed that the 

mutation caused an extension in the C terminal of γ2 subunits by 26 amino acids. The total expression of 

the mutant protein was reduced and the residual expressed protein was not trafficked to the cell membrane 

and was retained in the endoplasmic reticulum
191

. 
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Mutations of GABAA receptor γ subunits in untranslated region 

In a German family suffering with CAE and FS a mutation, IVS6+2TG, was found that destroyed the 

5‟-splice site of intron 6 and hence interfered in correct splicing
162

. Further studies on this mutation are 

required as it can possibly result in the formation of nonfunctional GABAA receptor γ subunits and play a 

role in the development of epilepsy phenotype. 

 

Figure 1-18: GABAA receptor γ2 subunit mutations associated with genetic epilepsies (adapted from 

Macdonald et al 2010) 
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Modulation of GABAA receptor expression in models of acquired seizures 

Gross changes in brain structure of rodents have been reported after pilocarpine-induced seizures, that 

includes enlarged ventricles, enlarged dentate gyrus, damaged piriform cortex and amygdala, along with 

cell loss in thalamus and hippocampus
192-194

. GABAA receptors are the target of many chemoconvulsants 

including pentylenetetrazol, an antagonist of GABAA receptors
195

. Studies done on human temporal lobe 

epilepsy and related animals models of acquired epilepsy have shown modulation of the expression of 

GABAA receptor subunits
196

. A brief summary of the more notable changes in the expression GABAA 

receptor subunits, in acquired models of epilepsy, are discussed below. 

GABAA receptor α subunits 

Pilocarpine induced seizures have been reported to cause a decrease in  α1 subunit and an increase in α4 

subunit mRNA expression
197

. Electrically-induced status epilepticus appears to increase the level of both 

α2 and α4 subunits
198

. In both electrically-induced status epilepticus
198

 and pilocarpine-induced 

seizures
199

, α5 subunit expression is decreased in the CA1, CA2 and CA3 region of hippocampus.  

In the hippocampal neurons of tremor rats, a model of spontaneous absence-like seizures and tonic 

convulsions, mRNA and protein levels of α1 subunit were reported to be upregulated
200

. Further studies 

showed that mRNA and protein levels of α4 and γ2 subunits were also increased in the hippocampus of 

these animals
201

.  

GABAA receptor β subunits 

The mRNA levels of all three β subunits show a general trend towards an increase in electrically induced 

status epilepticus rats
198

. However in another study it was shown that the β2 and β3 subunits were 

internalized more than controls in pilocarpine induced status epilepticus
202

.  
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GABAA receptor δ subunits 

In a mouse model of pilocarpine-induced status epilepticus it was shown that the expression of δ subunits 

was decreased in the molecular layer of dentate gyrus, while it was increased in the interneurons present 

in CA1 region of the hippocampus
192

. A progressive decline in mRNA expression of δ subunits is also 

observed in electrically induced status epilepticus in rats
198

. In kainic acid-induced seizure model, δ 

subunit expression is reduced in dentate gyrus and CA1 region of hippocampus
203

.  

GABAA receptor γ2 subunits 

Studies using insitu-hybridization show that the levels of γ2 subunit mRNA increased slightly in 

electrically induced status epilepticus rats
198

. In pilocarpine-induced status epilepticus mice, γ2 subunit 

expression increased throughout hippocampus, especially in the dentate gyrus
192, 193

.  

 

 

 

Conclusions 

Epilepsy, known as the “sacred disease” in ancient times, has been the target of many anticonvulsant 

treatments that ranges from barbaric (for example bleeding and branding in the Middle Ages) to 

serendipitous (for example development of valproic acid in recent times)
204

. Despite centuries of research 

epilepsy remains a poorly understood disorder
205

. However the use of animals models has played a 

fundamental role in increasing our understanding of seizures and epilepsy
14

 and developing new 

treatments for them
206

.  

Genetic epilepsies account for about 30% of all epilepsy cases
10

 and their complex inheritance is a 

significant hurdle in developing a better understanding of their etiologies. Research on these epileptic 

syndromes has identified that the mutations in ligand- and voltage-gated ion channel genes are associated 

with genetic epilepsy
37

. Furthermore, the fact that some monogenic mutations in ion channels show clear 
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Mendelian pattern of inheritance, stresses the importance of why they should receive more attention. The 

development of animal models of genetic epilepsy provides an invaluable source of information for these 

syndromes.   

Over the last 10 years many mutations in GABAA receptors have been shown to be associated with 

epilepsy
40

. The discovery of the A322D missense mutation, identified in a large French-Canadian family 

suffering with an autosomal dominant form of juvenile myoclonic epilepsy (JME)
151

, is a good example. 

Therefore further studies conducted on animal models of GABAA receptor mutations can help us increase 

our understanding of epilepsy and provide insights for the development of more effective treatments. 
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Chapter II 

Decreased viability and absence-like epilepsy in mice lacking or deficient in the 

GABAA receptor α1 subunit 

Introduction 

It is estimated that 50 million people suffer from epilepsy world wide
1
. Genetic generalized epilepsy 

(GGE) syndromes constitute 10-20% of all epilepsies
2
. These epilepsy syndromes that confer generalized 

seizures (for example absence, myoclonic and generalized tonic clonic seizures), do not result from any 

known acquired lesion
3
, and are often clustered in families as are observed in twin and family studies

4
. 

Although GGEs are thought to result from a genetic etiology, Mendelian inheritance is not often 

observed
3
. For example, although autosomal dominant EFHC1 mutations have been shown to cause 

juvenile myoclonic epilepsy (JME) in some families, some cases of JME result from de novo EFHC1 

mutations while majority are believed to result from polygenic inheritance
5, 6

.  

As discussed in chapter I, GABAA receptors are the primary mediators of fast inhibitory synaptic 

transmission in the central nervous system and mutations in these receptors have been implicated in many 

cases of genetic epilepsies
7
. Two mutations, S326fs328X and A322D, in GABAA receptor α1 subunit 

gene have been shown to be associated with childhood absence epilepsy
8
 and juvenile myoclonic 

epilepsy
9
 respectively. In vitro studies have shown that A322D mutation causes a 88% reduction in 

GABAA receptor α1 subunit expression
10

, while S325fs328X causes complete elimination of GABAA 

receptor α1 subunit expression
11

.  

†
 The contents of this chapter were first published as: 

Fazal M. Arain, Kelli L. Boyd and Martin J. Gallagher. Decreased viability and absence like epilepsy in 

mice lacking or deficient in the GABAA receptor alpha1 subunit. Epilepsia. 2012 August; 53(8) : 

e161-5 
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Despite the evidence that heterozygous loss-of-function mutation in GABAA receptor α1 subunit caused 

GGE in humans
8
, heterozygous or even homozygous GABAA receptor α1 subunit knockout (Gabra1 KO) 

mice (maintained in a mixed genetic background) were not reported to have any visually apparent 

seizures or changes in viability
12

. These surprising in vivo finding could have resulted if, 1) α1 subunit 

haploinsufficiency alone does not cause epilepsy and a dominant negative effect is necessary, 2) Gabra1 

KO mice do not fully replicate the human disease, 3) modifier genes present in the mixed background 

alter the phenotype, or 4) Gabra1 KO mice have nonconvulsive seizures that require synchronized 

video/EEG monitoring to be diagnosed.  

Here we investigated whether heterozygous loss of α1 subunit reduced viability or caused seizures in 

mice maintained in the C57BL/6 and DBA/2J congenic backgrounds.  

 

Methods and materials 

Generation and maintenance of Gabra1 KO mice in congenic strains  

We obtained the Gabra1 subunit mutant mice, that possessed loxP sites flanking the DNA encoding the 

second transmembrane domain of α1 subunit, from Jackson Laboratories (B6.129(FVB)Gabra1tm1Geh/J; 

stock 004318). These mice were first generated by Vicini et.al.
12

. A short description of the mutant mouse 

production is as follows.  

Vicini et.al. created a BAC clone containing a targeting vector (derived from Strain 129-derived mouse 

genomic DNA) that consisted of nucleotides 1307-1509, which are predicted to encode for amino acids 

starting putative second transmembrane domain and ending in the intercellular loop between 

transmembrane 3 and 4 of mouse Gabra1 subunit
12

. It should be noted that deletion of nucleotides 1307-

1509, that are predicted to encode amino acids starting in the putative second transmembrane domain and 

ending in the intercellular loop between transmembrane 3 and 4, is also expected to create a frame-shift 
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mutation and prevent translation of downstream exons, possibly creating a truncated protein
12

. The vector  

also contained the selectable marker gene PGKneoNTRtkpA flanked by loxP sites into a site ~0.6 kb 

upstream of the target exon and another loxP site 0.8 kb downstream of nucleotides 1307-1509
12

. This 

entire construct was injected into mouse embryonic stem cells (ESC). The PGKneoNTRtkpA selectable 

marker cassette allowed identification of correctly targeted ESC clones. The correctly targeted ESCs were 

transfected with CRE expressing plasmids to delete the selectable marker cassette. Four ESC clones that 

had the target sequence flanked by loxP sites were injected into C57BL/6 blastocysts. These blastocysts 

were implanted in a pseudo-pregnant female mouse. Among the resulting offspring two chimeric animals 

were chosen to establish the germ line transmission. A summary of the creation of congenic Gabra1 KO 

mouse line is summarized in Figure 2-1 (adapted from Vicini et.al. 2001) 

Although previous studies of Gabra1 KO mouse used interbred strain, we obtained this mouse after it had 

been backcrossed to C57BL/6 congenic line for 6 generations. We then mated these mice with B6.C-

Tg(CMV-cre)1Cgn/J (stock 006054) (that expresses cre in all tissues) and the resulting litter contained 

heterozygous Gabra1 KO mice. We then continued backcrossing the heterozygous Gabra1 KO mice into 

C57BL/6 strain (backcrossed at least 10 times) and also into a separate congenic strain, DBA/2J  

(backcrossed at least 9 times).         
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Figure 2-1: A summary of the creation of Gabra1 KO mouse is summarized below (adapted from 

Vicini et.al. 2001) 

 

 

 

Mouse colony maintenance and mating strategy for experimental mice 

All procedures were performed in accordance with protocols approved by the Vanderbilt University 

Institutional Animal Care and Use Committee (IACUC). Mice were housed in a temperature and 

humidity controlled environment, with a 12 hour light/dark schedule. Water and food were provided ad 

libitum. We mated either C57BL/6 or DBA/2J heterozygous Gabra1 KO breeding pairs to produce wild 

type (WT), heterozygous (het) and homozygous (hom) knockout mice in their respective congenic strain.  
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Gabra1 KO mice genotyping 

Mouse tail snips were collected between postnatal day (P) 17 and P21or at the date of death. DNA was 

extracted and amplified using a commercially available PCR protocol (red Extract-N-AMP,Sigma). 

Forward and reverse primers used to identify the wild type allele were CAGCAGACCTGTGCTTGTTC 

and TTCTGCATGTGGGACAAAGA, respectively. Forward and reverse primers used to identify the 

mutant allele were CTAGGGTAGACTAGGGAGTGG and CTGCATGTGGGACAAAAGA, 

respectively.  

The PCR conditions are as follows: 

Initial denaturation 95°C for 5 minutes  

PCR cycle denaturation 95°C for 30 seconds 

PCR cycle annealing 54°C for 30 seconds 

PCR cycle extending 72°C for 90 seconds 

Final extension 72°C for 10 minutes 

Figure 2-2: Genotyping for GABAA receptor α1 subunit knockout allele 
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Analyzing viability of Gabra1 KO mice 

The number of pups produced in each litter was documented along their sex, genotype, date of birth and 

age at death. We calculated the Mendellian ratios by genotyping the mice at the time of weaning or day of 

death. We measured the body mass of the mice every one to three days from P7 to P30, after which the 

animals were used for different experiments including video/EEG recording and immunohistochemistry.  

Using P25 WT, heterozygous and homozygous Gabra1 KO  mice, we performed pathologic analyses, 

looking at gross morphology and histopathology of all major organs in collaboration with an expert 

veterinary pathologist, Kelli L. Boyd (Associate Professor, Department of Pathology, Microbiology and 

Immunology; Vanderbilt University).  

Surgical implantation of prefabricated skull head mounts and video/EEG monitoring 

Surgical implantation of prefabricated mouse headmounts (Pinnacle Technologies, Lawrence, KS, USA), 

that allows two bipolar EEG channels and one subcutaneous nuchal EMG channel monitoring was done 

as described earlier
13

, at least 48 hours prior to the scheduled EEG recording. Animals were anesthetized 

with continuous flow of isoflurane. A saggital incision was made on shaved and sterilized scalp to expose 

the skull. The headmount was placed using central sulcus and bregma as landmarks and held in place with 

four stainless steel screws (Pinnacle Technologies), inserted through burr holes. These screws also served 

as electrodes that allowed us to obtain intracranial EEG signals. The two EMG wires were placed along 

the vertebral muscles to monitor gross body movement. Headmount was further secured using dental 

acrylic and suturing loose skin around the headmount. Mice were given the analgesic ketoprofen 10mg/kg 

intraperitoneally before the start of surgery and were monitored daily for signs of infection or distress 

after surgery.  

In separate set surgeries the implantation of headmounts was modified to obtain referential EEG 

recordings from each hemisphere separately. A coronal incision was made on shaved and sterilized scalp 
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to expose the skull. The headmount was placed along the bregma using the central sulcus as the midpoint. 

The referential electrode was placed on the skull instead of intracranial.   

At the time of the recording, a 100X mouse preamplifier (Pinnacle Technologies) was attached to the 

headmount to amplify and filter the EEG waveforms. EEG signals then passed through the low-torque 

mouse commutator/swivel (Pinnacle Technologies) to the 8206 DCAS for final stage conditioning and 

filtering (Pinnacle Technologies). Acquisition of Video/EEG was done using the software Sirenia®. Data 

were analyzed using 3 different computer programs: 1) Sirenia® Seizure, 2) EDFbrowser and 3) 

NicoletOne EEG Reader V5.71.4.2530. 

Figure 2-3: Picture of a post-operative mouse showing the implanted headmount connected to a 

preamplifier. 
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The EEG was analyzed by blinded reviewer to identify spike-wave discharges (SWDs) using criteria 

established for the analysis of rat models of absence epilepsy
14

. Briefly SWDs were defined as trains of 

rhythmic biphasic spikes, with a voltage at least twofold higher than baseline and that were associated 

with after-going slow waves. The reviewer quantified the incidence, duration and spike frequency of 

SWDs in uniform 5-min samples each hour. To determine if SWDs were associated with behavioral 

arrest, manifestations of absence seizures, we determined whether the longer SWDs (>2 s) were 

associated with attenuation of the EMG signal and behavioral changes on video. Because mouse 

movements produce slow (1–4 Hz) EMG waveforms, we were also able to objectively quantify the effects 

of SWDs on movement by measuring the relative EMG spectral power (1–4 Hz delta power, Carefusion, 

San Diego, CA, U.S.A.) in 2 second segments before, during, and after the SWDs. Finally, we determined 

the effects of ethosuximide, a drug used to treat absence seizures in humans, on the incidence SWDs. 

Mice were given 200 μl intraperitoneal (i.p.) saline, and a two hour baseline EEG was obtained. The mice 

then received either ethosuximide (200 mg/kg, i.p.) or another dose of 200 μl saline (placebo), and the 

incidence of SWDs after the drug/placebo treatment was compared with that during the baseline. 

Statistical Analyses 

Statistical analyses were performed using the R 2.12.2 Statistical Package for Windows (R Foundation for 

Statistical Computing, Vienna, Austria). We first determined the effects of Gabra1 KO separately in male 

and female mice; if there was no sex-dependent effect, we grouped male and female mice together. 

Parametric data (body mass, SWD incidence) are presented as the mean ± standard error of the mean 

(SEM) and are compared using the Student‟s two-tailed t-test or analysis of variance with Tukey posttest, 

as appropriate. Nonparametric data (Mendelian ratios, mortality) were analyzed by chi-square. 
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Results 

The Gabra1 KO mutation causes a decrease in viability 

Two previous studies have reported that heterozygous or even homozygous loss of α1 subunit of Gabra1 

receptors is not lethal in mice
15, 16

. In both of these studies, WT and mutant Gabra1 KO mice used were 

generated on a mixed genetic background, i.e. a mix of C57BL/6, 129Sv/SvJ, and FVB/N
17

 and a mix of 

∼50% C57BL/6–50% 129SvEv genetic background
15, 16

. 

Recent research has underlined the importance of the genetic background of the animal model used to 

study complex human diseases. The genetic basis of disease in DBA, GAERS, EL and other epileptic 

rodent strains is usually multifactorial, owing to a combination of additive and epistatic genetic variables, 

along with environmental and even random stochastic effects
17

. Although “non-genetic factors” can 

sometimes be controlled by experimental procedures or overcome by increasing sample size, it is the 

genetic complexity itself that presents the greatest obstacle
17

. For example, an inbred mouse strain, PL/J, 

has been reported to be susceptible to handling and rhythmic tossing-induced seizures. However, when 

PL/J is crossed with the seizure resistant C57BL/6 strain , the genetic inheritance of seizure susceptibility 

of PL/J is non-Mendelian
18

. Interestingly when PL/J strain was crossed to DBA/2J, severity and 

frequency of seizures were higher in the progeny
18

. 

Therefore, using mutant heterozygous Gabra1 KO animals maintained in a congenic genetic strain allows 

us to study the effects of any mutation without the results being confounded by other genetic variables. 

That is why we decided to conduct all of our experiment on the progeny of the mice fully backcrossed to 

either the C57BL/6 strain (backcrossed at least 10 times) or the DBA/2J strain (backcrossed at least 9 

times).    

 

Mendelian ratio shows a lack of prenatal mortality 

First, we determined the effect of Gabra1 KO mutation on viability. A total of 199 C57BL/6 and 115 

DBA/2J mice obtained from het Gabra1 KO and het Gabra1 KO intercross were analyzed. Mendelian 
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ratios were calculated as a measure of prenatal mortality. In the absence of any significant prenatal 

mortality, the ratio of the genotype among the offspring of het Gabra1 KO and het Gabra1 KO intercross 

is expected to be approximately 25% wt, 50% het and 25% hom. In both C57BL/6 and DBA/2J congenic 

lines no significant deviation from the expected Mendelian ratio was observed (results are summarized in 

table 2-1), indicating a lack of significant prenatal mortality. 

Table 2-1: Mendelian ratios of F1 progeny of heterozygous Gabra1 KO mice. 

 Mendelian Ratio 

Wild Type Heterozygous  Homozygous p value 

C57BL/6 27% 50% 24% 0.780 

DBA/2J 34% 47% 19% 0.273 

  

Homozygous Gabra1 KO mice have high mortality after P19 

Offspring of heterozygous Gabra1 KO and heterozygous Gabra1 KO intercross were followed until 

postnatal day 30 (P30) for mortality and gain in mass. As shown in the Kaplan Meier plots in figure 2-4, a 

robust decrease in survival probability of homozygous (hom) Gabra1 KO mice was observed, which 

reached significance after P19 as shown by chi-square test (p value < 0.001), in both congenic strains. It 

should also be noted that the mortality of hom Gabra1 KO mice was significantly higher in C57BL/6 

compare to DBA /2J congenic strains (p value = 0.028). There was no significant difference in mortality 

between WT and het mice in either the C57BL/6 or DBA/2J strains. 
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Figure 2-4: Kaplan Myer plots showing decreased survival probability in hom Gabra1 KO mice of 

both C57BL/6 (figure 2-4A) and DBA/2J (figure 2-4B) congenic strains.  

 

 

Gain in body mass is affected by genotype and sex 

We measured the body mass of these mice every 1 to 3 days from P7 to P30 to determine the effect of the 

Gabra1 KO mutation on daily gain in body mass (figure 2-5). At P30 statistical analysis revealed a sex 

dependent effect in the C57BL/6 congenic strain where female het Gabra1 KO mice have significantly 

less body mass compared to WT (p = 0.0074). No such difference was observed in het Gabra1 KO males 

of C57BL/6 or either males or females in DBA/2J. Although, the significance of the difference of body 

mass at P30 hom Gabra1 KO mice of either sexes in both C57BL/6 and DBA/2J congenic strains could 

not be calculated due to the highly mortality earlier than P30, the rate of gain in body mass was severely 

less compared to WT after P19.   

Therefore it can be concluded that in the C57BL/6 congenic strain homozygous Gabra1 KO mice had 

significantly increased mortality compared to heterozygous mice which had increased mortality compared 
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to wild type mice.  Among the DBA/2J congenic strain, homozygous Gabra1 KO mice had increased 

mortality compared to wild type and heterozygous mice. 

Figure 2-5: Body mass of both C57BL/6 and DBA/2J mice is affected by Gabra1 KO mutation. 

Body mass of (A) female C57BL/6, (B) male C57BL/6 and (C) both male and female DBA/2J is shown 

as the mice age. (D) Body mass at P30 is shown for both congenic lines. 
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Reduced viability of hom Gabra1 KO mice is not a result of gross pathological abnormalities 

We determined whether or not the reduced viability resulted from gross anatomical changes. We 

performed pathologic analysis on all major organs in collaboration with an expert veterinary pathologist, 

Kelli L. Boyd (Vanderbilt University). No gross morphologic changes in the brain and all of the organs 

were seen except for the thymus. A significant lymphoid depletion was observed in the thymus, which 

could be the response to stress the mutant mice had due to repeated and prolonged seizures.  

Therefore any change in viability or epileptiform activity cannot be associated with any other gross 

pathological insults apart from the modulation of neurotransmitter physiology in the central nervous 

system. 

 

Gabra1 KO mutation causes absence seizures 

Previous studies have shown that loss of Gabra1 subunit in mice kept in a mixed genetic background does 

not result in any spontaneous visually apparent convulsive seizures
15, 19

. The possible reasons for this 

result could include: (A) het loss of Gabra1 subunit alone is not sufficient to cause seizures, (B) a murine 

model do not fully replicate the human phenotype, (C) modifier genes present in the mixed background 

alter the phenotype or (D) the mutant mice may be having nonconvulsive seizures that are not visually 

apparent. Therefore, we conducted synchronized video/EEG recording on congenic Gabra1 KO mice to 

determine if they exhibited any electrographic or behavioral seizures using 3 different computer 

programs: 1) Sirenia® Seizure, 2) EDFbrowser and 3) NicoletOne EEG Reader V5.71.4.2530. 

Synchronized video/EEG shows Gabra1 KO mice have SWDs 

We observed frequently occurring abnormal discharges in the EEG of the mutant mice (figure 2-6 A and 

B). Viewing the discharges on an expanded time scale showed that they consisted of a repetitive pattern 

consisting of spikes (s), positive transients (pt) and waves (w) (figure 2-6 C and D). This pattern 
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resembled the EEG pattern consisting of spike wave discharge (SWD), previously reported for a rat
20

 and 

mouse model of absence epilepsy
21

. Therefore we decided to investigate further if the Gabra1 KO mice 

were having absence seizures. 

Figure 2-6: Spontaneous abnormal EEG discharges were observed in Gabra1KO mice. Both (A) 

C57BL/6 and (B) DBA/2J Gabra1 KO mice have spontaneous SWDs. Expanded time scales show 

characteristic spikes (s), positive transients (pt) and waves (w) in both (C) C57BL/6 and (D) DBA/2J 

Gabra1 KO mice. The incidence of SWDs is shown for both congenic strains (E).  

 

Quantification of SWDs showed that heterozygous loss of Gabra1 subunit resulted in an increase in the 

incidence of SWDs in both C57BL/6 (15 ± 3 SWD/hr, N = 21, p = 0.001) and DBA/2J mice (19 ± 2 

SWD/hr; N = 19, p<0.001) (figure 2-6E). The infrequent SWDs observed in WT mice of both C57BL/6 

and DBA/2J congenic strains were consistent with previous reports
22

. No sex dependent effect was 

observed in DBA/2J with both male and female het Gabra1 KO mice having similar incidence of SWD 
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(17 ± 3 SWD/hr). However, in the C57BL/6 strain, het female Gabra1 KO mice had a significantly higher 

incidence of SWD (23 ± 5 SWD/hr) than males (11 ± 2 SWD/hr; p = 0.024) (figure 2-6F). No statistical 

difference in the duration of SWD was observed within each congenic line (C57BL/6J 1.78 ± 0.12 sec; p 

= 0.06 and DBA/2J 2.47 ± 0.12 sec; p = 0.123).  

Spike wave discharges in Gabra1 KO mice have bi-hemispheric origin 

Absence seizures are a type of generalized seizure
23

. Therefore to further investigate if the SWDs 

observed in mutant mice were generalized in origin we devised an altered surgical approach that allowed 

us to acquire referential EEG recordings from both hemispheres independently. Recording from Gabra1 

mice of both C57BL/6 and DBA/2J congenic line shows similar amplitude, frequency and duration of 

synchronous SWD in both EEG electrodes indicating that these SWDs are bihemispheric in origin (figure 

2-7). 

Figure 2-7: Bihemispheric EEG recording showing similar duration, amplitude and frequency in 

left and right hemispheres of het Gabra1 KO of C57BL/6J (A) and DBA/2J (B) congenic strains. 
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Spike wave discharges are associated with behavioral arrest 

A typical absence seizure is a non-convulsive epileptic seizure, characterized by brief impairment of 

consciousness accompanied by a characteristic spike wave discharge
24

. For the duration of the seizure the 

patient remains unresponsive to any stimuli and, upon recovery, has no recollection of the event. As 

described in chapter 1, the behavioral arrest seen in absence seizure is so subtle that diagnosis is difficult 

with visual inspection alone; that is why it can remain undiagnosed for a long time even in human 

patients. 

 We therefore looked for evidence of similar behavioral arrest associated with spike wave discharges on 

EEG recordings. Visual inspection of the electrographic recording showed that SWDs were sometimes 

associated with behavioral arrest on EMG (figure 2-8A). Movement usually produces slow EMG delta 

waves. We quantified the effect of the SWDs on these slow, movement-associated EMG waves by 

measuring the EMG relative delta spectral power (1-4Hz) of 83 sequential SWD from 14 mice. We found 

a significant reduction of mean EMG amplitude during SWDs relative to times immediate before or after 

the SWDs (p value < 0.001, figure 2-8B), indicating a behavioral arrest during SWDs. 
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Figure 2-8: Pattern of EMG discharge before, during and after the SWD on EEG indicates a 

behavioral arrest. (A) A sample of EMG and EEG discharges indicating behavioral arrest. (B) Mean 

normalized EMG spectral power (1-4 Hz). 

 

 

Anti-absence seizure drug reduces the incidence of spike wave discharges 

Ethosuximide, valproic acid and lamotrigine are used to treat childhood absence epilepsy. Recently, a 

randomized, double-blinded study published in New England Journal of Medicine provided evidence 

demonstrating that ethosuximide and valproic acid are more effective than lamotrigine and that 

ethosuximide is better tolerated than valproic acid
25-28

. Therefore, ethosuximide is considered the first line 

treatment for absence epilepsy
25-28

. Ethosuximide has also been used successfully in reducing the 

incidence of SWDs in other mouse models of absence epilepsy
29-31

. 

Therefore, we decided to test the efficacy of acute ethosuximide treatment in reducing the incidence of 

SWDs. After recording a 2 hr baseline video/EEG, DBA/2J Gabra1 KO het mice were given either 

placebo (saline) or an equal volume of 200mg/kg of ethosuximide and monitored for another two hours to 
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determine the effect on SWD. We found that ethosuximide reduced the incidence of SWDs by 83% (p 

value < 0.05) (figure 2-9).   

Figure 2-9: Ethosuximide (ETX), but not placebo, reduced SWD incidence by 83% compared to 

baseline 

 

 

Discussion 

Mutations in GABAA receptor genes, resulting in alteration of their expression and function, have been 

described as a possible mechanism for the development of epilepsy
32, 33

. Even though two mutations, 

S325fs328X and A322D, identified in the α1 subunit of GABAA receptor cause reduced expression and 

altered electrophysiological properties in in-vitro studies
34, 35

, heterozygous and even homozygous Gabra1 

KO mice were previously reported to lack visually apparent seizures
36

. Some of the possible reasons for 

these results could have included: 
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1) α1 subunit haploinsufficiency alone does not cause epilepsy. Epilepsy, especially CAE, clearly 

aggregates in families. However, the genetics is often complex. Even in CAE, the majority of epilepsy 

patients do not have any affected first degree relative
37

. Even in cases when a Mendelian epilepsy 

mutation is identified in families, the penetrance is rarely complete
37

. Moreover, a single epilepsy 

mutation can produce different epilepsy phenotypes in different individuals. For example, K289M 

mutation in the GABAA receptor γ2 subunit was identified in members of a large French family suffering 

with febrile seizures plus (GEFS+), but only 50% of mutation carriers also had tonic clonic seizures
38

. 

Therefore it is possible that the heterozygous loss of Gabra1 subunit alone is not sufficient to induce an 

epileptiform phenotype and modifier genes are required. 

2) Gabra1 KO mice do not fully replicate the human disease. It is commonly believed that mice are a 

good model to mimic human diseases. However, some studies have shown the simple animal model 

systems are not sufficient to mimic complex human diseases
39, 40

. It is important to note that mice differ 

from humans in numerous ways including rate of metabolism, overall development and brain size etc. 

One possible reason why previous studies conducted on the Gabra1 KO mouse model did not reveal any 

spontaneous visually apparent seizures could be that mice are not a good model to study the role of α1 

subunit of GABAA receptors.     

3) Modifier genes present in the mixed background alter the phenotype. The importance of using 

congenic mouse strains has been emphasized because phenotypes caused by specific genetic modification 

can be strongly influenced by genes unlinked to the target locus
41

. It has been shown that the congenic 

strain diversity of mice also plays an important role in determining the seizure threshold
42

. C57BL/6 mice 

have been reported to be one the most seizure-resistant, while DBA/2J mice are considered to be the most 

seizure sensitive strains
17

. In the previously reported studies Gabra1 KO mice used were the progeny of 

strains intercrossed immediately after the Gabra1 KO mutant line was derived. The lack of a fully 

backcrossed congenic strain could be another reason why no epilepsy phenotype was observed.    
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4) The Gabra1 KO mice have subtle nonconvulsive seizures that require video/EEG monitoring for 

diagnosis. Absence seizures are brief nonconvulsive generalized seizures that have a sudden onset and 

termination and the patients suffering from them usually have transient impairment of consciousness and 

episodes of staring unresponsively
43, 44

. The diagnosis of an absence seizure in human patients requires an 

electroencephalogram (EEG) recording showing synchronous symmetrical spike-wave, approximately 3 

Hz
45

. Even though EEG has a number of limitations, and a normal EEG does not rule out the possibility 

of epilepsy
46

, it is not possible to rule out epilepsy without EEG testing. Although previous studies have 

reported a lack of visually apparent seizures, the conclusion that no seizures are occurring in Gabra1 KO 

mice cannot be drawn without EEG confirmation.    

Gabra1 KO mice have absence epilepsy  

Our data shows that Gabra1 KO mutation is a good model to study absence epilepsy. We showed that 

heterozygous loss of Gabra1 subunit results in SWDs in both C57BL/6 and DBA/2J congenic strain. 

These SWDs are bihemispheric in origin and consist of typical spike-wave patterns, previously seen in 

other models of absence epilepsy. Furthermore by quantifying the frequency of delta activity in EMG 

channels, associated with movement of mouse, we showed a significant decrease in the incidence of 

movement during SWDs. We have also recorded examples of visible movement arrest associated with 

SWDs using synchronized Video/EEG. Finally we showed that acute treatment with ethosuximide, a drug 

typically used for treatment of absence seizures in humans, resulted in significantly decreasing the 

frequency of SWDs, as compared to placebo (saline). These results present a convincing argument that 

heterozygous loss of Gabra1 is sufficient to cause absence seizures in a mouse model.  

Because the absence seizure phenotype is so subtle, we would not have been able to draw this conclusion 

without using synchronized video/EEG and just studying the Gabra1 KO mice with visual inspection. 

Synchronized video/EEG not only allowed us to study the involuntary behavioral arrest during SWDs but 

also to show how similar our findings are to other known models of absence epilepsy. 
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Congenic background and sex can be significant variables in the expression of a phenotype    

Knowing the importance of the influence of genetic modifiers
41

 and how the congenic strain diversity of 

mice also play an important role in determining the seizure threshold
42

, we decided to conduct our studies 

in fully backcrossed congenic mouse strains. We showed that SWDs occurred equally in het Gabra1 KO 

mice of both sexes in DBA/2J congenic strain, but in C57BL/6 the female het Gabra1 KO mice had 

significantly more SWDs compared to males. This sex dependent discrepancy is consistent with previous 

findings that showed that human absence epilepsy is more prevalent in females than males
47

 and that the 

expression of GABAA receptor is sex dependant
48

. In fact women with preexisting epilepsy experience 

cyclical occurrence of seizure exacerbations during particular phases of menstrual cycle (commonly 

referred to as catamenial epilepsy)
49

. Seizure exacerbation in these women is believed to be due to the 

withdrawal of the progesterone-derived GABAA receptor modulating neurosteroid, allopregnanolone
49, 50

. 

Therefore, the increased incidence of SWDs in C57BL/6 female het Gabra1 KO mice makes them a 

possible model to study catamenial epilepsy.    

 Due to general causes like accidents, suicides, sudden unexpected death in epilepsy (SUDEP), mortality 

in epilepsy patients is 2-3 times higher than in age and sex matched general population
51, 52

. Epilepsy 

patients are also significantly more likely to have medical or psychiatric comorbidities along with 

associated negative impacts on quality of life
53

. Consistent with these facts, we showed that, contrary to 

previous reports, hom Gabra1 KO mice had significantly reduced viability in both C57BL/6 and DBA/2J 

congenic strains. Even though the Mendelian ratio of WT, het and hom Gabra1 KO mice after birth was 

not significantly different than expected, there was a significantly sharp decline in survival at 

approximately P19 in hom Gabra1 KO mice of both C57BL/6 and DBA/2J congenic strains. But 

interestingly, hom Gabra1 KO mice of C57BL/6 congenic strains had significantly less chances of 

survival than DBA/2J. The decrease in viability of the hom Gabra1 KO mice of C57BL/6 and DBA/2J 

congenic strain makes them a better model to study GGE, because even in human the risk of premature 

mortality in epilepsy patients is higher compared to general population
54

, but no such decrease in viability 
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has been reported in other traditional models of absence epilepsy, for example GAERS and WAG/Rij 

rats
55, 56

. The gain in mass after birth was significantly lower in the hom Gabra1 KO mice of both 

C57BL/6 and DBA/2J congenic strains. Interestingly only female C57BL/6 het Gabra1 KO mice had 

significantly less body mass compared to WT at P30, while no such difference was reported in male 

C57BL/6 het Gabra1 KO and either sexes of DBA/2J.  

In vitro studies have shown that activation of GABAA receptors induces a hyperpolarizing response that 

reduces cellular excitability, whereas loss of GABAA receptor function results in highly synchronized 

bursts of action potentials
57, 58

; a defining feature of seizures. In humans also it has been hypothesized that 

epilepsy may result from a decrease in GABA-mediated inhibition
58

. We have demonstrated that 

haploinsufficiency of Gabra1 subunit results in epilepsy phenotype. Our results can thereby guide future 

investigations to determine the precise mechanisms by which α1 subunit loss (in particular) and 

disinhibition (in general) produces generalized seizures.      
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Chapter III 

Gabra1 KO and A322D KI mutations cause a persistent absence epilepsy and also 

an adult-onset myoclonic-like epilepsy 

Introduction 

Generalized genetic epilepsy (GGE) is typically inherited as a complex trait
1
. Within GGE, juvenile 

myoclonic epilepsy (JME) represents about 5-30% of all epilepsies
2-4

. Eighty percent of the reported cases 

of JME are sporadic and only a small proportion of patients have identified genetic mutations or 

predisposition factors
5
. Two chromosomal loci, on chromosome 6p and 15p, have been identified for 

JME
6
. 

Several genes including EFHC1
7, 8

, calcium-channel β4 subunit
9
, BRD2 and TAP1

10, 11
 have been 

associated with JME. However the first mutation shown to segregate with a Mendelian phenotype was a 

missense mutation, A322D, in the GABAA receptor α 1 (Gabra1) subunit gene
12

. This mutation was 

discovered in a large French-Canadian family suffering with an autosomal dominant form of JME
13

. It 

had 100% penetrance and was found in all of the individuals who presented with clinical and 

electroencephalogram (EEG) features found in classic cases of JME, and was not found in any of the 

unaffected family members
13

. In vitro studies showed that the Gabra1 subunit A322D mutation caused 

misfolding of the α1 (A322D) subunit, which caused its degradation and thereby resulted in a substantial 

reduction in its expression
14,15

. When overexpressed in vitro, the residual non-degraded A322D mutant 

Gabra1 subunit conferred a small but significant dominant negative effect that reduced the expression of 

the wild type Gabra1 subunit more than would be expected to result from haploinsufficiency alone
16

.  

JME presents with bilateral, single or repetitive, arrhythmic and irregular myoclonic jerks with retained 

consciousness
17

. Ninety percent of JME patients present with generalized tonic clonic seizures (GTCS) 

and 20-30% patients also have absence seizures
12, 18

. The onset of these symptoms is around puberty and 

the sex distribution is equal
2, 19

. The electroencephalogram (EEG) of these patients often show 4-6 Hz 
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irregular spike-waves and polyspike-waves
12, 20, 21

. The majority of JME patients report seizure onset 

(typically GTCS) between the ages of 12-18 years
22

. Approximately 15% of childhood absence epilepsy 

patients develop JME later in life
23, 24

.  

Few animal models have been described to model myoclonic epilepsy. In a BRD2 haploinsufficiency 

model, rare spontaneous seizures and interictal discharges have been reported
25

. Efhc1-deficient mice 

have been reported to have frequent spontaneous myoclonus and enhanced seizure susceptibility to 

chemoconvulsant stimulation
26

. Myoclonus in these Efhc1-deficient mice is characterized by brief 

electromyographic bursts, lasting ~ 200 ms, associated with visible brief jerks
26

.  

In our recent study, we showed that mice lacking or deficient in Gabra1 subunit have reduced viability 

and absence-like seizures
27

. Since Gabra1 A322D KI mutation also causes a reduction in the expression 

of Gabra1 subunits in vitro, we decided to investigate if this mutation also results in reduced viability and 

absence-like seizures in vivo. In addition, we set out to investigate if the Gabra1 A322D KI mutation also 

caused JME-like phenotype. Because in vitro experiments showed that in addition to causing loss of 

function, GABAA receptor α1 subunit mutation (A322D) caused a small, but significant, dominant 

negative effect on GABAA receptor expression
28

, we hypothesized that the Gabra1 A322D KI mice would 

have a different phenotype than the Gabra1 KO mice. Therefore, we designed these experiments to 

directly compare the presence of JME-like phenotype in Gabra1 KO and A322D KI mice.  

Methods and Materials 

Generation and maintenance of Gabra1 A322D KI mice in congenic strains  

We collaborated with the Gene Targeting and Transgenic Facility at The University of Connecticut 

Health Center to design the Gabra1 A322D KI mouse. Briefly, a bacterial artificial chromosome (BAC) 

construct of Gabra1 subunit exon 9 (containing the A322D missense mutation, created by the replacement 

of GCC codon with GAC), loxP flanked PGKneo, exon 10, and MC1-HSV-TK sequence was created. 

The BAC construct was transfected into embryonic stem cells (ESC). Correct homologous recombination 
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was confirmed using selection with G148 and Gancyclovir. Further verification was done using PCR and 

DNA sequencing. These targeted ESC were then injected into growing blastocysts and implanted into 

pseudo-pregnant females. The resulting offspring that showed chimerism were used to test for germ line 

transmission in future generations. These Gabra1 A322D KI mutant mice were then crossed with 

hypoxanthine guanine phospho rybosyle transferase (HPRT) (a housekeeping enzyme, responsible for 

recycling purines, expressed in every cell of the body
29

) driven CRE mouse line to remove the loxP 

flanked PGKneo cassette. The resulting A322D KI mouse line was verified using PCR and DNA 

sequencing. Using speed congenic services provided by DART mouse Gabra1 A322D KI mice were 

backcrossed into C57BL/6 congenic line at an accelerated pace. After 6 speed congenic guided 

backcrosses we were able to obtain a 99.98% congenic background and continue with our experiments. 

This entire process is summarized in figure 3-1. 
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Figure 3-1: A summary of generation and maintenance of Gabra1 A322D KI mouse  

 

 

Gabra1 A322D KI mice genotyping 

For genotyping of Gabra1 A322D KI mice, tail snips were collected between postnatal day (P) 17 and 

P21 or at the date of death. DNA was extracted and amplified using red Extract-N-AMP tissue PCR kit 

(Sigma). Forward and reverse primers used to identify the wild type (WT) and mutant alleles were 

CGTGAGCCACACAGATAACC and ACCCTTTGATGGGTTACAGC, respectively. The presence of 

Lox P site, in the amplified DNA segment of Gabra1 A322D KI mice, resulted in a longer DNA segment 

as compared to the WT mice, which lacked the Lox P site (figure 3-2). 
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 The PCR conditions are as follows: 

Initial denaturation 95°C for 5 minutes  

PCR cycle denaturation 95°C for 30 seconds 

PCR cycle annealing 59°C for 30 seconds 

PCR cycle extending 72°C for 90 seconds 

Final extension 72°C for 10 minutes 

Figure 3-2: Genotyping for Gabra1 A322D KI mice. The presence of Lox P site in mutant mice DNA 

increased size of DNA segment being amplified. 

 

  

Mouse colony maintenance and mating strategy for experimental mice 

All procedures were performed in accordance with protocols approved by the Vanderbilt University 

Institutional Animal Care and Use Committee (IACUC). Mice were housed in a temperature and 

humidity controlled environment, with a 12 hour light/dark schedule. Water and food was provided ad 

libitum. 
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One goal of our study was to determine whether or not the phenotype of the Gabra1 A322D KI mice 

differed from the Gabra1 KO mice (generation of Gabra1 KO mice has been described in chapter 2). 

Because the phenotype may be related to parents as well as the other pups in the litter and thus may 

confound our interpretation, we wanted to breed WT, Gabra1 KO and A322D KI pups in the same litter. 

Therefore, we mated Gabra1 KO mice with Gabra1 A322D KI mice to produce WT, heterozygous α1 

knockout, heterozygous A322D KI and α1 knockout/A322D KI double mutant mice in equal Mendelian 

proportions (figure 3-3). Mice generated by this mating strategy were also used for western blot and 

immunohistochemistry chemistry experiments (described in chapter 4).  

 

Figure 3-3: Mating strategy to obtain WT, Gabra1 KO and A322D KI mice from same litter. 
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Analyzing viability of Gabra1 KO and A322D KI mice 

The number of pups produced in each litter was documented along with their sex, genotype, date of birth 

and age at death.  We measured the body mass of mice every one to three days from P7 to P30, after 

which the animals were used for different experiments including EEG recording and western blots. 

Surgical implantation of prefabricated skull head mounts and video/EEG monitoring 

The procedure for the implantation of prefabricated skull head mounts and video/EEG monitoring has 

been explained in chapter 2. The recorded video/EEGs were analyzed by a blinded reviewer to identify 

spike-wave discharges (SWDs) using criteria established for the analysis of rat models of absence 

epilepsy
30

. Other forms of EEG abnormalities, including polyspike discharges (PSDs), were also noted 

and quantified. The characteristics of these PSDs will be described later in the results section of this 

chapter. 

Determining susceptibility to pentylenetetrazole (PTZ) induced seizures  

Prefabricated mouse headmounts (Pinnacle Technologies) were surgically implanted in two groups of 

animals, aged postnatal day (P) 33-37 (referred to as P30s from here on) and P120-130 (referred to as 

P120s from here on) as described in chapter 2. After a 48 hour post-op recovery, mice were injected with 

repeated low doses of PTZ and studied for epilepsy-like behavior using synchronized video/EEG. 

Although PTZ is typically used to evoke GTCS, Wong et.al. described a modified protocol with repeated 

low doses of PTZ that produced myoclonic jerks
31

. Briefly, mice were first injected with 25 mg/kg PTZ 

intraperitoneally and observed for 45 minutes followed by four repetitive doses of 10 mg/kg PTZ 10 

minutes apart. If a tonic clonic seizure occurred during the course of the experiment, further doses of PTZ 

were not administered to prevent further tonic clonic seizures or status epilepticus and consequent death. 
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Statistical Analyses 

Statistical analyses were performed using the R 2.12.2 Statistical Package for Windows (R Foundation for 

Statistical Computing, Vienna, Austria). We first determined the effects of Gabra1 KO and A322D KI 

mutations separately in male and female mice; if there no sex-dependent effect was noted we grouped 

data from the male and female mice. Parametric data (body mass, seizure incidence) are presented as the 

mean ± standard error of the mean (SEM) and compared using the Student‟s two-tailed t-test or analysis 

of variance (ANOVA) with Tukey posttest, as appropriate. The two factor ANOVA test was used to 

determine the effects and interaction of the age (P30s vs P120s) and genotype factors on the phenotype. 

Post-hoc pairwise comparison of means was conducted to determine the significance of the effect of each 

genotype. A multi-factorial test of categorical variables was used to analyze the effect of PTZ on GTCS 

seizure threshold. Nonparametric data (for e.g. Mendelian ratios, mortality) were analyzed by chi-square. 

 

Results 

Heterozygous Gabra1 KO and A322D KI mutations do not decrease viability 

As explained in chapter II and reported in our recently published study, we have shown that in C57BL/6 

congenic background homozygous loss of Gabra1 subunit causes a significant decrease in viability
32

. 

Here we directly compared the effects of Gabra1 KO and A322D KI mutations on viability. To better 

compare the characteristics of WT, Gabra1 KO and A332D KI mutations in mice of the same litter we 

used the mating strategy (explained in the methods sections and figure 3-3) of crossing het Gabra1 KO 

with het Gabra1 A322D KI mice. This mating strategy also produced Gabra1 KO/ A322D KI double 

mutant, which has a sudden decrease in viability past P19 (figure 3-4). Given the results for C57BL/6 

homozygous Gabra1 KO mice
32

, this high mortality of the Gabra1 KO/ A322D KI double mutant was 

expected. Since the findings from Gabra1 KO/ A322D KI double mutant mice were not the subject of our 

interest, they were not pursued and will not be discussed further in this thesis. 
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Mendelian ratio shows a lack of prenatal mortality 

We obtained 115 offspring from het Gabra1 KO and A322D KI mice cross. In the absence of any 

significant biased prenatal mortality, the ratio of the genotype among these offspring is expected to be 

approximately 25% WT, 25% het Gabra1 KO, 25% Gabra1 A322D KI and 25% Gabra1 KO/A322D KI 

double mutant. No significant deviation from the expected Mendelian ratio was observed (results 

summarized in table 3-1), indicating a lack of significant prenatal mortality. 

 

Table 3-1: Mendelian ratios of F1 progeny of heterozygous Gabra1 KO and A322D KI mice. Chi-

square test showed no significant difference between the actual and expected Mendelian ratio. 

Mendelian Ratio 

WT Gabra1 KO  Gabra1 A322D KI Gabra1 KO/A322D KI p value 

27% 16% 17% 39% 0.07 

 

Neither Gabra1 KO nor A322D KI mutations alter the survival probability of mice. 

Offspring of het Gabra1 KO and A322D KI cross were followed until P30 for mortality and gain in mass. 

Kaplan Meier curve (figure 3-4) showed no significant change in viability in either WT, het Gabra1 KO 

or A322D KI mice, although a robust decrease in survival probability was observed in Gabra1 

KO/A322D KI double mutant past P19, which was similar to that seen in hom Gabra1 KO mice
27

 (figure 

2-4, chapter 2). 
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Figure 3-4: Neither Gabra1 KO nor A322D KI mutations significantly alter survival probability. 

Kaplan-Meier curve showed the survival probability as the animals aged. 29 WT, 17 Gabra1 KO, 18 

A322D KI and 43 Gabra1 KO/A322D KI double mutant mice were monitored for survival from birth 

until P30. 

 

 

Neither Gabra1 KO nor A322D KI mutations alter the body mass of mice  

We measured the body mass of these mice every 1 to 3 days from P7 to P30 to determine the effect of the 

Gabra1 KO and A322D KI mutations on daily gain in body mass (figure 3-5). In both male and female 

mice, neither the Gabra1 KO nor A322D KI mutations changed the body mass during development. At 

P30s, there was no significant difference in body mass of WT, Gabra1 KO or A322D KI mice (p value = 

0.49). Therefore, it can be concluded that heterozygous loss of Gabra1 subunit or A322D KI mutation 

does not cause a significant change in viability.  

In chapter 2, we described that the C57BL/6 female heterozygous Gabra1 KO mice had significantly 

reduced body mass compared to males and no such sex dependent effect was observed in the DBA/2J 

mice. However with the breeding strategy used for these experiment (figure 3-3), no sex dependent effect 
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was observed between male and female Gabra1 KO (p value = 0.898) or A322D KI (p value = 0.223) 

mice. This suggests that the composition of genotypes within the litter modifies the gain in body mass of 

WT and/or mutant mice. 

Figure 3-5: Neither Gabra1 KO nor A322D KI mutations significantly alter body mass. Body mass 

of 29 WT, 17 Gabra1 KO and 18 A322D KI mice recorded every one to three days from P7 until P30 or 

death, is shown. At P30s, the average body masses were WT (11.7 ± 0.6g), Gabra1 KO (11.8 ± 0.7g) and 

A322D KI (12.8 ± 0.5g). p value = 0.49 
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Gabra1 KO and A322D KI mutations cause absence seizures 

In our recently published study, and in our findings explained in chapter II, we demonstrated that het 

Gabra1 KO mice have absence seizures at P30s
27

. In vitro studies have shown that the A322D mutation in 

the Gabra1 receptor causes a significant decrease in total and surface expression of α1 subunits, and that 

the Gabra1 A322D KI mutation causes a small but significant dominant negative effect
33

. Therefore we 

hypothesized that het Gabra1 A322D KI mice have a different seizure phenotype than het Gabra1 KO 

mice. 

 

Synchronized video/EEG shows both Gabra1 KO and A322D KI mice have SWDs at P30s 

We conducted synchronized video/ EEG recording on WT, Gabra1 KO and A322D KI mice and analyzed 

the recording using computer programs: Sirenia® Seizure and EDFbrowser where appropriate. We 

observed frequently occurring abnormal discharges in EEG of the Gabra1 A322D KI mice that were very 

similar to the SWDs seen Gabra1 KO mice (figure 3-6 A and B). Analysis of waveforms on an expanded 

time scale showed that these discharges consist of a repetitive pattern of spikes (s), positive transients (pt) 

and waves (w) (figure 3-6 C and D). Synchronized video/EEG showed behavioral arrest associated with 

these SWDs in both Gabra1 KO and A322D KI mice. These findings are consistent with our previously 

published report on Gabra1 KO mice
27

 and other rodent models of absence epilepsy
34, 35

.  

 

 

 

 

 



 
 

98 

 

Figure 3-6: Both het Gabra1 KO and A322D KI mice have spontaneous SWDs. Examples of typical 

discharges associated with absence seizure seen in (A) Gabra1 KO and (B) A322D KI P30s mice that are 

consistent with previous reports. Expanded time scale shows distinct spike and wave pattern in both (C) 

Gabra1 KO and (D) A322D KI mice.  

 

 

Both Gabra1 KO and A322D KI mice have frequent SWDs at P30s 

We quantified the frequency of SWDs in WT, Gabra1 KO and A322D KI mice at both P30s as described 

in the methodology section. ANOVA testing showed a statistical difference in the incidence of SWDs in 

Gabra1 KO, A322D KI and WT mice. This result is consistent with our previous report, where we 

showed that the incidence of SWDs was significantly greater in Gabra1 KO mice compared to WT
27

. 
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Figure 3-7: Both het Gabra1 KO and A322D KI mice have significantly more SWDs than WT. The 

incidence of SWDs in 11 WT (0.99 ± 0.4), 6 Gabra1 KO (13 ± 3.4) and 13 A322D KI (16.1 ± 4) mice is 

shown. ANOVA testing was significant (p value = 0.004). 

 

 

Incidence of SWDs does not change in Gabra1 KO and A322D KI mice with age 

Studies have shown that childhood absence epilepsy (CAE) usually occurs before puberty and then the 

seizures remit or convert to more resistant forms of epilepsy
36

. The reported rate of remission in CAE 

patients ranges from 56-84%
24, 37-40

, although 12-32% of CAE patients continue to have absence seizures 

into adolescence and adulthood
41

. Similarly in some of the well established rodent models of absence 

epilepsy (e.g. WAG/Rij and GAERS rat strains), absence seizures have been reported to persist into 

adulthood
42

. We therefore decided to investigate if the frequency of SWDs in Gabra1 KO and A322D KI 

mice changes with age. 

We recorded synchronized video/EEG from WT, Gabra1 KO and A322D KI mice at P30s and again at 

P120s and compared the incidence of SWDs. Multi factor ANOVA test revealed a significant effect of 
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genotype (p value < 0.001), but not of age (p value = 0.727), on the incidence of SWDs. Furthermore, no 

significant interaction of genotype and age was observed (p value = 0.797). We then applied a post-hoc 

pair wise comparison of means to determine the significance of each genotype on the incidence of SWDs. 

Both Gabra1 KO and A322D KI mice differed significantly from WT (p value < 0.005), although there 

was no significant difference between Gabra1 KO and A322D KI mice (p value = 0.090).    

At both P30s and P120s, the frequency of SWDs remained high in Gabra1 KO and A322D KI mice. 

Analysis using two-way ANOVA showed a strong effect of genotype on SWD incidence, but no effect of 

age or interaction of age and genotype was observed (figure 3-8). Post-hoc testing indicated that there was 

no difference in the SWD incidence between the Gabra1 KO and A322D KI mutant mice. 
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Figure 3-8: Genotype, but not age, affected SWD incidence. The incidence of SWDs in 11 WT (0.99 ± 

0.4 SWDs/Hr), 6 Gabra1 KO (13 ± 3.4 SWDs/Hr) and 13 A322D KI (16.1 ± 4 SWDs/Hr) P30s mice and 

9 WT (1.1 ± 0.5 SWDs/Hr), 12 Gabra1 KO (9.2 ± 3.3 SWDs/Hr) and 11 A322D KI (15.5 ± 3.2 

SWDs/Hr) P120s mice is shown. Two-way ANOVA test was significant for genotype (p value < 0.001), 

but not for age (p value < 0.727). Post-hoc testing showed that there was no significant difference 

between Gabra1 KO and A322D KI mice (p value = 0.090) 
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Gabra1 KO and A322D KI mice only had rare spontaneous GTCS  

The majority of JME patients have generalized tonic clonic seizures (GTCS)
12, 18

. Therefore, we 

determined if either the Gabra1 KO or A322D KI mutations conferred GTCS to P30s or P120s mice. We 

found that 1 Gabra1 KO and 1 Gabra1 A322D P120s mouse experienced a documented spontaneous 

GTCS during the 24 hour video/ EEG monitoring. No WT P120s mice or any of P30s mice experienced 

any documented GTCS during the 24hr hours video/EEG monitoring. These data suggest that if the 

Gabra1 KO and A322D KI mutations confer GTCSs, they are infrequent.  

 

Gabra1 KO and A322D KI mice demonstrate atypical spontaneous polyspike discharges and 

myoclonic-like jerks later in development 

It has been reported that 15% of CAE patients go on to develop JME later in life and 7% of these patients 

had a combination of myoclonic jerks and absence seizures
24

. Since patients with myoclonic jerks often 

have a 4-6 Hz irregular spike-wave and polyspike-wave pattern on EEG
12, 20, 21

, we hypothesized that 

another epileptiform phenotype also existed in Gabra1 KO and A322D KI mice. 

Examination of the synchronized video/EEG revealed rare but distinct brief poly-spike discharges (PSDs) 

in mutant mice, apart from SWDs. An example of these PSDs compared to a typical SWD is shown in 

figure 3-9. These events typically consist of poly-spike complexes that lasted less than half a second 

(average duration 0.35 ± 0.02 seconds) and have a high spike frequency (average spike frequency 18.5 ± 

0.27 Hz). Due to the mouse movement and position of the recording camera, only a small number of these 

PSDs could be examined for any associated behavioral effect. Subtle, but visible, myoclonic jerks were 

observed in 15% and 10% of all the observed PSDs in Gabra1 KO and A322D KI mice, respectively. 

Sampling the video at times when PSDs were not present revealed that these behavioral jerks were not 

present in the absence of the electrographic PSDs. In order to further analyze the PSDs we decided on a 
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strict criteria of defining a PSD as a short event (<0.5 second) consisting of at least 2 positive and 2 

negative spikes along with polyspikes.  

Figure 3-9: Examples of SWD and PSD. Example of a typical SWD discharge (A) compared to a PSD 

(B), seen in the same Gabra1 A322D KI mouse. Expanded time scale shows how the spike and wave 

pattern of a typical SWD (C) differs from the polyspike complex of a PSD (D). 

 

The incidence of PSDs is significantly greater in Gabra1 KO and A322D KI mice, compared to WT, 

and more frequent at P120s than P30s 

In order to determine the significance of age and genotype on the incidence of PSDs, we first performed a 

multi factor ANOVA test. Both genotype (p value = 0.018) and age (p value < 0.001) had a significant 

effect on the incidence of PSDs, but significant interaction of genotype with age was noted (p value = 

0.259). Next, to compare the significance of each genotype on PSD incidence, we did a post-hoc pair wise 

comparison of means. Both Gabra1 KO and A322D KI mice differed significantly from WT mice (p 

value <0.013), but no significant difference was observed between Gabra1 KO and A322D KI mice (p 

value = 0.860).    
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Figure 3-10: The incidence of PSDs is significantly greater in mutant mice and more frequent at 

P120s than P30s. The incidence of PSDs/day in 13 WT (0.09 ± 0.09 PSDs/day), 5 Gabra1 KO (0.21 ± 

0.21 PSDs/day) and 16 A322D KI (1.05 ± 0.36 PSDs/day) P30s mice compared to 9 WT (0.71 ± 0.38 

PSDs/day), 13 Gabra1 KO (2.76 ± 0.78 PSDs/day) and 11 A322D KI (3.23 ± 0.91 PSDs/day) P120s mice 

is shown. Two-way ANOVA test was significant for both age (p value < 0.001) and genotype (p value < 

0.018). Post-hoc test did not show a significant difference between Gabra1 KO and A322D KI mice at 

either age (p value = 0.860). 

 

 

Incidence of SWDs does not correlate with PSDs  

Previous studies have reported that 15% of CAE patients develop JME at a later age, while 7% of CAE 

patients go on to have a combination of myoclonic jerks and absence seizures
24

. Therefore we decided to 

investigate if the animals that were having more frequent SWDs also had more PSDs. We analyzed the 

EEGs recorded from both Gabra1 KO and A322D KI mice at P30s and P120s (the age at which PSDs 
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were significantly more common, along with SWDs). We saw no correlation between the incidence of 

SWDs and PSDs in either Gabra1 KO and A322D KI mutant or WT mice at P30s or P120s (figure 3-11)  

Figure 3-11: The frequency of SWD does not correlate with the frequency of PSD at P30s or P120s. 

Scatter plot of PSD/ day vs SWD/ hr from (A) P30s (WT P30s r
2
 = 0.00, Gabra1 KO P30s r

2
 = 0.00 and 

Gabra1 A322D P30s r
2
 = 0.18) and (B) P120s (Wt P120s r

2
 = 0.02, Gabra1 KO P120s r

2
 = 0.24 and 

A322D KI P120s r
2
 = 0.24) is shown. 

 

 

 

Gabra1 KO and A322D KI mice have a decreased latency of evoked PSDs and myoclonic seizures 

at P120s than WT mice 

Our results showed that P120s Gabra1 KO and A322D KI mice had significantly greater frequency of 

spontaneous PSDs. Next, we set out to determine if genotype or age affects chemically evoked seizures. 

Pentylenetetrazole (PTZ), a drug that acts primarily by antagonizing GABAergic inhibition
43

, has been 

shown to induce myoclonic jerks and tonic clonic seizures
44, 45

. PTZ is widely used experimentally to 

study seizure phenomena and to identify pharmaceuticals that may alter seizure susceptibility
46, 47

. 

Therefore we decided to continue our studies further using a previously developed low dose repeated 

administration of pentylenetetrazole (PTZ) protocol
31

 to increase the incidence of PSDs. 
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Wong et.al. described a novel technique that produces myoclonic jerks along with GTCS, by 

administering repeated low doses of PTZ 
31

 (explained in the methods section). Following that protocol, 

we injected 25 mg/kg of PTZ intra-peritoneally (IP) and observed the mice for 45 minutes. Next we 

administered repeated doses of 10 mg/kg PTZ 10 minutes apart four times or until the mice developed 

GTCS. We determined the probability and latency to develop PSDs, myoclonic jerks and GTCS. 

Upon administering PTZ, we observed PSDs that were similar to the spontaneous PSDs, observed 

previously, in duration and morphology (figure 3-12). Furthermore the subtle visible myoclonic jerks 

associated with the PTZ-induced PSDs were very similar to the myoclonic jerks seen with spontaneous 

PSDs. It was also noted that not all PTZ-induced PSDs were associated with a visible myoclonic jerk; 

another feature similar to the spontaneous PSDs, which were also not always associated with visible 

myoclonic jerks.   

Figure 3-12: Spontaneous and PTZ-evoked PSDs have similar morphology. Example of (A) 

spontaneous PSD compared to (B) PTZ-evoked PSD, seen in Gabra1 A322D KI mice. Expanded time 

scale shows the similarity of the polyspike pattern of (C) spontaneous and (D) PTZ-evoked PSD. 
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The incidence of PTZ-evoked PSDs is greater at P120s than P30s for all genotypes 

Next we determined the incidence of PSDs in WT, Gabra1 KO and A322D KI mice at P30s and P120s 

evoked with PTZ administration. Although there was no significant effect of genotype, there was an 

effect of age. At P30s the incidence of PSDs in WT, Gabra1 KO and A322D KI mice was low but at 

P120s the incidence of PSDs in WT, Gabra1 KO and A322D KI mice was higher, as shown by two-way 

ANOVA (p value = 0.006) (figure 3-13). Therefore, pharmacologically-evoked PSDs, like the 

spontaneous PSDs, had a substantially greater incidence in P120s than P30s mice, a result that suggests a 

developmentally-dependent change in neuronal circuitry. 

Figure 3-13: The incidence of PTZ-evoked PSDs is greater at P120s compared to P30s for all 

genotypes. The incidence of PTZ-evoked PSD/ hr for 4 WT(0.35 ± 0.2 PSDs/hr), 4 Gabra1 KO (0.18 ± 

0.18 PSDs/hr) and 6 A322D KI (1.34 ± 0.56 PSDs/hr) mice at P30s and 5 WT (2.54 ± 0.9 PSDs/hr), 6 

Gabra1 KO (10.4 ± 4.3 PSDs/hr) and 6 A322D KI (4.52 ± 1.4 PSDs/hr) mice at P120s is shown. The 

effect of age was significant on PTZ-evoked PSDs as shown by two-way ANOVA (p value = 0.008). 
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The probability of GTCSs evoked by PTZ is greater at P120s than P30s for all genotypes 

We determined the probability of evoking GTCSs with PTZ administration in WT, Gabra1 KO and 

A322D KI mice at P30s and P120s. Using log-linear analysis for 3-way contingency table, we determined 

that the probability of evoking GTCSs with PTZ administration is significantly greater at P120s than P30s 

(p value 0.021) (figure 3-14). The effect of genotype interacting with age for this response to PTZ 

administration was not statistically significant.  

Figure 3-14: The probability of GTCSs evoked by PTZ is greater at P120s compared to P30s for all 

genotypes. The probability of PTZ-evoked GTCS for 4 WT(0%), 4 Gabra1 KO (0%) and 6 A322D KI 

(17%) mice at P30s and 5 WT (40%), 6 Gabra1 KO (83%) and 6 A322D KI (50%) mice at P120s is 

shown. The effect of age was significant on the probability of PTZ-evoked GTCS, as shown by modified 

chi-square test for age (p value = 0.021), but not significant for genotype interacting with age (p value = 

0.079). 
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Latency of PTZ-evoked PSDs is shorter in Gabra1 KO and A322D KI mice compared to WT at 

P120s 

We next determined whether the genotype affected the latency of PSDs (relative to the first PTZ 

injection). The cumulative probability of a PSD was plotted against 10 minute intervals from start of the 

experiment. Multiple K-S test with Bonferroni correction showed that Gabra1 KO and A322D KI mice 

had a significantly reduced latency for developing PSDs, compared to WT (figure 3-15). Therefore, while 

age, and not genotype, affected the number of PSDs during the entire experiment, genotype did affect the 

PSD latency. It should also be noted that neither age nor genotype was associated with a significant 

difference in the latency of GTCS.   

Figure 3-15: The latency to develop PTZ induced PSDs is shorter in Gabra1 KO and A322D KI 

mice. The probability of developing PSDs is plotted against time from the start of the experiment. 5 WT, 

6 Gabra1 KO and 6 A322D KI mice, aged P120s, were used for these experiments. Multiple K-S test with 

Bonferroni correction showed that Gabra1 KO and A322D KI mice had a significantly reduced latency 

for developing PSDs compared to WT mice (p value < 0.001). 
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In summary, the PTZ-evoked PSDs were similar in duration and morphology to spontaneous PSDs. In 

addition, the pharmacologically-evoked PSDs, like the spontaneous PSDs, demonstrated an age-

dependent and genotype-dependent acquisition of the phenotype. In addition, post hoc analyses 

demonstrated that the two mutations (Gabra1 KO and A322D KI) did not confer different phenotypes 

from each other.  

Discussion 

Seizures remain uncontrolled or refractory in a significant proportion of patients suffering with epilepsy
48

. 

Recurring epileptic seizures have been associated with job loss, anxiety, driving restrictions, reduced self-

esteem, depression, injury and even death
49-51

. Therefore understanding and studying epilepsy is of 

extreme importance to eventually counter the substantial economic and psychosocial burden on 

individuals and society.   

Childhood absence epilepsy (CAE) is considered a relatively benign form of epilepsy with regards to 

seizure prognosis because 70-80% of these patients are well controlled with antiepileptic drugs
52

, 

however, 40% of CAE patients also develop generalized tonic-clonic seizures
53

. Previous studies have 

also reported that 15-18% of CAE patients go on to have concomitant myoclonic jerks and absence 

seizures later in life
24, 54

.  

On the other hand juvenile myoclonic epilepsy (JME) patients present with myoclonic jerks, generalized 

tonic clonic seizures and absence seizures
55

. Due to the heterogeneity of presenting symptoms Martinez-

Juarez et.al. suggested a subdivision of JME into four categories: 1) “Classic” JME which presents with 

adolescent onset of myoclonic jerks, tonic-clonic seizures and rare-to-infrequent absence seizures (seen in 

72% of all reported JME cases), 2) CAE persists and evolves into JME and presents with absence seizure, 

myoclonic jerks and tonic clonic seizures (seen in 18% of all reported JME cases), 3) JME that presents 

with adolescent onset of frequent absence seizures along with myoclonic jerks and tonic clonic seizures 

(seen in 7% of all reported JME cases), and 4) JME presenting with myoclonic jerks, tonic clonic seizures 



 
 

111 

 

and astatic seizures (seen in 3% of all reported cases)
56

. The authors also reported that 91% of the 

category 2 patients (CAE persist and evolves into JME) did not achieve complete long term seizure 

remission
56

. In fact, a recent study also reported that JME patients who do not go into seizure remission 

with age have a significantly higher incidence of absence seizures
55

.  

Therefore, identification of an animal model that shows the characteristics of symptoms like absence 

seizures persisting and evolving into myoclonic jerks can be very useful in gaining a better understanding 

of this disease. The fact that the majority of patients who present with these symptoms never achieve 

seizure remission makes it even more important to study an animal model with these symptoms, to better 

understand JME and help develop better possible therapeutic interventions for it.   

The A322D mutation in the GABAA receptor α1 subunit, discovered in a French-Canadian family 

suffering from an autosomal dominant form of JME
13

, has been shown in vitro to cause a 88% reduction 

in the total and surface expression of the α1 subunit
33

. In chapter II we described how the Gabra1 KO 

mutation results in absence seizures in a mouse model
27

. We have now shown that like the Gabra1 KO 

mutation, the A322D KI mutation also causes absence seizure at P30s that persist into adulthood. The 

similarity of the typical SWD pattern associated with behavioral arrest, observed with synchronized 

video/EEG in Gabra1 A322D KI mice, indicates that these mutant mice have absence seizures similar to 

those seen in Gabra1 KO mice.  

An important finding described in this chapter are the spontaneous polyspike discharges (PSDs) that are 

occasionally accompanied with subtle visible myoclonic jerks in the P120s Gabra1 KO and A322D KI 

mice. There are 4 major reasons to consider Gabra1 KO and A322D KI mice good models to study JME. 

1) Morphology of PSDs: The atypical discharges seen in Gabra1 KO and A322D KI mice consists of 

short and fast polyspikes, similar to what has been reported in other models of myoclonic epilepsy
57

. Even 

in humans, the presence of 4-6Hz fast polyspike-wave complexes, lasting less than half a second, is a 

requirement for diagnosing JME
58, 59

. 2) Concomitant behavior with PSDs: The rapid brief contractions of 
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body muscles observed with some PSDs was very similar to what have been reported in humans
59

 and 

rodent models
57

. 3) Age of onset: The peak age of onset of symptoms in CAE patients is 6-7 years and a 

subset of these patients develop concomitant myoclonic jerks 1 to 6 years after the onset of absence 

seizures
24

. The fact that we observed PSDs and myoclonic jerks later in development (P120s), while 

SWDs and absence seizures were seen much early in development (P30s), further shows the similarity 

between human patients and Gabra1 KO and A322D KI mice.  

However one limitation of this model is that spontaneous GTCS are observed only rarely in these mutant 

mice, however, this is not a very critical factor because even human JME patients have been reported to 

just have myoclonic jerks for years before the onset of GTCS (the most common reason for 

presentation)
59

. Also monitoring for only 24 hours would not be expected to capture GTCS in human 

JME patients too. Future experiments with long term monitoring of mutant mice (perhaps with 

noninvasive video analysis) may capture more GTCS. 

Our data also demonstrated that even though the Gabra1 A322D KI mutation exhibited a small but 

dominant negative effect on wild type GABAA receptor expression in vitro
28

, Gabra1 KO and A322D KI 

mutations resulted in similar incidence of spontaneous and evoked SWDs and PSDs in mice. This could 

possibly happen because (1) in vitro, under endogenous conditions, there is a greater reduction in the 

expression of mutant Gabra1 (A322D) subunit than in the in vivo model or (2) the dominant negative 

effect, seen in vitro, is not significant in vivo. Nevertheless, these data demonstrate that heterozygous loss 

of GABAA receptor α1 subunit is sufficient to cause the myoclonic-like phenotype in the absence of a 

dominant negative effect. 

We have discovered a good animal model for studying the CAE and JME. Typical rodent models used to 

study absence epilepsy, for example WAG/Rij strain of rats
60

, and myoclonic epilepsy, for example 

Efhc1-deficient mice
26

, present with only one symptom. The animal model we described here shows an 

age-dependent evolution of behavioral phenotype that first presents with absence seizures but then goes 
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on to have myoclonic jerks and absence seizures as the animal ages, a feature seen in some human 

patients
56

. This model can help us reveal how the epilepsy-network in brain evolves throughout 

development. A complete characterization of the structure and function of human brain networks 

promises important insights for understanding normal and pathological brain activity
61, 62

. Changes in 

functional connectivity have been reported in epileptic patients
63, 64

, but no study has described how the 

functional connectivity evolves, as the different types of seizures evolve in epileptic patients or animal 

models. Further studies on Gabra1 KO and A322D KI mice, as a model of human JME subclass (CAE 

persisting and evolving into JME), can be extremely useful for developing a better understanding of this 

disease. Understanding the evolution of the underlying brain circuitry, using this model, can help us 

develop possibilities for better therapeutic interventions for this treatment resistant disease.   
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Chapter IV 

GABAA receptor subunit expression in the cortex is modulated with 

age in Gabra1 KO and A322D KI mutant mice 

Introduction 

Seizures frequently result from an imbalance of excitation and inhibition due to a failure of inhibitory 

neurotransmission, which is mainly mediated by the neurotransmitter GABA
1
. In fact GABAA receptors 

are the target of many anti-seizure medications like benzodiazepines, tiagabine and vigabatrin
1, 2

. 

Furthermore, blockade of the excitatory function of GABA, seen in early development
3
, has been reported 

to reduce the epileptiform activity in vitro and in vivo in neonatal rats
4
. Therefore, alteration in the 

GABAA receptor physiology can have a significant effect on the development of an epileptiform 

phenotype. 

The subunit composition of GABAA receptors changes with age
5
. During early postnatal development a 

gradual parallel decrease in α2 and α3 subunits and an increase in α1 subunit has been reported in rodent 

brains
6-8

 (figure 1-9 chapter 1). The subunit composition of GABAA receptor governs the intrinsic 

properties of the channel such as the affinity for GABA, receptor kinetics, conductance and allosteric 

modulation
9
. GABAA receptors in very young animals, containing α2 and α3 subunits mostly, mediate 

relatively long lasting inhibitory post-synaptic currents (IPSCs)
10-12

, while GABAA receptors in adult 

animals, containing mainly α1 subunits, mediate relatively short IPSCs
10, 13, 14

.  

To date, four mutations in the GABAA receptor α1 (Gabra1) subunit, A322D, S326fs328X, D219N, and 

K353delins18X, have been associated with genetic generalized epilepsy
15-17

. All 4 of these mutations 

have been associated with reduced Gabra1 subunit expression in vitro
16, 18, 19

; but in particular the 

S326fs328X mutation resulted in complete elimination of the α1 subunit
19

. Consistent with this, we have 

reported that α1 subunit expression is reduced in the cortex of P30s heterozygous GABAA receptor α1 

subunit knockout (KO) mice
20

, that also have absence seizures
21

. We also reported an abnormally high 
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expression of α3 subunits in Gabra1 KO mice
20

. A preservation of the long lasting GABAA receptor-

mediated IPSCs has also been reported in the mice lacking α1 subunits
10

, indicating a possible persistent 

high expression of α2 and α3 subunits. These findings stress the fact that abnormal expression of GABAA 

receptor subunits can have significant effects at both cellular and behavioral levels.     

Changes in GABAA receptor composition and function have been associated with acute and chronic 

seizures
1
. In Chapter 3, we characterized the developmental evolution of the seizure phenotype in Gabra1 

KO and A322D knock-in (KI) mice, from absence seizures only in P30s mice, to persistent absence 

seizures along with myoclonic jerks in P120s mice. Here we hypothesized that the modulation of the 

GABAA receptor subunits may be a mechanism for the evolution of the seizure phenotype with age. 

Therefore, we characterized the GABAA receptor subunits expression at the cellular and cortical level in 

P30s and P120s Gabra1 KO and A322D KI mice, as a possible mechanism for the evolution of seizure 

phenotype with age.  

Methods and Materials 

Generation and maintenance of Gabra1 KO and A322D KI mice in congenic strains  

We obtained the Gabra1 KO mutant mice from Jackson Laboratories (B6.129(FVB)Gabra1tm1Geh/J; 

stock 004318) (for details refer to chapter2) and had the Gabra1 A322D KI mouse line made using the 

commercially available service of the University of Connecticut Health Center (for details refer to chapter 

3). In order to compare the effects of Gabra1 KO and A322D KI mutations in the same litter, 

heterozygous (het) Gabra1 KO mice were mated with het Gabra1 A322D KI mice to produce wild type 

(WT), het Gabra1 KO, het A322D KI and Gabra1 KO/A322D KI double mutant mice in equal Mendelian 

proportions (figure 3-3 chapter 3). Only female WT, Gabra1 KO and A322D KI mice aged P33-37 

(referred to as P30s from here on) and P120-130 (referred to as P120s from here on) were used for further 

experiments. 
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All procedures were performed in accordance with protocols approved by the Vanderbilt University 

Institutional Animal Care and Use Committee (IACUC). Mice were housed in a temperature and 

humidity controlled environment, with a 12 hour light/dark schedule. Water and food was provided ad 

libitum. 

Determining total expression of GABAA receptor subunits with western blots 

We conducted western blot experiments using published protocols
20

. Briefly, mice were anesthetized with 

isoflurane and decapitated with sharp scissors. Brain was removed from the skull and coronal sections 

were obtained using a vibratome. The cutting solution contained 210 mm sucrose, 20 mm NaCl, 2.5 mm 

KCl, 1.2 mm NaH2PO4, 1 mm MgCl2, and 10 mm d-glucose maintained at pH 7.4. The slices were then 

transferred to artificial cerebrospinal fluid (aCSF), containing 126 mm NaCl, 2.5 mm KCl, 1.25 mm 

NaH2PO4, 2 mm CaCl2, 1 mm MgCl2, and 10 mm d-glucose maintained at pH 7.4. Cortices from these 

slices were dissected and sonicated in radioimmunoprecipitation assay (RIPA) solution (20 mm Tris, pH 

7.4, 1% Triton X-100, 250 mm NaCl) that also contained protease inhibitor mixture (1:100; Sigma-

Aldrich), 0.5% deoxycholate, and 0.1% SDS. Protein concentrations were determined using a 

bicinchoninic acid-based assay (Thermo Scientific). 

Proteins were fractionated on 10% SDS-polyacrylamide gels and then electrotransferred to nitrocellulose 

membranes. Nonspecific binding was blocked with 5% nonfat dry milk in Tris-buffered saline containing 

0.1% Tween, pH 7.4. We incubated the blots with primary antibody at 4 °C overnight and then with 

secondary antibody at room temperature for 1 h. The blots were imaged on an infrared fluorescent 

imaging system (LI-COR Biosciences). 
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Antibodies used for western blots 

We obtained the antibodies from the following sources and listed the clone or catalogue number and the 

concentrations used for the Western blots in parentheses. The purified mouse monoclonal anti-GABAAR 

α1 subunit antibody (catalogue number N95/35; concentration 1:250) was obtained from the University of 

California Davis/National Institutes of Health NeuroMab Facility. The anti-α3 subunit antibody was from 

Alomone (catalogue number AGA-003; concentration 1:500). The anti-α3 subunit antibody was from 

Alomone (catalogue number AGA-003; concentration 1:500). The anti-γ2 subunit antibody was from 

Millipore (catalogue number AB5559; concentration 1:1000). The anti-β2/3 subunit antibody was from 

Millipore (catalogue number 05-474; concentration 1:300). The anti-actin antibody was from Millipore 

(catalogue number JLA20; concentration 1:1000). The fluorescently conjugated goat anti rabbit-680 

(catalogue number 926-32221) and goat anti mouse-800 (catalogue number 926-32210) secondary 

antibodies were from LI-COR (concentration 1:10,000). 

Measuring regional expression with immunofluorescence and confocal microscopy 

Immunofluorescence experiments were performed using the protocol described by Gasser et.al. 

previously
22

. Briefly, mice were anesthetized with isoflurane and decapitated with sharp scissors. Brains 

were removed from the skull and 2mm thick coronal slices were obtained using mouse brain slicer matrix. 

These thick coronal slices were washed briefly with ice-cold phosphate buffered saline (PBS) before 

fixation in ice-cold 4% paraformaldehyde, for 30 minutes. After this the thick coronal slices were washed 

three times with ice-cold phosphate buffered saline (PBS), before being transferred to cryoprotectant 

(30% sucrose) and stored overnight at 4°C. Next day, 15μm thin coronal sections were cut from these 

weakly perfused slices using a cryostat (Leica) and transferred onto Shandon Colorfrost Plus glass slides 

(Thermo Scientific). The slides were air dried for a minimum of 30 seconds and stored at -20°C over 

night before using them for immunohistochemistry (IHC).    
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Cryostat slices were blocked with blocking buffer (10% donkey serum, 2% Triton X-100 in PBS) for 1 

hour at room temperature. They were then incubated overnight at 4°C with rabbit anti-GABAA receptor 

α1 subunit (Millipore, 06868, 1:250), guinea pig anti-GABAA receptor α3 subunit (Synaptic Systems, 

224304, 1:500) and mouse anti-gephrin antibodies (Synaptic Systems, 147021, 1:100). The following 

day, the slides were washed with PBS and incubated for 1 hour at room temperature with Cy3-conjugated 

donkey anti-rabbit (Jackson Immuno Research Laboratories, 711-165-152, 1:500), Alexa 488 conjugated 

donkey anti-guinea pig (Jackson Immuno Research Laboratories, 706-545-148, 1:500) and Alexa 647 

conjugated donkey anti-mouse (Jackson Immuno Research Laboratories, 715-605-150, 1:500) antibodies. 

Slides were washed again with PBS and a coverslip was applied using Vectasheid mounting medium 

(Vector Laboratories), that also contained 4′,6-diamidino-2-phenylindole (DAPI) to label cellular nuclei. 

Finally the coverslip was sealed by applying quick dry clear nail polish (Sally Hensen). 

The slides were first imaged on a Zeiss Axio Observer.Z1 epi-fluorescence microscope using Ph1 Plan-

NeoFluar 5x/0.15 and LD Plan-Neofluar 20x/0.4 Corr Ph2 M27 objectives. Scan settings were adjusted to 

utilize the full dynamic range of the photomultipliers. The same scan settings were used for all of the 

images acquired within an experiment. We obtained images from the motor cortex, 1 μm below the 

surface of the tissue in cortical layers II/III and 1 μm above the subcortical white matter in cortical layer 

VI.  

The slides were also imaged on Olympus FV-1000 confocal microscope using a 100x / 1.40 SPlan-UApo 

objective. Scan settings were adjusted to utilize the full dynamic range of the photomultipliers and to 

provide a scan resolution of 97 nm/pixel and a slice thickness of 1 μm. The same scan settings were used 

for all of the images acquired within an experiment. We obtained images in the somatosensory cortex and 

motor cortex 1 μm below the surface of the tissue in cortical layers II/III and VI as well as in the 

subcortical white matter just below the edge of layer VI. 
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Analysis of images from IHC  

Images were analyzed using Image J and Olympus FV1200/FV1000 Viewer software. The background 

was defined as the average (among all of the slices imaged in a single experiment) of the mean pixel 

intensity of the white matter just below the somatosensory cortex. The same background value was used 

for all of the images in the experiment. We then calculated the mean background-subtracted intensity of 

GABAA receptor α1 and α3 subunit and gephyrin staining. 

Results 

The Gabra1 KO and A322D KI mutations cause modulation of GABAA receptor 

subunit expression 

The subunit composition of GABAA receptors confers a unique pharmacology that dictates the binding 

characteristics, functional capacity and the role of the receptor in maintaining the inhibitory tone of the 

CNS
23

. We have shown previously that in the P30s Gabra1 KO mouse cortex, expression of the α1 

subunit is reduced (as expected), while α3 subunit expression is increased
20

. We have also shown in vitro 

that the Gabra1 A322D mutation results in decreased expression of α1 subunits
18

, but no report of the 

effect of the Gabra1 A322D mutation on GABAA receptor expression in vivo is available. Therefore, we 

decided to compare the effects of Gabra1 A322D and Gabra1 KO mutations on GABAA receptor subunits 

expression in vivo.  

Changes in the expression of α1 and α3 subunits are similar in Gabra1 KO and A322D KI mice 

The total expression of α1 subunit in the cortex was reduced in P30s Gabra1 KO and A322D KI mutant 

mice as compared to WT (figure 4-1). In our previous study we showed that the A322D KI mutation 

caused a small significant reduction in the expression of WT Gabra1 subunit in vitro
18

. Although the 

expression of α1 subunit in Gabra1 KO and A322D KI mice was significantly different compared to WT, 

no dominant negative effect was seen.  
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Figure 4-1: Relative expression of α1 subunit in reduced in Gabra1 KO and A322D mice. (A) 

Sample of western blot stained for α1 subunit and actin (loading control) is shown. (B) Results from 

repeated quantification of 3 WT, 3 Gabra1 KO and 3 A322D KI mice is shown. ANOVA testing shows a 

significant genotype-dependent difference in α1 expression (p value = 0.01).   

 

 

 

In our previous study we have shown that the α3 subunit expression is increased in the cortex of Gabra1 

KO mice
20

. Similar to our previous finding we saw that the expression of α3 subunit was increased in 

both Gabra1 KO and A322D KI mice compared to WT (figure 4-2). No difference in the expression of α3 

subunit was observed between Gabra1 KO and A322D KI mice.  
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Figure 4-2: Relative expression of α3 subunit is increased in Gabra1 KO and A322D mice. (A) 

Sample of western blot stained for α3 subunit and actin (loading control) is shown. (B) Results from 

repeated quantification of 3 WT, 3 Gabra1 KO and 3 A322D KI mice is shown. ANOVA testing shows a 

significant genotype dependent difference in α1 expression (p value = 0.02).   

 

 

Total GABAA receptor expression is not different between WT, Gabra1 KO and A322D KI mice 

Next we determined if total expression of GABAA receptor was also reduced in the Gabra1 KO and 

A322D KI mutant mice compared to WT. The relative expression of β2/3 and γ2 subunits was not 

statistically different in Gabra1 KO and A322D KI mice compared to WT (figure 4-3). These data 

indicate the decrease in α1 subunit and increase in α3 subunit, seen in the Gabra1 KO and A322D KI 

mice does not affect the total expression GABAA receptors.  

 

 

 



 
 

127 

 

Figure 4-3: Relative expression of β2/3 and γ2 subunits subunit is not different in Gabra1 KO and 

A322D mice compared to WT. Results from repeated quantification of 3 WT, 3 Gabra1 KO and 3 

A322D KI mice was analyzed. Examples of (A) γ2 and (B) β2/3 subunit expression from WT, Gabra1 

KO and A322D KI mice. Relative expression of (C) γ2 and (D) β2/3 subunits in Gabra1 KO and A322D 

KI mice compared to WT is shown. ANOVA testing shows no significant genotype dependent difference 

in β2/3 and γ2 subunits expression (γ2 subunits p value = 0.484; β2/3 p value = 0.970).   

 

 

 

 

 

 



 
 

128 

 

Relative expression of α1 subunit in Gabra1 KO and A322D KI mice is not different from WT mice 

at P120s 

As explained in chapter 1, in rodents the expression of α1 subunit is low early in development but it 

increases dramatically in the first postnatal week
6
. On the other hand, the expression of α3 subunit is high 

early in development but declines with age
24

. We have shown, in our findings discussed in chapter 3, that 

the epilepsy phenotype evolves in the Gabra1 KO and A322D KI mice from absence seizures only at 

P30s to absence seizures along with myoclonic jerks at P120s. Therefore, we decided to investigate if the 

change in epilepsy phenotype is accompanied by an alteration of GABAA receptor subunit expression.  

We compared the total expression of α1 subunit in WT, Gabra1 KO and A322D KI mice at P30s to 

P120s. In contrast to the relatively reduced expression of α1 subunit in Gabra1 KO and A322D KI mice 

compared to WT mice at P30s, there was no statistical difference in the expression of α1 subunit at P120s 

(figure 4-4). Interestingly, a significant reduction of relative expression of α1 subunit in P120s WT, 

Gabra1 KO and A322D KI is seen when compared to P30s WT (figure 4-5). 2 factor ANOVA showed a 

significant effect of age and interaction of age and genotype on α1 subunit expression. 
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Figure 4-4: Relative expression of α1 subunit is not different in Gabra1 KO and A322D mice 

compared to WT at P120s. (A) Sample of western blot stained for α1 subunit and actin (loading control) 

is shown. (B) Results from repeated quantification of 3 WT, 3 Gabra1 KO and 3 A322D KI mice is 

shown. ANOVA testing shows no significant effect of genotype on α1 expression (p value = 0.285).   

 

Figure 4-5: Quantification of relative expression of α1 subunit is reduced in P120s WT, Gabra1 KO 

and A322D mice compared to P30s WT. Results from repeated quantification of 3 WT, 3 Gabra1 KO 

and 3 A322D KI P120s mice and 3 WT, 3 Gabra1 KO and 3 A322D KI P30s mice are shown. 2 pair 

ANOVA testing shows a significant effect of age (p value < 0.001) and interaction of age and genotype 

(p value < 0.001).   
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Relative expression of α3 subunit in Gabra1 KO and A322D KI mice continues to be greater than 

WT at P120s 

We compared the total expression of α3 subunit in WT, Gabra1 KO and A322D KI mice at P30s to 

P120s. Although the total expression of α3 subunit in P120s WT, Gabra1 KO and A322D KI mice is 

reduced compared to P30s, the relative expression of α3 subunit in Gabra1 KO and A322D KI mice, 

compared to WT, was greater (figure 4-6). 2 factor ANOVA showed a significant effect of age and 

genotype on α3 subunit expression. 

Figure 4-6: Relative expression of α3 subunit is reduced at P120s compared to P30s but continued 

to high in Gabra1 KO and A322D KI mice compared to WT. Results from repeated quantification of 

3 WT, 3 Gabra1 KO and 3 A322D KI P120s mice and 3 WT, 3 Gabra1 KO and 3 A322D KI P30s mice 

are shown. 2 pair ANOVA testing shows a significant effect of age (p value = 0.003) and genotype (p 

value = 0.002).   
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Total GABAA receptor expression is reduced at P120s compared to P30s 

Finally we determined if the total expression of GABAA receptor was also affected in the Gabra1 KO and 

A322D KI mutant mice, compared to WT mice, at P120s. The relative expression of β2/3 and γ2 subunits 

was significantly reduced at P120s in WT, Gabra1 KO and A322D KI mice compared to P30s WT (figure 

4-7). These data indicate that the total GABAA receptor expression is reduced in P120s mice regardless of 

their genotype.  

Figure 4-7: Relative expression of β2/3 and γ2 subunits subunit is significantly reduced in P120s 

WT, Gabra1 KO and A322D mice compared to P30s WT. Results from repeated quantification of 3 

WT, 3 Gabra1 KO and 3 A322D KI P120s mice and 3 WT, 3 Gabra1 KO and 3 A322D KI P30s mice are 

shown. 2 pair ANOVA testing shows a significant effect of age for both (A) β2/3 (p value < 0.001) and 

(B) γ2 subunits expression (p value < 0.005).   
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Regional expression 

The regional and temporal expression of different GABAA receptor subunits has been discussed in detail 

in chapter I. However it must be remembered that the GABAA receptor composition is distinct in different 

regions of the brain and changes with age
25

. For example the expression of α1 subunit in major brain 

areas, like neocortex, thalamus and hippocampus, is low early in development
25

, but its expression 

increases sharply as the animal develops and its absence in certain regions, for example the reticular 

nucleus of the thalamus, becomes sharply distinct, compared to the surrounding
26

.  

Apart from the regional and developmental variability of GABAA receptor subunits, the receptor 

composition may vary in certain disease states
27

. For example, the α1 subunit is significantly reduced in 

the dentate gyrus of the hippocampus of human temporal lobe epilepsy (TLE)
28

 and a rodent model of 

TLE
29

. Whereas in the same brain region of stargazer mutant mice (a model of absence epilepsy
30

), the α1 

subunit is unaffected
31

.  

We showed that the expression of α3 subunit is increased in layer II/III and VI of the somatosensory 

cortex of P30s Gabra1 KO mice (that have absence seizures
21

), compared to WT mice
20

. Therefore we 

hypothesized that α subunit expression and distribution may be similar in Gabra1 A322D KI mice at P30s 

and evolved as the mice aged.     

Expression of α3 subunit is increased in layer II/III and VI of cortex in Gabra1 KO and A322D 

mice 

Consistent with our results from western blot experiments, we saw a significant increase in the expression 

of α3 subunit in layer II/III of the motor cortex in Gabra1 KO and A322D KI mice, compared to WT, at 

both P30s and P120s (figure 4-8) (p value < 0.003). Similar to western blot experiment results, no effect 

of age was noted (p value = 0.829). In layer VI, the expression of α3 subunit appeared to be greater in 

Gabra1 KO and A322D KI mice, but it was not statistically significant (p value = 0.095) (figure 4-9). 
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Figure 4-8: Expression of α3 subunit in layer II/III is greater in Gabra1 KO and A322D KI mice. 

Examples of IHC results from layer II/III of (A) P30s and (B) P120s of WT, Gabra1 KO and A322D KI 

mice are shown. Analysis using 2 pair ANOVA shows a significant difference in the (C) quantified 

expression of α3 subunit expression (p value < 0.003). 
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Figure 4-9: Expression of α3 subunit in layer VI appeared to be greater in Gabra1 KO and A322D 

KI mice. Examples of IHC results from layer VI of (A) P30s and (B) P120s of WT, Gabra1 KO and 

A322D KI mice are shown. Analysis using 2 pair ANOVA does not show a significant difference in the 

(C) quantified expression of α3 subunit expression (p value = 0.095). 
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Expression of α1 subunit is not significantly different in layer II/III and VI of cortex in Gabra1 KO 

and A322D mice 

There was significant difference in the expression of α1 subunit in layer II/III or VI of the motor cortex in 

Gabra1 KO and A322D KI mice, compared to WT, at both P30s and P120s (figure 4-10) (layer II/III p 

value = 0.908; layer VI p value 0.837). The results of P120s Gabra1 KO, A322D KI and WT were 

consistent with the western blot experiment results; however no significant difference between these 

animals at P30s was observed. This difference in the findings from IHC and western blot experiments 

could be because the changes in α1 subunit expression occurs in cortical layers other than layer II/III and 

VI or in a region other than the motor cortex, for example somatosensory cortex.  
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Figure 4-10: Expression of α1 subunit is not different at P30s and P120s between Gabra1 KO and 

A322D KI mice and WT mice. Examples of IHC results from layer II/III of (A) P30s and (B) P120s and 

layer VI of (C) P30s and (D) P120s WT, Gabra1 KO and A322D KI mice are shown. Analysis using 2 

pair ANOVA does not show a significant difference in the quantified expression of α1 subunit expression 

in (E) layer II/III and (F) layer VI (layer II/III p value = 0.908; layer VI p value 0.837). 

 

 

Gabra1 KO and A322D mutant mice show a persistent co-localization of α3 subunit and gephyrin 

during development 

Gephyrin binds to the intracellular loop between the third and fourth transmembrane domain of GABAA 

receptor α subunits to form a stable ternary structure
32

. In vitro studies have also demonstrated a direct 

interaction between gephyrin and α1
33

 and α3 subunits
34

. We did IHC experiments to determine the 
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number of co-localized gephyrin and α1 or gephyrin and α3 particles in the Gabra1 KO, A322D KI and 

WT mice. The number of co-localized gephyrin and α1 particles was not significantly different in Gabra1 

KO, A322D KI and WT mice, at either P30s or P120s (figure 4-11). However the number of co-localized 

gephyrin and α3 particles was reduced significantly in P120s WT mice. No such decrease was observed in 

Gabra1 KO and A322D KI mice, indicating a persistence of co-localized gephyrin and α3 particles during 

development (figure 4-12).      
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Figure 4-11: Number of co-localized gephyrin and α1 particles is not significantly different between 

Gabra1 KO, A322D KI and WT mice at P30s and P120s. Examples of co-localized gephyrin and α1 

particles are shown for (A) P30s and (B) P120s Gabra1 KO, A322D KI and WT mice. (C) Quantification 

of the co-localized gephyrin and α1 particles is shown. p value =  0.995  
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Figure 4-12: Number of co-localized gephyrin and α3 particles is significantly reduced in WT P120s mice 

but not in Gabra1 KO and A322D KI mice. Examples of co-localized gephyrin and α3 particles are shown 

for (A) P30s and (B) P120s Gabra1 KO, A322D KI and WT mice. (C) Quantification of the co-localized 

gephyrin and α3 particles is shown. p value < 0.001   
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Discussion 

Epilepsy is fundamentally a circuit phenomenon
35

. It is increasingly recognized that seizures may leave 

their imprint on the developing brain by altering the way that neurons differentiate, connect and 

communicate with each other, even if, in many cases, such changes may be ultimately compensated for
36

. 

Therefore, understanding the biochemical mechanisms underlying seizures and epilepsy is crucial for 

gaining a better understanding of this disease and developing better treatment strategies for it.  

GABA is the major inhibitory neurotransmitter in mammalian central nervous system
37

 and mutations in 

its receptors have been associated with epilepsy
38

. The composition of the pentameric GABAA receptor, 

consisting of α1–6, β1–3, γ1–3, δ, ϵ, θ, π, and ρ1–3 subunit, governs the intrinsic properties of the 

channel, such as the affinity for GABA, receptor kinetics, conductance and allosteric modulation
9, 39

. The 

regional and total expression of GABAA receptor α subunits changes significantly during development
25

. 

Since the identity of the α subunit incorporated into GABAA receptors plays a significant role in its 

physiological properties, any alteration in the subtype of α subunit can significantly alter the physiologic 

circuitry in the brain and potentially lead to abnormal activity, including seizures. In fact, alterations in 

the expression and function of GABAA receptor subunits have been documented in animal models of 

human cases of temporal lobe epilepsy
39

. 

Under physiologic conditions, the expression of α1 subunit is low early in development and restricted to a 

few areas, but it increases dramatically with age
25, 40

. On the other hand, α3 subunit expression is high 

early in development but declines with age and gets restricted to a few areas; for example reticular 

nucleus of the thalamus
24, 41

. In chapter II and our previous study
21

, we have shown that P30s het Gabra1 

KO mice have absence seizures. We have also shown that Gabra1 KO mice have an expected decrease in 

the expression of α1 subunit along with a robust increase in α3 subunit
20

. In chapter III, we showed that 

the Gabra1 A322D KI mice also have a similar incidence of absence seizure at P30s. We have now shown 

that the decrease in α1 and increase in α3 subunit expression observed in Gabra1 KO mice also occurs in 
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Gabra1 A322D KI mice. Therefore no difference in the cellular or behavioral level was seen between 

Gabra1 KO and A322D KI mice at P30s. 

In chapter III, we reported a significant finding that at P120s the Gabra1 KO and A322D KI mice not only 

continue to have absence seizure but also start to have polyspike discharges, which were occasionally 

associated with subtle, but visible, myoclonic jerks. Interestingly, the decrease in the expression of α1 

subunit in Gabra1 KO and A322D KI, compared to WT mice, at P30s was not seen in P120s. Although 

no significant difference was observed in the expression of α1 subunits, the expression of α3 subunits 

continued to be significantly higher in Gabra1 KO and A322D KI mice compared to WT mice. How does 

this compensation for the loss of α1 subunit, along with the continued over expression of α3 subunit, 

affect the functioning of the brain?    

The pharmacological and physiological properties of GABAA receptors, like affinity for GABA, receptor 

kinetics, conductance and allosteric modulation is determined by their subunit composition
9
. For example, 

GABAA receptors that contain α1 subunits mediate relatively short inhibitory post-synaptic currents 

(IPSCs), the GABAA receptors that contain α2 or α3 mediate relatively long lasting IPSCs
10, 13, 14

. The 

proportion of GABAA receptors containing any particular α subunit can have a significant effect on the 

overall functioning of the GABAA receptor expressing neurons. Perturbation of GABAA receptor 

signaling may facilitate seizures
36

.  

We have recently shown that the α3 subunit was up-regulated in the P30s Gabra1 KO mice, compared to 

WT mice
20

. This change was accompanied with reduced peak amplitude and increased rise and decay 

time of mIPSCs, recorded from somatosensory cortex layer VI pyramidal neurons P30s Gabra1 KO 

mice
20

. Based on the comparison of our findings for behavior and protein expression of Gabra1 KO and 

A322D KI mice, it is not unreasonable to expect that electrophysiological findings would be similar in 

both Gabra1 KO and A322D KI mice.    
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We have reported changes in the seizure phenotype (polyspike discharges evolve along with persistent 

absence seizures) and the protein expression (expression of α1 subunit is no longer decreased compared to 

WT) at P120s in Gabra1 KO and A322D KI mice, compared to P30s mice, in this thesis. Two key 

questions come up in regards to these finding: (1) are the electrophysiological properties of layer VI 

pyramidal neurons different at P120s in Gabra1 KO and A322D KI mice, compared to P30s and (2) do a 

unique class of GABAA receptors exists at P120s in Gabra1 KO and A322D KI mice, that is involved in 

these behavioral changes. 

It has been reported that 18% of juvenile myoclonic epilepsy patients have a history of persistent absence 

seizures, and this group has been called “childhood absence epilepsy evolving into juvenile myoclonic 

epilepsy”
42

. In this group of patients, absence seizures alone or in combination with myoclonic jerks 

persisted in 63% of patients for as long as 11-50 years, in spite of antiepileptic drug treatment
42

. 

Behavioral finding in Gabra1 KO and A322D KI mice, of absence seizures persisting and evolving into 

polyspike discharges, makes them a good model for studying this treatment resistant class of JME. Based 

on our results from western blot and immunohistochemistry studies, we hypothesize that a different class 

of GABAA receptor exists later in development of Gabra1 KO and A322D KI mice. Identification of this 

class of GABAA receptors can lead to valuable insights into molecular basis of this treatment resistant 

class of JME and possibly lead to the development of better therapeutic interventions.   
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Chapter V 

Discussion and future Directions 

The novel findings of these studies include: (1) Loss of GABAA receptor α1 subunit via GABAA receptor 

α1 subunit (Gabra1) resulting from knock-out (KO) and A322D knock-in (KI) mutations, is sufficient to 

cause an absence epilepsy phenotype in genetically modified mice. (2) Absence seizures persist and 

evolve into myoclonic-like epilepsy in Gabra1 subunit KO and A322D KI mice at postnatal day (P) 120. 

(3) Expression levels of GABAA receptor subunits change dynamically with age in Gabra1 KO and 

A322D KI mice.  

Gabra1 KO and A322D KI mutations cause an absence epilepsy phenotype in genetically modified 

mice 

Two mutations in the α1 subunit of GABAA receptor, S326fs328X and A322D, are associated with 

childhood absence epilepsy and juvenile myoclonic epilepsy, respectively
1, 2

. In vitro studies conducted 

on S326fs328X mutation showed a complete reduction in the expression of GABAA receptor α1 subunit
3
, 

while A322D mutation reduced the GABAA receptor α1 subunit expression by 88%
4
. These findings 

make the GABAA receptor α1 subunit (Gabra1) KO mouse a relevant model to study epilepsy. 

Interestingly, previous studies conducted on Gabra1 KO mice reported the lack of visually apparent 

seizures
5, 6

. But one must keep certain factors under consideration when studying any animal model for 

epilepsy.  

Firstly, epilepsy is a complex disease that has both genetic and environmental causes. Although the 

effects of environmental causes can be controlled by strict experimental protocols or overcome by 

increasing sample size, it is the genetic complexity that presents the greatest obstacle
7
. An important 

strategy used to control the genetic complexity, in mouse based studies, is the use of congenic strains
8
. 

Ever since the development of the congenic strains, by the Nobel Laureate George Snell
9
, their use has 

been emphasized to get reproducible and consistent results. We used congenic strains of mice for all of 
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our experiments, but previous studies that reported a lack of visually apparent seizures did not use 

congenic strains
5, 6

.  

Secondly, the definition of seizure in animal models is challenging. It has been suggested that 

investigators should define objectively and quantitatively, what a seizure is and also show sufficient 

number of examples of the seizures
10

. Most definitions of seizures in animals require that they are 

detected by electroencephalogram (EEG) recording
11

. In particular, the use of EEG is essential for 

distinguishing nonconvulsive seizures from normal behavior of animals
11

.  

Therefore, we conducted synchronized video/EEG on Gabra1 KO and A322D KI mice maintained in a 

congenic background and discovered spike wave discharges (SWDs) that were associated with behavioral 

arrest. Furthermore, these SWDs had bihemispheric origin. Finally, treatment with ethosuximide (a drug 

used to treat absence epilepsy) resulted in reducing the incidence of SWDs in Gabra1 KO mice. With all 

of these findings, we have provided objective evidence that both Gabra1 KO and A322D KI mice are 

good models of absence epilepsy. Furthermore, we showed that the incidence of SWDs in female 

C57BL/6 het Gabra1 KO mice was significantly greater than males. A similar sex dependent discrepancy 

has also been reported in human female epilepsy patients, termed catamenial epilepsy
12

. In particular, the 

incidence of childhood absence epilepsy is more common in females
13-15

. Therefore, C57BL/6 Gabra1 

KO female mutant mice can be used to study catamenial epilepsy.  

The concept of childhood absence epilepsy (CAE) as a benign epilepsy syndrome with high remission 

rates and few long-term neuropsychiatric consequences, is changing
16

. Previous studies give a 65-80% 

remission rate for childhood absence epilepsy
17-19

. But persisting and evolving seizure phenotype with 

associated subtle cognitive deficits, linguistic difficulties and psychiatric diseases, have also been 

reported
17-19

.  Therefore, the persistence of absence seizures and evolution into myoclonic-like jerks in 

Gabra1 KO and A322D KI mice was an essential component of our investigation.  
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Absence seizures persist and evolve into myoclonic-like epilepsy in Gabra1 subunit KO and A322D 

KI mice at P 120 

CAE is considered a relatively benign disease due to its high remission rates
20

. But a significant 

proportion of CAE patients have been reported to have absence seizures that persist and evolve into 

juvenile myoclonic epilepsy (JME) and generalized tonic-clonic seizures (GTCS)
17, 21

. The peak age of 

onset of concomitant myoclonic jerks, in these CAE patients, is 1 to 6 years after the onset of absence 

seizures
22

. 91% of such patients do not achieve complete long term seizure remission
23

. In another study, 

all of the treatment-resistant JME patients were reported to have other forms of seizures, along with 

myoclonic jerks
24

.  

We discovered that Gabra1 KO and A322D KI mice continue to have SWDs and absence seizures at 

P120s. We also observed that the Gabra1 KO and A322D KI mice had spontaneous polyspike discharges 

(PSDs), that were occasionally accompanied by subtle but visible myoclonic-like jerks. Rare GTCS were 

also noticed in mutant mice at P120s. Such an age dependent evolution of behavioral phenotype has not 

been reported in other rodent models of absence epilepsy. The characteristics of Gabra1 KO and A322D 

KI mice we report here, that include absence seizures persisting and evolving into myoclonic-like jerks, 

make them a very useful model to study this treatment resistant form of epilepsy. 

Since the incidence of PSDs was significant, but low, we decided to employ a previously described 

protocol of administering repeated low doses of pentylenetetrazole (PTZ) (a GABAA receptor 

antagonist
25

) to induce more frequent myoclonic jerks
26

. We noticed a reduced latency to develop PSDs in 

Gabra1 KO and A322D KI mice compared to WT mice at P120s that were associated with visible 

myoclonic-like jerks. The Gabra1 KO and A322D KI mice also showed a trend towards increased 

probability of developing generalized tonic-clonic seizures (GTCS) with PTZ administration. The 

spontaneous and PTZ-induced myoclonic-like jerks observed in these P120s Gabra1 KO and A322D KI 

mice were similar in characteristics with other known models of myoclonic epilepsy. For example, in 
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Efhc1 mutant mice (a known model of myoclonic epilepsy), episodes of myoclonic jerks have been 

reported at 7-8 months of age
27

. Furthermore, the spontaneous, quick (<200ms), high amplitude multi-

spikes observed on the EEG recording of Efhc1 mutant mice
27

 were similar to the spontaneous PSDs we 

observed in P120 Gabra1 KO and A322D KI mice.  

Expression levels of GABAA receptor subunits change dynamically with age in Gabra1 KO and 

A322D KI mice 

The kinetics, conductance and allosteric modulation of GABAA receptor is significantly affected by the 

type of α subunit it contains
28

. The expression of α3 subunit declines, while α1 subunit increases with age 

in rodent brains
29

. Abnormal temporal or spatial expression of GABAA receptor α subunits can have a 

significant effect on the physiology of GABAA receptor expressing neurons. We have recently shown that 

the expression of α3 subunit is abnormally high in P30s Gabra1 KO mice, while the expression of α1 

subunit was reduced as expected
30

. The electrophysiological finding of layer VI cortical neurons of 

Gabra1 KO mice, including peak amplitude and decay rate, was also significantly different compared to 

WT mice
30

. These Gabra1 KO mice also had absence seizures
31

.  

When we determined the expression of α1 and α3 subunits in Gabra1 A322D KI mice at P30s using 

western blot analysis, we discovered a similar decrease in α1 subunits and increase in α3 subunits, while 

no significant difference was observed between Gabra1 KO and A322D KI mice. Interestingly, at P120s, 

although the expression of α3 subunit remained high in Gabra1 KO and A322D KI mice, the difference in 

the expression of α1 subunit no longer existed between mutant and WT mice.  

We also quantified the expression of α1 and α3 subunits in layer II/III and VI of motor cortex of WT, 

Gabra1 KO and A322D KI mice, using immunohistochemistry (IHC). Consistent with our results from 

western blot experiments, we report an increase in α3 subunit expression in layers II/III and VI, at both 

P30s and P120s. Also consistent with our results from western blot experiments, we didn‟t see a 

significant difference in the expression of α1 subunit in Gabra1 KO and A322D KI mice compared to 



 
 

150 

 

WT, at P120s. However at P30s we didn‟t see the decrease in the expression of α1 subunit in Gabra1 KO 

and A322D KI mice that we saw in our western blot results. But this finding from IHC experiments could 

possibly happen if the changes in α1 subunit expression occurs in cortical layers other than layer II/III and 

VI or in a region other than the motor cortex, for example somatosensory cortex.  

In vitro studies have demonstrated a direct interaction between gephyrin and α1
32

 and α3
33

 subunits that 

helps in the formation of a stable ternary structure. In our IHC experiments to stain for gephyrin and α1 

and α3 subunits, we did not see any significant change in the number of gephyrin and α1 co-localized 

particles between Gabra1 KO, A322D KI and WT mice at either P30s or P120s, but interestingly, the 

number of α3 and gephyrin co-localized particles at P120s was significantly reduced compared to P30s in 

the WT mice. But no significant difference was observed in the number of α3 and gephyrin co-localized 

particles at either P120s or P35s in Gabra1 KO and A322D KI mice, indicating a persistent expression 

during development.         

These findings suggest a potential role of Gabra1 KO and A322D KI mutations on the function of the 

GABAA receptor. Since the electrophysiological properties of GABAA receptors containing α1 subunits is 

significantly different than those that contain α3 subunit, these changes in expression pattern of α 

subunits, seen at P120s, can have a significant impact on the electrophysiological properties of cortical 

neurons, for example peak amplitude and decay rate. These changes in expression pattern, and possibly 

electrophysiology, can have a significant impact on the brain circuitry that involves GABAA receptors. 

Such a modulation of circuitry can be part of the etiology of the evolving seizure phenotype that we have 

reported in this thesis.   
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Future directions 

To better understand the role of the Gabra1 KO and A322D KI mutation in the etiology of childhood 

absence epilepsy (CAE) and juvenile myoclonic epilepsy (JME), further experiments need to be 

conducted. Our results have shown that Gabra1 KO and A322D KI mutant mice can be an extremely 

useful model to study this complicated and treatment resistant form of CAE that persists and evolves into 

JME.  

Hypothesis and strategies for the future 

Future hypothesis 1: Unique GABAA receptors exist at P120s in mutant mice 

We hypothesize that at P30s, the absence seizures occur due to the different electro-physiological 

properties of the over expression of GABAA receptors containing α3. But the increase in α1 subunit seen 

in older (P120) mutant mice, could possibly result in the formation of unique GABAA receptors 

(containing both α1 and α3 subunits) that have unique electro-physiological properties compared to 

GABAA receptors containing either α1 or α3 subunits. The expression of this novel GABAA receptor may 

result in altered circuitry of the brain and consequently lead to an abnormal, epileptic phenotype. This 

hypothesis is summarized in figure 5-2.  
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Figure 5-2: Construct of GABAA receptors containing different α subunits in mutant mice at P30s 

and P120s. (A) Based on previous reports and our results, the expression of α1 subunit is greater in WT 

mice, while the expression of α3 subunit is higher in the Gabra1 KO and A322D KI mice at P30s. (B) 

Based on our hypothesize, unique GABAA receptors (that contain both α1 and α3 subunits) exist in 

Gabra1 KO and A322D KI mice at P120s. 

 

 

Strategies to test future hypothesis 1:  

A) The increased expression of GABAA receptors that contain both α1 and α3 subunits at P120s 

result in unique electrophysiological properties GABAA receptors in neurons of Gabra1 KO and 

A322D KI mice 

The kinetics and pharmacology of GABAA receptors depends on their α subunit composition
35, 36

. In vitro 

studies conducted in HEK293 cells show that, compared to α1 subunit-containing GABAA receptors, α3 

subunit-containing GABAA receptors have slower activation and deactivation kinetics, along with 

decreased sensitivity to GABA
37

. We recently showed, by recording from brain slices of Gabra1 KO mice 

(that express more α3 subunit compared to WT), that the peak current amplitude is reduced and the rise 

and decay time of mIPSCs is increased in layer VI cortical neurons of Gabra1 KO (that express more α3 

subunit) than WT
30

.  
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We have reported that the seizure phenotype evolves in the Gabra1 KO and A322D KI mice from only 

absence seizures at P30s to absence seizure and myoclonic-like jerks at P120s. This change in seizure 

phenotype is accompanied by an increase in α1 subunit expression in Gabra1 KO and A322D KI mice at 

P120s compared to P30s. As explained in my hypothesis above, it is possible that at P120s GABAA 

receptors are present in Gabra1 KO and A322D KI mice that express both α1 and α3 subunit and have 

completely different kinetics and pharmacology than we see due to the activity of GABAA receptors that 

express either α1 or α3 subunits alone. In order, to test this hypothesis we need to conduct whole-cell 

patch clamp recording on pyramidal neurons of both layer I/II and layer VI of somatosensory and motor 

cortex of WT, Gabra1 KO and A322D KI mice and see if the characteristics of mIPSCs are different 

between the two age groups. 

B) Using co-immunoprecipitation, we can test if α3 and α1 subunit are part of the same protein 

complex 

Co-immunoprecipitation is a popular technique used to identify protein complexes. Many studies have 

used this technique to detect the association of surface expressed GABAA receptors with other proteins, 

for example gephyrin
38

 and potassium and chloride channel
39

. To determine the presence of a unique 

population of GABAA receptors that contains of both α1 and α3 subunits, we would need to isolate 

surface protein from biotinylated brain slices of WT, Gabra1 KO and A322D KI mice at P30s and P120s. 

These biotinylated proteins would be immunoprecipitated using antibody against α1 subunit and then 

stained for α3 subunit. Separately, the biotinylated proteins will be immunoprecipitated using antibody 

against α3 subunit and then stained for α1 subunit. If a population of GABAA receptors that contain both 

α1 and α3 subunits exist (figure 5-2 B), immunoprecipitation using either α1 or α3 subunits will be able to 

give α3 and α1 subunits, respectively.          
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Future hypothesis 2: The change in GABAA receptor subunit expression is not due to seizures, but 

only the result of Gabra1 KO and A322D KI mutations 

Previous studies have shown that chemically-induced seizures cause a reduction in the expression of α1, 

α4, β2/3 and γ2 subunits in the CA1 region of hippocampus
40, 41

. However, following γ-hydroxybutyric 

acid (GHB) induced absence seizures in rats, a significant increase in α1 subunit mRNA and decrease in 

α4 subunit mRNA was observed in the thalamic relay neurons
42

. In another study, hyperthermia-induced 

seizures resulted in decreased expression of α3 and α2 subunit mRNA in the dentate gyrus of neonatal 

rats
43

. Therefore, artificially-evoked seizures can alter the expression of GABAA receptor subunit 

expression. But do absence and myoclonic-like seizures occurring in Gabra1 KO and A322D KI mice 

also play a role in alteration of GABAA receptor subunit expression? We hypothesize that the changes in 

GABAA receptor subunit expression are not due to seizures, but only the result of Gabra1 KO and A322D 

KI mutations.   

Strategy to test future hypothesis 2:  

In order to test this hypothesis, we can chemically or electrically induce seizures in WT, Gabra1 KO and 

A322D KI mice, at P30s (age at which only absence seizures occur) and P120s (the age at which 

persistent absence seizures and myoclonic-like jerks occur). If our hypothesis is correct, Gabra1 KO and 

A322D KI mice will have similar levels of GABAA receptor subunit expression after chemically- or 

electrically-induced seizures, as those seen in unprovoked mutant mice (results of unprovoked mutant 

mice are shown in chapter 4). But the GABAA receptor subunit expression will be drastically different in 

WT mice after chemically- or electrically-induced seizures, as expected based on previous reports. 

 

 



 
 

155 

 

Future hypothesis 3: Gabra1 KO and A322D KI mice are models of attention deficit hyperactivity 

disorder. 

Psychiatric disorders are very common in CAE and JME patients. Children affected by CAE are known to 

have difficulty in visual sustained attention, verbal and nonverbal attention, and memory, despite a good 

response to antiepileptic medications and normal intelligence
44

. 61% of CAE patients have also been 

diagnosed with a psychiatric disorder, in particular attention deficit hyperactivity disorder (ADHD)
19

. 

Attention problems in CAE patients can also interfere with children‟s academic performances
45

. 

Similarly, 49% of JME patients also suffer from psychiatric disorders, which include ADHD
46

. JME 

patients also have problems with verbal and visual memory
47

 and social adjustment
48

. Based on our 

findings that Gabra1 KO and A322D KI mice are a good model for absence epilepsy and myoclonic-like 

jerks, we hypothesize that Gabra1 KO and A322D KI mice are also a model for ADHD.  

Strategies to test future hypothesis 3: 

To  test for ADHD phenotype in mutant mice, we can use the commonly employed strategies that include, 

water maze test
49

, aggressive behavior
50

, Y-maze test
51

, novel object recognition test
50

, elevated zero 

maze test
52

 and light/dark test
53

. Findings from these studies can help us better understand the severity of 

psychiatric comorbidies in patients suffering with this complicated version of CAE persisting and 

evolving into JME.  

 

Future hypothesis 4: Gabra1 KO and A322D KI mice have altered circadian rhythm  

A characteristic sleep/wake cycle has been reported in JME patients: they fall asleep late and get up late 

in the morning, with prolonged drowsiness in the morning
54

. It has been reported that JME patients have 

more frequent myoclonic jerks on awakening, which occasionally terminate in a convulsive seizure
55

. But 

this relationship between sleep-wake cycle and JME has been the subject of controversy. There are two 
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hypotheses for this circadian dysrhythmia and seizures: (A) an epileptic patient with self inflicted 

distorted lifestyle is more likely to become symptomatic with altered circadian rhythm or (B) the 

circadian dysrhythmia and seizures are a symptom of JME and a symptom of underlying 

subcortical/cortical disregulation
54

. Based these reports, we hypothesize that the Gabra1 KO and A322D 

KI mice have different circadian rhythm compared to WT.    

Strategy to test future hypothesis 4: 

To test for altered circadian rhythm, mice should be placed in special cages, kept in light tight ventilated 

cabinets (commonly used for such circadian rhythm studies), where the general activity of mice will be 

recorded individually and continuously with passive infrared movement detectors and wheel running 

activity
56

. Mice should be observed for 21 days in 12hour light/dark cycle, followed by 2weeks of total 

darkness cycle and finally 2 weeks of continuous light, as is routinely done for similar experiments. If our 

hypothesis is correct then the mutant mice will register movements significantly late in night and stop 

significantly late in morning, compared to WT mice.  
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