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CHAPTER |

INTRODUCTION

1.1 Motivation

The promise of fast and portable diagnoses of dangeroustiofis agents created
a large growth in lab-on-a-chip (LOC) technology through i®90s [1, 2]. Also re-
ferred to as micro-total analysis system3AS), these devices are often described as
miniature laboratories. They are small enough to be patdimit provide the same
functionality as their room-sized counterparts [3]. Ottiean portability, advantages
that are often listed for these systems include reducedatipgrcosts, shorter testing
times, automation and high throughput [1]. Recent growtthis technology was un-
doubtedly catalyzed by preceding advances in microfatioicg4]. The ability to con-
struct miniature devices that can hold and manipulate titerdluid volumes induced
tremendous growth in microfluidic studies. This, in turadeo a great number of ap-
plications. Others have compiled more exhaustive listppfieations for microfluidics,
but a sample of the more prominent topics would include flygtios, inkjet printing,
drug discovery, biosynthesis, bio-warfare defense, fowtiagriculture testing and the
most common application, medicinal diagnostics.

Due mostly to the simplicity of their integration and usesattic fields have be-
come a popular form of actuation in microfluidics. This teiciue eliminates the need
for micro-scaled mechanical components such as pumpseyard mixers. Using
an electric field, one can induce bulk fluid motion within in &rmchannel through a
process called electroosmotic flow (EOF). Additionallgattic fields can drive down-
stream motion of individual dielectric particles by meahgheir net charge in a process

referred to as electrophoresis (EP). Each of thé&®sets are well documented [3, 5-8]



and will be discussed in more detail in the following chapter

The electrophoretic motion of a particle can be perturbetthbypresence of a spatial
non-uniformity in the electric field. Thistiect is referred to as dielectrophoresis (DEP)
and it is an extensively studied topic. More detail can bentbin literature [2, 7, 9—
16]. A DEP force is often used to generate motion orthogom#éhé direction of the
applied field. The ability to generate a force acting on a aarticle in a direction
transverse to fluid flow is of particular interest to biomedliesearchers. Such a ca-
pacity has allowed them to manipulate biological particiean dfort to incorporate
sorting [17, 18], focusing [19-21], trapping [22—24], nagon [25-27], characteriza-
tion [28-30] and filtering [31, 32] processes into microflaidevices. Additionally,
DEP interaction between non-conducting particles has@sgured interest in aggre-
gation applications [33—35]. The unique reorientationcpss allows for the construc-
tion of desired materials including tissues [36, 37], bioposites [38], microwires [39]
and photonic crystals [40].

Despite the number of applications for microfluidic deviae®deling and charac-
terization of particle handling in electrokinetic flows tdls challenging task. This is
especially the case for arbitrary channel geometries agé lparticle-to-channel size
ratios, which causes significant distortion of the locat&le and flow fields. Never-
theless, microfluidic channels often use complex geonseamel small design features
for the intricate manipulation of suspended particles. &ample, Kanget al. [41]
investigated the DEPfkect of an insulating hurdle on the trajectory of electroetior
polystyrene particles. Their objective was to use the DERef@enerated near the
corners of the hurdle to “push” the particles intdfelient streamlines. Thefect was
introduced as a separation technique due to the fact thatttbamline shift was de-
pendent upon the size of the particle. To extend the stugdys#me group used a
similar technique to separate white blood cells, and in asgp experiment, breast
cancer cells [12]. A more adjustable form of DC-DEP was eealiby Barbulovic-

Nadet al.[42] by using an oil droplet as the insulating hurdle. In thiatdy, adjusting



the droplet size allowed for simple dynamic control of thédfgradient used to generate
the DEP force. Other non-trivial microfluidic networks i#d serpentine channels [43],
spiraling channels [44] and converging—diverging sectid®] to attain the field distri-
butions necessary for DEP particle manipulation in DC orI&sed alternating fields.
In general, accounting for the finite size of a particle in aweucal simulation is
computationally demanding when attempting to model théiglals motion in a mi-
crochannel. For this reason, simplified approaches have d®esloped. For example,
some researchers choose to take advantage of a similittwedrethe electric field and
the fluid velocity field for electroosmotic flows [46—48]. Bgsuming that the particles
in such flows simply follow the streamlines, the solutiontte tlectric field alone may
be used to approximate the particle motion [17, 49]. WherD® dfect on the parti-
cles is considered, a further approximation is to employhkegoint dipole or multipole
methods [10] to determine the DEP force. In these methodgdtticle size is assumed
to be infinitely small, and the DEP force can be evaluateddasea simple formula
involving the undisturbed local electric field strength atsdderivatives. Under these
approximations, the particle’s trajectory can be found byfgerming straightforward
Lagrangian tracking. To improve the accuracy of this apgihpaometimes an empiri-
cal correction factor is used to correct the particle mopjb0, 51]. The point—particle
approach can be highhffecient and is valid when the size of the particle is small when
compared to that of the channel. However, as the particlesedo the wall, or its size
approaches that of the channel, distortion of the surragnhdlectric field due to the
presence of the particle can no longer be neglected. A rdgqauthlished and well-cited
review explicitly stated the need for further studies onleeturbing influence of mi-
crochannel boundaries [2]. For example, when a non-comdyptrticle is close to a
plane wall, it has been shown in experiments that a net DEf figrgenerated from the
distorted electric field in the narrow gap between the plarand wall [52-54]. This
force is in addition to the DEP generated by the global ndioamity of the electric

field. Some previous studies have shown that the dipolar dtipole approximation



of the DEP leads to inaccuracies when applied to a partictearvicinity of an elec-
trode [55-57]. Similar to the DEP approximation, ignorihg particle’s presence in the
flow field may oversimplify the hydrodynamics and lead to maate estimate of the
viscous drag on the particle. For these reasons, a studgssidg the DEP mobility of
particles of finite size would have to fully couple the pdditogether with the electric
field and flow. So far there are only a few limited such studfés b8].

For electrokinetic particles of finite sizes, both analgtiand computational ap-
proaches have been applied previously to solve the gowgmrguations and to ob-
tain description of the particle dynamics. For example cesalutions [59, 60] and
asymptotic expansions [61-63] have been applied to obtqressions of the veloc-
ity or force on a spherical particle near a planar or cylicalrigeometry. For an ar-
bitrary geometrical configuration, a numerical technigsi@eécessary to simulate the
flow and electric field. Numerical methods based on volumerdigation, such as the
finite-element method (FEM) [64—66], have limited accuratyen the particle—wall or
particle—particle separation is small compared to thagarsize and a fine resolution
is needed to resolve the gap region. Additionally, for tramissimulations, the volume
mesh often has to be regenerated every a few time steps tbsex@re mesh distortion.
On the other hand, the boundary-element method (BEM) [6fichwrequires a surface
mesh only, is superior to the FEM in accuracy affiiceency when a linear problem
is considered, e.g., an electrokinetic problem with the-tBDL assumption. Previ-
ously, the BEM has been applied in electrokinetic flows [@8-ahd has shown great
promises. We also have developed an in-house BEM code te stdetrokinetics of
particles in arbitrary channels [71, 72]. The numericalrapph can handle very small
gap region (around 1% of the particle size). With slight nfiodtion, the solver can
incorporate the Maxwell stress tensor and can thus be usathtdate the DEPféect

on the particle.



1.2 Objectives
The goals of this work can be summarized into two objectitst, we wish to ad-
vance the application of the boundary-element method witie field of electrokinetics
in microfluidics. Under the notion that precision and thdigbio efficiently optimize
microchannel design is paramount to the future of LOC teldgyp we want to extend
this numerical approach and demonstrate its capabilitiadoing so, it helps us achieve
our second objective: to study and characterize severdbfmental phenomena related

to electrokinetic particle motion in microfluidics.

1.3 Ouitline

Each of the studies within this dissertation are presenseiti@dependent applica-
tions of the developed BEM. Before discussing each impleatem, we will provide a
background of the underlying physics and introduce thegnateequations which serve
as the foundation to the BEM.

Chapter 1 introduces the subject material. It serves agadwerview of the field to
provide context to the studies. Here, we report variousiegipbdns by researchers. In
this introduction, we intend to detail the motivation behthe studies herein and also
to clarify the objectives of the work.

Chapter 2 conveys the underlying physics behind the phenarstudied. The
primary electrokinetic fects discussed in this dissertation are electroosmoss; el
trophoresis, dielectrophoresis and electro-orientatis such, each topic has its own
section describing its origin and the formulas used to masgeifect.

Chapter 3 provides a broad overview of the boundary-elematihod and how it
is applied. Here, we detail each of the integral equatioesl uis this method: the 2D
and 3D integral formulation for Laplace’s equation and dtls® 2D and 3D integral
formulation for Stokes’ equation. Additionally, we proeidhe integral identities used

during integration to address singularities that arise.



Chapter 4 details the results of our first application of tik&VB Here, we applied
our 2D BEM code to study the electrophoretic mobility of alalal cylinder when ar-
bitrarily positioned between two parallel walls. In doing s/e evaluate a wall-induced
electrokinetic enhancement for the case of two walls. Is thport, we find that the
enhancementfiect is comparable to the viscouSeet introduced by the second wall.
This is most significant for a tightly bounded particle.

Chapter 5 is a fundamental study of DC-DEP. Here, we impléraen3D BEM
code to observe a spherical particle translating througéra @ylindrical channel. In
doing so, we look at thefiects of particle size, field strength and eccentricity aptre
ticle experiences negative DEP when traveling through éme kegion. The systematic
study helps to characterize thiSect for the case of a fundamental geometry common
to microfluidic networks. We also compare our results witbsti obtained using the
point—particle approach to clarify its limitations andtjfisthe need for a numerical
technique when the particle’s size is no longer negligible.

Chapter 6 is a thorough report over the DEP interaction gissidal particles. By
using our 3D BEM code, we study the field-induced chainifiga for non-conducting
prolate spheroids. In this report we characterize the pinemon by observing the finite
chaining angle formed and its dependence upon the paripkcaratio. Also addressed
is the significance of electro-orientation for particlesdditrarily initial orientation and
position.

Chapter 7 serves as closing remarks to the dissertatiohislegction the motivation
behind the work is summarized. We present the overall cerahs and contributions

made to the field. In addition, future topics of study are asged.



CHAPTER I

BACKGROUND

2.1 Electric double layer

When in contact with an aqueous solution, a solid surfackcatly a net charge. In
some cases this surface charge stems from the ionizatsin@from the dissociation
of chemical groups. This process depends on the acidic ac bagngths of these
groups and the pH of the solution. In many other cases, thacgicharge comes
from its adsorption of ions in the solution. For most elelgti® solutions, the surface
will develop a negative charge [11]. The existence of a serfeharge attracts ions
of opposite charge (counterions) and repels ions of likegehgco-ions) within the
solution. This results in a thin layer of fluid with a net chatgat balances the adjacent
surface charge. This layer of fluid is commonly referred tthaselectric double layer
(EDL). Outside of this layer, the bulk fluid is electricallgutral.

If we assume that the surface develops a negative chargeptstive ions within
the solution are drawn toward it. A diagram of the EDL in thegsario is shown in
Figure 2.1. Here we see the EDL is comprised of two main sestia compact layer
and a dffuse layer. The compact layer is composed of counterionsateatnmobile
due to their strong attraction to the surface. In genera,cibmpact layer is only a
few Angstroms in thickness and the electric potential thigtron is mostly linear [4].
Beyond the compact layer exists a thicker layer of fluid inchithe net charge density
gradually reduces to zero. This layer is referred to as tffes# layer and the ions
within it are mobile. Thickness of the filise layer is dependent upon the electrical
properties of the solution and can range from several nates® a few microns [3].

The compact layer andflluse layer make up the EDL. Outside of the EDL, there is an
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Figure 2.1: Diagram of the electric double layer.

even number of counterions and co-ions and the net chargitylemerywhere is zero.
The plane separating thefilise and compact layers is referred to as the shear plane.
It is straightforward to experimentally measure the elegotential at this plane. This
potential is referred to as the zeta potentfdl Determining the potential at the solid-
liquid interface is more challenging. Because of this, ta@zpotential is commonly
used as an approximation of the electric potential at thexfiaate [3].

The distribution of electric potential within theftlise layer of the EDL is governed
by the Poisson-Boltzmann (PB) equation. For a symmetridrelyte (constant), this

relationship simplifies into the following form,

Ve = 2zen, sinh(@),

- T 2.1)

wherez is the ionic valenceg is the elementary charga,, is the bulk ionic number
concentrationgn, is the permittivity of the solutiork, is the Boltzmann constant afd
is the absolute solution temperature.

In many microfluidic studies, it is common to use an approxiomereferred to as
the thin-EDL assumption. This method takes advantage déthge diference in length

scales when comparing the EDL thickness to the enclosingnge®g,e.g. microchannel



width. If the solution has a low electrolyte concentratioedrly pure water), then it
will yield a thicker EDL. However, as was mentioned beforéarge EDL is generally

still less than a few microns in thickness. This is much semnatan the diameter of
many microchannels, which are commonly on the order of @0 The characteristic

thickness of the EDL is commonly referred to g&,where

_ 27%en,,

k2
emkp T’

(2.2)

is the Debye-Hickel parameter. dfis the characteristic length scale of your system,
then the thin-EDL assumption is commonly writtenkas>> 1. Under this condition,
the EDL thickness is neglected. The electric potentialrithgtion and velocity flow
field within the EDL are not considered. Instead, we use tmelition of both fields at
the slip plane to represent the condition of both fields astiréace. From a modeling
point of view, the no-slip boundary condition common in centronal fluid mechanics

is replaced with a slip velocity boundary condition that isgrtional to the electric

field,

=5 E, (2.3)
yu)
whereu® is the slip velocityg is the dielectric constant of the electrolyte solution and
. is the zeta potential of the surface. This is important beeatimeans we can model
electric field without having to solve the nonlinear PB eqprat Outside of the EDL,
there is no net charge density. Thus, by using the thin-EBumagtion, we are mod-
eling the field as being electrically neutral everywhereonkithis, we can model the

electric potential using Laplace’s equation,

V¢ = 0. (2.4)
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Figure 2.2: &) Plug-like electroosmotic flow profile when considering atérEDL
thickness (left) and under the thin-EDL assumption (rigfit) Electrophoretic motion
of a particle under the thin-EDL assumption.

2.2 Electroosmosis and electrophoresis

Formation of the electric double layer is a fundamental phegnon that drives a
common form of electrokinetic actuation. If an electricdiéd applied tangential to an
EDL, it generates electrostatic forces on the ions withenEDL. The force acting on
the mobile ions within the diuse layer yields motion of the fluid in this layer in the di-
rection of the applied field. At the characteristic lengthles common in microfluidics,
viscous forces dominate over inertial forces. This stemsfthe a large ratio of surface
area to volume (typically on the order of &1t [4]). A result of these ffects is bulk
fluid motion outside of the EDL. This electrokinetic form afipping is referred to as
electro-osmosis. The viscous motion of the fluid producelsig-like velocity profile.
When considering a finite EDL thickness, the velocity praslsimilar to that seen on
the left side of Figure 2.2). As mentioned previously, however, a well-accepted model
for electrokinetic flow is to neglect the EDL thicknega (> 1). Under this treatment,
the velocity profile resembles that shown on the right side@idire 2.24). Based on the

thin-EDL assumption, electroosmotic flow can be represtioyehe following relation,

UeoF = _itﬂE, (25)

where(,, is the zeta potential of the microchannel wall.

10



A contrasting motion arises when the charged surface ismgelostationary. Con-
sider a rigid non-conducting particle suspended in an rité solution. There still
exists an EDL in this situation. It forms around the surfat¢éhe particle much like
it would a plane wall. What is dlierent about this scenario is that the charged surface
is free to move under an electrostatic body force. Under actrét field, the particle
will be driven toward one of the electric field while the fluil the EDL is driven to-
ward the opposite end. The driving force behind this mot®the Coulombic force
acting on the particle’s net charge. The resulting motiothefparticle is referred to as
electrophoresis. This form of electrokinetic motion is idégd in Figure 2.24§). Under
the thin-EDL assumption, the electrophoretic velocity qfaaticle is expressed as the

Helmholtz—Smoluchows&gquation,
Uep = 6—€pE, (2.6)
M

where(, is the zeta potential of the particle surface. Combiningatieection of the
surrounding fluid and electrophoretic mobility, it can bewh that a particle’s veloc-
ity under both electroosmotic flow and electrophoretic mottan be described in the

following manner [5],

3(€p —4w) E
—,U )

Up = 2.7)

2.3 Dielectrophoresis
If electrophoresis is described as a technique used topwaingarticles along the
length of a microchannel, then dielectrophoresis could déesxdbed as the technique
often used to induce a lateral migration. Under an electeicd fithe ions within and
on the surface of the particle material will have a tendermcghift in the direction

of the field that is opposite its own charge. This redistidoubf charge results in a

11
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Figure 2.3: Diagram visualizing the origin of a DEP force qguaaticle. The dotted lines

represent the electric field lines in the absence of a parti©rientation of the dipole

and Coulombic force acting on it are displayed below theiglar{a) Represents the

case of a uniformly applied electric field where&} epresents that of a non-uniform
field.

polarization of the particle. This polarization draws ctarrions within the suspending
medium toward the particle surface. In the case of a dieteggarticle suspended in an
electrolyte solution, more charge will accumulate on thelion® side of the particle—
medium interface. This is because a material of low condifigtloes not easily permit
the migration of ions. The resulting imbalance of chargéatimterface on either side
of the particle yields a field-induced dipole across theigart In a uniformly applied
electric field, such as that seen in Figure 8)3¢(he Coulombic forces acting on the
induced dipole are balanced. In a non-uniform field, howexdack of symmetry in
electric field strength across the particle yields and irmubed of force distribution. The
resulting net force is referred to as the dielectrophorfetice. A schematic of how a
DEP force is generated is shown in Figure B)3(

Both alternating and direct current electric fields (AC and)ave been widely
used for generating the DEP force needed to manipulateclesti By using embed-

ded electrodes, AC-DEP is capable of operating under redfielel strengths, which
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is important to cell viability. However, it often requiresetal deposition step in the
fabrication of the fluid channels. This increases compjexitd raises the cost. On the
other hand, DC-DEP (sometimes referred to as electrodeEle® or insulator DEP)
does not require embedded electrodes. It utilizes an il@eiin the geometry of a mi-
crochannel such as an insulating obstacle to locally dieetectric field and generate
the DEP force [73]. Another advantage to DC-DEP is that itoes fouling and elec-
trolysis, two common problems encountered when using eddzkeélectrodes. This
work will focus on DC-DEP. The results of many DC-DEP studies useful in refer-
ence to AC-DEP in the fact that DC-DEP simply representsdivet limit of frequency
for AC-DEP.

2.3.1 Point-dipole method

To solve for the DEP force acting on a particle, there are taramon approaches.
The first technique discussed is a popular approach duedioitdicity. It is referred to
as the point-dipole method (PDM). In this approach, deddig Jones [10] and again
by Morgan and Green [11], the higher order multipolar mora@mné neglected and the
polarized particle is modeled using affieetive dipole moment. For a spherical particle

under a constant field, théfective dipole moment is,

p = 4na’sm fouE, (2.8)

wherea s the particle radius anft ), is theClausius-Mossotfiactor. Under a DC field,
the Clausius-Mossottiactor is defined by the the conductivity of the partielg, and

suspending mediuna;, [74],

(2.9)
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For a dielectric particle in whichr, << o, fom approaches the lower limit o%.— By
modeling the particle as an infinitesimal dipole with dfeetive dipole moment given

by Eq. (2.8), we can find the force acting on the particle,

Foep = (p- V)E = —27a%e(E - V)E. (2.10)

After rearranging the following vector identity and coresithg the electric field is irro-

tational [10],

V(E-E) = 2(E - V)E + 2E x (V x E). (2.11)

we arrive at the final relation for the DEP force accordinghe #fective moment

approach, often referred to as the point-dipole method,

DEP = —TT& &m : = —nma €m . .
F BemV(E - E) BemVIE[? (2.12)

It is important to note that this technique is only valid irsea where the particle is
suficiently smaller than its environment. This is because thiéefsize of a particle
is neglected. The DEP force acting on the particle comes ftederivatives of the
electric field at the point where the center of the particleidde located. This is why
the PDM is labeled as point—particle approach Any distortion of the field from the
dielectric volume of the particle is not considered. Thegdioity of this approxima-
tion makes it a popular technique. Oversight of its limaas, however, can lead to

significant error. This will be discussed in a later chapter.

2.3.2 Maxwell stress tensor integration
A different approach, commonly accepted to be the most rigorqueagh [75],

utilizes the Maxwell stress acting on the surface of a parsaspended in an electric
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field. The Maxwell stress tensor (MST) describes the stresaroobject within an

electric angdor magnetic field. In its general form for a constant fields itvritten as,
1 2 1 2
T :gm(EE—§|E| 1) + uo(HH —§|H| 1), (2.13)

whereyg is the vacuum magnetic permeabilitys the unit tensor and is the magnetic
field vector. In this form, the product of two vectors with@utlot product is the dyadic
product. For a DC field, the near-field approximation is aahlé simplification to the
Maxwell stress tensor [75]. Under this approximation, thegmetic field &ects are

neglected and the stress tensor simplifies to,
1 2
T = en(EE - SIE| ). (2.14)

The total DEP force acting on a particle can then be found bsgnating this stress

around the surface of the particle,

Foep = fT nds = f[gm(EE— %lElZI)] -nds (2.15)
P P

The Neumann boundary condition utilized for a particle ungeneral conditions is
continuity of the normal component of electric displacemdixpressed numerically

for a pointx, on the interface, it takes on the following form [70],

0
on

_ . 9¢p

X on

(2.16)

X

whereg, is the permittivity of the particle and,, and ¢, correspond to the electric
potential just outside and inside of the particle interfaespectively. In the studies
performed herein, it is assumed that the particle is a digtesuch thats, << en.

With this assumption, we model the particle using an inguldtomogeneous boundary

condition,d¢/on = 0, where the electric field does not penetrate the particteacel
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Figure 2.4: Diagram visualizing the electro-orientatiosogess of an ellipsoid.

Under this condition, the field vector is orthogonal to theaze normal, yieldindge-n =
0. After applying this fact to Eq. (2.15), the first term is @adrased on the fact that
EE -n = E - (E - n). Through this simplification, the total DEP force is foumddugh

the following integral,

Fogp = —20 f IEP?n dS. (2.17)
2 Jp

2.4 Electro-orientation

A constant electric field that is spatially independent acigghdoes not exert a torque
on an isotropic spherical particle. This is owed to the fhat the local Maxwell stress
is always in line with the surface normal and passes throlugleéntroid of the particle.
For a non-spherical particle, however, a torque can arisewell known that a lossless
dielectric particle in a DC field will align itself such thasilongest axis is parallel
with the electric field. This field-induced self-orientatiprocess of a non-spherical
particle is referred to as electro-orientation. It can bensagepicted in Figure 2.4. By
approximating the particle as an infinitesimal dipole anlizing the efective moment

method, Jones [10] formulates the DEP torque for a partistieuthis condition,

_ 4rabds, - em)?(L. — L) |[EJ? sina cosa
3gm[1 + ( )L”][l + ( )LL]
E

Em m

(2.18)
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whered is the angle between the longest axisand the electric field. In a later sec-
tion, the interaction of non-spherical particles will bedesksed. Specifically, prolate
spheroids will be modeled. Thus, it is of interest to simpttie above equation. For
a prolate spheroid in which = c, the depolarization factor$,, andL; reduce to the

following expressions,

b2 l+e
L, = ZazeB[In(l_e)—Ze] (2.19)
1L
L, = — (2.20)

where the eccentricity is defined as= /1 — b?/a2. For the a prolate spheroid under

the limiting case o, << e, EQ. (2.18) reduces to

_ 4nabfen(L. - L) [E sina cosa
R 3(1-L(L-Ly)

(2.21)

Analogous to the previous section, there exists a more ctatipoally demanding
technique that is a more direct approach to calculating BB Bbrque. Similarly, this
method utilizes full integration of the Maxwell stress tenand provides more accurate
results for cases when a colloidal particle is positioneat @@other surface, whether it
is another particle or a channel well. Implementing the Melkstress tensor, the DEP

torque on a particle can be expressed as,

Toep = f(T . n) X r ds, (222)
P

wherer is the displacement vector (lever arm). Becakis@ = 0 is zero on the surface
of the particle, we can make the same simplifications thaeweade in the previous

section to arrive at the following relation,

Toep = _%mfmz (nxr)ds. (2.23)
P
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2.5 Influence of electric fields on cells

Many of the applications discussed in this work involve tke of cells. In this use,
care must be taken to ensure the viability of the type of cedfidu Exposing cells to
strong electric fields can alter their natural state and uoeleain conditions it can lead
to cell lysis [5]. In a review, Voldman discusses two comme@gative results when
using electric fields to manipulate cells [76]. One is anrallecell membrane potential.
Under an electric field, the cell membrane can develop andsep" electric potential
that alters the natural bioelectricity, and ultimatelye ttell phenotype. For direct cur-
rent DEP, the topic of this work, the imposed potential iggamdional to 15|E|a where
ais the radius of the cell. It is often desirable to keep theasga potential well below
the naturally existing potential (tens of millivolts) todéce negativeféects [76]. Un-
der a strong enough field, it is possible to rupture the cethbrane. Some researchers
have used this technique to modify cells through electrajpam or electrofusion [77].
However, the DEP forces discussed herein are dependentagimlity of the cell. Be-
cause of this, and for reasons stated above, it is necessegguce field-induced cell
membrane stresses by reducing field strengths [73].

Another potentially negativefiect arising from the use of electric fields is Joule
heating. The current passing through the medium resultdémaerature rise. It has
been shown that a temperature rise from Joule heating catpbessed adT ~ L?|E[?
[78]. It was previously reported that a temperature risesasgpending medium can lead
to physiological changes within the cell. A more significardrease in temperature,
(4°C above a cell's physiological temperature) can lead todssdth [76]. A third factor
to consider is pH variations that could develop within thepanding medium. Water
electrolysis at the electrodes can yield pH gradients. This induce cell stresses,
alter the transport of certain biological particles or nipdhannel wall surfaces [79].
However, as has been exemplified through numerous stutieestiously applied, DC

fields are still a capable form of cell manipulation [12, 43, 80-82].
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Lastly, it is important to note the significance of the cellmimane’s dielectric prop-
erties. When placed within a DC field, the membrane acts as éks capacitor [10].
Thus, the electric field does not penetrate the membraneedBas this, we can ef-
fectively model a cell as an insulating surface. This is whgudations within this
study utilize the homogeneous Neumann boundary condiéiéfn = 0, at particle
surfaces. Additionally, most cells will have a negativeface charge due to the nega-
tively charged groups (carboxylates, phosphates) on ifaci[77]. This would yield

a positively-charged EDL.
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CHAPTER IlI

NUMERICAL APPROACH

One of the primary goals of this work is to extend and promgigieation of the
boundary-element method within the field of electrokindt@sed microfluidics. This
technique is well-suited for linear partialftérential equations. This is the case for
electrokinetics under the thin-EDL assumption. Analyjtieehniques such as asymp-
totic approaches often require elementary geometries. efiogn systematic studies
required in the design of microfluidic networks, a compuwataél method is necessary.
Commercial software such as COMSOL Multiphy$&icalows modeling of complex
geometries by utilizing a finite-element method. Althoughable, this method is inef-
ficient and can be inaccurate.

Finite-element methods require a volumetric mesh for 3Dugations. The boundary-
element method only requires a surface mesh to model a 3Didoiitas is the primary
advantage when using a BEM — you can reduce your computétimmaain by one
dimension when compared to finite-element techniques. Wighboundary solution
known, you can find the solution at any point within the volushgour domain through
an explicit equation in post-processing. Not only is this@endficient approach, but
it is @ more accurate approach. Consider two surfaces in ao8ipatational domain.
As the distance between these surfaces is reduced, thetreradf the mesh must be
increased. When utilizing a finite-element approach, tgiires a fine volume mesh.
Adapting the 2D surface mesh required of a BEM, however, iss@omputationally
demanding. In addition, the BEM utilizes Gauss quadratimesumerical integration,
which provides a spectral convergence. Therefore, the BEdble to exceed the nar-

row gap limits of techniques using a volumetric mesh. Thuspwesent the BEM as a
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powerful technique in systematic studies necessary fodésggn and optimization of
channel geometries.

In our work, we have completed both a two-dimensional ande@etdimensional
version of the code, written in Fortran. Each is based upernfrdimework of a free
online library, BEMLIB [83]. Each of the electrokinetic ph@mena discussed in Chap-
ter 1l are incorporated into the solver. For transient saettiohs, temporal updating of
the velocity and position of the particle is achieved usirsgeond-order Runge—Kutta

scheme. This improved Euler approach is written as

ki = u(xp)
1
k2 = U(Xn+§Atk1)
Xns1 = xn+%At(k1+k2). (3.1)

wherex, is the particle location &t,. Integrals over each element are carried out using
Gauss-Legendre quadratures, and the resulting lineatieqsgstems are solved using
the LAPACK library. Three-dimensional simulations arefpened in parallel using

MPI.

3.1 Derivation of the boundary-integral
Before discussing application of the boundary-elementhougkt it is appropriate
that we discuss its origins. A more extensive derivation banfound in texts by
C. Pozrikidis [67, 83]. Here, we begin with Green’s idemsti If we consider two
twice continuously dterentiable functionsy(x, y) and f(x, y), then Green'’s first iden-

tity states that the following relation applies,

Yy V2 =V (y V)= Vy - VT (3.2)
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Figure 3.1: An example of a control are&;, confined by closed line.

We can produce Green'’s second identity by switchiragnd f and subtracting the result

from Green'’s first identity,

Yy V- fV2 =V.(y V- f V). (3.3)

Givenx = (x,y), if we assumef (x) to be non-singular and consider this relation for a

Green’s functiong(x, Xo), in the place ofy(x), we find

—f(x) V2g(x,X0) = V - [ g(X, Xo) V(x) = f(X) Vg(x, Xo)]. (3.4)

A Green'’s function of Laplace’s equation satisfies the foifa,

V2g(X, Xo) + 6(X — Xo) = 0, (3.5)

in whichx is the field pointx, is the singular point ané{x—Xxo) is Dirac’s delta function

in two dimensions. With this, we can simplify Eq. (3.4) inkeetform,

f(X) 6(x = X0) = V- [ 9(X, Xo) VI(x) — f(x) Vg(X, Xo)]. (3.6)

This result can then be integrated over a control akgabounded by a closed surface,

C, such as the one shown in Figure 3.1. After using the divergémeorem to change
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the area integral into a line integral, we obtain,

f(Xo)=—fcg(xo,x)[n(x)-Vf(X)]d|(X)+fcf(X)[n(X)-Vg(Xo,X)]dKX), (3.7)

for the case okg, the singular point, located inside of the control area. eeris the
surface normal pointing into the control area, atds a diferential arc length along
C. Eg. (3.7) allows us to find the value of a harmonic functioramy point within
the control area when the boundary values and boundarybdistm of the normal
derivative are known. The first integral is referred to assihgle-layer potentigand the
second as thdouble-layer potential This terminology is common in BEM literature

and stems from an analogy using electrostatics.

3.2 Boundary-integral formulation for Laplace’s equation

In the following studies, we assume that the thickness ofgb¢, i.e., the De-
bye lengthk~!, adjacent to all surfaces is small when compared to pasgizkeor any
particle—wall or particle—particle gap widths such tha&trthis no EDL overlapping and
the thin-EDL approximation may be used. With this approxiorg the entire flow
field is electrically neutral, and the distribution of eléctpotential,¢, is governed by
Laplace’s equation from Eq. (2.4). Under this condition,caa utilize the boundary-
integral, Eq. (3.7), to recast the Laplace equation and shére it using the developed

boundary-element method.

3.21 Two-dimensional formulation
Following the derivation in Section 3.1, the electric paiginat a pointxg in the

interior of the 2D flow fieldg(Xo), can be written in the following form,
500) = - [ gl x0ln - TaldIe) + [ In - V(e xaldI), (3.9)
C Cc
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Figure 3.2: An example of a boundai@, = C; + C,, confining a control areaAc,
that would be used in the boundary-element method. The fétimedntegral equation
depends on the location of the singular poxat,

wherex = (X, y), I = [X — Xo|, and

1
9(x.Xo) = —o_Inr,
09 __1x-% 99 _ 1y-wo
ax 2t r2 gy 2m r2’ (3.9)

are, respectively, the free-space Green’s function ofwleedimensional Laplace equa-
tion and its associated gradient (e.g., [83]). ApplyingBJ3n the boundaryC, we

have

1
200x0) = - fc gx. x0)[n - Vldi(x) + fc ol - Vg(x. xo)]dI(x), (3.10)

which is the integral representation used in the BEM. Figugvisualizes what a 2D
domain may look like when using a BEM. In this case, the cdmtrea,Ac, is contained
by a boundaryC, comprised of two closed line§;; andC,. The shaded area would
represent the electric field. In this example, Eq. (3.8)esents the electric potential
for the interior evaluation poinkg, located withinAc. Eq. (3.10) expresses the electric
potential at the pointxo, located directly orC. The integrals on the right-hand side of
each equation are performed over the segmeix3 comprising bothC, andC, with

the surface normal facing into the shaded area.
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The boundary-element method is a technique for solvingifersblution to a func-
tion at the boundary of a domain. If we were trying to solvetfog boundary solution
to ¢ in this example, we would approximate the integrals in EqL@Busing a finite

number of boundary-elemen&s. Under this method, Eqg. (3.10) can be written as

1 N N
3909 = > [ gbcxoln- W10 + 3, [ ofn- Vot I, @)

wherei = 1,...,N represents the total number of elements ands onE;. With
this approximation, Gauss—Legendre quadrature is useitiEgration. At this stage
a system of linear equations is formed and the unknown boynddues of¢ or its
derivatives are computed. Once the boundary solution isvknone has the option of

using Eq. (3.8) to find the value gfat any point withinAc explicitly.

3.2.2 Three-dimensional formulation
In a three-dimensional domain, the electric potential apiatp(, in the interior of

the flow field,¢(Xo), takes on the following form,

o(x0) = - fD 9%, [N - Vo()]dS(x) + fD (0[N - Vgl X]SK).  (3.12)

wheren is the surface normal pointing into the flow field enclosed bgarfaces,D.
The functiong is the free-space Green’s function for the three-dimeradibaplace

equation, together with its gradietg, given respectively by

1
g(X,Xo) = 2ot

and

09_ 1X-x o9_ ly-yo 09_ 1z-2
ox  4r r3 oy  4r 37 oz 4n 37

(3.13)
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wherer = |X — Xg.

If the pointxg lies on the boundary, the integral equation becomes

5000) = - [ g0aln- T609dS() + [ o(In- Vo0 IdSM.  (3.14)
D D

The discretization process in 3D is similar to that detafi@dtwo dimensions. By
approximating the integrals overas sums of integrals across surface eleménisye

can re-write Eq. (3.14) as

N N
3909 = > | g xoln- V1S + 35 [ oIn - ot xolds(o. (319

wherei = 1, ..., N represents the total number of elements atids onE;.

3.3 Boundary-integral formulation for Stokes equation
The fluid is assumed to be Newtonian and incompressible fenidéynolds number
is small so that the fluid inertia can be ignored. Bulk flow srtlyoverned by the Stokes

and continuity equations
—Vp+uViu =0, V-u=0, (3.16)

wherep, u, andu are the pressure, velocity, and viscosity, respectivelyhcugh there

is no time dependence visible in Eq. (3.16), a time evolutan exist based on the
motion of a particle boundary. For this reason, the simohetiare said to be quasi-
steady. A derivation of the boundary-integral represgntokes flow analogous to

that presented in section 3.1 can be found in [83].
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3.3.1 Two-dimensional formulation
To solve the flow in two dimensions, we use the boundary-naldgrmulation for

the Stokes equation and expresat the pointx, that lies inside the fluid,

000) =~ [ BT + - [ Ul Tabxx) R0 A, (347)

whereC represents the boundary of the domdijns the traction, and

A A A

XX %% R
Gij (X, Xo) = —0ij |nr+r—2‘, Tij(X. Xo) = —4 r‘Jl ,

(3.18)

are, respectively, the free-space Green’s function of dweensional Stokes flow and
associated stress tensatss X — Xo, andr = [X| (e.g., [67]). If the point, lies on the

boundaryC, the integral equation takes on the form,

500) = ~7= [ Gy xI00d0) + 7= [ 160 ke N9 0. (3.49)

As with the integral equations representing electric piagrthe integrals in Eq. (3.19)
can be approximated over a finite number of elements to de\elsystem of linear

equations.

3.3.2 Three-dimensional formulation
When working with a three-dimensional computational domtie formulation for

u at the pointx, inside of the fluid takes on the following form,

00) = gz [ Gl 109000 + - [ u)Tix XA, (3.20)

whereu = (ux, Uy, U;) andf = o - n is the component of the hydrodynamic traction,

andG andT are the free-space Green'’s function and associated stress tfor Stokes
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flow, given by

G %%, %% %
Gij(X — Xo) = %+r—3j Tik(X —Xo) = —6 rJS ,

(3.21)

and againy = |X — Xo|. Note that the dummy indices j, andk rotate among the
components, y, andz. If the pointxg lies on the boundar, the integral equation

takes on the form

1

500 = 5= [ GuleHXESM + - [ UMTi xS, (322

After discretization, Eq. (3.22) will be used to formulale talgebraic system to obtain
the hydrodynamic tractioh on the particle and cylinder surfaces (note that the fluid
velocity at these surfaces will be based on the slip velaoity can be obtained, onge
and its gradient are available). Orfcis obtained, the fluid velocity at any interior point

in the flow can be calculated by evaluating Eq.(3.20) in postessing.

3.4 Integral identities

An issue arises with use of the integral equations pertgitarthe singularity of the
integrals. More specifically, as the integration poxtapproaches the evaluation point
Xo Oon a surface, the integrands in the boundary-integral faatimn exhibit singular-
ity and thus require special numerical treatment. In twoatisions, we can subtract
the singularities and integral analytically [83]. In thréienensions, to deal with the
singularity found in the single-layer potential terms, raigthtforward coordinate trans-
formation into local polar coordinates is used [83]. Fordbeble-layer potential, a set
of integral identities are utilized to subtract the singiiya Therefore, it is of interest

to identify the applicable integral identities here for uiseach study. For the Laplace
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equation we have the following identity,

1 whenxg is insideV,
f[n(x) - VO(X, X0)ldS(x) =1 1 whenxg is onD (3.23)
D

0 whenxg is outsideV,

when the surface normai, points into the control volum¥, bounded by the surface,
D. If the surface normal were directed outside of the the cbnolume or area, the
sign of the terms on the right side would be reversed.

The stress tensor of Green’s functions satisfies the fotigudentity,

di; whenxg is insideV,
1

o [ TG xn8SE) = | 15, whenx, is oD (3.24)
T JD

0 whenxq is outsideV,

when the surface normai, points into the control volum¥, bounded by the surface,
D. Again, if the surface normal were directed outside of tleedibntrol volume or area,
the sign of the terms on the right side would be reversed.

Two identities used to simplify the expressions for tratisteal and rotational rigid-

body velocity of the particle in 2D are expressed as [67],

fC T (% X))l (x)
i fc (X = %)k (% Xo) OO (X)

—27€jim(Xo — Xc)m- (3.25)

wheren is the surface normal that is directed outside of the arelosed by the surface,

C. An equivalent set of identities for three dimensions takeshe following form,

fD Tijk (X, Xo)nk(X)d S(X) —47'(6”'

éim fD (X = XInT X XNASK) = —dnem(¥o — XJme  (3.26)
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The same rules between the direction of the surface nornehthensign of the right-

hand side apply to these identities as well.
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CHAPTER IV

ELECTROPHORETIC MOBILITY OF A COLLOIDAL CYLINDER
BETWEEN PARALLEL WALLS

4.1 Background

It is well known that in an unbounded flow, the electropharatiotion of a non-
conducting particle with arbitrary shape is purely tratislzal, and the velocity can be
described by Smoluchowski’s formula, Eq. (2.6). Howevdnew the particle is near
a wall, its mobility may change significantly due to modifioat of the electric field
by the presence of the wall. In fact, it was found that thediaional velocity of a
spherical particle is increased as the particle fE@antly close to the wall [59, 61, 84].
This result is in sharp contrast to the intuitive idea thaewltompared to a particle
in unbounded flow, a particle travelling along a wall wouldst@ved down due to the
increased viscous force, as seen in the Stokes mobilitygrab

Electrophoretic motion of a particle near boundaries hanlstudied for various
configurations. The translation of a spherical particler meaall was analyzed by Keh
& Chen [59] for insulating surfaces using the eigenfuncsenes, and their study was
later complemented by Yariv & Brenner [62] for closer pdetwall separation using an
asymptotic expansion. Other configurations include sptsyaylinders, or ellipsoids
in confined environments such as cylindrical pores [61, §&jerical cavities [85, 86],
and complex channels [64, 66]. Despite these works, therefdwretic mobility of
an infinite cylindrical particle bounded by two parallel ¥gaind translating perpendic-
ular to its own axis has not been reported. The problem eesiltaie situation where
a slender particle is moving sideways in a microchannel. &tedi. [87] derived an

analytical solution for an infinite, insulating cylindeeetrophoretically moving along
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a single non-conducting wall and found that the velocitywggainboundedly as the
cylinder-wall separation approaches zero. Itis not clesahpw the cylinder’s mobility
would change if it is bounded from both sides. One relevanation to this issue is
the electrophoresis of a spherical particle moving betwiaenparallel walls, which
was studied analytically by Unet al.[88] for arbitrary eccentricity. In Unret al.,, the
particle’s translation is found to be enhanced when botlisveae close to the particle,
which implies that the increasing electrophorefteet has overcome the hydrodynamic
retardation for the close particle-wall separation. Hogrethis phenomenon may not
occur in the two-dimensional case, where the closely fittylopnder is subject to a “pis-
ton efect” and will experience much higher hydrodynamic resis¢gthan the spherical
particle in the channel. In this sense, the confined cylinslenore like the sphere in
a narrow cylindrical pore, whose electrophoretic mobitigcreases significantly when

the particle-to-pore radius ratio approaches to unity.[61]

4.2 Problem specification

In this study, we consider a cylindrical particle suspenidezh aqueous electrolyte
solution between two parallel walls, as shown in Figure 4 fhie axis of the cylinder
is parallel to the walls and is perpendicular to the unifoexternal electric fieldE*.
The problem configuration is two-dimensional, where theiglar may rotate about
the z axis while translating in the direction. Both the particle and the channel walls
are non-conducting and carry uniform surface charges,wdrie characterized by their
respective zeta potentialg, and{,. A positively charged surface has a positive value of
zeta potential. The thin-EDL approximation is utilized battEq. (2.4) governs electric
potential. The homogeneous Neumann boundary condiéigfin = 0, is applied at
the particle surface and channel walls [62] because both@reonducting. Note that
n is the surface normal and points into the flow. Dielectropbi is not considered in

this study.
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Figure 4.1: Schematic of the cylindrical particle suspehithean aqueous solution be-
tween two parallel walls.

Bulk fluid flow is governed by the Stokes and continuity equadi Eq. (3.16). From
the thin-EDL assumption, Eq. (2.3) is used to describe tipevslocity next to the par-
ticle or channel walls. The slip velocity is relative to tluid surfaces and proportional

to the local tangential gradient of the electric potential,
us = E™ 0 Znn) - v, (4.1)
M

where( = {, or {y is the zeta potential on either the particle surface or calawall,
and ( — nn) is a surface gradient operator. For clarification, usingritrary vectoff,

the operator provides the following adjustment,
(I=nn)-f=f-nnf=f-n(n-f)=f—|fn=", (4.2)

in order to yield the tangential component. In the laboratwordinates, the fluid
velocity at the particle surface is the combination of tigecrbody motion of the particle

and the slip velocity,

u(x) = uB + u® = ue + we, X (X — Xo) + u’, (4.3)
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wherex is a point on the particle surface, andu, are the position and velocity of the
centroid of the particley is the rotational speed of the particégjs the unit vector irg,
andu® = u. + we, x (X — X.) is the velocity of the poink due to the rigid body motion.
The particle is assumed to be neutrally buoyant in the fliad, is inertia can also be

ignored. Therefore, both the total traction and torquetexieon the particle vanish,

fpfou:o, fp(x-xc)xfm:o, (4.4)

wheref = o - n = (f,, fy) is the local traction, and the integrations are performeet o
the particle contour?. At the two channel ends, which are far away from the particle

we assume that flow is fully developed so that the velocityamgér depends ox

4.3 Formulation

Note that the Laplace equation solution is independent efsthlution of Stokes
flow while the latter depends on the former through the slipaity boundary condition
Eqg. (4.1). Therefore, the Laplace and Stokes equationseanlizged sequentially.

In this study, the electric potentiah, is decomposed into a combination of the
background potentialy® = —E*x, and the disturbance potential generated due to the
presence of the particleP, so thatp = ¢ + ¢°. Following the 2D formulation from
Chapter 111, the disturbance potential at a poxatpn the boundary of the flow field can

be written as

1
20000 = - fc gx. x0)[n - VePIdI(x) + fc oOIn- Vo xldI),  (4.5)

where the boundar{, consists of the walls and particle surface.

Similarly, we decompose the fluid velocity into the backgrdwelocity,
_8{WE°°

U™ = , (4.6)
u
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which is the uniform electroosmotic flow in the absence ofghgicle, and the distur-
bance velocity generated by the partiai€, so thatu® = u~e, + uP. The disturbance
velocity vanishes as approaches infinity. To compute the disturbance velocigyuge

the formulation from Chapter Il and exprass at the poini, that lies on the boundary,

C, in the following form,

5060 = 7 [ 12008y X)) + 7 [ PIT(xxan0d (. (47)

wherefP is the disturbance traction. If we break up the integralefwesent the total
boundaryC, with a sum of integrals over the particle surfaBeand channel wall3)v,

then we can write the previous equation as,

%UD(XO) = —% fp fiD(x)Gij(x,xo)dI(x)—% fw f.P(X)Gij (X, Xo)dl(X) (4.8)

+ o [ POOTi 0 xmO00 + 5 [ POOTkx XA
T Jp 4 W
To simplify the integral expressions, we uSeand D to represent the single-layer and

double-layer potentials respectively in the previous &iqna Each of the components

are given as,

5,(%.1.C) fC £,() Gy (x. Xo) l(X).

fc (%) T (X, Xo) 1) (). (4.9)

Dij(Xo,u,C)

Using this form, Eqg. (4.8) can be written as,

1 1
EuD(xo) = | S(x0. 2. P) + S(x0. 1%, W) |
T

+— | D(xo. uP, P) + D(xo,u®, W)|. (4.10)

i |

We expand conditions for the particle by substitutiRg= f — f into the first term
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andu® = u - u® = uB + u® - u™ into the third term on the right-hand side of (4.10).

F°000) =~ [ S0 = £7),P) + S0, 12, W)

L | D(xo, (U° + US = U™), P) + D(xo, u°, W) (4.11)
A

Applying the reciprocal relation [67] to the background flew obtain the following,

2U™(Xo) whenxg is onP

1 1
——8(Xo, %, P) + —D(Xo, U™, P) = (4.12)
A 4n

0 whenxg is onW.

Applying Eg. (3.25) for 2D rigid body motion provides thelfmiing relationship,

iz)(xo, uB P) = —}uB(xo). (4.13)
4 2

Combining the simplifications from Eqgs. (4.12) and (4.13jhv&q. (4.11), we can

write the final integral equation for whegq is located on the particle surfade,

1 1
U00) + 5U%(x0) — U™ =~ [ S( T P) + S(xo. 2. W)

+— | D(x0. U%, P) + D(xo. U W)|.  (4.14)

4n

Apply the same simplifications and write the final integrah&apn for wherx, is lo-

cated on the wallV, and we get,

1 1
SuP(xo) = — — [S(xo.f.P) + S(xo. 2, W)|
2 Ay
s L | D%, US, P) + D(xo, uP, W) (4.15)
A

To solve the integral equations (4.5), (4.14), and (4.1%,wall and particle con-
tours are discretized by a non-uniform mesh consistingnafdr or arc segments. The

unknown variablesy® on bothP andW, f on P, andf® onW, are defined at the ele-
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ment centers. The integral equation for the disturbancentiad, (4.5), is solved first.
Then, the slip velocity at the particle surface and waifs,is calculated from Eq. (4.1),
and the disturbance velocity at the wall§, is obtained by subtracting the background

velocity,
uwP=us-—u~ = @(I —nn) - VP, (4.16)
u

whereus is the total slip velocity due to both the background potrind the distur-
bance potential. Finally, (4.14) and (4.15) are solvedtfogravith the unknown transla-
tional and rotational velocities of the particle. To matih total number of unknowns,
two additional equations from (4.4) expressing vanishimgdition of the total traction
in x and the total torque on the particle are appended to therlalgabraic system. In
all the equations, the integrals are carried out using thes&d egendre quadratures
over each element. The singularities of the singular elésnare subtractedfioand
computed analytically.

Calculation of the slip velocity in (4.1) requires evalaatiof the tangential deriva-
tive of the electric potential. To do this, we computat the two end nodes of each
element after solving (4.5) and then approximate the tatmgeterivative of¢ at the
element center using a second-order finitéedlence scheme. The channel is truncated
atx = +L/2 with the particle located at = 0. We have choseh = 30a for all sim-
ulations. One diiculty arises as the channel width approaches to the pasimte as
an exceedingly long domain is needed fidrto decay to an acceptable limit. To deal
with the problem, we require that the flow be unidirectiortah@& channel inlgbutlet.
Consequentlyy, and f, are zero at the inlgtutlet, butu, and f, are unknown. These
additional variables are solved together with the integgalations by including the inlet
and outlet in the integration contours. We point out thatitwe-zero disturbance veloc-
ity at the inlet and outlet still satisfies the boundary ctindiat the walls, Eq. (4.16).

That is,u® is zero at the four corners of the channel since the distadbpatential and
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its gradient vanish at those locations.

4.4 Validation
In order to validate the accuracy of the two-dimensional B&bde, we first con-
sider electrophoretic mobility of a cylindrical particle & semi-infinite flow driven by
electroosmosis, that is, the uniform flow due to a non-zesrgs on thesinglewall.
The analytical solution of this two-dimensional problensweaported by Kelt al.[87].

Figure 4.2 plots the normalized translational and rotaiaelocities of the cylinder,

p &(¢p—dw)E>"’

guantities in the laboratory coordinates. The results apoted as functions of the

andw = whereU, andw are the corresponding dimensional

__wpa
&(lp—dw)E™?
ratio between the particle radius and the distance from #inecge center to the lower
wall, a/d. It can be seen that the present numerical results are idlexcagreement
with the theoretical prediction. The smallest particldhsaparation in the figure is
0.01a, i.e.,a/d =~ 0.99, for which we used 256 uniform elements on the particle and
192 non-uniform elements on the wall. The comparison of tn@erical calculation
with the analytical result for a few selected cases is alsviged in Table 4.1, where
the difference is up to the second decimal point for the closest ribxi

When the patrticle is far away from the wall, the translatloredocity approaches
the value corresponding to the electrophoretic velocityefparticle in an infinite flow,
£(¢p — éw)E™ /1, and the rotational velocity approaches zero, as expeétethe parti-
cle comes nearly in contact with the wall, both the transtedl and rotational velocities
grow to infinity, which is in sharp contrast with a purely hgdynamic flow where the
particle velocity is reduced by the wall due to viscous mdéon. A similar enhanc-
ing effect of the wall on the electrophoretic mobility of a nearbheical particle was
reported in Keh & Chen [59] and Yariv & Brenner [62]. As poidteut by them, the
phenomenon is caused by the intensified electric field in #neow gap, which is dom-

inant over the viscoudkect and introduces a high slip between the particle and fluid i
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Figure 4.2: The normalized (a) translational and (b) rotal velocities of the cylinder
as functions of/d computed from Kelet al.[87] (solid line) and the BEM used in the
current study (markers).
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the gap.

Table 4.1: Comparison of the normalized translational andtional velocities of the
cylinder as functions oé/d computed from Ketlet al. [87] and the BEM used in the
current study.

Current study | Kehet al.[87]

a/d Up ) U, D)

0.20| 1.0000 0.0041 1.0002 0.0041
0.60| 1.0244 0.1351 1.0250 0.135(
0.80| 1.1328 0.4267 1.1333 0.42671
0.90| 1.3648 0.836Q 1.3650 0.8362
0.95|1.7577 1.372Q0 1.7574 1.3729
0.98| 2.6120 2.362Q 2.6121 2.3648§
0.99| 3.5963 3.4464 3.6149 3.4391

4.5 Results

Next, we consider a particle bounded by two walls. Figuresh@ws the particle’s
translational and rotational velocities at varying disesbetween the two walls at four
reduced channel widthg{/a. As in other two- and three-dimensional particleannel
configurations (e.g., [59, 61, 62, 87]) where the EDL is assidito be thin, we also
found thatU, andw are proportional to the fference between the zeta potentials on
the particle and wall, — £w. Therefore, the same normalizations fd§ andw as in
the single wall case are used here. To better display thésethe eccentric position
of the particle has been scaled Hy- 2a.

For wide channels such &$/a = 20, the reduced translational velocity and ro-
tational velocity are nearly unity and zero, respectivély,a wide range of particle
locations. This reflects the situation of infinite flow and me#hat the wall fect is
negligible. When the particle approaches either one ofwewalls, the particle be-
haves as it would if it were brought within close proximityasfly a single wall and the
effect of the other wall is negligible.

At smaller values oH/a, the dfect of both channel walls on the particle motion
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Figure 4.3: The translatiora) and rotation i) of the particle as functions of the nor-
malized eccentricity.
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Figure 4.4: The translation of the particle located at thetedine of the channel as a
function ofH/a.

becomes evident. When the particle is located away from thléswits translational

velocity is lower compared to the wide channel case, whdeatational velocity is

higher. As the particle approaches either wall, both theslegional and rotational
velocities increase monotonically. The closest partiedd-distance here is 1% of the
particle radius. Due to the deteriorated numerical acgunae were unable to verify
if the particle’s velocities would go to infinity when the pale further approaches the
wall.

To see how the channel widtlffacts the particle motion at the symmetric configu-
ration, in Figure 4.4 we plot the reduced velocity agalhgi?a) for the particle located
at the centerline of the channel. The graph shows that, ashidwenel approaches the
same size of the particle, the translational velocity apphes a value which is around
53% of the unbounded case. This behavior is in contrast Wwahdf the correspond-
ing spherical particle traveling along the centerline ad tthannel. According to the

analytical result of Unnet al. [88], the normalized translational velocity of the sphere
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decreases slightly d3/(2a) goes from infinity down to around 1.25, and then it starts
to increase instead &$/(2a) is further reduced. The translation grows by around 70%
whenH/(2a) approaches unity.

The reduced mobility of the cylindrical particle in a narragivannel can be under-
stood from the opposindiects of the electrophoresis and viscosity. For a wide cHanne
relative to the particle size, the particle motion indudglfriction anywhere between
the fluid and the channel walls except within the gap regiand,the mass flow caused
by the particle translation can be easilyset by the reversal flow through at least one
of the two particle-wall gaps. Therefore, if the particleligse to either of the walls in
a wide channel, the intensified electric field in the smalbgs gominates over the vis-
cous resistance, and as a result, the particle translatienhianced. When the channel
becomes narrow and its width comparable to the particle eiamndue to the friction
in the small gaps on both sides of the particle, the amournth@ftéversal flow is re-
stricted. The particle’s translation tends to induce a et th the channel due to the
mass conservation, but the net flow is subject to the fridietmveen the fluid and entire
channel. The narrower the channel is, the stronger thedniat efect becomes. For
a particle near the centerline of the channel, the friclioesistance is of the same or-
der as the electric force. Therefore, the particle velagggroaches a limiting value as
shown in Figure 4.4. The “pistorffect” is similar to the spherical particle in a cylin-
drical pore analyzed in Keh & Chiou [89] and Yariv & Brennef.Jéwhere they found
that the particle also approaches to a finite velocity as idmeter of the pore becomes
increasingly close to that of the particle. In comparisam,& spherical particle in the
channel with infinite span, flow can go around the particlédgasen when the particle
is tightly bounded by the walls. As a result, the electricakté outgrows the hydro-
dynamic retardation, and the particle’s mobility is enhethdue to the comprehensive
wall effect, as shown in Unret al. [88].

Note that even though the particle’s translation is redugbdn the channel be-

comes narrower, its rotation is not. The rotation is causethé necessary slip velocity
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Figure 4.5: &) The flow field and I§) streamline plots foH/a = 3,d/a = 1.1, and

0. The patrticle is moving from left to right and rotating ceentlockwise.
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Figure 4.6: Equipotential contours for when the particleasitioned such that/a = 3,
d/a=11.

on the particle surface as dictated by Eq. (2.3). Figurebf sf{ows thatwis zero for

a symmetrical configuration, but it grows quickly as soonhesgarticle is locatedfd

the centerline. For smallét/a, @ can be much larger than 1. Therefore, the particle’s
rotation is sensitive to its eccentricity in a narrow chadnrkhis increased rotational
sensitivity is also observed in Unat al. [88] for the wall-bounded spherical particle,
where, howevery 0f the sphere is below unity at least whidi(2a) is above 0.99.

The flow field is visualized in Figure 4.8 for H/a = 3 andd/a = 1.1. The zeta
potential on the wall is chosen to be zero so that the eladiyioeutral walls yield no
background velocity and the velocity vectors representdisairbance velocity from
the presence of the particle. The slip velocity on the plarsarface is evident in the
figure. In addition, Figure 4.5} visualizes the streamlines around the particle. Here,
two stagnation points can be seen on the particle’s bound#ng region near the lower
wall.

Figure 4.6 visualizes the total electric potential solatwith the presence of the
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particle. The potential undergoes a quick change along dn®wer gap between the
particle and channel, causing a high slip velocity of thedftun both the particle surface

and wall in the region.

4.6 Conclusion
In this study, we have implemented a boundary-element ndetbhgolve for the
electrophoretic mobility of a cylindrical particle placatda rectangular channel with
arbitrary eccentricity. When the ratio between the chamnéth and cylinder diame-
ter approaches unity, the viscouseet becomes comparable to the electrophoresis and
the translational velocity of the particle reaches a findkig determined by the eccen-
tricity. In addition, the rotational velocity of a closelyting particle is sensitive to its

eccentricity.
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CHAPTER V

EFFECT OF DC DIELECTROPHORESIS ON THE TRAJECTORY OF A
NON-CONDUCTING COLLOIDAL SPHERE IN A BENT PORE

51 Background

The purpose of this work was to study the fundamenti@ot of DC-DEP on par-
ticle motion in microchannels where the electric field is fumiform due to both local
channel geometry and presence of the particle. A non-cdimduspherical particle
driven by electrophoresis in a bent cylindrical pore is @moas the basic configuration
for this study. The BEM solver is used to solve the electreimflow and integrate the
Maxwell stress tensor. Governing parameters includingstbe and initial position of
the particle, and the electric field strength, are systerallyivaried to investigate the
DEP dfect. In a closely related study, At al.[58] investigated the DEPfkect on the
transient dynamics of an electrophoretic particle in arhaped rectangular channel.
Using two-dimensional simulations, they also studied thiects of the particle size,
initial location, and electric field strength. Comparedheit work, the present study
solves a three-dimensional flow rather than using a 2D apmation. A 3D study is
motivated by several importantfterences in both the surrounding Stokes flow and the
electric field when comparing an infinite cylinder and a spheffor example, when
there is a bounding wall nearby, the fluid within the gap betwthe particle and wall
experiences much less viscous impedance for a sphere thancidinder due to the
3D effect. However, the electric field in the gap is much strongette cylinder. The
opposing &ects thus complicate the problem at hand.

In fact, Kehet al.[87] showed that the electrophoretic mobility of a non-cacithg

near-wall cylindrical particle is much higher than that cfghere, especially when the
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particle—wall gap is small. In their work, the translatibvocity of the cylinder is 37%
higher than that of the sphere whayd = 0.9 (a is radius of the particle and is the
distance from the particle’s center to the wall), and thedence between the rotational
velocity is even higher (about a factor of 4 wheetd = 0.9). Our own calculation using
the BEM method shows that the DEP force on a cylinder inceamech faster than the
DEP on a sphere as they are closer to a plane wadl/@ht= 0.5, the normalized DEP
force is 0.07 for 3D but is 0.46 for 2D, andatd = 0.98, the force is 2.12 for 3D but is
23.49 for 2D). In the current study, the small particle—vgalp, whose minimum is on
order of 1% of the particle radius, is well resolved usinghighly accurate boundary-
element method, while in Agt al.[58], the minimum gap appears to be more than 30%
of the particle radius. This capability allows us to expltine smaller-gap situation
where the DEP féect is much stronger. Finally, another important goal ofghesent
work is to perform a comparison of the full numerical simidatwith predictions based
on the point-dipole method (PDM) in aiffert to provide a clear view of the limitations

associated with the latter method.

5.2 Problem specification

The underlying assumptions and theory in each of the styzBe®rmed in this
dissertation are similar. Because of this, the problemiipatons will be similar, but
with subtle diferences depending on whether DEP is accounted for or thee sifap
the modeled bounding geometry. Thus, for clarity, each lpralspecification will be
presented in its entirety. This investigation considerpleescal particle suspended in
an aqueous electrolyte solution within a cylindrical chelhas shown in Figure 5.1.
The problem configuration is three-dimensional where thiégba is free to rotate and
translate in the plane of symmetry. Both the particle andcthennel wall are non-
conducting. Surface charge on each is characterized hyrésgiective zeta potentials,

{p andZy. Asinthe 2D study, the electric potential is governed bylthglace equation,
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Figure 5.1: Schematic of a non-conducting particle movimgugh a cylindrical pore
due to electrophoresis, where the trajectory is deflectedathe DEP fect.

Eqg. (2.4) and is subject to the homogeneous Neumann bouadadjtion,d¢/on = 0,
at all particle surfaces and channel walls [62]. A constatéptial is specified at the
inlet, » = ¢1, and also at the outlep, = ¢,. Note tham is the surface normal and points
into the flow.

The Stokes and continuity equations, Eq. (3.16), are useabtiel the Bulk flow.
Using the thin-EDL assumption, we express the fluid veloo#yt to the particle and
channel walls using a slip velocity that is proportionalhe tocal tangential gradient

of the electric potential [84],
us = %(l —nn) - Vg, (5.1)

whereusS is the slip velocityg is the dielectric constant of the electrolyte soluti¢rs
{p Or {y is the zeta potential on either the particle surface or calanall. Details of the
surface gradient operatdr £ nn) are provided in Eg. (4.2). In laboratory coordinates,

the fluid velocity at the particle surface is a combinatiothefrigid-body motion of the
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particle and the slip velocity,
u(x) = uB + us = uc + we, X (X — X¢) + uS, (5.2)

in which x is a point on the particle surface, andu, are the position and velocity of
the centroid of the particley is the rotational speed of the particé,is the unit vector
in z, andu® = u; + we, x (X — X¢) is the velocity of the poink due to the rigid body
motion. The particle is assumed to be neutrally buoyanténliid and has negligible

inertia. Thus, the total traction and torque on the partreleish,

fftdS:O, f(x—xc)xftdS:O, (5.3)
P P

whereP represents the particle surface. This study accounts fé BE such, the total

traction in Eq.(5.3) is defined as
fe=(T+0)-n, (5.4)

whereo is the hydrodynamic stress tensor ans the Maxwell stress tensor [75] given
by Eq. (2.14). Note that because we are modeling a sphergcttie, the Maxwell

stress has zero contribution to the torque on the patrticle.

5.3 Formulation
As inthe previous study, the Laplace equation solutiondependent of the solution
of Stokes flow while the latter depends on the former throbglstip velocity boundary
condition. Therefore, the Laplace equation and Stokes flowbe solved sequentially.

No decomposition is used in this study, thus, we begin with(Eq.0) repeated here for
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convenience,

1
5000) = = [ g0+ V091dSK + [ 400ln - Ve 0ldSKM.  (6.5)
To address the singularity asapproaches, within the second integral on the right-

hand side, we take advantage of the integral identity in £Q3)),

[ 069 vt x01aS09 = 5 56)

by noting thatx, falls on the boundarip. If we express the second integral in Eq. (5.5)

as

fD SN - Vg0, )1 AS(K) =
fD [6() — o)][N - VX0, X)]AS(X) + fD o(0)n - V(X0 )1dSK).  (5.7)

then we can use Eq. (5.6) to simplify it to the following form,

[ #091n - vg0, 10500 =
1609 - 6txalin - Vot X150 + 50010 58)

Implementing this adjustment into Eq. (5.5) allows us to egethe singularity and

transform the integral equation for the laplace equatiom in

0=- f 0%, [N - VH()]AS(x) + f [6(4) — H0)]IN - Yo%, )IAS(K).  (5.9)
D D

To solve the flow, we begin with Eq. (3.22), the 3D integral &oun for Stokes

flow, repeated here

1 1
SUiXo) = —5—

T

f G,-i(xo,x)fi(x)dS(x)+8i f Ui (X) Tij (X, Xo)nk(X)dS(x).  (5.10)
D T JD
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Because the fluid velocity at the particle surface includath bigid-body motion and

the slip velocity, Eq. (5.10) needs further manipulatiofobe it can be solved. To do
this, we use Eg. (5.2) and apply the integral identitiestierright-hand term containing
the rigid body motion, Eq. (3.26). The final equation depesd&hether the evaluation
pointXg is located on the particle or on the pore surfacelis on the particle surface,

EqQ. (5.10) becomes

1
U?(Xo) + EU,-S(XO) =

1

& fD Gji(xo,x)fi(x)dS(X)+8—17T fD U () Tij (X, Xo)k(X)dS(x),  (5.11)

and ifxg is on the pore surface, it becomes

%ujs(xo) = —% fD Gji(Xo» x)fi(x)dS(x)+8—17T fD U () Tijic (X, Xo)k(X)dS(x). (5.12)

the only diference between (5.11) and (5.12) is that there would be b ioigdy term
on the left side of (5.12).

Similar techniques are used to avoid the singularitiesrititan the integral equa-
tions for the fluid velocity. Specifically, the use of locall@ocoordinates remove the
singularity exhibited by the first integral on the right sideEgs. (5.11) and (5.12).
For the second integral, the identity discussed in Eqs4f3applied. Wherxg is

positioned on the surface of the boundary, this identitg$adn the following form,
fTijk(X, Xo)M(X)dS(X) = 4rij. (5.13)
D

Similar to the technique used for the electric potential, (5L 3) allows us to remove
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the singularity and transform the velocity integral eqominto

) = ~gr= | Gy600100dSH

+8_17r fD[uiS(x)—uiS(Xo)]Tnk(X,Xo)”k(x)ds(x)’ (-14)

whenxg lies on the particle surface and,

1
0=-go fD Gji (%o, X) Fi(X)dS(x)

= f [P0) - BT x)ndSK).  (5.15)
T JbD

whenxg lies on the pore surface. By property of Kronecker’s dalté,; = u;. After
discretization, these relations will be used to formulate algebraic system to obtain
the hydrodynamic tractiorf;, on the particle and cylinder surfaces (note that the fluid
velocity at these surfaces will be based on the slip velamiy can be obtained, once
¢ and its gradient are available). Once the traction is obthithe fluid velocity at any
interior point in the flow can be calculated in post-procegsi

To discretize the integral equations, the particle surfagknder wall, and the in-
let and outlet are represented using six-node curved wianglements. The unknown
variables pertinent to the electric field, i.¢ at the particle and wall surfaces aft/on
at the inletoutlet, are discretized at the six vertices of the elemélrtis.unknown vari-
ables pertinent to the flow, i.e., the tracti@nare discretized at the element centroids.
At each time step, the integral equation for the electrieptéal is solved first. Then,
the slip velocity at all surfaces is found from Eq. (5.1) bynputing the gradient of
¢ numerically. In the end, Egns. (5.14) and (5.15) are solegéther with unknown
translational and rotational velocities of the particle. riiatch the total number of un-
knowns, two additional equations in Eqg. (5.3), expresdiegotal traction and the total
torque on the particle are appended to the linear algebyaiem. Note that in EqQ. (5.3)

the contribution of the Maxwell stress can be computed eifylionce the electric field
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Figure 5.2: The adaptive mesh used in the BEM simulation.eNioat the particle is
translated outside of the channel to better visualize itsime

IS obtained.

The element size of the mesh used in this study is adaptivasabdsed on the
particle’s proximity to the wall. That is, the local resoat of the mesh around the
particle—wall gap, including both the particle and wallfages, is increased to make

sure that the small region is resolvedistiently (see Figure 5.2).

5.4 Validation
In order to validate the accuracy of the present BEM code,omepared our results
with those published previously. Three problems for whichaaalytical solution is
available were chosen for the test.
In first two tests, we consider the configuration of a non-cmtidg spherical par-
ticle suspended in an electrolyte and positioned near amt@inon-conducting plane

wall. Solutions for these tests are compared in Table 5.1thdnfirst test, we calcu-
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late the "wall-enhanced" electrophoretic velocity repdrby Keh and Chen [59] for
the particle when translating steadily along the plane \g®hctivating the Maxwell
stress in the code). In the second test, the lateral diej@ntretic force of the particle
is calculated and compared with that reported by Young arj@Ql]i Both of these ef-
fects have to do with the distortion of the electric potdntidhe a narrow gap between
the particle and wall. For these tests, the code was slighdiglified to calculate the
disturbance potential and flow field caused by introducimgpérticle. This technique
is described in more detail in a previous report [71].

Table 5.1: Comparison of our results with the analyticaliBohs for an electrophoretic
particle near a plane wall. (a) translational electroptioraobility of the particle U ;

(b) the dielectrophoretic forcEgye, ais the particle radius, andlis the distance of the
particle center from the wall.

(C)) b)

Uput/[£(¢p — dw)Edl Fdep/[gEgaz/z]
a/d | Current Kehand a/d | Current Young and

study Chen [59] study Li [60]
0.50| 0.994 0.994 0.50| 0.074 0.075
0.70| 0.988 0.989 0.71| 0.336 0.337
0.90| 0.997 0.998 0.91| 1.133 1.136
0.95| 1.022 1.022 0.95| 1.584 1.587
0.98| 1.080 1.080 0.98| 2.121 2.124
0.99| 1.147 1.145 0.99| 2.457 2.459

For the first test, the normalized translational mobilityabulated in Table 5.1(a)
as a function of/d, wherea is the particle radius and is the distance from the par-
ticle center to the wall. From this comparison, we can seartbbility decrease to a
minimum before increasing to values greater than that ohdnounded particle. Thisis
consistent with the result previously reported. In thabregKeh and Chen [59] repre-
sented the exact solution with eigenfunction expansioiesén bipolar coordinates. It
should be noted that the closest particle—wall separationlated in the current study
wasa/d = 0.98 (whered is defined using the nearest wall. This corresponds téferdi
ence between our numerical result and the analytical olyiE9] of less than 0.03%,

exemplifying the exceptional accuracy of the boundary eletnapproach.
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The second comparison, tabulated in Table 5.1(b), is thealared DEP force act-
ing in the lateral direction as a function afd. Here, we can see that the lateral force
monotonically increases with a decreasing gap width. Treisd agrees with the exact
solution originally obtained by Young and Li [60]. Similarthe electrophoretic valida-
tion, superb accuracy was achieved. For the closest gartiell separation simulated
in the current studya/d = 0.98), the diference between our result and the analytical
result is less than 0.2%.

The domain used in the present study consists of a sphedadatlp within a cylin-
drical pore, so it is also appropriate to conduct a validetay such an enclosed geom-
etry. Thus, our third test concerns a spherical, electrogiftoparticle within a straight
cylinder. Our numerical result was compared with the anzdytesult reported by Keh
and Chiou [89], who found the fundamental solution of thebpgo and then applied
the Fourier transform and a collocation technique to impledoundary conditions on
the particle and wall. The cylinder in our test was truncaedhat its length is 6 times
its own diameter. The comparison is shown in Table 5.2, wharan be seen that the
non-dimensional electrophoretic mobility of the partigienotonically decreases as the
radius of the particle increases. This pore-impedafieeieparallels that discussed by
Keh and Chiou [89] and is caused by the hydrodynamic retenddue to the presence
of the wall. Again, the numerical results are in excellenmeagnent with the analytical

solution.

55 Simulation setup
For the current study, the cylindrical pore of radiis chosen such that the turning
radius,c, as measured from the cylinder’s centerlingfb = 1.2. The total length of
the cylinder along the centerline igb = 12, and the bend takes place in the middle
of the cylinder. The nominal electric field strengtsy = (¢1 — ¢2)/L, is used as a

variable of study. The non-dimensional form adopted fog tariable isE] = Eq(b/{,).
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Table 5.2: Comparison of our results with the analytical8oh for the normalized
translational mobility,U,, of a sphere concentrically positioned within a cylindrica
pore, wherea andb are the particle and cylinder radii.

Upll/[g(évp — {w)Eo]
a/b | Current Keh and
study Chiou [89]
0.1| 1.000 0.999
0.2 | 0.990 0.990
0.3 | 0.966 0.969
0.4 | 0.928 0.932
0.5| 0.872 0.880

In simulations, 1294 elements were used to model the parmictl 4026 elements for
the cylinder wall. Sficiency of the described mesh in resolving small particld-wa
gap distances has been demonstrated in the validation tafityr extensive testing,
a time step ofAt = 0.05a/U,, whereU, = (¢, — {w)Eo/u, was utilized for transient
simulations to ensur&t was small enough to accurately predict the particle’s ttajy.
To illustrate the results obtained from our BEM code, Figbiu@ plots the electric

potential and flow field computed after the boundary-elersehition was obtained for
an arbitrarily specified particle location. For comparisbigures 5.3(a) and (b) visu-
alize equipotential curves and the electric field strengthchses with and without a
suspended patrticle. In this comparison, the normalizeticparadius isa/b = 0.4, and

it is positioned within the bend near the inner side of theepéirom Figure 5.3(b) we
can see that a nonuniform electric field is created due to ¢he Ipend itself. Here the
analogy of a bending beam under a transverse load can beasetialize the fect
this geometry has on the electric field. When a beam deforrdsrumtransverse load,
the volume on the inner side of the bend is under compressiole ¥he opposite side
is under tension. The electric field shown in Figure 5.3(lhjaves similarly. Observing
the equipotential lines in this figure, we can see how theagastappear “compressed”
near the inner side of the bend and the compression corrdsgora greater electric

field strengthE = —V¢. Such spatial nonuniform electric field would facilitatengea-
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(@) (b)

X/

Figure 5.3: Internal field solutions for a particla/b = 0.4) positioned close to the
inner wall. Equipotential contours are plotted over eledield strength with (a) and
without (b) the particle. The corresponding flow field of &pghown in (c).
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tion of the DEP force. In addition, the close proximity of {barticle to the wall further
distorts the electric field by raising the electric potelntahe gap region, as shown in
Figure 5.3(a). From this, we can expect that the DEP forckEbsiktrengthened when
the particle goes through the bend. Figure 5.3(c) plotsdnesponding streamlines in
the presence of the particle under the same conditions ase~tg3(a) with the elec-
troosmotic flow set to zero. Here, we can see the distortioharilow field induced by
the presence of the particle. Note that the plots are indbgerof the choice foE, or
the zeta potential.

To justify the need for the full numerical simulation, we@tsompare our particle
trajectory with that predicted by the point-dipole meth&hen using the PDM, the
DEP force is calculated as if the particle were not presettath the electric field and
the flow field were undisturbed. The motion of the particleichiis approximated by an
infinitesimal point, is then a combination of the Smoluchkiwelocity (electrophoretic
translation of an unbounded particle), the electroosmaticcity, and the velocity due

to the DEP force,

g_éva _ g_éwE + gazfcm

VIE[. (5.16)
H 3u

U = Uep — Ueot + Udep =

where f, the Clausius—Mossotti function, ié for a non-conducting spherical parti-
cle [10]. The DEP translational velocity is found by assugnine DEP force equal to

the Stokes drag force induced by, that is,

Faep = Fprag = 6mualgep (5.17)

To evaluate Eq. (5.16), the field strendglof the undisturbed electric field at the loca-
tion of the centroid of the particle is used for each term.
Note that in the current BEM simulation, neither the poirgede approximation of

the DEP force, or the Stokes drag is assumed for the finieegmarticle. To show the
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Figure 5.4: The fect of initial position,h; /b, on the particle trajectory faa/b = 0.2
andE; = 5. Dashed lines represent results found using the BEM anddlie lines
represent trajectories predicted by the point-dipole wkth

difference between our numerical result and the PDM, we use bethoats for the
instantaneous particle location used in Figure 5.3 undesradimensional, nominal
electric field,E; = 20. The BEM method shows that,/U, = 1.12 andugepy/Up =
0.48, while the point-dipole approximation claimg,/U, = 1.25 anduge,/U, = 1.51.
Therefore, the PDM may lead to significant error in estinratbbthe DEP mobility of

the particle.

5.6 Results
5.6.1 Hfect of the initial location
The first parameter studied was the eccentricity of the @artiln this section we
wanted to observe thefect that the particle’s initial location had on its trajegtoNe
are also interested in the ability of the PDM to predict tis@. For these simulations,
the particle’s radius was held constantagb = 0.2 while the initial location of the

particle was adjusted to threeffdrent valuesh;/b = 1.0, 0.5 and 022. Note that in
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the third case, the initial particle—wall gap is 10% of theticée radius. The results of
these tests are presented as dashed lines in Figure 5.4fcadk of] = 5.

While approaching the exit of the pore, the final deviatioreath particle from
its original location was found to bd{ — h;)/h; = 0.08, 022 and 056, respectively
for the three cases. Apparent from this is what was antieghaf particle positioned
closer to the inner side of the bent region will deviate farthhom the wall than that
of a particle originally positioned closer to the centerltd pore. As was visualized in
Figure 5.3, the highest electric field strength is found & dgion within the cylinder
close to the inside of the bend. It follows that the dielgghraretic force acting on a
particle closer to that region would be greater becausefdhie scales withE[?>. The
particle originally positioned with the highest eccentyigs shifted by a distance equal
to 62% of its own radius. Considering the scenario of a stremultiple particles,
each with a dierent initial location, this#ect would serve to reduce the width of the
particle stream in a focusingfect by “pushing” the near-wall particles away from the
wall.

The analogous trajectories found using the PDM are displagesolid lines in Fig-
ure 5.4. It is clear from this figure that the PDM fails to a@atety predict the path of
a particle positioned close to the cylinder wall. When obisgy each trajectory with
respect to the particle’s original positions, we can seetti@accuracy of this method
degrades with a decreasing particle—wall gap. The finaladievis as shown in the fig-
ure are f, — hy)/h; = 0.11, Q37 and 144 for hy/b = 1.0, 05 and 022, respectively.
Although the PDM overshoots the particle’s deviation infeaftthe cases tested, it does
provide a reasonable approximation for the case of a pagicsitioned at the center of

the pore.
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Figure 5.5: The fect of the particle sizeg/b, on the particle trajectory for the case of
h/b = 0.5 andE; = 5. Dash-dotted, solid (thick) and dashed line patternsessmnt
a/b = 0.1, 0.2 and 04 respectively in (a). In (b-d) the thin-solid line repretsethe
estimate from the point-dipole method.
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5.6.2 Hfect of particle size

In scaling, the dielectrophoretic force is also proporaido the volume of the insu-
lating particle. Therefore it is also of interest to studyvibie particle’s radiusféects
its trajectory. In the present study, thi$ext is complicated by the manner in which the
particle’s finite, insulating volume modifies the flow andatte field. Three particle-
to-cylinder radius ratios were tested in this sectiafth = 0.1, 0.2 and 04. The same
original position was used for each of the particlegh = 0.5, and the nominal electric
field was held constant &; = 5. The resulting trajectory for each case can be seen in
Figure 5.5(a). As one would expect, the the larger partitiiésstoward the centerline of
the pore to a greater extent when compared to the smalléclpartThe final deviations
from the wall arelf, — h;)/h; = 0.09, 022 and 056 for the three cases respectively.

We also calculated the trajectory of the particle based erPiDM to evaluate its
validity. Figures 5.5(b), (c) and (d) plot a comparison besw the trajectories found
using our numerical technique and the PDM for each partizke sThe thin-solid line
shows the PDM result, whereas the line pattern for the BEMItrésllows that of Fig-
ure 5.5(a). From Figures 5.5(b) and (c) it is apparent thatfétiently small particle
sizes, the PDM can provide a reasonable approximation tijesctory in this configu-
ration. Fora/b = 0.1, the diference in the trajectories predicted by the two methods is
less than 1% of the pore radius. Fgb = 0.2, this diference is roughly 8%. Observing
Figure 5.5(d), however, we can conclude that utilizing tB#&/Feads to significant er-
ror for the case of a large particle size. The findletence between the two techniques
for the case o&/b = 0.4 is approximately 30% of the pore radius.

To more clearly visualize the fierence in the results of the two numerical methods,
Figure 5.6 plots the non-dimensional magnitude of the DEPefas a function of the
non-dimensional time as the particle migrates through #shed trajectory shown in
Figure 5.5(d). Both the BEM calculation (dashed line) anel point-dipole approxi-

mation (solid line) of the DEP force are plotted. It can bensem Figure 5.6 that
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Figure 5.6: The normalized DEP force as the particle movasgihe trajectory shown
in Figure 5.5(d) from the BEM simulation. The dashed linevgfithe current result,
and the solid line shows the point-dipole approximation.

during the initial stage, the BEM yields a DEP force wherdeessRDM does not. At
this phase, the particle is positioned close to the insidb@®tvall just before the bend.
The presence of the particle causes a strong electric fidglteimarrow region, which
generates a DEP force acting laterally and pushes the leaati@y from the wall. This
result is similar to the flat-wall case described earlier abl€ 5.1(b). When using the
PDM, there is no such particle—wall interaction and theeetbere is no DEP force.

As the particle nears the inside corner of the bend, the madmof the DEP force
quickly increases to a maximum before decreasing as it $sténeeturn. This occurs be-
cause of the non-uniform electric field originating from thgulating boundary. During
this phase, the current technique reports a stronger DER faympared to the PDM.
Again, the enhanced DEP can be explained by the interactbmden the finite-size
particle and the wall.

It is important to note that although the resultant DEP fascgtronger when using
the Maxwell stress tensor compared to the PDM, the formes doéresult in greater

lateral motion of the particle compared to that found froeBDM. On the contrary, the

64



trajectory predicted by the PDM overshoots as shown in [€igu8 and thus indicates
a higher lateral velocity. This result can be explained kg ulse of the Stokes drag
formula, Eq. (5.17), to equate with the DEP force in the PDMwldver, Stokes drag
is valid for unbounded or large domains. Because the s@igraticle in this study is

bounded by the pore of comparable sizes, the hydrodynamagabting on the particle
will be greater than that predicted by Stokes drag.

In Figure 5.6, after the particle passes through the tumDEP forces given by

both the BEM and PDM decrease to approximately zero. Thigtabise the particle
is positioned near the center and there is little particlHnmteraction. Therefore, the

two techniques agree with each other.

5.6.3 Hfect of the electric field

Table 5.3: Deviation of trajectoryhf — h;)/h;, for both the point-dipole method and
the BEM used in this study for the cases in Figure 5.7.

a/b=0.2 a/b=04
Current Current
E; | study PDM| study PDM
5 1.35 1.38| 1.41 1.53
10| 1.38 1.44| 1.50 1.68
20| 1.45 1.53| 1.61 —

The electric field is spatially non-uniform in the regionséao the bend. A stronger
DEP force is associated with a particle positioned closénéanner side of the bend —
we have observed this in a previous section. Other than tiielps size and location,
the dielectrophoretic force is also a function of the apgpétectric potential across both
ends of the pore. As was shown by étial. [58] for the case of a 2D simulation for a
turning channel, we can expect that the particle will devfatther from the inner wall
of the pore with an increasing electric field strength. Thiserified in Figure 5.7(a)

and (d) for the cases @/b = 0.2 and 0.4 respectively. The applied electric field
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Figure 5.7: Trajectories faa/b = 0.2 (a-c) anda/b = 0.4 (d-f) under varying electric
field strengths but the same initial positidn (b = 0.5). (a) and (d) depict the cases of
E¢ = 5, 10, 20, and the case in which DEP is neglectefl£ 5) using solid, dashed,
dot-dashed, and dotted respectively. A comparison betweerPDM and BEM is
shown for the cases d&; = 5 (b,e) and 4 (c,f). Thin-solid lines represent the PDM
trajectory and the line pattern of the BEM trajectoriesdallthose introduced in (a)
and (d).
66



values shown in both Figure 5.7(a) and (d) corresporigite: 5, 10 and 20 with line
patterns of thick-solid, dashed and dash-dotted res@h¢tiVhe inner-most dotted line
represents the trajectory of the particle in the absenceéetdatrophoresis foE; = 5.
For these results the particle’s initial location withiretpore ish;/b = 0.5. From
Figure 5.7(a), we can see the transidifieet of electric field strength on the trajectory
of an electrophoretic particle. Specifically, the stronter electric field is, the more
the particle would translate laterally across the porenHregure 5.7(d) we can see the
combined &ect of the electric field strength on the largest partiajd, = 0.4. Similar

to the result seen in Figure 5.7(a), the particle deviat® fihe inner wall to a greater
extent with an increasing field strength. Additionally, @ese the DEP force also scales
with the particle volume, the corresponding deviationdgn = 0.4 is larger than that
fora/b =0.2.

In the numerical technique implemented in this study, trellaistortion of the
electric field due to the presence of the non-conductingregaigarticle is accounted
for by integrating Eq. (2.14) around the patrticle surface.tihe PDM neglects this dis-
tortion, we would expect that the disagreement betweemtbegchniques would grow
with an increasing electric field strength. Figures 5.7 (lg) &) depict a comparison be-
tween the two numerical techniques & = 5 and 20 whera/b = 0.2. Continuing in
the comparison of the particle size, Figures 5.7(e) andi@¢f)tpe results of equivalent
simulations at/b = 0.4. Again, the thin-solid line visualizes the PDM result ahd t
line pattern for the BEM result follows that of Figures 5)7éad (d). Under a weaker
electric field, the magnitude of the dielectrophoretic éisreduced and therefore the
field distortion is not as influential. Therefore, the PDM &M give similar result,
as shown in as shown in Figure 5.7(b). However, it is evideorhfFigure 5.7(c) that
under the influence of a stronger electric field, the accuchtlye PDM degrades. At a
non-dimensional field strength &; = 20, the diference between the two techniques
is greater than 20% of the pore radius.

By comparing Figures 5.7(e) and (f), we can observe how dyitie PDM breaks
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down for a larger particle-to-cylinder ratio and a highexottic field. Thus, combining
the two dfects to model a non-trivial microfluidic channel demand$ ifulegration
of the Maxwell stress tensor, such as the numerical teclkerggoployed in this work.
Table 5.3 details the numerical results, in terms of theaten defined asy — h;)/hy,
for both the PDM and the technique used in this study for tlses@n Figure 5.7. The
results forE; = 10 are also included in the table. Note the deviationEgr= 20
anda/b = 0.4 is not available for the PDM because it finally breaks dovsseen
in Figure 5.7(f) where the particle tends to cross the wallalphysical situation, as
a finite-size particle approaches the outer wall, the DE&ceon the inner-wall side
would decrease and on the other hand, the opposing DEP dbe twter wall would
increase. As a result, the overall DEP force in the latera&ation becomes zero, and
the particle would not come into contact with the outer wali.shown in Figure 5.7(f),

this efect is captured by the current BEM simulation but not by thé/PD

5.7 Conclusion

In this study, we investigate the fundamentéet of dielectrophoresis on the tran-
sient motion of particles in microfluidic channels and addrimitations of the point-
dipole method. To do so, we have considered a non-condusfihgrical particle in
a 90 bent cylindrical pore, where the size of particle is compbrdo the pore diam-
eter. Results show that near the corner of the wall, the DEgefbas a strongfiect
on the particle’s motion. More importantly, for near-watusitions the particle’s finite
size has a significantkect on its transient trajectory, and using the PDM would kead
substantial error.

As an additional discussion, we would like point out the vatece of our model to
real microchannels. For a commonly used aqueous, symne&tatrolyte solution (e.g.
KCI) with an ionic concentration of 18 M and its chemical and electrical properties [3,

90] at room temperature, the EDL thickneks'] would be on the order of 10 nm. If we
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consider a 2@um diameter particle, this would yiekh ~ 1000, well within the limits
of the thin-EDL approximation. In the present study, theimum gap width occurring
between the particle and the channel wall is around 2% of &necge radius, that is,
approximately 0.2im, which still roughly 20 times the thickness of the EDL.

If we extend this dimensional discussion to include otheapeeters used in the
present study for the case afb = 0.2, then the diameter and length of the pore are
2b = 100um andL = 600um. Assuming common properties of polystyrene for the
particles £, = —22 mV,p, = 1050 kgm?), PDMS for the channel wallg( = —80 mV)
and pure water for the suspending mediur(6.9x1071°C/Vm, u = 0.9x1072 kg/ms,
pw = 1000 kgm?), the nominal electric field strengths to generate the dievia de-
scribed in this study are betweéy = 60 and 240 Ycm. These values fall within a
range of field strengths commonly used for DC-DEP. Undemclopgrating conditions,
one can expect to see electrokinetic particle velocitiewéen 0.2 and 1 mya. The
sedimentation velocity for a particle under these condgiis roughly 0.012 mys. Un-
der our conditions, the particle’s electrokinetic velgag significantly larger than its
sedimentation velocity. If weaker fields g@ondlonger channels are employed, the im-
portance of the particle’s motion due to gravity can no lorigeeneglected. Depending

on the orientation of the bent pore, the particle’s sediagor can alter its trajectory.
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CHAPTER VI

DIELECTROPHORETIC CHAINING OF TWO ELLIPSOIDAL PARTICLES

6.1 Background

With a growing number of researchers studying electrokisél, 2], many valuable
applications have surfaced. One area benefiting from thadees is the self-assembly
of colloidal particles into organized structures. With dygplication of externally ap-
plied electric fields, dielectrophoretic forces are exqaldito reposition suspended par-
ticles. If properly designed, this phenomenon can be usetktite patterned materials
with desired mechanical, chemical, and biological prapsrf35, 91, 92]. One such
example comes from Yanet al. [36, 37]. In an &ort to generate heart tissue on a
microfluidic chip, these researchers used the electric lietd/een interdigitated elec-
trodes to pattern cardiac myocytes. Madbal.[93] used DEP cell assembly to create
a multi-layered structure mimicking that of a hematon, difieial micro-environment
for blood-producing stem cells. This serves to advancettidyof stem cell activity for
the treatment and prevention of blood diseases. Using #atésilica microspheres and
co-planar electrodes, Lumsdemal. [40] were able to assemble well-organized two-
dimensional hexagonal crystals. Through means of a siteidunique, Veleet al.[38]
were able to assemble biocomposite materials from a combmaf live cells and
functionalized particles. In a previous publication, theng researcher had discovered
a simple manner to create microwires through DEP aggreyfgRj.

Two particles in an infinite fluid medium are a basic model gunfation to study the
driving force behind the DEP colloid assembly. Consider isemtical non-conducting
particles suspended in an aqueous electrolyte solutioaruhé influence of an exter-

nally applied electric field. The presence of these padittbeally distorts the electric
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Figure 6.1: Stages of the electric field-induced aggregatiol.4 um spherical latex
particles reported by Lumsdat al. [40].

field. This results in local minima and maxima around theipiat When the two
particles are close enough, the distribution of electrild fsgrength around each par-
ticle surface becomes asymmetric. This yields an imbalafiderce acting on the
induced dipole across the particle. Depending on the algmiof the particles with the
electric field, this results in a mutually attractive or rigie dielectrophoretic motion.
This is the underlying theory behind what is referred to asafpchaining”, the ten-
dency of particles to form chain-like formations when unidherinfluence of an electric
field [10, 94].

Past experimental investigations have been focused atbaragjgregation of spher-
ical particles made of latex or silica [40, 95]. Reportedhede studies is an initial
particle chaining, followed by a field-induced lateral naigon of chains as shown in
Figure 6.1. This process results in hexagonally crys&abimuctures. Recent numerical
studies have helped clarify the mechanism behind the velatectrokinetic motion of
two insulating spherical particles. Kang and Li [96] invgated this phenomenon by
balancing the DEP force with Stokes drag to obtain a partielecity. In that study,
they were able to show how the DEP force of two spherical gladigradually realigns
the particles such that the line connecting their centepsuiallel with the direction of
the electric field. This realignment holds true regardldgbeir initial orientation with

the exception of an “unstable” equilibrium orientation whéhe particles are initially
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Auelectrodes  covershp  spacers  glass slide

Figure 6.2: Experimental results for electric field-indd@ggregation of ellipsoidal
polystyrene particles reported by Singhal.[98]. Aspect ratios used weegb = 3.0,

4.3 and 7.6 whera ~ 10 um. The particles transition from a random to an ordered
orientation b—f) where they form a distinct chaining angte,

arranged orthogonal to the electric field. In a similar sfulliyand Qian [97] used
a two-dimensional finite-element package to solve the aaliplectric field and flow
field around two spherical particles. A similar realignmprdcess was reported. It was
also shown that a repulsive hydrodynamic pressure forcecesdthe velocity of two
particles under an attractive DEP force as they ultimatedyertogether.

In the field of microfabrication, complex particle shapes aal in the design of ma-
terials that meet desired properties [99, 100]. Additibnaiological cells that could be
incorporated in the synthesis of new tissue typically haveragular shape [101, 102].
As argued by the other researchers in this field [10, 35], itnigortant to develop an
understanding of the particle—particle interaction odogrfor non-spherical particles
subjected to electric fields. It has been shown previouslyttiere exists a stable ori-
entation for a single non-spherical particle suspendechielactric field [103, 104].
The electric field induces a net torque acting on the panitieh causes it to reorient
itself relative to the electric field. This phenomenon i®refd to as electro-orientation
(not to be confused with electro-rotation which occurs anlfields of spatially vary-
ing phase). There has been limited theoretical study on tmmare non-spherical

particles. Recently, Singét al.[98] investigated the disorder-to-order transition of el-
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lipsoidal particles of varying aspect ratios. They repatteat the randomly distributed
particles at certain field strength form a stable chainingjam the end, which leads
to a distinct crystal structure that is a function of the jo#ts aspect ratio. Results
of this study are visualized in Figure 6.2. Despite the expental studies performed
on the packing of non-spherical particles [99, 100], littkes been done to clarify their
fundamental interactions when under the influence of an te frce.

Previously, Yariv [105] and also Swaminathan and Hu [10&]lically investi-
gated inertial &ects on electrophoretic particles. In their work, they detha stable
orientation that was perpendicular to the field. This cafitts DEP interaction as
spherical particles are known to form chains parallel whignfield. In a separate report,
Kang and Li [96] compare this inertial interaction with DERdraction and conclude
that DEP forces are commonly two orders of magnitude largan tinertial forces.
Based on this fact, they neglect inertial interaction. ka¢hrrent study, we too neglect
inertial efects.

In this study we examine the DEP interaction of two non-catitig, ellipsoidal
particles in an electric field. Numerical simulations wid performed using the previ-
ously developed boundary-element method (BEM) for el&atitic particles [71, 72].
The BEM, which requires a surface mesh only, is employed dits superior accuracy
and dticiency when considering a linear problem, i.e., an eleategic problem with
the assumption of thin electric double layer (EDL). Thigtea is particularly advanta-
geous when the two particles are very close to each othdyatisn that would require
a high-resolution volume mesh for other approaches sudtedite-element method.
It should be pointed out that, unlike some of previous staidilee three-dimensional
electric and flow fields are fully resolved when computing ktexwell and hydrody-
namic stresses on the particles, thus eliminating the reeggroximate these forces

using simplified formulas (e.g., Stokes drag).
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Figure 6.3: Schematic of the two non-conducting ellipsbpdaticles suspended in an
electrolyte solution under the influence of an electric field

6.2 Problem specification and governing equations

We consider two identical, non-conducting particles sodpéd in an aqueous elec-
trolyte solution. The schematic for this study is shown igufe 6.3, where the particles
are prolate spheroids with the following conditiomss b andb = c whereb is the po-
lar radius andh is the equatorial radius. The third semi-minor axisgs equal tdb and
is parallel to thez-axis. The problem configuration is 3D, where the particlesfeee
to rotate and translate in the plane of symmetry.

In an electrolyte, particles are naturally charged and laaven-zero zeta-potential
at their surfaces. Therefore, the two particles would maweeu the combined elec-
trophoretic &ect and the DEP forces. However, these tie&s can be decoupled
if thin-EDLs are assumed near the particle surfaces, duméadtity of the governing
equations. Furthermore, the two unbounded particles wbalet no electrophoretic
interaction and would translate at the same velocity as bthey have equal zeta-
potentials [107, 108]. This can be explained by modelindilibe electric and flow
field as potential flow under the thin-EDL assumption [108].wk decompose the
electrophoretic and dielectrophoretic velocities, we ahgerve the relative velocity at

any point on the particle surface. If we assume that theivelaelocity is everywhere
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proportional to the electric field, it becomes apparent ftbm Laplace equation that
velocity field is also divergence free. Because this sasisfig governing equations and
boundary conditions, we can conclude that there is no elgletretic interaction. This
means that for a collection of particles, all with the samargh, each will translate at
the Smoluchowski velocity withoutiecting nearby particles. Therefore, introducing a
constant zeta-potential in the present problem would nangh the relative motion of
the particles but simply add a net electrophoretic trammsiatFor this reason, we may
ignore the surface charge and assume a zero zeta-potentldh particle.

The entire flow field is neutral, and the distribution of theattic potential g, is
governed by the Laplace equation, Eq. (2.4). The electrierg@l is subject to the
homogeneous Neumann boundary conditi@#y,on = 0, at each particle surface. Note
thatn is the surface normal and points into the flow. The fluid is as=iito be New-
tonian and incompressible, and the Reynolds number is sndlat the fluid inertia
can be ignored. The bulk flow is then governed by the Stokesantinuity equations,
Eqg. (3.16) The slip velocity typically used with the thin-ERssumption, as detailed in
the previous studies [71, 72], is zero because the zetatmdtaheach particle surface
is set to zero. From this, the fluid velocity at a potrdan the particle surface is equal to

the rigid-body motion of the particle due to the no-slip cibiod,
U(X) = Uc + we, X (X — Xc) (6.1)

in which x. andu, are the position and velocity of the centroid of the particles the
rotational velocity of the particle, arg is the unit vector ire.
The particle is assumed to be neutrally buoyant in the fluctheas negligible inertia.

Thus, the total traction and torque on each particle vanish,

fftdS:O, f(x—xc)xftdS:O, (6.2)
P P
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whereP represents the particle surface dpés the total traction. As in the previous

study, the total traction is defined as
fi=(T+o0)-n, (6.3)

whereo is the hydrodynamic stress tensor dane the Maxwell stress tensor given by

Eq. (2.14).

6.3 Boundary-integral formulation and numerical approach

Note that the solution to electric potential is independsrthe solution of the fluid
flow, while the latter depends on the former through the plardynamics in Eq. (6.2).
Therefore, the Laplace and Stokes equations can be solge@rsially at each time
step. Again, we utilize a boundary-element method to sdieegoverning equations.
The electric potentialy, is decomposed into a combination of the background patienti
¢ = —Egx, and the disturbance potential, generated due to the presence of the
particles so thap = ¢ +¢P°. Following boundary-integral formulation, the disturican
potential at a poinkg that lies on the boundari) (either of the particle surfaces), can

be expressed using Eq. (3.14),

56°00) = - [ g0l T°6ldS09 + [ 4°ln - Vo001, (64)
D D

wheren is the surface normal pointing into the flow field which is adésof the particle
volumes enclosed byD. Under this condition, the following integral identity fro

Eq. (3.23) applies,

1

f [0 - Vx, X)) = 3. (6.5)
D
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by noting thaix, falls on the boundarip. If we express the second integral in Eq. (6.4)

as

fD P IN - Vg(ko, X)]S(X) =
fD [#°() — °(xa)][n - TG0, X)]AS(X) + f 2 (x)N - V0(x0.)]1dSK), (6.6)

then we can use Eq. (6.5) to simplify it to the following form,

fD 2PN - Va(xo. )]AS(K) =

114709 - %6 - Voo 0ASE) - 5660 (6:7)

Implementing this adjustment into Eq. (6.4) allows us to ogethe singularity and

transform the integral equation for the laplace equatiom in

#°(xo) = — f 9%, )N - V6P ()]dS(x)
D

+ f [#°(x) — P (X)L - Vg(ko. X)]AS(x). (6.8)

The fluid motion comes solely from the disturbances causethéyparticle. To
solve the flow, we use the boundary-integral formulatiortier Stokes equation in 3D,

Eqg. (3.22) and expressat the pointx, that lies inside the fluid,

1 1
SUi(Xo) = —5—

T

f G,-i(xo,x)fi(x)dS(x)+8i f Ui (X) Tiji (X, Xo)Nk(X)dS(x).  (6.9)
D T JD

wheref = o - n is the component of the hydrodynamic traction. Note thadin@amy
indicesi, j, andk rotate among the componentsy, andz. In this equationy; and
u; are simply the rigid-body velocity components of the p&sc Thus, the integral

identities for 3D rigid-body motion, Eq. (3.26) can be usédter this simplification,
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Eq. (6.9) reduces to,

00) = g | 400.91094S00, (6.10)

After discretization, Eq. (6.10) will be used to formulabe talgebraic system to obtain
the hydrodynamic tractioh on the particle surfaces. It is inherent in this formulation
that the fluid velocity vanishes asapproaches infinity.

To discretize the integral equations, 3D patrticle surfaresrepresented using Six-
node curved triangular elements. Variables pertinent ¢oetlectric field, i.e.y and
d¢/on, are discretized at the six vertices of the elements. Viasgtertinent to the flow,
i.e., tractionf; and velocityu;, are discretized at the element centroids. At each time
step, the integral equation for the disturbance poterstgdived first. Then, Eq. (6.10) is
solved with unknown translational and rotational vel@stof each particle. To match
the total number of unknowns, additional equations in EQR)(Gexpressing the total
traction and the total torque on each particle are apperdibe linear algebraic system.
Note that in Eq. (6.2), the contribution of the Maxwell sgean be computed explicitly,
once the electric field is obtained. Integrals over each elgrare carried out using
the Gauss—Legendre quadratures, and the resulting ligeatien systems are solved
using the LAPACK library. The temporal update of the positémd orientation of each
particle is achieved using a second-order Runge—Kuttanseh& he element size of
the mesh used in this study is adaptive and is based on gapcksbetween particles.
That is, the local resolution of the mesh between the pagid increased to make sure
that the small region is resolvedfBuaiently. An example of this adaptive technique is

shown in Figure 6.4.
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Figure 6.4: The adaptive mesh used in the BEM simulationmErgs forming the 3D
particle surface are adapted in size in the narrow gap regimn the two particles are
in close proximity.

6.4 Code validation

The 3D BEM code used in this study has been validated for abgeometric con-
figurations in previous studies [71, 72]. In those validasidhe resulting DEP force and
electrophoretic velocity were compared to previously @iitgd results. In the present
study, we are concerned with the DEP velocity of a non-cotiwdgparticle arising from
a balance between the field-induced DEP force and resulyidgpdynamic drag. From
this, it is appropriate that an additional validation befpened on the DEP mobility.
To do so, we consider a non-conducting particle migratingyafsom a nearby plane
wall under the transverse DEP force. The electric field ispelrito the wall. The exact
DEP force normal to the plane wall was found previously by p@&: Li [60].

In their work, they consider a non-conducting sphere pms#&d close to a non-
conducting plane wall with an electric field is applied tamniigd to the plane wall. In this
state, the non-conducting surfaces of the particle andwulllyield a greater electric
field strength in the region between the two objects. Thisegees a net DEP force
acting on the patrticle’s field-induced dipole. To deterntime force, the electric field
must first be solved. The necessary solution of the electtergial comes from a

modified analytical solution determined by Keh and Chen J108their work, the thin-
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Figure 6.5: Nondimensional DEP velocity of a non-condugsphere positioned close
to a non-conducting plane surface under the influence ofextral field, Eq, directed
tangential to the surface. The exact solution and preseht 8#ution are presented as
a solid line and markers, respectively. The particle ragiasand the distance between
its center and the wall ig.

EDL assumption was employed to model the electric field utieg.aplace equation.

Then, the solution of the electric potential can be writterbispherical coordinates

(& 1. ¢) @s
¢(&.m.¢) = —CEo cow[ﬁ — (coshy — cos¢)?
x sing Z (R.sinh( + 3)n + S, cosh + 1)n)P;(cosé) |. (6.11)

n=1

wherec = asinhno, 170 = cosh’*(d/a), a andd are the particle radius and the distance
of the particle center to the wall, respectively. Detailstfee codficients,R,, P, andS,
can be found in the discussed reference [109]. The transfioons for the bispherical

coordinates are

csiné cosy _csinésing _ csinhp

X= coshy — cos¢’ y= coshy — cos¢’ 2= coshy — cos¢’ (6.12)
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In the work by Young & Li [60], they called upon an integratitechnique used by
Swaminathan & Hu [106] to express the DEP force in the sphkdoordinates. The
resulting scalar force expression is one that is directeaydvom and perpendicular to
the plane surface,

1 L, (T 1a¢ag)2 ( 1 a¢)2].
Fpep = zgma ‘Lzo‘fg;o[(aafae + asinG 3 sinfcosfdidy  (6.13)

Note thatFpgp scales withnggaz. The transformations for the spherical coordinates

are

2 1+ V2
r=+z-d2+x+y?, 6=tan? thy and p=tan*Z. (6.14)

X <

Table 6.1: Values of the nondimensional DEP velocity presgim Figure 6.5. The
particle radius i®, and the distance between its center and the wdll is

12ruu/[emESa]
d/a | Current  Exact
study  solution
1.01| 0.03677 0.02416
1.02| 0.04787 0.04104
1.05| 0.07567 0.07354
1.10| 0.09985 0.09910
D
)
|

1.20| 0.11005 0.10972
1.50| 0.07759 0.0777¢
2.00| 0.03482 0.03541

The DEP force acting on the particle induces a repulsive anotiAs the particle
moves away from the plane wall, it experiences a countergdtydrodynamic drag.
Previously, Brenner [110] determined an analytical solufor the steady motion of a
sphere moving orthogonal to a plane surface using bipolardooates. It is presented

as,

FHYD = 67TﬂaU/l (615)
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whereA is a correction factor given by

12 2sinn i nn+1) [2sinh(@+ 1)+ (2n+1)sinh 2y
BN £ (2n - 1)(2n + )L 4 sintf(n + o — (2n + 1)2sintf 1o

1|. (6.16)

From the results presented by Brenner, it can be seenthatl whend/a > 1. This
allows us to recover Stokes’ drag when the particle is faryadn@am the plane surface.
As the patrticle gets closer to the watll/@ — 1), the increasingféect of the correction
can be seen as — . Thus, the presence of the wall results in a drag force greate
than that of a unbounded particle.

By equating the modified version of Stokes’ law in Eq. (6.1b)ite DEP force de-
scribed by Eq. (6.13%1yp = Fpep, We can obtain the particle velocity. The analytical
solution was evaluated using Mathematica. Details of tineédation can be found in
the appendix. The nondimensional velocity, = 12ruu(emE3a), obtained from this
approach is presented alongside the results found usingEMrin Figure 6.5 and Ta-
ble 6.1. As seen from the figure, the BEM code implementedigwilork yields a high

level of accuracy.

6.5 Results
6.5.1 Electro-orientation of a single prolate spheroid

Before discussing the interaction of two particles, weldhaher examine the local
reorientation of a single particle because a particle’'stedeorientation will be coupled
with the global orientation, as will be shown later.

It is well understood that in a DC field, a prolate spheroidtipkr will reorient
itself such that its longest axis is parallel with the electield (Figure 6.6(a)). This is
because a non-spherical particle is in orientational égium when its field-induced
dipole (which, in this case, is in line with the major axis lo¢ ellipsoid) is parallel with

the field vector [10]. When its minor axis is parallel with thlectric field, the particle
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Figure 6.6: &) A diagram of the electro-orientation process &b = 3.0 when the
electric field is directed left to right.bj The self-orientation angle of a single particle
as a function of nondimensional time for various aspecbsati

is in an equilibrium but unstable position. Figure 6.6(lyualizes the self-orientation
angle,, of a single, unbounded particle as a function of the nondsimmal time,
t* = temEZ/u, for four different aspect ratiosi/b = 3.0, 2.0, 1.25 and 1.11, where the
angle between the long axis and the electric field is injtia = 85°. These results
were obtained using our BEM code.

From the figure we can see the influence of the aspect ratioeoretaxation time,
which we will define as the amount of time required for the igles self-orientation
angle,a, to fall below 1% of its initial angle. A constant electricliedoes not exert a
torque on a spherical particle. This is because the locaméibstress in Eq. (2.14) is
always in line with the surface normal and passes througleeh&oid of the particle.
Therefore, we can expect that a nearly spherical particdeahgreater relaxation time
due to its reduced magnitude of the DEP torque. This is refieafell in Figure 6.6(b)
as the relaxation time fas/b = 1.11 is roughlyt* = 440, the longest among the four
cases.

For larger aspect ratios, the relaxation time is reducedcifipally, fora/b = 1.25,

2.0 and 3.0, we see the nondimensional timé& of 223, 143, and 178, respectively.
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Figure 6.7: Normalized DEP torque as a function of the sipgldicle’s orientation
with respect to the electric field.

It also becomes apparent from these values that there is ianorm relaxation time
achieved with respect to the aspect ratio. This can be exguaby the balance be-
tween the DEP and hydrodynamic torqu@sgp = Thyp. TO further illustrate the
torque balance on a single particle, we utilize existinglyital solutions for each
torque. Jones [10] gave an analytical formula of the DEPuergcting on a single,
unbounded ellipsoid of arbitrary orientation and a finitenpitivity ratio with respect
to its suspending mediuna, andem, wheree, andey, correspond to the permittivity of
the particle and medium, respectively. For a non-condgqiirolate spheroid particle
(ep < &m), this relation is expressed in Eq. (2.21). The solutiomts telation is plotted
in Figure 6.7, where the nondimensional torque is definetiias = 2TDEp/(a3smE§).
The figure shows that for all the aspect ratios considereg, lee maximum torque is
achieved whemr = 7. In addition, the DEP torque increases as the ratinis de-
creased from 5.0 to 1.67, which is because a slender pactialees minor distortion to
the electric field. On the other hand, the DEP torquesitr = 1.25 drops below that
for a/b = 1.67 since the former particle becomes close to a zero-torngjuers.

The hydrodynamic torque acting on a prolate spheroid rmatbout its minor axis

can be found in Wu [111]. Through fundamental singularjttee analytical solution
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Figure 6.8: Normalized DEP and hydrodynamic torques agtiime of the aspect ratio
where the DEP torque shown is fer= 7.
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Figure 6.9: Rotational velocity at = 7 (resulting from a balance of the hydrodynamic
and DEP torques) as a function of the aspect ratio.
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can be expressed as,

-1

l1+e

-2e+ (1 + ez) IOg 1—e

2 2-
THYD = %ﬂ'ﬂabzwe:g(l — e2)

(6.17)

wheree, the eccentricity is defined as= /1 - b?/a2. Defined ad;,,, = Thyp/(81ua’w),
wherew is the rotational velocity, the normalized torque is pldtie Figure 6.8 as a
function ofa/b. Together shown in the figure is the aforementioned DEP ®agsum-
ing the orientation angle is at= 7/4. For a spherical particle/b = 1, the normalized
hydrodynamic torque takes its well-known valdg, , = 1. An increasing aspect ratio
results in a decreasing value of hydrodynamic torque. Hogdhe two torques, we
obtain the electro-orientation velocity of a single pdetias a function of the aspect ra-
tio, as shown in Figure 6.9, where the angular velocity abtientation anglex = 7/4

is defined asv* = 16muw/(emE3). The result shows that the maximum angular veloc-
ity takes place neaai/b = 1.4, which is consistent to the relaxation time observed in

Figure 6.6(b).

6.5.2 Two particles: combined electro-orientation and glbal reorientation

Next, we shall observe the interaction of two particles aiitistart by considering
arbitrary initial configurations. We will see that the traarg motion of the particles
largely depends on their initial positions.

Li [96] and Ai & Qian [97] showed that two spherical particlesth an arbitrary
initial orientation angleg, will globally rotate and reorient themselves so that thidy u
mately arrive in a tandem arrangement and finally they araciéid to each other. For
two ellipsoids, we expect that both global and electrordagon will occur. Therefore,
we first consider the situation shown in Figure 6.10. In thigrenent, each particle
is nearly vertical with respect to the electric field and sts®wn self-orientation an-

gle. Here, we account for the simultaneous electro-oriemtand global orientation
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t'=0 t* =58 t* =132 t* = 9000 t* = 18000

Figure 6.10: Combined electro-orientation and globalissdation of two interacting
ellipsoids. Results are shown for the caseaglh = 3.0, 65 = 85°, ap = 85°, and
do/a = 2.2. The electric field is directed left to right. Arrows repeasthe direction of

TDEP-

processes and how the combination influences interactiovelea the two particles. In
doing so, we compare the time scale associated with the lgleds@entation to the time
scale with the electro-orientation, i.e., the relaxatiomet

Specifically, we consider two particles witib = 3.0 initially positioned at, =
85° and a center-to-center distancedgfa = 2.2. The particles are each initially ori-
ented with respect to the electric field such that 85°. Figure 6.10 visualizes the in-
teracting particles at various moments in time through tieegss. The example shows
that each particle’s relaxation time is much shorter thartithe required for global ori-
entation. In the case considered here, the electro-otienta completed by* = 132,
which is somewhat shorter than the relaxation time of a sipgirticle reported in the
previous sectiont* = 178. The diference can be attributed to the interaction between
particles. The global reorientation, however, requiregyidy t* = 18000 and is even
much longer that the relaxation time of a single particlehvatb = 1.11 shown in
Figure 6.6(b).

In order to view the simulation from a dimensional perspegtive introduce rele-
vant dimensional parameters. If we approximate the suspgmaedium as pure water
(em = 6.9 x 1071°C/V-m, u = 0.9 x 1072 kg/m-s), then under an applied field of 100

V/cm, we would expect electro-orientation of the particleigufe 6.10 to be completed

87



(b)

ZaVAVAN

Figure 6.11: Surface plot ¢E|? for ellipsoidal particles oriented at (8)= 90° and (b)
6 = 0°. The electric field is directed left to right. Red shadingresents a high field
strength whereas blue represents weak field strength.

within 2 seconds while the entire global reorientation psscwould require close to 4
minutes.

The large diference in time scales between the two orientation procesge®s
that we can reasonably model the global orientation profoegsarticles of arbitrary
initial self-orientation by assuming that the particlesdalready completed the electro-
orientation process. Complication arises when the twaghestare very close to each
other and their self-rotation is interfered by contact. ISsjgecial cases will be discussed

in the end of this chapter.

6.5.3 Two particles at perpendicular @y = 90°) or parallel (6o = 0°) alignments
First, we consider two particles initially positioned sutiat the line connecting
their centers is either perpendicul@p = 90°) or parallel G = 0°) with the electric
field, where distortion of the electric field is symmetric. cBudistortion leads to a
DEP force that is attractive for the parallel case or repalfor the perpendicular case,
and the two-particle system does not globally rotate. Fadgufil(a) displays a surface
plot of |[E|? for the case of) = 90°. Here, we can see that a region of strong electric
field forms between the particles. This yields a mutual DERddhat would repel the

two particles away from each other along a straight line. A@s later, this globally
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Figure 6.12: Global reorientation of two ellipsoids, whérme electric field is applied
left to right. Results are shown for the caseagh = 2.0, 6, = 85° anddy/a = 1.1.
Vectors represent the directionBgep. The corresponding contour plot|&f? is shown
on the lower row.

perpendicular orientation is unstable. That is, a distackan either direction would
produce a DEP force component that would ultimately leadh@ircformation. Fig-
ure 6.11(b) displays a similar plot for the casefof 0°. Contrastingly, this parallel
orientation produces a region of low-strength electriafie¢tween the particles. The
resulting mutually attractive DEP force drives the paesdloward each other, also along
a straight line. A detailed discussion of these two distomEntations was presented by

Ai & Qian [97] for the case of two spherical particles.

6.5.4 Global reorientation with initial configuration 0° < 6 < 90°

Next, we consider the case when two particles initially havglobal orientation
angle, 0 < 6y < 9C°. Here, the distorted electric field exhibitswao-fold rotational
symmetry about the-axis that passes through the midpoint between the twocpesti
The mutual DEP force causes the two particles to translatarved paths and so their
centers rotate clockwisely. An example of this reorieptaprocess is depicted in Fig-
ure 6.12. Recall that if either of these particles were preseder the same conditions

without the presence of the second patrticle, there woulth@atnet DEP force. There-
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fore, the perturbed electric field and its asymmetry havetded net DEP force that
is equal in magnitude but opposite in direction for the twaipkes, as shown in Fig-
ure 6.12. In this case, the particles start wigh= 85°, when the DEP force is nearly
vertical and repulsive. As the particles move away from ezttler, they also slightly
shift horizontally, which creates greater asymmetry angsea the DEP force to be-
come nearly horizontak’( = 605). Later, as the horizontal shift becomeffisiently
large (andd becomes small), the DEP force becomes attractive in thecakdirec-
tion while remaining to be repulsive in the horizontal diren (t* = 1340). In the
end, the force becomes completely attractive, and thectestmove toward each other
(t* = 1900) along a small global orientation angle.

Previous experimental study [98] has shown that densetyilulised ellipsoidal par-
ticles that are initially arranged in a random manner wiidg¢o form chains. These
chains are shown to have a distinct angle with respect to iteetmn of the electric
field, similar to the current observations from a two paeticbnfiguration. Therefore,
the transient behavior and particle-particle interaceahibited in the current study
could be used as the fundamental mechanism to explain thmptenon in the experi-
ment.

To systematically investigate the global reorientatiotvad particles, we vary the
initial orientation and distance between the two partieled run a series of simula-
tions to obtain the particle trajectories and the final dagon angle. Three aspect
ratios,a/b = 1.0, 2.0, and 3.0, are considered in this study. Contact méch&not
considered in this study, and the numerical simulation @@wentually break down if
the gap between the particles igtstiently small. Thus, we define a threshold for the
gap distance at which the two particles are deemed to be &rménal configuration.
Although predicting the particle motion beyond the thrddhs not considered here,
from the directions of their final translational velocitystreasonable to believe that the
particles will form a stable pair after contact.

Figure 6.13 visualizes this reorientation process for sd\a@ases from the simula-
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0o =70 0o =70 6o = 85° 0o = 85° 0o = 20°

do/a =22 do/a =28 do/a =22 do/a =30 do/a =50
0. =1.0° 0. =4.8° 0. = 4.6° 0. = 2.6° 0. =18
£ ~ 160 t© ~ 360 L ~960  t~4200 t© ~ 600

e

O =70 6o =70 6o = 85° 6o = 85° 6o = 20°
do/a= 1.1 do/a= 15 do/aZ 1.1 do/a: 3.0 do/a: 50
0. = 12.7° 0. = 12.2° 6. = 10.0° 0. =4.9° 0. = 3.0°

£ ~ 350 £~740 £ ~1900 t ~ 39000 2 ~ 6700

O =70 Op =70 6o = 85° 6o = 85° 6o = 20°
do/aZ 0.8 do/aZ 1.1 do/aZ 0.8 do/a: 3.0 do/a: 50
0. =110° 0. =9.9° 0. = 8.6° 0. =4.2° 0. = 2.0°
£ ~1000  t~1700  t ~5300 t ~ 731000 £ ~ 37000

Figure 6.13: DEP trajectories for various initial conditg(indicated by dashed lines).
The first, second, and third rows correspond to aspect ratiagh = 1.0, 2.0, and 3.0,
respectively. The initialdp) and final @.) angle are presented along with the initial
separationdy/a) and the travel timet,.
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tion series. The initial and final configurations as well astifansient trajectories are
plotted in the figure. The orientational angle just prior ¢tmtact,6., and the time taken
to complete the travet;, are provided for each case. Several observations can be mad
from this figure. First, for all the cases shown, including fipherical shape, the parti-
cles finally reach an oblique configuration that has a chgiaimgle with respect to the
direction of the electric field. The chaining angle in theases are less than<and it
depends on both the initial configuration and the asped odtihe particles. For exam-
ple, considering the spherex'b = 1.0), if we compare the two casesfgt= 70°, or the
two cases afly = 85°, we can see that increasing the initial particle distashcehile
keepingd, constant would lead to a smaller chaining angle. On the dthaed, keeping
the initial distance constant while increastipgould lead to a smaller chaining angle as
well. A comparison of the two cases with= 70° or 85 anddy/a = 2.2 illustrates this
argument. Furthermore, when the particles are far apart,gg.= 20° anddy/a = 5.0,
the chaining angle could also be small (less thgn &nd the two particles are almost
parallel with the electric field. For the other two geometatios,a/b = 2.0 or 3.0,
we can observe the similar trend of the chaining anglé,as d, is varied. However,
for slender particles, the time required for global reaia¢ion is typically much longer
compared to the time for bftiparticles. This result can be attributed to the fact that
a slender particle causes less distortion to the electiit &ird thus induces a lower
DEP force. In addition, thefective distance between the two particles (equivalent to
the gap width) is larger for two slender particles when cormag@do that of bl parti-
cles under the same center-to-center distance, which teadweaker particle—particle
interaction.

As seen in the experiment with densely distributed pasif98], the reported chain-
ing angle is 16 5° for particles of approximate aspect raéith = 3.0. The closest case
in our study to the experimental condition woulddy® = 3.0,6, = 70°, andd,/a = 0.8,
where the chaining angle é& = 11°. This angle is smaller compared to what was seen

in the experiment, possibly due to the fact that only twoipkes are being considered
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here.

To get a better view how the initial configuratioftects the particle chaining, we
plot a map of the particle motion by grouping the traject®math differentd, andd,
into one single figure, which is shown in Figure 6.16 for theeéhaspect ratios. On
the map, the trajectories display a pattern that consisgsfamily of open rings that
originate near thg-axis and end near theaxis. These rings do not cross over each
other. The patrticles could start at any point initially omap. They will then follow the
trajectory and complete the rest of the path. Note that taieithe global rotation and
also to shorten the simulation time, we have uggee 90° so that the start location is
just of they-axis. In addition, the trajectories can not be extendedmfucther in the
map since at the start and end points, there is a minimal gayeba the two particles.

In the results published by Ai and Qian [97], they report thalight dependence
of particle trajectory on electric field strength. In mordaik it is explained that a
stronger electric field yields a curved trajectory that issale that of a weaker field. In
other words, the two particles would be farther apart at e for a greater value
of Eo. We point this out because our studies yield fiedent result. Here, we would
like to point out that the externally applied electric fietdemgth,Ey, has no &ect on
particle trajectories. This is because both the electrld fd flow are governed by
linear functions. Raisindg, will increase the DEP force quadratically, as indicated in
Eqg. (2.14). Since the counteracting hydrodynamic dragnesalily proportional to the
velocity, the translation of the particles would increasedratically as well. However,
the directions of the DEP force and velocity would not dependhe amplitude oE,.

It is important to note, however, that increasing the fietdrsgth will certainly reduce

the orientation times discussed herein.
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Figure 6.14: Trajectory map f@/b = 1.0. Dashed ellipses represent approximate final
configurations. Open circles correspond to the cases vasdah Figure 6.13.

Figure 6.15: Trajectory map f@/b = 2.0. Dashed ellipses represent approximate final
configurations. Open circles correspond to the cases vasdah Figure 6.13.
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Figure 6.16: Trajectory map f@/b = 3.0. Dashed ellipses represent approximate final
configurations. Open circles correspond to the cases vasdah Figure 6.13.

Figure 6.17: Particles under electro-orientation when #re initially positioned close
to one another (as indicated by dashed lines). Results avensior the case ofi/b =
2.0,60 = 0°, dp/a = 2.0. An initial perturbation of 5has been applied to each nearly

vertical particle.
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6.5.5 Particles interacting without suficient separation
As mentioned earlier, two particles with arbitrary initsglf-orientation will go

through a combined rapid electro-orientation and slow allavientation. If the par-
ticles are positioned too close to each other, their sedhalent process could be in-
terfered due to contact. Examples of this situation can badan Figure 6.17, where
the particle centers are in tandem arrangement dgth = 2.0 but each particle may
have arbitrary orientation. The two particles move towaadheother while they are
rotating. The reduced separation causes the particle tactdoefore they could finish
electro-orientation. Further motion of the particle paould depend on the nature of
the contact. In this situation, the final configuration isezapecific and does not have
a general pattern as seen in earlier discussion. A similaatgon was also seen in
the experiment by Singét al.[98], where the electro-orientation interference fronsthi

close-range interaction was discussed as “jamming".

6.6 Conclusion

In this study, we investigate the fundamental mechanicsoofspherical particle
coalescence under the dielectrophorefiee. To do so we have utilized a three-
dimensional boundary-element method to model the trahsietion of two interacting
non-conducting prolate spheroids under a DC electric figldour approach, we per-
form surface integration of the Maxwell stress tensor, d@Miscous drag is obtained
by solving the Stokes flow.

Combining previously available analytical solutions fbe thydrodynamic and di-
electrophoretic torques, we first identified an aspect thab minimizes the relaxation
time for electro-orientation of a single particle. As themerical simulation shows, the
electro-orientation of the particles is much faster thaglobal reorientation. Based on
this observation, we modeled the relative motion of twoipkes whose field-induced

dipole is already parallel with the field vector. With this d&b, we clarified the mech-
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anism that drives the ellipsoidal particles to form a statblain. The transient motion
of the particles and their chaining angle are generalizedtrajectory map for the par-
ticles with a constant aspect ratio. In particular, whengasicles are initially closely
separated, the chaining angle resembles what was obserggrevious experiment
of densely distributed particles. Therefore, this studyvptes a possible mechanism
to explain the experimental phenomenon. We have furtheliesdithe relationship be-
tween the initial separation of the particles and the finalming angle. It was shown
that particles of higher aspect ratios tend to form redud¢edneng angles and require
more time for self-assembly. Trajectories and chainingesdiscussed are shown to

be independent of field strength.
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CHAPTER VI

CONCLUSIONS

7.1 Summary of present work

The ability to rapidly detect disorders or infectious ageistof superlative impor-
tance within the medical community. While still young in dsvelopment, lab-on-a-
chip technology has shown signs of an auspicious future iictwbhacteria, diseases
and viruses can be quickly and accurately detected and gudstly treated. Required
of this technology is the ability to manipulate colloidal teidals at the micron scale.
The recent expansion of microfluidic studies has helpedifyeand exploit fundamen-
tal phenomena to improve our level of control over the biadabsuspensions used in
these LOC devices. Increasingly popular within the field adnofluidics is the use of
electric fields to drive actuation. This technique does eqtuire mechanical, moving
components. Instead it uses electrodes that are fabribgt&daightforward techniques.
A potential bottleneck to the future LOC devices is the regleitity of the assays they
perform. Precision is a challenging demand when operatitiyg particles and fluidic
channels at length scales of 1-10®. However, it is this same demand of precision
that sets theféicacy required for a positive future of the technology.

Driven by this demand, many researchers have worked to arseonee of the more
fundamental questions regarding electrokineffe@s in microfluidics. Still, there is
more to be understood regarding the complex electrokiteti@avior of colloidal par-
ticles. Some researchers choose to employ approximati@isate simple andfie-
cient, but limited in their accuracy. Others derive andzgiknalytical solutions, how-
ever, these are available only for elementary geometridscanditions. Numerical

approaches that use volume meshes such as a finite-eleméwoidaee capable, but in-

98



efficient for systematic studies required in the design androp#ition of microfluidic
networks. They are also inaccurate under conditions whéiglaresolution volume
mesh is required. Thus, there is need for an alternative noahgéechnique in the
study of electrokinetic féects. To help resolve this need, the goal of this work is to
aid in the expansion of applications of the boundary-eldmesthod to incorporate
electrokinetic &ects in microfluidics. In this dissertation, we present tiiEVBas an
alternative technique and implement it to investigateagituns that are not well-suited
for the aforementioned techniques.

The body of work discussed herein can be broken into threé@mssc In Chapter IV,
we implemented our two-dimensional BEM to study the inflleeatparallel walls on
the electrophoretic mobility of a cylindrical particle.eéRrous studies using single walls
have shown an increase in mobility as the particle appraaitieewall due to distortion
of the electric field in the gap region. What we were able tohtong however, is that
in the case of two bounding walls this “enhancement” can ligated by the viscous
drag induced by the second wall. Notably, when the partictechannel wall are com-
parable in size, the viscouffect is comparable to that of electrophoresis. By utilizing
our 3D BEM code, in Chapter V, we were able to study tifea of dielectrophoresis
on a spherical particle moving through a bent cylindricadratrel. The shape of the
channel creates a non-uniform electric field, which induc&EP force that “pushes”
the particle away from the inside corner. Our study clariffes eéfect under various
field strengths, sizes and initial positions. As the pagti®comes close to the wall, its
finite size has an increasingly importarfeet on its own transient motion. By com-
paring our results with those using a common approximatinN), we were able to
clarify the limitations of the approximation. The next steas to extend our 3D BEM
code to incorporate two particles and also to model non+sgdigarticles. With these
modifications in place, in Chapter VI we were able to study@did interaction that
takes place between two slender particles in the vicinityawth other. Here, we clarify

the chaining mechanism between slender particles andebse dependence of its
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final chaining angle on particle aspect ratio.

7.2 Limitations of present work

When using the results reported in this dissertation, inigartant to consider their
limitations. Several assumptions are inherent in the nigalemodel which may not be
suitable under extreme conditions. As discussed befoude Beating is a natural occur-
rence in electrokinetic applications. This can lead to oaiferm temperatures within
the medium, altering its mechanical, electrical and chahpcoperties [112, 113].
Joule heating is more significant at high field strengths dmalilsl be monitored in
experiments. We also do not consider DLVO-type interastitirat can occur if two
surfaces are significantly close to each other. This clakfieory encompasses van der
Waals forces and EDL interactions. Our method assumesgialglEDL thickness and
van der Waals contributions. These interactions would beersmnificant at smaller
length scales< 1 um). An electrokinetic fect that is not considered is electrodefor-
mation [114]. This is surface deformation arising from treddiinduced stresses. Our
simulations assume all particles and channel walls ard.rihe relevance of defor-
mation is dependent upon the particles used. Lastly, oureinsdleveloped around
the linearity of Stokes equations. If channel dimensiomslarge enough and yield

increased values of Reynolds number, inertitd@s must also be considered.

7.3 Contributions of present work
The first objective of this work was to advance the applicatd the boundary-
element method within electrokinetics in microfluidics. neeting this objective, we

provide several key contributions to the field.

e We have developed the 2D and 3D boundary-integral fornaratfor the elec-

trokinetic motion of particles in microchannels. Thesenfatations were then

100



utilized to construct both a comprehensive 2D and 3D BEM doased on a

previous solver for Stokes flow.

¢ Implementing these codes, we have demonstrateditbetieeness of the BEM as
an accurate alternative to other numerical techniquessiieen applied in three
studies whose geometries would be computationally demgnidir numerical

techniques limited by volume discretization.

e As a proof of its accuracy, each study is accompanied witloeotigh validation.
Each of these validations include a comparison of our BEMiltesvith those
obtained through analytical techniques for similar geoiegt For each of the

comparisons, the BEM achieved significantly high levelsaafusacy.

e To justify the need for a numerical technique, we comparelt®sbtained using
our BEM to those obtained using a point—particle approachis Tomparison
exemplifies the inaccuracies obtained without accountingffe finite size of the

particle.

Another objective of this work was to utilize the developdd\Bto study the fun-
damental electrokinetic motion of particles. In this regpeve contribute the following

concepts identified in the studies herein.

e When bound by two parallel walls, the viscougeet acting on a tightly-bound
cylindrical particle is comparable to its electrophoredftect. In addition, the

particle’s rotational velocity is sensitive to its eccaérity.

e The size of a spherical particle has an increasingly sigmfigfect on its own
transient motion when traversing through a bent pore. Thespecially true if

the particle is positioned close to the wall.

e Lastly, with sudficient distance, electro-orientation has little or rteet on the

field-induced chaining of slender particles. The final chegrangle formed be-
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Figure 7.1: Experimental results of DC-DERext created by insulating hurdle fa)(
2.85um and p) 7.85um particles reported by Karef al.[41].

tween two particles is dependent upon the aspect ratio gfahesles. The mech-

anism reported in our study serves as rationale for the vbdezxperimental

phenomenon.

7.4 Directions for future work

7.4.1 Characterization of hurdle-based DC-DEP for partice manipulation

With the three-dimensional BEM code in place and validatieere are several di-
rections that one could choose to extend its applicatiohiwiglectrokinetics. As a
proven numerical method, one could utilize the code inforigo optimize microchan-
nel design associated with certain DEP techniques. Onem@rawhthis is the hurdle-
based DEP. This technique is often applied to particle sejoar by size or electrical
properties. There are several geometric approaches ireigrdof these hurdles such
as the rectangular, triangular, spiraling or serpentife ddvantage of implementing a
BEM code to optimize the geometric parameters governingaui@annel design, is its

efficiency. A systematic study on these parameters would befal sl straightfor-
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Figure 7.2: Schematic of a microchannel design used forgagdeparation based on
DC-DEP from an insulating hurdle. Dashed lines represetari@l hurdle shapes. The
trajectory shown is what would be expected of a non-condggarticle when traveling
through the DC-DEP mechanism.

ward extension of the work detailed in Chapter V. As an examipigure 7.2 depicts
the variables that could be used in a simple study to designoatimize the hurdle
conditions. The problem specification in this study woulddentical to those of the
studies performed in this dissertation. In fact, we congulet preliminary test to ob-
serve the fect of particle size from a rectangular hurdle. Figure 7@9pthe results
of this test. The three trajectories depicted representhite® diterent particle sizes:
2a/d = 0.125 (solid line), 0.250 (dashed line) and 0.375 (daskeddine). Each of the
particles was initially positioned & /d = 1.25. The overall channel is 3dong (L),
6.25 wide and 1.28 deep in thex, y andz directions, respectively. If we define the
nominal electric field strength & = (¢1 — ¢2)/L, and its non-dimensional counterpart
askg = Eo(d/Zp), then the value oE; was held constant at 16.0. As was expected, the
larger particles deviated farther from their original atrdine while moving around the
hurdle. The final deviations for each of the particles fronakest to largest wak,/d

= 2.45, 3.30 and 4.05. Our results matched those reported by &taal. [41, 115] as

seen in Figure 7.1
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Figure 7.3: Results for a DC-DEP simulation using a squanellauand a non-
dimensional, nominal electric field strengthf = 16 at varying particle sizes:a2d
= 0.125 (solid line), 0.250 (dashed line) and 0.375 (daskeddine).

7.4.2 Characterization of embedded electrode AC-DEP for pdicle manipula-
tion

As mentioned before, alternating current is also used whgrlementing DEP.
There are advantages to using AC-DEP that make it favorafdierucertain condi-
tions. To model the féect of AC-DEP, modifications are necessary to account for the
time-varying field. The conductivity and permittivity of sopended particles are a func-
tion of the frequency of the applied field. This results in atidict response over a
range of frequencies depending on the type of particle yeurandeling. In fact, there
exists a cross-over frequency where the direction of the foEf reverses (from nega-
tive to positive DEP). This occurs when the permittivity bétparticle approaches that
of the suspending medium. To generate a non-uniform fieldguaiternative current,
asymmetric electrode geometries must be used [116—-118hebe studies, continu-
ous separation of particles is achieved by utilizing pressliven flow to move the
particles through a separation region. One of several degigoposed by Barbaros
Cetinet al. [119, 120] makes anfort to reduce the size of the separation region. In
this design, a more narrow region is generated using twaapleopper electrodes, one
on each side of a rectangular channel. It is believed thatcdm serve to further reduce

the negative ffects on cells induced by overexposure to electric fields.
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In a recent unpublished study by Barbaros Cetin, a compavies made between
the resulting trajectories using two numerical approat¢besodel his planar AC-DEP
design. Similar to our study [72], the comparison was madedxen a point-dipole
method and full integration of the Maxwell stress tensorrdke surface of the particle.
Qualitatively, the results were similar, but the simplifigoint-dipole method yielded
significant error resulting in over- and under-shootingectories. In these 2D simu-
lations, commercial software (COMSOL) used a finite-elenagproach to utilize the
more accurate Maxwell stress tensor approach. This retjrereneshing between time
steps that caused the software to become unstable and arasf thnger trajectory
simulations. Thus, there is need for a BEM study to complate@imization to en-
hance separatiorffectiveness. Specifically, studies could be performed ofotlev-
ing parameters: electrode size, channel geometry (aspic}), rparticle size, particle
shape, initial location.

Figure 7.4 shows a schematic of what the problem setup mdylike. In this
design, specified electric potential would be used at thiasairof each electrode. By
designing the channel to befBaiently long, one could approximate the inlet and outlet
potentials as zero. Electric potential would no longer theing force behind bulk
flow because the electrodes are positioned across the witlie ohannel instead of its
length. Therefore a pressure gradient would be requiredawerthe particle through
the channel by means of the induced hydrodynamic force. malsie this, diferent
values of traction would be specified at the channel inlet@uitet. Note that the slip
velocity along the channel walls will be approximately zémoregions distant from
the electrodes. Because there is no EDL at the electrodacgyrd no-slip boundary

condition would be applied.
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Figure 7.4: Schematic of a microchannel design used forgagdeparation based on
AC-DEP from 3D asymmetric electrodes. Dashed lines repteke electric field lines.
The trajectory shown is what would be expected of a non-ccimiy particle when
traveling through the AC-DEP mechanism.

7.4.3 Other future studies

For non-spherical particles in an alternating field, thgdency-dependent permit-
tivity results in multiple orientational equilibrium pasins. In general, an ellipsoid
would still have one “relaxed" orientation for a given fremaey, however, this relaxed
orientation would be a function of its frequency-depengermittivity. In the case of
an ellipsoid with three distinct axes, it would have threfedlent orientations in which
it would be considered relaxed. This could prove useful Ir@assembly applications.
Thus, one could use the current BEM to model this frequerepeddent interaction.

Interest has been developing for a numerical model capéblecounting for defor-
mation of soft particles in electrokinetic flows. Researsh®ave shown relationships
between deformability and health status for certain céllst]. Such a trait could po-
tentially be exploited for characterization and diagresstapplications. As the BEM
computes the total stress acting on the particle surfasmutd serve as a capable tech-
nique in this area. To extend the code to incorporate defioomaone would have to
account for the elasticity of the cell membrane.

There are several more immediate extensions of the curielt &de as well. For

example, modeling particles of arbitrary shapes. It has lsBewn previously, that par-

106



ticles of more complex shape can be used to aggregate intedgstterns [99, 100].
Also, biological particles can be irregularly shaped. Thosensure that microfluidic
chips are flexible enough to account for arbitrarily-shapadicles, it is necessary that
they are optimized for a variety of shapes. The BEM would gle\a useful numeri-
cal technique for predicting the behavior of complex p&tghapes. In addition, one
could study the interaction of multiple particles. In thegent work, only up to two
particles are considered. Another area that needs ineg¢istigs the interaction of par-
ticles within bounded flow. Previous researchers have wbdenteractions between
particles traversing a microfluidic channel. These pati¢cend to chain, which inter-
feres with DEP separation studies. It would be useful to rhtide interaction in the
presence of boundaries for two or more particles to identsfympact on DEP manip-
ulation techniques. At its present stage, the BEM code isldapof handling each of

these simulations.
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