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CHAPTER I

INTRODUCTION

1.1 Motivation

The promise of fast and portable diagnoses of dangerous infectious agents created

a large growth in lab-on-a-chip (LOC) technology through the 1990s [1, 2]. Also re-

ferred to as micro-total analysis systems (µTAS), these devices are often described as

miniature laboratories. They are small enough to be portable, but provide the same

functionality as their room-sized counterparts [3]. Otherthan portability, advantages

that are often listed for these systems include reduced operating costs, shorter testing

times, automation and high throughput [1]. Recent growth inthis technology was un-

doubtedly catalyzed by preceding advances in microfabrication [4]. The ability to con-

struct miniature devices that can hold and manipulate microliter fluid volumes induced

tremendous growth in microfluidic studies. This, in turn, lead to a great number of ap-

plications. Others have compiled more exhaustive lists of applications for microfluidics,

but a sample of the more prominent topics would include fluid optics, inkjet printing,

drug discovery, biosynthesis, bio-warfare defense, food and agriculture testing and the

most common application, medicinal diagnostics.

Due mostly to the simplicity of their integration and use, electric fields have be-

come a popular form of actuation in microfluidics. This technique eliminates the need

for micro-scaled mechanical components such as pumps, valves and mixers. Using

an electric field, one can induce bulk fluid motion within in a microchannel through a

process called electroosmotic flow (EOF). Additionally, electric fields can drive down-

stream motion of individual dielectric particles by means of their net charge in a process

referred to as electrophoresis (EP). Each of these effects are well documented [3, 5–8]
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and will be discussed in more detail in the following chapter.

The electrophoretic motion of a particle can be perturbed bythe presence of a spatial

non-uniformity in the electric field. This effect is referred to as dielectrophoresis (DEP)

and it is an extensively studied topic. More detail can be found in literature [2, 7, 9–

16]. A DEP force is often used to generate motion orthogonal to the direction of the

applied field. The ability to generate a force acting on a micro-particle in a direction

transverse to fluid flow is of particular interest to biomedical researchers. Such a ca-

pacity has allowed them to manipulate biological particlesin an effort to incorporate

sorting [17, 18], focusing [19–21], trapping [22–24], migration [25–27], characteriza-

tion [28–30] and filtering [31, 32] processes into microfluidic devices. Additionally,

DEP interaction between non-conducting particles has alsoconjured interest in aggre-

gation applications [33–35]. The unique reorientation process allows for the construc-

tion of desired materials including tissues [36, 37], biocomposites [38], microwires [39]

and photonic crystals [40].

Despite the number of applications for microfluidic devices, modeling and charac-

terization of particle handling in electrokinetic flows is still a challenging task. This is

especially the case for arbitrary channel geometries and large particle-to-channel size

ratios, which causes significant distortion of the local electric and flow fields. Never-

theless, microfluidic channels often use complex geometries and small design features

for the intricate manipulation of suspended particles. Forexample, Kanget al. [41]

investigated the DEP effect of an insulating hurdle on the trajectory of electrophoretic

polystyrene particles. Their objective was to use the DEP force generated near the

corners of the hurdle to “push" the particles into different streamlines. The effect was

introduced as a separation technique due to the fact that thestreamline shift was de-

pendent upon the size of the particle. To extend the study, the same group used a

similar technique to separate white blood cells, and in a separate experiment, breast

cancer cells [12]. A more adjustable form of DC-DEP was realized by Barbulovic-

Nadet al. [42] by using an oil droplet as the insulating hurdle. In thatstudy, adjusting
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the droplet size allowed for simple dynamic control of the field gradient used to generate

the DEP force. Other non-trivial microfluidic networks utilize serpentine channels [43],

spiraling channels [44] and converging–diverging sections [45] to attain the field distri-

butions necessary for DEP particle manipulation in DC or DC-biased alternating fields.

In general, accounting for the finite size of a particle in a numerical simulation is

computationally demanding when attempting to model the particle’s motion in a mi-

crochannel. For this reason, simplified approaches have been developed. For example,

some researchers choose to take advantage of a similitude between the electric field and

the fluid velocity field for electroosmotic flows [46–48]. By assuming that the particles

in such flows simply follow the streamlines, the solution to the electric field alone may

be used to approximate the particle motion [17, 49]. When theDEP effect on the parti-

cles is considered, a further approximation is to employ thethe point dipole or multipole

methods [10] to determine the DEP force. In these methods, the particle size is assumed

to be infinitely small, and the DEP force can be evaluated based on a simple formula

involving the undisturbed local electric field strength andits derivatives. Under these

approximations, the particle’s trajectory can be found by performing straightforward

Lagrangian tracking. To improve the accuracy of this approach, sometimes an empiri-

cal correction factor is used to correct the particle mobility [50, 51]. The point–particle

approach can be highly efficient and is valid when the size of the particle is small when

compared to that of the channel. However, as the particle is close to the wall, or its size

approaches that of the channel, distortion of the surrounding electric field due to the

presence of the particle can no longer be neglected. A recently published and well-cited

review explicitly stated the need for further studies on theperturbing influence of mi-

crochannel boundaries [2]. For example, when a non-conducting particle is close to a

plane wall, it has been shown in experiments that a net DEP force is generated from the

distorted electric field in the narrow gap between the particle and wall [52–54]. This

force is in addition to the DEP generated by the global nonuniformity of the electric

field. Some previous studies have shown that the dipolar or multipole approximation
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of the DEP leads to inaccuracies when applied to a particle inthe vicinity of an elec-

trode [55–57]. Similar to the DEP approximation, ignoring the particle’s presence in the

flow field may oversimplify the hydrodynamics and lead to inaccurate estimate of the

viscous drag on the particle. For these reasons, a study addressing the DEP mobility of

particles of finite size would have to fully couple the particle together with the electric

field and flow. So far there are only a few limited such studies [45, 58].

For electrokinetic particles of finite sizes, both analytical and computational ap-

proaches have been applied previously to solve the governing equations and to ob-

tain description of the particle dynamics. For example, exact solutions [59, 60] and

asymptotic expansions [61–63] have been applied to obtain expressions of the veloc-

ity or force on a spherical particle near a planar or cylindrical geometry. For an ar-

bitrary geometrical configuration, a numerical technique is necessary to simulate the

flow and electric field. Numerical methods based on volume discretization, such as the

finite-element method (FEM) [64–66], have limited accuracywhen the particle–wall or

particle–particle separation is small compared to the particle size and a fine resolution

is needed to resolve the gap region. Additionally, for transient simulations, the volume

mesh often has to be regenerated every a few time steps to avoid severe mesh distortion.

On the other hand, the boundary-element method (BEM) [67], which requires a surface

mesh only, is superior to the FEM in accuracy and efficiency when a linear problem

is considered, e.g., an electrokinetic problem with the thin-EDL assumption. Previ-

ously, the BEM has been applied in electrokinetic flows [68–70] and has shown great

promises. We also have developed an in-house BEM code to solve electrokinetics of

particles in arbitrary channels [71, 72]. The numerical approach can handle very small

gap region (around 1% of the particle size). With slight modification, the solver can

incorporate the Maxwell stress tensor and can thus be used tosimulate the DEP effect

on the particle.
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1.2 Objectives

The goals of this work can be summarized into two objectives.First, we wish to ad-

vance the application of the boundary-element method within the field of electrokinetics

in microfluidics. Under the notion that precision and the ability to efficiently optimize

microchannel design is paramount to the future of LOC technology, we want to extend

this numerical approach and demonstrate its capabilities.In doing so, it helps us achieve

our second objective: to study and characterize several fundamental phenomena related

to electrokinetic particle motion in microfluidics.

1.3 Outline

Each of the studies within this dissertation are presented as independent applica-

tions of the developed BEM. Before discussing each implementation, we will provide a

background of the underlying physics and introduce the integral equations which serve

as the foundation to the BEM.

Chapter 1 introduces the subject material. It serves as a brief overview of the field to

provide context to the studies. Here, we report various applications by researchers. In

this introduction, we intend to detail the motivation behind the studies herein and also

to clarify the objectives of the work.

Chapter 2 conveys the underlying physics behind the phenomena studied. The

primary electrokinetic effects discussed in this dissertation are electroosmosis, elec-

trophoresis, dielectrophoresis and electro-orientation. As such, each topic has its own

section describing its origin and the formulas used to modelits effect.

Chapter 3 provides a broad overview of the boundary-elementmethod and how it

is applied. Here, we detail each of the integral equations used in this method: the 2D

and 3D integral formulation for Laplace’s equation and alsothe 2D and 3D integral

formulation for Stokes’ equation. Additionally, we provide the integral identities used

during integration to address singularities that arise.
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Chapter 4 details the results of our first application of the BEM. Here, we applied

our 2D BEM code to study the electrophoretic mobility of a colloidal cylinder when ar-

bitrarily positioned between two parallel walls. In doing so, we evaluate a wall-induced

electrokinetic enhancement for the case of two walls. In this report, we find that the

enhancement effect is comparable to the viscous effect introduced by the second wall.

This is most significant for a tightly bounded particle.

Chapter 5 is a fundamental study of DC-DEP. Here, we implement our 3D BEM

code to observe a spherical particle translating through a bent cylindrical channel. In

doing so, we look at the effects of particle size, field strength and eccentricity as thepar-

ticle experiences negative DEP when traveling through the bent region. The systematic

study helps to characterize this effect for the case of a fundamental geometry common

to microfluidic networks. We also compare our results with those obtained using the

point–particle approach to clarify its limitations and justify the need for a numerical

technique when the particle’s size is no longer negligible.

Chapter 6 is a thorough report over the DEP interaction of ellipsoidal particles. By

using our 3D BEM code, we study the field-induced chaining effect for non-conducting

prolate spheroids. In this report we characterize the phenomenon by observing the finite

chaining angle formed and its dependence upon the particle aspect ratio. Also addressed

is the significance of electro-orientation for particles ofarbitrarily initial orientation and

position.

Chapter 7 serves as closing remarks to the dissertation. In this section the motivation

behind the work is summarized. We present the overall conclusions and contributions

made to the field. In addition, future topics of study are suggested.
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CHAPTER II

BACKGROUND

2.1 Electric double layer

When in contact with an aqueous solution, a solid surface will carry a net charge. In

some cases this surface charge stems from the ionization arising from the dissociation

of chemical groups. This process depends on the acidic or basic strengths of these

groups and the pH of the solution. In many other cases, the surface charge comes

from its adsorption of ions in the solution. For most electrolyte solutions, the surface

will develop a negative charge [11]. The existence of a surface charge attracts ions

of opposite charge (counterions) and repels ions of like charge (co-ions) within the

solution. This results in a thin layer of fluid with a net charge that balances the adjacent

surface charge. This layer of fluid is commonly referred to asthe electric double layer

(EDL). Outside of this layer, the bulk fluid is electrically neutral.

If we assume that the surface develops a negative charge, then positive ions within

the solution are drawn toward it. A diagram of the EDL in this scenario is shown in

Figure 2.1. Here we see the EDL is comprised of two main sections: a compact layer

and a diffuse layer. The compact layer is composed of counterions thatare immobile

due to their strong attraction to the surface. In general, the compact layer is only a

few Angstroms in thickness and the electric potential distribution is mostly linear [4].

Beyond the compact layer exists a thicker layer of fluid in which the net charge density

gradually reduces to zero. This layer is referred to as the diffuse layer and the ions

within it are mobile. Thickness of the diffuse layer is dependent upon the electrical

properties of the solution and can range from several nanometers to a few microns [3].

The compact layer and diffuse layer make up the EDL. Outside of the EDL, there is an
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Figure 2.1: Diagram of the electric double layer.

even number of counterions and co-ions and the net charge density everywhere is zero.

The plane separating the diffuse and compact layers is referred to as the shear plane.

It is straightforward to experimentally measure the electric potential at this plane. This

potential is referred to as the zeta potential (ζ). Determining the potential at the solid-

liquid interface is more challenging. Because of this, the zeta potential is commonly

used as an approximation of the electric potential at the interface [3].

The distribution of electric potential within the diffuse layer of the EDL is governed

by the Poisson-Boltzmann (PB) equation. For a symmetric electrolyte (constantz), this

relationship simplifies into the following form,

∇2φ =
2zen∞
εm

sinh
( zeφ
kbT

)

, (2.1)

wherez is the ionic valence,e is the elementary charge,n∞ is the bulk ionic number

concentration,εm is the permittivity of the solution,kb is the Boltzmann constant andT

is the absolute solution temperature.

In many microfluidic studies, it is common to use an approximation referred to as

the thin-EDL assumption. This method takes advantage of thelarge difference in length

scales when comparing the EDL thickness to the enclosing geometry,e.g.microchannel
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width. If the solution has a low electrolyte concentration (nearly pure water), then it

will yield a thicker EDL. However, as was mentioned before, alarge EDL is generally

still less than a few microns in thickness. This is much smaller than the diameter of

many microchannels, which are commonly on the order of 100µm. The characteristic

thickness of the EDL is commonly referred to as 1/k, where

k2 =
2z2e2n∞
εmkbT

, (2.2)

is the Debye-Hückel parameter. Ifa is the characteristic length scale of your system,

then the thin-EDL assumption is commonly written aska >> 1. Under this condition,

the EDL thickness is neglected. The electric potential distribution and velocity flow

field within the EDL are not considered. Instead, we use the condition of both fields at

the slip plane to represent the condition of both fields at thesurface. From a modeling

point of view, the no-slip boundary condition common in conventional fluid mechanics

is replaced with a slip velocity boundary condition that is proportional to the electric

field,

uS = −
εζ

µ
E, (2.3)

whereuS is the slip velocity,ε is the dielectric constant of the electrolyte solution and

ζ is the zeta potential of the surface. This is important because it means we can model

electric field without having to solve the nonlinear PB equation. Outside of the EDL,

there is no net charge density. Thus, by using the thin-EDL assumption, we are mod-

eling the field as being electrically neutral everywhere. From this, we can model the

electric potential using Laplace’s equation,

∇2φ = 0. (2.4)
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Figure 2.2: (a) Plug-like electroosmotic flow profile when considering a finite EDL
thickness (left) and under the thin-EDL assumption (right). (b) Electrophoretic motion
of a particle under the thin-EDL assumption.

2.2 Electroosmosis and electrophoresis

Formation of the electric double layer is a fundamental phenomenon that drives a

common form of electrokinetic actuation. If an electric field is applied tangential to an

EDL, it generates electrostatic forces on the ions within the EDL. The force acting on

the mobile ions within the diffuse layer yields motion of the fluid in this layer in the di-

rection of the applied field. At the characteristic length scales common in microfluidics,

viscous forces dominate over inertial forces. This stems from the a large ratio of surface

area to volume (typically on the order of 106 m [4]). A result of these effects is bulk

fluid motion outside of the EDL. This electrokinetic form of pumping is referred to as

electro-osmosis. The viscous motion of the fluid produces a plug-like velocity profile.

When considering a finite EDL thickness, the velocity profileis similar to that seen on

the left side of Figure 2.2(a). As mentioned previously, however, a well-accepted model

for electrokinetic flow is to neglect the EDL thickness (ka>> 1). Under this treatment,

the velocity profile resembles that shown on the right side ofFigure 2.2(a). Based on the

thin-EDL assumption, electroosmotic flow can be represented by the following relation,

uEOF = −
εζw

µ
E, (2.5)

whereζw is the zeta potential of the microchannel wall.
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A contrasting motion arises when the charged surface is no longer stationary. Con-

sider a rigid non-conducting particle suspended in an electrolyte solution. There still

exists an EDL in this situation. It forms around the surface of the particle much like

it would a plane wall. What is different about this scenario is that the charged surface

is free to move under an electrostatic body force. Under an electric field, the particle

will be driven toward one of the electric field while the fluid in the EDL is driven to-

ward the opposite end. The driving force behind this motion is the Coulombic force

acting on the particle’s net charge. The resulting motion ofthe particle is referred to as

electrophoresis. This form of electrokinetic motion is depicted in Figure 2.2(b). Under

the thin-EDL assumption, the electrophoretic velocity of aparticle is expressed as the

Helmholtz–Smoluchowskiequation,

uEP =
εζp

µ
E, (2.6)

whereζp is the zeta potential of the particle surface. Combining theadvection of the

surrounding fluid and electrophoretic mobility, it can be shown that a particle’s veloc-

ity under both electroosmotic flow and electrophoretic motion can be described in the

following manner [5],

UP =
ε(ζp − ζw)

µ
E, (2.7)

2.3 Dielectrophoresis

If electrophoresis is described as a technique used to transport particles along the

length of a microchannel, then dielectrophoresis could be described as the technique

often used to induce a lateral migration. Under an electric field, the ions within and

on the surface of the particle material will have a tendency to shift in the direction

of the field that is opposite its own charge. This redistribution of charge results in a
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E
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Figure 2.3: Diagram visualizing the origin of a DEP force on aparticle. The dotted lines
represent the electric field lines in the absence of a particle. Orientation of the dipole
and Coulombic force acting on it are displayed below the particle.(a) Represents the
case of a uniformly applied electric field whereas (b) represents that of a non-uniform
field.

polarization of the particle. This polarization draws counter-ions within the suspending

medium toward the particle surface. In the case of a dielectric particle suspended in an

electrolyte solution, more charge will accumulate on the medium side of the particle–

medium interface. This is because a material of low conductivity does not easily permit

the migration of ions. The resulting imbalance of charge at the interface on either side

of the particle yields a field-induced dipole across the particle. In a uniformly applied

electric field, such as that seen in Figure 2.3(a), the Coulombic forces acting on the

induced dipole are balanced. In a non-uniform field, however, a lack of symmetry in

electric field strength across the particle yields and imbalance of force distribution. The

resulting net force is referred to as the dielectrophoreticforce. A schematic of how a

DEP force is generated is shown in Figure 2.3(b).

Both alternating and direct current electric fields (AC and DC) have been widely

used for generating the DEP force needed to manipulate particles. By using embed-

ded electrodes, AC-DEP is capable of operating under reduced field strengths, which
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is important to cell viability. However, it often requires ametal deposition step in the

fabrication of the fluid channels. This increases complexity and raises the cost. On the

other hand, DC-DEP (sometimes referred to as electrode-less DEP or insulator DEP)

does not require embedded electrodes. It utilizes an irregularity in the geometry of a mi-

crochannel such as an insulating obstacle to locally alter the electric field and generate

the DEP force [73]. Another advantage to DC-DEP is that it reduces fouling and elec-

trolysis, two common problems encountered when using embedded electrodes. This

work will focus on DC-DEP. The results of many DC-DEP studiesare useful in refer-

ence to AC-DEP in the fact that DC-DEP simply represents the lower limit of frequency

for AC-DEP.

2.3.1 Point-dipole method

To solve for the DEP force acting on a particle, there are two common approaches.

The first technique discussed is a popular approach due to itssimplicity. It is referred to

as the point-dipole method (PDM). In this approach, detailed by Jones [10] and again

by Morgan and Green [11], the higher order multipolar moments are neglected and the

polarized particle is modeled using an effective dipole moment. For a spherical particle

under a constant field, the effective dipole moment is,

p = 4πa3εm fCME, (2.8)

wherea is the particle radius andfCM is theClausius-Mossottifactor. Under a DC field,

theClausius-Mossottifactor is defined by the the conductivity of the particle,σp, and

suspending medium,σm [74],

fCM =
σp − σm

σp + 2σm
. (2.9)
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For a dielectric particle in whichσp << σm, fCM approaches the lower limit of -1
2. By

modeling the particle as an infinitesimal dipole with an effective dipole moment given

by Eq. (2.8), we can find the force acting on the particle,

FDEP = (p · ∇)E = −2πa3εm(E · ∇)E. (2.10)

After rearranging the following vector identity and considering the electric field is irro-

tational [10],

∇(E · E) = 2(E · ∇)E + 2E × (∇ × E). (2.11)

we arrive at the final relation for the DEP force according to the effective moment

approach, often referred to as the point-dipole method,

FDEP = −πa3εm∇(E · E) = −πa3εm∇|E|2. (2.12)

It is important to note that this technique is only valid in cases where the particle is

sufficiently smaller than its environment. This is because the finite size of a particle

is neglected. The DEP force acting on the particle comes fromthe derivatives of the

electric field at the point where the center of the particle would be located. This is why

the PDM is labeled as apoint–particle approach. Any distortion of the field from the

dielectric volume of the particle is not considered. The simplicity of this approxima-

tion makes it a popular technique. Oversight of its limitations, however, can lead to

significant error. This will be discussed in a later chapter.

2.3.2 Maxwell stress tensor integration

A different approach, commonly accepted to be the most rigorous approach [75],

utilizes the Maxwell stress acting on the surface of a particle suspended in an electric
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field. The Maxwell stress tensor (MST) describes the stress on an object within an

electric and/or magnetic field. In its general form for a constant field, it is written as,

T = εm(EE −
1
2
|E|2I ) + µ0(HH −

1
2
|H |2I ), (2.13)

whereµ0 is the vacuum magnetic permeability,I is the unit tensor andH is the magnetic

field vector. In this form, the product of two vectors withouta dot product is the dyadic

product. For a DC field, the near-field approximation is a suitable simplification to the

Maxwell stress tensor [75]. Under this approximation, the magnetic field effects are

neglected and the stress tensor simplifies to,

T = εm(EE −
1
2
|E|2I ). (2.14)

The total DEP force acting on a particle can then be found by integrating this stress

around the surface of the particle,

FDEP =

∫

P
T · n dS =

∫

P

[

εm(EE −
1
2
|E|2I )

]

· n dS (2.15)

The Neumann boundary condition utilized for a particle under general conditions is

continuity of the normal component of electric displacement. Expressed numerically

for a pointx, on the interface, it takes on the following form [70],

εm
∂φm

∂n

∣

∣

∣

∣

∣

x
= εp

∂φp

∂n

∣

∣

∣

∣

∣

∣

x

(2.16)

whereεp is the permittivity of the particle andφm andφp correspond to the electric

potential just outside and inside of the particle interface, respectively. In the studies

performed herein, it is assumed that the particle is a dielectric such thatεp << εm.

With this assumption, we model the particle using an insulating homogeneous boundary

condition,∂φ/∂n = 0, where the electric field does not penetrate the particle surface.
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Figure 2.4: Diagram visualizing the electro-orientation process of an ellipsoid.

Under this condition, the field vector is orthogonal to the surface normal, yieldingE·n =

0. After applying this fact to Eq. (2.15), the first term is zero based on the fact that

EE · n = E · (E · n). Through this simplification, the total DEP force is found through

the following integral,

FDEP = −
εm

2

∫

P
|E|2n dS. (2.17)

2.4 Electro-orientation

A constant electric field that is spatially independent of phase does not exert a torque

on an isotropic spherical particle. This is owed to the fact that the local Maxwell stress

is always in line with the surface normal and passes through the centroid of the particle.

For a non-spherical particle, however, a torque can arise. It is well known that a lossless

dielectric particle in a DC field will align itself such that its longest axis is parallel

with the electric field. This field-induced self-orientation process of a non-spherical

particle is referred to as electro-orientation. It can be seen depicted in Figure 2.4. By

approximating the particle as an infinitesimal dipole and utilizing the effective moment

method, Jones [10] formulates the DEP torque for a particle under this condition,

TDEP =
4πabc(εp − εm)2(L⊥ − L‖) |E|2 sinα cosα

3εm

[

1+
(εp − εm

εm

)

L‖
][

1+
(εp − εm

εm

)

L⊥
] (2.18)
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whereθ is the angle between the longest axis,a, and the electric field. In a later sec-

tion, the interaction of non-spherical particles will be addressed. Specifically, prolate

spheroids will be modeled. Thus, it is of interest to simplify the above equation. For

a prolate spheroid in whichb = c, the depolarization factors,L⊥ andL‖ reduce to the

following expressions,

L‖ =
b2

2a2e3

[

ln
(1+ e
1− e

)

− 2e
]

(2.19)

L⊥ =
1− L‖

2
, (2.20)

where the eccentricity is defined ase =
√

1− b2/a2. For the a prolate spheroid under

the limiting case ofεp << εm, Eq. (2.18) reduces to

TDEP =
4πab2εm(L⊥ − L‖) |E|2 sinα cosα

3(1− L‖)(1− L⊥)
. (2.21)

Analogous to the previous section, there exists a more computationally demanding

technique that is a more direct approach to calculating the DEP torque. Similarly, this

method utilizes full integration of the Maxwell stress tensor and provides more accurate

results for cases when a colloidal particle is positioned near another surface, whether it

is another particle or a channel well. Implementing the Maxwell stress tensor, the DEP

torque on a particle can be expressed as,

TDEP =

∫

P
(T · n) × r dS, (2.22)

wherer is the displacement vector (lever arm). BecauseE · n = 0 is zero on the surface

of the particle, we can make the same simplifications that were made in the previous

section to arrive at the following relation,

TDEP = −
εm

2

∫

P
|E|2 (n × r ) dS. (2.23)
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2.5 Influence of electric fields on cells

Many of the applications discussed in this work involve the use of cells. In this use,

care must be taken to ensure the viability of the type of cell used. Exposing cells to

strong electric fields can alter their natural state and under certain conditions it can lead

to cell lysis [5]. In a review, Voldman discusses two common negative results when

using electric fields to manipulate cells [76]. One is an altered cell membrane potential.

Under an electric field, the cell membrane can develop an “imposed" electric potential

that alters the natural bioelectricity, and ultimately, the cell phenotype. For direct cur-

rent DEP, the topic of this work, the imposed potential is proportional to 1.5|E|a where

a is the radius of the cell. It is often desirable to keep the imposed potential well below

the naturally existing potential (tens of millivolts) to reduce negative effects [76]. Un-

der a strong enough field, it is possible to rupture the cell membrane. Some researchers

have used this technique to modify cells through electroporation or electrofusion [77].

However, the DEP forces discussed herein are dependent uponviability of the cell. Be-

cause of this, and for reasons stated above, it is necessary to reduce field-induced cell

membrane stresses by reducing field strengths [73].

Another potentially negative effect arising from the use of electric fields is Joule

heating. The current passing through the medium results in atemperature rise. It has

been shown that a temperature rise from Joule heating can be expressed as∆T ∼ L2|E|2

[78]. It was previously reported that a temperature rise in asuspending medium can lead

to physiological changes within the cell. A more significantincrease in temperature,

(4◦C above a cell’s physiological temperature) can lead to celldeath [76]. A third factor

to consider is pH variations that could develop within the suspending medium. Water

electrolysis at the electrodes can yield pH gradients. Thiscan induce cell stresses,

alter the transport of certain biological particles or modify channel wall surfaces [79].

However, as has been exemplified through numerous studies, if cautiously applied, DC

fields are still a capable form of cell manipulation [12, 43, 73, 80–82].
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Lastly, it is important to note the significance of the cell membrane’s dielectric prop-

erties. When placed within a DC field, the membrane acts as a low loss capacitor [10].

Thus, the electric field does not penetrate the membrane. Based on this, we can ef-

fectively model a cell as an insulating surface. This is why simulations within this

study utilize the homogeneous Neumann boundary condition,∂φ/∂n = 0, at particle

surfaces. Additionally, most cells will have a negative surface charge due to the nega-

tively charged groups (carboxylates, phosphates) on its surface [77]. This would yield

a positively-charged EDL.
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CHAPTER III

NUMERICAL APPROACH

One of the primary goals of this work is to extend and promote application of the

boundary-element method within the field of electrokinetic-based microfluidics. This

technique is well-suited for linear partial differential equations. This is the case for

electrokinetics under the thin-EDL assumption. Analytical techniques such as asymp-

totic approaches often require elementary geometries. To perform systematic studies

required in the design of microfluidic networks, a computational method is necessary.

Commercial software such as COMSOL MultiphysicsR© allows modeling of complex

geometries by utilizing a finite-element method. Although suitable, this method is inef-

ficient and can be inaccurate.

Finite-element methods require a volumetric mesh for 3D simulations. The boundary-

element method only requires a surface mesh to model a 3D domain. This is the primary

advantage when using a BEM — you can reduce your computational domain by one

dimension when compared to finite-element techniques. Withthe boundary solution

known, you can find the solution at any point within the volumeof your domain through

an explicit equation in post-processing. Not only is this a more efficient approach, but

it is a more accurate approach. Consider two surfaces in a 3D computational domain.

As the distance between these surfaces is reduced, the resolution of the mesh must be

increased. When utilizing a finite-element approach, this requires a fine volume mesh.

Adapting the 2D surface mesh required of a BEM, however, is not as computationally

demanding. In addition, the BEM utilizes Gauss quadraturesfor numerical integration,

which provides a spectral convergence. Therefore, the BEM is able to exceed the nar-

row gap limits of techniques using a volumetric mesh. Thus, we present the BEM as a
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powerful technique in systematic studies necessary for thedesign and optimization of

channel geometries.

In our work, we have completed both a two-dimensional and a three-dimensional

version of the code, written in Fortran. Each is based upon the framework of a free

online library, BEMLIB [83]. Each of the electrokinetic phenomena discussed in Chap-

ter II are incorporated into the solver. For transient simulations, temporal updating of

the velocity and position of the particle is achieved using asecond-order Runge–Kutta

scheme. This improved Euler approach is written as

k1 = u(xn)

k2 = u(xn +
1
2
∆tk1)

xn+1 = xn +
1
2
∆t(k1 + k2). (3.1)

wherexn is the particle location attn. Integrals over each element are carried out using

Gauss–Legendre quadratures, and the resulting linear equation systems are solved using

the LAPACK library. Three-dimensional simulations are performed in parallel using

MPI.

3.1 Derivation of the boundary-integral

Before discussing application of the boundary-element method, it is appropriate

that we discuss its origins. A more extensive derivation canbe found in texts by

C. Pozrikidis [67, 83]. Here, we begin with Green’s identities. If we consider two

twice continuously differentiable functions,ψ(x, y) and f (x, y), then Green’s first iden-

tity states that the following relation applies,

ψ ∇2 f = ∇ · (ψ ∇ f ) − ∇ψ · ∇ f . (3.2)
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Figure 3.1: An example of a control area,AC, confined by closed line,C.

We can produce Green’s second identity by switchingψ and f and subtracting the result

from Green’s first identity,

ψ ∇2 f − f ∇2ψ = ∇ · (ψ ∇ f − f ∇ψ). (3.3)

Givenx = (x, y), if we assumef (x) to be non-singular and consider this relation for a

Green’s function,g(x, x0), in the place ofψ(x), we find

− f (x) ∇2g(x, x0) = ∇ · [ g(x, x0) ∇ f (x) − f (x) ∇g(x, x0)]. (3.4)

A Green’s function of Laplace’s equation satisfies the following,

∇2g(x, x0) + δ(x − x0) = 0, (3.5)

in whichx is the field point,x0 is the singular point andδ(x−x0) is Dirac’s delta function

in two dimensions. With this, we can simplify Eq. (3.4) into the form,

f (x) δ(x − x0) = ∇ · [ g(x, x0) ∇ f (x) − f (x) ∇g(x, x0)]. (3.6)

This result can then be integrated over a control area,AC, bounded by a closed surface,

C, such as the one shown in Figure 3.1. After using the divergence theorem to change
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the area integral into a line integral, we obtain,

f (x0) = −
∫

C
g(x0, x)[n(x) · ∇ f (x)]dl(x) +

∫

C
f (x)[n(x) · ∇g(x0, x)]dl(x), (3.7)

for the case ofx0, the singular point, located inside of the control area. Here, n is the

surface normal pointing into the control area, anddl is a differential arc length along

C. Eq. (3.7) allows us to find the value of a harmonic function atany point within

the control area when the boundary values and boundary distribution of the normal

derivative are known. The first integral is referred to as thesingle-layer potentialand the

second as thedouble-layer potential. This terminology is common in BEM literature

and stems from an analogy using electrostatics.

3.2 Boundary-integral formulation for Laplace’s equation

In the following studies, we assume that the thickness of theEDL, i.e., the De-

bye lengthk−1, adjacent to all surfaces is small when compared to particlesize or any

particle–wall or particle–particle gap widths such that there is no EDL overlapping and

the thin-EDL approximation may be used. With this approximation, the entire flow

field is electrically neutral, and the distribution of electric potential,φ, is governed by

Laplace’s equation from Eq. (2.4). Under this condition, wecan utilize the boundary-

integral, Eq. (3.7), to recast the Laplace equation and thensolve it using the developed

boundary-element method.

3.2.1 Two-dimensional formulation

Following the derivation in Section 3.1, the electric potential at a pointx0 in the

interior of the 2D flow field,φ(x0), can be written in the following form,

φ(x0) = −
∫

C
g(x, x0)[n · ∇φ]dl(x) +

∫

C
φ[n · ∇g(x, x0)]dl(x), (3.8)
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Figure 3.2: An example of a boundary,C = C1 + C2, confining a control area,AC,
that would be used in the boundary-element method. The form of the integral equation
depends on the location of the singular point,x0.

wherex = (x, y), r = |x − x0|, and

g(x, x0) = −
1
2π

ln r,

∂g
∂x
= −

1
2π

x− x0

r2
,

∂g
∂y
= −

1
2π

y− y0

r2
, (3.9)

are, respectively, the free-space Green’s function of the two-dimensional Laplace equa-

tion and its associated gradient (e.g., [83]). Applying (3.8) on the boundary,C, we

have

1
2
φ(x0) = −

∫

C
g(x, x0)[n · ∇φ]dl(x) +

∫

C
φ[n · ∇g(x, x0)]dl(x), (3.10)

which is the integral representation used in the BEM. Figure3.2 visualizes what a 2D

domain may look like when using a BEM. In this case, the control area,AC, is contained

by a boundary,C, comprised of two closed lines,C1 andC2. The shaded area would

represent the electric field. In this example, Eq. (3.8) represents the electric potential

for the interior evaluation point,x0, located withinAC. Eq. (3.10) expresses the electric

potential at the point,x0, located directly onC. The integrals on the right-hand side of

each equation are performed over the segmentsdl(x) comprising bothC1 andC2 with

the surface normal facing into the shaded area.
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The boundary-element method is a technique for solving for the solution to a func-

tion at the boundary of a domain. If we were trying to solve forthe boundary solution

to φ in this example, we would approximate the integrals in Eq. (3.10) using a finite

number of boundary-elementsEi. Under this method, Eq. (3.10) can be written as

1
2
φ(x0) = −

N
∑

i=1

∫

Ei

g(x, x0)[n · ∇φ]dl(x) +
N

∑

i=1

∫

Ei

φ[n · ∇g(x, x0)]dl(x), (3.11)

where i = 1, ...,N represents the total number of elements andx lies on Ei. With

this approximation, Gauss–Legendre quadrature is used forintegration. At this stage

a system of linear equations is formed and the unknown boundary values ofφ or its

derivatives are computed. Once the boundary solution is known, one has the option of

using Eq. (3.8) to find the value ofφ at any point withinAC explicitly.

3.2.2 Three-dimensional formulation

In a three-dimensional domain, the electric potential at a point x0 in the interior of

the flow field,φ(x0), takes on the following form,

φ(x0) = −
∫

D
g(x0, x)[n · ∇φ(x)]dS(x) +

∫

D
φ(x)[n · ∇g(x0, x)]dS(x), (3.12)

wheren is the surface normal pointing into the flow field enclosed by all surfaces,D.

The functiong is the free-space Green’s function for the three-dimensional Laplace

equation, together with its gradient,∇g, given respectively by

g(x, x0) =
1

4πr
,

and

∂g
∂x
= −

1
4π

x− x0

r3
,

∂g
∂y
= −

1
4π

y− y0

r3
,

∂g
∂z
= −

1
4π

z− z0

r3
, (3.13)
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wherer = |x − x0|.

If the pointx0 lies on the boundary,D, the integral equation becomes

1
2
φ(x0) = −

∫

D
g(x0, x)[n · ∇φ(x)]dS(x) +

∫

D
φ(x)[n · ∇g(x0, x)]dS(x). (3.14)

The discretization process in 3D is similar to that detailedfor two dimensions. By

approximating the integrals overD as sums of integrals across surface elements,Ei, we

can re-write Eq. (3.14) as

1
2
φ(x0) = −

N
∑

i=1

∫

Ei

g(x, x0)[n · ∇φ]dS(x) +
N

∑

i=1

∫

Ei

φ[n · ∇g(x, x0)]dS(x), (3.15)

wherei = 1, ...,N represents the total number of elements andx lies onEi.

3.3 Boundary-integral formulation for Stokes equation

The fluid is assumed to be Newtonian and incompressible, and the Reynolds number

is small so that the fluid inertia can be ignored. Bulk flow is then governed by the Stokes

and continuity equations

−∇p+ µ∇2u = 0, ∇ · u = 0, (3.16)

wherep, u, andµ are the pressure, velocity, and viscosity, respectively. Although there

is no time dependence visible in Eq. (3.16), a time evolutioncan exist based on the

motion of a particle boundary. For this reason, the simulations are said to be quasi-

steady. A derivation of the boundary-integral representing Stokes flow analogous to

that presented in section 3.1 can be found in [83].
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3.3.1 Two-dimensional formulation

To solve the flow in two dimensions, we use the boundary-integral formulation for

the Stokes equation and expressu at the pointx0 that lies inside the fluid,

u j(x0) = −
1

4πµ

∫

C
Gi j (x, x0) fi(x)dl(x) +

1
4π

∫

C
ui(x) Ti jk (x, x0) nk(x) dl(x), (3.17)

whereC represents the boundary of the domain,fi is the traction, and

Gi j (x, x0) = −δi j ln r +
x̂i x̂j

r2
, Ti jk (x, x0) = −4

x̂i x̂j x̂k

r4
, (3.18)

are, respectively, the free-space Green’s function of two-dimensional Stokes flow and

associated stress tensors,x̂ = x − x0, andr = |x̂| (e.g., [67]). If the pointx0 lies on the

boundaryC, the integral equation takes on the form,

1
2

u j(x0) = −
1

4πµ

∫

C
Gi j (x, x0) fi(x)dl(x) +

1
4π

∫

C
ui(x) Ti jk (x, x0) nk(x) dl(x). (3.19)

As with the integral equations representing electric potential, the integrals in Eq. (3.19)

can be approximated over a finite number of elements to develop a system of linear

equations.

3.3.2 Three-dimensional formulation

When working with a three-dimensional computational domain, the formulation for

u at the pointx0 inside of the fluid takes on the following form,

u j(x0) = −
1

8πµ

∫

D
G ji (x0, x) fi(x)dS(x) +

1
8π

∫

D
ui(x)Ti jk (x, x0)nk(x)dS(x), (3.20)

whereu = (ux, uy, uz) and f = σ · n is the component of the hydrodynamic traction,

andG andT are the free-space Green’s function and associated stress tensor for Stokes
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flow, given by

Gi j (x − x0) =
δi j

r
+

x̂i x̂j

r3
, Ti jk (x − x0) = −6

x̂i x̂j x̂k

r5
, (3.21)

and again,r = |x − x0|. Note that the dummy indicesi, j, andk rotate among the

componentsx, y, andz. If the pointx0 lies on the boundaryD, the integral equation

takes on the form

1
2

u j(x0) = −
1

8πµ

∫

D
G ji (x0, x) fi(x)dS(x) +

1
8π

∫

D
ui(x)Ti jk (x, x0)nk(x)dS(x). (3.22)

After discretization, Eq. (3.22) will be used to formulate the algebraic system to obtain

the hydrodynamic tractionf on the particle and cylinder surfaces (note that the fluid

velocity at these surfaces will be based on the slip velocityand can be obtained, onceφ

and its gradient are available). Oncef is obtained, the fluid velocity at any interior point

in the flow can be calculated by evaluating Eq.(3.20) in post-processing.

3.4 Integral identities

An issue arises with use of the integral equations pertaining to the singularity of the

integrals. More specifically, as the integration point,x, approaches the evaluation point

x0 on a surface, the integrands in the boundary-integral formulation exhibit singular-

ity and thus require special numerical treatment. In two dimensions, we can subtract

the singularities and integral analytically [83]. In threedimensions, to deal with the

singularity found in the single-layer potential terms, a straightforward coordinate trans-

formation into local polar coordinates is used [83]. For thedouble-layer potential, a set

of integral identities are utilized to subtract the singularity. Therefore, it is of interest

to identify the applicable integral identities here for usein each study. For the Laplace
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equation we have the following identity,

∫

D
[n(x) · ∇g(x, x0)]dS(x) =







































1 whenx0 is insideVc

1
2 whenx0 is onD

0 whenx0 is outsideVc

(3.23)

when the surface normal,n, points into the control volumeVc bounded by the surface,

D. If the surface normal were directed outside of the the control volume or area, the

sign of the terms on the right side would be reversed.

The stress tensor of Green’s functions satisfies the following identity,

1
8π

∫

D
Ti jk (x, x0)nk(x)dS(x) =







































δi j whenx0 is insideVc

1
2δi j whenx0 is onD

0 whenx0 is outsideVc

(3.24)

when the surface normal,n, points into the control volumeVc bounded by the surface,

D. Again, if the surface normal were directed outside of the the control volume or area,

the sign of the terms on the right side would be reversed.

Two identities used to simplify the expressions for translational and rotational rigid-

body velocity of the particle in 2D are expressed as [67],

∫

C
Ti jk (x, x0)nk(x)dl(x) = −2πδi j

ǫilm

∫

C
(x− xc)mTi jk (x, x0)nk(x)dl(x) = −2πǫ jlm(x0 − xc)m. (3.25)

wheren is the surface normal that is directed outside of the area enclosed by the surface,

C. An equivalent set of identities for three dimensions takeson the following form,

∫

D
Ti jk (x, x0)nk(x)dS(x) = −4πδi j

ǫilm

∫

D
(x− xc)mTi jk (x, x0)nk(x)dS(x) = −4πǫ jlm(x0 − xc)m. (3.26)
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The same rules between the direction of the surface normal and the sign of the right-

hand side apply to these identities as well.
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CHAPTER IV

ELECTROPHORETIC MOBILITY OF A COLLOIDAL CYLINDER

BETWEEN PARALLEL WALLS

4.1 Background

It is well known that in an unbounded flow, the electrophoretic motion of a non-

conducting particle with arbitrary shape is purely translational, and the velocity can be

described by Smoluchowski’s formula, Eq. (2.6). However, when the particle is near

a wall, its mobility may change significantly due to modification of the electric field

by the presence of the wall. In fact, it was found that the translational velocity of a

spherical particle is increased as the particle is sufficiently close to the wall [59, 61, 84].

This result is in sharp contrast to the intuitive idea that when compared to a particle

in unbounded flow, a particle travelling along a wall would beslowed down due to the

increased viscous force, as seen in the Stokes mobility problem.

Electrophoretic motion of a particle near boundaries has been studied for various

configurations. The translation of a spherical particle near a wall was analyzed by Keh

& Chen [59] for insulating surfaces using the eigenfunctionseries, and their study was

later complemented by Yariv & Brenner [62] for closer particle-wall separation using an

asymptotic expansion. Other configurations include spheroids, cylinders, or ellipsoids

in confined environments such as cylindrical pores [61, 65],spherical cavities [85, 86],

and complex channels [64, 66]. Despite these works, the electrophoretic mobility of

an infinite cylindrical particle bounded by two parallel walls and translating perpendic-

ular to its own axis has not been reported. The problem emulates the situation where

a slender particle is moving sideways in a microchannel. Kehet al. [87] derived an

analytical solution for an infinite, insulating cylinder electrophoretically moving along
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a single non-conducting wall and found that the velocity grows unboundedly as the

cylinder-wall separation approaches zero. It is not clear yet how the cylinder’s mobility

would change if it is bounded from both sides. One relevant situation to this issue is

the electrophoresis of a spherical particle moving betweentwo parallel walls, which

was studied analytically by Unniet al. [88] for arbitrary eccentricity. In Unniet al., the

particle’s translation is found to be enhanced when both walls are close to the particle,

which implies that the increasing electrophoretic effect has overcome the hydrodynamic

retardation for the close particle-wall separation. However, this phenomenon may not

occur in the two-dimensional case, where the closely fittingcylinder is subject to a “pis-

ton effect” and will experience much higher hydrodynamic resistance than the spherical

particle in the channel. In this sense, the confined cylinderis more like the sphere in

a narrow cylindrical pore, whose electrophoretic mobilitydecreases significantly when

the particle-to-pore radius ratio approaches to unity [61].

4.2 Problem specification

In this study, we consider a cylindrical particle suspendedin an aqueous electrolyte

solution between two parallel walls, as shown in Figure 4.1.The axis of the cylinder

is parallel to the walls and is perpendicular to the uniform,external electric field,E∞.

The problem configuration is two-dimensional, where the particle may rotate about

thez axis while translating in thex direction. Both the particle and the channel walls

are non-conducting and carry uniform surface charges, which are characterized by their

respective zeta potentials,ζp andζw. A positively charged surface has a positive value of

zeta potential. The thin-EDL approximation is utilized so that Eq. (2.4) governs electric

potential. The homogeneous Neumann boundary condition,∂φ/∂n = 0, is applied at

the particle surface and channel walls [62] because both arenonconducting. Note that

n is the surface normal and points into the flow. Dielectrophoresis is not considered in

this study.
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Figure 4.1: Schematic of the cylindrical particle suspended in an aqueous solution be-
tween two parallel walls.

Bulk fluid flow is governed by the Stokes and continuity equations, Eq. (3.16). From

the thin-EDL assumption, Eq. (2.3) is used to describe the slip velocity next to the par-

ticle or channel walls. The slip velocity is relative to the solid surfaces and proportional

to the local tangential gradient of the electric potential,

uS =
εmζ

µ
(I − nn) · ∇φ, (4.1)

whereζ = ζp or ζw is the zeta potential on either the particle surface or channel wall,

and (I − nn) is a surface gradient operator. For clarification, using anarbitrary vectorf ,

the operator provides the following adjustment,

(I − nn) · f = f − nn⊺f = f − n(n · f ) = f − |fn|n = fτ (4.2)

in order to yield the tangential component. In the laboratory coordinates, the fluid

velocity at the particle surface is the combination of the rigid body motion of the particle

and the slip velocity,

u(x) = uB + uS = uc + ωez× (x − xc) + uS, (4.3)
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wherex is a point on the particle surface,xc anduc are the position and velocity of the

centroid of the particle,ω is the rotational speed of the particle,ez is the unit vector inz,

anduB = uc +ωez× (x − xc) is the velocity of the pointx due to the rigid body motion.

The particle is assumed to be neutrally buoyant in the fluid, and its inertia can also be

ignored. Therefore, both the total traction and torque exerted on the particle vanish,

∫

P
f dl = 0,

∫

P
(x − xc) × f dl = 0, (4.4)

wheref = σ · n = ( fx, fy) is the local traction, and the integrations are performed over

the particle contour,P. At the two channel ends, which are far away from the particle,

we assume that flow is fully developed so that the velocity no longer depends onx.

4.3 Formulation

Note that the Laplace equation solution is independent of the solution of Stokes

flow while the latter depends on the former through the slip velocity boundary condition

Eq. (4.1). Therefore, the Laplace and Stokes equations can be solved sequentially.

In this study, the electric potential,φ, is decomposed into a combination of the

background potential,φ∞ = −E∞x, and the disturbance potential generated due to the

presence of the particle,φD, so thatφ = φ∞ + φD. Following the 2D formulation from

Chapter III, the disturbance potential at a point,x0 on the boundary of the flow field can

be written as

1
2
φD(x0) = −

∫

C
g(x, x0)[n · ∇φD]dl(x) +

∫

C
φD[n · ∇g(x, x0)]dl(x), (4.5)

where the boundary,C, consists of the walls and particle surface.

Similarly, we decompose the fluid velocity into the background velocity,

u∞ = −
εζwE∞

µ
, (4.6)
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which is the uniform electroosmotic flow in the absence of theparticle, and the distur-

bance velocity generated by the particle,uD, so thatuD = u∞ex + uD. The disturbance

velocity vanishes asx approaches infinity. To compute the disturbance velocity, we use

the formulation from Chapter III and expressuD at the pointx0 that lies on the boundary,

C, in the following form,

1
2

uD(x0) = −
1

4πµ

∫

C
f D
i (x)Gi j (x, x0)dl(x) +

1
4πµ

∫

C
uD

i (x)Ti jk (x, x0)nk(x)dl(x), (4.7)

wheref D is the disturbance traction. If we break up the integrals to represent the total

boundaryC, with a sum of integrals over the particle surface,P, and channel walls,W,

then we can write the previous equation as,

1
2

uD(x0) = −
1

4πµ

∫

P
f D
i (x)Gi j (x, x0)dl(x) −

1
4πµ

∫

W
f D
i (x)Gi j (x, x0)dl(x) (4.8)

+
1
4π

∫

P
uD

i (x)Ti jk (x, x0)nk(x)dl(x) +
1
4π

∫

W
uD

i (x)Ti jk (x, x0)nk(x)dl(x).

To simplify the integral expressions, we useS andD to represent the single-layer and

double-layer potentials respectively in the previous equation. Each of the components

are given as,

S j(x0, f ,C) ≡
∫

C
fi(x) Gi j (x, x0) dl(x),

D j(x0, u,C) ≡
∫

C
ui(x) Ti jk (x, x0) nk(x) dl(x). (4.9)

Using this form, Eq. (4.8) can be written as,

1
2

uD(x0) = −
1

4πµ

[

S(x0, f D,P) + S(x0, f D,W)
]

+
1
4π

[

D(x0, uD,P) +D(x0, uD,W)
]

. (4.10)

We expand conditions for the particle by substitutingf D = f − f∞ into the first term
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anduD = u − u∞ = uB + uS − u∞ into the third term on the right-hand side of (4.10).

1
2

uD(x0) = −
1

4πµ

[

S(x0, (f − f∞),P) +S(x0, f D,W)
]

+
1
4π

[

D
(

x0, (uB + uS − u∞),P
)

+D(x0, uD,W)
]

. (4.11)

Applying the reciprocal relation [67] to the background flowwe obtain the following,

−
1

4πµ
S(x0, f∞,P) +

1
4π
D(x0, u∞,P) =























1
2u∞(x0) whenx0 is onP

0 whenx0 is onW.

(4.12)

Applying Eq. (3.25) for 2D rigid body motion provides the following relationship,

1
4π
D(x0, uB,P) = −

1
2

uB(x0). (4.13)

Combining the simplifications from Eqs. (4.12) and (4.13) with Eq. (4.11), we can

write the final integral equation for whenx0 is located on the particle surface,P,

uB(x0) +
1
2

uS(x0) − u∞ = −
1

4πµ

[

S(x0, f ,P) +S(x0, f D,W)
]

+
1
4π

[

D(x0, uS,P) +D(x0, uD,W)
]

. (4.14)

Apply the same simplifications and write the final integral equation for whenx0 is lo-

cated on the wall,W, and we get,

1
2

uD(x0) = −
1

4πµ

[

S(x0, f ,P) +S(x0, f D,W)
]

+
1
4π

[

D(x0, uS,P) +D(x0, uD,W)
]

. (4.15)

To solve the integral equations (4.5), (4.14), and (4.15), the wall and particle con-

tours are discretized by a non-uniform mesh consisting of linear or arc segments. The

unknown variables,φD on bothP andW, f on P, andf D on W, are defined at the ele-
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ment centers. The integral equation for the disturbance potential, (4.5), is solved first.

Then, the slip velocity at the particle surface and walls,uS, is calculated from Eq. (4.1),

and the disturbance velocity at the walls,uD, is obtained by subtracting the background

velocity,

uD = uS − u∞ =
εζw

µ
(I − nn) · ∇φD, (4.16)

whereuS is the total slip velocity due to both the background potential and the distur-

bance potential. Finally, (4.14) and (4.15) are solved together with the unknown transla-

tional and rotational velocities of the particle. To match the total number of unknowns,

two additional equations from (4.4) expressing vanishing condition of the total traction

in x and the total torque on the particle are appended to the linear algebraic system. In

all the equations, the integrals are carried out using the Gauss–Legendre quadratures

over each element. The singularities of the singular elements are subtracted off and

computed analytically.

Calculation of the slip velocity in (4.1) requires evaluation of the tangential deriva-

tive of the electric potential. To do this, we computeφ at the two end nodes of each

element after solving (4.5) and then approximate the tangential derivative ofφ at the

element center using a second-order finite-difference scheme. The channel is truncated

at x = ±L/2 with the particle located atx = 0. We have chosenL = 30a for all sim-

ulations. One difficulty arises as the channel width approaches to the particlesize, as

an exceedingly long domain is needed foruD to decay to an acceptable limit. To deal

with the problem, we require that the flow be unidirectional at the channel inlet/outlet.

Consequently,uy and fx are zero at the inlet/outlet, butux and fy are unknown. These

additional variables are solved together with the integralequations by including the inlet

and outlet in the integration contours. We point out that thenon-zero disturbance veloc-

ity at the inlet and outlet still satisfies the boundary condition at the walls, Eq. (4.16).

That is,uD is zero at the four corners of the channel since the disturbance potential and
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its gradient vanish at those locations.

4.4 Validation

In order to validate the accuracy of the two-dimensional BEMcode, we first con-

sider electrophoretic mobility of a cylindrical particle in a semi-infinite flow driven by

electroosmosis, that is, the uniform flow due to a non-zero charge on thesinglewall.

The analytical solution of this two-dimensional problem was reported by Kehet al.[87].

Figure 4.2 plots the normalized translational and rotational velocities of the cylinder,

Ûp =
Upµ

ε(ζp−ζw)E∞ , andω̂ = ωµa
ε(ζp−ζw)E∞ , whereUp andω are the corresponding dimensional

quantities in the laboratory coordinates. The results are depicted as functions of the

ratio between the particle radius and the distance from the particle center to the lower

wall, a/d. It can be seen that the present numerical results are in excellent agreement

with the theoretical prediction. The smallest particle-wall separation in the figure is

0.01a, i.e., a/d ≈ 0.99, for which we used 256 uniform elements on the particle and

192 non-uniform elements on the wall. The comparison of the numerical calculation

with the analytical result for a few selected cases is also provided in Table 4.1, where

the difference is up to the second decimal point for the closest proximity.

When the particle is far away from the wall, the translational velocity approaches

the value corresponding to the electrophoretic velocity ofthe particle in an infinite flow,

ε(ζp − ζw)E∞/µ, and the rotational velocity approaches zero, as expected.As the parti-

cle comes nearly in contact with the wall, both the translational and rotational velocities

grow to infinity, which is in sharp contrast with a purely hydrodynamic flow where the

particle velocity is reduced by the wall due to viscous retardation. A similar enhanc-

ing effect of the wall on the electrophoretic mobility of a nearby spherical particle was

reported in Keh & Chen [59] and Yariv & Brenner [62]. As pointed out by them, the

phenomenon is caused by the intensified electric field in the narrow gap, which is dom-

inant over the viscous effect and introduces a high slip between the particle and fluid in
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Figure 4.2: The normalized (a) translational and (b) rotational velocities of the cylinder
as functions ofa/d computed from Kehet al. [87] (solid line) and the BEM used in the
current study (markers).
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the gap.

Table 4.1: Comparison of the normalized translational and rotational velocities of the
cylinder as functions ofa/d computed from Kehet al. [87] and the BEM used in the
current study.

Current study Kehet al. [87]
a/d Ûp ω̂ Ûp ω̂

0.20 1.0000 0.0041 1.0002 0.0041
0.60 1.0244 0.1351 1.0250 0.1350
0.80 1.1328 0.4267 1.1333 0.4267
0.90 1.3648 0.8360 1.3650 0.8362
0.95 1.7577 1.3720 1.7574 1.3729
0.98 2.6120 2.3620 2.6121 2.3648
0.99 3.5963 3.4464 3.6149 3.4391

4.5 Results

Next, we consider a particle bounded by two walls. Figure 4.3shows the particle’s

translational and rotational velocities at varying distances between the two walls at four

reduced channel widths,H/a. As in other two- and three-dimensional particle/channel

configurations (e.g., [59, 61, 62, 87]) where the EDL is assumed to be thin, we also

found thatUp andω are proportional to the difference between the zeta potentials on

the particle and wall,ζp − ζw. Therefore, the same normalizations forUp andω as in

the single wall case are used here. To better display the results, the eccentric position

of the particle has been scaled byH − 2a.

For wide channels such asH/a = 20, the reduced translational velocity and ro-

tational velocity are nearly unity and zero, respectively,for a wide range of particle

locations. This reflects the situation of infinite flow and means that the wall effect is

negligible. When the particle approaches either one of the two walls, the particle be-

haves as it would if it were brought within close proximity ofonly a single wall and the

effect of the other wall is negligible.

At smaller values ofH/a, the effect of both channel walls on the particle motion
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Figure 4.3: The translation (a) and rotation (b) of the particle as functions of the nor-
malized eccentricity.
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Figure 4.4: The translation of the particle located at the centerline of the channel as a
function ofH/a.

becomes evident. When the particle is located away from the walls, its translational

velocity is lower compared to the wide channel case, while its rotational velocity is

higher. As the particle approaches either wall, both the translational and rotational

velocities increase monotonically. The closest particle-wall distance here is 1% of the

particle radius. Due to the deteriorated numerical accuracy, we were unable to verify

if the particle’s velocities would go to infinity when the particle further approaches the

wall.

To see how the channel width affects the particle motion at the symmetric configu-

ration, in Figure 4.4 we plot the reduced velocity againstH/(2a) for the particle located

at the centerline of the channel. The graph shows that, as thechannel approaches the

same size of the particle, the translational velocity approaches a value which is around

53% of the unbounded case. This behavior is in contrast with that of the correspond-

ing spherical particle traveling along the centerline of the channel. According to the

analytical result of Unniet al. [88], the normalized translational velocity of the sphere
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decreases slightly asH/(2a) goes from infinity down to around 1.25, and then it starts

to increase instead asH/(2a) is further reduced. The translation grows by around 70%

whenH/(2a) approaches unity.

The reduced mobility of the cylindrical particle in a narrowchannel can be under-

stood from the opposing effects of the electrophoresis and viscosity. For a wide channel

relative to the particle size, the particle motion induces little friction anywhere between

the fluid and the channel walls except within the gap regions,and the mass flow caused

by the particle translation can be easily offset by the reversal flow through at least one

of the two particle-wall gaps. Therefore, if the particle isclose to either of the walls in

a wide channel, the intensified electric field in the smaller gap dominates over the vis-

cous resistance, and as a result, the particle translation is enhanced. When the channel

becomes narrow and its width comparable to the particle diameter, due to the friction

in the small gaps on both sides of the particle, the amount of the reversal flow is re-

stricted. The particle’s translation tends to induce a net flow in the channel due to the

mass conservation, but the net flow is subject to the frictionbetween the fluid and entire

channel. The narrower the channel is, the stronger the frictional effect becomes. For

a particle near the centerline of the channel, the frictional resistance is of the same or-

der as the electric force. Therefore, the particle velocityapproaches a limiting value as

shown in Figure 4.4. The “piston effect” is similar to the spherical particle in a cylin-

drical pore analyzed in Keh & Chiou [89] and Yariv & Brenner [61], where they found

that the particle also approaches to a finite velocity as the diameter of the pore becomes

increasingly close to that of the particle. In comparison, for a spherical particle in the

channel with infinite span, flow can go around the particle easily even when the particle

is tightly bounded by the walls. As a result, the electrical force outgrows the hydro-

dynamic retardation, and the particle’s mobility is enhanced due to the comprehensive

wall effect, as shown in Unniet al. [88].

Note that even though the particle’s translation is reducedwhen the channel be-

comes narrower, its rotation is not. The rotation is caused by the necessary slip velocity
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Figure 4.5: (a) The flow field and (b) streamline plots forH/a = 3, d/a = 1.1, and
ζw = 0. The particle is moving from left to right and rotating counterclockwise.
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Figure 4.6: Equipotential contours for when the particle ispositioned such thatH/a = 3,
d/a = 1.1.

on the particle surface as dictated by Eq. (2.3). Figure 4.3(b) shows that ˆω is zero for

a symmetrical configuration, but it grows quickly as soon as the particle is located off

the centerline. For smallerH/a, ω̂ can be much larger than 1. Therefore, the particle’s

rotation is sensitive to its eccentricity in a narrow channel. This increased rotational

sensitivity is also observed in Unniet al. [88] for the wall-bounded spherical particle,

where, however, ˆω of the sphere is below unity at least whenH/(2a) is above 0.99.

The flow field is visualized in Figure 4.5(a) for H/a = 3 andd/a = 1.1. The zeta

potential on the wall is chosen to be zero so that the electrically neutral walls yield no

background velocity and the velocity vectors represent thedisturbance velocity from

the presence of the particle. The slip velocity on the particle surface is evident in the

figure. In addition, Figure 4.5(b) visualizes the streamlines around the particle. Here,

two stagnation points can be seen on the particle’s boundaryin the region near the lower

wall.

Figure 4.6 visualizes the total electric potential solution with the presence of the
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particle. The potential undergoes a quick change along the narrower gap between the

particle and channel, causing a high slip velocity of the fluid on both the particle surface

and wall in the region.

4.6 Conclusion

In this study, we have implemented a boundary-element method to solve for the

electrophoretic mobility of a cylindrical particle placedin a rectangular channel with

arbitrary eccentricity. When the ratio between the channelwidth and cylinder diame-

ter approaches unity, the viscous effect becomes comparable to the electrophoresis and

the translational velocity of the particle reaches a finite value determined by the eccen-

tricity. In addition, the rotational velocity of a closely fitting particle is sensitive to its

eccentricity.
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CHAPTER V

EFFECT OF DC DIELECTROPHORESIS ON THE TRAJECTORY OF A

NON-CONDUCTING COLLOIDAL SPHERE IN A BENT PORE

5.1 Background

The purpose of this work was to study the fundamental effect of DC-DEP on par-

ticle motion in microchannels where the electric field is non-uniform due to both local

channel geometry and presence of the particle. A non-conducting spherical particle

driven by electrophoresis in a bent cylindrical pore is chosen as the basic configuration

for this study. The BEM solver is used to solve the electrokinetic flow and integrate the

Maxwell stress tensor. Governing parameters including thesize and initial position of

the particle, and the electric field strength, are systematically varied to investigate the

DEP effect. In a closely related study, Aiet al. [58] investigated the DEP effect on the

transient dynamics of an electrophoretic particle in an L-shaped rectangular channel.

Using two-dimensional simulations, they also studied the effects of the particle size,

initial location, and electric field strength. Compared to their work, the present study

solves a three-dimensional flow rather than using a 2D approximation. A 3D study is

motivated by several important differences in both the surrounding Stokes flow and the

electric field when comparing an infinite cylinder and a sphere. For example, when

there is a bounding wall nearby, the fluid within the gap between the particle and wall

experiences much less viscous impedance for a sphere than for a cylinder due to the

3D effect. However, the electric field in the gap is much stronger for the cylinder. The

opposing effects thus complicate the problem at hand.

In fact, Kehet al.[87] showed that the electrophoretic mobility of a non-conducting

near-wall cylindrical particle is much higher than that of asphere, especially when the
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particle–wall gap is small. In their work, the translational velocity of the cylinder is 37%

higher than that of the sphere whena/d = 0.9 (a is radius of the particle andd is the

distance from the particle’s center to the wall), and the difference between the rotational

velocity is even higher (about a factor of 4 whena/d = 0.9). Our own calculation using

the BEM method shows that the DEP force on a cylinder increases much faster than the

DEP on a sphere as they are closer to a plane wall (ata/d = 0.5, the normalized DEP

force is 0.07 for 3D but is 0.46 for 2D, and ata/d = 0.98, the force is 2.12 for 3D but is

23.49 for 2D). In the current study, the small particle–wallgap, whose minimum is on

order of 1% of the particle radius, is well resolved using thehighly accurate boundary-

element method, while in Aiet al.[58], the minimum gap appears to be more than 30%

of the particle radius. This capability allows us to explorethe smaller-gap situation

where the DEP effect is much stronger. Finally, another important goal of thepresent

work is to perform a comparison of the full numerical simulation with predictions based

on the point-dipole method (PDM) in an effort to provide a clear view of the limitations

associated with the latter method.

5.2 Problem specification

The underlying assumptions and theory in each of the studiesperformed in this

dissertation are similar. Because of this, the problem specifications will be similar, but

with subtle differences depending on whether DEP is accounted for or the shape of

the modeled bounding geometry. Thus, for clarity, each problem specification will be

presented in its entirety. This investigation considers a spherical particle suspended in

an aqueous electrolyte solution within a cylindrical channel, as shown in Figure 5.1.

The problem configuration is three-dimensional where the particle is free to rotate and

translate in the plane of symmetry. Both the particle and thechannel wall are non-

conducting. Surface charge on each is characterized by their respective zeta potentials,

ζp andζw. As in the 2D study, the electric potential is governed by theLaplace equation,
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Figure 5.1: Schematic of a non-conducting particle moving through a cylindrical pore
due to electrophoresis, where the trajectory is deflected due to the DEP effect.

Eq. (2.4) and is subject to the homogeneous Neumann boundarycondition,∂φ/∂n = 0,

at all particle surfaces and channel walls [62]. A constant potential is specified at the

inlet,φ = φ1, and also at the outlet,φ = φ2. Note thatn is the surface normal and points

into the flow.

The Stokes and continuity equations, Eq. (3.16), are used tomodel the Bulk flow.

Using the thin-EDL assumption, we express the fluid velocitynext to the particle and

channel walls using a slip velocity that is proportional to the local tangential gradient

of the electric potential [84],

uS =
εζ

µ
(I − nn) · ∇φ, (5.1)

whereuS is the slip velocity,ε is the dielectric constant of the electrolyte solution,ζ =

ζp or ζw is the zeta potential on either the particle surface or channel wall. Details of the

surface gradient operator (I − nn) are provided in Eq. (4.2). In laboratory coordinates,

the fluid velocity at the particle surface is a combination ofthe rigid-body motion of the
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particle and the slip velocity,

u(x) = uB + uS = uc + ωez× (x − xc) + uS, (5.2)

in which x is a point on the particle surface,xc anduc are the position and velocity of

the centroid of the particle,ω is the rotational speed of the particle,ez is the unit vector

in z, anduB = uc + ωez × (x − xc) is the velocity of the pointx due to the rigid body

motion. The particle is assumed to be neutrally buoyant in the fluid and has negligible

inertia. Thus, the total traction and torque on the particlevanish,

∫

P
ft dS = 0,

∫

P
(x − xc) × ft dS = 0, (5.3)

whereP represents the particle surface. This study accounts for DEP. As such, the total

traction in Eq.(5.3) is defined as

ft = (T + σ) · n, (5.4)

whereσ is the hydrodynamic stress tensor andT is the Maxwell stress tensor [75] given

by Eq. (2.14). Note that because we are modeling a spherical particle, the Maxwell

stress has zero contribution to the torque on the particle.

5.3 Formulation

As in the previous study, the Laplace equation solution is independent of the solution

of Stokes flow while the latter depends on the former through the slip velocity boundary

condition. Therefore, the Laplace equation and Stokes flow can be solved sequentially.

No decomposition is used in this study, thus, we begin with Eq. (3.10) repeated here for
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convenience,

1
2
φ(x0) = −

∫

D
g(x0, x)[n · ∇φ(x)]dS(x) +

∫

D
φ(x)[n · ∇g(x0, x)]dS(x). (5.5)

To address the singularity asx approachesx0 within the second integral on the right-

hand side, we take advantage of the integral identity in Eq. (3.23),

∫

D
[n(x) · ∇g(x, x0)]dS(x) =

1
2

(5.6)

by noting thatx0 falls on the boundaryD. If we express the second integral in Eq. (5.5)

as

∫

D
φ(x)[n · ∇g(x0, x)]dS(x) =

∫

D
[φ(x) − φ(x0)][n · ∇g(x0, x)]dS(x) +

∫

D
φ(x0)[n · ∇g(x0, x)]dS(x), (5.7)

then we can use Eq. (5.6) to simplify it to the following form,

∫

D
φ(x)[n · ∇g(x0, x)]dS(x) =

∫

D
[φ(x) − φ(x0)][n · ∇g(x0, x)]dS(x) +

1
2
φ(x0). (5.8)

Implementing this adjustment into Eq. (5.5) allows us to remove the singularity and

transform the integral equation for the laplace equation into

0 = −
∫

D
g(x0, x)[n · ∇φ(x)]dS(x) +

∫

D
[φ(x) − φ(x0)][n · ∇g(x0, x)]dS(x). (5.9)

To solve the flow, we begin with Eq. (3.22), the 3D integral equation for Stokes

flow, repeated here

1
2

u j(x0) = −
1

8πµ

∫

D
G ji (x0, x) fi(x)dS(x) +

1
8π

∫

D
ui(x)Ti jk (x, x0)nk(x)dS(x). (5.10)
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Because the fluid velocity at the particle surface includes both rigid-body motion and

the slip velocity, Eq. (5.10) needs further manipulation before it can be solved. To do

this, we use Eq. (5.2) and apply the integral identities for the right-hand term containing

the rigid body motion, Eq. (3.26). The final equation dependson whether the evaluation

pointx0 is located on the particle or on the pore surface. Ifx0 is on the particle surface,

Eq. (5.10) becomes

uB
j (x0) +

1
2

uS
j (x0) =

−
1

8πµ

∫

D
G ji (x0, x) fi(x)dS(x) +

1
8π

∫

D
uS

i (x)Ti jk (x, x0)nk(x)dS(x), (5.11)

and ifx0 is on the pore surface, it becomes

1
2

uS
j (x0) = −

1
8πµ

∫

D
G ji (x0, x) fi(x)dS(x) +

1
8π

∫

D
uS

i (x)Ti jk (x, x0)nk(x)dS(x). (5.12)

the only difference between (5.11) and (5.12) is that there would be no rigid-body term

on the left side of (5.12).

Similar techniques are used to avoid the singularities inherent in the integral equa-

tions for the fluid velocity. Specifically, the use of local polar coordinates remove the

singularity exhibited by the first integral on the right sideof Eqs. (5.11) and (5.12).

For the second integral, the identity discussed in Eqs. (3.24) is applied. Whenx0 is

positioned on the surface of the boundary, this identity takes on the following form,

∫

D
Ti jk (x, x0)nk(x)dS(x) = 4πδi j . (5.13)

Similar to the technique used for the electric potential, Eq. (5.13) allows us to remove
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the singularity and transform the velocity integral equation into

uB
j (x0) = −

1
8πµ

∫

D
G ji (x0, x) fi(x)dS(x)

+
1
8π

∫

D
[uS

i (x) − uS
i (x0)]Ti jk (x, x0)nk(x)dS(x), (5.14)

whenx0 lies on the particle surface and,

0 = −
1

8πµ

∫

D
G ji (x0, x) fi(x)dS(x)

+
1
8π

∫

D
[uS

i (x) − uS
i (x0)]Ti jk (x, x0)nk(x)dS(x), (5.15)

whenx0 lies on the pore surface. By property of Kronecker’s delta,uiδi j = u j. After

discretization, these relations will be used to formulate the algebraic system to obtain

the hydrodynamic traction,fi, on the particle and cylinder surfaces (note that the fluid

velocity at these surfaces will be based on the slip velocityand can be obtained, once

φ and its gradient are available). Once the traction is obtained, the fluid velocity at any

interior point in the flow can be calculated in post-processing.

To discretize the integral equations, the particle surface, cylinder wall, and the in-

let and outlet are represented using six-node curved triangular elements. The unknown

variables pertinent to the electric field, i.e.,φ at the particle and wall surfaces and∂φ/∂n

at the inlet/outlet, are discretized at the six vertices of the elements.The unknown vari-

ables pertinent to the flow, i.e., the tractionfi, are discretized at the element centroids.

At each time step, the integral equation for the electric potential is solved first. Then,

the slip velocity at all surfaces is found from Eq. (5.1) by computing the gradient of

φ numerically. In the end, Eqns. (5.14) and (5.15) are solved together with unknown

translational and rotational velocities of the particle. To match the total number of un-

knowns, two additional equations in Eq. (5.3), expressing the total traction and the total

torque on the particle are appended to the linear algebraic system. Note that in Eq. (5.3)

the contribution of the Maxwell stress can be computed explicitly once the electric field
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Figure 5.2: The adaptive mesh used in the BEM simulation. Note that the particle is
translated outside of the channel to better visualize its mesh.

is obtained.

The element size of the mesh used in this study is adaptive andis based on the

particle’s proximity to the wall. That is, the local resolution of the mesh around the

particle–wall gap, including both the particle and wall surfaces, is increased to make

sure that the small region is resolved sufficiently (see Figure 5.2).

5.4 Validation

In order to validate the accuracy of the present BEM code, we compared our results

with those published previously. Three problems for which an analytical solution is

available were chosen for the test.

In first two tests, we consider the configuration of a non-conducting spherical par-

ticle suspended in an electrolyte and positioned near an infinite non-conducting plane

wall. Solutions for these tests are compared in Table 5.1. Inthe first test, we calcu-
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late the "wall-enhanced" electrophoretic velocity reported by Keh and Chen [59] for

the particle when translating steadily along the plane wall(deactivating the Maxwell

stress in the code). In the second test, the lateral dielectrophoretic force of the particle

is calculated and compared with that reported by Young and Li[60]. Both of these ef-

fects have to do with the distortion of the electric potential in the a narrow gap between

the particle and wall. For these tests, the code was slightlymodified to calculate the

disturbance potential and flow field caused by introducing the particle. This technique

is described in more detail in a previous report [71].

Table 5.1: Comparison of our results with the analytical solutions for an electrophoretic
particle near a plane wall. (a) translational electrophoretic mobility of the particle,Up;
(b) the dielectrophoretic forceFdep. a is the particle radius, andd is the distance of the
particle center from the wall.

(a) (b)
Upµ/[ε(ζp − ζw)E0]

a/d Current Keh and
study Chen [59]

0.50 0.994 0.994
0.70 0.988 0.989
0.90 0.997 0.998
0.95 1.022 1.022
0.98 1.080 1.080
0.99 1.147 1.145

Fdep/[εE2
0a

2/2]
a/d Current Young and

study Li [60]
0.50 0.074 0.075
0.71 0.336 0.337
0.91 1.133 1.136
0.95 1.584 1.587
0.98 2.121 2.124
0.99 2.457 2.459

For the first test, the normalized translational mobility istabulated in Table 5.1(a)

as a function ofa/d, wherea is the particle radius andd is the distance from the par-

ticle center to the wall. From this comparison, we can see themobility decrease to a

minimum before increasing to values greater than that of an unbounded particle. This is

consistent with the result previously reported. In that report, Keh and Chen [59] repre-

sented the exact solution with eigenfunction expansion series in bipolar coordinates. It

should be noted that the closest particle–wall separation simulated in the current study

wasa/d = 0.98 (whered is defined using the nearest wall. This corresponds to a differ-

ence between our numerical result and the analytical solution [59] of less than 0.03%,

exemplifying the exceptional accuracy of the boundary element approach.
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The second comparison, tabulated in Table 5.1(b), is the normalized DEP force act-

ing in the lateral direction as a function ofa/d. Here, we can see that the lateral force

monotonically increases with a decreasing gap width. This trend agrees with the exact

solution originally obtained by Young and Li [60]. Similar to the electrophoretic valida-

tion, superb accuracy was achieved. For the closest particle–wall separation simulated

in the current study (a/d = 0.98), the difference between our result and the analytical

result is less than 0.2%.

The domain used in the present study consists of a spherical particle within a cylin-

drical pore, so it is also appropriate to conduct a validation for such an enclosed geom-

etry. Thus, our third test concerns a spherical, electrophoretic particle within a straight

cylinder. Our numerical result was compared with the analytical result reported by Keh

and Chiou [89], who found the fundamental solution of the problem and then applied

the Fourier transform and a collocation technique to imposethe boundary conditions on

the particle and wall. The cylinder in our test was truncatedso that its length is 6 times

its own diameter. The comparison is shown in Table 5.2, whereit can be seen that the

non-dimensional electrophoretic mobility of the particlemonotonically decreases as the

radius of the particle increases. This pore-impedance effect parallels that discussed by

Keh and Chiou [89] and is caused by the hydrodynamic retardation due to the presence

of the wall. Again, the numerical results are in excellent agreement with the analytical

solution.

5.5 Simulation setup

For the current study, the cylindrical pore of radiusb is chosen such that the turning

radius,c, as measured from the cylinder’s centerline isc/b = 1.2. The total length of

the cylinder along the centerline isL/b = 12, and the bend takes place in the middle

of the cylinder. The nominal electric field strength,E0 = (φ1 − φ2)/L, is used as a

variable of study. The non-dimensional form adopted for this variable isE∗0 = E0(b/ζp).
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Table 5.2: Comparison of our results with the analytical solution for the normalized
translational mobility,Up, of a sphere concentrically positioned within a cylindrical
pore, wherea andb are the particle and cylinder radii.

Upµ/[ε(ζp − ζw)E0]
a/b Current Keh and

study Chiou [89]
0.1 1.000 0.999
0.2 0.990 0.990
0.3 0.966 0.969
0.4 0.928 0.932
0.5 0.872 0.880

In simulations, 1294 elements were used to model the particle and 4026 elements for

the cylinder wall. Sufficiency of the described mesh in resolving small particle–wall

gap distances has been demonstrated in the validation tests. After extensive testing,

a time step of∆t = 0.05a/Up, whereUp = ε(ζp − ζw)E0/µ, was utilized for transient

simulations to ensure∆t was small enough to accurately predict the particle’s trajectory.

To illustrate the results obtained from our BEM code, Figure5.3 plots the electric

potential and flow field computed after the boundary-elementsolution was obtained for

an arbitrarily specified particle location. For comparison, Figures 5.3(a) and (b) visu-

alize equipotential curves and the electric field strength for cases with and without a

suspended particle. In this comparison, the normalized particle radius isa/b = 0.4, and

it is positioned within the bend near the inner side of the pore. From Figure 5.3(b) we

can see that a nonuniform electric field is created due to the pore bend itself. Here the

analogy of a bending beam under a transverse load can be used to visualize the effect

this geometry has on the electric field. When a beam deforms under a transverse load,

the volume on the inner side of the bend is under compression while the opposite side

is under tension. The electric field shown in Figure 5.3(b) behaves similarly. Observing

the equipotential lines in this figure, we can see how the contours appear “compressed”

near the inner side of the bend and the compression corresponds to a greater electric

field strengthE = −∇φ. Such spatial nonuniform electric field would facilitate genera-
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Figure 5.3: Internal field solutions for a particle (a/b = 0.4) positioned close to the
inner wall. Equipotential contours are plotted over electric field strength with (a) and
without (b) the particle. The corresponding flow field of (a) is shown in (c).
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tion of the DEP force. In addition, the close proximity of theparticle to the wall further

distorts the electric field by raising the electric potential in the gap region, as shown in

Figure 5.3(a). From this, we can expect that the DEP force will be strengthened when

the particle goes through the bend. Figure 5.3(c) plots the corresponding streamlines in

the presence of the particle under the same conditions as Figure 5.3(a) with the elec-

troosmotic flow set to zero. Here, we can see the distortion inthe flow field induced by

the presence of the particle. Note that the plots are independent of the choice forE0 or

the zeta potential.

To justify the need for the full numerical simulation, we also compare our particle

trajectory with that predicted by the point-dipole method.When using the PDM, the

DEP force is calculated as if the particle were not present and both the electric field and

the flow field were undisturbed. The motion of the particle, which is approximated by an

infinitesimal point, is then a combination of the Smoluchowski velocity (electrophoretic

translation of an unbounded particle), the electroosmoticvelocity, and the velocity due

to the DEP force,

u = uep− ueo f + udep=
εζp

µ
E −

εζw

µ
E +

εa2 fcm

3µ
∇|E|2. (5.16)

where fcm, the Clausius–Mossotti function, is -1
2 for a non-conducting spherical parti-

cle [10]. The DEP translational velocity is found by assuming the DEP force equal to

the Stokes drag force induced byudep, that is,

Fdep= FDrag = 6πµaudep. (5.17)

To evaluate Eq. (5.16), the field strengthE of the undisturbed electric field at the loca-

tion of the centroid of the particle is used for each term.

Note that in the current BEM simulation, neither the point-dipole approximation of

the DEP force, or the Stokes drag is assumed for the finite-size particle. To show the
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Figure 5.4: The effect of initial position,h1/b, on the particle trajectory fora/b = 0.2
andE∗0 = 5. Dashed lines represent results found using the BEM and thesolid lines
represent trajectories predicted by the point-dipole method.

difference between our numerical result and the PDM, we use both methods for the

instantaneous particle location used in Figure 5.3 under a non-dimensional, nominal

electric field,E∗0 = 20. The BEM method shows thatuep/Up = 1.12 andudep/Up =

0.48, while the point-dipole approximation claimsuep/Up = 1.25 andudep/Up = 1.51.

Therefore, the PDM may lead to significant error in estimation of the DEP mobility of

the particle.

5.6 Results

5.6.1 Effect of the initial location

The first parameter studied was the eccentricity of the particle. In this section we

wanted to observe the effect that the particle’s initial location had on its trajectory. We

are also interested in the ability of the PDM to predict this effect. For these simulations,

the particle’s radius was held constant ata/b = 0.2 while the initial location of the

particle was adjusted to three different values:h1/b = 1.0, 0.5 and 0.22. Note that in
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the third case, the initial particle–wall gap is 10% of the particle radius. The results of

these tests are presented as dashed lines in Figure 5.4 for the case ofE∗0 = 5.

While approaching the exit of the pore, the final deviation ofeach particle from

its original location was found to be (h2 − h1)/h1 = 0.08, 0.22 and 0.56, respectively

for the three cases. Apparent from this is what was anticipated. A particle positioned

closer to the inner side of the bent region will deviate farther from the wall than that

of a particle originally positioned closer to the center of the pore. As was visualized in

Figure 5.3, the highest electric field strength is found in the region within the cylinder

close to the inside of the bend. It follows that the dielectrophoretic force acting on a

particle closer to that region would be greater because thisforce scales with|E|2. The

particle originally positioned with the highest eccentricity is shifted by a distance equal

to 62% of its own radius. Considering the scenario of a streamof multiple particles,

each with a different initial location, this effect would serve to reduce the width of the

particle stream in a focusing effect by “pushing" the near-wall particles away from the

wall.

The analogous trajectories found using the PDM are displayed as solid lines in Fig-

ure 5.4. It is clear from this figure that the PDM fails to accurately predict the path of

a particle positioned close to the cylinder wall. When observing each trajectory with

respect to the particle’s original positions, we can see that the accuracy of this method

degrades with a decreasing particle–wall gap. The final deviations as shown in the fig-

ure are (h2 − h1)/h1 = 0.11, 0.37 and 1.44 for h1/b = 1.0, 0.5 and 0.22, respectively.

Although the PDM overshoots the particle’s deviation in each of the cases tested, it does

provide a reasonable approximation for the case of a particle positioned at the center of

the pore.
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Figure 5.5: The effect of the particle size,a/b, on the particle trajectory for the case of
h1/b = 0.5 andE∗0 = 5. Dash-dotted, solid (thick) and dashed line patterns represent
a/b = 0.1, 0.2 and 0.4 respectively in (a). In (b-d) the thin-solid line represents the
estimate from the point-dipole method.
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5.6.2 Effect of particle size

In scaling, the dielectrophoretic force is also proportional to the volume of the insu-

lating particle. Therefore it is also of interest to study how the particle’s radius effects

its trajectory. In the present study, this effect is complicated by the manner in which the

particle’s finite, insulating volume modifies the flow and electric field. Three particle-

to-cylinder radius ratios were tested in this section:a/b = 0.1, 0.2 and 0.4. The same

original position was used for each of the particles,h1/b = 0.5, and the nominal electric

field was held constant atE∗0 = 5. The resulting trajectory for each case can be seen in

Figure 5.5(a). As one would expect, the the larger particle shifts toward the centerline of

the pore to a greater extent when compared to the smaller particles. The final deviations

from the wall are (h2 − h1)/h1 = 0.09, 0.22 and 0.56 for the three cases respectively.

We also calculated the trajectory of the particle based on the PDM to evaluate its

validity. Figures 5.5(b), (c) and (d) plot a comparison between the trajectories found

using our numerical technique and the PDM for each particle size. The thin-solid line

shows the PDM result, whereas the line pattern for the BEM result follows that of Fig-

ure 5.5(a). From Figures 5.5(b) and (c) it is apparent that atsufficiently small particle

sizes, the PDM can provide a reasonable approximation of itstrajectory in this configu-

ration. Fora/b = 0.1, the difference in the trajectories predicted by the two methods is

less than 1% of the pore radius. Fora/b = 0.2, this difference is roughly 8%. Observing

Figure 5.5(d), however, we can conclude that utilizing the PDM leads to significant er-

ror for the case of a large particle size. The final difference between the two techniques

for the case ofa/b = 0.4 is approximately 30% of the pore radius.

To more clearly visualize the difference in the results of the two numerical methods,

Figure 5.6 plots the non-dimensional magnitude of the DEP force as a function of the

non-dimensional time as the particle migrates through the dashed trajectory shown in

Figure 5.5(d). Both the BEM calculation (dashed line) and the point-dipole approxi-

mation (solid line) of the DEP force are plotted. It can be seen from Figure 5.6 that
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Figure 5.6: The normalized DEP force as the particle moves along the trajectory shown
in Figure 5.5(d) from the BEM simulation. The dashed line shows the current result,
and the solid line shows the point-dipole approximation.

during the initial stage, the BEM yields a DEP force whereas the PDM does not. At

this phase, the particle is positioned close to the inside ofthe wall just before the bend.

The presence of the particle causes a strong electric field inthe narrow region, which

generates a DEP force acting laterally and pushes the particle away from the wall. This

result is similar to the flat-wall case described earlier in Table 5.1(b). When using the

PDM, there is no such particle–wall interaction and therefore there is no DEP force.

As the particle nears the inside corner of the bend, the magnitude of the DEP force

quickly increases to a maximum before decreasing as it leaves the turn. This occurs be-

cause of the non-uniform electric field originating from theinsulating boundary. During

this phase, the current technique reports a stronger DEP force compared to the PDM.

Again, the enhanced DEP can be explained by the interaction between the finite-size

particle and the wall.

It is important to note that although the resultant DEP forceis stronger when using

the Maxwell stress tensor compared to the PDM, the former does not result in greater

lateral motion of the particle compared to that found from the PDM. On the contrary, the
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trajectory predicted by the PDM overshoots as shown in Figure 5.6 and thus indicates

a higher lateral velocity. This result can be explained by the use of the Stokes drag

formula, Eq. (5.17), to equate with the DEP force in the PDM. However, Stokes drag

is valid for unbounded or large domains. Because the spherical particle in this study is

bounded by the pore of comparable sizes, the hydrodynamic drag acting on the particle

will be greater than that predicted by Stokes drag.

In Figure 5.6, after the particle passes through the turn, the DEP forces given by

both the BEM and PDM decrease to approximately zero. This is because the particle

is positioned near the center and there is little particle–wall interaction. Therefore, the

two techniques agree with each other.

5.6.3 Effect of the electric field

Table 5.3: Deviation of trajectory, (h2 − h1)/h1, for both the point-dipole method and
the BEM used in this study for the cases in Figure 5.7.

a/b = 0.2 a/b = 0.4
Current Current

E∗0 study PDM study PDM
5 1.35 1.38 1.41 1.53
10 1.38 1.44 1.50 1.68
20 1.45 1.53 1.61 —

The electric field is spatially non-uniform in the region close to the bend. A stronger

DEP force is associated with a particle positioned closer tothe inner side of the bend –

we have observed this in a previous section. Other than the particle’s size and location,

the dielectrophoretic force is also a function of the applied electric potential across both

ends of the pore. As was shown by Aiet al. [58] for the case of a 2D simulation for a

turning channel, we can expect that the particle will deviate farther from the inner wall

of the pore with an increasing electric field strength. This is verified in Figure 5.7(a)

and (d) for the cases ofa/b = 0.2 and 0.4 respectively. The applied electric field
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Figure 5.7: Trajectories fora/b = 0.2 (a-c) anda/b = 0.4 (d-f) under varying electric
field strengths but the same initial position (h1/b = 0.5). (a) and (d) depict the cases of
E∗0 = 5, 10, 20, and the case in which DEP is neglected (E∗0 = 5) using solid, dashed,
dot-dashed, and dotted respectively. A comparison betweenthe PDM and BEM is
shown for the cases ofE∗0 = 5 (b,e) and 4 (c,f). Thin-solid lines represent the PDM
trajectory and the line pattern of the BEM trajectories follow those introduced in (a)
and (d).
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values shown in both Figure 5.7(a) and (d) correspond toE∗0 = 5, 10 and 20 with line

patterns of thick-solid, dashed and dash-dotted respectively. The inner-most dotted line

represents the trajectory of the particle in the absence of dielectrophoresis forE∗0 = 5.

For these results the particle’s initial location within the pore ish1/b = 0.5. From

Figure 5.7(a), we can see the transient effect of electric field strength on the trajectory

of an electrophoretic particle. Specifically, the strongerthe electric field is, the more

the particle would translate laterally across the pore. From Figure 5.7(d) we can see the

combined effect of the electric field strength on the largest particle,a/b = 0.4. Similar

to the result seen in Figure 5.7(a), the particle deviates from the inner wall to a greater

extent with an increasing field strength. Additionally, because the DEP force also scales

with the particle volume, the corresponding deviation fora/b = 0.4 is larger than that

for a/b = 0.2.

In the numerical technique implemented in this study, the local distortion of the

electric field due to the presence of the non-conducting spherical particle is accounted

for by integrating Eq. (2.14) around the particle surface. As the PDM neglects this dis-

tortion, we would expect that the disagreement between the two techniques would grow

with an increasing electric field strength. Figures 5.7(b) and (c) depict a comparison be-

tween the two numerical techniques forE∗0 = 5 and 20 wherea/b = 0.2. Continuing in

the comparison of the particle size, Figures 5.7(e) and (f) plot the results of equivalent

simulations ata/b = 0.4. Again, the thin-solid line visualizes the PDM result and the

line pattern for the BEM result follows that of Figures 5.7(a) and (d). Under a weaker

electric field, the magnitude of the dielectrophoretic force is reduced and therefore the

field distortion is not as influential. Therefore, the PDM andBEM give similar result,

as shown in as shown in Figure 5.7(b). However, it is evident from Figure 5.7(c) that

under the influence of a stronger electric field, the accuracyof the PDM degrades. At a

non-dimensional field strength ofE∗0 = 20, the difference between the two techniques

is greater than 20% of the pore radius.

By comparing Figures 5.7(e) and (f), we can observe how quickly the PDM breaks
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down for a larger particle-to-cylinder ratio and a higher electric field. Thus, combining

the two effects to model a non-trivial microfluidic channel demands full integration

of the Maxwell stress tensor, such as the numerical technique employed in this work.

Table 5.3 details the numerical results, in terms of the deviation defined as (h2− h1)/h1,

for both the PDM and the technique used in this study for the cases in Figure 5.7. The

results forE∗0 = 10 are also included in the table. Note the deviation forE∗0 = 20

anda/b = 0.4 is not available for the PDM because it finally breaks down, as seen

in Figure 5.7(f) where the particle tends to cross the wall. In a physical situation, as

a finite-size particle approaches the outer wall, the DEP effect on the inner-wall side

would decrease and on the other hand, the opposing DEP due to the outer wall would

increase. As a result, the overall DEP force in the lateral direction becomes zero, and

the particle would not come into contact with the outer wall.As shown in Figure 5.7(f),

this effect is captured by the current BEM simulation but not by the PDM.

5.7 Conclusion

In this study, we investigate the fundamental effect of dielectrophoresis on the tran-

sient motion of particles in microfluidic channels and address limitations of the point-

dipole method. To do so, we have considered a non-conductingspherical particle in

a 90◦ bent cylindrical pore, where the size of particle is comparable to the pore diam-

eter. Results show that near the corner of the wall, the DEP force has a strong effect

on the particle’s motion. More importantly, for near-wall situations the particle’s finite

size has a significant effect on its transient trajectory, and using the PDM would leadto

substantial error.

As an additional discussion, we would like point out the relevance of our model to

real microchannels. For a commonly used aqueous, symmetricelectrolyte solution (e.g.

KCl) with an ionic concentration of 10−3 M and its chemical and electrical properties [3,

90] at room temperature, the EDL thickness (k−1) would be on the order of 10 nm. If we
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consider a 20µm diameter particle, this would yieldka ≈ 1000, well within the limits

of the thin-EDL approximation. In the present study, the minimum gap width occurring

between the particle and the channel wall is around 2% of the particle radius, that is,

approximately 0.2µm, which still roughly 20 times the thickness of the EDL.

If we extend this dimensional discussion to include other parameters used in the

present study for the case ofa/b = 0.2, then the diameter and length of the pore are

2b = 100µm andL = 600µm. Assuming common properties of polystyrene for the

particles (ζp = −22 mV,ρp = 1050 kg/m3), PDMS for the channel walls (ζw = −80 mV)

and pure water for the suspending medium (ǫ = 6.9×10−10 C/Vm, µ = 0.9×10−3 kg/ms,

ρw = 1000 kg/m3), the nominal electric field strengths to generate the deviations de-

scribed in this study are betweenE0 = 60 and 240 V/cm. These values fall within a

range of field strengths commonly used for DC-DEP. Under these operating conditions,

one can expect to see electrokinetic particle velocities between 0.2 and 1 mm/s. The

sedimentation velocity for a particle under these conditions is roughly 0.012 mm/s. Un-

der our conditions, the particle’s electrokinetic velocity is significantly larger than its

sedimentation velocity. If weaker fields and/or longer channels are employed, the im-

portance of the particle’s motion due to gravity can no longer be neglected. Depending

on the orientation of the bent pore, the particle’s sedimentation can alter its trajectory.
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CHAPTER VI

DIELECTROPHORETIC CHAINING OF TWO ELLIPSOIDAL PARTICLES

6.1 Background

With a growing number of researchers studying electrokinetics [1, 2], many valuable

applications have surfaced. One area benefiting from these studies is the self-assembly

of colloidal particles into organized structures. With theapplication of externally ap-

plied electric fields, dielectrophoretic forces are exploited to reposition suspended par-

ticles. If properly designed, this phenomenon can be used tocreate patterned materials

with desired mechanical, chemical, and biological properties [35, 91, 92]. One such

example comes from Yanget al. [36, 37]. In an effort to generate heart tissue on a

microfluidic chip, these researchers used the electric fieldbetween interdigitated elec-

trodes to pattern cardiac myocytes. Markxet al. [93] used DEP cell assembly to create

a multi-layered structure mimicking that of a hematon, an artificial micro-environment

for blood-producing stem cells. This serves to advance the study of stem cell activity for

the treatment and prevention of blood diseases. Using latexand silica microspheres and

co-planar electrodes, Lumsdonet al. [40] were able to assemble well-organized two-

dimensional hexagonal crystals. Through means of a similartechnique, Velevet al.[38]

were able to assemble biocomposite materials from a combination of live cells and

functionalized particles. In a previous publication, the same researcher had discovered

a simple manner to create microwires through DEP aggregation [39].

Two particles in an infinite fluid medium are a basic model configuration to study the

driving force behind the DEP colloid assembly. Consider twoidentical non-conducting

particles suspended in an aqueous electrolyte solution under the influence of an exter-

nally applied electric field. The presence of these particles locally distorts the electric
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Figure 6.1: Stages of the electric field-induced aggregation of 1.4µm spherical latex
particles reported by Lumsdonet al. [40].

field. This results in local minima and maxima around the particle. When the two

particles are close enough, the distribution of electric field strength around each par-

ticle surface becomes asymmetric. This yields an imbalanceof force acting on the

induced dipole across the particle. Depending on the alignment of the particles with the

electric field, this results in a mutually attractive or repulsive dielectrophoretic motion.

This is the underlying theory behind what is referred to as “pearl chaining", the ten-

dency of particles to form chain-like formations when underthe influence of an electric

field [10, 94].

Past experimental investigations have been focused aroundthe aggregation of spher-

ical particles made of latex or silica [40, 95]. Reported in these studies is an initial

particle chaining, followed by a field-induced lateral migration of chains as shown in

Figure 6.1. This process results in hexagonally crystalline structures. Recent numerical

studies have helped clarify the mechanism behind the relative electrokinetic motion of

two insulating spherical particles. Kang and Li [96] investigated this phenomenon by

balancing the DEP force with Stokes drag to obtain a particlevelocity. In that study,

they were able to show how the DEP force of two spherical particles gradually realigns

the particles such that the line connecting their centers isparallel with the direction of

the electric field. This realignment holds true regardless of their initial orientation with

the exception of an “unstable" equilibrium orientation where the particles are initially

71



Figure 6.2: Experimental results for electric field-induced aggregation of ellipsoidal
polystyrene particles reported by Singhet al. [98]. Aspect ratios used werea/b = 3.0,
4.3 and 7.6 wherea ≈ 10 µm. The particles transition from a random to an ordered
orientation (b–f) where they form a distinct chaining angle,θ.

arranged orthogonal to the electric field. In a similar study, Ai and Qian [97] used

a two-dimensional finite-element package to solve the coupled electric field and flow

field around two spherical particles. A similar realignmentprocess was reported. It was

also shown that a repulsive hydrodynamic pressure force reduces the velocity of two

particles under an attractive DEP force as they ultimately move together.

In the field of microfabrication, complex particle shapes can aid in the design of ma-

terials that meet desired properties [99, 100]. Additionally, biological cells that could be

incorporated in the synthesis of new tissue typically have an irregular shape [101, 102].

As argued by the other researchers in this field [10, 35], it isimportant to develop an

understanding of the particle–particle interaction occurring for non-spherical particles

subjected to electric fields. It has been shown previously that there exists a stable ori-

entation for a single non-spherical particle suspended in an electric field [103, 104].

The electric field induces a net torque acting on the particlewhich causes it to reorient

itself relative to the electric field. This phenomenon is referred to as electro-orientation

(not to be confused with electro-rotation which occurs onlyin fields of spatially vary-

ing phase). There has been limited theoretical study on two or more non-spherical

particles. Recently, Singhet al. [98] investigated the disorder-to-order transition of el-
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lipsoidal particles of varying aspect ratios. They reported that the randomly distributed

particles at certain field strength form a stable chaining angle in the end, which leads

to a distinct crystal structure that is a function of the particle’s aspect ratio. Results

of this study are visualized in Figure 6.2. Despite the experimental studies performed

on the packing of non-spherical particles [99, 100], littlehas been done to clarify their

fundamental interactions when under the influence of an the DEP force.

Previously, Yariv [105] and also Swaminathan and Hu [106] analytically investi-

gated inertial effects on electrophoretic particles. In their work, they detailed a stable

orientation that was perpendicular to the field. This contradicts DEP interaction as

spherical particles are known to form chains parallel with the field. In a separate report,

Kang and Li [96] compare this inertial interaction with DEP interaction and conclude

that DEP forces are commonly two orders of magnitude larger than inertial forces.

Based on this fact, they neglect inertial interaction. In the current study, we too neglect

inertial effects.

In this study we examine the DEP interaction of two non-conducting, ellipsoidal

particles in an electric field. Numerical simulations will be performed using the previ-

ously developed boundary-element method (BEM) for electrokinetic particles [71, 72].

The BEM, which requires a surface mesh only, is employed due to its superior accuracy

and efficiency when considering a linear problem, i.e., an electrokinetic problem with

the assumption of thin electric double layer (EDL). This feature is particularly advanta-

geous when the two particles are very close to each other, a situation that would require

a high-resolution volume mesh for other approaches such as the finite-element method.

It should be pointed out that, unlike some of previous studies, the three-dimensional

electric and flow fields are fully resolved when computing theMaxwell and hydrody-

namic stresses on the particles, thus eliminating the need to approximate these forces

using simplified formulas (e.g., Stokes drag).
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Figure 6.3: Schematic of the two non-conducting ellipsoidal particles suspended in an
electrolyte solution under the influence of an electric field.

6.2 Problem specification and governing equations

We consider two identical, non-conducting particles suspended in an aqueous elec-

trolyte solution. The schematic for this study is shown in Figure 6.3, where the particles

are prolate spheroids with the following conditions:a > b andb = c whereb is the po-

lar radius anda is the equatorial radius. The third semi-minor axis,c, is equal tob and

is parallel to thez-axis. The problem configuration is 3D, where the particles are free

to rotate and translate in the plane of symmetry.

In an electrolyte, particles are naturally charged and havea non-zero zeta-potential

at their surfaces. Therefore, the two particles would move under the combined elec-

trophoretic effect and the DEP forces. However, these two effects can be decoupled

if thin-EDLs are assumed near the particle surfaces, due to linearity of the governing

equations. Furthermore, the two unbounded particles wouldhave no electrophoretic

interaction and would translate at the same velocity as longas they have equal zeta-

potentials [107, 108]. This can be explained by modeling both the electric and flow

field as potential flow under the thin-EDL assumption [108]. If we decompose the

electrophoretic and dielectrophoretic velocities, we canobserve the relative velocity at

any point on the particle surface. If we assume that the relative velocity is everywhere
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proportional to the electric field, it becomes apparent fromthe Laplace equation that

velocity field is also divergence free. Because this satisfies our governing equations and

boundary conditions, we can conclude that there is no electrophoretic interaction. This

means that for a collection of particles, all with the same charge, each will translate at

the Smoluchowski velocity without affecting nearby particles. Therefore, introducing a

constant zeta-potential in the present problem would not change the relative motion of

the particles but simply add a net electrophoretic translation. For this reason, we may

ignore the surface charge and assume a zero zeta-potential for each particle.

The entire flow field is neutral, and the distribution of the electric potential,φ, is

governed by the Laplace equation, Eq. (2.4). The electric potential is subject to the

homogeneous Neumann boundary condition,∂φ/∂n = 0, at each particle surface. Note

thatn is the surface normal and points into the flow. The fluid is assumed to be New-

tonian and incompressible, and the Reynolds number is smallso that the fluid inertia

can be ignored. The bulk flow is then governed by the Stokes andcontinuity equations,

Eq. (3.16) The slip velocity typically used with the thin-EDL assumption, as detailed in

the previous studies [71, 72], is zero because the zeta potential at each particle surface

is set to zero. From this, the fluid velocity at a pointx on the particle surface is equal to

the rigid-body motion of the particle due to the no-slip condition,

u(x) = uc + ωez× (x − xc) (6.1)

in which xc anduc are the position and velocity of the centroid of the particle, ω is the

rotational velocity of the particle, andez is the unit vector inz.

The particle is assumed to be neutrally buoyant in the fluid and has negligible inertia.

Thus, the total traction and torque on each particle vanish,

∫

P
ft dS = 0,

∫

P
(x − xc) × ft dS = 0, (6.2)
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whereP represents the particle surface andft is the total traction. As in the previous

study, the total traction is defined as

ft = (T + σ) · n, (6.3)

whereσ is the hydrodynamic stress tensor andT is the Maxwell stress tensor given by

Eq. (2.14).

6.3 Boundary-integral formulation and numerical approach

Note that the solution to electric potential is independentof the solution of the fluid

flow, while the latter depends on the former through the particle dynamics in Eq. (6.2).

Therefore, the Laplace and Stokes equations can be solved sequentially at each time

step. Again, we utilize a boundary-element method to solve the governing equations.

The electric potential,φ, is decomposed into a combination of the background potential,

φ∞ = −E0x, and the disturbance potential,φD, generated due to the presence of the

particles so thatφ = φ∞+φD. Following boundary-integral formulation, the disturbance

potential at a pointx0 that lies on the boundary,D (either of the particle surfaces), can

be expressed using Eq. (3.14),

1
2
φD(x0) = −

∫

D
g(x0, x)[n · ∇φD(x0)]dS(x) +

∫

D
φD(x)[n · ∇g(x0, x)]dS(x), (6.4)

wheren is the surface normal pointing into the flow field which is outside of the particle

volumes enclosed by,D. Under this condition, the following integral identity from

Eq. (3.23) applies,

∫

D
[n(x) · ∇g(x, x0)]dS(x) = −

1
2
. (6.5)
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by noting thatx0 falls on the boundaryD. If we express the second integral in Eq. (6.4)

as

∫

D
φD(x)[n · ∇g(x0, x)]dS(x) =
∫

D
[φD(x) − φD(x0)][n · ∇g(x0, x)]dS(x) +

∫

D
φD(x0)[n · ∇g(x0, x)]dS(x), (6.6)

then we can use Eq. (6.5) to simplify it to the following form,

∫

D
φD(x)[n · ∇g(x0, x)]dS(x) =

∫

D
[φD(x) − φD(x0)][n · ∇g(x0, x)]dS(x) −

1
2
φD(x0). (6.7)

Implementing this adjustment into Eq. (6.4) allows us to remove the singularity and

transform the integral equation for the laplace equation into

φD(x0) = −
∫

D
g(x0, x)[n · ∇φD(x)]dS(x)

+

∫

D
[φD(x) − φD(x0)][n · ∇g(x0, x)]dS(x). (6.8)

The fluid motion comes solely from the disturbances caused bythe particle. To

solve the flow, we use the boundary-integral formulation forthe Stokes equation in 3D,

Eq. (3.22) and expressu at the pointx0 that lies inside the fluid,

1
2

u j(x0) = −
1

8πµ

∫

D
G ji (x0, x) fi(x)dS(x) +

1
8π

∫

D
ui(x)Ti jk (x, x0)nk(x)dS(x). (6.9)

wheref = σ · n is the component of the hydrodynamic traction. Note that thedummy

indicesi, j, andk rotate among the componentsx, y, andz. In this equation,ui and

u j are simply the rigid-body velocity components of the particles. Thus, the integral

identities for 3D rigid-body motion, Eq. (3.26) can be used.After this simplification,
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Eq. (6.9) reduces to,

u j(x0) = −
1

8πµ

∫

D
G ji (x0, x) fi(x)dS(x). (6.10)

After discretization, Eq. (6.10) will be used to formulate the algebraic system to obtain

the hydrodynamic tractionf on the particle surfaces. It is inherent in this formulation

that the fluid velocity vanishes asx approaches infinity.

To discretize the integral equations, 3D particle surfacesare represented using six-

node curved triangular elements. Variables pertinent to the electric field, i.e.,φ and

∂φ/∂n, are discretized at the six vertices of the elements. Variables pertinent to the flow,

i.e., traction fi and velocityui, are discretized at the element centroids. At each time

step, the integral equation for the disturbance potential is solved first. Then, Eq. (6.10) is

solved with unknown translational and rotational velocities of each particle. To match

the total number of unknowns, additional equations in Eq. (6.2), expressing the total

traction and the total torque on each particle are appended to the linear algebraic system.

Note that in Eq. (6.2), the contribution of the Maxwell stress can be computed explicitly,

once the electric field is obtained. Integrals over each element are carried out using

the Gauss–Legendre quadratures, and the resulting linear equation systems are solved

using the LAPACK library. The temporal update of the position and orientation of each

particle is achieved using a second-order Runge–Kutta scheme. The element size of

the mesh used in this study is adaptive and is based on gap distance between particles.

That is, the local resolution of the mesh between the particles is increased to make sure

that the small region is resolved sufficiently. An example of this adaptive technique is

shown in Figure 6.4.
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Figure 6.4: The adaptive mesh used in the BEM simulation. Elements forming the 3D
particle surface are adapted in size in the narrow gap regionwhen the two particles are
in close proximity.

6.4 Code validation

The 3D BEM code used in this study has been validated for several geometric con-

figurations in previous studies [71, 72]. In those validations, the resulting DEP force and

electrophoretic velocity were compared to previously published results. In the present

study, we are concerned with the DEP velocity of a non-conducting particle arising from

a balance between the field-induced DEP force and resulting hydrodynamic drag. From

this, it is appropriate that an additional validation be performed on the DEP mobility.

To do so, we consider a non-conducting particle migrating away from a nearby plane

wall under the transverse DEP force. The electric field is parallel to the wall. The exact

DEP force normal to the plane wall was found previously by Young & Li [60].

In their work, they consider a non-conducting sphere positioned close to a non-

conducting plane wall with an electric field is applied tangential to the plane wall. In this

state, the non-conducting surfaces of the particle and wallwill yield a greater electric

field strength in the region between the two objects. This generates a net DEP force

acting on the particle’s field-induced dipole. To determinethis force, the electric field

must first be solved. The necessary solution of the electric potential comes from a

modified analytical solution determined by Keh and Chen [109]. In their work, the thin-
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Figure 6.5: Nondimensional DEP velocity of a non-conducting sphere positioned close
to a non-conducting plane surface under the influence of an electric field,E0, directed
tangential to the surface. The exact solution and present BEM solution are presented as
a solid line and markers, respectively. The particle radiusis a, and the distance between
its center and the wall isd.

EDL assumption was employed to model the electric field usingthe Laplace equation.

Then, the solution of the electric potential can be written in bispherical coordinates

(ξ, η, ϕ) as

φ(ξ, η, ϕ) = −cE0 cosϕ
[ sinξ
coshη − cosξ

− (coshη − cosξ)
1
2

× sinξ
∞
∑

n=1

(

Rn sinh(n+ 1
2)η + Sn cosh(n+ 1

2)η
)

P′n(cosξ)
]

. (6.11)

wherec = asinhη0, η0 = cosh−1(d/a), a andd are the particle radius and the distance

of the particle center to the wall, respectively. Details for the coefficients,Rn, Pn andSn

can be found in the discussed reference [109]. The transformations for the bispherical

coordinates are

x =
csinξ cosϕ

coshη − cosξ
, y =

csinξ sinϕ
coshη − cosξ

, z=
csinhη

coshη − cosξ
. (6.12)
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In the work by Young & Li [60], they called upon an integrationtechnique used by

Swaminathan & Hu [106] to express the DEP force in the spherical coordinates. The

resulting scalar force expression is one that is directed away from and perpendicular to

the plane surface,

FDEP = −
1
2
εma2

∫ 2π

ϕ=0

∫ π

θ=0

[(1
a
∂φ

∂ξ

∂ξ

∂θ

)2

+

( 1
asinθ

∂φ

∂ϕ

)2]

sinθ cosθ dθ dϕ (6.13)

Note thatFDEP scales withεmE2
0a2. The transformations for the spherical coordinates

are

r =
√

(z− d)2 + x2 + y2, θ = tan−1

√

x2 + y2

z− d
, and ϕ = tan−1 y

x
. (6.14)

Table 6.1: Values of the nondimensional DEP velocity presented in Figure 6.5. The
particle radius isa, and the distance between its center and the wall isd.

12πµu/[εmE2
0a]

d/a Current Exact
study solution

1.01 0.03677 0.02416
1.02 0.04787 0.04104
1.05 0.07567 0.07354
1.10 0.09985 0.09910
1.20 0.11005 0.10972
1.50 0.07759 0.07779
2.00 0.03482 0.03541

The DEP force acting on the particle induces a repulsive motion. As the particle

moves away from the plane wall, it experiences a counteracting hydrodynamic drag.

Previously, Brenner [110] determined an analytical solution for the steady motion of a

sphere moving orthogonal to a plane surface using bipolar coordinates. It is presented

as,

FHYD = 6πµauλ (6.15)
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whereλ is a correction factor given by

λ =
4
3

sinhη0

∞
∑

n=1

n(n+ 1)
(2n− 1)(2n+ 3)

[ 2 sinh(2n+ 1)η0 + (2n+ 1) sinh 2η0

4 sinh2(n+ 1
2)η0 − (2n+ 1)2 sinh2 η0

− 1
]

. (6.16)

From the results presented by Brenner, it can be seen thatλ → 1 whend/a≫ 1. This

allows us to recover Stokes’ drag when the particle is far away from the plane surface.

As the particle gets closer to the wall (d/a→ 1), the increasing effect of the correction

can be seen asλ → ∞. Thus, the presence of the wall results in a drag force greater

than that of a unbounded particle.

By equating the modified version of Stokes’ law in Eq. (6.15) to the DEP force de-

scribed by Eq. (6.13),FHYD = FDEP, we can obtain the particle velocity. The analytical

solution was evaluated using Mathematica. Details of the formulation can be found in

the appendix. The nondimensional velocity,u∗ = 12πµu(εmE2
0a), obtained from this

approach is presented alongside the results found using ourBEM in Figure 6.5 and Ta-

ble 6.1. As seen from the figure, the BEM code implemented in this work yields a high

level of accuracy.

6.5 Results

6.5.1 Electro-orientation of a single prolate spheroid

Before discussing the interaction of two particles, we shall further examine the local

reorientation of a single particle because a particle’s electro-orientation will be coupled

with the global orientation, as will be shown later.

It is well understood that in a DC field, a prolate spheroid particle will reorient

itself such that its longest axis is parallel with the electric field (Figure 6.6(a)). This is

because a non-spherical particle is in orientational equilibrium when its field-induced

dipole (which, in this case, is in line with the major axis of the ellipsoid) is parallel with

the field vector [10]. When its minor axis is parallel with theelectric field, the particle
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Figure 6.6: (a) A diagram of the electro-orientation process fora/b = 3.0 when the
electric field is directed left to right. (b) The self-orientation angle of a single particle
as a function of nondimensional time for various aspect ratios.

is in an equilibrium but unstable position. Figure 6.6(b) visualizes the self-orientation

angle,α, of a single, unbounded particle as a function of the nondimensional time,

t∗ = tεmE2
0/µ, for four different aspect ratios:a/b = 3.0, 2.0, 1.25 and 1.11, where the

angle between the long axis and the electric field is initially α0 = 85◦. These results

were obtained using our BEM code.

From the figure we can see the influence of the aspect ratio on the relaxation time,

which we will define as the amount of time required for the particle’s self-orientation

angle,α, to fall below 1% of its initial angle. A constant electric field does not exert a

torque on a spherical particle. This is because the local Maxwell stress in Eq. (2.14) is

always in line with the surface normal and passes through thecentroid of the particle.

Therefore, we can expect that a nearly spherical particle has a greater relaxation time

due to its reduced magnitude of the DEP torque. This is reflected well in Figure 6.6(b)

as the relaxation time fora/b = 1.11 is roughlyt∗ = 440, the longest among the four

cases.

For larger aspect ratios, the relaxation time is reduced. Specifically, fora/b = 1.25,

2.0 and 3.0, we see the nondimensional time oft∗ = 223, 143, and 178, respectively.
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Figure 6.7: Normalized DEP torque as a function of the singleparticle’s orientation
with respect to the electric field.

It also becomes apparent from these values that there is a minimum relaxation time

achieved with respect to the aspect ratio. This can be explained by the balance be-

tween the DEP and hydrodynamic torques,TDEP = THYD. To further illustrate the

torque balance on a single particle, we utilize existing analytical solutions for each

torque. Jones [10] gave an analytical formula of the DEP torque acting on a single,

unbounded ellipsoid of arbitrary orientation and a finite permittivity ratio with respect

to its suspending medium,εp andεm, whereεp andεm correspond to the permittivity of

the particle and medium, respectively. For a non-conducting prolate spheroid particle

(εp ≪ εm), this relation is expressed in Eq. (2.21). The solution to this relation is plotted

in Figure 6.7, where the nondimensional torque is defined asT∗DEP = 2TDEP/(a3εmE2
0).

The figure shows that for all the aspect ratios considered here, the maximum torque is

achieved whenα = π
4. In addition, the DEP torque increases as the ratioa/b is de-

creased from 5.0 to 1.67, which is because a slender particlecauses minor distortion to

the electric field. On the other hand, the DEP torque fora/b = 1.25 drops below that

for a/b = 1.67 since the former particle becomes close to a zero-torque sphere.

The hydrodynamic torque acting on a prolate spheroid rotating about its minor axis

can be found in Wu [111]. Through fundamental singularities, the analytical solution

84



10
0

10
1

0

0.2

0.4

0.6

0.8

1

a/b

 

 

T ∗

HYD

T ∗

DE P

Figure 6.8: Normalized DEP and hydrodynamic torques as functions of the aspect ratio
where the DEP torque shown is forα = π

4.

10
0

10
1

0

0.5

1

1.5

a/b

ω∗

Figure 6.9: Rotational velocity atα = π
4 (resulting from a balance of the hydrodynamic

and DEP torques) as a function of the aspect ratio.
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can be expressed as,

THYD =
32
3
πµab2ωe3

(

2− e2

1− e2

) [

−2e+ (1+ e2) log
1+ e
1− e

]−1

(6.17)

wheree, the eccentricity is defined ase=
√

1− b2/a2. Defined asT∗HYD = THYD/(8πµa3ω),

whereω is the rotational velocity, the normalized torque is plotted in Figure 6.8 as a

function ofa/b. Together shown in the figure is the aforementioned DEP torque assum-

ing the orientation angle is atα = π/4. For a spherical particle,a/b = 1, the normalized

hydrodynamic torque takes its well-known value,T∗HYD = 1. An increasing aspect ratio

results in a decreasing value of hydrodynamic torque. Equating the two torques, we

obtain the electro-orientation velocity of a single particle as a function of the aspect ra-

tio, as shown in Figure 6.9, where the angular velocity at theorientation angleα = π/4

is defined asω∗ = 16πµω/(εmE2
0). The result shows that the maximum angular veloc-

ity takes place neara/b = 1.4, which is consistent to the relaxation time observed in

Figure 6.6(b).

6.5.2 Two particles: combined electro-orientation and global reorientation

Next, we shall observe the interaction of two particles and will start by considering

arbitrary initial configurations. We will see that the transient motion of the particles

largely depends on their initial positions.

Li [96] and Ai & Qian [97] showed that two spherical particleswith an arbitrary

initial orientation angle,θ, will globally rotate and reorient themselves so that they ulti-

mately arrive in a tandem arrangement and finally they are attracted to each other. For

two ellipsoids, we expect that both global and electro-orientation will occur. Therefore,

we first consider the situation shown in Figure 6.10. In this alignment, each particle

is nearly vertical with respect to the electric field and so isits own self-orientation an-

gle. Here, we account for the simultaneous electro-orientation and global orientation
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t∗ = 0 t∗ = 58 t∗ = 132 t∗ = 9000 t∗ = 18000

Figure 6.10: Combined electro-orientation and global reorientation of two interacting
ellipsoids. Results are shown for the case ofa/b = 3.0, θ0 = 85◦, α0 = 85◦, and
d0/a = 2.2. The electric field is directed left to right. Arrows represent the direction of
TDEP.

processes and how the combination influences interaction between the two particles. In

doing so, we compare the time scale associated with the global reorientation to the time

scale with the electro-orientation, i.e., the relaxation time.

Specifically, we consider two particles witha/b = 3.0 initially positioned atθ0 =

85◦ and a center-to-center distance ofd0/a = 2.2. The particles are each initially ori-

ented with respect to the electric field such thatα0 = 85◦. Figure 6.10 visualizes the in-

teracting particles at various moments in time through the process. The example shows

that each particle’s relaxation time is much shorter than the time required for global ori-

entation. In the case considered here, the electro-orientation is completed byt∗ = 132,

which is somewhat shorter than the relaxation time of a single particle reported in the

previous section,t∗ = 178. The difference can be attributed to the interaction between

particles. The global reorientation, however, requires roughly t∗ = 18000 and is even

much longer that the relaxation time of a single particle with a/b = 1.11 shown in

Figure 6.6(b).

In order to view the simulation from a dimensional perspective, we introduce rele-

vant dimensional parameters. If we approximate the suspending medium as pure water

(εm = 6.9 × 10−10 C/V·m, µ = 0.9 × 10−3 kg/m·s), then under an applied field of 100

V/cm, we would expect electro-orientation of the particle in Figure 6.10 to be completed
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(a) (b)

Figure 6.11: Surface plot of|E|2 for ellipsoidal particles oriented at (a)θ = 90◦ and (b)
θ = 0◦. The electric field is directed left to right. Red shading represents a high field
strength whereas blue represents weak field strength.

within 2 seconds while the entire global reorientation process would require close to 4

minutes.

The large difference in time scales between the two orientation processesimplies

that we can reasonably model the global orientation processfor particles of arbitrary

initial self-orientation by assuming that the particles have already completed the electro-

orientation process. Complication arises when the two particles are very close to each

other and their self-rotation is interfered by contact. Such special cases will be discussed

in the end of this chapter.

6.5.3 Two particles at perpendicular (θ0 = 90◦) or parallel (θ0 = 0◦) alignments

First, we consider two particles initially positioned suchthat the line connecting

their centers is either perpendicular (θ0 = 90◦) or parallel (θ0 = 0◦) with the electric

field, where distortion of the electric field is symmetric. Such distortion leads to a

DEP force that is attractive for the parallel case or repulsive for the perpendicular case,

and the two-particle system does not globally rotate. Figure 6.11(a) displays a surface

plot of |E|2 for the case ofθ = 90◦. Here, we can see that a region of strong electric

field forms between the particles. This yields a mutual DEP force that would repel the

two particles away from each other along a straight line. As shown later, this globally
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t∗ = 0 t∗ = 605 t∗ = 1340 t∗ = 1900

Figure 6.12: Global reorientation of two ellipsoids, wherethe electric field is applied
left to right. Results are shown for the case ofa/b = 2.0, θ0 = 85◦ andd0/a = 1.1.
Vectors represent the direction ofFDEP. The corresponding contour plot of|E|2 is shown
on the lower row.

perpendicular orientation is unstable. That is, a disturbance in either direction would

produce a DEP force component that would ultimately lead to chain formation. Fig-

ure 6.11(b) displays a similar plot for the case ofθ = 0◦. Contrastingly, this parallel

orientation produces a region of low-strength electric field between the particles. The

resulting mutually attractive DEP force drives the particles toward each other, also along

a straight line. A detailed discussion of these two distinctorientations was presented by

Ai & Qian [97] for the case of two spherical particles.

6.5.4 Global reorientation with initial configuration 0◦ < θ0 < 90◦

Next, we consider the case when two particles initially havea global orientation

angle, 0◦ < θ0 < 90◦. Here, the distorted electric field exhibits atwo-fold rotational

symmetry about thez-axis that passes through the midpoint between the two particles.

The mutual DEP force causes the two particles to translate incurved paths and so their

centers rotate clockwisely. An example of this reorientation process is depicted in Fig-

ure 6.12. Recall that if either of these particles were present under the same conditions

without the presence of the second particle, there would notbe a net DEP force. There-
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fore, the perturbed electric field and its asymmetry have ledto a net DEP force that

is equal in magnitude but opposite in direction for the two particles, as shown in Fig-

ure 6.12. In this case, the particles start withθ0 = 85◦, when the DEP force is nearly

vertical and repulsive. As the particles move away from eachother, they also slightly

shift horizontally, which creates greater asymmetry and causes the DEP force to be-

come nearly horizontal (t∗ = 605). Later, as the horizontal shift becomes sufficiently

large (andθ becomes small), the DEP force becomes attractive in the vertical direc-

tion while remaining to be repulsive in the horizontal direction (t∗ = 1340). In the

end, the force becomes completely attractive, and the particles move toward each other

(t∗ = 1900) along a small global orientation angle.

Previous experimental study [98] has shown that densely distributed ellipsoidal par-

ticles that are initially arranged in a random manner will tend to form chains. These

chains are shown to have a distinct angle with respect to the direction of the electric

field, similar to the current observations from a two particle configuration. Therefore,

the transient behavior and particle-particle interactionexhibited in the current study

could be used as the fundamental mechanism to explain the phenomenon in the experi-

ment.

To systematically investigate the global reorientation oftwo particles, we vary the

initial orientation and distance between the two particlesand run a series of simula-

tions to obtain the particle trajectories and the final orientation angle. Three aspect

ratios,a/b = 1.0, 2.0, and 3.0, are considered in this study. Contact mechanics is not

considered in this study, and the numerical simulation would eventually break down if

the gap between the particles is sufficiently small. Thus, we define a threshold for the

gap distance at which the two particles are deemed to be at theterminal configuration.

Although predicting the particle motion beyond the threshold is not considered here,

from the directions of their final translational velocity itis reasonable to believe that the

particles will form a stable pair after contact.

Figure 6.13 visualizes this reorientation process for several cases from the simula-
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θ0 = 70◦ θ0 = 70◦ θ0 = 85◦ θ0 = 85◦ θ0 = 20◦

d0/a = 2.2 d0/a = 2.8 d0/a = 2.2 d0/a = 3.0 d0/a = 5.0
θc = 7.0◦ θc = 4.8◦ θc = 4.6◦ θc = 2.6◦ θc = 1.8◦

t∗c ≈ 160 t∗c ≈ 360 t∗c ≈ 960 t∗c ≈ 4200 t∗c ≈ 600

θ0 = 70◦ θ0 = 70◦ θ0 = 85◦ θ0 = 85◦ θ0 = 20◦

d0/a = 1.1 d0/a = 1.5 d0/a = 1.1 d0/a = 3.0 d0/a = 5.0
θc = 12.7◦ θc = 12.2◦ θc = 10.0◦ θc = 4.9◦ θc = 3.0◦

t∗c ≈ 350 t∗c ≈ 740 t∗c ≈ 1900 t∗c ≈ 39000 t∗c ≈ 6700

θ0 = 70◦ θ0 = 70◦ θ0 = 85◦ θ0 = 85◦ θ0 = 20◦

d0/a = 0.8 d0/a = 1.1 d0/a = 0.8 d0/a = 3.0 d0/a = 5.0
θc = 11.0◦ θc = 9.9◦ θc = 8.6◦ θc = 4.2◦ θc = 2.0◦

t∗c ≈ 1000 t∗c ≈ 1700 t∗c ≈ 5300 t∗c ≈ 731000 t∗c ≈ 37000

Figure 6.13: DEP trajectories for various initial conditions (indicated by dashed lines).
The first, second, and third rows correspond to aspect ratiosof a/b = 1.0, 2.0, and 3.0,
respectively. The initial (θ0) and final (θc) angle are presented along with the initial
separation (d0/a) and the travel time,tc.
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tion series. The initial and final configurations as well as the transient trajectories are

plotted in the figure. The orientational angle just prior to contact,θc, and the time taken

to complete the travel,t∗c, are provided for each case. Several observations can be made

from this figure. First, for all the cases shown, including the spherical shape, the parti-

cles finally reach an oblique configuration that has a chaining angle with respect to the

direction of the electric field. The chaining angle in these cases are less than 13◦, and it

depends on both the initial configuration and the aspect ratio of the particles. For exam-

ple, considering the spheres (a/b = 1.0), if we compare the two cases atθ0 = 70◦, or the

two cases atθ0 = 85◦, we can see that increasing the initial particle distanced0 while

keepingθ0 constant would lead to a smaller chaining angle. On the otherhand, keeping

the initial distance constant while increasingθ0 could lead to a smaller chaining angle as

well. A comparison of the two cases withθ0 = 70◦ or 85◦ andd0/a = 2.2 illustrates this

argument. Furthermore, when the particles are far apart, e.g., θ0 = 20◦ andd0/a = 5.0,

the chaining angle could also be small (less than 2◦), and the two particles are almost

parallel with the electric field. For the other two geometricratios,a/b = 2.0 or 3.0,

we can observe the similar trend of the chaining angle asθ0 or d0 is varied. However,

for slender particles, the time required for global reorientation is typically much longer

compared to the time for bluff particles. This result can be attributed to the fact that

a slender particle causes less distortion to the electric field and thus induces a lower

DEP force. In addition, the effective distance between the two particles (equivalent to

the gap width) is larger for two slender particles when compared to that of bluff parti-

cles under the same center-to-center distance, which leadsto a weaker particle–particle

interaction.

As seen in the experiment with densely distributed particles [98], the reported chain-

ing angle is 16±5◦ for particles of approximate aspect ratioa/b = 3.0. The closest case

in our study to the experimental condition would bea/b = 3.0,θ0 = 70◦, andd0/a = 0.8,

where the chaining angle isθc = 11◦. This angle is smaller compared to what was seen

in the experiment, possibly due to the fact that only two particles are being considered
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here.

To get a better view how the initial configuration affects the particle chaining, we

plot a map of the particle motion by grouping the trajectories with differentθ0 andd0

into one single figure, which is shown in Figure 6.16 for the three aspect ratios. On

the map, the trajectories display a pattern that consists ofa family of open rings that

originate near they-axis and end near thex-axis. These rings do not cross over each

other. The particles could start at any point initially on a loop. They will then follow the

trajectory and complete the rest of the path. Note that to initiate the global rotation and

also to shorten the simulation time, we have usedθ0 < 90◦ so that the start location is

just off they-axis. In addition, the trajectories can not be extended much further in the

map since at the start and end points, there is a minimal gap between the two particles.

In the results published by Ai and Qian [97], they report thata slight dependence

of particle trajectory on electric field strength. In more detail, it is explained that a

stronger electric field yields a curved trajectory that is outside that of a weaker field. In

other words, the two particles would be farther apart at the sameθ for a greater value

of E0. We point this out because our studies yield a different result. Here, we would

like to point out that the externally applied electric field strength,E0, has no effect on

particle trajectories. This is because both the electric field and flow are governed by

linear functions. RaisingE0 will increase the DEP force quadratically, as indicated in

Eq. (2.14). Since the counteracting hydrodynamic drag is linearly proportional to the

velocity, the translation of the particles would increase quadratically as well. However,

the directions of the DEP force and velocity would not dependon the amplitude ofE0.

It is important to note, however, that increasing the field strength will certainly reduce

the orientation times discussed herein.
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Figure 6.14: Trajectory map fora/b = 1.0. Dashed ellipses represent approximate final
configurations. Open circles correspond to the cases visualized in Figure 6.13.
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Figure 6.15: Trajectory map fora/b = 2.0. Dashed ellipses represent approximate final
configurations. Open circles correspond to the cases visualized in Figure 6.13.
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Figure 6.16: Trajectory map fora/b = 3.0. Dashed ellipses represent approximate final
configurations. Open circles correspond to the cases visualized in Figure 6.13.

(a) (b) (c)

Figure 6.17: Particles under electro-orientation when they are initially positioned close
to one another (as indicated by dashed lines). Results are shown for the case ofa/b =
2.0, θ0 = 0◦, d0/a = 2.0. An initial perturbation of 5◦ has been applied to each nearly
vertical particle.
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6.5.5 Particles interacting without sufficient separation

As mentioned earlier, two particles with arbitrary initialself-orientation will go

through a combined rapid electro-orientation and slow global orientation. If the par-

ticles are positioned too close to each other, their self-alignment process could be in-

terfered due to contact. Examples of this situation can be found in Figure 6.17, where

the particle centers are in tandem arrangement withd0/a = 2.0 but each particle may

have arbitrary orientation. The two particles move toward each other while they are

rotating. The reduced separation causes the particle to contact before they could finish

electro-orientation. Further motion of the particle pair would depend on the nature of

the contact. In this situation, the final configuration is case-specific and does not have

a general pattern as seen in earlier discussion. A similar situation was also seen in

the experiment by Singhet al. [98], where the electro-orientation interference from this

close-range interaction was discussed as “jamming".

6.6 Conclusion

In this study, we investigate the fundamental mechanics of non-spherical particle

coalescence under the dielectrophoretic effect. To do so we have utilized a three-

dimensional boundary-element method to model the transient motion of two interacting

non-conducting prolate spheroids under a DC electric field.In our approach, we per-

form surface integration of the Maxwell stress tensor, and the viscous drag is obtained

by solving the Stokes flow.

Combining previously available analytical solutions for the hydrodynamic and di-

electrophoretic torques, we first identified an aspect ratiothat minimizes the relaxation

time for electro-orientation of a single particle. As the numerical simulation shows, the

electro-orientation of the particles is much faster than the global reorientation. Based on

this observation, we modeled the relative motion of two particles whose field-induced

dipole is already parallel with the field vector. With this model, we clarified the mech-
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anism that drives the ellipsoidal particles to form a stablechain. The transient motion

of the particles and their chaining angle are generalized ina trajectory map for the par-

ticles with a constant aspect ratio. In particular, when theparticles are initially closely

separated, the chaining angle resembles what was observed in a previous experiment

of densely distributed particles. Therefore, this study provides a possible mechanism

to explain the experimental phenomenon. We have further studied the relationship be-

tween the initial separation of the particles and the final chaining angle. It was shown

that particles of higher aspect ratios tend to form reduced chaining angles and require

more time for self-assembly. Trajectories and chaining angles discussed are shown to

be independent of field strength.
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CHAPTER VII

CONCLUSIONS

7.1 Summary of present work

The ability to rapidly detect disorders or infectious agents is of superlative impor-

tance within the medical community. While still young in itsdevelopment, lab-on-a-

chip technology has shown signs of an auspicious future in which bacteria, diseases

and viruses can be quickly and accurately detected and subsequently treated. Required

of this technology is the ability to manipulate colloidal materials at the micron scale.

The recent expansion of microfluidic studies has helped identify and exploit fundamen-

tal phenomena to improve our level of control over the biological suspensions used in

these LOC devices. Increasingly popular within the field of microfluidics is the use of

electric fields to drive actuation. This technique does not require mechanical, moving

components. Instead it uses electrodes that are fabricatedby straightforward techniques.

A potential bottleneck to the future LOC devices is the repeatability of the assays they

perform. Precision is a challenging demand when operating with particles and fluidic

channels at length scales of 1-100µm. However, it is this same demand of precision

that sets the efficacy required for a positive future of the technology.

Driven by this demand, many researchers have worked to answer some of the more

fundamental questions regarding electrokinetic effects in microfluidics. Still, there is

more to be understood regarding the complex electrokineticbehavior of colloidal par-

ticles. Some researchers choose to employ approximations that are simple and effi-

cient, but limited in their accuracy. Others derive and utilize analytical solutions, how-

ever, these are available only for elementary geometries and conditions. Numerical

approaches that use volume meshes such as a finite-element method are capable, but in-
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efficient for systematic studies required in the design and optimization of microfluidic

networks. They are also inaccurate under conditions where ahigh resolution volume

mesh is required. Thus, there is need for an alternative numerical technique in the

study of electrokinetic effects. To help resolve this need, the goal of this work is to

aid in the expansion of applications of the boundary-element method to incorporate

electrokinetic effects in microfluidics. In this dissertation, we present the BEM as an

alternative technique and implement it to investigate situations that are not well-suited

for the aforementioned techniques.

The body of work discussed herein can be broken into three sections. In Chapter IV,

we implemented our two-dimensional BEM to study the influence of parallel walls on

the electrophoretic mobility of a cylindrical particle. Previous studies using single walls

have shown an increase in mobility as the particle approaches the wall due to distortion

of the electric field in the gap region. What we were able to to show, however, is that

in the case of two bounding walls this “enhancement" can be mitigated by the viscous

drag induced by the second wall. Notably, when the particle and channel wall are com-

parable in size, the viscous effect is comparable to that of electrophoresis. By utilizing

our 3D BEM code, in Chapter V, we were able to study the effect of dielectrophoresis

on a spherical particle moving through a bent cylindrical channel. The shape of the

channel creates a non-uniform electric field, which inducesa DEP force that “pushes"

the particle away from the inside corner. Our study clarifiesthe effect under various

field strengths, sizes and initial positions. As the particle becomes close to the wall, its

finite size has an increasingly important effect on its own transient motion. By com-

paring our results with those using a common approximation (PDM), we were able to

clarify the limitations of the approximation. The next stepwas to extend our 3D BEM

code to incorporate two particles and also to model non-spherical particles. With these

modifications in place, in Chapter VI we were able to study theDEP interaction that

takes place between two slender particles in the vicinity ofeach other. Here, we clarify

the chaining mechanism between slender particles and observe the dependence of its
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final chaining angle on particle aspect ratio.

7.2 Limitations of present work

When using the results reported in this dissertation, it is important to consider their

limitations. Several assumptions are inherent in the numerical model which may not be

suitable under extreme conditions. As discussed before, Joule heating is a natural occur-

rence in electrokinetic applications. This can lead to non-uniform temperatures within

the medium, altering its mechanical, electrical and chemical properties [112, 113].

Joule heating is more significant at high field strengths and should be monitored in

experiments. We also do not consider DLVO-type interactions that can occur if two

surfaces are significantly close to each other. This classical theory encompasses van der

Waals forces and EDL interactions. Our method assumes negligible EDL thickness and

van der Waals contributions. These interactions would be more significant at smaller

length scales (< 1 µm). An electrokinetic effect that is not considered is electrodefor-

mation [114]. This is surface deformation arising from the field-induced stresses. Our

simulations assume all particles and channel walls are rigid. The relevance of defor-

mation is dependent upon the particles used. Lastly, our model is developed around

the linearity of Stokes equations. If channel dimensions are large enough and yield

increased values of Reynolds number, inertial effects must also be considered.

7.3 Contributions of present work

The first objective of this work was to advance the application of the boundary-

element method within electrokinetics in microfluidics. Inmeeting this objective, we

provide several key contributions to the field.

• We have developed the 2D and 3D boundary-integral formulations for the elec-

trokinetic motion of particles in microchannels. These formulations were then
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utilized to construct both a comprehensive 2D and 3D BEM codebased on a

previous solver for Stokes flow.

• Implementing these codes, we have demonstrated the effectiveness of the BEM as

an accurate alternative to other numerical techniques. It has been applied in three

studies whose geometries would be computationally demanding for numerical

techniques limited by volume discretization.

• As a proof of its accuracy, each study is accompanied with a thorough validation.

Each of these validations include a comparison of our BEM results with those

obtained through analytical techniques for similar geometries. For each of the

comparisons, the BEM achieved significantly high levels of accuracy.

• To justify the need for a numerical technique, we compare results obtained using

our BEM to those obtained using a point–particle approach. This comparison

exemplifies the inaccuracies obtained without accounting for the finite size of the

particle.

Another objective of this work was to utilize the developed BEM to study the fun-

damental electrokinetic motion of particles. In this respect, we contribute the following

concepts identified in the studies herein.

• When bound by two parallel walls, the viscous effect acting on a tightly-bound

cylindrical particle is comparable to its electrophoreticeffect. In addition, the

particle’s rotational velocity is sensitive to its eccentricity.

• The size of a spherical particle has an increasingly significant effect on its own

transient motion when traversing through a bent pore. This is especially true if

the particle is positioned close to the wall.

• Lastly, with sufficient distance, electro-orientation has little or no effect on the

field-induced chaining of slender particles. The final chaining angle formed be-
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Figure 7.1: Experimental results of DC-DEP effect created by insulating hurdle for (a)
2.85µm and (b) 7.85µm particles reported by Kanget al. [41].

tween two particles is dependent upon the aspect ratio of theparticles. The mech-

anism reported in our study serves as rationale for the observed experimental

phenomenon.

7.4 Directions for future work

7.4.1 Characterization of hurdle-based DC-DEP for particle manipulation

With the three-dimensional BEM code in place and validated,there are several di-

rections that one could choose to extend its application within electrokinetics. As a

proven numerical method, one could utilize the code in an effort to optimize microchan-

nel design associated with certain DEP techniques. One example of this is the hurdle-

based DEP. This technique is often applied to particle separation by size or electrical

properties. There are several geometric approaches in the design of these hurdles such

as the rectangular, triangular, spiraling or serpentine. The advantage of implementing a

BEM code to optimize the geometric parameters governing microchannel design, is its

efficiency. A systematic study on these parameters would be a useful and straightfor-
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Figure 7.2: Schematic of a microchannel design used for particle separation based on
DC-DEP from an insulating hurdle. Dashed lines represent potential hurdle shapes. The
trajectory shown is what would be expected of a non-conducting particle when traveling
through the DC-DEP mechanism.

ward extension of the work detailed in Chapter V. As an example, Figure 7.2 depicts

the variables that could be used in a simple study to design and optimize the hurdle

conditions. The problem specification in this study would beidentical to those of the

studies performed in this dissertation. In fact, we completed a preliminary test to ob-

serve the effect of particle size from a rectangular hurdle. Figure 7.3 plots the results

of this test. The three trajectories depicted represent thethree different particle sizes:

2a/d = 0.125 (solid line), 0.250 (dashed line) and 0.375 (dash-dotted line). Each of the

particles was initially positioned ath1/d = 1.25. The overall channel is 37.5d long (L),

6.25d wide and 1.25d deep in thex, y andz directions, respectively. If we define the

nominal electric field strength asE0 = (φ1 − φ2)/L, and its non-dimensional counterpart

asE∗0 = E0(d/ζp), then the value ofE∗0 was held constant at 16.0. As was expected, the

larger particles deviated farther from their original streamline while moving around the

hurdle. The final deviations for each of the particles from smallest to largest wash2/d

= 2.45, 3.30 and 4.05. Our results matched those reported by Kang et al. [41, 115] as

seen in Figure 7.1
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Figure 7.3: Results for a DC-DEP simulation using a square hurdle and a non-
dimensional, nominal electric field strength ofE∗0 = 16 at varying particle sizes: 2a/d
= 0.125 (solid line), 0.250 (dashed line) and 0.375 (dash-dotted line).

7.4.2 Characterization of embedded electrode AC-DEP for particle manipula-

tion

As mentioned before, alternating current is also used when implementing DEP.

There are advantages to using AC-DEP that make it favorable under certain condi-

tions. To model the effect of AC-DEP, modifications are necessary to account for the

time-varying field. The conductivity and permittivity of suspended particles are a func-

tion of the frequency of the applied field. This results in a distinct response over a

range of frequencies depending on the type of particle you are modeling. In fact, there

exists a cross-over frequency where the direction of the DEPforce reverses (from nega-

tive to positive DEP). This occurs when the permittivity of the particle approaches that

of the suspending medium. To generate a non-uniform field using alternative current,

asymmetric electrode geometries must be used [116–118]. Inthese studies, continu-

ous separation of particles is achieved by utilizing pressure-driven flow to move the

particles through a separation region. One of several designs proposed by Barbaros

Çetin et al. [119, 120] makes an effort to reduce the size of the separation region. In

this design, a more narrow region is generated using two planar copper electrodes, one

on each side of a rectangular channel. It is believed that this can serve to further reduce

the negative effects on cells induced by overexposure to electric fields.
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In a recent unpublished study by Barbaros Çetin, a comparison was made between

the resulting trajectories using two numerical approachesto model his planar AC-DEP

design. Similar to our study [72], the comparison was made between a point-dipole

method and full integration of the Maxwell stress tensor over the surface of the particle.

Qualitatively, the results were similar, but the simplifiedpoint-dipole method yielded

significant error resulting in over- and under-shooting trajectories. In these 2D simu-

lations, commercial software (COMSOL) used a finite-element approach to utilize the

more accurate Maxwell stress tensor approach. This required re-meshing between time

steps that caused the software to become unstable and crash during longer trajectory

simulations. Thus, there is need for a BEM study to complete an optimization to en-

hance separation effectiveness. Specifically, studies could be performed on thefollow-

ing parameters: electrode size, channel geometry (aspect ratio), particle size, particle

shape, initial location.

Figure 7.4 shows a schematic of what the problem setup may look like. In this

design, specified electric potential would be used at the surface of each electrode. By

designing the channel to be sufficiently long, one could approximate the inlet and outlet

potentials as zero. Electric potential would no longer the driving force behind bulk

flow because the electrodes are positioned across the width of the channel instead of its

length. Therefore a pressure gradient would be required to move the particle through

the channel by means of the induced hydrodynamic force. To simulate this, different

values of traction would be specified at the channel inlet andoutlet. Note that the slip

velocity along the channel walls will be approximately zeroin regions distant from

the electrodes. Because there is no EDL at the electrode surface, a no-slip boundary

condition would be applied.
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Figure 7.4: Schematic of a microchannel design used for particle separation based on
AC-DEP from 3D asymmetric electrodes. Dashed lines represent the electric field lines.
The trajectory shown is what would be expected of a non-conducting particle when
traveling through the AC-DEP mechanism.

7.4.3 Other future studies

For non-spherical particles in an alternating field, the frequency-dependent permit-

tivity results in multiple orientational equilibrium positions. In general, an ellipsoid

would still have one “relaxed" orientation for a given frequency, however, this relaxed

orientation would be a function of its frequency-dependentpermittivity. In the case of

an ellipsoid with three distinct axes, it would have three different orientations in which

it would be considered relaxed. This could prove useful in self-assembly applications.

Thus, one could use the current BEM to model this frequency-dependent interaction.

Interest has been developing for a numerical model capable of accounting for defor-

mation of soft particles in electrokinetic flows. Researchers have shown relationships

between deformability and health status for certain cells [114]. Such a trait could po-

tentially be exploited for characterization and diagnostics applications. As the BEM

computes the total stress acting on the particle surface, itwould serve as a capable tech-

nique in this area. To extend the code to incorporate deformation, one would have to

account for the elasticity of the cell membrane.

There are several more immediate extensions of the current BEM code as well. For

example, modeling particles of arbitrary shapes. It has been shown previously, that par-
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ticles of more complex shape can be used to aggregate into desired patterns [99, 100].

Also, biological particles can be irregularly shaped. Thus, to ensure that microfluidic

chips are flexible enough to account for arbitrarily-shapedparticles, it is necessary that

they are optimized for a variety of shapes. The BEM would provide a useful numeri-

cal technique for predicting the behavior of complex particle shapes. In addition, one

could study the interaction of multiple particles. In the present work, only up to two

particles are considered. Another area that needs investigating is the interaction of par-

ticles within bounded flow. Previous researchers have observed interactions between

particles traversing a microfluidic channel. These particles tend to chain, which inter-

feres with DEP separation studies. It would be useful to model this interaction in the

presence of boundaries for two or more particles to identifyits impact on DEP manip-

ulation techniques. At its present stage, the BEM code is capable of handling each of

these simulations.
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