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Figure V.5. Process of level set segmentation on anterior abdominal wall for three subjects. The 

red contours indicate the current segmentation for each process. The first two columns show the 

preparation for the initial start. The last four columns illustrate the iterations of level set evolution. Note 

the third column demonstrates the initial start of the level set segmentation. ............................................ 79 

Figure V.6. Quantitative results of anterior abdominal wall segmentation. Four level set methods 

based on different edge maps (1. Green star: baseline original image; 2. Magenta cross: smoothing image; 

3. Red circle: intensity clustering; 4. Blue diamond: texture clustering) are evaluated in terms of surfaces 

distances. The first column denotes the error metrics for the whole wall, while the second and the third 

column focuses on the hernia region and the normal wall region, respectively. The top row illustrates the 

cumulative fraction of region based on increasing 3D surface distance error between interpolated wall 

from manually labeled ground truth and the automatic segmentation. The bottom row shows the error bar 

of mean surface distances. The subject indices are sorted in terms of the mean of the overall mean surface 

distances of the texture clustering method. Note that 9 out of 20 subjects have no hernia labeled in the 

truth, which is indicated as gold stars in the middle-bottom plot. Four subjects (A, B, C, D) are selected to 

illustrate the qualitative results in Figure V.7. ............................................................................................ 83 

Figure V.7. Qualitative results on selected subjects from Figure V.6. The letters (A, B, C, D) 

match with the subjects circled in Figure V.6. The left panel shows a volumetric view of segmentation. 

The right part presents the results on several slices. Note blue denotes the automatic segmentation, green 

denotes the manually labeled anterior abdominal wall on sparsely sampled slices, and red denotes the 

manually labeled herniated region. In addition, in the slice representation, the segmentation errors for the 

normal abdominal wall are highlighted in yellow, while those for the herniated region are highlighted in 

orange. ......................................................................................................................................................... 85 

Figure V.8. Error maps for 20 subjects.  The shape of the error map is provided by a thin –plate 

spline interpolation of the anterior abdominal wall on manual labeled meshes, where the lateral 

boundaries of the interpolated surface is also given by thin-plate spline interpolation, but on the 

terminations of the label meshes. The rendering color represents the 3D surface distance from the 

automated segmentation to the interpolated abdominal wall. Note that errors are most prominent in fascia 

and hernia regions. ...................................................................................................................................... 86 

Figure VI.1. Flowchart of the proposed AASM approach. Shape models and local appearance 

models are constructed based on the atlas images and labels during the training stage. When testing on a 

target image to yield an estimated segmentation, an iterative process is performed. During each iteration, 

region-based LS is used to evolve on the probabilistic map generated by MALF to augment the traditional 

active shape search by global optimization, followed by the active shape regularization on the 

segmentation. Note that the borders of blocks are colored in distinctive colors. The small colored boxes 

within a block represent its prerequisite blocks in corresponding colors. For example, multi-atlas 

probability map requires (1) atlas images, (2) atlas labels, and (3) target image. ....................................... 93 

Figure VI.2. Results of a toy example. (a) Qualitative comparison between ASM and AASM 

segmentation on an individual observation. (b) Quantitative comparison between ASM and AASM 

segmentation in DSC across 100 cross-validated observations. ................................................................. 95 

Figure VI.3. Qualitative comparison of ASM, MALF, and AASM segmentation of abdominal 

wall. (a) - (e) demonstrate slices in five exclusive classes on one subject. The green arrows indicate 

segmentation outliers including speckles, holes, over-segmentation, and label leaking problems. ............ 98 

Figure VI.4. Qualitative comparison of ASM, MALF, and AASM segmentation of spinal cord. 

(a) - (e) demonstrate slices at five different locations (from bottom to top) on one subject. (f) illustrates 

the 3-D surface renderings of the segmented GM (left) and WM (right) colored in the surface distance 

error towards the corresponding manual segmentations. .......................................................................... 102 

Figure VI.5. Quantitative comparison of ASM, MALF, and AASM segmentation of spinal cord in 

terms of DSC, MSD and HD. Note that additional zoomed-in boxplots are generated for MSD and HD to 
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compare the results in a limited range. The yellow diamond marks indicate the subject demonstrated in 

Figure VI.4. ............................................................................................................................................... 104 

Figure VI.6. Parameter sensitivity tests to compare ASM and AASM on the toy example. DSC 

and MSD are collected given three sets of varying parameters: (a) the initialized mean shape position with 

respect to the ground truth along x and y directions, (b) the length of the local search range, and (c) the 

standard deviation (std.) of the Gaussian kernel applied on the ground truth, based on which the 

probability map used by AASM is generated (no change on ASM). ........................................................ 105 

Figure VII.1. Challenges of atlas-based spleen segmentation. (A) The intensity image of the 

target. (B) The manually labeled ground truth of the target. (C) – (F) The atlas labels registered to the 

target space. (G) The fusion estimate by majority vote. (H) The fusion estimate by locally weighted vote.

 .................................................................................................................................................................. 111 

Figure VII.2. Pose-free implicit parametric shape model. The shape model is represented by 

signed distance function (SDF) of each voxel over the whole volume. The region within the zero level set 

(highlighted in blue) is considered as the binary shape representation. The second row illustrates the mean 

and the first four modes of variation of the shape model. The first and the third row present the specific 

shapes parameterized by the square root of the eigenvalues. .................................................................... 112 

Figure VII.3. Flowchart of the proposed method. The atlas labels are co-registered to construct a 

pose-free implicit parametric shape model, including the mean and the modes of variation of the spleen 

shape. The atlas images are registered to the target image, based on which the atlas labels are propagated 

to the target space. The locally weighted vote yields the initial fusion result of the registered atlas labels 

weighted by the local intensity similarity between the registered atlas images and the target image in the 

form of a fuzzy estimate of label probability and a binary estimate of spleen segmentation. The binary 

image of the mean shape from the pre-constructed spleen shape model is registered to that of the current 

estimate with two distinct effective ranges, i.e., (1) the whole volume of both image and (2) the mean 

shape region, of the similarity metric of registration so that the pose-free shape model is transformed into 

the target space. The current estimate of the spleen is then projected to the two registered shape models. 

The shape projections are converted into probabilistic priors to adjust the label probability from locally 

weighted vote, and then generate a new estimate of the spleen. The estimate can be refined with iterative 

adjustment. ................................................................................................................................................ 114 

Figure VII.4. Fusion results by locally weighted vote and the proposed shape-constrained method 

on 20 subjects. The results of the two methods are placed side-by-side for each subject for comparison. 

The background rendering provides a reference of the surrounding anatomy (ribs, kidney, etc.). The 

rendering of the spleen segmentation is colored in terms of the surface distance from the estimate to the 

ground truth. Note that we use symmetric (the average of bi-directional) surface distance as the error 

metrics for validation in Table 1, but the one-way surface distance here for ease of visualization. ......... 117 

Figure VIII.1. Twelve organs of interest (left) and registration examples of variable qualities for 

one target image (right). Note that the “good”, “bad”, and “ugly” registration examples were selected 

regarding the organ-wise correspondence after the atlas labels were propagated to the target image. ..... 119 

Figure VIII.2. Organ-wise examples of variations after non-rigid registrations. For each panel, the 

target manual segmentation is on the left, the 30 registered labels are semi-transparently overlaid on the 

right. .......................................................................................................................................................... 120 

Figure VIII.3. Flowchart of the proposed method. Given registered atlases with variable qualities, 

atlas selection and statistical fusion are considered as two necessary steps to obtain a reasonable fusion 

estimate of the target segmentation. The SIMPLE algorithm implicitly combines these two steps to fusion 

selected atlases; however, more information can be incorporated to improve the atlas segmentation, and a 

more advanced fusion technique can be used after the atlases are selected. We propose to (1) extract a 

probabilistic prior of the target segmentation by context learning to regularize the atlas selection in 

SIMPLE for each organ, (2) use Joint Label Fusion to obtain the probabilistic fusion estimate while 
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characterizing the correlated errors among the selected organ-specific atlases, and render the final 

segmentation for all organs via graph cut. ................................................................................................ 121 

Figure VIII.4. (top left) Target slices and the associated manual labels. (middle left) Simulated 

observations drawn from an individual target slice with a randomly generated transformation model. (top 

right) The mean DSC (over 40 target slices and three organs) values evaluated for six label fusion 

approaches using different numbers (from 15 to 100) of atlases.  (bottom right) Organ-wise DSC 

performances for the fusion results using 40 simulated atlases. (bottom left) Fusion estimates using 40 

simulated atlases overlaid on a representative target slice, and annotated with the mean DSC value over 

the organs. ................................................................................................................................................. 127 

Figure VIII.5. Boxplot comparison among five tested methods for 12 organs. ........................... 129 

Figure VIII.6. Demonstration of the effectiveness of CLSIMPLE atlas selection for spleen 

segmentation on 90 subjects along number of iterations (A) number of selected atlases remaining along 

iterations. (B) mean DSC value of the selected atlases along iterations. Note the solid green line in (B) 

indicates the mean DSC of the majority vote fusion estimate using the selected atlases across all subjects.
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Figure VIII.7. Qualitative segmentation results on a subject with median DSC. On the left, the 3-

D organ labels are rendered for the true segmentation, and the proposed segmentation. On the right, the 

truth (red) and the proposed segmentation (green) for each organ of interest are demonstrated on a 
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Figure VIII.8. (upper pane): The ground truth surface rendering and the probability volume 

rendering of different methods for spleen segmentation. Note that the transparencies of volume rendering 

were adjusted for visualization. CL indicates the posterior probability of spleen when applying the trained 

context learning model to the target. The green arrow points at the landmark used for deriving spatial 

context. (lower pane): Progressive results of SIMPLE and CLSIMPLE along iterations. Note that both 

methods reach the convergence within 8 iterations in this case. ............................................................... 133 

Figure VIII.9. Illustration of parameters sensitivity of the proposed method. The overall DSC 

values (including all twelve organs on ten subjects) are evaluated on different values of (A) number of 

atlases minimally allowed in CLSIMPLE; (B) patch radius in JLF; and (3) search radius in JLF. Note 

when testing on one parameter, the other two keep as the values the gray backgrounds; these values are 

also used for the segmentation of 90 subjects. .......................................................................................... 134 

Figure IX.1. Overview of pipelines for estimating spleen volumes. ........................................... 139 

Figure IX.2. Illustration of the required measurements from different pipelines for estimating the 

spleen volume. Pipeline 2 and 3 extract the whole spleen volume, while pipelines 4 and 5 measure splenic 

diameters along different axes. ................................................................................................................. 141 

Figure IX.3. Quality assurance of the computer assisted segmentation in Pipeline 3 was 

performed by overlaying the spleen segmentation result on single axial, coronal, and sagittal CT slices 

through the middle of the spleen.  Upper row: a successful case where the automated labels were used.  

Lower row: a failure case where manual correction was required. ........................................................... 142 

Figure IX.4. Bland-Altman plots for different spleen volume estimation methods using pipelines 

2-5. On each plot, the horizontal axis represents the mean volume between the ground truth and the 

estimation, while the vertical axis indicates the difference in volume from the ground truth to the 

estimation. The mean in difference, and a confidence interval of ± 1.96 standard deviation (SD) are 

highlighted. ............................................................................................................................................... 144 

Figure X.1. Illustration of 13 organs of interest on volumetric rendering and 2-D slices of axial, 

coronal and sagittal orientations. .............................................................................................................. 150 
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Figure X.2. Registration pipeline. Given a pair of target image and a source atlas (image and 
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PART 1 

INTRODUCTION 

1. Background 

The human abdomen is an essential, yet complex body space clinically. Bounded by diaphragm 

superiorly and pelvic inferiorly, supported by spinal vertebrae, and protected by muscular abdominal wall, 

the abdomen contains organs involved with blood reservation, detoxification, urination, endocrine, and 

digestion, and covers many important arteries and veins. Computational Tomography (CT) scans are 

routinely taken for the diagnosis and prognosis of abdomen-related diseases, such as the pathological 

injuries or changes of abdominal organs, and the abnormal extrusion in the abdominal wall, i.e., ventral 

hernia (VH), so that internal anatomic structures can be evaluated qualitatively without opening surgery. 

Qualitative assessment could cause substantial subjective variations in treatment delivery for 

diseases. For example, to date, there is no standardized method for VH classification and repair that 

consistently and efficiently describes hernia characteristics. Failure rates of VH repair stay high, with 

recurrence rates estimated at between 24 and 43 percent [5]. Therefore, quantitative analysis becomes 

necessary, not only for precise measurements, but also for modeling a systematic degree of disease 

severity based on all measurable characteristics of specific structures, so that surgeons and radiologists 

can act accordingly. 

Segmentation on CT images provides a computational representation of the structures of interest 

for accessing the characteristics (e.g., width, size, density), and thus establish a foundation for quantitative 

analysis. Manual delineation by anatomical experts is the most straightforward approach to extract the 

desired anatomic structure; however, it is impractical to have individual anatomical experts label large-

scale clinical studies due to the time and costs. Further, manual segmentation inherently suffers from 
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intra- and inter- variability given the highly variable appearances of pathological structures in clinical CT 

[6]. Crowd-sourced, highly paralleled collaborative labeling has the potential to exploit the “wisdom of 

the crowd” (e.g., random volunteers with minimal training), and yield equivalent accuracy and efficiency 

to that of particularly “wise” individuals (e.g., surgeons, radiologists) with less costs and restrictions [7-

9].  

Fully automated segmentation on large-scale clinical data has been the target of intense efforts for 

decades. While extensive studies in brain segmentation have been developed [10-13], and targeted for 

therapeutic modifications and as surrogate endpoints in clinical trials [14, 15], abdominal structure 

segmentation has begun to draw more attention in recent years.  

Abdominal organs have been the main focus. Probabilistic atlases are commonly built from co-

registering the images with existing segmentations to characterize the spatial variations of the abdominal 

organs [16, 17]. Spatial standardization techniques have been used to regularize the inter-subject 

variations through landmark-based normalization, and yield patient-specific probabilistic atlases [18-20]. 

Statistical shape model approaches were developed to represent the anatomic shape changes of individual 

organs [21, 22] and / or the inter-organ hierarchies [23]. Graph-based methods provide an opportunity to 

combine shape and spatial models with other a priori information (e.g., appearance, contrast-

enhancement), and yield global optimal segmentations [24-27] Multi-atlas approaches were newly 

adapted to abdominal organ segmentation [28]. Such techniques have been shown to enhance the 

generality and robustness of segmentations as opposed to that of the segmentations based on probabilistic 

atlases or statistical models that may be hampered by within-population variations [13]. 

Segmentation of the abdominal wall is also of interest in abdomen-related analyses. Zhang et al. 

aligned and transferred pre-defined muscular models at multiple key positions according to anatomic 

knowledge, and used active contour model methods to smooth the muscle segmentation [29]. Chung et al. 

trained a shape model in conjunction with an appearance prior from manually segmented images to 

regularize the registration from a binary mean muscle shape to the target image using PCA-encoded Free 

Form Deformation [30]. Ding et al. used a 3D flipping-free deformable model to register the inner 
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boundary of the wall for ease of segmentation and visualization of abdominal organs [31]. Yao et al. 

segmented the outer surface of the abdominal wall to separate subcutaneous and visceral adipose tissue by 

fuzzy c-means clustering and active contour models [32]. Zhu et al. provided an interactive approach to 

remove the entire the abdominal wall to reduce the sliding motion effect on the non-rigid registration of 

abdominal images [33]. 

While all efforts above show different degrees of success in extracting abdominal structures, there 

has been very limited dedication to a general-purpose solution for clinical use. In clinically acquired CT, 

additional variations from the imaging formats (e.g., field of view, resolution), contrast phases, and 

artifacts greatly challenge the robustness of automatic segmentation. Further, the pathological conditions 

(e.g., obesity, cancer, hernia, atrophied / enlarged / ablated / implanted organs) are commonly observed. 

The capability of handling the segmentation of large-scale clinical data with all these problems included 

defines a critical perspective of the clinical significances for the segmentation techniques.  

2. Overview 

In this dissertation, we develop algorithms for robust automatic segmentation of abdominal 

organs and abdominal wall in clinically acquired CT. The rest of the document is organized as follows. In 

Chapter I, the abdominal anatomy on CT imaging is described with the focus on the challenges of 

segmentation for clinical analysis. Chapter II reviews preliminary knowledge of image segmentation 

techniques. Chapters III ~VI focus on abdominal wall. Chapter III establishes a detailed, reproducible 

anatomical labeling protocol for ventral hernia characterization on CT scans with abdominal wall surfaces, 

fascia boundaries, and bony landmarks as a foundation for clinical endpoint prediction. Chapter IV 

develops an immersive virtual reality system to visualize abdominal wall and associated structures on 

abdominal CT of ventral hernia patients for better anatomical understanding. Chapter V integrates 

texture analysis into level set approach to improve the robustness of the segmentation of the outer surface 

of the abdominal wall given the commonly observed irregular structures induced by ventral hernias. 

Chapter VI presents an augmented active shape model framework to robustly extract the whole 
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abdominal wall and accurately measure the subcutaneous and visceral fat area. Chapters VII ~XI 

investigate abdominal organs.  Chapter VII starts with a single organ (spleen), where implicit shape 

models are integrated into multi-atlas segmentation to constrain the outcome. Chapter VIII proposes a 

new atlas selection technique integrated with context learning, and establishes an automatic multi-atlas 

segmentation framework for multiple abdominal organs. Chapter IX designs a pipeline combines 

computer-assisted segmentation and manual outlier correction, and investigates its robustness and 

efficiency in deriving spleen volumes on a longitudinal clinical dataset. Chapter X evaluates six 

academically poplar registration methods on abdominal CT, provides recommendation for registration-

based applications in abdomen, and suggests directions for future development of abdomen-specific 

registration tools. Chapter XI integrates an organ localization technique into the multi-atlas multi-organ 

segmentation framework, and demonstrates improved performances. Chapter XII concludes the main 

contributions of the dissertation, and discusses potential opportunities on future efforts.  

3. Contributions 

This dissertation aims to booster the clinical significance of structural abdominal segmentation in 

CT imaging. Thus, our focus covers not only (1) robust automatic segmentation, but also (2) effective 

clinical application based on the segmentation. The ultimate goal of this dissertation is to provide a 

general image processing pipeline to capture the structures of interest within the abdomen (i.e., abdominal 

organs and abdominal wall), and thus serve for clinical treatment with quantitative analysis and enhanced 

visualization. Specifically, the contributions of this dissertation are: 

1. We proposed a framework to provide objective criteria for clinical ventral hernia analyses, 

where robust manual labeling protocol is designed to guide the automated processes in further 

study including the segmentation of abdominal wall, and the derivation of hernia-related 

characteristics. 
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2. We designed a system to render the segmentation of abdominal structures along with the 

original medical data in an interactive virtual reality environment, and thus offer the 

opportunities for improved understanding of the abdominal anatomy.  

3. We presented an automatic segmentation for the outer surface of the abdominal wall on CTs 

of hernia patients. An edge-based level set method integrated with texture analysis was 

proposed to extract the anterior abdominal wall, which provided a more robust segmentation 

with less mean surface errors compared to other published methods.  

4. We developed a robust automatic segmentation framework for the whole abdominal wall that 

extracts both the outer and inner surfaces and extends from the xiphoid process to the pubic 

symphysis. The framework used an augmented active shape model that combined multi-atlas 

label fusion and level set techniques, and enables the measurement of subcutaneous and 

visceral fat areas with close correlation to those derived from manual segmentation. 

5. We built an implicit active shape model of spleen, and integrated into the multi-atlas label 

fusion framework to provide more accurate spleen segmentation in cases of problematic 

registrations, where parametric (active shape model) and non-parametric (multi-atlas label 

fusion) methods were seamlessly combined. 

6. We generalized a theoretical framework of atlas selection to account for exogenous 

information (e.g., from separate models of tissue likelihood based context features), 

combined it with the state-of-the-art fusion techniques, and presented automatic multi-organ 

segmentation with significantly less dependence on non-robust registration.   

7. We provided a robust and efficient pipeline for clinical use in spleen volume estimation that 

deployed automatic computer-assisted segmentation and manual outlier correction, and 

demonstrated its superiorities over traditional clinical approaches. 

8. We evaluated six state-of-the-art registration methods based on their performances on 100 

abdominal CT scans, and suggested potential directions for developing registration tools 

tailored for abdomen. 
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9. We investigated random forest techniques for localizing abdominal organs on CT scans, and 

proposed organ-wise multi-atlas labeling on the localized regions of interest that yielded 

better accuracy and less computational time over the traditional body-wise multi-atlas 

segmentation. 

4. Previous Publications 

Many contributions of this dissertation have been published. A framework is proposed to provide 

quantitative criteria based on a manual labeling protocol for ventral hernia analysis [34, 35]. An interface 

is designed to provide enhanced visualization and better understand of abdominal anatomy with a fully 

interactive virtual reality environment [36]. Automatic segmentation of the outer surface of abdominal 

wall is shown improved with texture analysis on data with excessive pathological conditions [37, 38]. 

Shape constraint [39] is shown to be critical for automatic segmentation of abdominal organs. Context 

learned atlas selection, image registration, and organ localization is demonstrated to improve the multi-

atlas segmentation framework for abdominal organs [40-45]. 
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CHAPTER I  

ABDOMINAL ANATOMY ON CT IMAGING 

1. Overview 

The scope of the dissertation mainly covers the segmentation of abdominal organs and abdominal 

walls on CT scans. Thus understanding the anatomy in the abdomen on CT imaging is critical for that (1) 

we can tell what anatomical structures and which properties of structures are important to specific clinical 

applications; (2) we can tailor the techniques for the context features of the anatomical structures to 

segment. In this chapter, we review the abdominal anatomy on CT imaging with the focus on the 

challenges of segmentation for clinical analysis. 

2. General Issues of CT Imaging 

Computational Tomography (CT) is a routinely used scanning technique in clinical analysis using 

computer-processed X-rays to generate a series of tomographic image slices that allow the user to see the 

interior of human body for the specific scanned area without opening surgery. The CT images, often 

reformatted into a three-dimensional volume, demonstrate various anatomic structures with high-contrast 

resolution based on the differences in the physical density to absorb/block the X-ray beam between 

tissues, and the intensity of CT images, i.e., Hounsfield (HU) scale, has relatively consistent range for 

specific tissues (e.g., bones appears much brighter than fat tissues in CT scans). 

Despite the inherent high contrast, CT scans for abdomen-related clinical analysis can vary from 

many perspectives, which make it challenging for robust automatic segmentation of abdominal structures 

on large-scale study. 
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2.1. Field of Views (FOVs) 

Various FOVs exist among abdomen-related CT scans.  

Along the cranial-caudal axis, some scans may range from the top of pelvis to the bottom of ribs 

(abdomen CT), while others may have larger extensions, i.e., from the top of sternum to the middle of 

femurs (thorax-abdomen-pelvis CT). A typical range of mostly taken abdominal CT scans covers the 

xiphoid process for its top, and the femur heads for its bottom (abdomen-pelvis CT), which effectively 

includes all abdominal viscera, the whole abdominal wall, a large portion of pelvis, spinal vertebrae, and 

rib cage,  and the bottom end of lungs and heart. This diversity of the vertical coverage brings challenges 

of structure localization and spatial alignment between scans (e.g., registration). 

Variations of FOV for in-plane slices are also observed. Sometimes, especially for those with 

obesity problems, the cross-sectional area of the patients’ bodies is larger by the FOV of CT scanners so 

that a circle constraint can be seen on each axial slice. There are also cases that the patients are in contact 

with the scanner bore, which may cause streak artifacts on images (Figure I.1a). 

In addition, the resolution of clinically acquired CT scans can also vary substantially. Among the 

cohorts that we have been studying with, the slice thickness (along the cranial-caudal axis) approximately 

ranges from 1.5 mm to 7.0 mm, while the in-plane resolution ranges from 0.5 x 0.5 mm to 1.0 x 1.0 mm. 

Conventionally, the voxels of the CT volumes are highly anisotropic (1.0 x 1.0 x 3.0 mm), the large slice 

thickness makes it difficult to yield smooth 3-D surfaces of anatomic structures.  

2.2. Contrasts 

Radiocontrast agents are often used in clinical CT to improve the visibility of internal anatomic 

structures in X-ray. Intravenous (IV) contrast is the mostly used medical contrast medium for abdomen 

CT scanning. It is an iodinated contrast agent given through a vein to help highlight abdominal organs, 

and detect tumors, infections, and vessel diseases. Sometimes, per os (PO) contrast, as a dilute iodinated 

contrast, is taken orally by patient to enhance the visibility of the gastrointestinal tract. 
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The timing of taking a scan after the contrast is given is critical to the appearance of CT images. 

Early arterial phase, late arterial phase, and portal venous phase are the three typical IV contrast phases in 

terms of the propagation of the contrast agent through the vessel system, giving different structures 

highlighted as opposed to non-contrast phase where no contrast agent is given before scanning. 

The distinct appearances (intensity distributions) of different contrast phases can undermine the 

robustness of intensity-based segmentation techniques. On the other hand, the relative contrast 

enhancement has been used as extra information to improve segmentation when scans of multiple 

contrasts are available [26, 27].  

2.3. Artifacts 

CT images are susceptible to a number of artifacts despite the generally faithful representations. 

Some typical artifacts (Figure I.1) are described below. 

Streak artifacts are often seen around materials that block most X-rays. Bones, metal implants, 

female patients’ bra wires can all contribute to the streak patterns in CT images.  

 

Figure I.1. Common CT artifacts: (a) streak artifact caused by body-scanner contact; (b) ring 

artifact; (c) windmill streak; (d) partial volume effect; (e) motion artifact; (f) streak artifact 
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Partial volume effects cause the blurring of the edges due to the scanner being unable to 

differentiate between a small amount of high-density material (e.g., bone) and a large amount of lower 

density (e.g., cartilage). They are most commonly seen when using highly anisotropic voxels, where the 

X-ray attenuation within each voxel is not as homogeneous as the reconstruction assumes. 

Motion artifacts appear as blurring and/or streaking on image, caused by movement of patient 

being scanned; Ring artifacts are usually caused by mechanical detect fault or mis-calibration, shown as 

“rings” within image; Windmill streaking appearances are seen when the scanner detectors intersect the 

reconstruction plane.  

3. Ventral Hernia and Abdominal Wall 

A ventral hernia (VH) is not an intrinsic bodily structure, but an abnormal protrusion through a 

defect in the anterior abdominal muscular wall. Thus the abdominal wall is an important anatomic 

structure to characterize ventral hernias, where the muscular groups and/or fascial connections are typical 

extrusion spots of VHs, and several skeletal landmarks can be used to localize VHs on the abdominal wall. 

In Chapter III, we will propose a detailed labeling protocol based on the abdominal wall structures for 

hernia-oriented clinical analysis; here we first introduce the related anatomies (Figure I.2) briefly, and 

then describe several typical challenges for abdominal wall segmentation on clinically acquired CT.  

3.1. Muscular Groups 

The rectus muscles form the anterior-most muscular layer. The rectus consists of a pair of 

muscular columns oriented along the dorso-ventral axis. They are connected superiorly at the xiphoid 

process and extend inferiorly to the pubis.  

There are three main muscles that make up the group of oblique abdominal muscles the external 

oblique, the internal oblique, and the transverse abdominal. These three muscles attach superiorly to the 

5th through 12th ribs, inferiorly to the iliac crest, and extend across the anterior abdominal wall toward 

the rectus muscle along the midline. They form the lateral boundaries of the abdominal wall. Although the 
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three lateral muscles can be well recognized, they are not consistently visually separable throughout their 

extent on clinical CT — especially at the terminations.  

3.2. Fascial Connections 

The linea alba runs between the two sections of the rectus muscle. It consists of almost 

exclusively connective tissue, including the fused aponeuroses of the rectus and the oblique muscular 

groups. It forms the anterior-most midline and extends from the xiphoid process superiorly to the pubis 

inferiorly. The linea alba is easily located on a CT image after identification of the rectus muscle.  

The linea semilunaris runs directly aside the left and right boundaries of the rectus muscle, 

beginning at the termination of the oblique muscles. It consists of the aponeuroses of the oblique muscles. 

It begins superiorly at the 9th rib and extends inferiorly to nearly join at the pubic tubercle. On CT, the 

linea semilunaris can be identified by the anterior termina of the oblique abdominal muscles.  

The Umbilicus is the small depression of the navel or “belly-button”, located anteriorly along the 

linea alba slightly superior to the pelvis. On CT, the umbilicus can be seen as an indentation of the skin 

and subcutaneous tissue, and as a slight increase of intensity of the anterior dermal layer along the 

midline, anterior to the fascia.  

 

Figure I.2. Abdominal wall and related landmarks: (a) rectus muscles; (b) oblique abdominal 

muscles; (c) linea alba; (d) linea semilunaris; (e) umbilicus; (f) xiphoid process; (g) anterior 

superior iliac spines; and (h) pubic symphysis. 
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3.3. Skeletal Landmarks  

The xiphoid process is the inferior-most structure of the sternum. It is composed of ossified 

cartilage and is located medially, at the superior end of the linea alba. On CT, it can be found as a bright, 

bony structure directly in the midline, and its inferior tip forms the superior boundary of the anterior 

abdominal wall.  

The left and right anterior superior iliac spines (ASIS) are the ridges along the superior curve of 

the pelvic bone. The anterior-most protrusion of the iliac curve is the anterior iliac spine. On CT, the 

anterior superior iliac spines are the anterior-most points of the bright, bony pelvis. They are useful as 

surface anatomical landmarks, which are palpable, as well as in defining the inferior-lateral boundary of 

the anterior abdominal wall.  

The pubic symphysis is the cartilaginous joining of the two halves of the pubic bones, located 

medially and immediately posterior to the external genitalia. On CT, it can be found where the left and 

right bright, bony pubic structures nearly touch. It is useful in defining the inferior-most boundary of the 

abdominal wall.  

3.4. Challenges of Abdominal Wall Segmentation on CT 

We consider the segmentation of abdominal wall as to extract its inner and outer surfaces 

smoothly. To this end, we expect two general conditions for robust segmentation, (1) high contrasts for 

the boundaries of the abdominal walls, and (2) low variations for the surrounding tissues. However, these 

two conditions are not always met on clinical CT for hernia patients. For example, within the herniated 

region, the abdominal muscles (rectus / obliques) are highly stretched, and have inhomogeneous intensity, 

which can be hardly discriminated from the fat tissues around. Similarly, the fascial connections may 

have intensity similar to fat tissues, and cause the “leakage” problem for surface segmentation. On the 

other hand, lots of undesirable structures with similar intensity to abdominal muscles can appear around 

the abdominal wall, e.g., scar tissue, umbilicus, and sometimes skin tissue of skinny patients. The 

contrast-enhanced gastrointestinal tract and the speckle noise in fat increases the complexities from the 
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inside and outside of abdominal wall, respectively. In addition, the general CT artifacts discussed in 

section 2.3 also creates substantial segmentation difficulties, especially metal-induced streak artifacts that 

commonly observed from patients with metal implants.  

4. Abdominal Organs 

Underneath the abdominal wall, the human abdomen contains or partially contains a large portion 

of important organs, glands and vessels that tightly related to the functional quality of life. Generally on 

CT images, most of the abdominal viscera are not hard to identify, while the accurate segmentation of 

these viscera is challenging given the complicated environment in abdomen. As below, we briefly 

describe 11 groups of abdominal viscera on CT (Figure I.3), and discuss the abdominal viscera 

segmentation difficulties in general. Note that (1) we consider kidneys as abdominal organs, though 

strictly they are out of the abdominal cavity, (2) we skip the intestines because the serpentine tract, as a 

whole, is not commonly interested (as opposed to some pathological abnormalities, e.g., colon polyps), 

and too complicated to segment even by hand, and (3) heart and lung are beyond our scope here because 

they are in the thorax cavity, and usually not included entirely in abdominal CT scan.  

4.1. Spleen 

 Spleen acts as a blood filter in human body primarily by removing old red blood cells and 

holding a reserve of blood. It is located in the left upper quadrant of the abdomen. On CT, the boundary 

of spleen is relatively easy to identify, except that sometimes it is in touch with the left kidney at the 

posterior end. Splenic artery and splenic vein diverge at the right hand side of spleen.   

4.2. Kidney 

The kidneys are essential organs in the urinary system, and serve the body as a natural filter of the 

blood, and remove wastes to the urinary bladder. They are located at the rear of the abdominal cavity in 

the retroperitoneum. On a regular CT scan in portal venous contrast phase, the intensity distribution of 

kidneys is slightly higher than, but share substantial overlap with that of the liver and spleen nearby. 
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Renal artery, renal vein, ureter, and renal pelvis loosely fill the concave surfaces in the middle of a 

kidney.  

4.3. Liver 

Liver has a wide range of functions, including detoxification, protein synthesis, and production of 

biochemicals necessary for digestion. It lies below the diaphragm in the abdominal-pelvic region of the 

abdomen. It is located in the right upper quadrant of the abdominal cavity. Some other anatomic 

structures are situated tightly with liver. Gallbladder is usually embedded underneath the middle of two 

liver lobes; inferior vena cava passes though the right-posterior end of the upper liver; portal vein extends 

branches into liver from its right hand side. A liver can often be observed in touch with the inner surface 

of the abdominal wall. 

 

Figure I.3. Abdominal Viscera in CT: (a) spleen; (b) right kidney; (c) left kidney; (d) liver; (e) 

pancreas; (f) stomach; (g) esophagus; (h) gallbladder; (i) adrenal glands; (j) aorta; (k) inferior 

vena cava; (l) portal vein and splenic vein; (m) surface rendering of abdominal viscera. 
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4.4. Pancreas 

Pancreas is both an endocrine gland producing several important hormones, and a digestive 

organ, secreting pancreatic juice containing digestive enzymes that assist the absorption of nutrients and 

the digestion in the small intestine. The pancreas can be essentially divided into three parts: head, body, 

and tail. The head lies within the concavity of the duodenum. The body lies behind the stomach, and 

extends along the splenic vein. The tail is on the left end of the pancreas, lying towards the spleen. 

Pancreas has a fuzzy texture, and a slightly darker intensity than spleen and liver, its head part can be very 

confusing to distinguish from duodenum. 

4.5. Stomach 

Stomach is a muscular, hollow, dilated part of the digestion system which functions as an 

important organ of the digestive tract. The stomach is located between the esophagus and the small 

intestine. The gastrointestinal junction is divided at where the digestive tract looks pinched (pyloric 

sphincter). Stomach is on the left upper part of the abdominal cavity. The top of stomach lies against the 

diaphragm. A substantial part of stomach may appear as hollow, while the rest part is masticated food; 

both of them are enclosed by stomach wall. The shape of stomach can vary a lot in terms of food 

consumption and the existence of gastric distension.  

4.6. Esophagus 

Esophagus is an organ which consists of a muscular tube through which food passes from the 

pharynx to the stomach. 

4.7. Gallbladder 

Gallbladder is a small organ where bile is stored before released into the small intestine. The 

gallbladder is a hollow system that sits just beneath the liver. Normal gallbladder looks darker than liver 

on CT. Some patients may have gallstones, which appears as bright speckles in the gallbladder.  
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4.8. Adrenal glands 

Adrenal glands are endocrine glands that sit at the top of the kidneys, chiefly responsible for 

releasing hormones in response to stress. They are wishbone-shaped structures with similar intensity and 

texture as pancreas, and situated bilaterally in the retroperitoneum superior to the kidneys. The right 

adrenal gland is usually close to the left hand side of liver, and left adrenal gland is be nearby the 

pancreas tail and spleen.  

4.9. Aorta 

Aorta distributes oxygenated blood to all parts of the body through the systemic circulation as the 

largest artery in the human body, originating from the left ventricle of the heart and extending down to the 

abdomen, where it bifurcates into two smaller arteries (the common iliac arteries). Aorta runs alongside of 

the vertebral column on its anterior side. Metal stents can be sometimes observed implanted in aorta, 

appearing as bright spots on the boundary of aorta.  

4.10. Inferior Vena Cava (IVC) 

IVC is the large vein that carries de-oxygenated blood from the lower half of the body into the 

right atrium of the heart. It is posterior to the abdominal cavity and runs alongside of the vertebral column 

on its right side (i.e. it is a retroperitoneal structure). It enters the right atrium at the lower right, back side 

of the heart. A substantial segment of IVC passes through liver, where its boundary can be barely 

observed.  

4.11. Portal Vein and Splenic Vein 

The hepatic portal vein is a blood vessel that conducts blood from the gastrointestinal tract and 

spleen to the liver. This blood is rich in nutrients that have been extracted from food, and the liver 

processes these nutrients. The hepatic portal vein is formed by the union of the superior mesenteric vein 

and the splenic vein. The portal vein and splenic vein together connect liver and spleen. 
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4.12. Challenges of Abdominal Viscera Segmentation 

Generally, variations from multiple sources on clinically acquired abdominal CT images are the 

main obstacles of robust automatic segmentation of abdominal viscera. In other words, an approach works 

well on segmenting one subject might not be applicable to another one with much different appearance. 

Firstly, the human abdomen is a highly deformable system. Even though constrained within a 

certain range, the spatial locations of most abdominal viscera can vary along with the fat deformation 

over different patients or different poses of the same patient. The stomach can also slide in a large extent 

by huge amount of food consumption before scanning and/or gastric distension. Some patients (usually 

suffer obesity) may have the viscera got in touch with each other firmly, which makes it even more 

challenging to segment each individual organ since most viscera share large overlap of intensity 

distribution on CT.  

Next, the contrast phase of CT scanning also contributes to the inter-scan variations. As discussed 

in section 2.2, the appearances of the abdominal viscera are highly correlated with the contrast timing of 

the scan. While various phases are used clinically, the portal venous phase is the most favored IV contrast 

phase because it increases the contrast of some major abdominal organs, e.g., liver, spleen, and kidneys, 

as opposed to the non-contrast phase. If PO contrast is taken, the stomach and intestines become 

highlighted. This might be undesirable when segmenting other organs given the inherent large variations 

of these structures.  

Lastly, abnormalities, or pathological conditions are more than commonly observed on clinical 

CT scans. The cancer or metastasis tissue shows darker than the healthy tissues of viscera; the 

degenerated and atrophied organs appear much smaller than usual; some patients might have the 

gallbladder ablated, while others might have an implanted artificial kidney. It is extremely difficult to 

adapt automatic segmentation methods to these very specific cases. 

  



18 

 

5. Other Related Anatomy 

Some other anatomic structures can be supportive to the clinical analysis of abdominal wall and 

abdominal viscera. 

 The skin surface defines the boundary of human body. Combining with the abdominal wall 

surface, the volume of subcutaneous and visceral fat can be measured. These two metrics are very 

popularly used in recent clinical studies. The body mask enclosed by the skin surface can be acquired by 

intensity clustering [32].  

The bony structures around the abdomen region, including ribs, pelvis and spinal vertebrae, are 

natural landmarks for localizing abdominal viscera. Especially, the segments of spinal vertebrae, nicely 

defines the human abdomen with multiple levels along the cranial-caudal axis [46, 47]. However, 

sophisticated automatic segmentation of bony structures will not be discussed in this dissertation. 
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CHAPTER II  

SEGMENTATION PRELIMINARIES 

1. Overview 

Image segmentation is a process that partitions digital images into multiple segments, and usually 

used to extract the objects of interest on images. This process is equivalent to assign a distinct label to 

each set of pixels or voxels that represents a partitioned segment over the entire image (e.g., “0” for the 

background, and “1” for the foreground object of interest). The analyses on the segmented objects 

become easier with the simplified representation. Once segmented, the object of interest can be identified 

with enhanced visualization; its geometric properties (e.g., width, size) can be derived from the 

partitioned region; the constituent properties (e.g., density, texture) can be analyzed based on the image 

context under the partition. With these functionalities, medical image segmentation is getting more and 

more involved into daily clinical operations with evolutional significance (e.g., computer-aided diagnosis 

image-guided surgery, and post-operative treatment). In addition, robust automatic segmentation becomes 

very necessary for large-scale clinical study in place of the cost-consuming manual segmentation.  

In this chapter, we review some preliminary knowledge of medical image segmentation. The 

review mainly covers the techniques used in the previous contributions described in the later chapters. 

Note that during the discussion below, CT is considered the default image modality, while most of the 

techniques are also applicable to other image modalities. 

2. Image Features 

Technically, the key of image segmentation is to generalize image features appropriately so that 

the image can be divided into meaningful partitions. For example, imagine that we are trying to extract an 

apple from a piece of white cloth beneath it in a picture, we might consider the color (intensity) 
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differences between apple and cloth, and the generic shape of an apple as the image features for 

segmentation. Having a good understanding of image features is critical to image segmentation. It helps 

us to answer the questions like (1) which image features provide the primary discriminant for specific 

segmentation tasks; (2) how multiple image features can be weighted and adapted for images with large 

variations; (3) when some image features should be included for refining the segmentation, though they 

cannot handle the segmentation by themselves. We consider that image features can be categorized into 

three classes discussed below.  

2.1. Intensity-Driven Features 

Most image segmentation methods operate based on intensity-driven features, including the 

image intensity, and other pixel-wise values derived from intensity.  

2.1.1. Intensity 

Intensity, or grayscale, is the most basic image feature, it is the value assigned to each pixel on 

image. If using linear intensity-darkness lookup table, intensity is basically what we see on images. Thus 

naturally, if the object to segment looks darker or brighter than the rest part of image, it could be 

identified by intensity, e.g., an intensity threshold would effectively extract the object from the 

background. Note that color digital images are made of multiple-channel grayscale images, but beyond 

our scope of discussion. Here we focus on single-channel images as most medical image modalities. 

2.1.2. Edge 

Most objects of interest are confined by edges (boundaries) in image. Thus identifying the edges 

of objects can help to extract the object. Sometimes, these boundaries are the actual target interests. The 

edges on images are mostly characterized by image gradient, while the gradient is a vector of the first 

derivatives of intensity along all image dimensions, or more commonly considered as the 𝐿2-norm of the 

vector. Generally, strong edges have large gradient, blurry boundaries corresponds to moderate gradient, 
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while gradient over flat regions approaches zero. Lot of edge-based segmentation has been employing the 

discriminant effectivity of local gradient [48-52].  

2.1.3. Texture  

Texture can be considered as the appearance represented with repeated local patterns. Textures 

with different local patterns are distinguishable, e.g., we can tell the wood texture from that of the fabric. 

Texture analysis has been a long studied technique in computer vision [53], and has been applied to 

medical imaging [54]. Various approaches characterize textures differently, among which methods using 

co-occurrence matrices and Gabor filters are most commonly used. Co-occurrence matrix considers 

textures as the spatial distribution of intensities [55, 56]. It represents the second-order statistics of the 

image, where relationships between groups of two voxels are collected. Based on the co-occurrence 

matrix, Haralick et al. [57] proposed 13 features to describe local textures. On the other hand, Gabor 

filters extract features in frequency domain by passing images through multi-channel filter operators. 

With a bank of Gabor filters, frequencies and orientations at multiple scales can be collected from images 

as texture features for classification and segmentation [58-62]. The perceived local textures can be used as 

an alternative of / in addition to the intensity values for image segmentation [63-65]. 

2.2. Atlas-Based Features 

Image atlas represents an existing segmented object (i.e., atlas label) along with the context image 

(i.e., atlas image), which provides an example for how the desired object should be segmented. Thus in 

medical imaging, atlas-based features are often used since the human anatomy is generalizable in terms of 

spatial distraction, shape and appearance. 

2.2.1. Spatial Distribution 

The principal information provided by image atlas is the spatial distribution of the structure of 

interest in the image context. Assuming two abdominal CT images are roughly aligned, and the liver on 

one of the image has been labeled, then we can infer that the liver should be at about the same place on 
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the other image. Spatial information is extremely helpful in a complicated environment where the 

structure of interest share similar intensity-based features with other undesired structures. Note the 

alignment of images is a necessary step in common tasks of atlas-based segmentation, and referred as 

image registration, which is discussed in section 3.4. 

2.2.2. Shape and Appearance 

The shape and appearance information can also be generalized from multiple image atlases. Still 

taking liver as an example, given various liver segmentations on multiple images, it is reasonable to 

assume that the liver shape on a new image is most likely within the variations of the existing liver 

segmentation (if there is no abnormality presented on the new image). This idea induces the theory of 

Active Shape Model (ASM, [66]), through which the modes of the variations of the object shape can be 

represented as a vector of shape parameters in an eigenspace constructed by Principal Component 

Analysis (PCA, [67]), and thus fitting a new shape corresponds to finding an optimal set of shape 

parameters (e.g., by propagating the shape surface to the boundaries [66]). By incorporating the 

underlying context, Active Appearance Model (AAM, [68]) characterizes the modes of appearances 

similarly, which provides additional references for segmentation.  

2.3. Exogenous Information 

Some exogenous information associated with images can also support the segmentation.  

Patients’ demography and medical history provide natural basis to classify their medical images. 

For example, female patients have broader pelvis than male ones, older people are more likely to have 

atrophy issues, and patients having opening surgery history may share similar patterns of scar tissue. If 

available, these types of information can reasonably divide the whole cohort into subsets with smaller 

variations, and hence provide improved segmentation tailored for each group. 

In addition, some properties of images, e.g., contrast phase of CT scans, indicate the modes of 

image appearances. Learning the contrast enhancement between non-contrast and portal venous contrast 

phases as additional independent features was shown helpful to drive the image segmentation [26, 27]. 
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3. Pre-Processing 

In practice, image regularization is often required before segmentation due to (1) various field-of-

views (FOVs), (2) inhomogeneous intensities, (3) excessive noise, and (4) non-alignment between target 

and atlas; otherwise the segmentation might hardly work. Thus some pre-processing techniques are 

applied to images to unleash these problems, and help the segmentation methods more applicable to 

images.  

3.1. Region of Interest (ROI) Selection 

When the desired object to segment is much smaller than the FOV of the entire image, an ROI 

selection might be necessary so that (1) redundant regions are removed, (2) confusing undesired 

structures are reduced, and (3) computational time becomes less.  

Manual selection of ROI is an acceptable option as long as the structure of interest is easy to 

identify. Several approaches can be considered to automate the process. When image atlases are available, 

and the registrations are robust, an ROI can be considered as the union of the registered the atlas labels 

[69]. When some landmarks are easy to extract automatically, and they roughly covers the range of the 

structure of interest, the ROI in the form of bounding box can be derived from the coordinates of the 

landmarks. Recently, sophisticated localization techniques are presented [70, 71], where ROIs are 

robustly extracted by learning the image context.  

3.2. Intensity Normalization 

Intensity normalization is a regularization process on the range of intensity values. It is often used 

to enhance the contrast over a certain intensity range so that some objects become easier to identify on the 

image. Consider the original image 𝐼0 with intensity range (𝑎0, 𝑏0), the normalized image 𝐼1with intensity 

range (𝑎1, 𝑏1), then a commonly used linear normalization can be described as follows 

𝐼1 =
(𝐼0 − 𝑎0)(𝑏1 − 𝑎1)

𝑏0 − 𝑎0
+ 𝑎1 (2.1) 
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In CT scans, linear intensity normalization might be used for the following situations with 

specific configurations of the desired intensity range after normalization: (1) extremely high intensity 

values are observed over the metal implants and some bony structures, which unnecessarily broadens the 

intensity range of image; (2) the bony structures need to be enhanced as a skeleton reference; and (3) the 

segmentation requires high contrast between muscle and fat tissue.  

3.3. Smoothing and De-noising 

Image noise can be considered as random local intensity variations in digital images. When image 

noise is present, the efficacy of image segmentation techniques, especially edge-based methods, can be 

greatly affected. Thus image smoothing is often necessary to remove the noise. In image processing, noise 

is considered as high frequency content in the image, thus low pass filters are used for smoothing.  

Gaussian filters are mostly used because of its simple form and the fact that most image noise is 

assumed Gaussian distributed. In 1-D, the Gaussian filter has the form of  

𝐺(𝑥) =
1

√2𝜋𝜎
exp⁡(−

𝑥2

2𝜎2
) (2.2) 

where 𝜎 represents the standard deviation of the Gaussian filter. In practice, image smoothing is usually 

operated by the convolution between the original image and the filtering kernel. An extra variable is 

required to define the kernel size, as the digital approximation of the analogical filter. In addition, 

isotropic Gaussian smoothing for 2-D and 3-D images can be performed by convolving 1-D Gaussians for 

all dimensions one after another. When using Gaussian filters, some important image features (e.g., edges 

and other details) can be blurred at the same time as the noise is reduced. To address this problem, 

anisotropic diffusion [72] and a newly developed technique - sheetness filter [73] can be used to reduce 

noise without removing significant parts of images.  

3.4. Image Registration 

Image registration is a process to transform different images into the same coordinate space, or 

more naturally speaking, it is a transformation process that aligns the contents on different images. This 
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process has been increasingly used in healthcare and medical research [74, 75]. With registration, 

information associated with the registered images becomes the additional reference for the target image, 

which establishes the foundation for many modern image-processing techniques. Thus image registration 

can be considered as a pre-processing step for image segmentation, while the quality of registration is 

critical for atlas-based segmentation methods [76-78].  

Theoretically, a registration is generally an iterative process that involves a target image (or fixed 

image) considered as the reference, a source image (or moving image) that is expected to align with the 

target image, a similarity metric (e.g., fiducial registration error (FRE, [79]), sum of squared differences 

(SSD), normalized cross-correlation (NCC, [80]), mutual information (MI, [81, 82]), normalized mutual 

information (NMI, [81, 82])) to measure the alignment degree between the two images, and a optimizer 

(e.g., gradient descent [83], Powell’s method [84], Nelder-Mead [85]) to help the registration reach an 

optimum of the defined similarity metric efficiently along the iterative search over all degrees of 

freedoms (DoFs) of the image transformation (e.g., translation, rotation, scaling, shearing, deformation). 

An interpolator (e.g., nearest neighbour, linear [86], spline [87]) is needed to measure and assign intensity 

values on the image grids since the registered image voxels are usually located between grids after 

transformation.  

In terms of the registration basis, image registration can be categorized into feature-based and 

intensity-based. Feature-based registration seeks to align the correspondent features (e.g., points, lines, 

surfaces) in images, through which determines the geometrical transformation, and then map the source 

and target images together [88, 89]. Intensity-based methods  drive the registration by comparing the 

similarities of the intensity-based metrics [90, 91]. With regard to the transformation mode, image 

registration can be roughly classified as rigid, affine, and non-rigid, where different DoFs are allowed. 

Rigid registration permits only translation and rotation; affine registration [92] allows scaling and 

shearing in addition, while the transformation stays linear; non-rigid registration enables non-linear 

transformation [93], i.e., local warping, to align images, where the local warping can be modeled with 

thin-plate spline [94], free form deformation [95], diffeomorphisms [96], and etc.  
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4. Modern Segmentation Techniques 

Several modern segmentation techniques mentioned in the later chapters are introduced below. 

We note that this is not a comprehensive review of image segmentation techniques; thresholding [97, 98], 

watershed [99], active contour models [48, 49], and graph-based segmentation [100, 101] methods are not 

currently covered.  

4.1. Bayesian Methods 

In the statement of Bayes’ theorem, 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)⁡𝑃(𝐴)

𝑃(𝐵)
 (2.3) 

𝐴 is considered as an outcome event, 𝐵 is an observed event, 𝑃(𝐴) is the prior probability (initial belief) 

that event A occurs, 𝑃(𝐵|𝐴) represents a generative model that characterizes the probability distribution 

of the random observations given a latent outcome, 𝑃(𝐵) is the total probability of observation, and act as 

a partition function (normalization term), 𝑃(𝐴|𝐵) represents the posterior probability of the outcome 

given observations.  

The Bayes’ theorem provides a very basic framework for image segmentation. Specifically, 

considering 𝐴 as the segmentation decision, 𝐵 as the image features, then the Bayes’ theorem naturally 

determines the segmentation estimate based on the image features, which can be just a scalar of intensity 

value, or a feature vector that includes various image contexts. While in Eq. 3, the prior is usually 

estimated roughly and the partition function serves for normalization, the generative model is very critical 

for the posterior estimate. Typically, the generative model can be learned with examples, i.e., data with 

both observations and outcome, and then applied to Eq. 3 for the outcome estimate on newly observed 

data. This training-testing scheme with Bayes’ theorem has been the basis of many supervised machine 

learning [102] and image segmentation techniques [103, 104].  

In practical image segmentation, the generative model can be characterized by Gaussian mixture 

models (GMMs) [105, 106]. On a voxel-wise basis, let 𝒙 ∈ ℝ𝑑×1represent a 𝑑 dimensional image feature 
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vector, 𝑚 ∈ 𝑴 indicate the segmentation estimate, where 𝑴 = {1,… ,𝑀} is the set of possible outcomes. 

The probability of the observed features given the segmentation is 𝑚 can be represented with the mixture 

of 𝑁𝐺  Gaussian distributions, 

𝑓(𝒙|𝑚 = 𝑡) = ∑
𝛼𝑘𝑡

(2𝜋)
𝑑
2|𝑪𝑘𝑡|

1
2

𝑒𝑥𝑝 [−
1

2
(𝒙 − 𝝁𝑘𝑡)

𝑇𝑪𝑘𝑡
−1(𝒙 − 𝝁𝑘𝑡)]

𝑁𝐺

𝑘=1

 (2.4) 

where 𝛼𝑘𝑡 ∈ ℝ1×1 , 𝝁𝑘𝑡 ∈ ℝ𝑑×1 , and 𝑪𝑘𝑡 ∈ ℝ𝑑×𝑑  are the unknown mixture probability, mean, and 

covariance matrix to estimate for each Gaussian mixture component 𝑘  of each tissue type 𝑡  by the 

Expectation-Maximization (EM) algorithm following [107].  After the generative model is learned from 

datasets with known segmentations, the segmentation estimate on unknown datasets can be by Bayesian 

expansion with extracted feature vectors. 

𝑓(𝑚 = 𝑡|𝒙) =
𝑓(𝒙|𝑚 = 𝑡)𝑓(𝑚 = 𝑡)

∑ 𝑓(𝒙|𝑚 = 𝑡′)𝑓(𝑚 = 𝑡′)𝑡′
 (2.5) 

4.2. Clustering 

Data clustering is process to partition observations into different clusters with minimum within-

cluster sum of squares (WCSS) based on the observed features. It can be considered as an unsupervised 

counterpart of Bayesian methods, where no model training is required, instead a number of desired 

clusters should be defined. k-means clustering [108] is a basic clustering method, where after partitioning, 

each data point belongs completely to the assigned cluster. Fuzzy c-means (FCM) clustering allows data 

points with partial membership (fuzziness) of each cluster [109]. 

Consider X={𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏} as a set of feature observations for an image with 𝑛 voxels, where 

𝒙𝒋 ∈ ℝ𝑑×1represent a 𝑑 dimensional image feature vector, fuzzy c-means clustering aims to divide the 𝑛 

observations into 𝑐 sets with the cluster centers defined as 𝑪 = {𝒄𝟏, 𝒄𝟐, … , 𝒄𝒄}. Partition coefficients are 

measured as 𝜇𝑖𝑗 ∈ [0, 1]⁡for the cluster membership 𝑗 of the observation 𝑖, where 𝑖 = 1,… , 𝑛, 𝑗 = 1,… , 𝑐. 

The goal is the minimize a objective function,  
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𝐽𝑚 =∑∑𝜇𝑖𝑗
𝑚

𝐶

𝑗=1

‖𝒙𝒊 − 𝒄𝒋‖
2

𝑛

𝑖=1

, 1 ≤ 𝑚 < ∞ 
(2.6) 

where 𝑚 is a real number no less than 1, defined as a fuzziness coefficient. The fuzzy partition is carried 

out through an iterative optimization with the update of the voxel-wise membership 𝜇𝑖𝑗 and the cluster 

centers 𝑐𝑗 

𝜇𝑖𝑗 = (∑(
‖𝒙𝒊 − 𝒄𝒋‖

‖𝒙𝒊 − 𝒄𝒌‖
)

2
𝑚−1

𝐶

𝑘=1

)

−1

 (2.7) 

𝑐𝑗 =
∑ 𝜇𝑖𝑗

𝑚 ∙ 𝒙𝒊
𝑛
𝑖=1

∑ 𝜇𝑖𝑗
𝑚𝑛

𝑖=1

 (2.8) 

and the iteration with stop when the maximum update increment of 𝜇𝑖𝑗  is less than a small number 

𝜀 ∈ (0, 1). Note that when 𝑚 = 1, the membership 𝑢𝑖𝑗 converges to 0 or 1, and the FCM clustering 

approaches k-means clustering.  

4.3. Active Shape Model (ASM) 

ASM represents a parametric deformable model that statistically characterizes the shape 

variations from the training set. ASM is often built to regularize the shape of the desired structure while 

segmenting it [66].  

Classic ASM employs point distribution model (PDM). The building of PDM requires a 

collection of corresponding points along the shape boundaries or salient features on the training sets, 

where the shapes from all datasets are usually aligned by registration to a normalized reference coordinate. 

The shape variations are modeled following a Principle Component Analysis (PCA) procedure. In a 3-D 

case, the coordinates of 𝑛 shape points along the 𝑖𝑡ℎ of 𝑚 training sets in the aligned coordinate are first 

defined as  

𝒙𝒊 = (𝑥𝑖1, 𝑦𝑖1, 𝑧𝑖1, … , 𝑥𝑖𝑛, 𝑦𝑖𝑛, 𝑧𝑖𝑛)
𝑇 (2.9) 

Then the mean shape can be given as  
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𝒙̅ =
1

𝑚
∑𝒙𝒊

𝑚

𝑖=1

 (2.10) 

The modes of variations are given by the singular value decomposition (SVD) of the covariance matrix 

𝑼𝜮𝑼𝑻 =
1

m
∑(𝒙𝒊 − 𝒙̅)(𝒙𝒊 − 𝒙̅)𝑇
𝑚

𝑖=1

 (2.11) 

where 𝚺 is a diagonal matrix with its diagonal values as the eigenvalues 𝜆𝑘, and 𝑼 denotes an eigenspace 

with each column as an eigenvector, i.e., one mode of variation 𝒖𝒌, associated with the corresponding 

eigenvalue 𝜆𝑘.The value of the eigenvalue indicates the dominance of its associated mode of variation, 

while the modes with relatively small eigenvalues are usually ignored due to their limited variances 

provided. 𝐾 eigenvectors representing the most variances remain and form a eigenspace 𝑼𝑲 with reduced 

dimensions. With the shape model built, a shape instance can be reconstructed by deforming the mean 

shape by a linear combination of eigenvectors 

𝒙 ≡ 𝒙(𝒃) = 𝒙̅ +∑𝑏𝑘𝒖𝒌

𝐾

𝑘=1

 (2.12) 

where 𝑏𝑘 is denotes the shape parameter associated with its mode of variation.  

For practical segmentation, ASM usually works by alternating over local profile fitting and shape 

regularizing. Specially, after initialization, a shape is first generated by searching around each point for a 

position that matches the modeled local profile better [22, 110], usually at strong edges [72]. Then the 

newly generated shape 𝒙̂ is constrained by the shape model 

𝒃̂ = 𝑼𝑲(𝒙̂ − 𝒙̅) (2.13) 

where 𝒃̂ represents the projected shape parameter that can generate a conformed shape by the shape 

model through Eq. 12. In addition, 𝒃̂ is often constrained within certain range of the variations of the 

shape model represented by the eigenvalues 𝝀. 

Building training sets for ASM is very challenging and time-consuming, especially to provide 

corresponding points. Several techniques have been developed to generate corresponding points 

automatically [111, 112]. Some studies use signed distance function (SDF) over the whole image instead 
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of PDM to build ASM after all training sets are co-registered so that corresponding points are not required 

[113-115].  

4.4. Level Set 

Level set segmentation provides a numerical approach to track the surfaces of objects [116-118]. 

Level set methods is very similar to active contour models (ACM), e.g., snake [49], for that both methods 

define cost / energy functions to minimize as the criteria for segmentation, and derive Euler-Lagrange 

equation to numerically propagate the segmentation surface to approach to the objects of interest. Level 

set, however, has two main advantages over ACM: (1) it is free from parameterization of the propagating 

surface, and (2) it is easier to change topology to fit the underlying object (e.g., split and merge shapes). 

Level set segmentation is broadly used to extract smooth deformable surfaces of desired structures in 

images.  

In the level set approach, an evolving surface is embedded as the zero level set of a higher 

dimensional level set function 𝜙(𝑥, 𝑡), and propagates implicitly through the temporal evolution of 𝜙 in 

terms of a given speed function 𝐹. 𝜙(𝑥, 𝑡) is defined as signed distance function (SDF) to the evolving 

surface with negative value inside the surface and positive outside. The speed function, which can be 

spatially varying, is usually determined by advection forces (e.g., constant inward or outward motion), 

intrinsic geometry (e.g., mean curvature), and image attributes (e.g., intensity, and its gradient). The 

temporal evolution of the level set function is usually described in the following form 

𝜙𝑡 − 𝐹|∇𝜙| = 0 (2.14) 

where |∇Φ| represents the normalized gradient of the level set function. Note that Φ𝑡  is the Euler-

Lagrange equation to update the surface.  

Generally, level set segmentation is classified into two categories: region-based and edge-based. 

Region-based level set methods rely on the global homogeneity of spatial localized features and 

properties [119-121], among which Chan-Vese algorithm [119] is one of the mostly used. Chan-Vese 

algorithm aims to propagate the curve by minimizing the variances inside and outside the curve while 
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constrained the total curve length. Consider 𝑢0(𝑥, 𝑦) as a 2-D input image, 𝐻(∙) as a Heaviside function, 

𝛿(∙) as a Dirac function, the derived Euler-Lagrange equation of Chan-Vese method can be written as  

𝜙𝑡 = 𝛿(𝜙)[𝑣⁡𝜅 − (𝑢0 − 𝑐1)
2 − (𝑢0 − 𝑐2)

2] (2.15) 

where 𝑣 is a parameter to constrain the length of the contour, 𝑐1and 𝑐2 are the average of 𝑢0 outside and 

inside the current zero level set, respectively, and 𝜅  represents the curvature of 𝜙  that enforcing the 

smoothness of the curve. 

𝑐1(𝜙) =
∫ 𝑢0(𝑥, 𝑦)⁡𝐻(𝜙(𝑡, 𝑥, 𝑦)𝑑𝑥𝑑𝑦𝛺

∫ 𝐻(𝜙(𝑡, 𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝛺

 (2.16) 

𝑐2(𝜙) =
∫ 𝑢0(𝑥, 𝑦)⁡(1 − 𝐻(𝜙(𝑡, 𝑥, 𝑦))𝑑𝑥𝑑𝑦
𝛺

∫ (1 − 𝐻(𝜙(𝑡, 𝑥, 𝑦))𝑑𝑥𝑑𝑦
𝛺

 (2.17) 

𝜅 = 𝑑𝑖𝑣 (
∇ϕ

|∇ϕ|
) (2.18) 

where 𝛺  represents the whole domain of image. Note that 𝐻(∙)  and 𝛿(∙)  requires a continuous 

approximation in implementation to enable the actual curve evolution. 

Edge-based level set methods drive the surface propagation through the local differences [50-52], 

typically the edges, in the image, among which Geodesic Active Contours (GAC) model [50] is very 

commonly used. Basically, GAC pushes the curve by an inward / outward normal pressure force, i.e., 

balloon force, and stops it based on an edge map defined by the image gradient. 

𝜙𝑡 = 𝑔|∇ϕ|(𝑐 + 𝜅) + ∇Φ ∙ ∇𝑔 (2.19) 

where 𝜅 is the curvature as in Eq. 18, 𝑐 is a parameter that controls the strength of balloon force, 𝑔 is 

called edge stopping function, proposed by Malladi et al. [122] to stop the level set evolution at the 

boundaries of objects, which can be typically measured for an image 𝐼 in the form as follows 

𝑔 =
1

1 + |∇Gσ ∗ 𝐼|
𝑝

 (2.20) 

where 𝑝 controls the steepness of the edge stopping function, typically 1 or 2, and 𝐺𝜎denotes a Gaussian 

smoothing (convolution) kernel with a standard deviation of 𝜎. Back to Eq. 19, the balloon force is seen 

reasonably constrained by the edge stopping function as it can be diminished at strong edges. In addition, 

the term ∇Φ ∙ ∇𝑔 performs to further preserve the curve from propagating through the edges.  
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 In addition, re-initialization of level set is usually required during the surface evolution to keep 

the pattern of SDF, and thus preserve the properties of the 𝜙 -related terms []. The standard re-

initialization is solved by 

𝜙𝑡 = 𝑠𝑖𝑔𝑛(𝜙0)(1 − |∇ϕ|) (2.21) 

where 𝜙0  denotes the SDF to be re-initialized, 𝑠𝑖𝑔𝑛(∙) indicates a sign function. Recently, Li et al. 

proposed an internal regularization energy term, i.e., 𝐹𝑟𝑒𝑔 = ∇2Φ− 𝜅, that enables the level set evolution 

free from additional re-initialization [123].  

4.5. Multi-Atlas Label Fusion 

As registration does not necessarily (is actually challenging to) align the atlas image perfectly at 

the region of interest, single-atlas-based segmentation is not robust, and almost solely depends on the 

quality of registration. Several studies have demonstrated that the combined information of multiple 

atlases registered to a single target image yields significantly improved segmentation [13, 124]. Multi-

atlas label fusion is such a technique for transferring and combining information from multiple canonical 

atlases to target images via registration.  

By definition, a natural workflow of multi-atlas label fusion includes multiple pair-wise 

registrations from atlas to target based on the intensity images, the propagation of the atlas labels (existing 

segmentations) to the space of the target image via the geometrical transformation that align the intensity 

images together, a process that fuses the propagated labels into one segmentation estimate, called label 

fusion. In practice, especially when the registrations are not robust due to large variations of the datasets, 

an additional process, i.e., atlas selection can substantially improve the segmentation by choosing the 

most appropriately registered atlases for fusion. Thus we focus on the three critical components in a 

multi-atlas label fusion framework: (1) registration (including intensity-based registration, and label 

propagation), (2) atlas selection, and (3) label fusion. 
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4.5.1. Registration 

The image registration in multi-atlas label fusion aims to align the structures in the atlas images to 

those in the target image so that the atlas labels become valuable references to the segmentation estimate. 

By default, intensity-based similarity metrics including are used to drive the registration, where NCC, MI, 

NMI are qualified with the alignment involving intensity inconsistencies. To avoid getting to local 

minima, a coarse-to-fine scheme is often used, in which registrations are carried out between the images 

with downsampling levels, and the registered transformation between the coarser images are used as the 

initialization for further registrations between finer images. Similarly, rigid and affine registrations are 

often used to align atlas and target image roughly, followed by a non-rigid registration that allows local 

deformation to match up the details [28]. 

4.5.2. Atlas Selection 

Atlas selection is a process to alleviate registration problems. Although in some sophisticated 

label fusion techniques, the global and local weighting of atlases can be considered as a fuzzy version 

atlas selection, the presence of the bad atlases can bias the evaluation of other atlases, and thus influence 

the fusion results [125]. Therefore, a crisp determination of whether an atlas should be included for label 

fusion becomes necessary, especially when substantial problematic registrations exist. Traditional image 

similarity metrics between the registered atlas images and the target image have been considered as the 

proxies of for atlas-target similarity, while the summations of these voxel-wise metrics over regions of 

interest are used as the selecting criteria [76, 77, 126]. On the other hand, Selective and Iterative Method 

for Performance Level Estimation (SIMPLE) [127]provides a compact solution for selecting atlases and 

fusing segmentation iteratively based on the overlapping regions of atlas labels with the intermediate 

fusion result, which demonstrates better correlation with the registration performances than the image 

similarity metrics [77]. 
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4.5.3. Label Fusion 

Label fusion attempts to estimate the underlying segmentation through combining individual 

estimates from multiple sources [128, 129]. It was proven that a collection of estimates only slightly 

better than chance could be fused (or “boosted”) to form a single estimate with arbitrarily high accuracy 

[130-132]. In the context of multi-atlas label fusion, label fusion yields an estimated segmentation the 

target image and the multiple registered atlases (including both intensities and labels) [13, 124]. The 

simplest way to fuse the register atlases is through a majority vote of the registered atlas labels [129], 

where the mode label is selected at every voxel as the estimated segmentation for target. However, 

majority vote fails to assess both the likelihood of the estimate and the quality of the observed 

segmentations. Today, label fusion is an extremely popular topic for ongoing research.  

In general, consider a target intensity image represented as a vector, 𝑰 ∈ ℝ𝑁×1. Let 𝑻 ∈ 𝑳𝑁×1 be 

the latent representation of the true target segmentation, where 𝑳 = {0,… , 𝐿 − 1}⁡ is the set of possible 

labels that can be assigned to a given voxel. Additionally, consider a collection of 𝑅 registered atlases 

with associated intensity values, 𝑨 ∈ ℝ𝑁×𝑅 , and label decisions, 𝑫 ∈ 𝑳𝑁×𝑅 . Throughout, the index 

variables 𝑖 will be used to iterate over the voxels, 𝑠 and 𝑙 over the labels, and 𝑗 over the registered atlases. 

Given this information, the goal of any label fusion framework is to accurately estimate the following 

probability density function: 

𝑊𝑠𝑖 ≡ 𝑓(𝑇𝑖 = 𝑠|𝑰, 𝑨,𝑫) (2.22) 

where 𝑊𝑠𝑖 can be interpreted as the probability that the true label at voxel 𝑖 is equal to label 𝑠 given the 

provided contextual information. Then using a Bayesian expansion, Eq. 23 can be re-written as: 

𝑊𝑠𝑖 =
𝑓(𝑇𝑖 = 𝑠)𝑓(𝑫, 𝑨|𝑇𝑖 = 𝑠, 𝐼)

∑ 𝑓(𝑇𝑖 = 𝑙)𝑓(𝑫, 𝑨|𝑇𝑖 = 𝑙, 𝐼)𝑙
 (2.23) 

where, 𝑓(𝑇𝑖 = 𝑠)  denotes the a priori distribution governing the underlying segmentation and 

𝑓(𝑫, 𝑨|𝑇𝑖 = 𝑠, 𝐼) is the generative model that represents distribution governing the relationships between 

the observed atlas information and the latent target segmentation. Lastly, with the assumption that the 

observed atlas labels and the observed atlas intensities are conditionally independent [133]: 
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𝑊𝑠𝑖 =
𝑓(𝑇𝑖 = 𝑠)𝑓(𝑫|𝑇𝑖 = 𝑠)𝑓(𝑨|𝐼)

∑ 𝑓(𝑇𝑖 = 𝑙)𝑓(𝑫|𝑇𝑖 = 𝑙)𝑓(𝑨|𝐼)𝑙
 (2.24) 

where the information gained by direct incorporation of the atlas-target intensity relationships, i.e., 𝑓(𝑨|𝐼), 

is assumed to accurately approximates the complex relationships through the assumed conditional 

independence.  

With Eq. 25, any label fusion method can be considered as the specification of (1) the a priori 

segmentation distribution, (2) the relationships between the atlas labels and the latent target segmentation 

(3) the relationships between the atlas intensities and the target intensity, and (4) the dependence / 

independence of the information from multiple atlases. For example, majority vote considers the 

segmentation estimate as the combination of equally weighted independent atlases label decisions 

regardless of the intensity information with a flat segmentation prior, which simplifies Eq. 25 as 

𝑊𝑠𝑖 =
∑ 𝛿(𝐷𝑖𝑗, 𝑠)𝑗

∑ ∑ 𝛿(𝐷𝑖𝑗, 𝑙)𝑗𝑙

 (2.25) 

where 𝛿(∙,∙) is the kronecker detla function. 

Using this general framework, there are two primary categories of label fusion techniques: (1) 

voting label fusion attempts to find optimal weights in order to determine which atlases are optimally 

representative in terms of some local/semi-local/global metric [76, 77, 126, 133, 134], and (2) statistical 

label fusion techniques attempt to model atlas performance using a statistically driven rater performance 

model [125, 135-141]. 

5. Post-Processing 

Segmented structures are generally expected to have high spatial consistency (e.g., smooth 

surfaces, free from speckles and pores, and etc.). Several post-processing techniques are available to 

provide segmentation refinement. 

5.1. Markov Random Field (MRF) 

The theory of MRF provides a mechanism for enforcing spatial consistency across images. Many 

segmentation techniques (e.g., multi-atlas label fusion [142], Bayesian methods [103, 104], Graph Cut 
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[69, 143]) have intermediate stages with probabilistic segmentation estimate, representing the 

segmentation result fuzzily. MRF can serve to regularize the voxel-wise probabilistic segmentation 

estimate by simultaneously considering the current segmentation estimate of the voxel itself and the 

neighboring voxels [107]. A neighborhood (or clique) structure is carefully designed to suppress the 

spatial inconsistency. Thus MRF provides a theoretically sound procedure to increase the consistency of 

the underlying segmentations.  

5.2.  Morphological Operation 

Mathematical morphology (typically binary morphology) provides the several shift-invariant 

basic operations to regularize the geometrical structures of segmentation [144, 145]. A structuring 

element (a simple shape, e.g., a disk, square, or cross in 2-D, or corresponding geometrics in 3-D) needs 

to be defined so that the morphological operations take effect on how the structuring element fits or 

misses the underlying binary segmentation. 

Specifically, erosion turns a foreground voxel into background when the structuring element fits 

the voxel as its center, but does not have an entire match with the local binary image. The erosion of a 

binary image usually “peels” one layer of the foreground object, and diminishes thin lines and speckles. 

On the contrary, when having a miss with the center matched up for the given structuring element, 

dilation turns the background into foreground on the voxels on the binary image corresponding to the 

missing regions of the structuring element. Dilation works for inflating foreground objects, where gaps 

and pores might be filled. Opening (i.e., erosion followed by dilation) and closing (i.e., dilation followed 

by erosion) can clear speckles and pores, respectively while keeping the most other parts of the binary 

image the same. 

6. Performance Validation Criteria 

The validation of segmentation performances is very necessary to evaluate the quality of specific 

segmentation approaches. Qualitatively, the segmentation results can be overlaid on the original image (in 
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the form of a solid region, or an outline surface) to see how the segmentation fits the underlying structure. 

This yields a straightforward representation of how the segmentation method performs on the tested data. 

More objective validation requires quantitative criteria, based on which the dis-similarities of the 

segmentation result to the ground truth (usually manually segmented by expert) are examined, and thus 

different segmentation approaches can be compared against each other statistically. Generally, volumetric 

accuracy and surface error are two main categories of quantitative validation criteria for medical image 

segmentation. 

6.1. Volumetric Accuracy 

Volumetric accuracy criteria compare the segmentation result against the ground truth voxel-by-

voxel, collect the numbers of True Positives (TP), True Negatives (TN), False Positives (FP), and False 

Negatives (FN), and combine them in specific manners to represent the overlapping degrees between the 

segmentation and truth.  

Consider A as the segmentation result, B the truth volume, and |∙| the L1  norm operation, Dice 

Similarity Coefficient (DSC, [146]) is the most commonly used accuracy metric in recent studies of 

image segmentation. 

𝐷𝑆𝐶(𝐴, 𝐵) =
2|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
≡

2|𝑇𝑃|

2|𝑇𝑃| + |𝐹𝑃| + |𝐹𝑁|
 (2.26) 

Jaccard index is another commonly used metric for segmentation accuracy, where 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
≡

|𝑇𝑃|

|𝑇𝑃| + |𝐹𝑃| + |𝐹𝑁|
 (2.27)  

Sensitivity and specificity are two well-known statistical measures of performances, where 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐵|
≡

|𝑇𝑃|

|𝑇𝑃| + |𝐹𝑁|
 (2.28) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝐴, 𝐵) =
|𝐴̅ ∩ 𝐵̅|

|𝐵̅|
≡

|𝑇𝑁|

|𝐹𝑃| + |𝑇𝑁|
 (2.29) 

however they are occasionally used for segmentation validation because sensitivity ignores FP and thus 

allows over-segmentation, and specificity focus on TN which is not a discriminative measure when the 

image background is large.  
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6.2. Surface Error 

Surface error criteria characterize how far the surfaces of the segmentation and truth are from 

each other. These metrics are especially important when the segmentation and further clinical interests lie 

on the target surface rather than the target volume. Vertices are collected from the surfaces of both the 

segmentation and truth, based on which distances between the sets of vertices are measured in terms of 

their spatial coordinates. We define the vertices on the segmentation and truth surface as X  and Y , 

respectively, and d(∙,∙) as an indicator of distance measure. Then typically, mean surface distance (MSD) 

error and Hausdorff distance (HD) error from the segmentation to the truth can be measured as below. 

𝑀𝑆𝐷(𝑋, 𝑌) = 𝑎𝑣𝑔
𝑦∈𝑌

𝑖𝑛𝑓
𝑥∈𝑋

𝑑 (𝑋, 𝑌) (2.30) 

𝐻𝐷(𝑋, 𝑌) = 𝑠𝑢𝑝
𝑦∈𝑌

𝑖𝑛𝑓
𝑥∈𝑋

𝑑 (𝑋, 𝑌) (2.31) 

where sup represents the supremum, inf the infinum, avg the average. Note that MSD and HD can be 

measured symmetrically (calculate once from X to Y, and the other from Y to X, and then get the average) 

to provides more robust measures on surface errors. 
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PART 2 

ABDOMINAL WALL 

In this part, we investigate the abdominal wall from the perspectives of (1) clinical significance, 

(2) visual representation, and (3) automatic segmentation. The abdominal wall is not only a protective 

boundary for all internal abdominal organs, but also a critical structure to characterize some compound 

abdominal diseases, such as ventral hernia. We approach the problem by proposing a framework to 

provide objective criteria for clinical ventral hernia analyses (Chapter III). Within the framework, robust 

manual labeling protocol has been designed to guide the automated processes in further study including 

the segmentation of abdominal wall, and the derivation of hernia-related characteristics. Next, we explore 

the impact of the marriage of image segmentation and virtual reality (Chapter IV). We design a fully 

interactive interface within immersive virtual reality environment, and combine surface rendering of 

abdominal wall segmentation with volume rendering to enhance the visualization of abdomen CT for 

better understanding of the anatomic structures. Then, we focus on the automatic segmentation of outer 

surface of abdominal wall on a retrospective cohort of ventral hernia patients (Chapter V). Specifically, 

we integrate texture analysis into level set approach to improve the robustness of segmentation given the 

commonly observed irregular structures induced by ventral hernias. And finally, we propose an automatic 

framework to segment both outer and inner surfaces of the abdominal wall ranging from xiphoid process 

to pubic symphysis (Chapter VI). An augmented active shape model system integrating multi-atlas label 

fusion and level set techniques is presented to improve the segmentation robustness and enable accurate 

subcutaneous/visceral fat measurement. 
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CHAPTER III  

QUANTITATIVE CT IMAGING OF VENTRAL HERNIAS: PRELIMINARY VALIDATION OF 

AN ANATOMICAL LABELING PROTOCOL 

1. Introduction 

Ventral abdominal hernia (VH) repair is one of the most commonly performed general surgery 

procedures worldwide. In the United States, nearly 350,000 repairs are performed annually at an 

estimated total direct cost of $3.2 billion [147]. Despite the frequency of VH repair, failure rates are high, 

with recurrence rates estimated at between 24 and 43 percent [5]. One possible reason for these 

suboptimal outcomes is a lack of evidence on the most appropriate surgical approach for different 

patients. At present, decisions on laparoscopic versus open repair, mesh type, mesh position, and method 

of mesh fixation are typically driven more by the surgeon’s personal preference than by objective data 

[148, 149]. 

Multiple factors impact the success of VH repair. These factors include preoperative conditions 

(e.g., obesity, nicotine use, previous infections), hernia characteristics, operative technique and 

perioperative care (e.g., perioperative antibiotics, operative time). To date, there is no standardized 

method for VH classification that consistently and efficiently describes hernia characteristics. The most 

well-known VH classification system is the European Hernia Society Classification for Ventral Hernia 

(EHSCVH) [1]. This manual system can be cumbersome to use, has been unevenly accepted by surgeons, 

and is inconsistently applied, especially for complex hernias. The EHSCVH is semi-quantitative in that 

VH’s are classified based on categorical locations with limited direct assessment of hernia size. The 

Ventral Hernia Working Group (VHWG) proposed a hernia grading system to access patients’ risk for 

surgical-site occurrences based on more comprehensive clinical factors of patients and wounds [150]; 
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however this classification system and its variant [151] are also not commonly used given that the 

involved factors are complicated to access. We hypothesize that a quantitative imaging approach will 

provide a more objective, efficient, and reproducible means of describing VH, and that this approach may 

inform future evidence-based research to improve VH repair outcomes.  

The purpose of this paper is to present a standardized method for quantitative anatomical labeling 

of VH using standard of care computed tomography (CT). We propose a detailed anatomical labeling 

protocol to capture the clinically relevant geometric properties of both VH and the abdominal wall. Then, 

using a test dataset of human subjects with VH, we demonstrate both intra- and inter-rater reproducibility 

of our labeling protocol for generating key quantitative descriptive parameters, including VH volumes 

and the relationship of VH to relevant anatomical landmarks. We perform preliminary statistical tests on 

the ability of the derived VH properties to predict a relevant clinical endpoint (requirement for mesh 

bridge closure during VHR), with comparisons to predictions from EHSCVH metrics. In discussion, we 

present the main contributions of our approach and its potential clinical impact, compare its practical 

efficacy with other related efforts on VH characterization [2, 3, 152], and envision the future work. 

2. Methods 

2.1. Ethics Statement 

All clinical data was collected from the Vanderbilt electronic medical records systems under 

institutional review board approval. The full name of the institutional review board is Vanderbilt Human 

Research Protection Program. All procedures followed were in accordance with the ethical standards of 

the responsible committee on human experimentation (institutional and national) and with the Helsinki 

Declaration of 1975, as revised in 2008 (5). Written informed consent was obtained from all patients for 

being included in the study. An addendum was also obtained for the specific use for this study. 
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2.2. Quantitative anatomical description of VH 

 Since our objective was to create a comprehensive anatomical description of VH using 

quantitative parameters derived from CT, we began by assembling a set of quantitative parameters that 

would be relevant for informing clinical decision-making on VH repair (Table III.1). These quantitative 

parameters are divided into those describing location of the VH relative to key anatomical landmarks 

(including the xiphoid process, umbilicus, linea alba, linea semilunaris, anterior superior and inferior iliac 

spines, and pubic symphysis), those describing size and shape characteristics of the VH itself (including 

hernia volume, ratio of hernia volume to abdominal cavity volume [3], and defect area), and those 

describing mechanical properties (chiefly compliance) of the abdominal wall.  

Table III.1. Clinically relevant quantitative parameters for describing VH. 

Category Example quantitative 

parameters 

Description Significance 

Location Point distance from 

xiphoid process, 

umbilicus, linea alba, 

linea semilunaris, ASIS, 

and pubic symphysis  

Relative location of VH with 

respect to bony landmarks and 

fascial boundaries 

Reference for hernia 

classification [1] 

Size/shape Defect area Area of abdominal wall fascial 

defect 

Critical to selection of 

surgical techniques for 

hernia repair [2] 

 Maximum dimensions VH range on three orientations Reference for hernia 

classification [1] 

 Vhernia/Vabdomen Ratio of volume size between 

hernia sac and abdominal cavity 

A normalized indicator 

of hernia severity  [3] 

Mechanical Compliancea Ability of muscular tissues to 

yield elastically on a force 

An indicator that 

correlates with ease of 

repair and recurrence 

rate [4] 
a Not currently accessible via CT imaging. 
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2.3. Labeling protocol 

We then designed a standardized anatomical labeling protocol to enable algorithmic calculation 

of the above parameters (Figures III.1, III.2). The protocol was created for manual implementation by a 

research associate with experience in anatomical labeling but without specific experience in either 

abdominal radiology or general surgery; the protocol is also flexible enough to be used as a foundation for 

future semi-automated or fully automated approaches. The detailed protocol is provided in the supporting 

information. Briefly, it involves the following steps: (1) Select the axial and sagittal image slices on 

which to label the abdominal wall. (2) Label the anterior and posterior abdominal wall, and label the linea 

 

Figure III.1. Overview of the anatomical labeling protocol. (a) Axial and sagittal slices to label are 

determined in terms of the size and resolution of the volume. (b) On the selected axial slices, the 

anterior (outer and inner borders) and posterior abdominal wall is traced. At the same time, linea 

alba and linea semilunaris are labeled on the appropriate axial slices. (c) The VH is labeled 

entirely on every axial slice where the hernia exists. (d) On the selected sagittal slices, the outer 

and inner borders of the anterior abdominal wall are traced. Note the previous VH and 

abdominal wall labels can be helpful references. (e) The umbilicus and skeletal landmarks are 

labeled. (f) The complete set of labels is reviewed. 



44 

 

alba and linea semilunaris on the appropriate axial slices. (3) Label the herniated region entirely. (4) Label 

the anterior abdominal wall on selected sagittal slices. (5) Label the skeletal landmarks and the umbilicus. 

(6) Review the overview of all labels. For manual labeling by a trained research associate, the entire 

labeling process takes approximately 1 hour for a complete abdominal CT volume.  

2.4. Data  

Retrospective, clinically acquired CT data on 61 patients with suspected VHs were collected 

anonymously under institutional review board approval. Abdominal scans (covering from xiphoid process 

superiorly to pubic symphysis inferiorly) were available for the 61 patients. 18 patients were randomly 

selected for protocol development; an additional random 43 patients were included for a preliminary 

quantitative evaluation based on the protocol. Large variations were seen among the volumes in voxels 

(512x512x90 ~ 512x512x200) and resolution (0.6x0.6x5 mm ~ 1.0x1.0x3 mm). Average field of view in 

millimeters was approximately 400x400x500 mm. Various sizes of VH were observed among the 

involved patients (Figure III.3).  

 

Figure III.2. Anatomical structures included in the CT labeling protocol. (a) rectus muscles; (b) 

oblique abdominal muscles; (c) linea alba; (d) linea semilunaris; (e) umbilicus; (f) xiphoid 

process; (g) anterior superior iliac spines; and (h) pubic symphysis. 
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2.5. Manual labeling 

A research associate was trained on the protocol using the Medical Image Processing And 

Visualization (MIPAV) [153] software (National Institutes of Health, Bethesda, MD) and a high 

resolution tablet input (Wacom, Tokyo, Japan) on a 64-bit Linux workstation. The research associate 

labeled all 61 datasets, with 18 of them labeled twice in randomized order with a minimum of 3 weeks 

between repeated volumes to ensure washout. All labels were created independently so that the research 

associate could not see his own prior labels. For efficiency, normal wall anatomy was evaluated on slices 

spaced every 5 cm. Labeling time ranged between 60 and 90 minutes per dataset. A general surgeon was 

also trained on the protocol and labeled a randomly selected subset of 10 of the 18 datasets. 

Independently, a general surgeon applied the EHSCVH protocol to the 26 patients who underwent 

surgical repair.  

2.6. Protocol validation 

Intra- and inter-rater reliabilities were estimated from the differences between the paired results for 

labeling the abdominal wall, key anatomical landmarks, and the VH. For the abdominal wall, reliability 

was calculated using the mean surface distance (MSD) and Hausdorff distance (HD) between the two sets 

of labels. For key anatomical landmarks, reliability was calculated with the Euclidian distance (ED) of 

centroids using the centermost subcutaneous point for the umbilicus; the centroids for the xiphoid 

process, linea alba, and linea semilunaris; the most superior point for the pubic symphysis, and the most 

 

Figure III.3. Examples of various ventral hernia sizes. (a), (b), (c) demonstrate a small, medium, 

and large hernia, respectively in axial slices. The herniated regions are highlighted in red. 
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anterior points for the anterior superior and inferior iliac spines. For the VH, reproducibility of hernia 

volume was assessed by Cohen’s kappa statistic[154]. Intra-rater reliabilities were calculated on all 18 

datasets. Inter-rater reliabilities were calculated on the 10 datasets for which labels were available from 

both the research associate and the general surgeon.  

2.7. Metrics derivation 

Based on the manual labels on 61 datasets, 20 metrics were automatically derived to describe the 

shape, location, and surrounding environment of hernias (Table III.2). Generally, the hernia shapes were 

Table III.2. Quantitative evaluations on 20 derived metrics. 

Indexa Metricb mean [min, max] 

A Hernia volume (cm3) 526.26 [3.99, 3946.51] 

B Hernia L-R diameter (cm) 10.69 [2.63, 30.70] 

C Hernia A-P diameter (cm) 5.11 [0.70, 17.76] 

D Hernia C-C diameter (cm) 11.64 [2.10, 30.50] 

E Hernia anterior surface area (cm2) 313.75 [15.28, 1269.79] 

F Hernia posterior surface area (cm2) 265.27 [10.14, 1103.02] 

G Average A-P hernia thickness (cm2) 1.16 [0.19, 3.58] 

H Normalized horizontal hernia location 0.60 [0.25, 1.34] 

I Normalized vertical hernia location 0.16 [-0.08, 0.65] 

J Distance from hernia to left ASIS (cm) 15.30 [2.24, 24.87] 

K Distance from hernia to right ASIS (cm) 16.44 [5.16, 25.12] 

L Distance from hernia to XP (cm) 23.91 [8.89, 42.92] 

M Body volume over abdomen (cm3)  30331.23 [19057.96, 57735.54] 

N Abdominal cavity volume (cm3) 8809.37 [4384.98, 18611.35] 

O Ratio of hernia to abdominal cavity volume 0.06 [0, 0.41] 

P Mean abdominal wall thickness (cm) 1.38 [0.76, 2.58] 

Q Std. of abdominal wall thickness (cm) 0.80 [0.33, 2.30] 

R Visceral fat volume (cm3) 2073.50 [5.94, 10322.78] 

S Subcutaneous fat volume (cm3) 16528.55 [296.69, 33288.25] 

T Evaluated height of abdominal region (cm) 34.46 [25.00, 40.50] 
a Each index represents its corresponding metric in a simpler form. A-G are considered as shape-

related, G-L as location-related, and M-T as body-related metrics. 

b Note that (1) the quantitative values of the shape-related metrics are only collected among the 

subjects with identified hernias; (2) the normalized horizontal location represents the relative position 

from left ASIS to right ASIS, the normalized vertical location represents the relative position from the 

level of left and right ASIS to xiphoid process; (3) the volumetric body-related metrics are evaluated 

over the vertical range with labeled abdominal walls, represented as T, i.e., the evaluated height of 

abdominal region. 
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directly derived from the labeled hernia volume, the hernia locations were measured from the centroids of 

hernia volumes to the landmarks, and the surrounding body-related metrics were calculated based on 

interpolated abdominal wall surfaces and segmented body masks. Thin-plate spline interpolation [155] 

was applied to the label meshes of the abdominal walls, which yielded an outer surface for the abdominal 

wall as well as a closed inner surface for the entire abdominal cavity. Fuzzy C-means clustering was used 

to extract the patient’s body from the scan table and background based on intensity. A further intensity 

clustering was applied to the extracted body region to separate fat tissue from muscles after excluding the 

bones and air, and thus the visceral and subcutaneous fat were discriminated by the interpolated 

abdominal wall surfaces [32]. Note that these 20 metrics are only a subset of quantitative parameters that 

we are interested in this preliminary study. 

2.8. Statistical tests 

Of all 61 evaluated datasets, 26 patients underwent VH repair with intent for primary fascial 

closure and mesh sublay. In general, primary fascial closure is desirable during VHR whereby the hernia 

defect is re-approximated. When this cannot be achieved, a mesh bridge is required, leaving the original 

hernia defect in situ. In other words, a patient who fails to have the primary fascial closure after VHR 

meets the bridge requirement. These 26 patients can be classified into two groups, where 9 patients 

required a bridge for closure and the other 17 did not. A series of statistical tests were used to explore the 

clinical correlation between the derived metrics with the technical outcomes of fascial closure. 

Firstly, unpaired one-tail t-test was used to examine the significant differences between the two 

groups for each of the 20 derived metrics. 

Then, two complementary analyses based on elastic net regularized logistic regression were 

operated to evaluate the compound outcome prediction using multiple metrics. The goal is to construct a 

regression model, based on which provide an intercept 𝛽0 and a set of regression coefficients 𝛽 ∈ ℝ𝑝×1 

associated with the 𝑝  metrics to minimize the deviance of model fit to the responses given 𝑁 

observations.  
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𝛽0, 𝛽 = ⁡αrgmin
𝛽0,𝛽

(
1

𝑁
𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒(𝛽0, 𝛽) + 𝜆𝑃𝛼(𝛽)) (3.1)  

where the 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒(∙,∙) was computed under binomial distribution for logistic regression [156] to 

deal with binary categorical cases while estimating the odds in a continuous form. 𝜆 represents a non-

negative regularization parameter for the penalty term 𝑃𝛼(𝛽).  

𝑃𝛼(𝛽) =
1 − 𝛼

2
‖𝛽‖2

2 + 𝛼‖𝛽‖1 (3.2)  

where both the L1 and L2 norms of the regression coefficients were used for elastic net 

regularization [157] to constrain the regression, where some highly related metrics can be ignored (the 

regression coefficient approaches zero). The regularization effect is controlled by a parameter, i.e., alpha 

(or 𝛼 ), ranging from 0 to 1, which effectively determines the proportions of ignored regression 

coefficients - a larger ⁡𝛼 value leads to more metrics to be ignored. Note when performing the tests, the 

largest value was determined among a sequence of valid candidates for 𝜆 such that the deviance is within 

one standard error of the minimum, leaving 𝛼 as the only variable.  

Here, the 20 derived metrics were all included to construct the regression model that represents 

how multiple metrics are combined with regression coefficients to predict the technical outcomes. 

Specifically,  

(1) A predictive analysis was conducted to assess the accuracy of the predictive model using a 

leave-one-out cross-validation (LOOCV) scheme, i.e., building a regression model on 25 observations, 

and then testing it on the one left over. The continuous estimated outcomes were rounded into binary 

predictions for validation. By iterating this cross-validated analysis over 𝛼 from 0 to 1 with a step size of 

0.01, the numbers of remaining metrics, and those of false predictions were recorded. 

(2) A follow-up exploratory test was conducted by building the regression model on all 26 

observations (without cross-validation) with 𝛼 of 0.9 to identify the most predictive metrics for mesh 

bridge requirement after VH repair. 
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An additional predictive analysis using elastic net regularized logistic regression with LOOCV 

was conducted with the variables proposed in EHSCHV for reference. According to EHSCHV, four 

categorical variables, i.e., medial hernia location, lateral hernia location, recurrence of hernia, and hernia 

width categories, and two quantitative variables, hernia width (L-R diameter) and length (C-C diameter) 

acquired by clinicians were considered in place of the 20 labeling-derived metrics for regression. 

3. Results 

3.1. Labeling reproducibility  

Of the 18 patients evaluated for labeling reliability, mean age was 50 years with 50 percent 

women. The mean body mass index (BMI) was 33.1 kg/m2. The prevalence of hernia in this population 

was 78%, and all of the ventral hernias were related to a previous operation (i.e. incisional hernias). The 

mean transverse dimension of the hernia defects was 11.4 cm.  

3.1.1. Abdominal wall 

Our protocol yielded high intra-rater and inter-rater reproducibility for labeling the anterior 

abdominal wall, with MSDs of around 2 mm and HDs of around 30 mm (Table III.3). There was 

moderate reproducibility for the posterior abdominal wall, with an intra-rater MSD of 2.5 mm and an 

inter-rater MSD of 7.7 mm. The different choices on the starting and ending point of structure labeling 

cause the relatively large values of HD (up to 9 cm), while the MSD values are not greatly affected.  

Table III.3. Abdominal wall reliability measured by mean surfaces distances (MSD) and 

Hausdorff distance (HD) in mm. 

MSD Axial Outer Axial Inner Sag. Outer Sag. Inner Rear Abd. 

Intra-rater 1.24±1.34 1.18±1.62 0.96±0.49 1.23±1.21 2.47±1.37 

Inter-rater 1.16±0.46 1.34±0.73 1.93±1.91 2.14±1.47 7.73±2.58 

HD Axial Outer Axial Inner Sag. Outer Sag. Inner Rear Abd. 

Intra-rater 19.93±17.05 16.28±16.17 19.84±13.66 20.55±22.49 36.17±24.30 
Inter-rater 16.81±10.88 22.85±19.82 33.60±18.25 36.36±22.74 90.36±9.74 
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3.1.2. Key anatomical landmarks 

Reproducibility of labels for key anatomical landmarks was moderate to high, with both intra-

rater and inter-rater Euclidian distances below 5 mm (Table III.4).  

3.1.3. Hernia volumes 

Reproducibility of hernia volumes was high, with an intra-rater Cohen’s kappa of 0.8 and an 

inter-rater Cohen’s kappa of 0.9 (Table III.5).  

3.2. Quantitative evaluation 

Of the 61 patients evaluated for metrics derivation, the prevalence of hernia was 72%. The mean 

age was 52 years with 66 percent women. The mean BMI was 33.0 kg/m2. The mean and range of 20 

derived metrics were calculated (Table III.2).  

  

Table III.4. Fascial boundaries and bony structures reliability measured by Euclidean distance 

(ED) of centroids in mm. 

ED Xiphoid Process Left ASIS Right ASIS Umbilicus 

Intra-rater 2.61±3.93 3.00±1.99 2.30±1.81 1.88±1.89 

Inter-rater 2.43±1.84 3.51±3.15 1.83±1.39 4.69±5.91 

ED Linea Alba Linea Semilunaris Pubic Symphysis  
Intra-rater 4.59±5.91 4.38±3.04 1.16±1.15  
Inter-rater 3.59±2.65 4.55±1.20 2.51±1.74  

 

Table III.5. Hernia volume reliability. 

Comparison Cohen’s kappa 

Intra-rater 0.83±0.05 

Inter-rater 0.92±0.02 
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3.3. Clinical correlation 

Of the 26 patients who underwent VH repair with intent for fascial closure and were evaluated for 

statistical tests, the mean age was 51 years with 81 percent female with 32.1 kg/m2 mean BMI. 

3.3.1. Unpaired one-tail t-test 

Significant differences (p<0.05) were observed between two groups of patients separated by 

bridge closure requirement after VH repair over nine individual metrics (Table III.6). 

3.3.2. Predictive regression analysis 

With cross-validation, the regression model based on labeling-derived metrics and the one based 

on EHSCHV variables were tested. In neither case, perfect prediction was achieved. For the best case 

along different selection of the alpha value, the regression model using the labeling-derived metrics yields 

Table III.6. Statistical comparison of 20 metrics between two groups of patients with distinct 

outcomes. 

Indexa p-value mean [min, max] (required bridge 

closure) 

mean [min, max]  (no bridge 

required) 

A 0.0001* 823.56 [57.8, 2300.04] 107.65 [3.99, 367.81] 

B 0.0000* 15.74 [8.51, 24.15] 7.20 [2.80, 12.80] 

C 0.0029* 6.27 [3.05, 10.46] 3.60 [0.70, 7.24] 

D 0.0004* 16.99 [4.50, 26.70] 8.14 [2.40, 22.20] 

E 0.0000* 512.22 [78.93, 1036.63] 123.24 [16.30, 283.31] 

F 0.0000* 448.13 [64.13, 1022.69] 105.59 [14.98, 271.81] 

G 0.0001* 1.40 [0.73, 2.22] 0.72 [0.19, 1.61] 

H 0.2955 0.63 [0.33, 1.01] 0.68 [0.25, 1.34] 

I 0.3980 0.10 [0, 0.19] 0.09 [-0.02, 0.24] 

J 0.3704 16.46 [2.24, 22.84] 15.83 [8.03, 24.87] 

K 0.1834 18.54 [11.37, 25.12] 16.91 [5.16, 23.72] 

L 0.4817 19.66 [13.00, 30.48] 19.55 [8.89, 30.96] 

M 0.1416 32384.43 [22725.75, 42339.98] 29078.13 [19727.07, 46436.02] 

N 0.4412 9233.44 [6007.36, 15065.04] 9074.89 [4683.12, 15141.70] 

O 0.0005* 0.09 [0.01, 0.31] 0.01 [0, 0.04] 

P 0.0539 1.55 [0.83, 2.44] 1.31 [0.76, 1.62] 

Q 0.0083* 0.98 [0.39, 1.89] 0.65 [0.33, 1.07] 

R 0.0655 32.48 [7.12, 65.90] 23.11 [5.94, 48.88] 

S 0.1794 22960.45 [12114.26, 33288.25] 20346.47 [8218.99, 31283.60] 

T 0.3847 35.68 [33.00, 38.00] 35.39 [30.30, 39.90] 
a Each index refers to a metric in Table III.2. 

* indicates significant difference between the two groups. 
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four false predictions out of 26 subjects (84.6% accuracy), where two (“hernia L-R diameter” and “hernia 

anterior surface area”, with 𝛼 = 0.95⁡or⁡1.00) to five (“hernia L-R diameter”, ”hernia C-C diameter”, 

“hernia anterior surface area”, “hernia posterior surface area”, and “average A-P hernia thickness”, with 

𝛼 = 0.80⁡or⁡0.89) metrics were used. On the other hand, the regression model using the EHS variables 

made at least six false predictions (76.9% accuracy), where five (except for the hernia width category) to 

all six variables were included (Figure III.4a, 4b). With a closer look, all false predictions mentioned 

above were the subjects who required bridge repair but predicted as not required. These false predictions 

were confusing in terms of their similar hernia sizes to those having primary fascial closure after VHR.  

3.3.3. Exploratory regression analysis 

Only two metrics ("hernia L-R diameter" and "hernia anterior surface area") remained as the key 

factors for predicting mesh bridge requirement when building a logistic regression model with an alpha 

value of 0.9. This regression model, although used all observations, yielded the same four false estimates 

 

Figure III.4. Results of preliminary statistical analyses. (a) and (b) shows the number of false 

predictions and number of included variables over different alpha values using cross-validated 

elastic net regularized logistic regression, respectively. Generally, a larger alpha value yields 

stronger regularization, and thus involves less variables for the regression model. Note that the 

blue dashed curves represent the regression results using EHSCHV variables, while the green 

solid curves use the variables derived from labeling. (c) presents a hyper-plane using support 

vector machine to separate the two groups of patients with distinct technical outcomes by the two 

remaining labeling-derived variables of an exploratory regression model built upon all 

observations. 
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as the best cases using labeling-derived metrics in the predictive analysis. These two metrics can be used 

to identify a separating hyper-plane (a discriminative function of the two metrics) between two groups 

using support vector machine (SVM) [158], which represents the quantitative threshold for mesh bridge 

requirement. Two cases requiring bridge repair were misclassified (Figure III.4c). We note that the 

uneven numbers between the two groups (9 vs. 17) can affect the regression model regarding its optimal 

threshold (we use 0.5 for logistic regression) for making predictions. Applying a SVN classifier following 

the regularized regression model may raise the predictive power.  

4. Discussion 

4.1. Main contributions  

This preliminary study is intended to lay the foundation for a quantitative imaging approach to 

determine optimal management strategies for different subtypes of VH, and improve the surgical 

treatments. 

First, we created a set of clinically relevant, quantitative anatomical descriptors for VH, and we 

designed a standardized labeling protocol to enable extraction of these parameters from routine clinical 

CT datasets as the foundation for future automated modeling of the relationships between VH anatomical 

characteristics and treatment outcomes. 

Second, our protocol validation study showed acceptable inter-rater and intra-rater reproducibility 

for labeling the abdominal wall, key anatomical landmarks, and the VH itself. In terms of anatomical 

labeling, we found that abdominal wall surfaces could be appreciated on either axial or sagittal views 

without extensive three-dimensional visualization, while the hernia volume required tri-planar 

manipulation. We also found that abdominal wall surfaces are sufficiently smooth such that, for 

efficiency, normal wall anatomy can be labeled every 5 cm on sparse, evenly spaced slices; the entire 

surfaces can then be approximated by interpolation. 
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Next, we derived 20 quantitative parameters to describe the shape, location, and surrounding 

environment of VH from the anatomical labeling automatically. The collection of these metrics provide 

more comprehensive characteristic of VH than the available clinical measurements using EHSCHV 

system.  

Lastly, we showed the clinical correlation between the derived quantitative parameters and the 

technical outcomes of primary fascial closure after VH repair with preliminary statistical tests. 9 

individual metrics were shown to be significantly different between patients required bridge closure and 

those who did not. Through predictive analyses, we presented a regression model using multiple metrics 

that were capable of identifying all patients who did not require bridge closure (17 out of 17), and over 

half of the patients who required (5 out of 9). We also found our labeling-derived metrics more predictive 

than EHSCHV variables for this technical outcome. We note this is the first work to correlate VH 

quantification into clinically meaningful disease processes. 

4.2. Potential clinical impact 

Clinically, the requirement of bridging remains uncertain pre-operatively. Surgeons may give a 

rough prediction by eyeballing the hernia on pre-operative imaging, i.e., a larger hernia is more likely to 

require a mesh bridge repair. Subjective predictions can be inaccurate. Because of this uncertainty, some 

techniques like myofascial release are used to avoid bridging, but may cause other problems. For 

example, data from our institution suggests that the extra dissection of a myofascial release significantly 

increases the risk of surgical site infection post-operatively [159]. Thus, objective criteria for accurately 

predicting the bridge requirement can be clinically relevant, and change the clinical procedure 

significantly. For pre-operative planning, surgeons can provide objective quantities rather than subjective 

size description when counseling patients and planning operations. The patient and surgeon could have an 

estimated probability of the need for bridge closure, and this option could be weighed while taking into 

account other patient factors which increase the risk of postoperative infectious complications. This could 

also result in lifestyle modifications prior to embarking upon a surgical repair in order to decrease the 
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morbidity of the procedure. In some instances, the knowledge that a bridge will likely be required in a 

patient who has significant risk of infectious complications might lead to surgeon to accept a bridge 

configuration and counsel the patient accordingly. 

Our labeling protocol yields reasonable objective criteria for the predication of bridge 

requirement. Predictive (cross-validated) statistical analysis indicates that one needs two to four metrics to 

yield the best prediction of the bridge requirement. This suggests that multiple metrics should be 

considered together for prediction. In explanatory analysis (not cross-validated), only two variables 

("hernia L-R diameter" and " hernia anterior surface area ") are needed to identify a separating hyper-

plane (a discriminative function of the two variables) between the groups, which represents the 

quantitative threshold for the requirement of bridge repair. We note that a hernia with large L-R diameter 

but small anterior surface area may not necessarily require a bridge requirement, which is difficult to 

judge visually from 3-D CT. Therefore, these metrics are helpful as objective criteria for bridge 

requirement prediction. We also note that while “hernia L-R diameter” has been commonly considered as 

an important factor, “hernia anterior surface area” has never been focused on for VH characterization. 

Our labeling protocol provides the access to these parameters potentially critical to correlate specific 

technical outcomes. On the other hand, we find the current metrics fail to discriminate some small hernias 

in need of bridge repair. This is partially due to the insufficient (26) and unbalanced datasets (17 vs. 9) 

available in the experiment. Inclusion of more datasets could help augment the prediction of primary 

fascial closure. Many other factors, in addition to hernia characteristics, influence the decision to perform 

bridge repair. The intended goals of the operation (definitive versus staged repair), level of contamination, 

amount of tension on the fascia when closed, need for tissue coverage, and surgeon training can 

contribute to the decision-making. 

4.3. Comparison to other related efforts 

Our approach takes advantage of the fact that most VH patients undergo pre-surgical CT scanning 

to evaluate their abdomen. At present, however, no well accepted method of VH classification exists for 
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routine use, and therefore information from imaging is used qualitatively and subjectively to make 

clinical decisions based on little empirical data. The EHSCVH is the only potential classification system 

that has been presented as a means to classify all ventral hernias. The EHSCVH system codes for (1) 

categorical assignment based on the location of the hernia and cause of hernia (primary or incisional), (2) 

categorical assignment of hernia size (small, medium, large), and (3) linear measures of hernia size 

(length, width). The actual implementation of this classification system can be cumbersome, however, 

and although the EHSCVH was published several years ago, it has not gained widespread acceptance 

among surgeons. The time required of a surgeon in a busy clinical practice to determine the classification 

for a particular patient’s hernia often prevents its use. Additionally, there is no incentive in place for the 

surgeon to spend the time determining the classification since the classification scheme has not been 

linked to specific patient outcomes or advantageous operative techniques. Finally, there are 

inconsistencies between surgeons when classifying complex hernias using this system. Our predictive 

regression analysis showed that the EHSCVH variables were not adequate to predictive the bridge closure 

requirement after VH repair (Figure III.4a, 4b) despite its simplicity. 

A quantitative approach is attractive for two reasons: (1) it may be implemented by a trained 

associate or, in the future, by a semi-automated or fully automated computer algorithm, thus offloading 

the time for VH classification from the surgeon; and (2) its standardized nature provides a foundation for 

rigorous statistical correlation against patient outcomes, both retrospectively using large clinical databases 

and prospectively in clinical trials. At present, however, quantitative description of ventral hernias is 

rather rudimentary, with transverse size being the most commonly used metric. Transverse hernia size 

captures very little of the actual heterogeneity of VHs. Hernia volume is also inadequate for describing 

VH, as two VHs of the same volume may have very different shapes and may require different surgical 

techniques (Figure III.5).  
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For these reasons, and for its obvious clinical implications, characterization of VH has been of 

interest to the image processing community in recent years. Tanaka et al. derived the volumes of the 

hernia sac and abdominal cavity by assuming them as ellipsoid structures with the measurement of the 

cranio-caudal, latero-lateral, anterior-posterior radial distances [152]. Sabbagh et al. determined the 

intraperitoneal volumes (including both VH and abdominal cavity) after the volume boundaries were 

defined using a blind-side method by a surgeon and a radiologist [3]. Yao et al. marked the required range 

on 3-D reconstructed CT, and measured the volumes with measurement-voluminal software [2].  

While notable, these efforts have not addressed the fundamental challenge of measuring the 

complex interaction of the hernia with its biological context. Our labeling protocol allows for estimation 

of different geometrical properties of VH from the labeled data (Figures III.6, III.7, Table III.2). We 

consider the hernia shapes (volumetric sizes and dimensional diameters) as the chief quantitative 

parameters to characterize the degree of abnormality of VH. We suggest that the location of the hernia 

defect with respect to bony landmarks and facial boundaries is critical to VH classification. We also 

append metrics of surrounding structures (e.g., abdominal wall thickness, visceral and subcutaneous fat 

volume) as referential body status of the VH patients. These characteristics give a robust description of 

the hernia itself, which can then be correlated to clinical outcomes. Elastic net regularized logistic 

regression can be used to reduce all available variables to several key factors to predict specific technical 

 

Figure III.5. Two VH cases in volume rendering and tri-planar views. Although the two examples 

have almost the same hernia volume size (a = 125 cm3, b = 109 cm3), (a) is a long, shallow rupture 

at the umbilicus, while (b) is a short, deep protrusion of the abdominal wall. In addition, the 

patients’ body sizes are quite different, and the hernia in (b) is further away from the umbilicus. 
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outcomes, while sometimes a larger number of variables are required to yield better prediction. Certainly 

other non-hernia related factors are important in the overall definition of hernia complexity, including 

 

Figure III.6. (Left) Illustration of VH characteristics on CT for four patients. In each section, the 

first row illustrates the location of the VH; the second row illustrates the VH defect size at the 

anterior abdominal wall; the third row demonstrates the volume size of the hernia sac (red) and 

the abdominal cavity (blue).  

Figure III.7. (Right) Illustration of VH characteristics in terms of processed label results. The 

first row, from (a) to (c), demonstrates a matchup between the original image data and the 

processed labels, where the abdominal walls were interpolated. The second row, from (d) to (f), 

demonstrates the coherence of interpolated abdominal walls with the original image in three 

different views. The third row, from (g) to (i), illustrates a combined model of abdominal wall and 

hernia volume for shape-related VH characteristics, the relative location of VH with respect to 

the linea alba and linea semilunaris, and the relative location of VH with respect to skeletal 

landmarks and the umbilicus. The fourth row, from (j) to (l), demonstrates feasibility of 

measuring the VH defect size, width and length of VH, and ratio of volume size between the 

hernia sac and the abdominal cavity. 
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many clinical and patient-related factors[160], but the method described in this manuscript offers a 

precise and reproducible description of ventral hernia based upon specific imaging characteristics.  

4.4. Future work 

One important property of VH not currently accessible via CT imaging is muscular compliance, 

i.e., the ability of muscular tissues to yield elastically to an applied force. This patient-specific property 

influences the ease of repair and may correlate with post-operative recurrence rates. Future studies may 

investigate the use of ultrasound or magnetic resonance elastography to estimate this property. 

Also, we note that the CTs in our study were acquired at rest without performing a Valsalva 

maneuver. Valsalva maneuvers can be beneficial to show the potential visceral drift around the herniated 

region. In theory, the anatomical changes would not disrupt implementation of the proposed protocol. 

However, further study would be needed to explore the examine differences between scans with and 

without Valsalva maneuvers.  

It is important to emphasize the clinical relevance of these findings. If a reproducible, 

quantitative, and automated method of classifying VH can be developed, the field of VH management 

could be significantly advanced. Namely, a reliable metric would be established whereby comparisons 

can be made to determine best practices—akin to cancer staging in the management of malignant disease. 

Relevant automated efforts are in progress[38]. 
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CHAPTER IV  

IMMERSIVE VIRTUAL REALITY FOR VISUALIZATION OF ABDOMINAL CT 

1. Introduction 

Modern medical imaging techniques produce large data sets that are difficult to visualize and 

understand by both medical professionals and patients. There are several difficulties that these large data 

sets present. First, the amount of data means that viewing axial sections becomes problematic, simply 

because of the large number of slices that must be navigated. The navigation modalities for these slices, 

such as sliders and mouse wheels, become increasingly cumbersome as the number of slices increases. 

Secondly, as the complexity of medical image data grows, restricting the viewing modality to a traditional 

two-dimensional view may be sub-optimal. Such data is inherently three-dimensional (3D), and exploring 

it as a 3D quantity, through displays that offer stereoscopic depth perception, may give better insights and 

comprehension into the overall imaging data. 

Immersive virtual reality (IVR) may offer a solution to the issues described above. In this paper, 

we describe IVRs presented through head-mounted displays (HMDs), stereoscopic display devices that 

allow the wearer to perceive a three-dimensional virtual environment as though present in it. Immersive 

virtual reality facilitates the investigations of situations that are difficult to study in the real world, 

whether for reasons of cost or complexity. It can provide visualization modalities that render complex 

data more comprehensible and interaction modalities that make large amounts of data more accessible. In 

this paper, we discuss IVR that uses an HMD to view the virtual world, and articulated data gloves to 

interact with it. 

In this paper, we consider visualization of ventral hernias. Ventral hernias occur in up to 28% of 

patients undergoing abdominal operations — even in optimal conditions [161, 162]. Repair of these 
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hernias is fraught with failure; recurrence rates ranging from 24-43% [5]. Recurrence of previously 

repaired VHs increases costs and morbidity to patients and can sometimes require multiple repairs. In 

some patients, repair of their end-stage VH may produce a worse outcome than a non-operative strategy 

[163]. Communication is a significant problem for clinicians and patients with ventral hernias. 

In care planning, it is essential that the patient understand the urgency, degree of severity, and 

impact of a hernia (and potential repair) on patient quality of life. Hernias are defined by ruptures in the 

abdominal wall (i.e., the absence of healthy tissues) rather than a growth (e.g., cancer); therefore, 

understanding a hernia necessitates understanding the entire abdomen. Our proposed environment allows 

surgeons and patients to view body scans at scale and interact with these virtual models using a data 

glove. 

IVRs have, of course, been used to visualize medical imaging data before. Some systems use a 

single imaging modality or semi-immersive environments [164-166]. Using the hands to manipulate the 

3D data has also been recognized as having value [165, 167]. In particular, Indhumathi et al. [168] use 

both an HMD and a high-fidelity data glove to manipulate medical imaging data. The novelty of the 

present system is coupling of the manual interface with the IVR to achieve improved understanding of 

large imaging datasets. 

2. Methods 

2.1. Data and Processing 

Our abdominal segmentation method has been evaluated in separate work [38]. Briefly, 

retrospective, clinically acquired CT data on three male patients and one female patient with suspected 

VHs (three with confirmed hernia) were acquired in anonymous form under institutional review board 

supervision from the clinical PACS in DICOM format. Volumes were approximately 512x512x157 

voxels with a resolution of 0.89x0.89x3 mm. A low threshold (200 HU) is used to identify the whole bone 

skeleton. Then, a high threshold (800 HU) is used to divide the skeleton into different components based 
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on relative shape and position information. The skin and abdominal wall are segmented using level set 

techniques. The outer surfaces of each object (i.e., pelvis, femurs, spinal column, ribs, skin) were 

tessellated and exported for visualization. Surface colors and transparency were authored for each object 

using Mayavi, a 3D scientific visualization tool. These models were then exported into the virtual 

environment. 

2.2. Materials and Apparatus 

Our immersive virtual environment emulates a free-walking space (approximately 8m × 7m × 

4m). The virtual environment is viewed through a full color stereo Nvis (Reston, VA) Nvisor SX60 HMD 

with 1280x1024 pixels per eye, a nominal field of view of 60o diagonally, and a frame rate of 60Hz. An 

InterSense IS-900 precision motion tracker updates the user’s rotational movements around all three axes, 

supplemented by optical tracking by four cameras of two infrared LEDs on the HMD to provide position 

and orientation information. The virtual environment is rendered using Vizard (Worldviz, Santa Barbara, 

CA). A wireless Cyberglove II data glove (Cyberglove Systems, San Jose, CA) for the right hand is used 

to track the fingers, enabling gesture control in our system. The data glove is instrumented with 22 high-

accuracy sensors and can track the finger movements accurately. The global position and orientation of 

the hand is tracked with an eight camera Vicon (Los Angeles, CA) MX-F40 optical tracking system. 

2.3. Mechanisms for Viewing the 3d Model the CT Slices in Immersive Virtual 

Environment 

In the virtual environment, registered computed tomography (CT) images and the 3D model were 

superimposed. The CT images were made semi-transparent to make the 3D model visible and to give a 

volumetric effect to the ensemble. A user can interact with a given model by touching (with the index 

finger of the virtual hand) a CT slice to expose it.  When exposed, the CT slice “pops” outside the model 

and becomes opaque for optimal viewing. The image can be made to disappear by brushing the image 
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with the palm of the hand or by selecting another slice. An accordion-like affect can be achieved by 

running the virtual hand through the model. 

Since the CT slices are along three axes, it can be difficult to select an individual slice from a 

complete grid. Therefore each axial direction is toggled by making a fist with one’s hand. The state 

transition was controlled by human making a fist gesture of right hand and releasing immediately. When 

the fist-gesture was captured by the data glove, the system transitioned to the next state immediately. The 

initial state had no CT images in it; this process is shown in Figure IV.1. In the state with the images in 

the scene, a user can select the image they want to observe as mentioned in the previous paragraph.  

2.4. Volume Rendering in the Immersive Virtual Environment 

In scientific visualization and computer graphics, volume rendering is a set of techniques used to 

display a 2D projection of a 3D discretely sampled data set. Here the 3D data set is a group of 2D slice 

images acquired by a CT scanner. These are acquired in a regular pattern as one slice approximately every 

 

Figure IV.1. The four states of the model in IVR. 
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millimeter and have a regular number of image pixels in a regular pattern. To render a 2D projection of 

the 3D data set, first we define a camera in space relative to the volume. The opacity and color of every 

voxel are also defined. Direct volume rendering is a computationally intensive task; here we achieve the 

volume render effect by rendering closely spaced slices with user-controlled transparency. An Xbox 

Controller (Microsoft, Inc., Redmond, WA) is used to adjust the mapping between intensity value (HU 

units) and transparency (“Alpha Histogram”), baseline brightness, baseline transparency (“alpha boost”), 

and to enable whole-volume intensity normalization. These controls are shown in a simulated heads-up 

display in the upper right field of view.  

3. Results 

The abdominal model contains 600893 triangles. The CT images were generated from axial 

(plane = left/right – front/back), coronal (plane = left/right – head/toe), and sagittal (plane = front/back – 

head/toe) sections through the data at every millimeter. There were 157 CT scan images in the axial 

direction, 458 in the sagittal direction, and 458 in the coronal direction. The number of pixels in each 

dimension is: 512 (left-right) x 512 (front-back) x 157 (head-toe).  A pixel corresponds to a unit volume 

of size 0.8945 mm (left-right) x 0.8945 mm (front-back) x 3 mm (head-toe). For the slice selection 

interaction, ten CT slices were used in each direction. 

We demonstrated the system to two surgeons using an abdominal model containing a hernia; 

Figure IV.2 illustrates the system in use. Remarks from the surgeons indicate that the system was 

 

Figure IV.2. Illustrations of the proposed system in use. (a) Surgeon using the system. (b) Virtual 

hand interacting with 3D abdominal model. (c) Navigation of axial slices. (d) Navigation of 

sagittal slices. 
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immersive, easy-to-use, and conveyed a sense of scale and anatomy that is difficult to achieve through a 

desktop display (Figure IV.3). They saw immediate uses for the system in both patient education and pre-

operative planning. 

 

Figure IV.3. Illustration of user interaction with the abdominal model. 
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The volume rendering controls enable real time interaction with the rendering properties so that 

users can adjust the display to reveal different parts of the anatomy from the abdominal wall to the skin, 

muscles, organs, and bones (as shown in Figure IV.4). These dynamic changes are in addition to the 

user’s ability to walk around the model and peer over/in/through the display. Volume rendering of the CT 

data provides a different sense of relative anatomical relationship than the renderings of the segmented 

data (as in Figures IV.1-3). 

4. Discussion 

We have demonstrated a system capable of visualizing large medical imaging datasets that offers 

opportunities for improved understanding of such datasets. This work is a demonstration of feasibility and 

establishes pilot platform on which to evaluate utility of IVR in medical imaging visualization and 

establish the relative merits of the IVR capability. Volumetric segmentations can be viewed and 

interacted with alongside traditional 2D slice rendering. This combined experience preserves/creates a 

 

Figure IV.4. Volume rendering for abdominal wall CT scan. 
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perception of scale which may be non-intuitive given more traditional rendering mechanisms. The image 

pre-processing can be fully automated and triggered based on PACS status, so that IVR could be feasible 

within a clinical workflow. 

Readily available flat screen virtual reality (e.g., Xbox Connect, Microsoft, Redmond, VA) and 

low cost IVR/HMD (e.g., <$50, Ilixco, Sacramento, CA) provide fascinating opportunities for integrating 

IVR technology with medical imaging systems. Important questions remain as to the relative utility of full 

scale (as presented, walk-around IVR) versus seated IVR versus flat screen virtual reality. Moreover, 

substantial work remains in optimizing intuitive interfaces for self-navigation and for guided navigation 

(e.g., shared experiences between patients and clinicians). Ongoing efforts are characterizing the utility of 

IVR for medical education and patient communication. In conclusion, integration of IVR technologies for 

data interaction with existing PACS infrastructures promises to be a fruitful area of exploration.
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CHAPTER V   

AUTOMATIC SEGMENTATION OF THE ANTERIOR ABDOMINAL WALL 

1. Introduction 

Ventral hernias (VH) include primary abdominal wall defects (e.g., umbilical hernias) and 

acquired incisional defects resulting from previous abdominal operations. The management of ventral 

hernias remains a challenging problem for primary care physicians, surgeons, and patients. VHs occur in 

up to 28% of patients undergoing abdominal operations even in optimal conditions [161, 162]. Repair of 

these hernias is fraught with failure; recurrence rates ranging from 24-43% are reported, even with the use 

of biocompatible mesh [5]. Recurrence of previously repaired VHs increases costs and morbidity to 

patients and can require multiple repairs. The common clinical problem of VH and wide variation in care 

present a unique opportunity for improvement in classification and outcomes. For each 1% reduction in 

recurrence of VH after repair, an estimated annual cost savings of $32 million could be realized [147]. 

Computed tomography (CT) is used to make qualitative clinical judgments about a particular 

patient’s hernia for treatment and prognosis. However, the only quantitative metric currently in use is the 

transverse dimension of the hernia defect. We posit that the CT image obtained from these studies is 

underutilized and provides a potentially rich — and automated — means of better characterizing VH. 

Three-dimensional structural measurements based on computational tools have been the subject of 

extensive study in the brain in the search for biomarkers for clinical development of therapeutics [169], 

and have been targeted for therapeutic modifications and as surrogate endpoints in clinical trials (e.g., [14, 

15]). These methods have yet to be applied to VH. 

Image segmentation methods to capture the three-dimensional VH-related anatomical structures 

could provide a foundation on which to measure geometric properties of hernias and surrounding tissues. 
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For example, given the segmentation, we could numerically locate the hernia with respect to anatomical 

landmarks, compute the area of disruption and volume of herniated tissue, estimate the displacement and 

volumetric changes in abutting wall structures versus change at distant relatively normal tissues, and thus 

help surgeons to classify the VHs and optimize the treatment delivery. In a parallel study [34], we 

consider a manual labeling protocol that uses the normal appearing anterior abdominal wall and the 

herniated region to describe the shape-related characteristics of VH, and uses fascial boundaries and bony 

landmarks as the features to extract the location-related characteristics. Herein, we target reproducible 

automated segmentation of the outer surface of anterior abdominal wall. 

There are few studies involving the segmentation of abdominal wall. Feng et al. used a 3D 

 

Figure V.1. Illustration of the image qualities in Ventral Hernia CT. (A) and (B) demonstrate CT 

scans with low artifacts for normal abdominal wall and for herniated region, respectively. (C) – 

(J) illustrate challenges from the segmentation of anterior abdominal wall, where red arrows 

indicate the challenging regions in each scenario. (C) The linea alba is thin and of lower intensity 

than normal. (D) The linea semilunaris is thin and of lower intensity than normal. (E) At the 

herniated region, the abdominal wall is stretched and can be barely seen. (F) The hernia volume 

is folded, which introduces a large curvature. (G) The patient is slim, which makes it hard to 

differentiate the muscles from the skin. (H) The umbilicus can interfere with the smooth contour 

of the abdominal wall. (I) Speckles in the fat are of similar intensity with muscles. (J) Metal 

implants result in streaking artifacts in CT scans. 
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flipping-free deformable model to register the inner boundary of the wall for ease of segmentation and 

visualization of abdominal organs [170]. Zhu et al. provided an interactive approach to remove the entire 

the abdominal wall to reduce the sliding motion effect on the non-rigid registration of abdominal images 

[33]. Yao et al. segmented the outer surface of the abdominal wall to separate subcutaneous and visceral 

adipose tissue by fuzzy c-means clustering and active contour models [32]. Among these studies, the 

abdominal wall was extracted to provide a better access to other abdominal structures, but not considered 

as the main entity for precise quantitative analysis. However, for our purpose of large-scale VH 

classification and characterization, a fully automated approach is required to provide the segmentation of 

a smooth surface of the anterior abdominal wall accurately and reproducibly.  Level set image processing 

methods can be ideally adapted to finding contours between objects of different intensity in the presence 

of noise, artifacts, and disruption through the use of tuned regularization criteria [117].  Abnormal hernia 

geometries and various image artifacts can make the voxel-wise intensity information misleading, and 

thus cause the segmentation of the abdominal wall to be challenging (Figure V.1). On the other hand, the 

intra-tissue variability appears to form repeated patterns within local regions. These local textures are 

visually distinguishable between different tissues, e.g., adipose tissue looks grainy, whereas muscles and 

bones are dense. This poses an interesting question: can texture analysis improve the level set 

segmentation within the abdominal region, especially for the segmentation of anterior abdominal wall?  

Texture analysis has been a long studied technique in computer vision [53], and has been applied 

to medical imaging [54]. Statistical methods (e.g., co-occurrence matrices [55, 56]) are used if the texture 

is considered as the spatial distribution of intensities, where second-order statistics of the image is 

estimated. Geometrical methods (e.g., Voronoi tessellation [171]) identify building elements for texture, 

and then assess the statistical properties of these elements, or extract the placement rule that characterizes 

the texture. Model-based methods (e.g., Markov random fields [172], fractals [173]) establish image 

models that capture essential qualities of texture for ease of texture description and synthesis. Filter-based 

methods extract features in frequency domain by passing images through multi-channel filter operators. 

Gabor filters, for example, are capable of extracting frequencies and orientations at multiple scales from 
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images as texture features for classification and segmentation [58-62]. Several studies have integrated 

texture analysis with level set techniques [63-65], among which Paragios et al. proposed a sophisticated 

geodesic active regions framework that combines both boundary- and region-based modules extracted 

from texture analysis into one level set objective function for supervised texture segmentation [174] — 

these studies mainly targeted partitioning regular textures (wood, fabric, zebra, leopard, etc.). Here, we 

assess the feasibility of the perceived local textures (as an alternative of/in addition to the intensity 

values), to drive more effective level set segmentation for anterior abdominal wall. We propose a direct 

approach to use texture analysis for level set segmentation. In particular, we learn texture features by 

Gabor filters, cluster the features into voxel-wise probability membership, and guide level set evolution 

by the local differences of the membership in place of original intensity values. Segmentation results of 

the proposed approach are compared against the methods only using intensity information. 

We note that our interest in the abdominal wall is motivated by our desire to study VHs. 

Therefore, our population of interest includes subjects with poor imaging contrast, abnormal anatomy, 

metallic implants, etc. The existence of VHs greatly challenges the segmentation of abdominal wall 

(Figure V.1). We are evaluating the performance of our image processing methods in the context of these 

considerations to preserve robustness. These issues motivate the potential clinical impact of this work. 

2. Theory 

Herein, we describe the details on the algorithm and implementation of the proposed texture-

segmentation of abdominal wall on ventral CT scans with suspected VH. We provide brief description of 

the segmentation of bony skeleton and skin surface as other essential structures for VH characterization 

(Figure V.2).  

2.1. Algorithm  

The anterior abdominal wall is formed by muscles (e.g., rectus, obliques) and fascial connections 

(e.g., linea alba, linea semilunaris) encompassing the abdominal cavity. Given the distinguishable 
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intensities between muscles and adipose tissue in CT scans, an intuitive approach could be to extract the 

muscles by intensity thresholding, and then use a series of appropriate morphological operations to obtain 

 

Figure V.2. Flowchart of the proposed method. The target image was affine-registered to a 

probabilistic atlas in terms of the extracted high intensity structures. Specific types of bony 

structures were then identified by transferring labels from the atlas to the target image based on 

a Bayesian framework, which incorporated the position information from the atlas and the 

intensity distribution for each label. After the skin is segmented by a curvature-constrained level 

set method, the two anterior iliac crests and all visible ribs are selected as landmarks, based on 

which three coordinates were created. The skin is then colored with RGB values converted by the 

normalized shortest distances to the biomarkers. Texture analysis followed by a fuzzy c-means 

procedure was used to estimate a voxel-wise probabilistic membership.  An edge map was derived 

from the membership to guide the level set evolution, while the hard segmentation of muscles 

from the membership combined with the segmented skin was used to derive the initial start. 

Ground truth was manually labeled for the abdominal wall to calculate the surface errors of 

automatic segmentation. 
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the whole abdomen region surrounded by the muscles. However, three facts can greatly challenge its 

reproducibility: (1) Skin can be difficult to eliminate due to variable thicknesses and variable distances to 

the muscles around the body across different subjects, given overlapping intensity distribution with 

muscles; (2) Muscles are greatly stretched in herniated regions and have much lower intensities than 

usual, which often results in gaps in muscle walls after thresholding; (3) Selection of morphological 

operators becomes challenging to construct a smooth abdominal region from thresholded images for the 

existence of imaging artifacts, especially in speckled adipose tissue. 

Level set approaches, on the other hand, are more generally applicable with well-designed 

evolution functions. In the level set approach [116], an evolving surface is embedded as the zero level set 

of a higher dimensional level set function Φ(𝑥, 𝑡) , and propagates implicitly through the temporal 

evolution of Φ in terms of a given speed function 𝐹. Φ(𝑥, 𝑡) is defined as signed distance function to the 

evolving surface with negative value inside the surface and positive outside. The speed function, which 

can be spatially varying, is usually determined by advection forces (e.g., constant inward or outward 

motion), intrinsic geometry (e.g., mean curvature), and image attributes (e.g., intensity, and its gradient). 

The temporal evolution of the level set function is usually described in the following form, 

Φ𝑡 − 𝐹|∇Φ| = 0 (5.1)  

where |∇Φ| represents the normalized gradient of the level set function. 

Region-based level set methods [119-121], which rely on the global homogeneity of spatial 

localized features and properties, are not well-suited to our problem because the abdominal region 

contains not only muscles, but also visceral adipose tissue, bones, and organs with and/or without 

contrast. Edge-based approaches [50-52], which rely on the local differences in the image, seems a 

reasonable approach to start with, to extract a continuous smooth outer surface of the anterior abdominal 

wall, although challenges (Figure V.1) remain to be dealt with.  

Here we construct an evolution function that follows the Geodesic Active Contours (GAC) model 

[51], 

Φ𝑡 = 𝜔𝑏𝑎𝑙𝑙𝑜𝑜𝑛𝐹𝑏𝑎𝑙𝑙𝑜𝑜𝑛 +𝜔𝑐𝑢𝑟𝑣𝐹𝑐𝑢𝑟𝑣 +𝜔𝑒𝑑𝑔𝑒𝐹𝑒𝑑𝑔𝑒 +𝜔𝑟𝑒𝑔𝐹𝑟𝑒𝑔 (5.2) 
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𝐹𝑏𝑎𝑙𝑙𝑜𝑜𝑛 = 𝑔|∇Φ| (5.3) 

𝐹𝑐𝑢𝑟𝑣 = 𝑔𝜅|∇Φ| (5.4) 

𝐹𝑒𝑑𝑔𝑒 = ∇Φ ∙ ∇𝑔 (5.5) 

𝐹𝑟𝑒𝑔 = ∇2Φ− 𝜅 (5.6) 

where 𝑔 is usually called edge-stopping function, proposed by Malladi et al. [122] to stop the level set 

evolution at the boundaries of objects, which can be typically measured for an image 𝐼 in the form as 

follows, 

𝑔 =
1

1 + |∇𝐼|2
 (5.7) 

𝜅 represents the local curvature of the signed distance function 

𝜅 = div
∇Φ

|∇Φ|
 (5.8) 

In the evolution function shown in (2), 𝐹𝑏𝑎𝑙𝑙𝑜𝑜𝑛 acts as an inward/outward normal pressure force, 

also known as balloon force, to speed up the evolution process. 𝐹𝑐𝑢𝑟𝑣 is a curvature-constraint term to 

smooth the level set evolution adjusted by edge stopping function. 𝐹𝑒𝑑𝑔𝑒 is a term to reinforce the edge-

preserving capability, especially under the balloon force. We append a regularization term 𝐹𝑟𝑒𝑔 proposed 

by Li et al. [175] to enable the level set evolution free from additional re-initialization. The weights 

associated with the four terms can be customized for specific purposes. 

Local optimum and boundary leaking problem are the two biggest issues for edge-based level set 

methods. Particularly, the evolution of edge-based level set is likely to be stuck at noisy regions away 

from the target boundary, or on the contrary, pass through the target boundary where the contrast is not 

high enough. Both cases can be present in our VH data. This leaves the edge stopping function and the 

initial start of level set critical to the segmentation results. 

The edge stopping function estimates the edginess across the image to guide the proceeding and 

stopping of the evolving surface. Regarding the image of edge stopping function as an edge map, we 

expect it to be clean and high-contrast, while the edge map derived from the original image can barely 

satisfy our expectation. Nonlinearly smoothing the image by an anisotropic filter, which averages each 

voxel with local voxels of similar intensity, can be an option to reduce the noise in an image while 
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preserving the edges between regions. Yao et al. [32] proposed to classify the body into adipose tissue 

and non-adipose tissue by fuzzy c-means (FCM) clustering on smoothed images, and derived the edge 

map by the probabilistic membership of the two clusters instead of intensity. However, these intensity-

based efforts may be less effective when the intra-tissue variability is nearly on par with the inter-tissue 

variability, which is not uncommon in VH CT scans. 

We focus on textures. Adipose tissue is embedded with scattered speckles and is also 

distinguishable from muscle groups constructed with muscle fibers, and solid bony structures. In addition, 

streaking artifacts are more severe in adipose tissue than in muscles and bones. Therefore, we consider 

texture analysis a potential tool for tissue classification around the abdominal region. The frequency- and 

orientation-selective properties of a Gabor filter provides us a multi-channel approach to extract texture 

features at multiple scales. A Gabor filter can be considered as the product of a Gaussian envelope and a 

sinusoid function [176]. For our specific use, we use a 3-D Gabor filter in the form of 

ℎ(𝑥′, 𝑦′, 𝑧′) =
1

(2𝜋)
3
2𝜎3

𝑒
−

1
2𝜎2

(𝑥′
2
+𝑦′

2
+𝑧′

2
)
∙ cos (

2𝜋𝑥′

𝜆
+ 𝜙) (5.9) 

where, 𝜆  and 𝜙  are the wavelength and phase offset of the sinusoid function, respectively, ⁡𝜎  is the 

standard deviation of the spatially isotropic Gaussian envelop, specified as a dependent variable of 𝜆 (i.e., 

0.56⁡𝜆), and (𝑥′, 𝑦′, 𝑧′)𝑇 are the rotated spatial coordinates of Gaussian envelope, 

[
𝑥′

𝑦′

𝑧′
] = [

cos𝜃 − sin𝜃 0
sin𝜃 cos 𝜃 0
0 0 1

] × [
𝑥
𝑦
𝑧
] (5.10) 

where 𝜃 denotes the orientation of the Gabor filter in 𝑥𝑦 plane. Note that we only take the in-plane texture 

features into consideration by the setting of sinusoid function in (9) and coordinates rotation in (10). 
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Multiple filtered images can be obtained by convolving the original image with a bank of Gabor 

filters. In practice, we set the phase offset as zero, choose [0°, 45°, 90°, 135°] as four possible values for 

orientations, and follows a frequency selection scheme proposed by Zhang et al. [177], which emphasizes 

on intermediate frequency bands. Suppose the size of the cross-sectional image is 𝑁 × 𝑁, the selected 

frequencies 𝐹 can be estimated as follows, 

1

𝜆
≡ 𝐹 = 0.25 ± 2𝑖−0.5

𝑁⁄ , 𝑖 = 1, 2, …⁡ , log2(
𝑁
8⁄ )⁡ (5.11) 

Filtered images are converted into feature images by a nonlinear transformation, 𝜓(𝑡) =

tanh(𝛼𝑡) with 𝛼 set as 1, where the sinusoidal modulations in the filtered images are transformed into 

square modulations, or in other words, the features are enhanced [60]. The stack of all these feature 

images forms a feature vector for each voxel of the original image, which enables us to use FCM 

clustering for classification. Here we empirically set the number of clusters as eight, and obtain the 

 

Figure V.3. Proposed texture analysis. (A) Original CT image; (B) Hard segmentation of different 

structures; (C) – (J) illustrate the membership probability for each of the eight clusters, which 

are estimated from fuzzy c-means clustering on texture features extracted by Gabor filters. 

Within each cluster, the probability value indicates partial membership to the cluster. Note that 

fat tissue and muscles can be identified from (H) and (J), respectively. (B) is constructed by the 

modes of among the eight clusters for all voxels, where we note that the muscles and fat tissue are 

effectively partitioned for assistance of the following edge-based level set segmentation. 
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probabilistic membership for these eight clusters as soft segmentation (Figure V.3). We define 𝑀𝑖 as the 

probabilistic membership for the 𝑖𝑡ℎ cluster, and 𝑁𝑐 as the number of clusters, and characterize the edge 

 

Figure V.4. Edge map and level set results of four methods. The four columns illustrate the 

results on the original image, the image smoothed by an anisotropic filter, the membership 

estimated by an intensity-based fuzzy c-means clustering, and the membership estimated by a 

texture-based fuzzy c-means clustering, respectively. The first row shows the intensity images 

(first two columns) and membership images (last two columns). The second row shows the edge 

maps directly derived from the images of the first row. The third row illustrates the contrast-

adjusted edge maps for ease of level set evolution. Note that the level set front tends to proceed at 

brighter regions, and to stop at darker regions on the edge map. The fourth row presents the level 

set results (represented with red contours) on anterior abdominal wall segmentation for four 

methods with the same parameters. 
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map in terms of the texture, 

𝑔𝑡 =
1

1 + ∑ |∇M𝑖|
2𝑁𝐶

𝑖=1

 (5.12) 

where |∇M𝑖|
2 indicates the local difference based on each texture membership as opposed to intensity 

defined in (7) so that edges between distinct textures can be enhanced. Note that we sum over all 

probabilistic membership to ensure that all texture-wise differences are captured.  

The contrast of the edge map is enhanced by an approximated Heaviside function for ease of 

edge-based level set, where the edge map is expected to be almost zero at abdominal walls, while 

approaching one for adipose tissue. Comparing to other three methods using (1) original image; (2) 

smoothed image; (3) intensity clustering, the edge map derived from the texture analysis provides better 

contrast, i.e., strengthened wall boundaries with reasonably cleared adipose, which enables the level set to 

evolve right at the abdominal wall, rather than get stuck by non-muscle structures or break into the 

abdominal cavity (Figure V.4).  

We note that within the hard segmentation (Figure V.3B), i.e., the voxel-wise mode cluster 

member of the soft segmentation, muscles are quite well-distinguishable from skin in terms of texture 

clusters as opposed to the scenario of intensity thresholding, which leaves a good opportunity to derive an 

initial start of level set evolving surface close enough to the abdominal wall. In particular, we start with 

the largest component of the hard-segmented muscles (Figure V.5, 1st col), and filled the holes within the 

surface 30 voxels outside the zero level set surface of the muscle (Figure V.5, 2nd col). Then from the 

surface of the hole-filled volume, we go inside by 20 voxels, and eliminate the regions outside the 

segmented skin surface. The surface of the rest volume (Figure V.5, 3rd col) is considered as our initial 

start for the following level set evolution (Figure V.5, 4th – 6th col) for abdominal wall segmentation. 

Note that all the distances discussed here are in the unit of voxel in 3D.  
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2.2. Implementation 

Detailed parameters during the implementation for the segmentation of abdominal wall not 

covered above are given as follows. 

We enhance the contrast of the edge map from the proposed texture analysis by an approximated 

Heaviside function, 

𝑦 =
1

2
[1 +

2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑥 − 𝑥0
𝜀

)] (5.13) 

where 𝑥0  is the threshold, and 𝜀  is a small number which determines the steepness of the Heaviside 

function. For our method after texture clustering, we assign 𝑥0 and 𝜀 to be 0.995 and 0.001, respectively. 

Weighting parameters are specified as 5, 50, 5, and 10 for the four terms in (2), i.e., balloon force, 

curvature-constraint, edge-preserving, and regularization, respectively. We run the level set evolution on 

the whole volume for 500 iterations. 

 

Figure V.5. Process of level set segmentation on anterior abdominal wall for three subjects. The 

red contours indicate the current segmentation for each process. The first two columns show the 

preparation for the initial start. The last four columns illustrate the iterations of level set 

evolution. Note the third column demonstrates the initial start of the level set segmentation. 
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The other three methods we test for comparison share the same weighting parameters, iteration 

number, and the same initial start as our texture clustering method, which leaves the difference only on 

the edge maps. Specifically, 

(1) Original image: We measure the edge map from the raw CT image, and enhance its 

contrast by applying (13) with 𝑥0 = 0.005 and 𝜀 = 0.001. 

(2) Smoothed image: We smooth the raw CT image with an anisotropic filter via SUSAN 

(Smallest Univalue Segment Assimilating Nucleus) [178] in FSL (FMRIB Software 

Library, University of Oxford, Oxford, UK). We specify the anisotropic filter a spatial 

size of 10 mm, and a brightness threshold of 20, under which is considered as noise to 

eliminate. The edge map measured from the smoothed image is enhanced by applying 

(13) with 𝑥0 = 0.005 and 𝜀 = 0.001. 

(3) Intensity clustering: We cluster the intensity of the smoothed image into adipose and non-

adipose regions by FCM following the two-step procedure described in [32]. The edge 

map derived from the probabilistic membership of the two clusters is enhanced by 

applying (13) with 𝑥0 = 0.995 and 𝜀 = 0.001. 

2.3. Other Structures 

Bony skeleton and skin surface are also essential structures for VH characterization; however, our 

approaches for the segmentation of these structures are not directly relevant to the texture-features in the 

level set segmentation. Therefore, only brief descriptions of our approaches are provided as follows. 

We consider parts of the bony skeleton as natural structures to derive landmarks for VH 

localization [34]. Precise surface extraction of bones is beyond our major concern. Instead, we separate 

the whole volume into five partitions – (1) background; (2) pelvis; (3) spinal vertebrae; (4) femurs; (5) 

ribs, and any other bones surrounding the spine (e.g., sternum, scapula, etc.). We use an atlas-based 

segmentation method to partition the bony skeleton. Briefly, we first align patients’ poses in CT scans 

with a pre-constructed atlas in terms of the high intensity (> 200 HUs) anatomical structures by affine 
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registration using FLIRT (FMRIB's Linear Image Registration Tool [179], University of Oxford, Oxford, 

UK). Then we combine the empirical intensity distribution of each structure (as the generic likelihood) 

with the position probability obtained from the smoothed atlas (as the prior) into a Bayesian framework 

so that the bony structures not perfectly aligned, but close to the atlas may still be captured by its inherent 

intensity, while non-bone structures hit by the registration can be cleared out. 

Skin surface can be considered as a starting point for further imaging segmentation (i.e., the 

abdominal wall) inside human body, while skin segmentation, or body extraction in CT scans, can be 

reduced to the problem of removing the table and sheet after intensity thresholding since the majority of 

the human body (except for the air) in CT scans is of intensity larger than -250 HUs. Intensity clustering 

is a simple and efficient approach for body extraction [32]; however, there are cases that patients touch, or 

even lay right on the table without any sheet in between so that the table can be connected with the human 

body after intensity clustering, where we believe level set with curvature constraint is a more practical 

option. Briefly, we construct the evolution function with an intensity constraint (-250 HUs ~ 50 HUs) to 

guarantee the inclusion of the adipose tissue (usually -100 ~ -50 HUs) while excluding the background 

(around -1000 HUs), and a curvature constraint to smooth out the surface temporarily stuck at the table 

edge during the level set evolution. We run the level set evolution on every slice of the volume for 400 

iterations, initializing with a box four pixels into the image boundary. After each iteration, we update the 

Φ values within a narrowband of 2 pixels around the zero level set, and recalculate the signed distance 

function based on the largest component of the regions with non-positive Φ values as an approximation of 

a re-initialization process. 

Based on the segmented bony skeleton and skin surface, we calculate putative patient-specific 

coordinates on the purpose of a robust localization metric across subjects. We consider the left and right 

iliac crests (the most anterior point on each side of iliac spines) extracted from pelvis, in addition to all the 

rib bones as three groups of landmarks, to which we calculate the shortest spatial distances to construct 

three coordinates. 
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3. Methods and Results 

Retrospective, clinically acquired CT data on 20 patients with suspected VHs were acquired in 

anonymous form under institutional review board supervision. The including criteria were to select 

patients having abdominal scans that covers from xiphoid process superiorly to pubic symphysis 

inferiorly.  Large variations were seen among the volumes in voxels (512x512x90 ~ 512x512x200) and 

resolution (0.6x0.6x5 mm ~ 1.0x1.0x3 mm). Average field of view in millimeters was approximately 

400x400x500 mm. 

The ground truth of abdominal wall was created by a research associate, who was trained on a 

manual labeling protocol [34] for hernia-related anatomical structures using the Medical Image 

Processing And Visualization (MIPAV) [153]  software (National Institutes of Health, Bethesda, MD) 

and a high resolution tablet input (Wacom, Tokyo, Japan) on a 64-bit Linux workstation. The entire 

herniated region was labeled volumetrically, while the normal abdominal wall was labeled on axial and 

sagittal slices approximately spaced every 5 cm for efficiency. We applied thin-plate spline interpolation 

to the label meshes of abdominal wall combined with the hernia label, to provide the surface of anterior 

abdominal wall, as well as the outer surface of herniated region and normal wall as two subsets for 

validation.  We note that the choice of manual validation protocol was designed to yield an acceptable 

accuracy of anatomical labeling within one hour of manual time per patient. We have found that thin plate 

spline interpolation in the normal wall provide resolution on par (+/- 2mm) with manual tracing with a 

5mm gap. The curvature within the herniated regions exhibits much higher spatial resolution, so every 

slice was labeled. 
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Bony structures, skins, and anterior abdominal walls were extracted from the 20 selected scans 

with our proposed automated segmentation methods. Here the bony structures are regarded as visual 

references, while skin segmentations serve as the loose outer boundaries of abdominal walls. For 

abdominal wall segmentation, we integrated the edge map and the initial start derived from the texture 

 

Figure V.6. Quantitative results of anterior abdominal wall segmentation. Four level set methods 

based on different edge maps (1. Green star: baseline original image; 2. Magenta cross: 

smoothing image; 3. Red circle: intensity clustering; 4. Blue diamond: texture clustering) are 

evaluated in terms of surfaces distances. The first column denotes the error metrics for the whole 

wall, while the second and the third column focuses on the hernia region and the normal wall 

region, respectively. The top row illustrates the cumulative fraction of region based on increasing 

3D surface distance error between interpolated wall from manually labeled ground truth and the 

automatic segmentation. The bottom row shows the error bar of mean surface distances. The 

subject indices are sorted in terms of the mean of the overall mean surface distances of the 

texture clustering method. Note that 9 out of 20 subjects have no hernia labeled in the truth, 

which is indicated as gold stars in the middle-bottom plot. Four subjects (A, B, C, D) are selected 

to illustrate the qualitative results in Figure V.7. 
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analysis into the baseline GAC level set model. For comparison, we tested three other methods using only 

intensity values using the same GAC model, with the same parameters in the level set evolution function, 

and for simplicity, starting from the same initial surface provided by our texture analysis. The 

segmentation results were validated against the ground truth, where surface distances were calculated 

from every point of the interpolated abdominal walls to the automatically segmented walls. 

Using texture, median surface errors were ±1mm for the abdominal wall and <5mm for the 

hernia; errors were significantly greater (2-5 mm) for methods that did not use the texture (Figure V.6, 1st 

row). The mean surface errors across 20 subjects were 1.87±0.72 mm over the anterior abdominal wall 

using our texture-integrated method, which was statistically significantly lower (Δ = −0.78, 𝑝 < 0.05) 

than the best case of the three intensity-based methods in terms of paired Wilcoxon signed rank test 

(Figure V.6, 2nd row). Figure V.6 and Table V.1 provide more detailed error metrics on four tested 

methods.  

Four subjects with variable mean surface errors were selected to illustrate the performance of the 

proposed method. Segmentation results were demonstrated in a volumetric view, as well as in slices, both 

with ground truth overlaid. Generally, the entire abdominal regions of the four subjects were well 

segmented with reasonable errors around the herniated regions (Figure V.7). In addition, we rendered the 

Table V.1. Error metrics based on mean surface distance (MSD). 

Method Region MSD (mm) MSD < 1mm (%) MSD < 2mm (%) MSD < 5mm (%) 

Original 

image 

Overall 5.1±1.61 7.65±9.55 14.09±15.09 55.12±22.12 

Hernia 6.21±3.82 13.57±8.71 23.33±14.55 54.2±29.82 

Wall 5.09±1.58 7.1±9.79 13.29±15.48 54.56±22.96 

Smoothed 

image 

Overall 3.05±1.13 25.31±15.19 43.25±19.47 84.43±10.8 

Hernia 5.75±3.79 16.47±12.37 27.42±17.71 60±25.2 

Wall 2.96±1.07 25.18±15.5 43.39±19.99 85.43±10.03 

Intensity 

clustering 

Overall 2.65±1.71 38.66±16.29 60.05±19.13 85.07±18.22 

Hernia 5.62±3.92 18.81±10.36 33.2±16.92 61.78±26.01 

Wall 2.53±1.69 39.27±16.62 61.14±19.39 86.21±18.07 

Texture 

clustering 

Overall 1.87±0.72 50.89±14.5 72.7±13.71 91.61±4.96 

Hernia 6.14±4.52 15.52±10.5 28.36±16.21 56.65±25.79 

Wall 1.74±0.7 52.04±14.05 74.41±13.29 92.85±4.34 
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interpolated abdominal wall with surface errors for the whole cohort. Over half of subjects had acceptable 

errors for the entire wall (Figure V.8).  

4. Discussion 

An edge-based level set method integrated with texture analysis is proposed to extract the anterior 

abdominal wall, which provides the segmentation with mean surface errors less than 2mm on 20 

retrospective subjects validated by manually labeled ground truth. We do not claim that the proposed 

method has completely addressed the most challenging cases, but these are less impacted compared to 

other published methods. Specifically, based on the qualitative results shown in Figures V.5, V.7, V.8, 

we believe that challenges represented by Figure V.1G-1I are well handled by the proposed method, 

 

Figure V.7. Qualitative results on selected subjects from Figure V.6. The letters (A, B, C, D) 

match with the subjects circled in Figure V.6. The left panel shows a volumetric view of 

segmentation. The right part presents the results on several slices. Note blue denotes the 

automatic segmentation, green denotes the manually labeled anterior abdominal wall on sparsely 

sampled slices, and red denotes the manually labeled herniated region. In addition, in the slice 

representation, the segmentation errors for the normal abdominal wall are highlighted in yellow, 

while those for the herniated region are highlighted in orange. 
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while the challenges of 1C-1F and 1J are under better control than other methods. The methods using 

original image or smoothed image tend to suffer from the problem of 1G-1I, while the method of 

intensity clustering is more likely to present worse performances in the cases of 1C-1E. In addition, 

quantitative results in Figure V.6 and Table V.1 show the improvement of the proposed method on a 

global scale. Therefore, we come to a conclusion that the inherent texture patterns are helpful to the tissue 

classification, and texture analysis can improve the level set segmentation around the abdominal region.  

The capability of identifying muscles from fat is critical to the proposed segmentation of the 

abdominal wall. Through the texture analysis, the majority of muscles that constructs the abdominal wall 

can be distinguishable from fat tissue. The fascia regions, as well as some herniated regions appear as 

 

Figure V.8. Error maps for 20 subjects.  The shape of the error map is provided by a thin –plate 

spline interpolation of the anterior abdominal wall on manual labeled meshes, where the lateral 

boundaries of the interpolated surface is also given by thin-plate spline interpolation, but on the 

terminations of the label meshes. The rendering color represents the 3D surface distance from the 

automated segmentation to the interpolated abdominal wall. Note that errors are most prominent 

in fascia and hernia regions. 
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similar texture as the fat tissue (Figure V.3H, 3J). This creates gaps between the muscles of abdominal 

wall, which challenges the level set segmentation for not intruding into the abdomen. Curvature 

constraints in level set cost function serve to prevent the intrusion by smoothing the surface evolution, but 

may fail to capture the underlying structure (Figure V.8). The identification of those regions requires 

further study, which can promisingly improve our current segmentation of the abdominal wall. We also 

note that some internal organs, e.g., kidney and small bowel, have similar texture as fat. This might be an 

issue for the visceral fat; however, it is not critical to the segmentation of surface of the abdominal wall. 

Therefore, we are more focused on the quality of texture classification between the skin surface and the 

outer surface of abdominal wall, i.e., the region that our level set method evolves through, than the 

internal abdomen.  

The segmentations of bony skeleton and skin present visually reasonable results. Robust 

landmark derivation from these structures is under development for VH characterization, and quantitative 

validation will be conducted on the derived landmarks. In continuing efforts, we are interested in 

characterizing the abdominal wall composition, including the tissues in the narrowband (small area) 

around the outer fascia surface (including muscle, bone, fascia, organ, air, etc.). Using surface curvature 

models and tissue classifications, we will seek to identify abnormalities and disruptions (hernias) in the 

abdominal wall. Ultimately, improved quantification of hernia and abdominal wall structure will lead to a 

better idea of whom to treat (or not treat) and with what type of repair. This would lead to standardization 

of care and ultimately, less waste in this commonly performed procedure that is currently rife with 

unnecessary variation in care. 
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CHAPTER VI  

AUGMENTED ACTIVE SHAPE MODEL (AASM) COMBINING MULTI-ATLAS LABEL 

FUSION AND LEVEL SET 

1. Introduction 

Segmentation of human anatomical structures is challenging in medical images due to their 

physiological and pathological variations in shape and appearance, the complicated surrounding context, 

and the image artifacts. Active shape models (ASM [66]), also known as statistical shape models [110], 

provide a reasonable approach to characterize the variations in human anatomy, and thus have been 

widely used in the medical image community [22, 180, 181]. Given training datasets and their 

representation of the shape (usually landmarks), statistical models can be established for the structure of 

interest to characterize (1) the modes of its shape variations and (2) the local appearances around its shape 

boundary to drive the segmentation on other images.  

However, as a model-based approach, ASM may present catastrophic segmentation failures if 

configured inappropriately. Since the shape updates of ASM focus on only local context, ASM 

segmentation can be sensitive to the model initialization, and/or fall into local minimum when given a 

large search range for the updates, and thus undermines its performance. This problem can get worse in a 

common segmentation procedure of clinical acquired medical scans, e.g., computed tomography (CT) and 

magnetic resonance (MR) images given their highly variable contexts. We posit that integrating 

traditional ASM with global optimization can improve its robustness to those challenging problems.  

There have been efforts to combine ASM with level set (LS) techniques, where shapes are 

implicitly represented by signed distance function (SDF), and the statistical models build on SDF using 

principle component analysis (PCA) are used to regularize the LS evolution [113, 114, 182]. Region-
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based LS builds it speed function on global information, where the Chan-Vese (CV) algorithm [183] is 

most commonly used as to evolve the SDF by minimizing the variance both inside and outside the zero 

level set. Tsai et al. [113] augmented the CV algorithm with two additional terms in the speed function 

that penalized the deviance from pre-trained shape model to segment the left ventricle and prostate on 

MR. Despite its success in shape constraint, this approach was not built for accurate structural 

segmentation since no local appearance searching from traditional ASM was deployed to capture the 

boundaries of structures. In addition, it is difficult to design a LS speed function to handle more variable 

contexts, e.g., secondary structures located within and around the structure of interest.  

The multi-atlas label fusion (MALF) technique [124, 184] has become popular recently for its 

robustness. Given the capabilities of the state-of-the-art registration tools to roughly match two images 

regardless of the underlying contextual complexity, MALF leverages canonical atlases (training images 

associated with labeled masks) for target segmentation by image registration and statistical label fusion. 

MALF, by design, provides not only the hard (categorical) segmentation, but also soft (probabilistic) 

estimation. Xu et al. [39] integrated MALF with shape constraints to improve spleen segmentation on CT 

by probabilistic combination; however, it was sensitive to the alignment between the MALF estimate and 

the shape model. 

Here we propose an augmented active shape model (AASM) by integrating MALF and LS into 

the traditional ASM framework. Briefly using the AASM approach, the landmark updates are optimized 

globally via a region-based LS evolution applied on the probability map generated from MALF. This 

augmentation effectively extends the searching range of correspondent landmarks while reducing 

sensitivity to the image contexts, and thus improves the robustness of the segmentation. In the following 

sections, we present our proposed algorithm, and validate its efficacy on a toy example and two different 

clinical datasets. This work is an extension of a previous SPIE conference paper [185]. 
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2. Theory 

2.1. Problem Definition 

Consider a collection of 𝑅 training datasets (also called atlases in the context of MALF) including 

the raw images  𝑰 ∈ ⁡ℝ𝑁×𝑅 and their associated labels 𝑫 ∈ ⁡𝐿𝑁×𝑅 , where 𝑁 is the number of voxels in 

each image, and 𝑳 = {0, 1}  represents the label for the background and the structure of interest, 

respectively (only considering binary cases for simplicity). Based on each training label, the shape of the 

structure is characterized by a set of 𝑛  landmarks. The landmark coordinates (𝑥1, 𝑦1), … (𝑥𝑛, 𝑦𝑛)  are 

collected in a shape vector for each training dataset as 𝐱 = (𝑥1, 𝑦1, . . . , 𝑥𝑛, 𝑦𝑛)
𝑇. Correspondences of 

these landmarks across all training datasets are required. For a target image 𝑰̂, the goal is to provide a set 

of landmarks  𝐱̂ that represents the shape of the estimated segmentation 𝑫̂. 

2.2. Active Shape Model and Shape Regularization 

The mean 𝐱, covariance 𝐒 of the shape vectors of the training datasets are computed, where  

𝐱 =
1

𝑅
∑𝐱𝑖

𝑅

𝑖=1

, 𝐒 =
1

𝑅 − 1
∑(𝐱𝑖 − 𝐱)(𝐱𝑖 − 𝐱)𝑇
𝑅

𝑖=1

⁡. (6.1)  

Using PCA, the Eigenvectors 𝐩𝑖  with its associated Eignenvalues 𝜆𝑖  are collected. Typically, 

Eigenvectors correspondent to the 𝑡 largest Eigenvalues were retained to keep a proportion 𝑓𝑣 of the total 

variance such that ∑ 𝜆𝑖
𝑡
𝑖=1 ≥ 𝑓𝑣 ∑ 𝜆𝑖𝑡 , where 𝐏 = (𝐩1|𝐩2|… |𝐩𝑡). Within this Eigensystem, any set of 

landmarks can be approximated (often called shape projection) by 

𝐱 ≈ 𝐱 + 𝐏𝐛 (6.2)  

where 𝐛 is a 𝑡 dimensional vector given by 

𝐛 = 𝐏𝑇(𝐱 − 𝐱) (6.3)  

𝐛 can be considered as shape model parameters, and its values are usually constrained within the range of 

±𝑚𝑏√𝜆𝑖⁡ when fitting the model to a set of landmarks so that the fitted shape is regularized by the model.  
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2.3. Local Appearance Model and Active Shape Search 

The intensity profiles along the normal directions of each landmark are collected to build a local 

appearance model to suggest the locations of landmark updates when fitting the model to an image 

structure. For each landmark in the 𝑖𝑡ℎ  training image, a profile of 2𝑘 + 1 pixels is sampled with k 

samples on each side of the landmark. Following [186], the profile is collected as the first derivative of 

the intensity, and normalized by the sum of absolute values along the profile, indicated as 𝐠𝑖. Assuming 

multivariate Gaussian distribution of the profiles among all training data, a statistical model is built for 

each landmark, 

𝑓(𝐠) = (𝐠 − 𝐠)⁡𝐒g
−1⁡(𝐠 − 𝐠) (6.4)  

where 𝐠 and 𝐒g  represent the mean and covariance, respectively. This is also called the Mahalanobis 

distance that measures the fitness of a newly sampled profile 𝐠 to the model. Given a search range of 𝑚 

pixels (𝑚 > 𝑘) on each side of the landmark along the normal direction, the best match is considered with 

the minimum 𝑓(𝐠) value among 2(𝑚 − 𝑘) + 1 possible positions. 

2.4. Multi-Atlas Label Fusion and Probability Map Generation 

A pair-wise image registration is performed between each atlas 𝑰𝒋  and the target image 𝑰̂  to 

generate a transformation 𝑻𝑟𝑒𝑔
𝑗

 that maximizes a similarity metric 𝑆𝑀 between the two images. 

𝑻𝑟𝑒𝑔
𝑗

= argmin
𝑻

𝑆𝑀(𝑻(𝑰𝒋), 𝑰̂) (6.5)  

This transformation is propagated on both the atlas image and label, where 

𝑰𝒋
′ = 𝑻𝑟𝑒𝑔

𝑗
(𝑰𝒋), 𝑫𝒋

′ = 𝑻𝑟𝑒𝑔
𝑗

(𝑫𝒋). (6.6)  

A label fusion procedure 𝐿𝐹 is then used on the registered atlases to generate a label-wise probabilistic 

estimation 𝑾 ∈ ℝ𝑁×2 on the target,  

𝑾 = 𝐿𝐹(𝑰̂, 𝑰′, 𝑫′) (6.7)  
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where the registered labels 𝑫′ are combined on a voxel (or pixel) basis, and typically weighted by the 

similarities between the registered images 𝑰′ and the target image. The probability map of the structure of 

interest 𝑴 ∈ ℝ𝑁×1 can then be derived by normalizing 𝑾 

𝑴 =
𝑾1

𝑾0 +𝑾1
 (6.8)  

where 𝑾0 and 𝑾1 represent the background and foreground probability respectively. We note that we 

leave some abstract notions (e.g., 𝑻𝑟𝑒𝑔 , 𝑆𝑀 , and 𝐿𝐹 ) in the description of MALF above given its 

sophisticated process and the large number of variants in implementation.  

2.5. Level Set Evolution with Chan-Vese Algorithm 

In the LS context, the evolving surface is represented as the zero level set of a higher dimensional 

function 𝜙(𝑥, 𝑡), and propagates implicitly through its temporal evolution (speed function) 
𝜕𝜙

𝜕𝑡
 with a time 

step 𝑑𝑡 . 𝜙(𝑥, 𝑡) is defined as SDF, with negative/positive values inside/outside the evolving surface, 

respectively. The CV algorithm evolves the SDF by minimizing the variances of the underlying image 𝑢0 

both inside and outside the evolving surface. Given 𝐶1 = average(𝑢0)⁡in⁡{⁡𝜙 ≥ 0⁡} , and 𝐶2 =

average(𝑢0)⁡in⁡{⁡𝜙 < 0⁡}, the temporal evolution of CV can be written as 

𝜕𝜙

𝜕𝑡
= 𝛼𝛿(𝜙)[𝜇𝜅 − (𝑢0 − 𝐶1)

2 + (𝑢0 − 𝐶2)
2] (6.9)  

where 𝛿(∙)  is the Dirac delta function, 𝜅 = div
∇𝜙

|𝛻𝜙|
 represents the curvature of SDF, 𝛼  and 𝜇  are 

considered as the evolution coefficient and smoothness factor, respectively.  

2.6. Augmented Active Shape Search 

Given (1) trained active shape model, (2) trained local appearance model, and (3) probability map 

generated from MALF, an augmented active shape search procedure is performed in each iteration of the 

shape updates (Figure VI.1).  
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Let (𝑥, 𝑦) be the current landmark position, 𝜙0  the current zero level set. First, LS evolution 

using Eq. 9 is performed by assigning 𝑢0 = 𝑴 for 𝑛𝑠 iterations, and the zero level set moves to 𝜙0
′
. Then 

the zero-crossing point along the normal direction of (𝑥, 𝑦) on 𝜙0
′
 is collected as (𝑥′, 𝑦′), and considered 

as the new landmark position after LS evolution. Along (𝑥′, 𝑦′), the gradient intensity profiles are 

sampled, then the active shape search suggests an updated position at (𝑥′′, 𝑦′′) with its correspondent 

profile 𝐠′′ = argmin
𝐠

𝑓(𝐠). The newly searched positions for all landmarks are then projected to the 

model space by Eq. 3. After constraining each model parameter, where 𝑏̃𝑖 =

min(max(𝑏𝑖, −𝑚𝑏√𝜆𝑖⁡),𝑚𝑏√𝜆𝑖⁡⁡), the landmark positions are then regularized by Eq. 2. Note that 𝑛𝑠 is a 

small number since the LS evolution here is used to suggest a globally optimal landmark movement as 

opposed to provide the final segmentation. 

 

Figure VI.1. Flowchart of the proposed AASM approach. Shape models and local appearance 

models are constructed based on the atlas images and labels during the training stage. When 

testing on a target image to yield an estimated segmentation, an iterative process is performed. 

During each iteration, region-based LS is used to evolve on the probabilistic map generated by 

MALF to augment the traditional active shape search by global optimization, followed by the 

active shape regularization on the segmentation. Note that the borders of blocks are colored in 

distinctive colors. The small colored boxes within a block represent its prerequisite blocks in 

corresponding colors. For example, multi-atlas probability map requires (1) atlas images, (2) 

atlas labels, and (3) target image. 
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2.7. Optional Variants 

The baseline pipeline can be optionally modified as follows to tailor for specific applications.  

A multi-level scheme can be applied to the local appearance model, the LS evolution, and the 

active shape search. Typical downsample ratio is ⁡2𝑟−1⁡for the rth level; the landmark updates performed 

on the this level are with a multiplication of ⁡2𝑟−1 in the original image size, which effectively enlarges 

the search range.   

An optional mask 𝐵⁡can be used so that the evolution will only affected by the masked ROI, 

where the computation of the averages are modified as 𝐶1 = average(𝑢0)⁡in⁡{⁡𝜙 ≥ 0⁡and⁡B > 0}, and 

𝐶2 = average(𝑢0)⁡in⁡{⁡𝜙 < 0⁡and⁡B > 0}. 

The landmark positions can be normalized by a transformation 𝑇𝑛𝑜𝑟𝑚 before deriving landmark 

positions from the evolved LS.  

𝑇𝑛𝑜𝑟𝑚 = [

𝑟𝑥𝑠/𝑟𝑥𝑡 𝑟𝑦𝑠/𝑟𝑦𝑡 𝑐𝑥𝑠 − 𝑐𝑥𝑡
𝑟𝑥𝑠/𝑟𝑥𝑡 𝑟𝑦𝑠/𝑟𝑦𝑡 𝑐𝑦𝑠 − 𝑐𝑦𝑡
0 0 1

] (6.10)  

where (𝑐𝑥𝑠, 𝑐𝑦𝑠) and (𝑟𝑥𝑠, 𝑟𝑦𝑠⁡) represent the centroid and the range along each dimension of the region 

within the zero level set, (𝑐𝑥𝑡, 𝑐𝑦𝑡)  and (𝑟𝑥𝑡, 𝑟𝑦𝑡 ⁡)  represent the correspondent measurements for the 

current landmarks. With normalization, the landmark derivation from LS can be more robust to large 

shape updates.  

Non-zero level set 𝜙𝑣 can also be considered as the surface to collect the updated landmarks after 

LS evolution to adjust the desirable intermediate segmentation in terms of 𝑴.  

3. Methods and Results 

3.1. Toy Example 

We defined a simulated observation consisting of three triangles in small, medium, and large 

sizes on a 256 x 256 image. We used the medium-sized triangle as the target of interest sandwiched by the 

other two triangles to increase its segmentation difficulty (see Figure VI.2a). An equilateral triangle 
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centered in the image was created as a shape template, where the radius of its circumscribed circle was 20 

voxels. A 2-D affine transformation model 𝑇𝑎𝑓𝑓𝑖𝑛𝑒 with a rotational (𝜃), two translational (𝑡𝑥, 𝑡𝑦), and 

two scaling components (𝑠𝑥, 𝑠𝑦) was constructed as 

𝑇𝑎𝑓𝑓𝑖𝑛𝑒 = [
𝑠𝑥 cos 𝜃 −𝑠𝑦 sin 𝜃 𝑡𝑥
𝑠𝑥 sin𝜃 𝑠𝑦 cos 𝜃 𝑡𝑦

0 0 1
]. (6.11)  

All components were drawn from Gaussian distributions to generate randomized observations. 

Specifically, 𝜃⁡~⁡𝒩(0, 5)  degrees, 𝑡𝑥⁡~⁡𝒩(0, 2)  voxels, 𝑡𝑦⁡~⁡𝒩(0, 2)  voxels, 𝑠𝑥⁡~⁡𝒩(𝑠𝑏 , 0.3) , and 

𝑠𝑦⁡~⁡𝒩(𝑠𝑏 , 0.3), where 𝑠𝑏  was assigned as 1, 2, and 3 for the small, medium, and large triangles, 

respectively, as the base scale. The voxel-wise intensities over the small and large triangles were drawn 

from 𝒩(40, 10), while those over the background and the medium triangle were from 𝒩(20, 10). The 

datasets of our toy example include 100 randomly generated observations.  

A leave-one-out cross-validation (LOOCV) scheme was used to validate the segmentation results 

of ASM and AASM. For each target observation, 99 other observations were used as training datasets. 

For each training data, 33 landmarks were evenly sampled on each side of the triangle (99 in total around 

the triangle). The active shape model was trained with 98% of the total variances, while the local 

appearance model was trained at 2 levels with an intensity gradient profile of 3 pixels collected along 

 

Figure VI.2. Results of a toy example. (a) Qualitative comparison between ASM and AASM 

segmentation on an individual observation. (b) Quantitative comparison between ASM and 

AASM segmentation in DSC across 100 cross-validated observations. 
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each side the normal directions of each landmark (7 pixels in total) at each level. During testing, both 

ASM and AASM were initialized by the mean model shape at the center of the image. In each iteration of 

the landmark update, the local search range was 6 pixels along each side of the normal direction. The 

shape updates were regularized within ± 3 standard derivations of the Eigenvalues over 100 iterations at 2 

levels. For enabling AASM, a probability map was simulated by smoothing the ground truth by applying 

a 21 x 21 Gaussian kernel with a standard deviation of 5 voxels. 5 iterations of LS evolution were 

performed based on the simulated probability map with the time step, evolution coefficient, and 

smoothness factor setting as 0.01, 100000, and 0.00001, respectively, during each iteration of landmark 

update. The landmark positions were normalized based on the region within zero level set before 

determining the landmark movement based on the LS evolution. 

Given the global optimization from the probability map, AASM was able to capture the correct 

boundary of the target shape, i.e., the medium triangle. Outlier segmentations in ASM were corrected in 

AASM based the DSC performances across 100 observations (Figure VI.2b).  

3.2. Abdominal Wall 

3.2.1. Data 

Under institutional review board (IRB) supervision, abdominal CT data on 250 cancer patients 

were acquired clinically in anonymous form. These patients represent part of an overall effort to evaluate 

abdominal wall hernia disease in the cancer resection population. 40 patients were randomly selected, 

where we used 20 as training datasets, and the other 20 for testing purposes. The field of views (FOV) of 

the selected 40 scans range from 335 x 335 x 390 mm3 to 500 x 500 x 708 mm3, with various resolutions 

(0.98 x 0.98 x 5 mm3 ~ 0.65 x 0.65 x 2.5 mm3). Various numbers (78 ~ 236) of axial slices with same in-

plane dimension (512 x 512) were found.  

All 40 scans were labeled using the Medical Image Processing And Visualization (MIPAV [153]) 

software by an experienced undergraduate based on our previously published labeling protocol [34]. 

Following [35], essential biomarkers, i.e., xiphoid process (XP), pubic symphysis (PS), and umbilicus 
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(UB), were identified, and the abdominal walls were delineated on axial slices spaced every 5 cm with 

some amendments (contour closure required here). 177 and 184 axial slices were obtained with whole 

abdominal wall labeled for the training and testing datasets, respectively. Here we characterize the whole 

abdominal wall structure as enclosed by the outer and inner surface, bounded by XP and PS [35] This 

definition covers thoracic, abdominal, and pelvic regions, and includes not only the musculature, but also 

the kidneys, aorta, inferior vena cava, lungs, and some related bony structures to make the inner and outer 

boundaries anatomically reasonable. 

3.2.2. Pre-processing 

Given the large variations of appearance in abdominal wall and its surrounding anatomical 

structures along the cranial-caudal direction, the proposed slice-wise segmentation was trained and tested 

on five exclusive classes given the position of the axial slices with respect to XP, PS, and UB. These three 

biomarkers were acquired from manual labeling for the training sets, while estimated using random forest 

for the testing sets. We used 10 random scans from the training data to characterize the centroid 

coordinates of the biomarkers with long-range feature boxes following [187], and yielded the estimated 

biomarkers positions on the testing data with a mean distance error of 14.43 mm. Four bounding positions 

were empirically defined among the vertical position of the three biomarkers to evenly distribute the 

available training data (25, 35, 50, 31, 36 slices for each class, ordered from bottom to top). Given a target 

testing volume, each axial slice between the estimated positions of XP and PS was extracted, and assigned 

a class based on the estimated bounding positions. In this experiment, we only tested on the 184 slices 

with manual labels.  

All slices (training and testing) were centered in the image after body extraction and background 

removal to reduce variations. A body mask can be obtained by separating the background with k-means 

clustering, and then filling holes in the largest remaining connected component. A margin of 50 pixels 

was padded to each side of the slices in case that the body was in contact with the original slice boundary, 

which made the slice size 612 x 612.  
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3.2.3. Training 

On each training slice, landmarks were collected along the outer and inner wall contours using 

marching squares. The horizontal and vertical middle lines of the slice were used to divide each closed 

contour into four consistent segments across all slices assuming all patients were facing toward the same 

direction in the scan. 53 correspondent landmarks were then acquired on each of the segments via linear 

interpolation (212 for each of outer and inner wall). Each set of the landmarks was first centered to the 

origin, and then sets of landmarks from the same class were used to construct one active shape model 

covering 98% of the total variances. The local appearance model was trained at 3 levels; at each level, an 

intensity gradient profile of 5 pixels was collected along each side the normal directions of each landmark 

(11 pixels in total). 

3.2.4. Testing  

For each testing slice, all training slices from the same class were considered as atlases, and non-

rigidly registered to it using NiftyReg [188]. The registered atlases were combined by joint label fusion 

 

Figure VI.3. Qualitative comparison of ASM, MALF, and AASM segmentation of abdominal 

wall. (a) - (e) demonstrate slices in five exclusive classes on one subject. The green arrows indicate 

segmentation outliers including speckles, holes, over-segmentation, and label leaking problems. 
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(JLF) [134] to yield an probabilistic estimation of the abdominal wall. Default parameters were used for 

both. Within each iteration of landmark update, a region-based LS evolution with 5 iterations using CV 

algorithm was used to drive the landmark movement based on the global probabilistic estimation. The 

time step, evolution coefficient, and smoothness factor and was set to 0.01, 100000, and 0.1, respectively. 

The local search range for the landmark update was 8 pixels along each side of the normal direction. The 

shape updates were regularized within ± 3 standard derivations of the Eigenvalues. We allowed 100 

iterations for 3 levels of shape updates.  

3.2.5. Customized Configuration 

In this study, a two-phase scheme was used to improve the robustness of whole abdominal wall 

segmentation. The proposed approach was first applied to only the outer wall. Initialized by the position 

of the outer wall segmentation, our approach was then applied to the combination of the outer and inner 

wall, while the outer wall landmark positions were fixed during the second phase shape updates. Active 

shape model and local appearance model were thus trained on (1) outer wall, and (2) outer and inner wall. 

The level set evolution for the second phase only considered the region within the outer wall 

segmentation obtained in the first phase.  

3.2.6. Fat Measurement 

Following [32], the fat tissue was obtained by using a two-stage fuzzy-c means. For each slice, 

the subcutaneous fat was considered as outside the outer surface of the abdominal wall, while the visceral 

fat as inside the inner surface.  

Table VI.1. Abdominal wall segmentation metrics. 

Method DSC MSD (mm) HD (mm) 

ASM 0.74 ± 0.15 9.70 ± 6.56 48.84 ± 17.52 

MALF 0.89 ± 0.07 4.63 ± 2.40 46.03 ± 14.41 

AASM 0.86 ± 0.09 4.77 ± 2.69 33.8 ± 15.09 
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3.2.7. Results 

The segmentation results were validated against the manual labels on 184 testing slices using 

Dice similarity coefficient (DSC), mean surface distance (MSD), and Hausdorff distance (HD) with 

comparison to results using ASM and MALF individually. Qualitatively, AASM presented the most 

robust result, while MALF has speckles and holes in the segmentations, or leak into the abdominal cavity 

where structures with similar intensities to muscles were present. ASM was sensitive to initialization, and 

could be trapped into local minimum (Figure VI.3). Quantitatively, large decreases in HD were observed 

when using AASM without undermining the DSC performance (Table VI.1). More importantly, the 

nature of ASM kept the topology of the abdominal wall, and enabled the compartmental fat measurement; 

MALF failed to do so even though it presented the best DSC performance. The absolute differences in 

subcutaneous and visceral measure using our augmented ASM against the measurement using manual 

labels were largely reduced comparing to traditional ASM (Table VI.2). In terms of the Pearson’s 

correlation coefficient and R-Squared value between the estimated and manual measurement of 

subcutaneous fat, visceral fat, and the ratio of visceral to subcutaneous fat, AASM demonstrated 

consistent superiority over ASM (Table VI.2).  

3.3. Spinal Cord 

3.3.1. Data 

With IRB approval, two batches of MR volumes of cervical spinal cord (SC) were acquired as 

training and testing datasets. The training datasets consisted of 67 scans of healthy controls, each 

Table VI.2. Abdominal Fat measurement errors. 

Method Ds (cm3) Dv (cm3) ρs ρv ρr R2
s R2

v R2
r 

ASM 28.02 ± 

35.91 

36.52 ± 

31.60 

0.92 0.80 0.69 0.85 0.64 0.47 

AASM 16.72 ± 

37.59 

15.38 ± 

17.35 

0.94 0.96 0.87 0.88 0.93 0.76 
Note that D indicates the absolute difference between the area derived from the manual label and the 

estimated segmentation, ρ represents the Pearson’s correlation coefficient, and R2 is the R-square value of a 

linear regression. The subscripts s, v, and r represent subcutaneous fat, visceral fat, and the ratio of visceral fat 

to subcutaneous fat, respectively. 
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approximately covering a FOV of 224 x 224 x 90 mm3 with 30 axial slices at a nominal resolution of 0.44 

x 0.44 x 3 mm3. The testing datasets included 28 scans, each approximately covering a FOV of 150 x 150 

x 65 mm3 with 10 ~ 14 axial slices at a nominal resolution of 0.65 x 0.65 x 5 mm3, reconstructed to an in-

plane resolution of 0.29 x 0.29 mm2. Both datasets were acquired axially on a 3T Philips Achieva scanner 

(Philips Medical Systems, Best, The Netherlands), where T2*-weighted volumes were obtained using a 

high-resolution multi-echo gradient echo (mFFE) sequence to provide good contrast between the white 

matter (WM) and gray matter (GM) [189]. All scans generally covered the region from the 2nd to 5th 

cervical vertebrae, and the center of the image volume was aligned to the space between the 3rd and 4th 

cervical vertebrae. The in-plane dimensions for axial slices ranged from 512 x 512 to 576 x 576. 17 of the 

28 testing subjects were diagnosed with multiple sclerosis (MS). Local and diffuse inflammatory lesions 

were presented for MS patients throughout the cervical cord white matter with similar appearance to GM 

in mFFE images [190]. 

The ‘‘gold standard’’ manual labels were constructed on both datasets. For each slice, two labels, 

i.e., WM and GM., were considered: The labeling process was performed using MIPAV [153] by an 

experienced rater on a collection of 1538 slices with reasonable contrast (not all slices due to image 

artifacts) in the training datasets, while using FSLView [191] by another experienced rater on all 364 

slices in the testing datasets; both raters were familiar with MR images of the cervical SC.  

3.3.2. Pre-processing 

Here we integrated AASM into the slice-wise spinal cord segmentation framework in [192] with 

some essential modification. 

A common region of interest (ROI) with the size of 91x77 was created using the 1538 co-

registered training slices given the extent of the manual spinal cord labels. All testing slices were 

transferred into this space before the segmentation. 

A volume-wise initialization was first performed using 2-D convolution. Consider the averaged 

image of the testing volume along the cranial-caudal axis as 𝐴, the average image of all cropped training 
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image slices as 𝐵, a 5 x 5 matrix with all entry values as 1/25, the highest response point of 𝐴 ∗ 𝐵 ∗ 𝐶 was 

identified as the approximate centroid of spinal cord for the testing volume, and considered as the starting 

point for the following slice-wise registration.  

The slice-wise registration followed [192]. Briefly, an active appearance model was created using 

the cropped training images to capture the modes of variations of the spinal cord appearance within the 

ROI. A target slice was projected to the low-dimensional model space. It was then registered using a 

model-specific cost function given the differences in intensities and model parameters between the 

current estimate and the closest cropped training images. The registration searched at 5 levels (coarse to 

fine) over the three degrees of freedom (DoF), i.e., two translational (± 30 and ± 80 mm along x and y 

axes, respectively) and one rotational component (± 10°). At each level, the registration was optimized 

using line search on each DoF, followed by Nelder-Mead simplex method on all DoFs.  

After registration, 30 cropped training images closest to the target image in the model space were 

selected. These images were used as the target-specific training sets for building ASM, as well as the 

atlases for MALF in the following process. Note given our proposed surface-based approach, we 

 

Figure VI.4. Qualitative comparison of ASM, MALF, and AASM segmentation of spinal cord. (a) 

- (e) demonstrate slices at five different locations (from bottom to top) on one subject. (f) 

illustrates the 3-D surface renderings of the segmented GM (left) and WM (right) colored in the 

surface distance error towards the corresponding manual segmentations. 
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converted the segmentation problem of WM and GM as to extract the surface of the whole SC and GM.  

3.3.3. Training  

Using marching squares, landmarks along the contours of manually labeled SC and GM were 

extracted. The correspondent landmarks of SC were acquired using the same way as the abdominal wall 

(212 in total). For GM, six key points along were first identified (two as the tips of the posterior horn, and 

four as the valley points on the left, right, anterior, and posterior side), each of the six segments in-

between was then evenly resampled with 32 landmarks (192 in total). Active shape models covering 99% 

of the total variances, and local appearance models using intensity gradient profiles of 2 pixels (5 pixels in 

total) were built for both structures.  

3.3.4. Testing 

For each target slice, a MALF process similar to that of the abdominal wall segmentation above 

was performed. The probability map of GM was generated by normalizing the GM label probability, 

while that of SC was normalized the sum of WM and GM label probability. For both structures, 10 

iterations of LS evolution were performed within masked regions (larger than zero probability) to drive 

the landmark updates towards the +3 level set. The time step, evolution coefficient, and smoothness factor 

and was set to 0.01, 10000, and 0.0001, respectively. The active shape searching range was 3 pixels along 

each side of the normal direction. The shape updates were constrained within ± 0.5 and ± 1 standard 

derivations of the Eigenvalues for SC and GM, respectively over 100 iterations at a single level.  

After the SC and GM were segmented, WM was derived as the region by excluding GM from 

SC. The WM and GM labels were then transferred back to the original target space.  

3.3.5. Results 

The segmentation results were validated against the manual labels on the 28 testing volumes 

using DSC, MSD, and HD with comparison to results using ASM and MALF individually. MALF failed 

to preserve the GM shape. ASM could fall into local minimums and generated outliers that not matched 
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with the underlying structures. AASM captured the shape of WM and GM more robustly even with the 

presence of lesions (Figure VI.4a-4e), and yielded WM and GM surfaces smoothly along the whole 

volume with less surface distance error (Figure VI.4f). Quantitatively across 28 subjects, AASM 

significantly (p < 0.005 in cases using single-tail t-tests) increased the mean DSC value by 0.01, 

decreased the mean MSD by 0.11 mm, and decreased the mean HD by 1.43 mm comparing to the best 

case of ASM and MALF (Figure VI.5).  

3.4. Parameter Sensitivity 

3.4.1. Experimental Design 

Here we revisited the toy example presented above to examine the parameter sensitivity of our 

proposed method. Using the same 100 observations, the performances of ASM and AASM were 

evaluated given the change on the following cases one at a time. Note that all other parameters 

remained as the baseline configuration in section 3.1 if not changed.  

 

Figure VI.5. Quantitative comparison of ASM, MALF, and AASM segmentation of spinal cord in 

terms of DSC, MSD and HD. Note that additional zoomed-in boxplots are generated for MSD 

and HD to compare the results in a limited range. The yellow diamond marks indicate the subject 

demonstrated in Figure VI.4. 
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(1) The mean shape model was initialized with an offset (-10 ~ + 10 voxels along both x and y axes) 

to the centroid of the image.  

(2) The local search range was set to range from 2 to 40 voxels along each side of the normal 

direction of the landmarks. Note the local appearance model was trained the intensity gradient 

profile length from 1 to 20 voxels correspondently along each side of the normal direction of the 

landmarks.  

(3) The probability map was derived from the ground truth by applying a Gaussian smoothing kernel 

with the standard deviation ranging from 1 to 20 voxels. Note the size of the kernel on each 

dimension was parameterized as 4 times the standard deviation plus 1. Note that ASM 

configuration stayed as baseline.  

3.4.2. Results  

The average DSC and MSD performances for ASM and AASM across the 100 observations were 

collected for each specific parameter setting (Figure VI.6). ASM was very sensitive when the model was 

not initialized appropriately, while AASM demonstrated its robustness given various initializations. When 

the local search range was larger than 16 voxels, ASM had more chances to fall into local minimum, and 

 

Figure VI.6. Parameter sensitivity tests to compare ASM and AASM on the toy example. DSC 

and MSD are collected given three sets of varying parameters: (a) the initialized mean shape 

position with respect to the ground truth along x and y directions, (b) the length of the local 

search range, and (c) the standard deviation (std.) of the Gaussian kernel applied on the ground 

truth, based on which the probability map used by AASM is generated (no change on ASM). 
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thus presented catastrophic performances, while AASM remained stable given its property of global 

optimization. Maximum difference of 0.05 in DSC and 0.09 mm in MSD were observed across the tested 

range of the smoothness of the probability map for AASM, where consistent superiority were presented 

over ASM.  

4. Discussion and Conclusion 

In this study, we proposed an automatic framework (AASM) that coherently integrates three 

modern image segmentation techniques including ASM, MALF, and LS. Great synergies were found 

within this framework, where (1) ASM and MALF used the same training datasets to generate statistical 

models, and probabilistic atlases, respectively, (2) LS using the CV speed function can be directly applied 

to the probability map generated from MALF, and (3) the region-based LS evolution extends the range of 

correspondent landmark search of ASM. Using AASM, challenging segmentation problems can be 

benefitted from the shape regularization and topology preservation of ASM, contextual robustness of 

MALF, and global optimization of region-based LS. On 20 abdominal CT scans, we presented the first 

automatic segmentation approach to extract the outer and inner surfaces of the whole abdominal wall 

covering thoracic, abdominal, and pelvic regions, and thus enabled subcutaneous and visceral fat 

measurement with high correlation to the measurement derived from manual segmentation. On 28 3T MR 

scans of cervical SC, we demonstrated robust WM and GM segmentation with the presence of MS 

lesions. It is worth to note that with minor post-processing (3-D smoothing), our SC segmentation 

approach improved the start-of-the-art method [192] by 25% in DSC on the same datasets. We see huge 

opportunities to adapt the proposed method to other anatomical structures in medical images, whose 

complexity cannot be easily handled by ASM, MALF, or LS individually. 

AASM has many parameters to configure as it combines three image segmentation techniques. 

While universally ideal configuration can be hardly found, robustness can be achieved for individual 

applications with empirical parameter settings, especially the balance between the length of local search 

range and the number of LS evolution. For example, the LS evolution should dominate the shape updates 
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if the local contexts around the structure are ambiguous (see the spinal cord application), while the active 

shape search is preferred if the local appearances are uniquely identifiable (see the abdominal wall 

application). In any cases, the structural shapes are properly regularized within the proposed framework.  

On both clinical datasets, the larger variations were observed over the secondary structures than 

the structure of interest, i.e., the abdominal wall and spinal cord, along the cranial-caudal direction. In 

addition, slices at different locations presented various shapes, appearances, and contexts. Therefore, we 

performed slice-wise AASM segmentation by using target-specific statistical shape and appearance 

models to capture the desirable variations. The target-specific selection of the training datasets has a 

substantial impact on ASM and MALF, and thus the overall performance of AASM. Investigation in the 

classification system for clustering similar datasets can be beneficial for further improvement. On the 

other hand, the 2-D AASM implementation substantially simplifies the assignment of correspondent 

landmarks across the training datasets. The 3-D extension of AASM framework is straightforward, while 

the landmark correspondences need to be properly handled [111, 193]. Another perspective of future 

work can focus on multi-region. 
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PART 3 

ABDOMINAL ORGANS 

In this part, we concentrate on the automatic segmentation abdominal organs including (1) spleen, 

(2) right kidney, (3) left kidney, (4) gallbladder, (5) esophagus, (6) liver, (7) stomach, (8) aorta, (9) 

inferior vena cava, (10) portal and splenic vein, (11) pancreas, (12) right adrenal gland, and (13) left 

adrenal gland. We mainly use a non-parametric segmentation approach, i.e., multi-atlas label fusion, 

because of its relatively stronger robustness compared to other methods. In abdomen, we consider the 

image registrations errors as the main challenge for multi-atlas spleen segmentation caused by the huge 

variations among the clinically acquired abdominal CT scans, and propose to relieve the problem from the 

following perspectives. Specifically, we first focus on spleen, and use the shape constraint to regularize 

the spleen segmentation with a level-set-based active shape model, where regions don’t fit well in an 

adapted spleen shape are suppressed (Chapter VII). Then, we propose that appropriate atlas selection 

before the label fusion process can significantly reduce the impact of non-robust registrations, where the 

learned knowledge on target context and the intermediate fusion results are used to select the best possible 

atlases for fusion. Integrated with the context learned atlas selection, a generic multi-atlas framework is 

established for robust segmentation of multiple abdominal organs (Chapter VIII). Next, we evaluate the 

clinical efficacy of our automatic segmentation. A pipeline combining computer-assisted segmentation 

and manual outlier correction is proved more robust and efficient for spleen volume estimation than 

traditional clinical approaches on a longitudinal dataset (Chapter IX). Registrations are extensively 

investigated given its importance for atlas-based segmentation. Through over 100,000 hours of CPU time 

for validating six methods on abdominal organ registrations across 100 datasets, we provide 

recommendation for registration users and suggest directions for registration developers (Chapter X). 

Random forest technique for organ localization is investigated and integrated with the multi-atlas 
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segmentation framework. Organ-wise multi-atlas labeling performed on the localized region of interest 

provides consistent improvement in segmentation performances (Chapter XI). 
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CHAPTER VII  

SHAPE-CONSTRAINED MULTI-ATLAS SEGMENTATION OF SPLEEN IN CT 

1. Introduction 

Automated spleen segmentation on clinical CT data is a challenging problem due to the 

complicity and the variability of abdominal anatomy across populations. Multi-atlas segmentation is a 

potential approach that can provide robust segmentation of the spleen. Voting (e.g., majority vote (MV 

[13]), locally weighted vote (LWV [133])) and statistical fusion (e.g., STAPLE [125]) algorithms have 

been developed to improve the efficacy of combing potentially conflicting labels from multiple atlases. 

However, registrations of abdominal CT images are problematic given large-scale difference in 

abdominal anatomy and similar intensities between organs. The atlas labels with problematic registrations 

may misalign with the target structure, and/or include various redundant structures, and thus substantially 

undermine the fusion results even when additional intensity information is considered (Figure VII.1).  

We posit that the integration of shape information into the label fusion framework can provide 

more accurate fusion in cases of problematic registrations between atlas and target images. Although 

extensively used, point-based shape models have practical limitations as they require manual annotation 

of corresponding landmarks. Alternatively, an implicit shape model [113-115] has been used to 

characterize shape variations by voxel-wise high dimensional signed distance function (SDF), where each 

volume with its all voxels (instead of several landmarks) is considered as a single observation for the 

shape training. The implicit shape model has been successfully applied to some level set approaches of 

anatomical structures to constrain the shape of the segmentation [115]. Herein, we propose a multi-atlas 

segmentation framework that integrates the implicit shape model to regularize the fusion results.  
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2. Methods and Results 

2.1. Spleen Localization  

In our previous spleen approach, we used a regression method, i.e., regression forests region 

recognition (RFRR [194]), to localize the spleen region with a bounding box and demonstrated that multi-

atlas segmentation of spleen provides better estimate on the reduced region of interest. In this study, all 

intensity and label images referred below were cropped in terms of the identified bounding boxes. Here 

we omit the mechanism of RFRR for brevity. 

  

 

Figure VII.1. Challenges of atlas-based spleen segmentation. (A) The intensity image of the 

target. (B) The manually labeled ground truth of the target. (C) – (F) The atlas labels registered 

to the target space. (G) The fusion estimate by majority vote. (H) The fusion estimate by locally 

weighted vote. 
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2.2. Pose-Free Implicit Shape Model 

All atlas label images are co-registered into the same space with 7 degrees of freedom (DOF). 

The binary labels are transformed into high dimensional SDF to implicitly represent the shape of spleen, 

and then collected in an 𝑀 ×𝑁 observation matrix 𝐴, where M is the number of observations, and N is 

the number of voxels. A Principle Component Analysis (PCA) procedure is used to extract the variability 

of spleen shape, where the mean shape Φ̅ is the voxel-wise average across observations, 

Φ̅ =
∑ 𝐴𝑚∙𝑚

𝑀
 (7.1) 

and the modes of variation are provided by singular value decomposition (SVD) on the covariance of the 

 

Figure VII.2. Pose-free implicit parametric shape model. The shape model is represented by 

signed distance function (SDF) of each voxel over the whole volume. The region within the zero 

level set (highlighted in blue) is considered as the binary shape representation. The second row 

illustrates the mean and the first four modes of variation of the shape model. The first and the 

third row present the specific shapes parameterized by the square root of the eigenvalues. 
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centered observation matrix, 

𝑈Σ𝑈𝑇 =
1

𝑀
(𝐴 − Φ̅)𝑇(𝐴 − Φ̅) (7.2) 

where Σ is a diagonal matrix with its diagonal values as the eigenvalues 𝜆𝑖, and 𝑈 denotes an eigenspace 

with each column as an eigenvector, i.e., one mode of variation Φ𝑖, associated with the corresponding 

eigenvalue 𝜆𝑖 (Figure VII.2). The value of the eigenvalue indicates the dominance of its associated mode 

of variation, while the modes with relatively small eigenvalues are usually ignored due to their limited 

variances provided. 

Given the implicit shape model, a specific shape can be then characterized by the combination of 

the modes of variations on the basis of the mean shape, 

Φ ≡ Φ(𝝎) = Φ̅ +∑ 𝜔𝑖
𝑖

Φ𝑖 (7.3) 

where 𝜔𝑖 denotes the shape parameter associated with its mode of variation. 

2.3. Shape-Constrained Multi-Atlas Segmentation Framework 

2.3.1. Initial Estimation 

We initialize with a regular fusion of the registered atlas labels via locally weighted vote (LWV). 

In particular, we define the weight on voxel 𝑖 between the 𝑗𝑡ℎ registered atlas image 𝑆𝑗  and the target 

image 𝑇 in terms of intensity similarity in a 3 × 3 × 3 neighborhood Ω, 

𝑤𝑖𝑗 = exp(−
∑ ‖𝑆𝑘𝑗 − 𝑇𝑘‖

2
𝑘𝜖Ω

𝜎
) (7.4) 

where 𝜎  is a parameter that controls the de-weighting degree in terms of the local dissimilarity. 

Comparing to MV, LWV tends to capture a more complete spleen volume even though some regions are 

not covered by the majority of atlas labels.  

2.3.2. Shape Registration 

The pose-free implicit shape model is then transformed into the target space based on the 

registration between the binary image of the mean shape and that of the current segmentation. We found 
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that a single registration on binary images is practically error-prone due the existence of massive 

missing/redundant structures. Therefore, we apply two registrations between these binary images with 

two distinct effective ranges, i.e., (1) the whole volume of both image and (2) the mean shape region, of 

the similarity metric of registration, so that the two sets of registered mean shapes tend to capture the 

 

Figure VII.3. Flowchart of the proposed method. The atlas labels are co-registered to construct a 

pose-free implicit parametric shape model, including the mean and the modes of variation of the 

spleen shape. The atlas images are registered to the target image, based on which the atlas labels 

are propagated to the target space. The locally weighted vote yields the initial fusion result of the 

registered atlas labels weighted by the local intensity similarity between the registered atlas 

images and the target image in the form of a fuzzy estimate of label probability and a binary 

estimate of spleen segmentation. The binary image of the mean shape from the pre-constructed 

spleen shape model is registered to that of the current estimate with two distinct effective ranges, 

i.e., (1) the whole volume of both image and (2) the mean shape region, of the similarity metric of 

registration so that the pose-free shape model is transformed into the target space. The current 

estimate of the spleen is then projected to the two registered shape models. The shape projections 

are converted into probabilistic priors to adjust the label probability from locally weighted vote, 

and then generate a new estimate of the spleen. The estimate can be refined with iterative 

adjustment. 
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outer and inner boundary of the current estimate, respectively. The registrations use normalized 

correlation criterion as the similarity metric with 7 DOF.  

2.3.3. Shape Projection 

The segmentations can then be projected to the registered shape model based on the mean shape 

registration which effectively constrains the estimate within the shape model. In particular, based on each 

set of two registrations, the pose-free shape model is transformed into the target space. The current 

estimate of the spleen is converted into SDF, i.e., Φ𝑐, and projected to two registered shape models. 

𝝎̂ = 𝑈(Φ𝑐 − Φ̅) (7.5) 

where 𝝎̂ is the projected shape parameter, which is then used to reconstruct the projected shape, 

Φ̂ = 𝑈𝑇𝝎̂ + Φ̅ (7.6) 

In implementation, we restrict the absolute value of projected shape parameter to be no larger 

than the square root of its corresponding eigenvalue to preserve a reasonable reconstructed spleen shape. 

2.3.4. Shape-Probability Conversion 

The output of the shape projection can be considered as the representation of how far voxels are 

inside/outside the projected spleen shape, which can be converted into a shape prior of how likely the 

voxels represent the spleen via an exponential function, 

P = exp⁡(−𝛼Φ̂) (7.7) 

where α indicates the steepness of the conversion from SDF to probability. 

2.3.5. Iterative Refinement 

The shape probabilistic priors, along with the label probability provided by LWV, are used to 

generate a new estimate of the spleen, and the fusion estimate can be refined with iterative adjustment. 

Please refer to Figure VII.3 to the detailed flowchart of the proposed framework. 
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2.4. Data and Validation 

Under an Institutional review board waiver, 25 portal venous phase contrast-enhanced CT 

abdomen scans were randomly selected from a larger ongoing colorectal cancer chemotherapy trial. 

Images were approximately 512 x 512 x 152 with a resolution of 0.7 x 0.7 x 3.0 mm. Scans with poor 

contrast bolus timing (i.e. not portal venous phase) or aberrant patient positioning were excluded, leaving 

20 scans for analysis. Spleens were manually labeled by an experienced radiologist on a volumetric basis 

using the MIPAV software (NIH, Bethesda, MD [153]). All intensity and label images were cropped in 

terms of the bounding boxes around the localized spleen region as described in section 2.1.  

All subjects are processed in a leave-one-out cross validation framework. Comparing to a 

baseline LWV method, our proposed shape-constrained method achieves significantly higher Dice 

similarity coefficient (DSC [146]) (∆= 0.06, 𝑝 < 0.01), significantly lower symmetric mean surface 

distance (MSD) (∆= −4.01⁡𝑚𝑚, 𝑝 < 0.01 ), and significantly lower symmetric Hausdorff surface 

distance (HD) (∆= −23.21⁡𝑚𝑚, 𝑝 < 0.01) (Table VII.1) verified by Wilcoxon signed rank tests. Our 

shape-constrained method presents a substantial effect in correcting the spleen shape (Figure VII.4). 

3. Discussion 

Spleen segmentation in CT images via multi-atlas segmentation can be detrimentally impacted by 

problematic registrations between atlases and target images. While the pose-free implicit shape model is 

not difficult to construct, challenges lie in the model-estimate alignment and shape-probability 

conversion. We used two sets of registrations with distinct effective ranges of similarity metric between 

the fusion estimate and the mean shape of shape model to provide the inner and outer boundary of the 

spleen shape to compensate for the uncertainty of the correct pose alignment. We project the fusion 

Table VII.1. Error metrics via different fusion methods. 

Metrics MV LWV Proposed Method 

DSC 0.69±0.17 0.77±0.13 0.83±0.08 

MSD (mm) 8.01±6.12 7.49±7.66 3.48±1.88 

HD (mm) 33.81±19.00 45.88±27.84 22.67±8.23 
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estimate to the registered shape model, which yields finer matchup with the fusion estimate under shape 

constraint. The projected shape represented in SDF is converted into the shape probabilistic prior through 

an exponential function, and thus regularizes the fusion estimate by shape information. 

We note the pose-free implicit shape model can be built upon the atlas labels for label 

propagation with no additional data required. This presents opportunities to combine the proposed 

framework with the state-of-art label fusion methods (e.g., [195]) to yield shape-constrained fusion 

estimate. In addition, the usage of the shape information, beyond a simple probabilistic prior, requires 

further study. 

 

Figure VII.4. Fusion results by locally weighted vote and the proposed shape-constrained method 

on 20 subjects. The results of the two methods are placed side-by-side for each subject for 

comparison. The background rendering provides a reference of the surrounding anatomy (ribs, 

kidney, etc.). The rendering of the spleen segmentation is colored in terms of the surface distance 

from the estimate to the ground truth. Note that we use symmetric (the average of bi-directional) 

surface distance as the error metrics for validation in Table 1, but the one-way surface distance 

here for ease of visualization. 
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CHAPTER VIII  

EFFICIENT MULTI-ATLAS ABDOMINAL SEGMENTATION ON CLINICALLY ACQUIRED CT 

WITH SIMPLE CONTEXT LEARNING 

1. Introduction 

The human abdomen is an essential, yet complex body space. Computed tomography (CT) scans 

are routinely obtained for the diagnosis and prognosis of abdomen-related disease. Automated 

segmentation of abdominal anatomy may improve patient care by decreasing or eliminating the 

subjectivity inherent in traditional qualitative assessment. In large-scale clinical studies, efficient 

segmentation of multiple abdominal organs can also be used for biomarker screening, surgical navigation, 

and data mining.  

Atlas-based segmentation provides a general-purpose approach to segment target images by 

transferring information from canonical atlases via registration. When adapting to abdomen, the variable 

abdominal anatomy between individuals (e.g., weight, stature, age, disease status) and within individuals 

(e.g., pose, respiratory cycle, clothing) can lead to substantial registration errors (Figures VIII.1, VIII.2). 

Previous abdominal segmentation approaches have used single probabilistic atlases constructed by co-

registering atlases to characterize the spatial variations of abdominal organs [16, 18]; statistical shape 

models [23, 196] and / or graph theories [24, 27] have been integrated to refine the segmentation using 

probabilistic atlases. Multi-atlas segmentation (MAS), on the other hand, is a technique that has been 

proven effective and robust in neuroimaging by registering multiple atlases to the target image separately, 

and combining voxel-wise observations among the registered labels through label fusion [133]. Recently, 

Wolz et al. applied MAS to the abdomen using locally weighted subject-specific atlas [28]; yet the 

segmentation accuracies were inconsistent. We posit that the efficiency of atlas selection for abdominal 
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MAS requires further exploration in the context of substantial registration errors, especially on clinically 

acquired CT.  

The selective and iterative method for performance level estimation [127] (SIMPLE) algorithm 

raised effective atlas selection criteria based on the Dice similarity coefficient [146] overlap with 

intermediate voting-based fusion result, and addressed extensive variation in prostate anatomy to reduce 

the impact of outlier atlases. In [42], we generalized a SIMPLE theoretical framework to account for 

exogenous information through Bayesian priors – referred to as context learning; the newly presented 

model selected atlases more effectively for segmenting spleens in metastatic liver cancer patients. A 

further integration with joint label fusion (JLF [134]) addressed the label determination by reducing the 

correlated errors among the selected atlases, and yielded a median DSC of 0.93 for spleen segmentation.  

 

Figure VIII.1. Twelve organs of interest (left) and registration examples of variable qualities for 

one target image (right). Note that the “good”, “bad”, and “ugly” registration examples were 

selected regarding the organ-wise correspondence after the atlas labels were propagated to the 

target image. 
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Herein, we propose an efficient approach for segmenting 12 abdominal organs of interest (Figure 

VIII.1) in 75 metastatic liver cancer patients and 25 ventral hernia patients on clinically acquired CT. 

Based on the re-derived SIMPLE framework [42], we construct context priors, select atlases, and fuse 

estimated segmentation using JLF for each organ individually, and combine the fusion estimates of all 

organs into a regularized multi-organ segmentation using graph cut [101] (Figure VIII.3). The 

segmentation performances are validated with other MAS approaches, including majority vote (MV), 

SIMPLE, JLF, and the Wolz approach. This work is an extension of previous theoretical [42] and 

empirical [43] conference papers and presents new analyses of algorithm performance and parameter 

sensitivity.  

  

 

Figure VIII.2. Organ-wise examples of variations after non-rigid registrations. For each panel, 

the target manual segmentation is on the left, the 30 registered labels are semi-transparently 

overlaid on the right. 
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2. Theory 

We re-formulate the SIMPLE algorithm from the perspective of Expectation-Maximization (EM) 

while focusing on the atlas selection step. In this principled likelihood model, the Bayesian prior learning 

from context features (e.g., intensity, gradient) is considered as exogenous information to regularize the 

atlas selection.  

2.1. Statistical SIMPLE Model 

Consider a collection of 𝑅  registered atlases with label decisions, 𝑫 ∈ 𝑳𝑁×𝑅 , where 𝑁  is the 

number of voxels in each registered atlas, and 𝑳 = {0,1,… , 𝐿 − 1} represents the label sets. Let 𝒄 ∈ 𝑺𝑅, 

where 𝑺 = {0,1} indicates the atlas selection decision, i.e., 0 – ignored, and 1 – selected. Let 𝑖 be the 

 

Figure VIII.3. Flowchart of the proposed method. Given registered atlases with variable qualities, 

atlas selection and statistical fusion are considered as two necessary steps to obtain a reasonable 

fusion estimate of the target segmentation. The SIMPLE algorithm implicitly combines these two 

steps to fusion selected atlases; however, more information can be incorporated to improve the 

atlas segmentation, and a more advanced fusion technique can be used after the atlases are 

selected. We propose to (1) extract a probabilistic prior of the target segmentation by context 

learning to regularize the atlas selection in SIMPLE for each organ, (2) use Joint Label Fusion to 

obtain the probabilistic fusion estimate while characterizing the correlated errors among the 

selected organ-specific atlases, and render the final segmentation for all organs via graph cut. 
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index of voxels, and 𝑗 of registered atlases. We propose a non-linear rater model, 𝜃 ∈ ℝ𝑅×2×𝐿×𝐿 , that 

considers the two atlas selection decisions. Let the ignored atlases be no better than random chance, and 

the selected atlases be slightly inaccurate with error factors 𝝐 ∈ 𝚬R×1, where 𝚬 ∈ (0,
𝐿−1

𝐿
). Thus 

𝜃𝑗0𝑠′𝑠 =
1

𝐿⁡
, ∀𝑠′⁡; ⁡𝜃𝑗1𝑠′𝑠 = {

1 − 𝜖𝑗, 𝑠′ = 𝑠
𝜖𝑗

𝐿⁡ − 1
, 𝑠′ ≠ 𝑠

 (8.1)  

where each element 𝜃𝑗𝑛𝑠′𝑠 represents the probability that the registered atlas 𝑗 observes label 𝑠′ given the 

true label is 𝑠 and the atlas selection decision is 𝑛 with an error factor 𝜖𝑗  if selected, – i.e., 𝜃𝑗𝑛𝑠′𝑠 ≡

𝑓(𝐷𝑖𝑗 = 𝑠′|𝑇𝑖 = 𝑠, 𝑐𝑗 = 𝑛, 𝜖𝑗). 

Following [125], let 𝑾 ∈ ℝ𝐿×𝑁 , where 𝑊𝑠𝑖
(𝑘)

 represents the probability that the true label 

associated with voxel 𝑖 is label 𝑠 at the kth⁡iteration. Using Bayesian expansion and conditional inter-atlas 

independence, the E-step can be derived as 

𝑊𝑠𝑖
(𝑘)

=
𝑓(𝑇𝑖 = 𝑠)∏ 𝑓 (𝐷𝑖𝑗|𝑇𝑖 = 𝑠, 𝑐𝑗

(𝑘) = 𝑛, 𝜖𝑗
(𝑘)⁡

)⁡𝑗

∑ 𝑓(𝑇𝑖 = 𝑠′)∏ 𝑓 (𝐷𝑖𝑗|𝑇𝑖 = 𝑠′, 𝑐𝑗
(𝑘) = 𝑛, 𝜖𝑗

(𝑘)
)⁡𝑗𝑠′

 (8.2)  

where 𝑓(𝑇𝑖 = 𝑠) is a voxel-wise a priori distribution of the underlying segmentation. Note that the 

selected atlases contribute to 𝑾 in a similar way as globally weighted vote given the symmetric form of 

𝜃𝑗1𝑠′𝑠 as in the original SIMPLE. 

In the M-step, the estimation of the parameters is obtained by maximizing the expected value of 

the conditional log likelihood function found in Eq. 2. For the error factor,  

𝜖𝑗
(𝑘+1) = argmax

𝜖𝑗
∑ 𝐸 [ln𝑓 (𝐷𝑖𝑗|𝑇𝑖, 𝑐𝑗

(𝑘), 𝜖𝑗) |𝑫, 𝑐𝑗
(𝑘) , 𝜖𝑗

(𝑘)
]

𝑖

= argmax
𝜖𝑗

∑ ∑ ∑ 𝑊𝑠𝑖
(𝑘) ⁡ ln 𝜃

𝑗𝑐𝑗
(𝑘)

𝑠′𝑠
𝑠𝑖:𝐷𝑖𝑗=𝑠

′𝑠′
≡ 𝐿𝜖𝑗

 (8.3)  

Consider the binary segmentation for simplicity, let 𝑀𝑇𝑃 = ∑ 𝑊1𝑖
(𝑘)

𝑖:𝐷𝑖𝑗=1 ,𝑀𝐹𝑃 = ∑ 𝑊0𝑖
(𝑘)

𝑖:𝐷𝑖𝑗=1 , 𝑀𝐹𝑁 =

∑ 𝑊1𝑖
(𝑘)

𝑖:𝐷𝑖𝑗=0 , 𝑀𝑇𝑁 = ∑ 𝑊0𝑖
(𝑘)

𝑖:𝐷𝑖𝑗=0 , and M𝑇 = 𝑀𝑇𝑃 +𝑀𝑇𝑁 , 𝑀𝐹 = 𝑀𝐹𝑃 +𝑀𝐹𝑁 . After taking partial 

derivative of 𝐿𝜖𝑗,  
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𝜖𝑗
(𝑘+1) =

𝑀𝐹

𝑀𝑇 +𝑀𝐹
, 𝑖. 𝑒. , 1 − 𝜖𝑗

(𝑘+1) =
𝑀𝑇

𝑀𝑇 +𝑀𝐹
 

(8.4)  

Then for the atlas selection decision 

𝑐𝑗
(𝑘+1)

= argmax
𝑐𝑗

∑ 𝐸 [ln𝑓 (𝐷𝑖𝑗|𝑇𝑖, 𝑐𝑗, 𝜖𝑗
(𝑘+1)

) |𝑫, 𝑐𝑗
(𝑘) , 𝜖𝑗

(𝑘+1)
]

𝑖

= argmax
𝑐𝑗

∑ ∑ ∑ 𝑊𝑠𝑖
(𝑘)

⁡ ln 𝜃𝑗𝑐𝑗𝑠′𝑠
𝑠𝑖:𝐷𝑖𝑗=𝑠

′𝑠′
.

 
(8.5)  

Given the intermediate truth estimate 𝑊𝑠𝑖
(𝑘)

, 𝑐𝑗
(𝑘+1)

 can be maximized by evaluating each 0/1 atlas 

selection separately. Note the selecting/ignoring behavior in Eq. 5 is parameterized with the error factor 

𝜖𝑗 , and thus affected by the four summed values of True Positive (TP), False Positive (FP), False 

Negative (FN), and True Negative (TN) as in Eq. 4. Typical practice for a fusion approach might use the 

prior probability, 𝑓(𝑇𝑖 = 𝑠), to weight by expected volume of structure. With outlier atlases, one could 

reasonably expect a much larger region of confusion (i.e., non “consensus”[138]) than true anatomical 

volume. Hence, an informed prior would greatly deemphasize the TN and yield a metric similar to DSC. 

Therefore, we argue that SIMPLE is legitimately viewed as a statistical fusion algorithm that is 

approximately optimal for the non-linear rater model proposed in Eq. 1. 

2.2. Context Learning 

Different classes of tissues in CT images can be characterized with multi-dimensional Gaussian 

mixture models using intensity and spatial “context” features. On a voxel-wise basis, let 𝒗 ∈

ℝ𝑑×1 represent a 𝑑  dimensional feature vector, 𝑚 ∈ 𝑴  indicate the tissue membership, where 𝑴 =

{1,… ,𝑀} is the set of possible tissues, and typically, a superset of the label types, i.e., 𝑴 ⊇ 𝑳. The 

probability of the observed features given the tissue type is 𝑡 can be represented with the mixture of 𝑁𝐺  

Gaussian distributions, 

𝑓(𝒗|𝑚 = 𝑡) = ∑
𝛼𝑘𝑡

(2𝜋)
𝑑
2|𝑪𝑘𝑡|

1
2

𝑒𝑥𝑝 [−
1

2
(𝒗 − 𝝁𝑘𝑡)

𝑇𝑪𝑘𝑡
−1(𝒗 − 𝝁𝑘𝑡)]

𝑁𝐺

𝑘=1

 (8.6)  
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where 𝛼𝑘𝑡 ∈ ℝ1×1 , 𝝁𝑘𝑡 ∈ ℝ𝑑×1 , and 𝑪𝑘𝑡 ∈ ℝ𝑑×𝑑  are the unknown mixture probability, mean, and 

covariance matrix to estimate for each Gaussian mixture component 𝑘 of each tissue type 𝑡 by the EM 

algorithm following [107]. This context model can be trained from datasets with known tissue 

separations.  

The tissue likelihoods on an unknown dataset can be inferred by Bayesian expansion and can use 

a flat tissue membership probability from extracted feature vectors.  

𝑓(𝑚 = 𝑡|𝒗) =
𝑓(𝒗|𝑚 = 𝑡)𝑓(𝑚 = 𝑡)

∑ 𝑓(𝒗|𝑚 = 𝑡′)𝑓(𝑚 = 𝑡′)𝑡′
=

𝑓(𝒗|𝑚 = 𝑡)

∑ 𝑓(𝒗|𝑚 = 𝑡′)𝑡′
 (8.7)  

Consider a desired label 𝑠 as one tissue type 𝑡, and thus 𝑓(𝑇𝑖 = 𝑠) ≡ 𝑓(𝑚 = 𝑡|𝒗), the Bayesian prior 

learning from context features serves to regularize the intermediate fusion estimate in Eq. 3, and hence the 

atlas selection. 

3. Methods and Results 

3.1. Data 

Under Institutional Review Board (IRB) supervision, the first-session of abdomen CT scans of 75 

metastatic liver cancer patients were randomly selected from an ongoing colorectal cancer chemotherapy 

trial, and an additional 25 retrospective scans were acquired clinically from post-operative patients with 

suspected ventral hernias. The 100 scans were captured during portal venous contrast phase with variable 

volume sizes (512 x 512 x 33 ~ 512 x 512 x 158) and field of views (approx. 300 x 300 x 250 mm3 ~ 500 

x 500 x 700 mm3). The in-plane resolution varies from 0.54 x 0.54 mm2 to 0.98 x 0.98 mm2, while the 

slice thickness ranges from 1.5 mm to 7.0 mm. Twelve abdominal organs were manually labeled by two 

experienced undergraduate students, and verified by a radiologist on a volumetric basis using the MIPAV 

software (NIH, Bethesda, MD [153]). All images and labels were cropped along the cranio-caudal axis 

with a tight border without excluding liver, spleen, and kidneys before any processing (following [28]).  
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3.2. General Implementation 

We used 10 subjects to train context models for 15 tissue types, including twelve manually traced 

organs, and three automatically retrieved tissues (i.e., muscle, fat, and other) using intensity clustering and 

excluding the traced organ regions. Six context features were extracted, including intensity, gradient, and 

local variance, and three spatial coordinates with respect to a single landmark, which was loosely 

identified as the mid-frontal point of the lung at the plane with the largest cross-sectional lung area (see 

rendering in Figure VIII.8). We specified the number of components of Gaussian mixture model, 𝑁𝐺 =

3. For each organ, the foreground and background likelihoods were learned from the context models 

based on the context features on target images, and used as a two-fold spatial prior to regularize the 

organ-wise SIMPLE atlas selection. We constrained the number of selected atlases as no less than five 

and no larger than ten.  

When using JLF on the selected atlases for each organ, we specified the local search radii (in 

voxel) as 3 × 3 × 3, the local patch radii (in voxel) as 2 × 2 × 2, and set the intensity difference mapping 

parameter, and the regularization term as 2 and 0.1, respectively (i.e., default parameters).  

Following [28, 143], we regularized the final segmentation with graph cut (GC). The GC problem 

is solved by maximizing the following MRF-based energy function 

𝐸(𝑝) = 𝜆∑𝐷𝑖(𝑝𝑖) + ∑ 𝑉𝑖,𝑖′(𝑝𝑖, 𝑝𝑖′)

{𝑖,𝑖′}∈𝒩𝑖∈𝕀

 (8.8)  

where 𝑖 and 𝑖′ are voxel indices, 𝑝 represents the labeling of the final segmentation for image 𝕀. The data 

term 𝐷𝑖(𝑝𝑖) characterize the probability of voxel 𝑖 assigned to the label 𝑝𝑖; we define it as a combination 

of the probabilistic fusion estimate from JLF with the intensity likelihoods using 1-D context learning. 

The smoothness term 𝑉𝑖,𝑖′(𝑝𝑖 , 𝑝𝑖′)  penalizes the discontinuities between the voxel pair {𝑖, 𝑖′}  in the 

specified neighborhood system 𝒩; we define it as a combination of the intensity appearance with local 

boundary information. 𝜆 is a coefficient that weights the data term over the smoothness term; we set it as 

3.3. Note that we only applied GC smoothing to large organs (i.e., spleen, kidneys, liver, stomach), and 

kept the JLF results for the remaining organ structures. 
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For the direct JLF approach, the same parameters were used as above, except that it was 

conducted for all organs simultaneously. For the Wolz approach, we kept 30 atlases for the global atlas 

selection, adjusted the exponential decay for the organ level weighting to support 10 atlases, followed [28] 

for voxel-wise weighting by non-local means, and used the same GC scheme as applied to our proposed 

method.  

Note that we used the JLF [134] method in the Advanced Normalization Tools (ANTs) [197], all 

other algorithms, i.e., MV [124], SIMPLE [127], the Wolz approach [28], and GC [101, 143], were 

implemented based on the corresponding literature, and run on a 64-bit 12-core Ubuntu Linux 

workstation with 48G RAM.  

3.3. Motivating Simulation 

3.3.1. Experimental Setup 

A simulation on 2-D CT slices was constructed to demonstrate and motivate the benefits of 

SIMPLE context learning for atlas selection and label fusion (see Figure VIII.4). Forty CT scans were 

randomly selected from the 90 subjects not used for context learning. A representative slice with the 

presences of all three organs, i.e., spleen, left kidney, and liver, was extracted from each scan, and 

considered as a target image. A hundred simulated observations were estimated by applying a random 

transformation model to each target slice, and considered as the atlases with different degrees of 

registration errors for segmenting the target.  

The simulation model involved an affine followed by a non-rigid transformation.  The affine 

transformation consisted of a rotational component as well as two translational and two scaling 

components, with the effect of each component drawn from a zero-mean Gaussian distribution with 

standard deviations of 2 degrees for the rotational component, 5 mm for the translational components and 

0.2 mm for the scaling components. The non-rigid transformation used a deformation field created by 

sextic Chebyshev polynomials. The Chebyshev coefficients for each grid location were randomly 

generated from a standard normal distribution, on the top of which, two additional factors to control the 
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deformation effect on each dimension were drawn from a zero-mean Gaussian distribution with standard 

deviations of 3 mm. Voxel-wise Gaussian random noise (with a standard deviation of 100 Hounsfield 

units) was added to the simulated intensity images.  

Six MAS methods, i.e., MV, SIMPLE, JLF, CLSIMPLE, CLSIMPLEJLF, and the Wolz 

approach were applied to 40 target slices using different numbers of atlases (from 15 to 100, with a step 

 

Figure VIII.4. (top left) Target slices and the associated manual labels. (middle left) Simulated 

observations drawn from an individual target slice with a randomly generated transformation 

model. (top right) The mean DSC (over 40 target slices and three organs) values evaluated for six 

label fusion approaches using different numbers (from 15 to 100) of atlases.  (bottom right) 

Organ-wise DSC performances for the fusion results using 40 simulated atlases. (bottom left) 

Fusion estimates using 40 simulated atlases overlaid on a representative target slice, and 

annotated with the mean DSC value over the organs. 
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size of 5), and then evaluated based on the DSC values of spleen, left kidney, and liver. Note that (1) 

CLSIMPLE used MV, while CLSIMPLEJLF used JLF for label fusion after atlas selection; (2) We did 

not append GC to smooth the results of CLSIMPLEJLF and the Wolz approach since no surface distance 

error was assessed in this simulation. (3) The Wolz approach here used the simulated atlases for all three 

stages of subject-specific atlas construction given no other intermediate registered atlases.  

3.3.2. Results 

Under the tests using various numbers of atlases, CLSIMPLE, CLSIMPLEJLF, and the Wolz 

approach demonstrate consistently and substantially more accurate segmentations than MV, SIMPLE, and 

JLF. CLSIMPLEJLF and the Wolz approach yield similar accuracies when using larger than 70 atlases 

(p-value < 0.05, paired t-test), while CLSIMPLEJLF performs better with less atlases available.  

Using 40 atlases, the spread of DSC values demonstrate significant improvement by 

incorporating context learning. CLSIMPLE achieves a median DSC improvement of 0.26 and 0.15 over 

MV and SIMPLE, respectively, while CLSIMPLEJLF outperforms JLF by 0.19. CLSIMPLEJLF also 

provides the least range of DSC values, and thus indicates its robustness to the outliers. A representative 

fusion result represents that CLSIMPLEJLF accurately captures the shape, location, and orientation of the 

spleen, left kidney, and liver.  

3.4. Volumetric Multi-Organ Multi-Atlas Segmentation 

3.4.1. Experimental Setup 

 Ten of the 100 subjects were randomly selected as training datasets for context learning (these 

ten subjects happen to be all within the 75 liver cancer datasets), thus the segmentations were validated on 

the remaining 90 subjects. From the same cohort, forty subjects were randomly selected (independent 

from the ten selections for context learning) as the atlases for validating five MAS approaches, including 

MV, SIMPLE, JLF, the Wolz approach, and our proposed method (CLSIMPLEJLFGC), on the 
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segmentation of twelve abdominal organs against the manual labels using DSC, mean surface distance 

(MSD), and Hausdorff distance (HD).  

The five approaches shared a common multi-stage registration procedure for each of the 90 target 

images (excluding the 10 context learning), where all atlases (except the target if it was selected in the set 

of atlases) were aligned to the target in the order of rigid, affine and a multi-level non-rigid registration 

using free-form deformations with B-spline control point spacings of 20, 10, and 5mm [95]. In summary, 

(1) the 10 context learning datasets were never used as targets (but they were allowed to be atlases), and 

(2) an atlas image was never used as its own target. Randomization of selecting context learning datasets 

and atlas images was performed to maximize the available data subject to these constraints.  

 

Figure VIII.5. Boxplot comparison among five tested methods for 12 organs. 
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3.4.2. Results  

Compared to the other MAS approaches, the proposed method presents consistently improved 

segmentation in DSC on 11 of 12 organs of interest (Figure VIII.5, Table VIII.1). Based on the mean 

Table VIII.1. Quantitative evaluation for five tested methods using dice similarity coefficient 

(mean ± std.). 

 MV SIMPLE JLF Wolz Proposed 

Spleen 0.63 ± 0.24 0.73 ± 0.22 0.84 ± 0.15 0.83 ± 0.10 0.90 ± 0.08** 

R. Kidney 0.47 ± 0.26 0.65 ± 0.27 0.79 ± 0.19 0.70 ± 0.24 0.81 ± 0.20 

L. Kidney 0.46 ± 0.27 0.74 ± 0.25 0.81 ± 0.17 0.72 ± 0.21 0.84 ± 0.20 

Gallbladder 0.01 ± 0.04 0.00 ± 0.03 0.09 ± 0.15 0.19 ± 0.21 0.27 ± 0.26* 

Esophagus 0.07 ± 0.11 0.20 ± 0.25 0.37 ± 0.21 0.18 ± 0.19 0.43 ± 0.18* 

Liver 0.79 ± 0.20 0.84 ± 0.18 0.89 ± 0.11 0.88 ± 0.09 0.91 ± 0.09 

Stomach 0.34 ± 0.18 0.46 ± 0.19 0.51 ± 0.17 0.41 ± 0.19 0.55 ± 0.18 

Aorta 0.34 ± 0.22 0.64 ± 0.22 0.72 ± 0.13 0.67 ± 0.18 0.77 ± 0.13* 

IVC 0.33 ± 0.18 0.50 ± 0.21 0.57 ± 0.15 0.58 ± 0.15 0.62 ± 0.19 

PV & SV 0.05 ± 0.10 0.05 ± 0.15 0.52 ± 0.20** 0.16 ± 0.16 0.45 ± 0.21 

Pancreas 0.11 ± 0.13 0.27 ± 0.25 0.40 ± 0.19 0.40 ± 0.19 0.45 ± 0.21 

A. Glands 0.00 ± 0.01 0.00 ± 0.03 0.34 ± 0.20 0.05 ± 0.08 0.36 ± 0.19 
* indicates that the DSC value was significantly higher than the second best DSC across the methods for the 

organ segmentation as determined by a right-tail paired t-test with p<0.05. ** indicates a p<0.01. 

Table VIII.2. Quantitative evaluation for five tested methods using mean surface distance (mean 

± std.) in mm. 

 MV SIMPLE JLF Wolz Proposed 

Spleen 6.44± 4.30 4.42± 3.55 4.38± 7.44 3.06± 2.21 1.75± 1.71** 

R. Kidney 7.81± 6.73 5.22± 5.85 4.81± 10.38 4.80± 5.66 2.99± 3.92** 

L. Kidney 6.55± 4.63 2.92± 2.95 5.38± 11.12 3.85± 3.01 2.00± 2.80** 

Gallbladder 12.88± 8.29 N/A† 21.84± 29.35 11.89± 10.53** 14.36± 20.34 

Esophagus 7.59± 3.20 3.73± 1.73 7.61± 15.26 6.76± 3.70 4.16± 2.05 

Liver 7.42± 9.21 5.03± 6.02 4.69± 7.01 4.86± 5.48 3.22± 4.43* 

Stomach 16.06± 6.61 10.96± 5.18 8.75± 6.92* 16.91± 8.15 10.26± 6.36 

Aorta 10.18± 7.43 4.26± 3.53 5.89± 12.83 4.68± 3.74 3.02± 2.27** 

IVC 7.92± 5.35 4.32± 1.82 6.36± 13.77 4.41± 2.38 3.75± 1.84** 

PV & SV 20.00± 5.54 6.37± 3.18 7.24± 11.61 17.46± 7.54 5.92± 5.08** 

Pancreas 16.08± 8.81 6.51± 3.96 8.24± 12.52 7.82± 4.75 5.47± 3.51** 

A. Glands 19.88± 6.43 N/A†  7.75± 15.12 13.30± 8.71 4.06± 3.56* 
† N/A was assigned when the segmentations were empty, and the MSD could not be computed for over 75 

subjects (at least 15 subjects were not empty); 

* indicates that the MSD value was significantly lower than the second lowest MSD across the methods for the 

organ segmentation as determined by a left-tail paired t-test with p<0.05. ** indicates a p<0.01. 
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DSC of each organ, a median improvement of 7.0% and 16.2% were achieved over JLF and Wolz, 

respectively. The segmentations of spleen, gallbladder, esophagus, and aorta using the proposed method 

significantly outperformed those using the other approaches.  

The serpentine labels of portal vein and splenic vein are barely captured by registration (0.06 in 

DSC by median), thus the intermediate voting-based fusion estimates had a good chance of missing the 

structure entirely (zero median in DSC for MV and SIMPLE). A MV fusion (instead of JLF) of the 

selected atlases by SIMPLE context learning identified this structure better (0.25 in DSC by median). 

While with limited atlases of catastrophic registration errors, our proposed method was outperformed by 

JLF with all available atlases.   

On the other hand, in the context of reasonably substantial registration errors for other organs, our 

proposed method yields segmentation with better performances in not only accuracies, but also 

efficiencies. With much fewer atlases (while more target-alike than average) included for label fusion, our 

method (1.5 hours, 10G RAM) relieved massive computational time and memory required by JLF (22 

hours, 30G RAM) and Wolz approach (30 hours, 10G RAM), and thus provides more efficient abdominal 

segmentations. As found in our previous study [42], the MV fusion of the registered atlases with the top 

five DSC achieves a median DSC of 0.9 for spleen. Therefore, we considered the global non-linear 

selection of the atlases as a necessary procedure in addition to the locally weighted label determination for 

Table VIII.3. Quantitative metrics of the proposed segmentation method. 

Metrics 

Organs 

Dice Similarity Coefficient Surface Distance (mm) 

Median [Min, Max] Sym. HD 

Spleen 0.93 [0.54, 0.97] 17.27 ± 8.42 

R. Kidney 0.89 [0.00, 0.96] 19.47 ± 11.37 

L. Kidney 0.90 [0.00, 0.97] 16.13 ± 8.05 

Gallbladder 0.25 [0.00, 0.84] 34.57 ± 22.87 

Esophagus 0.43 [0.00, 0.75] 17.97 ± 5.46 

Liver 0.93 [0.24, 0.97] 34.46 ± 15.03 

Stomach 0.57 [0.00, 0.87] 49.48 ± 18.91 

Aorta 0.80 [0.00, 0.90] 23.23 ± 10.98 

IVC 0.67 [0.00, 0.87] 19.89 ± 5.60 

PV & SV 0.48 [0.00, 0.83] 38.37 ± 17.18 

Pancreas 0.49 [0.00, 0.77] 31.34 ± 8.92 

A. Glands 0.39 [0.00, 0.72] 20.68 ± 8.68 
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MAS in abdomen.   

With a closer look, our proposed method yielded the segmentation with at least 0.89 in DSC and 

less than 3.3 mm in MSD for the major organs of interest, i.e., spleen, kidneys, and liver. For other 

structures, the proposed method also provided successful identification over half of the subjects, even 

those that empirically considered difficult to capture, e.g., adrenal glands (Tables VIII.2, VIII.3). 

Qualitatively, the segmentation on a subject with median accuracy captures the organs from the 

perspective of both 3-D rendering and 2-D coronal slices (Figure VIII.7). As a side note, applying GC 

 

Figure VIII.7. Qualitative segmentation results on a subject with median DSC. On the left, the 3-

D organ labels are rendered for the true segmentation, and the proposed segmentation. On the 

right, the truth (red) and the proposed segmentation (green) for each organ of interest are 

demonstrated on a representative coronal slice. 

 

Figure VIII.6. Demonstration of the effectiveness of CLSIMPLE atlas selection for spleen 

segmentation on 90 subjects along number of iterations (A) number of selected atlases remaining 

along iterations. (B) mean DSC value of the selected atlases along iterations. Note the solid green 

line in (B) indicates the mean DSC of the majority vote fusion estimate using the selected atlases 

across all subjects. 
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for the five large organs (i.e., spleen, kidneys, liver, stomach) reduces the HD by 1.99 mm (𝑝 < 0.001, 

paired t-test), with similar the DSC values (Δ = −0.0038, 𝑝 < 0.01, paired t-test).  

In a retrospective analysis, CLSIMPLE demonstrates effective atlas selection for spleen along 

iterations in terms of the mean DSC of the selected atlases and their MV fusion estimate (Figure VIII.6). 

Comparing to the original SIMPLE on an example with median accuracy, CLSIMPLE keeps adjusting the 

atlas selection with learned context on the target image as opposed to yielding progressively biased 

intermediate fusion estimate if only the registered labels were used (Figure VIII.8).    

In a further test on the parameter sensitivity of the proposed method, ten subjects were randomly 

selected from the 90 subjects used for validation. The impact of using different values of three 

parameters, i.e., (1) number of atlases minimally allowed in CLSIMPLE, (2) patch radius in JLF, and (3) 

 

Figure VIII.8. (upper pane): The ground truth surface rendering and the probability volume 

rendering of different methods for spleen segmentation. Note that the transparencies of volume 

rendering were adjusted for visualization. CL indicates the posterior probability of spleen when 

applying the trained context learning model to the target. The green arrow points at the 

landmark used for deriving spatial context. (lower pane): Progressive results of SIMPLE and 

CLSIMPLE along iterations. Note that both methods reach the convergence within 8 iterations in 

this case. 
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search radius in JLF, on the overall performances of the proposed method is shown in Figure VIII.9. 

Comparing to the parameters values chosen for the validation of 90 subjects, potential improvement were 

observed with more atlases (9 atlases, Δ = 0.0231, 𝑝 < 0.05, paired left-tail Wilcoxon signed rank test), 

and larger patch radius (3x3x3 voxels, Δ = 0.0143, 𝑝 < 0.005, paired left-tail Wilcoxon signed rank 

test).  

4. Discussion 

The proposed method provides a fully automated approach to segment twelve abdominal organs 

on clinically acquired CT. The SIMPLE context learning reduces the impact of the vastly problematic 

registrations with appropriate atlas selection considering exogenous contexts in addition to intermediate 

fusion estimate, and thus enables more efficient abdominal segmentations. We note that proposed 

generative model naturally leads to an iterative atlas selection, which differs from the STEPS approach 

[141] that first locally ranks atlases, and uses the top local atlases for statistical fusion.   

MAS has been widely used for segmenting brain structures; commonly accepted optimal number 

of the included atlases is approximately 10 to 15. While the registration errors for brains are well 

constrained within the cranial vault, the registrations for abdomens, on the other hand, have much more 

chances to fail in terms of both global alignment and internal correspondence. Thus an atlas selection 

 

Figure VIII.9. Illustration of parameters sensitivity of the proposed method. The overall DSC 

values (including all twelve organs on ten subjects) are evaluated on different values of (A) 

number of atlases minimally allowed in CLSIMPLE; (B) patch radius in JLF; and (3) search 

radius in JLF. Note when testing on one parameter, the other two keep as the values the gray 

backgrounds; these values are also used for the segmentation of 90 subjects. 
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procedure along with more included atlas images becomes essential to MAS for abdominal organs, where 

the effectiveness of atlas selection determines the segmentation robustness. It can be also expected that 

this atlas selection procedure can be beneficial for brain segmentation among subjects with substantial 

aging and pathological variations. The Wolz approach selects/weights atlases based on the similarity 

between the target and atlases in a hierarchical manner, which turns out to be more effective for the 

homogeneous datasets in the simulation than it is for the clinically acquired datasets. We posit that the 

inconsistent performances of the Wolz approach lie in the non-robust efficacy of similarity measure as 

discussed in the original SIMPLE literature [127]. Using the SIMPLE context learning framework, our 

proposed method yields consistently good performances in both datasets.  

Some specific approaches for single organ segmentation, e.g., liver [198] and pancreas [19], can 

provide higher performances, while our efforts in this study focus on the development of a generic 

approach for multiple organ segmentation. In addition, provided with adequate number (>20) of labeled 

atlases, we expect that our proposed method can be adapted to other thoracic (e.g., lungs), abdominal 

(e.g., psoas muscles), and pelvic (e.g., prostate) organs on CT, where the organs to segment have (1) 

consistent intensity-based and spatial appearance, (2) high contrast to the surrounding tissues, and (3) 

reasonable amount of overlap between the registered atlases and the target. Much caution should be taken 

when these three conditions are not satisfied. For example, intensity normalization would be required for 

applications on MR images, texture-based features can be included when structures with similar 

intensities but distinguishable textures are close to each other, pre-localization would be necessary for 

tiny, thin, and/or irregular structures so that registrations errors can be constrained within the region of 

interest. Our future work will focus on the cases above to further improve the segmentation performances, 

and enhance the generalization of the method. 

The estimated segmentations could be used in large-scale trials to provide abdominal surgical 

navigation, organ-wise biomarker derivation, or volumetric screening. The method also enables 

explorative studies on the correlation the structural organ metrics with surgical/physiological conditions. 

We note that some organs (e.g., gallbladder, portal and splenic vein, adrenal glands) have low DSC and/or 
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high MSD values despite the proposed method presents better segmentation over other tested MAS 

methods; their practice use can be limited. To our best knowledge, fully-automatic segmentation of these 

structures are essentially atlas-based [18, 199]. Although no ideal result has been accomplished so far, 

atlas-to-target registration remains the most effective approach to roughly capture these structures. Thus 

we present the segmentation performance for all twelve organs as a benchmark for further development. 

Other types of segmentation approaches, e.g., geodesic active contours [51], graph cut [101], and 

statistical shape models [110], are sensitive to the surrounding environment; they are often incorporated 

with the atlas-based framework to provide complementary information and refine the results [18, 27, 

196]. Some semi-automatic approaches [200] demonstrate the potential for fundamentally better results 

with the requirement of manual organ identification. MAS approach performs well on automatically 

identifying/localizing these organs, and thus can be used as an initialization for those semi-automatic 

methods, and make the whole process free from manual intervention. 
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CHAPTER IX  

IMPROVING SPLEEN VOLUME ESTIMATION VIA COMPUTER ASSISTED 

SEGMENTATION ON CLINICALLY ACQUIRED CT SCANS 

1. Introduction 

The clinical promise of computer-assisted content labeling lies in its potential to promote the 

extraction of quantitative morphometric information from imaging scans while minimizing time and 

resource requirements. The demand for such quantitative information is closely linked with the 

ascendency of evidence-based medicine, which depends heavily on the statistical correlation of 

quantitative results from different clinical datasets [201]. In time, if computer-assisted image 

segmentation can enable extraction of morphometric information with sufficient accuracy and time 

efficiency, we may advance to the point of performing high-throughput “big data” analyses of large 

imaging databases to discover clinically relevant associations between imaging-based phenotypic markers 

and other clinical endpoints, much as this approach is currently applied to high-throughput genome-wide 

analyses in search of novel clinically-relevant genetic biomarkers [202-205]. 

Among a wide range of potentially extractable morphometric biomarkers from imaging scans, 

lesion and organ size stand out as important targets due to the historical use of lesion and organ size 

information as a marker of disease presence, severity, and response to treatment [206-209]. Splenic 

volume is an intriguing biomarker on which to test computer-assisted segmentation techniques because of 

its intersection with a wide array of disease states and because of the special methodologic challenges 

associated with segmenting this particular organ. Quantitative estimates of spleen size have been of 

clinical interest for decades [210], but computer-assisted labeling of the spleen has been difficult due to 

wide variation between subjects in splenic size, shape, and geometric orientation within the abdomen. 
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Due to these difficulties, multi-atlas approaches have been pursued for identifying and labeling 

the spleen [20]. Briefly, this approach involves registering multiple previously labeled CT scans (atlases) 

to the target scan, selecting the reference scans from the atlases that are most similar to the target, and 

then using a statistical algorithm to combine the atlas labels from the reference scans to the target. This 

approach is promising for labeling anatomical structures in the abdomen because (a) it can be adapted to 

structures with variable image intensity and appearance, (b) it is robust to different scanning parameter 

settings, and usually free from interactive initialization (e.g., manual positioning of region of interest), 

and (c) it can be augmented by transferring newly segmented scans into existing atlases, thus allowing the 

algorithm to become “smarter” over time [78].  

The purpose of this study was to evaluate the accuracy and time efficiency of the multi-atlas 

segmentation technique for estimating spleen volumes on clinically-acquired CT scans. Since preliminary 

work suggested that multi-atlas labeling performs exceptionally well in a majority of scans but poorly in a 

small subset of outliers, we investigated two “pipelines” for using multi-atlas labeling to generate splenic 

volumes: one pipeline consisted of computer-assisted multi-atlas segmentation on all scans, while another 

pipeline consisted of computer-assisted segmentation supplemented by manual segmentation for scans 

that failed a rudimentary and high-level visual quality check (Figure IX.1). We also evaluated two more 

traditional methods for quickly estimating splenic volume: a single-dimension craniocaudal measurement 

and a three-dimensional splenic index, both transformed into volume estimates by linear regression 

equations found in the literature [211]. We compared the accuracy of these four approaches for estimating 

splenic volume against ground truth values established by manual segmentation. Furthermore, since intra-

subject changes in splenic volume over time may be a clinically relevant biomarker in certain settings 

[212, 213], we also compared the accuracy of these four approaches for estimating the change in splenic 

volume from prior measures for the same subject. Finally, we compared the average time for all pipelines, 

including manual segmentation, to generate splenic volumes.  
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2. Methods and Materials 

2.1. Data acquisition 

Under institutional review board supervision and in compliance with HIPAA requirements, we 

obtained all contrast-enhanced CT scans performed at our institution for a recently completed phase 2 

clinical trial of an investigational agent for metastatic colorectal cancer. The clinical trial cohort included 

78 unique patients, all of whom had from one to eight scans during the trial, for a total of 294 abdominal 

CT scans. Imaging was acquired on different scanners, with varying fields of view (from 280 x 280 x 175 

to 500 x 550 x 780 mm3), in-plane resolution (from 0.54 x 0.54 to 0.98 x 0.98 mm2), slice thickness (from 

1.5 mm to 7.0 mm), and IV contrast amounts (from 70 to 120 mL iohexol 350, GE Healthcare, 

Waukesha, WI). Using the DCM2NII tool of the MRIcron package [214], the scans were converted from 

DICOM into NIFTI format for image processing. A portion of the datasets (75 out of 294) has been 

reported in previous technical studies [42, 44, 45]. In this manuscript, we performed our first clinical 

study with a larger datasets.  

 

Figure IX.1. Overview of pipelines for estimating spleen volumes. 
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2.2. Manual segmentation (Pipeline 1) 

An experienced research associate manually segmented the spleen on all 294 scans to obtain 

ground truth splenic volumes. Briefly, each scan was opened in the MIPAV software (NIH, Bethesda, 

MD [153]), and spleen outlines were delineated on every axial slice using an electronic pen and tablet 

device (Wacom Intuos, Vancouver, WA). Spleen volumes were derived by filling the regions enclosed by 

the spleen outlines and multiplying the counts of the labeled spleen voxels by the voxel size of the scan. A 

radiologist on a volumetric basis verified all splenic contours. The time from starting the labeling process 

to calculating the splenic volume was tracked for each scan. 

Additionally, a subset of 74 scans was manually labeled by a second research associate in order to 

assess the inter-rater reliability of the manual segmentation process.  This second research associate 

followed the same outline-filling and volume-measuring process as described above.  

2.3. Computer-assisted segmentation (Pipeline 2) 

Automated segmentation of the spleen was performed for all scans using a recently published 

multi-atlas label fusion technique [44]. Briefly, 65 scans were randomly selected from among the baseline 

scans (i.e., first time point of the clinical trial) to serve as the reference atlases. For each target image of 

the 294 CT scans, 65 or 64 non-rigid registrations [95] (excluding the target itself if it was within the 

atlases) were performed, through which the manually labeled spleens were propagated from the atlases to 

the target. Atlas selection followed by statistical label fusion was performed to yield the estimated spleen 

segmentation by combination of the registered spleen labels. Specifically, the atlases were iteratively 

evaluated and selected based on the volumetric overlap with the intermediate result across the remaining 

atlases using an Expectation-Maximization scheme, where the intermediate result was a majority-voted 

fusion of the remaining registered atlases adjusted by the spleen likelihood on the target scan given a 

Gaussian mixture model (trained with 10 of the 65 atlases) of the image contexts [42]. Joint label fusion 

[134] was employed on the selected atlases to yield the final segmentation; the voxel-wise decisions were 

based on a weighted voting of the atlases, where the weights were derived on each voxel for each atlas to 
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minimize the correlated errors across the atlas images in local neighborhoods. The resultant labeled 

regions (Figure IX.2) were then used to calculate the estimated splenic volume by multiplying the counts 

of the labeled spleen voxels by the voxel size of the scan. The total time of manual interaction for running 

the spleen segmentation and calculating the splenic volume for each scan was tracked.  

2.4. Computer-assisted segmentation with manual labeling for outliers (Pipeline 3) 

Pipeline 3 simulated a workflow in which manual segmentation was used only for those 

computer-segmented scans that failed a rudimentary visual quality check. The quality check, performed 

on all computer-segmented scans, consisted of overlaying the spleen segmentation result on single axial, 

coronal, and sagittal plane CT slices through the middle of the spleen (as shown in Figure IX.3). Based 

on qualitative judgment, a scan failed the quality check if its segmentation on at least one slice appeared 

to capture less than 50% of the true underlying structure.).  

If a scan passed the quality check, the computer-assisted splenic volume was accepted. If a scan 

failed the quality check, the splenic volume from manual segmentation (Pipeline 1) was used. Time per 

 

Figure IX.2. Illustration of the required measurements from different pipelines for estimating the 

spleen volume. Pipeline 2 and 3 extract the whole spleen volume, while pipelines 4 and 5 measure 

splenic diameters along different axes. 
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scan for this pipeline was computed as the average time required to perform the quality check plus the 

average time to segment the images and generate a splenic volume (including all required manual 

interactions).  

2.5. Unidimensional and splenic index measurements (Pipelines 4 and 5) 

An experienced research associate extracted linear measurements of spleen size on all scans 

following the earlier work of Bezerra et al. [211], who compared different linear spleen measurements 

and indices and presented transfer equations correlating these measurements with splenic volumes. In 

Pipeline 4, a unidimensional measurement of craniocaudal spleen length (L) was extracted as described in 

[211] by multiplying the number of axial sections in which the spleen was visualized by the thickness of 

the sections (Figure IX.2); spleen length was then converted into a splenic volume using the linear 

regression equation L = (0.0126 x Volume) + 5.8006, again from [211]. In Pipeline 5, a three-dimensional 

splenic index (SI) was extracted as described in [211] by multiplying craniocaudal spleen length (L) by 

the maximum axial plane width (W) on any section (typically in oblique sagittal plane, see Figure IX.2) 

by the maximum axial plane thickness (T) on any section (perpendicular to W, see Figure IX.2); the 

resultant splenic index (SI = L x W x T) was then converted into a splenic volume using the linear 

 

Figure IX.3. Quality assurance of the computer assisted segmentation in Pipeline 3 was 

performed by overlaying the spleen segmentation result on single axial, coronal, and sagittal CT 

slices through the middle of the spleen.  Upper row: a successful case where the automated labels 

were used.  Lower row: a failure case where manual correction was required. 
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regression equation SI = (2.7036 x Volume) + 0.4776, again from [211]. The times to generate splenic 

volumes were tracked separately for Pipelines 4 and 5.  

2.6. Statistical analysis 

The following set of metrics were used to evaluate segmentation accuracy: Dice similarity 

coefficient (DSC) [146], Pearson correlation, R-squared, and absolute and percent deviation of splenic 

volumes from ground truth. First, in order to assess the inter-rater reliability of the manual segmentation 

process in Pipeline 1, these accuracy metrics were computed for the subset of 74 scans in Pipeline 1 that 

underwent segmentation by two independent research associates.  Then, to evaluate the ability of 

Pipelines 2-5 to generate point estimates of splenic volume, the accuracy measures were computed for 

each Pipeline using the complete set of 274 manually segmented scans (Pipeline 1) as the ground truth.  

To evaluate the ability of Pipelines 2-5 to estimate changes in splenic volume between successive 

measures for an individual subject, the accuracy metrics were again computed for Pipelines 2-5 using the 

information from Pipeline 1 as the ground truth.  These computations were performed both for change in 

splenic volume from baseline (i.e., first time point of the clinical trial) and for change from the most 

recent prior scan. 

One-tail Wilcoxon signed rank tests were performed to compare the accuracy measures (DSC and 

absolute deviation) if applicable. The significance tests were performed again for the time cost between 

Pipelines 3-5. Bland-Altman plots were constructed for each of Pipelines 2-5 to depict the agreement 

against Pipeline 1 on the point estimates of splenic volume (Figure IX.4).   

3. Results 

3.1. Inter-rater reliability of manual segmentation 

Metrics for Pipeline 1 inter-rater reliability are presented in Table IX.1. The manual spleen 

segmentation demonstrated high reproducibility with an average DSC of 0.96 between labels from two 
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individual raters. The extract splenic volume sizes were also highly correlated in terms of the Pearson 

correlation and R-squared.  

3.2. Point estimates of splenic volume  

For Pipeline 2, the computer-assisted segmentation achieved a DSC of 0.90 ± 0.11 against the 

manual segmentation. 20 out of 294 scans were below 0.70 in DSC. When performing Pipeline 3, 22 out 

of 294 scans failed the visual quality check and required re-labeling; this approximately matched the 

number of scans with low DSC values. With outlier correction, Pipeline 3 achieved a DSC of 0.93 ± 0.07, 

and substantially better agreement in spleen volume measurement than Pipeline 2 in terms of Pearson 

 

Figure IX.4. Bland-Altman plots for different spleen volume estimation methods using pipelines 

2-5. On each plot, the horizontal axis represents the mean volume between the ground truth and 

the estimation, while the vertical axis indicates the difference in volume from the ground truth to 

the estimation. The mean in difference, and a confidence interval of ± 1.96 standard deviation 

(SD) are highlighted. 
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correlation (0.98 vs. 0.72) and R-Squared (0.98 vs. 0.51).  

Splenic volume estimation using 3-D splenic index (Pipeline 5) performed better than 1-D splenic 

length (Pipeline 4).  Close values of Pearson correlation and R-squared were observed between Pipelines 

3 and 5, although Pipeline 3 yielded a significantly smaller (p < 0.05) absolute deviation of estimated 

volume from ground truth.  Among Pipelines 2-5, Pipeline 3 provided the best agreement with manual 

Table IX.1. Accuracy and Time Results for Each Pipeline. 

Result 

Manual 

segmentation 

(Pipeline 1)a 

Computer 

segmentation 

for all scans 

(Pipeline 2) 

Computer 

segmentation 

with manual 

segmentation 

of outliers 

(Pipeline 3) 

1-D length 

(Pipeline 4) 

3-D splenic 

index 

(Pipeline 5) 

Accuracy (point estimates) 

 Dice similarity 

coefficient 

0.96 ± 0.01 0.90 ± 0.11 0.93 ± 0.07** N/A N/A 

 Pearson correlation 0.9997 0.7151 0.9888 0.8613 0.9765 

 R-squared 0.9993 0.5114 0.9778 0.7435 0.9535 

 Absolute deviation of 

volume from ground 

truth (cm3) 

7.25 ± 7.29 64.66 ± 

263.93 

23.70 ± 

48.98** 

111.02 ± 

168.48 

46.92 ± 

66.37 

Accuracy (change from baseline) 

 Pearson coefficient N/A 0.5556 0.8741 0.4839 0.8178 

 R-squared N/A 0.3087 0.7641 0.2717 0.7437 

 Absolute deviation of 

volume change from 

ground truth (cm3) 

N/A 46.70 ± 84.86 28.24 ± 

49.55** 

81.62 ± 

107.82 

38.11 ± 

68.01 

Accuracy (change from most recent prior) 

 Pearson coefficient N/A 0.6532 0.8094 0.4825 0.7694 

 R-squared N/A 0.4267 0.6551 0.2590 0.6597 

 Absolute deviation of 

volume change from 

ground truth (cm3) 

N/A 38.04 ± 67.07 26.33 ± 

52.12** 

64.28 ± 

81.64 

33.95 ± 

59.34 

Time cost 

 Manual interaction 

time (averaged per 

scan) 

11 min 5 sec 1 min* 1 min 5 sec 1min 30 sec 

a measured between the labels from two independent raters on a subset of 74 scans 

* Dominant at a p<0.05 using one-tail Wilcoxon signed rank test between Pipelines 3-5  

** Dominant at a p<0.05 using one-tail Wilcoxon signed rank test (comparing to the second best) 
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segmentation as depicted by the Bland-Altman plots (Figure IX.4).  

3.3. Estimates of change in splenic volume  

For both change from baseline and change from most recent scan, Pipeline 3 again produced the 

most accurate results, with Pipeline 5 the second most accurate. In general, the estimates for change in 

splenic volume were not as accurate as the single point estimates for splenic volume.  

3.4. Time costs 

Table IX.1 reports the manual interaction time for each method. Pipeline 3 included 50 seconds 

for manual labeling, 5 seconds for running segmentation program, and 5 seconds for quality assurance. 

For Pipelines 4 and 5, the time include an average of 39 seconds overhead time to search for the scan (by 

medical record number and scan date), load the scan, cache the images for analysis, and close the scan. 

4. Discussion 

This study demonstrates the feasibility of using computer-automated segmentation to extract 

spleen volumes on large CT datasets. Pipeline 3 – i.e., computer segmentation for a majority of scans and 

manual segmentation for a minority of easily recognized outliers – was dominant among Pipelines 2-5 in 

terms of both accuracy and time cost, achieving a Pearson correlation coefficient of 0.99 and an average 

absolute deviation of 23.70 cm3 from ground truth spleen volumes at a time cost of only 1 minute per 

scan. This approach was superior to computer segmentation (Pearson correlation 0.72, absolute deviation 

64.66 cm3, time cost 5 seconds per scan), unidimensional measurement (Pearson correlation 0.86, 

absolute deviation 111.02 cm3, time cost 1 minute 5 seconds per scan), and 3-D splenic index 

measurement (Pearson correlation 0.98, absolute deviation 46.92 cm3, time cost 1 minute 30 seconds per 

scan). These results show that a hybrid approach combining fully automated processing with manual 

correction can enable generation of accurate spleen volumes with reasonable time efficiency.  

In reviewing the computer-automated segmentations, we found that 90% of the spleen volumes 

from Pipeline 2 were highly accurate, but about 10% of outliers were highly inaccurate. Typical outliers 
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include spleens with large volumes (at least twice as the average), and those abut other organs (liver and 

left kidney). These outlier segmentations were easily spotted with a rudimentary visual quality check, 

however, and when these outliers were manually segmented, the average time for manual interaction was 

still less than Pipelines 4 and 5.  

The presented computer-assisted segmentation approach achieved spleen volume accuracies 

comparable to other recent related works. Wolz et al. used a hierarchical scheme of multi-atlas 

segmentation and achieved a DSC of 0.92 for spleen [28]. Linguraru et al. presented a spleen 

segmentation tool with an average DSC of 0.95 using probabilistic atlases followed by the correction of 

shape, location, and contrast enhancement [20]. Okada et al. modeled the inter-organ relationship of shape 

and location in the abdomen, and yield the spleen segmentation with a DSC of 0.93 [181]. We note that 

unlike other prior attempts, our dataset was comprised of clinically acquired CT scans at conventional 

doses.  

The presented multi-atlas label fusion approach may be further improved from two perspectives. 

First, pre-localizing the spleen region of interest (ROI) can largely decrease the registration failures and 

thus enhance the segmentation performances; this enhanced version has been implemented where better 

accuracies were observed [45]. Second, a prospective feedback loop can be constructed where datasets 

failing the quality check would be appended to the atlas set. For the multi-atlas label fusion technique, it 

is critical to select atlases similar to the scan, especially when there are large shape and context variations 

for the structure of interest. A growing atlas set can benefit spleen segmentation on later datasets by 

providing larger coverage of spleen variations to capture the extreme cases. For example, in this study, 

most of the scans requiring re-labeling had a large spleen volume, which was beyond the capability of the 

current atlas set. It can be expected that an augmented atlas set including these scans could capture large 

spleens better in the future.  

We see a variety of potential clinical applications for this technique. Spleen volumes are relevant 

biomarkers for the presence of many disease processes (e.g., small spleen in sickle cell disease; large 

spleen in portal hypertension, certain hematologic malignancies, infiltrative processes such as Gaucher’s 
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and glyocogen storage diseases, and infections such as HIV and infectious mononucleosis). Tracking 

spleen volume changes over time has a potential clinical role for monitoring disease progression, as a 

prognostic indicator for disease complications (e.g., esophageal varices), and as a biomarker for treatment 

response (e.g., response to therapy in myelofibrosis [213, 215]). While spleen volumes are currently most 

often described on clinical CT reports in qualitative terms, quantification offers the potential for increased 

diagnostic accuracy, decreased subjectivity of interpretation, and higher sensitivity for subtle and 

potentially clinically relevant changes. Computer-assisted segmentation applied to large population 

datasets has the potential to improve on currently accepted reference values for abnormal spleen volumes 

adjusted for covariates including age, gender, and body mass index. Finally, our proposed multi-atlas 

fusion approach provides information not just on splenic volume, but also on geometric features 

associated with the shape of the organ itself, which may provide for interesting and relevant correlations 

when applied to high-throughput “big data” phenotype-clinical analyses. 

In summary, we presented a hybrid computer-assisted segmentation method with manual 

segmentation of outliers that provides accurate estimation of spleen volumes at a reasonable time cost and 

opens the opportunity for a variety of potential clinical applications. We expect our multi-atlas fusion 

algorithm to improve – and thus the need for manual segmentation of outliers to decrease –with 

increasing size of the reference atlas set. We envision a future in which this technique may be 

incorporated into PACS software for routine reporting of quantitative morphometric information, not only 

for spleen but for other organs and for discrete lesions as well. The path for clinical translation likely 

involves incorporation first into clinical trials and specialized core laboratories, and subsequently into 

broad clinical use as time efficiencies improve. 
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CHAPTER X  

EVALUATION OF SIX REGISTRATION METHODS FOR THE HUMAN ABDOMEN ON 

CLINICALLY ACQUIRED CT 

1. Introduction 

The human abdomen is an essential, yet complex body space. Bounded by the diaphragm 

superiorly and pelvis inferiorly, supported by spinal vertebrae, and protected by muscular abdominal wall, 

the abdomen contains organs involved with blood reservation, detoxification, urination, endocrine 

function, and digestion, and includes many important arteries and veins. Computed tomography (CT) 

scans are routinely obtained for the diagnosis and prognosis of abdomen-related disease; yet no specific 

image registration tools for the abdomen have been developed.  

General-purpose registration tools (initially designed for volumetric brain registration) are being 

applied to abdominal CT scans [28, 44] On abdominal CT, inter-subject variability (e.g., age, gender, 

stature, normal anatomical variants, and disease status) can be observed in terms of the size, shape, and 

appearance of each organ. Soft anatomy deformation further complicates the registration by varying the 

inter-organ relationship, even within individuals (e.g., pose, respiratory cycle, edema, digestive status). 

Hence, characterization of tools specifically on abdominal structures is necessary, as opposed to relying 

on brain-centric reviews [93].  
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This work follows the framework of Klein et al. [93], in which 14 nonlinear registration tools and 

one linear registration algorithm were applied to 80 MRIs of the human brain. Manual segmentations of 

regions are used to assess volumetric overlap and surface-based criteria separately from the intensity-

based metrics that drive registration. In related work, West et al. [216] established a platform for 

assessing landmark-based registrations on retrospective intermodality (MR, CT, and PET) brain images, 

where 12 methods were evaluated based on target registration error [217]. Murphy et al. [218] compared 

 

Figure X.1. Illustration of 13 organs of interest on volumetric rendering and 2-D slices of axial, 

coronal and sagittal orientations. 



151 

 

20 registration algorithms to 30 thoracic CT pairs in the EMPIRE10 challenge by metrics specified for 

pulmonary area alignment and correspondence.  

This work expands on [41] by including more datasets (100 vs. 20), adjusting the label sets (the 

previous individual label of the adrenal glands were separated into two labels: right and left), using a 

different registration framework (previously all non-rigid registrations were initialized by one affine 

registration tool), and presents more comprehensive statistical analyses (see in methods section) (Figure 

X.1). We selected 5 registration tools that have been successful in volumetric brain registrations, 

including FSL [219], IRTK [95], NiftyReg [188], ANTs [96], and DEEDS [220] due to their academic 

popularity and general availability. In total, six registration methods were evaluated with two different 

parameter settings for ANTs. For each registration tool, we applied affine registration followed by non-

rigid registration. Registration results from both stages were evaluated based on Dice similarity 

coefficient (DSC [146]), mean surface distance (MSD), and Hausdorff distance (HD). We note that 

substantial registration errors can be expected in this study since no image registration tools are tailored 

 

Figure X.2. Registration pipeline. Given a pair of target image and a source atlas (image and 

labels), an affine registration was applied followed by a non-rigid registration for each of the six 

evaluated registration methods. The registered labels were validated against the ground truth 

(manual labels) in terms of DSC, MSD, and HD. 
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for abdomen as for the brain and thorax registrations. We also note that the efficacy of non-rigid 

registrations are greatly impacted by the baseline affine registrations as a lesson learned from [41], thus 

we modified the registration framework to use affine and non-rigid registration from the same registration 

tool.  

2. Methods 

The registration evaluation process follows the flowchart in Figure X.2.  

2.1. Data Acquisition 

Under institutional review board supervision, 100 abdominal CT scans were collected 

anonymously from two clinical trials. From an ongoing colorectal cancer chemotherapy trial, the baseline 

session of the abdominal CT scans were randomly selected from 75 metastatic liver cancer patients; the 

remaining 25 scans were acquired from a retrospective post-operative cohort with suspected ventral 

hernias. All 100 scans were captured during portal venous contrast phase with variable volume sizes (512 

x 512 x 53 ~ 512 x 512 x 368) and field of views (approx. 280 x 280 x 225 mm3 ~ 500 x 500 x 760 mm3). 

The in-plane resolution varies from 0.54 x 0.54 mm2 to 0.98 x 0.98 mm2, while the slice thickness ranged 

from 1.5 mm to 7.0 mm. All image scans and their associated labels were converted to NIFTI format with 

the DCM2NII tool of the MRIcron package [214]. The image orientations in the NIFTI header describe 

the relative position of patients with respect to the scanner. Due to the inconsistencies of scanning 

protocols, the images were re-oriented to standard orientation with the FSL package before any further 

processing [219]. 

Thirteen abdominal organs were considered regions of interest (ROI), including spleen, right 

kidney, left kidney, gall bladder, esophagus, liver, stomach, aorta, inferior vena cava, portal and splenic 

vein, pancreas, left adrenal gland, and right adrenal gland. The organ selection was essentially based on 

[18]. Suggested by a radiologist, we excluded the heart for lack of full appearance in the datasets, and 

included the adrenal glands for clinical interests. These ROIs were manually labeled by two experienced 
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undergraduate students, and then verified by a radiologist on a volumetric basis using the MIPAV 

software [153]. A subset of 13 scans was randomly selected, and independently labeled by each of the 

two raters. Mean overall DSC overlap between the raters (i.e., inter-rater variability) was 0.87 ± 0.13 

(0.95 ± 0.04 when considering only the spleen, kidneys, and liver).  

2.2. Registration Pipeline 

General-purpose registration software typically provides options and parameters for specific 

applications. Six registration methods from six registration tools were evaluated in this study, and 

indicated as FSL, ANTS-CC, ANTS-QUICK-MI, IRTK, NIFTYREG, and DEEDS respectively. All 

registration commands evaluated in this study were verified by the developers of the corresponding 

registration software.  

All tested methods follow a standard registration pipeline: For each image pair, source (moving / 

floating) and target (fixed / reference) images, the registration was driven by the similarity metrics 

between their intensity images. The registration was divided into two stages - affine registration that 

aligned the two images with co-linearity persevering transformation (translation / rotation / scaling 

/shearing), followed by a non-rigid registration that refined the local correspondence with deformation 

models. Based upon the transformation / deformation generated from the intensity-driven registration, the 

labels associated with the source image were propagated to the target space with nearest neighbor 

interpolation as the estimate of the target structures.  

We briefly describe the registration setups for each method without detailed parameters. 

 FSL used the FLIRT and FNIRT for affine and non-registration, respectively. The affine 

registration with 9 degrees of freedom (DOF) was initialized by a rigid registration. Both 

rigid and affine registrations constrained the search of rotations with “-nosearch”. 

 ANTS-CC and ANTS-QUICK-MI used different parameter settings with ANTs package. 

The parameters were derived from the example scripts (antsRegistrationSyN and 

antsRegistrationSyNQuick, respectively) in the ANTs package. ANTS-CC used cross-
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correlation as the image similarity metric, while ANTS-QUICK-MI used mutual 

information. ANTS-QUICK-MI was specified to converge with fewer iterations than 

ANTS-CC, and thus noted with “QUICK”. Both methods applied 5 levels of multi-

resolution sampling, windowed the intensity range, started with the alignment of center of 

mass, initialized the affine registration with rigid registration, and used symmetric 

normalization (SyN) transform for the non-rigid registration. Multi-thread computing was 

enabled to use two CPU cores for one registration process. 

 IRTK sequentially used rigid, affine, and non-rigid registrations. For all three procedures, 

the target padding value was set to -900 reduce the impact of the background in the CT 

scans (air with -1024 Hounsfield unit), 3 levels of multi-resolution sampling were 

applied. Assuming relatively homogenous orientations of patients’ bodies in the CT scan, 

the options of “translation_only” and “translation_scale” were specified for the rigid and 

affine registration, respectively, so that only translation (and scaling for the affine 

registration) adjustments were allowed, and the searches over rotations were prohibited. 

The B-spline control spacing free-form deformation for the non-rigid registration was set 

to be 20, 10 and 5mm for the 3 resolution levels, respectively.  

 NIFTYREG used 5 levels of multi-resolution sampling for both affine and non-rigid 

registrations. For the non-rigid registration based on block-matching approach and free-

form deformation, an upper intensity threshold of 500 was set for both target and source 

image, and the maximum iteration for convergence was limited to 1000. Multi-thread 

computing was enabled to use two CPU cores for one registration process. 

 DEEDS used 5 scale levels with grid spacing ranging from 8 to 4 voxels, displacement 

search radii from 6 to 2 steps with quantizations between 5 and 1 voxels. The 

regularization weighting was set to be 0.4. Self-similarity context descriptors [221] were 

derived, while their Hamming distance between images were used to guide the local 

displacement. All scans were resampled to an isotropic resolution of 2.2mm3, and 
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cropped to have same dimensions. The non-rigid registration is initialized using an affine 

registration that is based on the same similarity metric, a similar block-matching search 

and trimmed least squares. 

2.3. Running Registrations 

All registrations were run on an Oracle Grid cluster of twelve 64-bit Ubuntu 14.04LTS Linux 

servers. Each workstation had 12 2.8GHz cores and 48 GB RAM. Each registration was specified with 

the approximated maximum memory usage based on their computational complexity; multiple 

registrations were allocated on the memory requirement on the cluster servers, and operated in parallel. 

The memory specified in GB for FSL, ANTS-CC, ANTS-QUICK-MI, IRTK, NIFTYREG, and DEEDS 

were 20, 20, 20, 10, 10, and 5. Given 100 scans, 9900 sets of output registration can be generated for each 

method with a leave-one-out scheme. Specifically, for each target image among the 100 scans; the 

remaining 99 scans were used as source images to the target image in a pair-wise manner. However, 

during initial running trials, we found that FSL and ANTS-CC took unreasonable amount of time to 

complete (> 6 h, see Table X.1). Therefore, these two methods are only validated on a randomly selected 

subset of the datasets. Specifically, 20 target images and 20 source images were randomly selected 

without replacement from the 100 datasets, and 400 registrations were applied from all combinations of 

the source-target pairs. For the other four methods, i.e., ANTS-QUICK-MI, IRTK, NIFTYREG, and 

DEEDS all 9900 registrations were applied. In total, this study used approximately 103,800 hours of CPU 

time for registration.  

2.4. Evaluation Metrics 

DSC was used to evaluate the volumetric overlap between the estimated segmentation and the 

truth. Briefly, consider A as the segmentation volume, B the truth volume, and |∙| the 𝐿1 norm operation,  

𝐷𝑆𝐶(𝐴, 𝐵) =
2|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
 (10.1)  
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Surface error criteria characterize how far the surfaces of the estimated segmentation and the truth 

are from each other. Vertices were collected from the surfaces of both the segmentation and truth, based 

on which distances between the sets of vertices are measured in terms of their spatial coordinates. Let the 

vertices on the segmentation and truth surface be X and Y, respectively, and d(∙,∙) be an indicator of 

distance measure. Then typically, the MSD error and HD error from the segmentation to the truth can be 

measured as below. 

𝑀𝑆𝐷(𝑋, 𝑌) = 𝑎𝑣𝑔
𝑦∈𝑌

𝑖𝑛𝑓
𝑥∈𝑋

𝑑 (𝑋, 𝑌) (10.2)  

𝐻𝐷(𝑋, 𝑌) = 𝑠𝑢𝑝
𝑦∈𝑌

𝑖𝑛𝑓
𝑥∈𝑋

𝑑 (𝑋, 𝑌) (10.3)  

where sup represents the supremum, inf the infinum, avg the average. Symmetric surfaces differences 

were used in this study as they better capture errors between potentially rough surfaces, i.e., 

𝑀𝑆𝐷𝑠𝑦𝑚(𝑋, 𝑌) = ⁡
𝑀𝑆𝐷(𝑋, 𝑌) + 𝑀𝑆𝐷(𝑌, 𝑋)

2
⁡ (10.4)  

𝐻𝐷𝑠𝑦𝑚(𝑋, 𝑌) = ⁡
𝐻𝐷(𝑋, 𝑌) + 𝐻𝐷(𝑌, 𝑋)

2
 (10.5)  

All metrics were evaluated in an organ-wise manner between the registered labels (estimated 

segmentation) and the manual labels (ground truth).  

2.5. Statistical Analyses 

For each pair of methods, permutation tests were performed to examine the statistical significance 

for the overall DSC and MSD across all organs. Following [93, 222], each test provided an exact p-value 

calculated as the percentage of 𝑁 permutations that the absolute mean differences after permutation is 

larger than the original absolute mean differences between the metrics of two methods on a subset of 

independent registration pairs, where no overlap is allowed within the images (including both target and 

source images) associated with the selected registrations, and thus the correlation between registrations 

with shared scans was prevented. The tests were repeated M times with randomized selection of subsets, 

and an average p–value was obtained to indicate the significant difference between tested methods. Tests 

involving FSL or ANTS-CC (or both) selected subsets among the 20 target images and 20 source images 
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(400 registrations) that these two methods had been applied, where 10 independent registration pairs 

could be obtained for each subset. Tests within the other four methods, i.e., ANTS-QUICK-MI, IRTK, 

NIFTYREG, and DEEDS selected 50 independent registration pairs among 100 images (9900 

registrations). In both cases, we let 𝑁 = 1000 for the number of permutations, and 𝑀 = 10000 for the 

number of random selections of subsets.  

Indifference-zone ranking considers two metrics as equal when they are within a delta of one 

another, where the delta characterizes the practical difference [223]. We performed two groups of 

indifference-zone ranking to examine the practice significances for DSC and MD in an organ-wise 

manner among the non-rigid registrations of the tested methods. The first group included all methods with 

400 registrations, while second group had ANTS-QUICK-MI, IRTK, NIFTYREG, and DEEDS evaluated 

with 9900 registrations. For each organ, let 𝑖 and 𝑗 be the row and column index of an 𝐿⁡ × ⁡𝐿 matrix (𝐿 is 

6 and 4 for the first and second group, respectively), 𝐿𝑖𝑗 was assigned by the values of -1, 0, or 1, for the 

cases when the evaluation measure for the 𝑖𝑡ℎ ⁡method was at least delta less than, within delta of, or at 

least delta greater than that of the 𝑗𝑡ℎ method. The outputs were then averaged across all registrations. 

The delta value was specified for each organ on each subject based on the surface area of organs. The 

surface area of an organ label was calculated by summing up the face areas in contact with the 

background across the foreground voxels; it was adjusted by a constant coefficient to yield a delta value 

that represents the practical difference of the evaluation metric. For DSC, we used a mean delta value of 

0.05 for DSC across all organs and 7 mm for MSD. A higher indifference-zone score represents a better 

DSC performance, while a lower score was favorable for the MSD performance. 

3. Results 

Registrations were successful in terms of software error codes except for 6 out of 9900 ANTS-

QUICK-MI failed without producing output. The evaluated metrics of the affine and non-rigid outputs on 

each organ were illustrated in Figures X.3, X.4, and X.5 in terms of DSC, MSD, and HD, respectively.   
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Regarding the overall performances across all registration methods, over half of the registrations 

have the DSC values lower than 0.7 for the majority of the organs. The MSD and HD boxplots clearly 

illustrate the overbearing amount of outliers with up to 500 mm.  

 

Figure X.3. Boxplot of DSC values on 13 organs for the affine and non-rigid outputs of six 

registration methods. 

 

Figure X.4. Boxplot of MSD values on 13 organs for the affine and non-rigid outputs of six 

registration methods. 
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When comparing registration methods with each other, DEEDS presented the best overall DSC of 

 

Figure X.5. Boxplot of HD values on 13 organs for the affine and non-rigid outputs of six 

registration methods. 

 

Figure X.6. Brightness-coded cumulative percentages based on MSD values on 13 organs for the 

affine and non-rigid outputs of six registration methods. Six methods were represented in 6 

difference colors. Each column indicates a cumulative curve for the associated organ with the 

underlying registration method; it demonstrated the percentage of included registration outputs 

along the increase of the MSD upper bound with its brightness transition from bottom to top. A 

column with quicker transition from dark to bright indicates more registration outputs with 

small MSD. 
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affine and non-rigid registration across all organs (Figure X.3). For non-rigid registration, NIFTYREG 

presented slightly higher median DSC over ANTS-QUICK-MI and IRTK, while FSL and ANTS-CC 

demonstrated overall inferiority comparing to the other three methods. On the MSD and HD boxplots 

(Figures X.4, X.5), the dominance of any registration tool is not visually apparent given the substantial 

outliers for all methods. To evaluate the results that were not catastrophic failures (i.e., those that could 

meaningfully contribute to a multi-atlas approach [28, 44]), Figure X.6 presents MSD results in the form 

of cumulative percentage, where a higher portion of samples below a certain MSD upper bound was more 

favorable, where DEEDS yields the most percentage of registrations with lower MSD. Table X.1 presents 

the overall performances of DSC, MSD, and HD averaged across all organs for all tested methods on the 

subset of 400 registrations, while Table X.2 shows the metrics for ANTS-QUICK-MI, IRTK, 

NIFTYREG, and DEEDS on all 9900 registrations; DEEDS demonstrates the best overall performances 

in both cases. The computation time was also collected in Table X.1, where ANTS-QUICK-MI and 

Table X.1. Metrics on 400 registrations for all tested methods (mean ± std). 

Method DSC MSD (mm) HD (mm) Time (min) 

FSL 0.12 ± 0.19 37.92 ± 44.11 84.28 ± 59.96 951.73 ± 201.20 

ANTS-CC 0.18 ± 0.21 27.15 ± 32.65 62.92 ± 44.60 411.60 ± 74.20 

ANTS-QUICK-

MI 

0.27 ± 0.25 15.96 ± 19.22 49.66 ± 32.96 50.18 ± 21.93 

IRTK 0.28 ± 0.26 19.07 ± 26.50 55.58 ± 39.26 220.27 ± 91.79 

NIFTYREG 0.35 ± 0.29 15.72 ± 19.16 59.59 ± 42.60 116.91 ± 34.94 

DEEDS 0.49 ± 0.26 8.63 ± 16.16 40.15 ± 32.11 3.73 ± 0.77 

Note that ANTS-CC, ANTS-QUICK-MI, and NIFTYREG used two CPU cores for each registration process. The 

mean DSC across four large organs (liver, spleen, kidneys) is 0.19, 0.31, 0.43, 0.48, 0.55, and 0.70 for FSL, ANTS-

CC, ANTS-QUICK-MI, IRTK, NIFTYREG, and DEEDS, respectively. 

Table X.2. Metrics on 9900 registrations for four  tested methods (mean ± std). 

Method DSC MSD (mm) HD (mm) 

ANTS-QUICK-MI 0.23 ± 0.23 20.68 ± 26.14 57.44 ± 39.85 

IRTK 0.26 ± 0.26 20.36 ± 24.01 58.71 ± 37.33 

NIFTYREG 0.35 ± 0.29 16.98 ± 21.58 62.52 ± 44.29 

DEEDS 0.47 ± 0.26 9.79 ± 17.44 43.18 ± 35.08 

Note that the mean DSC across 4 large organs (liver, spleen, kidneys) is 0.38, 0.46, 0.55, and 0.68 for ANTS-

QUICK-MI, IRTK, NIFTYREG, and DEEDS, respectively. 
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NIFTYREG could complete in approximately 1h and 2h, respectively using 2 CPU cores, and DEEDS 

used the least computational time (< 4 min).  

The permutation tests found that the superiority of DEEDS in non-rigid registration was 

significantly better (𝑝 < 0.05) than all other methods in DSC, and the majority of others in MSD (Tables 

X.3, X.4). The indifference-zone ranking also indicated that DEEDS yielded the best registration 

performances in an organ-wise manner. NIFTYREG presented the second best results, closely followed 

by ANTS-QUICK-MI and IRTK, while FSL and ANTS-CC were last (Figure X.7).  

One registration sample with median overall DSC performances is shown in Figure X.8. The 

volumetric rendering of the registered labels from 6 methods was demonstrated and compared with the 

manual labels of the target scan to provide a qualitative sense of the registration quality. While large 

Table X.3. Averaged p-values of permutation tests between 6 methods performed on 400 

registrations. 

Method FSL ANTS-CC ANTS-

QUICK_MI 

IRTK NIFTYREG DEEDS 

FSL  0.340 0.026 0.057 0.014 0.002 

ANTS-CC 0.371  0.098 0.052 0.016 0.001 

ANTS-QUICK-MI 0.077 0.266  0.515 0.236 0.010 

IRTK 0.216 0.183 0.524  0.249 0.003 

NIFTYREG 0.144 0.169 0.517 0.465  0.019 

DEEDS 0.032 0.030 0.230 0.044 0.106  
Note the entries in the upper triangular part represent p-values tested on DSC, while those in the lower triangular 

part were tested on MSD. The shaded entry indicates significant difference (p < 0.05) between the correspondent 

methods of the row and column. 

Table X.4. Averaged p-values of permutation tests between 4 methods performed on 9900 

registrations 

Method ANTS-QUICK-MI IRTK NIFTYREG DEEDS 

ANTS-QUICK-MI  0.174 0.000 0.000 

IRTK 0.501  0.002 0.000 

NIFTYREG 0.255 0.272  0.000 

DEEDS 0.024 0.019 0.071  
Note the entries in the upper triangular part represent p-values tested on DSC, while those in the lower triangular 

part were tested on MSD. The shaded entry indicates significant difference (p < 0.05) between the correspondent 

methods of the row and column. 
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misalignment from all methods can be identified without much effort, ANTS-QUICK-MI, IRTK, 

NIFTYREG, and DEEDS have the majority of the registered organs located at the close positions, and 

scaled in the similar sizes with respect to those in the target image. Visually, the organ shapes of target 

are best captured by DEEDS.   

Three pairs of registrations were selected with top 5%, ± 5% around median, and bottom 5 % 

overall DSC performances, respectively. Registration results on these cases are illustrated in Figure X.9, 

where a coronal slice for each case is selected for the target, source, and all registered images. Based on 

the overlaid organ labels and the underlying images, DEEDS presents the overall best registrations. 

Meanwhile, the registration performances are found substantially affected by the similairities between the 

target and source images including the image FOVs, patient body sizes, organ shapes, and secondary 

organ complexities (intestines and vessells).  

 

Figure X.7. Indifference-zone map for DSC and MSD. For both metrics, the indifference-zone 

ranking was applied on 400 registrations for all six methods, and 9900 registrations for ANTS-

QUICK-MI, IRTK, NIFTYREG, and DEEDS. A higher value for the DSC indifference-zone map 

indicates better performance, while a lower value is more favorable for MSD. 
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4. Discussion 

In this study, we analyzed 6 registration methods from 5 different general-purpose image 

registration toolkits and applied them to abdominal CT scans. Evaluating the volumetric overlap and 

surface errors on the registered labels on 13 organs of interests showed that the current registration tools 

were generally far from ideal, where (1) median accuracy was below 0.7 for the majority of organs, and 

(2) massive outliers indicating catastrophic registration failures were observed. Registration performances 

are found negatively affected by the dissimilairities between the target and source images including the 

 

Figure X.8. Volumetric rendering on a single subject with median overall DSC performance. The 

organ color scheme follows that in Fig. 1. 

 

Figure X.9. Illustrations of six registration methods on three registration pairs with good, 

median, and ugly performances. 
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image FOVs, patient body sizes, and organ shape, where fundamental body misalignment were observed 

(Figure X.9). Additional challenges come from the implicit discontinuity within the abdomen given the 

secondary structures (e.g., fat, muscles, bones, intestines in this study). Their variations caused large 

deformation between different organs of interest so that an affine registration can hardly align all organs 

at the same time. In addition, their extensive presence and large coverage across the abdomen could 

mislead the registration algorithms and generate undesirable deformation; for the same reason, small 

organs could be registered to the secondary structures or other large organs.  

We note that the registration results in this study could be biased towards the tested datasets. 

First, all scans were contrast enhanced, where organs could be more distinguishable from muscle and fat 

tissue. Registrations between non-contrasted scans may demonstrate additional challenges not shown with 

our datasets. Second, the population of the patients had more chances to share specific abnormalities, e.g., 

enlarged spleen and liver, defected abdominal wall. In fact, these patients could also have multiple other 

diseases, have been treated with different surgical procedures, and demonstrate various other 

abnormalities (atrophied kidney, missing gallbladder). Thus we consider the registration evaluation on our 

datasets to be biased towards challenging cases. Datasets among health subjects may yield better 

registration outcomes. On the other hand, contrasted CT scans on patients with all sorts of abdominal 

diseases are the most common image format acquired in traditional clinical trials. We thus consider the 

registration evaluation performed in this study valuable for translational research.  

Among the tested registration methods in the presented parameter settings, DEEDS provided the 

best overall performances, whose median DSC, MSD, and HD for all organs were 0.49, 4.93 mm and 

31.72 mm, respectively. The DSC metric is in favor of large structures; small disagreement in small 

structures can result in large decrease in DSC. Given that, and referred to the literature of abdominal 

organ segmentation [20, 28, 44], we can consider the ideal DSC value for large (liver, spleen, kidneys), 

medium (pancreas, stomach, aorta, inferior vena cava), and small (gallbladder, esophagus, portal and 

splenic vein, adrenal glands) organs to be 0.95, 0.85, and 0.6 respectively. Based on these criteria, even 

the best registration in this study did not provide good enough outcomes. The massive registration failures 
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further discouraged the direct individual use of the registration tools in clinical applications. However, if 

combined with pre-processing and post-processing procedures, registrations with this level of overall 

accuracy are encouraging and have chances to achieve robust end-point results. Essentially, the multi-

atlas techniques can be used to augment local interpretation of abdominal CT scans (e.g., segmentation) 

by using multiple atlas-to-target registrations. Great care must be taken to account for the registration 

outliers, where atlas selection [42, 76, 127, 141] and statistical fusion [124, 125, 133] are the keys for 

robust multi-atlas segmentation (MAS). From the perspective of MAS, registration is the bottleneck, 

especially in abdomen; a good registration tool can yield better segmentation performances.  

Based on the results shown in this study, many opportunities are open for future investigation and 

development for a registration tool tailored for abdomen. 

Firstly, although the presented registration configurations were approved by all the developers of 

the tested registration methods, further optimization was possible, e.g., in terms of levels of multi-

resolution strategy, thresholds of intensity range, use of block matching strategy in affine initialization, 

regularization on deformation, and etc. Across the tested registrations, a good combination of the 

similarity metrics (mutual information, cross-correlation, sum of squared distance, and Hamming 

distances of self-similarity context) and transformation models (B-splines and diffeomorphism) has been 

covered for deformation, while registrations using other transformation models (e.g., demons [224], 

optical flow [225]) could be evaluated by experts with these approaches in continuing analysis via the 

newly released public dataset..  

Secondly, contributions in abdominal segmentation also provide some hints in the potential 

development of abdominal registrations. While using existing registration tools for segmentation, many 

efforts have been focused on standardizing the abdomen space. Wolz et al. [28] constrained a FOV with 

25 cm along the cranial-caudal axis before registration. Linguraru et al. [20] initialized the registration by 

aligning a single landmark (xiphoid process). Okada et al. [226] and Zhou et al. [227] normalized the 

abdominal space using pre-segmented diaphragm and rib cage. Recent efforts on organ localizing [187] 

and organ hierarchical modeling [196] provide the options to minimize the impact of the substantial 
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registration errors. Piece-wise registrations/segmentations have been demonstrated with better 

performances than their body-wise counterparts [45, 228]. These pre-processing techniques provide extra 

features other than intensity-based similarity metrics, and can potentially benefit registrations for 

capturing the most desirable organ deformation.  

Thirdly, we see a new direction in fundamental design for the registration method towards the 

challenging problems in abdomen. DEEDS yields the best performance in this study, and it is 

differentiated from other methods mainly by using discrete optimization. Instead of relying on 

differentiable similarity metric in traditional continuous optimization, DEEDS subdivides the image 

domain into non-overlapping cubic blocks, and calculates the displacement for each block followed by 

displacement regularization between blocks. This type of discrete design can capture a large range of 

potential deformations, and thus coped well with the discontinuous pattern between structures of interest 

in abdomen. Further exploration in the discrete optimization can be expected to benefit the abdominal 

registrations.  

Lastly, we consider that a structured challenge regarding registration in abdomen using the 

presented datasets will further boost the development of abdomen-specific and/or registration algorithms. 

More comprehensive benchmarks to evaluate the efficacy of capturing the abdominal organs will be 

required to solidify the impact of this potential challenge. 

5. Conclusion 

This manuscript presents the current state of the registration performances on capturing 13 

abdominal organs on CT scans by evaluating six academically popular registration methods without 

extensive optimizations. By doing this study, we expect to (1) recommend a best registration method to 

the registration users for their abdomen-related applications, and (2) suggest future directions for 

registration developers towards more robust and accurate registration algorithms in abdomen. 

Specifically, DEEDS is currently the best choice for registration users to perform abdominal organ 
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segmentation. Registration developers can focus on the perspectives of discrete optimization, non-

intensity-based feature derivation, and parameter configurations. 
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CHAPTER XI  

IMPROVING MULTI-ATLAS ABDOMINAL ORGAN SEGMENTATION VIA ORGAN-WISE 

NORMALIZATION 

1. Introduction 

The major challenge in abdominal organ segmentation on computed tomography (CT) lies in the 

variations of organ shapes, appearances, and locations among subjects. While recent efforts of multi-atlas 

segmentation (MAS) achieved reasonable results for abdomen with the concentration on atlas selection 

[42] and label fusion [28] given substantial registration errors, huge potentials are left to further improve 

the segmentation via optimizing the target-atlas correspondences.  

Abdominal organ segmentation is a problem with intrinsic discontinuities; retrieving the organ 

entities is of the most interest as opposed to mapping the internal and surrounding tissues. Traditionally, 

image-based registrations [28, 42] or landmark-based deformation based on pre-segmented structures [18, 

27, 196] are commonly applied to align atlas images with a target on a volume basis. Designed to 

preserve the global topology, these body-wise normalization approaches fail to characterize the intrinsic 

discontinuities between the organs of interest, and thus result in localization errors that greatly reduce the 

overall accuracy and robustness. 

Organ-wise normalization, on the other hand, handles each organ within its regions of interest 

(ROI), and could provide more desirable target-atlas correspondences if the organs could be automatically 

localized (Figure XI.1) [187]. Hitherto, the RF organ localization has not been incorporated into a MAS 

framework.  
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The primary contributions of this manuscript are as follows (Figure XI.2). (1) We integrate RF 

organ localization with traditional image-based registration to perform organ-wise normalization. (2) We 

employ the state-of-the art atlas selection (SIMPLE context learning [42]) and label fusion (joint label 

fusion, JLF [134]) techniques on the organ-wise normalized atlases. (3) Finally, we combine these 

contributions to create a new MAS framework to segment 12 abdominal organs on cancer and hernia 

patients. 

2. Methods 

2.1. Data 

Under Institutional Review Board (IRB) supervision, 30 scans were randomly selected from a 

combined cohort with metastatic liver cancer and ventral hernias. The 30 scans were captured during 

portal venous contrast phase with variable volume sizes (512 x 512 x 61 ~ 512 x 512 x 198). The in-plane 

 

Figure XI.1. (upper lane) Traditional body-wise registration; (lower lane) organ-wise 

registrations. Note the regions of interest (ROI) on the target are automatically estimated, 

whereas those on the atlas are derived from the manual segmentation. 



170 

 

resolution varies from 0.59 x 0.59 mm2 to 0.98 x 0.98 mm2, while the slice thickness ranges from 2.5 mm 

to 7.0 mm. Twelve abdominal organs (see in Figure XI.3) were manually labeled by two experienced 

undergraduate students, and verified by a radiologist on a volumetric basis using the MIPAV software 

(NIH, Bethesda, MD). Ten of the 30 subjects were randomly selected as the training sets for organ 

localization, and context learning; the remaining 20 were used to validate segmentation results.  

2.2. Organ Localization 

Organs of interest were localized within bounding boxes following [187]. Briefly, let ℳ be a set 

of organ classes, then each organ 𝑚 ∈ ℳ in a CT volume is localized via the boundary positions (in mm) 

of its bounding box, represented with a six-dimensional vector 𝒃𝑚 = (𝑏𝑚
𝐿 , 𝑏𝑚

𝑅 , 𝑏𝑚
𝐴 , 𝑏𝑚

𝑃 , 𝑏𝑚
𝐻 , 𝑏𝑚

𝐹 ). Let 𝒖 =

(𝑢𝑥 , 𝑢𝑥, 𝑢𝑦, 𝑢𝑦, 𝑢𝑧, 𝑢𝑧) indicate the position of each voxel within a CT volume, the voxel displacement 

towards the boundaries of organ 𝑚 is then 𝒅𝑚(𝒖) = 𝒖 − 𝒃𝑚(𝒖), where both 𝒅𝑚 and 𝒃𝑚 are considered 

as functions of voxels. Consider a regression forest containing 𝑇 decision trees, where each tree 𝑡 presents 

an ensemble of classifiers through its split nodes. Let 𝑓(𝒖; 𝜃𝑗) > 𝜏𝑗 be the binary test associated with the 

 

Figure XI.2. Flowchart of the proposed method. Given a target image, organs of interest are first 

localized using regression forests techniques. Organ-specific cropped atlases are then registered 

to the estimated ROI using non-rigid image registration. Regularized with a body-wise prior of 

the target learned through context learning, atlas selection is performed on the registered 

cropped atlases. Joint label fusion characterizes the correlated errors among the selected atlases, 

and yields the final segmentation. 
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𝑗𝑡ℎ node, where 𝑓(𝒖; 𝜃𝑗) and 𝜏𝑗 represent the feature operator and threshold, respectively. Based on the 

binary tests, the incoming voxels are classified into left and right child nodes recursively, until less than 

𝑛𝑚𝑖𝑛 voxels are left or a maximum tree depth 𝐷 is reached. Given the randomness of the possible feature 

operator, a pair of feature operator and threshold to split the sample points is optimized for each node that 

maximizes the information gain. The leaf nodes are indexed by 𝑙 across the forest. Here we followed [187] 

for the choices of feature operator and the criteria of node optimization.  

For forest training, given known 𝒃𝑚 for all voxels, the training process optimizes the selection of 

𝑓(𝒖; 𝜃𝑗) and 𝜏𝑗 for each split node 𝑗 (see section 2.3), and stores the assumed Gaussian distribution of 

voxel positions 𝑝(𝒅𝑚|𝑙) for each leaf node 𝑙 in the form of mean 𝒅̅𝑚 and covariance Λ𝑚. In this study, 10 

subjects were used for forest training on 𝑇 = 4 trees. 

For forest testing, each test voxel 𝒖 is pushed through all trees with trained binary tests to reach 

the leaf nodes. Given that 𝒃̅𝑚(𝒖) = 𝒖 − 𝒅̅𝑚(𝒖) , the distribution of the absolute boundary position 

𝑝(𝒃𝑚|𝑙) can be derived for each organ in leaf 𝑙 . Typically, a subset of leaf nodes ℒ̃  with the least 

uncertainty is used for estimation for each class 𝑐. The posterior probability is weighted by the proportion 

of voxels reaching leaf 𝑙, i.e., 𝑝(𝒃𝑚) = ⁡∑ 𝑝(𝒃𝑚|𝑙)𝑝(𝑙)𝑙∈ℒ̃ , and the final estimation is given by 𝒃̃𝑚 =

argmax
𝒃𝒎

𝑝(𝒃𝑚). 

2.3. Image Registration 

Image registrations were applied on organ-specific cropped images using a leave-one-out scheme 

among the 20 testing subjects. The organ-specific ROIs were defined by padding 5 cm to each side of 

bounding boxes to include adequate background tissues. The bounding boxes were estimated using RF for 

the target, while derived from the manual segmentations for the atlases. Affine followed by non-rigid 

registrations using NiftyReg [188] were performed to align the atlases to the target; both stages involved 

five coarse-to-fine levels, and limited the upper intensity threshold to 500.  
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2.4. Context Learning 

Different classes of tissues in CT images can be characterized with multi-dimensional Gaussian 

mixture models using intensity and spatial “context” features. On a voxel-wise basis, let 𝒗 ∈

ℝ𝑑×1represent a 𝑑 dimensional feature vector, 𝑚 ∈ ℳ indicate the tissue membership. The probability of 

the observed features given the tissue is 𝑐  can be represented with the mixture of 𝑁𝐺  Gaussian 

distributions, 

𝑓(𝒗|𝑚 = 𝑡) = ∑
𝛼𝑘𝑡

(2𝜋)
𝑑
2|𝑪𝑘𝑡|

1
2

𝑒𝑥𝑝 [−
1

2
(𝒗 − 𝝁𝑘𝑡)

𝑇𝑪𝑘𝑡
−1(𝒗 − 𝝁𝑘𝑡)]

𝑁𝐺

𝑘=1

 (11.1)  

where 𝛼𝑘𝑡 ∈ ℝ1×1 , 𝝁𝑘𝑡 ∈ ℝ𝑑×1 , and 𝑪𝑘𝑡 ∈ ℝ𝑑×𝑑  are the unknown mixture probability, mean, 

and covariance matrix to estimate for each Gaussian mixture component 𝑘 of each tissue type 𝑡 by the 

Expectation-Maximization (EM) algorithm following [107].  

The context model can be learned from datasets with known tissue separations, and then the 

tissue likelihoods on unknown dataset can be inferred by Bayesian expansion and flat tissue membership 

probability from extracted feature vectors.  

𝑓(𝑚 = 𝑡|𝒗) =
𝑓(𝒗|𝑚 = 𝑡)𝑓(𝑚 = 𝑡)

∑ 𝑓(𝒗|𝑚 = 𝑡′)𝑓(𝑚 = 𝑡′)𝑡′
=

𝑓(𝒗|𝑚 = 𝑡)

∑ 𝑓(𝒗|𝑚 = 𝑡′)𝑡′
 (11.2)  

Here, we train context models for 15 tissue types, including 12 manually traced organs, and three 

automatically retrieved tissues (i.e., muscle, fat, and other) using intensity clustering and excluding the 

traced organ regions. Six context features were extracted, including intensity, gradient, and local variance, 

and three spatial coordinates with respect to a single landmark, which was loosely identified as the mid-

frontal point of the lung at the plane with the largest cross-sectional lung area. We specified 𝑁𝐺 = 3. For 

each organ, the foreground and background likelihoods were learned from the context models based on 

the context features on target images before cropping, and used as a two-fold spatial prior to regularize 

the organ-wise atlas selection as follows. 
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2.5. Statistical Atlas Selection 

Organ-specific atlas selection was performed based on the re-formulated SIMPLE [42, 127] 

algorithm from the perspective of EM. Consider a collection of 𝑅 registered atlases with label decisions, 

𝑫 ∈ 𝑳𝑁×𝑅, where 𝑁 is the number of voxels in each registered atlas, and 𝑳 = {0,1,… , 𝐿 − 1} represents 

the label sets. Let 𝒄 ∈ 𝑺𝑅, where 𝑺 = {0,1} indicates the atlas selection decision, i.e., 0 – ignored, and 1 – 

selected. Let 𝑖 be the index of voxels, and 𝑗 of registered atlases. A non-linear rater model, 𝜃 ∈ ℝ𝑅×2×𝐿×𝐿, 

considers the two atlas selection decisions. Let the ignored atlases be no better than random chance, and 

the selected atlases be slightly inaccurate with error factors 𝝐 ∈ 𝚬R×1, where 𝚬 ∈ (0,
𝐿−1

𝐿
). Thus 

𝜃𝑗0𝑠′𝑠 =
1

𝐿⁡
, ∀𝑠′⁡; ⁡𝜃𝑗1𝑠′𝑠 = {

1 − 𝜖𝑗, 𝑠′ = 𝑠
𝜖𝑗

𝐿⁡ − 1
, 𝑠′ ≠ 𝑠

 (11.3)  

where each element 𝜃𝑗𝑛𝑠′𝑠 represents the probability that the registered atlas 𝑗 observes label 𝑠′ given the 

true label is 𝑠 and the atlas selection decision is 𝑛 with an error factor 𝜖𝑗  if selected, – i.e., 𝜃𝑗𝑛𝑠′𝑠 ≡

𝑓(𝐷𝑖𝑗 = 𝑠′|𝑇𝑖 = 𝑠, 𝑐𝑗 = 𝑛, 𝜖𝑗). 

Following [125], let 𝑾 ∈ ℝ𝐿×𝑁 , where 𝑊𝑠𝑖
(𝑘)

 represents the probability that the true label 

associated with voxel 𝑖 is label 𝑠 at the kth⁡iteration. Using Bayesian expansion and conditional inter-atlas 

independence, the E-step can be derived as 

𝑊𝑠𝑖
(𝑘)

=
𝑓(𝑇𝑖 = 𝑠)∏ 𝑓 (𝐷𝑖𝑗|𝑇𝑖 = 𝑠, 𝑐𝑗

(𝑘) = 𝑛, 𝜖𝑗
(𝑘)⁡

)⁡𝑗

∑ 𝑓(𝑇𝑖 = 𝑠′)∏ 𝑓 (𝐷𝑖𝑗|𝑇𝑖 = 𝑠′, 𝑐𝑗
(𝑘) = 𝑛, 𝜖𝑗

(𝑘)
)⁡𝑗𝑠′

 (11.4)  

where 𝑓(𝑇𝑖 = 𝑠) is a voxel-wise a priori distribution of the underlying segmentation. The exogenous 

information learned from context features in Eq. 2 can be considered as the Bayesian prior to regularize 

the atlas selection.  

In the M-step, the estimation of the parameters is obtained by maximizing the expected value of 

the conditional log likelihood function found in Eq. 4. For the error factor,  
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𝜖𝑗
(𝑘+1)

= argmax
𝜖𝑗

∑ 𝐸 [ln𝑓 (𝐷𝑖𝑗|𝑇𝑖, 𝑐𝑗
(𝑘)
, 𝜖𝑗) |𝑫, 𝑐𝑗

(𝑘) , 𝜖𝑗
(𝑘)
]

𝑖

= argmax
𝜖𝑗

∑ ∑ ∑ 𝑊𝑠𝑖
(𝑘)

⁡ ln 𝜃
𝑗𝑐𝑗

(𝑘)
𝑠′𝑠

𝑠𝑖:𝐷𝑖𝑗=𝑠
′𝑠′

≡ 𝐿𝜖𝑗

 (11.5)  

Consider the binary segmentation for simplicity, let 𝑀𝑇𝑃 = ∑ 𝑊1𝑖
(𝑘)

𝑖:𝐷𝑖𝑗=1 ,𝑀𝐹𝑃 = ∑ 𝑊0𝑖
(𝑘)

𝑖:𝐷𝑖𝑗=1 , 𝑀𝐹𝑁 =

∑ 𝑊1𝑖
(𝑘)

𝑖:𝐷𝑖𝑗=0 , 𝑀𝑇𝑁 = ∑ 𝑊0𝑖
(𝑘)

𝑖:𝐷𝑖𝑗=0 , and M𝑇 = 𝑀𝑇𝑃 +𝑀𝑇𝑁 , 𝑀𝐹 = 𝑀𝐹𝑃 +𝑀𝐹𝑁 . After taking partial 

derivative of 𝐿𝜖𝑗,  

𝜖𝑗
(𝑘+1)

=
𝑀𝐹

𝑀𝑇 +𝑀𝐹
, 𝑖. 𝑒. , 1 − 𝜖𝑗

(𝑘+1)
=

𝑀𝑇

𝑀𝑇 +𝑀𝐹
 

(11.6)  

Then for the atlas selection decision 

𝑐𝑗
(𝑘+1) = argmax

𝑐𝑗
∑ 𝐸 [ln𝑓 (𝐷𝑖𝑗|𝑇𝑖, 𝑐𝑗, 𝜖𝑗

(𝑘+1)) |𝑫, 𝑐𝑗
(𝑘) , 𝜖𝑗

(𝑘+1)
]

𝑖

= argmax
𝑐𝑗

∑ ∑ ∑ 𝑊𝑠𝑖
(𝑘) ⁡ ln 𝜃𝑗𝑐𝑗𝑠′𝑠

𝑠𝑖:𝐷𝑖𝑗=𝑠
′𝑠′

.
 (11.7)  

Given the intermediate truth estimate 𝑊𝑠𝑖
(𝑘)

, 𝑐𝑗
(𝑘+1)

 can be maximized by evaluating each 0/1 atlas 

selection separately. Note the selecting/ignoring behavior in Eq. 7 is parameterized with the error factor 

𝜖𝑗 , and thus affected by the four summed values of True Positive (TP), False Positive (FP), False 

Negative (FN), and True Negative (TN) as in Eq. 6. An informed prior (e.g., Eq. 2) would greatly 

deemphasize the TN and yield a metric similar to Dice Similarity Coefficient (DSC) used in the original 

SIMPLE [127]. We refer this atlas selection technique as SIMPLE context learning, and the majority vote 

(MV) fusion of its selected atlases as CLSIMPLE. 

2.6. Joint Label Fusion 

JLF was employed on the selected atlases to yield the final segmentation for each organ. Using 

the same notation above, JLF defines a voting-based probability for label 𝑠 as 𝑊𝑠𝑖 = ∑ 𝑤𝑖𝑗𝐷𝑖𝑗𝑗:𝐷𝑖𝑗=𝑠
, 

where 𝑤𝑖𝑗  indicates the local weight. The local weight 𝒘𝑖  is optimized by minimizing the correlated 

errors between atlases, i.e., 𝒘𝒊
∗ = argmin

𝒘𝑖

𝒘𝑖
𝑡(𝑀𝑖 + 𝛼𝐼)𝒘𝑖  subject to ∑ 𝑤𝑖𝑗 = 1𝑛

𝑗=1  along 𝑛  atlases, 

where 𝑀𝑖 is an 𝑛⁡ × ⁡𝑛 matrix, estimating the likelihood of correlated errors between each pair of atlases, 
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and 𝛼  is a small positive number for regularization. Briefly, 𝑀𝑖  can be estimated from the intensity 

difference on atlas images in a local neighborhood of voxel 𝑖, and refined by local patch search. More 

details can be found in [134].  

When using JLF, we specified the local search radii as 3 × 3 × 3, the local patch radii as 2 × 2 ×

2, and set the intensity difference mapping parameter (𝛽), and the regularization term (𝛼) as 2 and 0.1, 

respectively (i.e., default parameters). We refer JLF using the atlases selected by SIMPLE context 

learning as CLSIMPLEJLF.  

2.7. Validation 

We quantified the performance of eight MAS approaches in terms of DSC, including MV, JLF, 

CLSIMPLE, and CLSIMPLEJLF with body-wise and organ-wise normalization. The intermediate results 

were also examined (not used for segmentations). Specifically, we collected the DSC values for registered 

atlases, and computed the organ localization errors as the distances between the estimated and true 

bounding boxes. 

 

Figure XI.3. Quantitative comparison of in dice similarity coefficient among body-wise and 

organ-wise label fusion methods. Note the organ color scheme as shown in the rendered tick 

labels above (e.g., spleen in red, liver in purple) are shared among all figures. 
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3. Results and Discussion 

The RF organ localization presented a mean error of 12.83 mm. Body-wise and organ-wise 

registrations achieved an overall mean DSC of 0.47 and 0.58, respectively. The MAS approaches using 

organ-wise normalization performed consistently better than their body-wise counterparts over all organs 

(Figure XI.3). The overall mean DSC improvement for CLSIMPLEJLF was 46.2% (0.76 vs. 0.52, 𝑝⁡ <

⁡0.001). Without sophisticated atlas selection and label fusion techniques, organ-wise MV reached an 

average DSC of 0.91 for spleen, kidneys, and liver. Segmentation failures were substantially removed; 

MAS methods were benefit from organ-wise normalization for capturing the underlying anatomy more 

accurately (Figure XI.4). In addition, restricting ROI for each organ vastly reduced the computation time 

(Table XI.1) running on a 64-bit 12-core Ubuntu Linux workstation without multi-threading and code 

optimization. Organ-wise CLSIMPLEJLF presented the best overall DSC among all tested methods (𝛥 =

0.05  to the second best, 𝑝⁡ < ⁡0.001) with a median DSC over 0.5 for each organ; it also showed 

competitive DSC values (spleen – 0.94, kidneys – 0.94, liver – 0,95, pancreas – 0.63) comparing to the 

reported state-of-the-art techniques [18, 27, 28, 196]. In [42], body-wise CLSIMPLEJLF demonstrated 

better spleen segmentation performances over [28] on the same datasets.  

The proposed MAS framework addressed the inter-organ variations with organ-wise 

normalization in a non-parametric manner; it is generic and applicable to other thoracic, abdominal, and 

 

Figure XI.4. Representative qualitative results. Note the subject above was selected as with median overall 

accuracy in terms of DSC. 
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pelvic organs. This differs from the parametric approaches using statistical shape models [196], where the 

inter-organ relationships are explicitly characterized along with a pre-defined hierarchy, and a large 

number of training sets are required. This work creates a bridge between the techniques of high-level 

identification with low-level extraction for the anatomical structures; refined organ localization and 

registration-based fusion techniques can further improve the segmentation performances. These results 

open substantive opportunities for large-scale biomarker screening and image-guided intervention on 

clinically acquired CT. 

Table XI.1. Approximated computational time (minutes) for tested label fusion methods. 

 MV JLF CLSIMPLE CLSIMPLEJLF 

Body-Wise 1.5 360 30 90 

Organ-Wise 0.5 240 2 30 

Note that registration time is not included. 
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CHAPTER XII  

CONCLUSION AND FUTURE WORK 

1. Summary 

The human abdomen is an important compartment that covers the main anatomical structures of 

multiple biological systems including but not limited to the circulatory (e.g., aorta, inferior vena cava), 

digestive (e.g., esophagus, stomach, liver, gallbladder, pancreas), urinary (e.g., kidneys), endocrine 

(adrenal glands), muscular (e.g., rectus and oblique muscles), and lymphatic (e.g., spleen) systems. 

Computed tomography (CT) scans are acquired in clinical trials as accessible proxies to the human 

anatomy without opening surgeries, while segmentation of the anatomical structures on CT scans enables 

quantitative analyses for the physiological and pathological status, and supports the clinical decisions 

[229]. This dissertation presents automatic segmentation approaches for abdominal wall and abdominal 

organs on clinically acquired CT. State-of-the-art image processing techniques are investigated and 

robustly adapted to the challenge problems in abdomen given (1) anatomical structures with substantial 

occurrences of abnormalities and large variations in shapes and appearances, and (2) CT scans with 

various image sizes and resolutions, fields of view (FOV), contrast enhancement, and imaging artifacts. 

Preliminary clinical studies are performed to demonstrate the efficacy of the presented segmentation to 

assist clinical decisions. Future efforts can build on this work by (1) investigating technical algorithms to 

improve the segmentation performances, (2) verifying and augmenting the robustness of the segmentation 

framework on any new datasets for clinical use, (3) translating the structural segmentation into clinically 

meaningful metrics, and (4) exploring correlation between imaging-based metrics and 

surgical/radiological outcomes.  
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2. Abdominal Wall 

2.1. Contributions 

The abdominal wall is a muscular boundary for the abdominal cavity to protect the internal 

organs. Its shape, appearance, intactness, and the abdominal compartmentalization are of great clinical 

interest. The main contributions in terms of abdominal wall in this dissertation include:  

1. The first detailed and reproducible anatomical labeling protocol was designed for ventral 

hernia characterization on CT scans with abdominal wall surfaces, fascia boundaries, and 

bony landmarks. Shape-, location-, and body-related metrics were derived from the labels and 

enabled clinical endpoint prediction. This framework also provided objective criteria for 

clinical ventral hernia analyses, and manual references for the investigation of automatic 

segmentation (Chapter III). 

2. An immersive virtual reality system was developed to visualize abdominal CT of ventral 

hernia patients for better understanding of the abdominal wall and other hernia-related 

structures with stereoscopic perceptions. Functionalities were designed to allow user 

adjustable observation of (1) 2-D slices in arbitrary positions/orientations, (2) 3-D volume 

rendering, and (3) surface rendering of pre-segmented structures (Chapter IV). 

3. Texture-based features were investigated and integrated into an edge-based level set 

framework to automatically segment the outer surface of the abdominal wall in the presence 

of ventral hernia. Improved performances were observed using the texture-based features 

over the traditional intensity-based features, and achieved an overall mean surface error at 2 

mm (Chapter V). 

4. The first automatic segmentation approach for the whole abdominal wall was developed 

using an augmented active shape model (AASM) framework that combines multi-atlas label 

fusion and level set techniques. The whole abdominal wall extracts both the outer and inner 

surfaces and extends from the xiphoid process to the pubic symphysis; the estimated 



180 

 

segmentation enables the measurement of subcutaneous and visceral fat areas with close 

correlation to those derived from manual segmentation (Chapter VI).  

2.2. Future work 

Future efforts on the technical and clinical investigation of abdominal wall can be approached 

from the following perspectives: 

1. More sophisticated classification system can be designed to cluster datasets with similar 

shapes of abdominal walls to improve the AASM segmentation framework. Choices of image 

features, shape characteristics, and manifold learning algorithms can be investigated to 

capture the variations of the desirable structures (abdominal wall) as opposed to those of the 

secondary structures [78, 230]. 

2. The AASM algorithm can be extended in multiple directions. First, texture-based features can 

be used for local correspondence search within the AASM framework to improve its 

robustness of abdominal wall segmentation in the presence of ventral hernias [38]. Second, 3-

D version of AASM can be implemented with appropriate treatment of landmark 

correspondence [111, 193] to benefit the volume-based regularization of the abdominal wall. 

Third, AASM can also be augmented for multi-structure segmentation, where hierarchical 

relationship in shapes across structures [181], and multi-channel level set evolution [63] need 

to be integrated; structures difficult to identify individually can be potentially segmented 

appropriately together with the abdominal wall (e.g., fascia boundaries).  

3. On CT scans of ventral hernia patients, the segmentation of herniated regions remains as an 

important problem to solve. Possible approaches to extract herniated regions include (1) 

learning distinguishable features using random forest [231] and deep learning [232] 

techniques, or (2) referring to literature in detecting other abnormalities like lesions and 

cancer metastases . The segmentation of the abdominal wall could constrain the searching 

range for identifying hernias.  
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4. Metrics of clinical interests need to be robustly derived from the automatic segmentation of 

the abdominal wall, herniated region, and other associated structures in place of the manual 

labeling as performed in Chapter III. Correlation tests can be performed between the derived 

metrics and clinically collected records. Given appropriate data setup and experiment design, 

interesting problems can be studied, e.g., prediction of hernia formation after opening 

surgeries, estimation of hernia recurrence rate after repair; these potential capabilities would 

change the treatment procedures drastically for better patient care.   

3. Abdominal Organs 

3.1. Contributions 

The abdominal organs are the key structures to many disease diagnoses and prognoses. Automatic 

segmentation of the abdominal organs enables shape measurements as quantitative support for large-scale 

clinical studies. The main contributions in terms of abdominal organs in this dissertation include: 

1. A shape constrained framework was presented for automatic spleen segmentation. By 

combining parametric (active shape model) and non-parametric (multi-atlas label fusion) 

methods. Spleen shapes models were established based on the signed distance function 

representation; projected shapes were converted into voxel-wise priors to constrain the multi-

atlas segmentation of spleen, and effectively reduce the surface errors (Chapter VII). 

2. A robust fully automatic framework was developed for segmenting multiple abdominal 

organs (e.g., spleen, liver, kidneys, and up to 13 organs). A context learned atlas selection 

approach was proposed to improve the accuracy and efficiency of multi-atlas segmentation 

given substantial registration errors (Chapter VIII).  

3. A clinical study was performed on a longitudinal datasets for estimating spleen volumes. A 

semi-automatic pipeline was proposed for clinical use that deployed automatic computer-

assisted segmentation and manual outlier correction. Superior robustness (0.99 in Pearson’s 
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correlation to manual measurement) and efficiency (1 min per scan on average) were 

demonstrated over other clinical approaches (Chapter IX). 

4. Six state-of-the-art registration methods were evaluated on abdominal CT scans (used 

approximately 100,000 hours of CPU time on 100 datasets with cross-validation). Discrete 

optimization was found effective to capture the implicit discontinuities between structures of 

interest in abdomen, and thus suggested for the investigation of registration tools tailored for 

abdomen (Chapter X). 

5. Random forest techniques were investigated on localizing abdominal organs on CT scans. 

Organ-wise multi-atlas labeling was then performed on the localized regions of interest. 

Using organ-wise labeling, consistent improvement was observed over the traditional multi-

atlas framework, less computational time was also achieved (Chapter XI). 

3.2. Future work 

Future investigation on abdominal organs can be approached from the following technical and 

clinical perspectives: 

1. The pipeline of multi-atlas abdominal organ segmentation presented in Chapters VIII and 

XI can achieve registration methods better tailored for abdomen. While easily achievable 

improvement can be expected by using the best available registration tool presented in 

Chapter X, further development of abdomen-specific registration towards discrete 

optimization can boost the abdominal segmentation fundamentally. Meanwhile, GPU 

implementation of the registration and label fusion techniques [188, 233] should be 

considered to reduce the computational cost of multi-atlas segmentation that potentially 

enables near real-time automatic segmentation.   

2. The random forest localization for abdominal organs is useful, but far from ideal given that (1) 

it is sensitive to datasets with various FOVs, (2) it only provides a loose constraint with its 

bounding box representation. Robust segmentation of related bony structures (e.g., rib cages, 
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spinal vertebrae, pelvic bones) can be investigated to provide consistent references for organ 

localization regardless of FOVs, and anatomically sensible organ boundaries when combined 

with atlas-based registrations [46, 234, 235]. 

3. Segmentation refinement, especially on small organs (e.g., gallbladder, adrenal glands) needs 

to be investigated. Potential directions include but are not limited to (1) corrective learning 

[236, 237], (2) multi-modal, multi-contrast enhancement [26, 27], (3) label correction using 

random forest, convolutional neural networks on the basis of voxels, patches or supervoxels 

[231, 238], and (4) details adjustment using level set, active shape models, and graph cuts [24, 

25, 239].  

4. The robustness of the volumetric estimation from segmentations needs to be validated. With 

minimal human intervention in quality assurance, a progressive feedback loop can be used for 

augmenting the atlas pool and thus the segmentation performances on new datasets. 

Correlation between the volumetric estimation and clinically recorded metrics can be 

explored to study pathological inferences and drug deliver effects. 

4. Concluding Remarks 

In the past five years, an increasing number of researches have begun to explore human abdomen 

segmentation through development of tailored image processing, computer vision, and machine learning 

techniques. Many of those techniques originally designed for brains are now being adapted to abdominal 

structures, where challenges coming from the larger variations within abdomen must be addressed. This 

dissertation presents automatic segmentation of the major abdominal structures on clinically acquired CT 

scans with the state-of-the-art performances, provides technical, clinical, and educational impact on 

understanding the abdominal anatomy, and sets a foundation for future development towards computer-

assisted clinical decision support. 
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