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characteristics, the relative location of VH with respect to the linea alba and linea semilunaris, and the
relative location of VH with respect to skeletal landmarks and the umbilicus. The fourth row, from (j) to
(1), demonstrates feasibility of measuring the VVH defect size, width and length of VH, and ratio of volume
size between the hernia sac and the abdominal CaVILY. ..........ccccvviieiiiie i 58

Figure IV.1. The four states of the model In IVR. ... 63

Figure 1V.2. lllustrations of the proposed system in use. (a) Surgeon using the system. (b) Virtual
hand interacting with 3D abdominal model. (c) Navigation of axial slices. (d) Navigation of sagittal slices.

.................................................................................................................................................................... 64
Figure 1V.3. lllustration of user interaction with the abdominal model..............cccooeeveiiininnnnne. 65
Figure IV.4. Volume rendering for abdominal wall CT SCan. .........ccccvcviiieneiiiiinieee 66

Figure V.1. lllustration of the image qualities in Ventral Hernia CT. (A) and (B) demonstrate CT
scans with low artifacts for normal abdominal wall and for herniated region, respectively. (C) — (J)
illustrate challenges from the segmentation of anterior abdominal wall, where red arrows indicate the
challenging regions in each scenario. (C) The linea alba is thin and of lower intensity than normal. (D)
The linea semilunaris is thin and of lower intensity than normal. (E) At the herniated region, the
abdominal wall is stretched and can be barely seen. (F) The hernia volume is folded, which introduces a
large curvature. (G) The patient is slim, which makes it hard to differentiate the muscles from the skin.
(H) The umbilicus can interfere with the smooth contour of the abdominal wall. (I) Speckles in the fat are
of similar intensity with muscles. (J) Metal implants result in streaking artifacts in CT scans. ................. 69

Figure V.2. Flowchart of the proposed method. The target image was affine-registered to a
probabilistic atlas in terms of the extracted high intensity structures. Specific types of bony structures
were then identified by transferring labels from the atlas to the target image based on a Bayesian
framework, which incorporated the position information from the atlas and the intensity distribution for
each label. After the skin is segmented by a curvature-constrained level set method, the two anterior iliac
crests and all visible ribs are selected as landmarks, based on which three coordinates were created. The
skin is then colored with RGB values converted by the normalized shortest distances to the biomarkers.
Texture analysis followed by a fuzzy c-means procedure was used to estimate a voxel-wise probabilistic
membership. An edge map was derived from the membership to guide the level set evolution, while the
hard segmentation of muscles from the membership combined with the segmented skin was used to
derive the initial start. Ground truth was manually labeled for the abdominal wall to calculate the surface
errors of automMAatiC SEGMENTALION. ......cviii ittt et esbeebeesbesreesresre e 72

Figure V.3. Proposed texture analysis. (A) Original CT image; (B) Hard segmentation of different
structures; (C) — (J) illustrate the membership probability for each of the eight clusters, which are
estimated from fuzzy c-means clustering on texture features extracted by Gabor filters. Within each
cluster, the probability value indicates partial membership to the cluster. Note that fat tissue and muscles
can be identified from (H) and (J), respectively. (B) is constructed by the modes of among the eight
clusters for all voxels, where we note that the muscles and fat tissue are effectively partitioned for
assistance of the following edge-based level set sSegmentation. .........ccccooovieiiiiiie e 76

Figure V.4. Edge map and level set results of four methods. The four columns illustrate the
results on the original image, the image smoothed by an anisotropic filter, the membership estimated by
an intensity-based fuzzy c-means clustering, and the membership estimated by a texture-based fuzzy c-
means clustering, respectively. The first row shows the intensity images (first two columns) and
membership images (last two columns). The second row shows the edge maps directly derived from the
images of the first row. The third row illustrates the contrast-adjusted edge maps for ease of level set
evolution. Note that the level set front tends to proceed at brighter regions, and to stop at darker regions
on the edge map. The fourth row presents the level set results (represented with red contours) on anterior
abdominal wall segmentation for four methods with the same parameters. ...........ccoocvvveriiieeienceeceeneneen 77
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Figure V.5. Process of level set segmentation on anterior abdominal wall for three subjects. The
red contours indicate the current segmentation for each process. The first two columns show the
preparation for the initial start. The last four columns illustrate the iterations of level set evolution. Note
the third column demonstrates the initial start of the level set segmentation. .........cccccceeevvieiie i cieieinn 79

Figure V.6. Quantitative results of anterior abdominal wall segmentation. Four level set methods
based on different edge maps (1. Green star: baseline original image; 2. Magenta cross: smoothing image;
3. Red circle: intensity clustering; 4. Blue diamond: texture clustering) are evaluated in terms of surfaces
distances. The first column denotes the error metrics for the whole wall, while the second and the third
column focuses on the hernia region and the normal wall region, respectively. The top row illustrates the
cumulative fraction of region based on increasing 3D surface distance error between interpolated wall
from manually labeled ground truth and the automatic segmentation. The bottom row shows the error bar
of mean surface distances. The subject indices are sorted in terms of the mean of the overall mean surface
distances of the texture clustering method. Note that 9 out of 20 subjects have no hernia labeled in the
truth, which is indicated as gold stars in the middle-bottom plot. Four subjects (A, B, C, D) are selected to
illustrate the qualitative results iN FIQUIE V. 7. ..o 83

Figure V.7. Qualitative results on selected subjects from Figure V.6. The letters (A, B, C, D)
match with the subjects circled in Figure V.6. The left panel shows a volumetric view of segmentation.
The right part presents the results on several slices. Note blue denotes the automatic segmentation, green
denotes the manually labeled anterior abdominal wall on sparsely sampled slices, and red denotes the
manually labeled herniated region. In addition, in the slice representation, the segmentation errors for the
normal abdominal wall are highlighted in yellow, while those for the herniated region are highlighted in
(0] 0T TP P TSP PSPPI 85

Figure V.8. Error maps for 20 subjects. The shape of the error map is provided by a thin —plate
spline interpolation of the anterior abdominal wall on manual labeled meshes, where the lateral
boundaries of the interpolated surface is also given by thin-plate spline interpolation, but on the
terminations of the label meshes. The rendering color represents the 3D surface distance from the
automated segmentation to the interpolated abdominal wall. Note that errors are most prominent in fascia
AN NEIMIA TEOIONS. ...ttt b bbbt b et et ettt e bbb enes 86

Figure VI.1. Flowchart of the proposed AASM approach. Shape models and local appearance
models are constructed based on the atlas images and labels during the training stage. When testing on a
target image to yield an estimated segmentation, an iterative process is performed. During each iteration,
region-based LS is used to evolve on the probabilistic map generated by MALF to augment the traditional
active shape search by global optimization, followed by the active shape regularization on the
segmentation. Note that the borders of blocks are colored in distinctive colors. The small colored boxes
within a block represent its prerequisite blocks in corresponding colors. For example, multi-atlas
probability map requires (1) atlas images, (2) atlas labels, and (3) target image...........ccoccevvvevieveieernennnn, 93

Figure VI1.2. Results of a toy example. (a) Qualitative comparison between ASM and AASM
segmentation on an individual observation. (b) Quantitative comparison between ASM and AASM
segmentation in DSC across 100 cross-validated 0bServations. ..........ccocceeveeeieiieeiene e 95

Figure VI.3. Qualitative comparison of ASM, MALF, and AASM segmentation of abdominal
wall. (a) - (e) demonstrate slices in five exclusive classes on one subject. The green arrows indicate
segmentation outliers including speckles, holes, over-segmentation, and label leaking problems............. 98

Figure V1.4. Qualitative comparison of ASM, MALF, and AASM segmentation of spinal cord.
(a) - (e) demonstrate slices at five different locations (from bottom to top) on one subject. () illustrates
the 3-D surface renderings of the segmented GM (left) and WM (right) colored in the surface distance
error towards the corresponding manual SEgMENTALIONS. .........c.erveieiriiiiiresie e 102

Figure V1.5. Quantitative comparison of ASM, MALF, and AASM segmentation of spinal cord in
terms of DSC, MSD and HD. Note that additional zoomed-in boxplots are generated for MSD and HD to
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compare the results in a limited range. The yellow diamond marks indicate the subject demonstrated in
FIQUIE VLA et b et h bt bRt b bbb e bbbt b b n e 104

Figure VI1.6. Parameter sensitivity tests to compare ASM and AASM on the toy example. DSC
and MSD are collected given three sets of varying parameters: (a) the initialized mean shape position with
respect to the ground truth along x and y directions, (b) the length of the local search range, and (c) the
standard deviation (std.) of the Gaussian kernel applied on the ground truth, based on which the
probability map used by AASM is generated (N0 change 0N ASM)......c.ccovvveveiiiic e 105

Figure VII.1. Challenges of atlas-based spleen segmentation. (A) The intensity image of the
target. (B) The manually labeled ground truth of the target. (C) — (F) The atlas labels registered to the
target space. (G) The fusion estimate by majority vote. (H) The fusion estimate by locally weighted vote.
.................................................................................................................................................................. 111

Figure VI1I.2. Pose-free implicit parametric shape model. The shape model is represented by
signed distance function (SDF) of each voxel over the whole volume. The region within the zero level set
(highlighted in blue) is considered as the binary shape representation. The second row illustrates the mean
and the first four modes of variation of the shape model. The first and the third row present the specific
shapes parameterized by the square root of the eigenValUES...........cccccveiiiii e 112

Figure VI1.3. Flowchart of the proposed method. The atlas labels are co-registered to construct a
pose-free implicit parametric shape model, including the mean and the modes of variation of the spleen
shape. The atlas images are registered to the target image, based on which the atlas labels are propagated
to the target space. The locally weighted vote yields the initial fusion result of the registered atlas labels
weighted by the local intensity similarity between the registered atlas images and the target image in the
form of a fuzzy estimate of label probability and a binary estimate of spleen segmentation. The binary
image of the mean shape from the pre-constructed spleen shape model is registered to that of the current
estimate with two distinct effective ranges, i.e., (1) the whole volume of both image and (2) the mean
shape region, of the similarity metric of registration so that the pose-free shape model is transformed into
the target space. The current estimate of the spleen is then projected to the two registered shape models.
The shape projections are converted into probabilistic priors to adjust the label probability from locally
weighted vote, and then generate a new estimate of the spleen. The estimate can be refined with iterative
T LU 4L o OSSOSO 114

Figure VI11.4. Fusion results by locally weighted vote and the proposed shape-constrained method
on 20 subjects. The results of the two methods are placed side-by-side for each subject for comparison.
The background rendering provides a reference of the surrounding anatomy (ribs, kidney, etc.). The
rendering of the spleen segmentation is colored in terms of the surface distance from the estimate to the
ground truth. Note that we use symmetric (the average of bi-directional) surface distance as the error
metrics for validation in Table 1, but the one-way surface distance here for ease of visualization.......... 117

Figure VIII.1. Twelve organs of interest (left) and registration examples of variable qualities for
one target image (right). Note that the “good”, “bad”, and “ugly” registration examples were selected
regarding the organ-wise correspondence after the atlas labels were propagated to the target image...... 119

Figure VI1I1.2. Organ-wise examples of variations after non-rigid registrations. For each panel, the
target manual segmentation is on the left, the 30 registered labels are semi-transparently overlaid on the
0 P 120

Figure VI111.3. Flowchart of the proposed method. Given registered atlases with variable qualities,
atlas selection and statistical fusion are considered as two necessary steps to obtain a reasonable fusion
estimate of the target segmentation. The SIMPLE algorithm implicitly combines these two steps to fusion
selected atlases; however, more information can be incorporated to improve the atlas segmentation, and a
more advanced fusion technique can be used after the atlases are selected. We propose to (1) extract a
probabilistic prior of the target segmentation by context learning to regularize the atlas selection in
SIMPLE for each organ, (2) use Joint Label Fusion to obtain the probabilistic fusion estimate while
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characterizing the correlated errors among the selected organ-specific atlases, and render the final
segmentation for all 0rgans Via graph CUL. ..........cooieieiiiiiiee e 121

Figure VI1I1.4. (top left) Target slices and the associated manual labels. (middle left) Simulated
observations drawn from an individual target slice with a randomly generated transformation model. (top
right) The mean DSC (over 40 target slices and three organs) values evaluated for six label fusion
approaches using different numbers (from 15 to 100) of atlases. (bottom right) Organ-wise DSC
performances for the fusion results using 40 simulated atlases. (bottom left) Fusion estimates using 40
simulated atlases overlaid on a representative target slice, and annotated with the mean DSC value over
TNE DTGNS, ..t bbb et E Rttt b e n e 127

Figure VII1.5. Boxplot comparison among five tested methods for 12 organs............c.cccceevenees 129

Figure VII1.6. Demonstration of the effectiveness of CLSIMPLE atlas selection for spleen
segmentation on 90 subjects along number of iterations (A) number of selected atlases remaining along
iterations. (B) mean DSC value of the selected atlases along iterations. Note the solid green line in (B)
indicates the mean DSC of the majority vote fusion estimate using the selected atlases across all subjects.
.................................................................................................................................................................. 132

Figure VIIL.7. Qualitative segmentation results on a subject with median DSC. On the left, the 3-
D organ labels are rendered for the true segmentation, and the proposed segmentation. On the right, the
truth (red) and the proposed segmentation (green) for each organ of interest are demonstrated on a
representative COrONAl SHICE. ......ccii i et be et sre b e be e e e sreenes 132

Figure VIII.8. (upper pane): The ground truth surface rendering and the probability volume
rendering of different methods for spleen segmentation. Note that the transparencies of volume rendering
were adjusted for visualization. CL indicates the posterior probability of spleen when applying the trained
context learning model to the target. The green arrow points at the landmark used for deriving spatial
context. (lower pane): Progressive results of SIMPLE and CLSIMPLE along iterations. Note that both
methods reach the convergence within 8 iterations in this Case..........ccocvvviieve i 133

Figure VIIL.9. Hllustration of parameters sensitivity of the proposed method. The overall DSC
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PART 1

INTRODUCTION

1. Background

The human abdomen is an essential, yet complex body space clinically. Bounded by diaphragm
superiorly and pelvic inferiorly, supported by spinal vertebrae, and protected by muscular abdominal wall,
the abdomen contains organs involved with blood reservation, detoxification, urination, endocrine, and
digestion, and covers many important arteries and veins. Computational Tomography (CT) scans are
routinely taken for the diagnosis and prognosis of abdomen-related diseases, such as the pathological
injuries or changes of abdominal organs, and the abnormal extrusion in the abdominal wall, i.e., ventral
hernia (VH), so that internal anatomic structures can be evaluated qualitatively without opening surgery.

Qualitative assessment could cause substantial subjective variations in treatment delivery for
diseases. For example, to date, there is no standardized method for VH classification and repair that
consistently and efficiently describes hernia characteristics. Failure rates of VH repair stay high, with
recurrence rates estimated at between 24 and 43 percent [5]. Therefore, quantitative analysis becomes
necessary, not only for precise measurements, but also for modeling a systematic degree of disease
severity based on all measurable characteristics of specific structures, so that surgeons and radiologists
can act accordingly.

Segmentation on CT images provides a computational representation of the structures of interest
for accessing the characteristics (e.g., width, size, density), and thus establish a foundation for quantitative
analysis. Manual delineation by anatomical experts is the most straightforward approach to extract the
desired anatomic structure; however, it is impractical to have individual anatomical experts label large-

scale clinical studies due to the time and costs. Further, manual segmentation inherently suffers from



intra- and inter- variability given the highly variable appearances of pathological structures in clinical CT
[6]. Crowd-sourced, highly paralleled collaborative labeling has the potential to exploit the “wisdom of
the crowd” (e.g., random volunteers with minimal training), and yield equivalent accuracy and efficiency
to that of particularly “wise” individuals (e.g., surgeons, radiologists) with less costs and restrictions [7-
9.

Fully automated segmentation on large-scale clinical data has been the target of intense efforts for
decades. While extensive studies in brain segmentation have been developed [10-13], and targeted for
therapeutic modifications and as surrogate endpoints in clinical trials [14, 15], abdominal structure
segmentation has begun to draw more attention in recent years.

Abdominal organs have been the main focus. Probabilistic atlases are commonly built from co-
registering the images with existing segmentations to characterize the spatial variations of the abdominal
organs [16, 17]. Spatial standardization techniques have been used to regularize the inter-subject
variations through landmark-based normalization, and yield patient-specific probabilistic atlases [18-20].
Statistical shape model approaches were developed to represent the anatomic shape changes of individual
organs [21, 22] and / or the inter-organ hierarchies [23]. Graph-based methods provide an opportunity to
combine shape and spatial models with other a priori information (e.g., appearance, contrast-
enhancement), and yield global optimal segmentations [24-27] Multi-atlas approaches were newly
adapted to abdominal organ segmentation [28]. Such techniques have been shown to enhance the
generality and robustness of segmentations as opposed to that of the segmentations based on probabilistic
atlases or statistical models that may be hampered by within-population variations [13].

Segmentation of the abdominal wall is also of interest in abdomen-related analyses. Zhang et al.
aligned and transferred pre-defined muscular models at multiple key positions according to anatomic
knowledge, and used active contour model methods to smooth the muscle segmentation [29]. Chung et al.
trained a shape model in conjunction with an appearance prior from manually segmented images to
regularize the registration from a binary mean muscle shape to the target image using PCA-encoded Free
Form Deformation [30]. Ding et al. used a 3D flipping-free deformable model to register the inner
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boundary of the wall for ease of segmentation and visualization of abdominal organs [31]. Yao et al.
segmented the outer surface of the abdominal wall to separate subcutaneous and visceral adipose tissue by
fuzzy c-means clustering and active contour models [32]. Zhu et al. provided an interactive approach to
remove the entire the abdominal wall to reduce the sliding motion effect on the non-rigid registration of
abdominal images [33].

While all efforts above show different degrees of success in extracting abdominal structures, there
has been very limited dedication to a general-purpose solution for clinical use. In clinically acquired CT,
additional variations from the imaging formats (e.g., field of view, resolution), contrast phases, and
artifacts greatly challenge the robustness of automatic segmentation. Further, the pathological conditions
(e.g., obesity, cancer, hernia, atrophied / enlarged / ablated / implanted organs) are commonly observed.
The capability of handling the segmentation of large-scale clinical data with all these problems included

defines a critical perspective of the clinical significances for the segmentation techniques.

2. Overview

In this dissertation, we develop algorithms for robust automatic segmentation of abdominal
organs and abdominal wall in clinically acquired CT. The rest of the document is organized as follows. In
Chapter 1, the abdominal anatomy on CT imaging is described with the focus on the challenges of
segmentation for clinical analysis. Chapter 11 reviews preliminary knowledge of image segmentation
techniques. Chapters 111 ~VI focus on abdominal wall. Chapter 111 establishes a detailed, reproducible
anatomical labeling protocol for ventral hernia characterization on CT scans with abdominal wall surfaces,
fascia boundaries, and bony landmarks as a foundation for clinical endpoint prediction. Chapter 1V
develops an immersive virtual reality system to visualize abdominal wall and associated structures on
abdominal CT of ventral hernia patients for better anatomical understanding. Chapter V integrates
texture analysis into level set approach to improve the robustness of the segmentation of the outer surface
of the abdominal wall given the commonly observed irregular structures induced by ventral hernias.

Chapter VI presents an augmented active shape model framework to robustly extract the whole



abdominal wall and accurately measure the subcutaneous and visceral fat area. Chapters VII ~XI
investigate abdominal organs. Chapter VII starts with a single organ (spleen), where implicit shape
models are integrated into multi-atlas segmentation to constrain the outcome. Chapter VIII proposes a
new atlas selection technique integrated with context learning, and establishes an automatic multi-atlas
segmentation framework for multiple abdominal organs. Chapter 1X designs a pipeline combines
computer-assisted segmentation and manual outlier correction, and investigates its robustness and
efficiency in deriving spleen volumes on a longitudinal clinical dataset. Chapter X evaluates six
academically poplar registration methods on abdominal CT, provides recommendation for registration-
based applications in abdomen, and suggests directions for future development of abdomen-specific
registration tools. Chapter Xl integrates an organ localization technique into the multi-atlas multi-organ
segmentation framework, and demonstrates improved performances. Chapter XII concludes the main

contributions of the dissertation, and discusses potential opportunities on future efforts.

3. Contributions

This dissertation aims to booster the clinical significance of structural abdominal segmentation in

CT imaging. Thus, our focus covers not only (1) robust automatic segmentation, but also (2) effective

clinical application based on the segmentation. The ultimate goal of this dissertation is to provide a

general image processing pipeline to capture the structures of interest within the abdomen (i.e., abdominal

organs and abdominal wall), and thus serve for clinical treatment with quantitative analysis and enhanced
visualization. Specifically, the contributions of this dissertation are:

1. We proposed a framework to provide objective criteria for clinical ventral hernia analyses,

where robust manual labeling protocol is designed to guide the automated processes in further

study including the segmentation of abdominal wall, and the derivation of hernia-related

characteristics.



We designed a system to render the segmentation of abdominal structures along with the
original medical data in an interactive virtual reality environment, and thus offer the
opportunities for improved understanding of the abdominal anatomy.

We presented an automatic segmentation for the outer surface of the abdominal wall on CTs
of hernia patients. An edge-based level set method integrated with texture analysis was
proposed to extract the anterior abdominal wall, which provided a more robust segmentation
with less mean surface errors compared to other published methods.

We developed a robust automatic segmentation framework for the whole abdominal wall that
extracts both the outer and inner surfaces and extends from the xiphoid process to the pubic
symphysis. The framework used an augmented active shape model that combined multi-atlas
label fusion and level set techniques, and enables the measurement of subcutaneous and
visceral fat areas with close correlation to those derived from manual segmentation.

We built an implicit active shape model of spleen, and integrated into the multi-atlas label
fusion framework to provide more accurate spleen segmentation in cases of problematic
registrations, where parametric (active shape model) and non-parametric (multi-atlas label
fusion) methods were seamlessly combined.

We generalized a theoretical framework of atlas selection to account for exogenous
information (e.g., from separate models of tissue likelihood based context features),
combined it with the state-of-the-art fusion techniques, and presented automatic multi-organ
segmentation with significantly less dependence on non-robust registration.

We provided a robust and efficient pipeline for clinical use in spleen volume estimation that
deployed automatic computer-assisted segmentation and manual outlier correction, and
demonstrated its superiorities over traditional clinical approaches.

We evaluated six state-of-the-art registration methods based on their performances on 100
abdominal CT scans, and suggested potential directions for developing registration tools

tailored for abdomen.



9. We investigated random forest techniques for localizing abdominal organs on CT scans, and
proposed organ-wise multi-atlas labeling on the localized regions of interest that yielded
better accuracy and less computational time over the traditional body-wise multi-atlas

segmentation.

4. Previous Publications

Many contributions of this dissertation have been published. A framework is proposed to provide
guantitative criteria based on a manual labeling protocol for ventral hernia analysis [34, 35]. An interface
is designed to provide enhanced visualization and better understand of abdominal anatomy with a fully
interactive virtual reality environment [36]. Automatic segmentation of the outer surface of abdominal
wall is shown improved with texture analysis on data with excessive pathological conditions [37, 38].
Shape constraint [39] is shown to be critical for automatic segmentation of abdominal organs. Context
learned atlas selection, image registration, and organ localization is demonstrated to improve the multi-

atlas segmentation framework for abdominal organs [40-45].



CHAPTERI

ABDOMINAL ANATOMY ON CT IMAGING

1. Overview

The scope of the dissertation mainly covers the segmentation of abdominal organs and abdominal
walls on CT scans. Thus understanding the anatomy in the abdomen on CT imaging is critical for that (1)
we can tell what anatomical structures and which properties of structures are important to specific clinical
applications; (2) we can tailor the techniques for the context features of the anatomical structures to
segment. In this chapter, we review the abdominal anatomy on CT imaging with the focus on the

challenges of segmentation for clinical analysis.

2. General Issues of CT Imaging

Computational Tomography (CT) is a routinely used scanning technique in clinical analysis using
computer-processed X-rays to generate a series of tomographic image slices that allow the user to see the
interior of human body for the specific scanned area without opening surgery. The CT images, often
reformatted into a three-dimensional volume, demonstrate various anatomic structures with high-contrast
resolution based on the differences in the physical density to absorb/block the X-ray beam between
tissues, and the intensity of CT images, i.e., Hounsfield (HU) scale, has relatively consistent range for
specific tissues (e.g., bones appears much brighter than fat tissues in CT scans).

Despite the inherent high contrast, CT scans for abdomen-related clinical analysis can vary from
many perspectives, which make it challenging for robust automatic segmentation of abdominal structures

on large-scale study.



2.1. Field of Views (FOVs)

Various FOVs exist among abdomen-related CT scans.

Along the cranial-caudal axis, some scans may range from the top of pelvis to the bottom of ribs
(abdomen CT), while others may have larger extensions, i.e., from the top of sternum to the middle of
femurs (thorax-abdomen-pelvis CT). A typical range of mostly taken abdominal CT scans covers the
xiphoid process for its top, and the femur heads for its bottom (abdomen-pelvis CT), which effectively
includes all abdominal viscera, the whole abdominal wall, a large portion of pelvis, spinal vertebrae, and
rib cage, and the bottom end of lungs and heart. This diversity of the vertical coverage brings challenges
of structure localization and spatial alignment between scans (e.g., registration).

Variations of FOV for in-plane slices are also observed. Sometimes, especially for those with
obesity problems, the cross-sectional area of the patients’ bodies is larger by the FOV of CT scanners so
that a circle constraint can be seen on each axial slice. There are also cases that the patients are in contact
with the scanner bore, which may cause streak artifacts on images (Figure 1.1a).

In addition, the resolution of clinically acquired CT scans can also vary substantially. Among the
cohorts that we have been studying with, the slice thickness (along the cranial-caudal axis) approximately
ranges from 1.5 mm to 7.0 mm, while the in-plane resolution ranges from 0.5 x 0.5 mm to 1.0 x 1.0 mm.
Conventionally, the voxels of the CT volumes are highly anisotropic (1.0 x 1.0 x 3.0 mm), the large slice

thickness makes it difficult to yield smooth 3-D surfaces of anatomic structures.

2.2. Contrasts

Radiocontrast agents are often used in clinical CT to improve the visibility of internal anatomic
structures in X-ray. Intravenous (V) contrast is the mostly used medical contrast medium for abdomen
CT scanning. It is an iodinated contrast agent given through a vein to help highlight abdominal organs,
and detect tumors, infections, and vessel diseases. Sometimes, per os (PO) contrast, as a dilute iodinated

contrast, is taken orally by patient to enhance the visibility of the gastrointestinal tract.



Figure 1.1. Common CT artifacts: (a) streak artifact caused by body-scanner contact; (b) ring

artifact; (c) windmill streak; (d) partial volume effect; (e) motion artifact; (f) streak artifact

The timing of taking a scan after the contrast is given is critical to the appearance of CT images.
Early arterial phase, late arterial phase, and portal venous phase are the three typical IV contrast phases in
terms of the propagation of the contrast agent through the vessel system, giving different structures
highlighted as opposed to non-contrast phase where no contrast agent is given before scanning.

The distinct appearances (intensity distributions) of different contrast phases can undermine the
robustness of intensity-based segmentation techniques. On the other hand, the relative contrast
enhancement has been used as extra information to improve segmentation when scans of multiple

contrasts are available [26, 27].

2.3. Artifacts

CT images are susceptible to a number of artifacts despite the generally faithful representations.
Some typical artifacts (Figure 1.1) are described below.

Streak artifacts are often seen around materials that block most X-rays. Bones, metal implants,

female patients’ bra wires can all contribute to the streak patterns in CT images.



Partial volume effects cause the blurring of the edges due to the scanner being unable to
differentiate between a small amount of high-density material (e.g., bone) and a large amount of lower
density (e.g., cartilage). They are most commonly seen when using highly anisotropic voxels, where the
X-ray attenuation within each voxel is not as homogeneous as the reconstruction assumes.

Motion artifacts appear as blurring and/or streaking on image, caused by movement of patient
being scanned; Ring artifacts are usually caused by mechanical detect fault or mis-calibration, shown as
“rings” within image; Windmill streaking appearances are seen when the scanner detectors intersect the

reconstruction plane.

3. Ventral Hernia and Abdominal Wall

A ventral hernia (VH) is not an intrinsic bodily structure, but an abnormal protrusion through a
defect in the anterior abdominal muscular wall. Thus the abdominal wall is an important anatomic
structure to characterize ventral hernias, where the muscular groups and/or fascial connections are typical
extrusion spots of VHs, and several skeletal landmarks can be used to localize VHs on the abdominal wall.
In Chapter 111, we will propose a detailed labeling protocol based on the abdominal wall structures for
hernia-oriented clinical analysis; here we first introduce the related anatomies (Figure 1.2) briefly, and

then describe several typical challenges for abdominal wall segmentation on clinically acquired CT.

3.1. Muscular Groups

The rectus muscles form the anterior-most muscular layer. The rectus consists of a pair of
muscular columns oriented along the dorso-ventral axis. They are connected superiorly at the xiphoid
process and extend inferiorly to the pubis.

There are three main muscles that make up the group of oblique abdominal muscles the external
oblique, the internal oblique, and the transverse abdominal. These three muscles attach superiorly to the
5th through 12th ribs, inferiorly to the iliac crest, and extend across the anterior abdominal wall toward

the rectus muscle along the midline. They form the lateral boundaries of the abdominal wall. Although the
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Figure 1.2. Abdominal wall and related landmarks: (a) rectus muscles; (b) oblique abdominal
muscles; (c) linea alba; (d) linea semilunaris; () umbilicus; (f) xiphoid process; (g) anterior
superior iliac spines; and (h) pubic symphysis.

three lateral muscles can be well recognized, they are not consistently visually separable throughout their

extent on clinical CT — especially at the terminations.

3.2. Fascial Connections

The linea alba runs between the two sections of the rectus muscle. It consists of almost
exclusively connective tissue, including the fused aponeuroses of the rectus and the oblique muscular
groups. It forms the anterior-most midline and extends from the xiphoid process superiorly to the pubis
inferiorly. The linea alba is easily located on a CT image after identification of the rectus muscle.

The linea semilunaris runs directly aside the left and right boundaries of the rectus muscle,
beginning at the termination of the oblique muscles. It consists of the aponeuroses of the oblique muscles.
It begins superiorly at the 9th rib and extends inferiorly to nearly join at the pubic tubercle. On CT, the
linea semilunaris can be identified by the anterior termina of the oblique abdominal muscles.

The Umbilicus is the small depression of the navel or “belly-button”, located anteriorly along the
linea alba slightly superior to the pelvis. On CT, the umbilicus can be seen as an indentation of the skin
and subcutaneous tissue, and as a slight increase of intensity of the anterior dermal layer along the

midline, anterior to the fascia.
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3.3. Skeletal Landmarks

The xiphoid process is the inferior-most structure of the sternum. It is composed of ossified
cartilage and is located medially, at the superior end of the linea alba. On CT, it can be found as a bright,
bony structure directly in the midline, and its inferior tip forms the superior boundary of the anterior
abdominal wall.

The left and right anterior superior iliac spines (ASIS) are the ridges along the superior curve of
the pelvic bone. The anterior-most protrusion of the iliac curve is the anterior iliac spine. On CT, the
anterior superior iliac spines are the anterior-most points of the bright, bony pelvis. They are useful as
surface anatomical landmarks, which are palpable, as well as in defining the inferior-lateral boundary of
the anterior abdominal wall.

The pubic symphysis is the cartilaginous joining of the two halves of the pubic bones, located
medially and immediately posterior to the external genitalia. On CT, it can be found where the left and
right bright, bony pubic structures nearly touch. It is useful in defining the inferior-most boundary of the

abdominal wall.

3.4. Challenges of Abdominal Wall Segmentation on CT

We consider the segmentation of abdominal wall as to extract its inner and outer surfaces
smoothly. To this end, we expect two general conditions for robust segmentation, (1) high contrasts for
the boundaries of the abdominal walls, and (2) low variations for the surrounding tissues. However, these
two conditions are not always met on clinical CT for hernia patients. For example, within the herniated
region, the abdominal muscles (rectus / obliques) are highly stretched, and have inhomogeneous intensity,
which can be hardly discriminated from the fat tissues around. Similarly, the fascial connections may
have intensity similar to fat tissues, and cause the “leakage” problem for surface segmentation. On the
other hand, lots of undesirable structures with similar intensity to abdominal muscles can appear around
the abdominal wall, e.g., scar tissue, umbilicus, and sometimes skin tissue of skinny patients. The

contrast-enhanced gastrointestinal tract and the speckle noise in fat increases the complexities from the
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inside and outside of abdominal wall, respectively. In addition, the general CT artifacts discussed in
section 2.3 also creates substantial segmentation difficulties, especially metal-induced streak artifacts that

commonly observed from patients with metal implants.

4. Abdominal Organs

Underneath the abdominal wall, the human abdomen contains or partially contains a large portion
of important organs, glands and vessels that tightly related to the functional quality of life. Generally on
CT images, most of the abdominal viscera are not hard to identify, while the accurate segmentation of
these viscera is challenging given the complicated environment in abdomen. As below, we briefly
describe 11 groups of abdominal viscera on CT (Figure 1.3), and discuss the abdominal viscera
segmentation difficulties in general. Note that (1) we consider kidneys as abdominal organs, though
strictly they are out of the abdominal cavity, (2) we skip the intestines because the serpentine tract, as a
whole, is not commonly interested (as opposed to some pathological abnormalities, e.g., colon polyps),
and too complicated to segment even by hand, and (3) heart and lung are beyond our scope here because

they are in the thorax cavity, and usually not included entirely in abdominal CT scan.

4.1. Spleen

Spleen acts as a blood filter in human body primarily by removing old red blood cells and
holding a reserve of blood. It is located in the left upper quadrant of the abdomen. On CT, the boundary
of spleen is relatively easy to identify, except that sometimes it is in touch with the left kidney at the

posterior end. Splenic artery and splenic vein diverge at the right hand side of spleen.

4.2. Kidney

The kidneys are essential organs in the urinary system, and serve the body as a natural filter of the
blood, and remove wastes to the urinary bladder. They are located at the rear of the abdominal cavity in
the retroperitoneum. On a regular CT scan in portal venous contrast phase, the intensity distribution of

kidneys is slightly higher than, but share substantial overlap with that of the liver and spleen nearby.
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Figure 1.3. Abdominal Viscera in CT: (a) spleen; (b) right kidney; (c) left kidney; (d) liver; (e)

pancreas; (f) stomach; (g) esophagus; (h) gallbladder; (i) adrenal glands; (j) aorta; (k) inferior

vena cava; (I) portal vein and splenic vein; (m) surface rendering of abdominal viscera.
Renal artery, renal vein, ureter, and renal pelvis loosely fill the concave surfaces in the middle of a

kidney.

4.3. Liver

Liver has a wide range of functions, including detoxification, protein synthesis, and production of
biochemicals necessary for digestion. It lies below the diaphragm in the abdominal-pelvic region of the
abdomen. It is located in the right upper quadrant of the abdominal cavity. Some other anatomic
structures are situated tightly with liver. Gallbladder is usually embedded underneath the middle of two
liver lobes; inferior vena cava passes though the right-posterior end of the upper liver; portal vein extends
branches into liver from its right hand side. A liver can often be observed in touch with the inner surface

of the abdominal wall.
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4.4. Pancreas

Pancreas is both an endocrine gland producing several important hormones, and a digestive
organ, secreting pancreatic juice containing digestive enzymes that assist the absorption of nutrients and
the digestion in the small intestine. The pancreas can be essentially divided into three parts: head, body,
and tail. The head lies within the concavity of the duodenum. The body lies behind the stomach, and
extends along the splenic vein. The tail is on the left end of the pancreas, lying towards the spleen.
Pancreas has a fuzzy texture, and a slightly darker intensity than spleen and liver, its head part can be very

confusing to distinguish from duodenum.

4.5. Stomach

Stomach is a muscular, hollow, dilated part of the digestion system which functions as an
important organ of the digestive tract. The stomach is located between the esophagus and the small
intestine. The gastrointestinal junction is divided at where the digestive tract looks pinched (pyloric
sphincter). Stomach is on the left upper part of the abdominal cavity. The top of stomach lies against the
diaphragm. A substantial part of stomach may appear as hollow, while the rest part is masticated food;
both of them are enclosed by stomach wall. The shape of stomach can vary a lot in terms of food

consumption and the existence of gastric distension.

4.6. Esophagus
Esophagus is an organ which consists of a muscular tube through which food passes from the

pharynx to the stomach.

4.7. Gallbladder

Gallbladder is a small organ where bile is stored before released into the small intestine. The
gallbladder is a hollow system that sits just beneath the liver. Normal gallbladder looks darker than liver

on CT. Some patients may have gallstones, which appears as bright speckles in the gallbladder.
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4.8. Adrenal glands

Adrenal glands are endocrine glands that sit at the top of the kidneys, chiefly responsible for
releasing hormones in response to stress. They are wishbone-shaped structures with similar intensity and
texture as pancreas, and situated bilaterally in the retroperitoneum superior to the kidneys. The right
adrenal gland is usually close to the left hand side of liver, and left adrenal gland is be nearby the

pancreas tail and spleen.

4.9. Aorta

Aorta distributes oxygenated blood to all parts of the body through the systemic circulation as the
largest artery in the human body, originating from the left ventricle of the heart and extending down to the
abdomen, where it bifurcates into two smaller arteries (the common iliac arteries). Aorta runs alongside of
the vertebral column on its anterior side. Metal stents can be sometimes observed implanted in aorta,

appearing as bright spots on the boundary of aorta.

4.10. Inferior Vena Cava (1VC)

IVC is the large vein that carries de-oxygenated blood from the lower half of the body into the
right atrium of the heart. It is posterior to the abdominal cavity and runs alongside of the vertebral column
on its right side (i.e. it is a retroperitoneal structure). It enters the right atrium at the lower right, back side
of the heart. A substantial segment of IVC passes through liver, where its boundary can be barely

observed.

4.11. Portal Vein and Splenic Vein

The hepatic portal vein is a blood vessel that conducts blood from the gastrointestinal tract and
spleen to the liver. This blood is rich in nutrients that have been extracted from food, and the liver
processes these nutrients. The hepatic portal vein is formed by the union of the superior mesenteric vein

and the splenic vein. The portal vein and splenic vein together connect liver and spleen.
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4.12. Challenges of Abdominal Viscera Segmentation

Generally, variations from multiple sources on clinically acquired abdominal CT images are the
main obstacles of robust automatic segmentation of abdominal viscera. In other words, an approach works
well on segmenting one subject might not be applicable to another one with much different appearance.

Firstly, the human abdomen is a highly deformable system. Even though constrained within a
certain range, the spatial locations of most abdominal viscera can vary along with the fat deformation
over different patients or different poses of the same patient. The stomach can also slide in a large extent
by huge amount of food consumption before scanning and/or gastric distension. Some patients (usually
suffer obesity) may have the viscera got in touch with each other firmly, which makes it even more
challenging to segment each individual organ since most viscera share large overlap of intensity
distribution on CT.

Next, the contrast phase of CT scanning also contributes to the inter-scan variations. As discussed
in section 2.2, the appearances of the abdominal viscera are highly correlated with the contrast timing of
the scan. While various phases are used clinically, the portal venous phase is the most favored IV contrast
phase because it increases the contrast of some major abdominal organs, e.g., liver, spleen, and kidneys,
as opposed to the non-contrast phase. If PO contrast is taken, the stomach and intestines become
highlighted. This might be undesirable when segmenting other organs given the inherent large variations
of these structures.

Lastly, abnormalities, or pathological conditions are more than commonly observed on clinical
CT scans. The cancer or metastasis tissue shows darker than the healthy tissues of viscera; the
degenerated and atrophied organs appear much smaller than usual, some patients might have the
gallbladder ablated, while others might have an implanted artificial kidney. It is extremely difficult to

adapt automatic segmentation methods to these very specific cases.
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5. Other Related Anatomy

Some other anatomic structures can be supportive to the clinical analysis of abdominal wall and
abdominal viscera.

The skin surface defines the boundary of human body. Combining with the abdominal wall
surface, the volume of subcutaneous and visceral fat can be measured. These two metrics are very
popularly used in recent clinical studies. The body mask enclosed by the skin surface can be acquired by
intensity clustering [32].

The bony structures around the abdomen region, including ribs, pelvis and spinal vertebrae, are
natural landmarks for localizing abdominal viscera. Especially, the segments of spinal vertebrae, nicely
defines the human abdomen with multiple levels along the cranial-caudal axis [46, 47]. However,

sophisticated automatic segmentation of bony structures will not be discussed in this dissertation.
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CHAPTERII

SEGMENTATION PRELIMINARIES

1. Overview

Image segmentation is a process that partitions digital images into multiple segments, and usually
used to extract the objects of interest on images. This process is equivalent to assign a distinct label to
each set of pixels or voxels that represents a partitioned segment over the entire image (e.g., “0” for the
background, and “1” for the foreground object of interest). The analyses on the segmented objects
become easier with the simplified representation. Once segmented, the object of interest can be identified
with enhanced visualization; its geometric properties (e.g., width, size) can be derived from the
partitioned region; the constituent properties (e.g., density, texture) can be analyzed based on the image
context under the partition. With these functionalities, medical image segmentation is getting more and
more involved into daily clinical operations with evolutional significance (e.g., computer-aided diagnosis
image-guided surgery, and post-operative treatment). In addition, robust automatic segmentation becomes
very necessary for large-scale clinical study in place of the cost-consuming manual segmentation.

In this chapter, we review some preliminary knowledge of medical image segmentation. The
review mainly covers the techniques used in the previous contributions described in the later chapters.
Note that during the discussion below, CT is considered the default image modality, while most of the

techniques are also applicable to other image modalities.

2. Image Features
Technically, the key of image segmentation is to generalize image features appropriately so that
the image can be divided into meaningful partitions. For example, imagine that we are trying to extract an

apple from a piece of white cloth beneath it in a picture, we might consider the color (intensity)
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differences between apple and cloth, and the generic shape of an apple as the image features for
segmentation. Having a good understanding of image features is critical to image segmentation. It helps
us to answer the questions like (1) which image features provide the primary discriminant for specific
segmentation tasks; (2) how multiple image features can be weighted and adapted for images with large
variations; (3) when some image features should be included for refining the segmentation, though they
cannot handle the segmentation by themselves. We consider that image features can be categorized into

three classes discussed below.

2.1. Intensity-Driven Features

Most image segmentation methods operate based on intensity-driven features, including the

image intensity, and other pixel-wise values derived from intensity.

2.1.1. Intensity

Intensity, or grayscale, is the most basic image feature, it is the value assigned to each pixel on
image. If using linear intensity-darkness lookup table, intensity is basically what we see on images. Thus
naturally, if the object to segment looks darker or brighter than the rest part of image, it could be
identified by intensity, e.g., an intensity threshold would effectively extract the object from the
background. Note that color digital images are made of multiple-channel grayscale images, but beyond

our scope of discussion. Here we focus on single-channel images as most medical image modalities.

2.1.2. Edge

Most objects of interest are confined by edges (boundaries) in image. Thus identifying the edges
of objects can help to extract the object. Sometimes, these boundaries are the actual target interests. The
edges on images are mostly characterized by image gradient, while the gradient is a vector of the first
derivatives of intensity along all image dimensions, or more commonly considered as the L2-norm of the

vector. Generally, strong edges have large gradient, blurry boundaries corresponds to moderate gradient,
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while gradient over flat regions approaches zero. Lot of edge-based segmentation has been employing the

discriminant effectivity of local gradient [48-52].

2.1.3. Texture

Texture can be considered as the appearance represented with repeated local patterns. Textures
with different local patterns are distinguishable, e.g., we can tell the wood texture from that of the fabric.
Texture analysis has been a long studied technique in computer vision [53], and has been applied to
medical imaging [54]. Various approaches characterize textures differently, among which methods using
co-occurrence matrices and Gabor filters are most commonly used. Co-occurrence matrix considers
textures as the spatial distribution of intensities [55, 56]. It represents the second-order statistics of the
image, where relationships between groups of two voxels are collected. Based on the co-occurrence
matrix, Haralick et al. [57] proposed 13 features to describe local textures. On the other hand, Gabor
filters extract features in frequency domain by passing images through multi-channel filter operators.
With a bank of Gabor filters, frequencies and orientations at multiple scales can be collected from images
as texture features for classification and segmentation [58-62]. The perceived local textures can be used as

an alternative of / in addition to the intensity values for image segmentation [63-65].

2.2. Atlas-Based Features

Image atlas represents an existing segmented object (i.e., atlas label) along with the context image
(i.e., atlas image), which provides an example for how the desired object should be segmented. Thus in
medical imaging, atlas-based features are often used since the human anatomy is generalizable in terms of

spatial distraction, shape and appearance.

2.2.1. Spatial Distribution
The principal information provided by image atlas is the spatial distribution of the structure of
interest in the image context. Assuming two abdominal CT images are roughly aligned, and the liver on

one of the image has been labeled, then we can infer that the liver should be at about the same place on

21



the other image. Spatial information is extremely helpful in a complicated environment where the
structure of interest share similar intensity-based features with other undesired structures. Note the
alignment of images is a necessary step in common tasks of atlas-based segmentation, and referred as

image registration, which is discussed in section 3.4.

2.2.2. Shape and Appearance

The shape and appearance information can also be generalized from multiple image atlases. Still
taking liver as an example, given various liver segmentations on multiple images, it is reasonable to
assume that the liver shape on a new image is most likely within the variations of the existing liver
segmentation (if there is no abnormality presented on the new image). This idea induces the theory of
Active Shape Model (ASM, [66]), through which the modes of the variations of the object shape can be
represented as a vector of shape parameters in an eigenspace constructed by Principal Component
Analysis (PCA, [67]), and thus fitting a new shape corresponds to finding an optimal set of shape
parameters (e.g., by propagating the shape surface to the boundaries [66]). By incorporating the
underlying context, Active Appearance Model (AAM, [68]) characterizes the modes of appearances

similarly, which provides additional references for segmentation.

2.3. Exogenous Information

Some exogenous information associated with images can also support the segmentation.

Patients’ demography and medical history provide natural basis to classify their medical images.
For example, female patients have broader pelvis than male ones, older people are more likely to have
atrophy issues, and patients having opening surgery history may share similar patterns of scar tissue. If
available, these types of information can reasonably divide the whole cohort into subsets with smaller
variations, and hence provide improved segmentation tailored for each group.

In addition, some properties of images, e.g., contrast phase of CT scans, indicate the modes of
image appearances. Learning the contrast enhancement between non-contrast and portal venous contrast
phases as additional independent features was shown helpful to drive the image segmentation [26, 27].
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3. Pre-Processing

In practice, image regularization is often required before segmentation due to (1) various field-of-
views (FOVSs), (2) inhomogeneous intensities, (3) excessive noise, and (4) non-alignment between target
and atlas; otherwise the segmentation might hardly work. Thus some pre-processing techniques are
applied to images to unleash these problems, and help the segmentation methods more applicable to

images.

3.1. Region of Interest (ROI) Selection

When the desired object to segment is much smaller than the FOV of the entire image, an ROI
selection might be necessary so that (1) redundant regions are removed, (2) confusing undesired
structures are reduced, and (3) computational time becomes less.

Manual selection of ROI is an acceptable option as long as the structure of interest is easy to
identify. Several approaches can be considered to automate the process. When image atlases are available,
and the registrations are robust, an ROI can be considered as the union of the registered the atlas labels
[69]. When some landmarks are easy to extract automatically, and they roughly covers the range of the
structure of interest, the ROI in the form of bounding box can be derived from the coordinates of the
landmarks. Recently, sophisticated localization techniques are presented [70, 71], where ROIls are

robustly extracted by learning the image context.

3.2. Intensity Normalization

Intensity normalization is a regularization process on the range of intensity values. It is often used
to enhance the contrast over a certain intensity range so that some objects become easier to identify on the
image. Consider the original image I, with intensity range (a,, by), the normalized image I; with intensity

range (a4, b,), then a commonly used linear normalization can be described as follows

(Io — ag)(by — aq) N

L =
! by — ay

a; (2.1)
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In CT scans, linear intensity normalization might be used for the following situations with
specific configurations of the desired intensity range after normalization: (1) extremely high intensity
values are observed over the metal implants and some bony structures, which unnecessarily broadens the
intensity range of image; (2) the bony structures need to be enhanced as a skeleton reference; and (3) the

segmentation requires high contrast between muscle and fat tissue.

3.3. Smoothing and De-noising
Image noise can be considered as random local intensity variations in digital images. When image
noise is present, the efficacy of image segmentation techniques, especially edge-based methods, can be
greatly affected. Thus image smoothing is often necessary to remove the noise. In image processing, noise
is considered as high frequency content in the image, thus low pass filters are used for smoothing.
Gaussian filters are mostly used because of its simple form and the fact that most image noise is

assumed Gaussian distributed. In 1-D, the Gaussian filter has the form of

60) = ——exp(- = @2)
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where o represents the standard deviation of the Gaussian filter. In practice, image smoothing is usually
operated by the convolution between the original image and the filtering kernel. An extra variable is
required to define the kernel size, as the digital approximation of the analogical filter. In addition,
isotropic Gaussian smoothing for 2-D and 3-D images can be performed by convolving 1-D Gaussians for
all dimensions one after another. When using Gaussian filters, some important image features (e.g., edges
and other details) can be blurred at the same time as the noise is reduced. To address this problem,

anisotropic diffusion [72] and a newly developed technique - sheetness filter [73] can be used to reduce

noise without removing significant parts of images.

3.4. Image Registration

Image registration is a process to transform different images into the same coordinate space, or

more naturally speaking, it is a transformation process that aligns the contents on different images. This
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process has been increasingly used in healthcare and medical research [74, 75]. With registration,
information associated with the registered images becomes the additional reference for the target image,
which establishes the foundation for many modern image-processing techniques. Thus image registration
can be considered as a pre-processing step for image segmentation, while the quality of registration is
critical for atlas-based segmentation methods [76-78].

Theoretically, a registration is generally an iterative process that involves a target image (or fixed
image) considered as the reference, a source image (or moving image) that is expected to align with the
target image, a similarity metric (e.g., fiducial registration error (FRE, [79]), sum of squared differences
(SSD), normalized cross-correlation (NCC, [80]), mutual information (M, [81, 82]), normalized mutual
information (NMI, [81, 82])) to measure the alignment degree between the two images, and a optimizer
(e.g., gradient descent [83], Powell’s method [84], Nelder-Mead [85]) to help the registration reach an
optimum of the defined similarity metric efficiently along the iterative search over all degrees of
freedoms (DoFs) of the image transformation (e.g., translation, rotation, scaling, shearing, deformation).
An interpolator (e.g., nearest neighbour, linear [86], spline [87]) is needed to measure and assign intensity
values on the image grids since the registered image voxels are usually located between grids after
transformation.

In terms of the registration basis, image registration can be categorized into feature-based and
intensity-based. Feature-based registration seeks to align the correspondent features (e.g., points, lines,
surfaces) in images, through which determines the geometrical transformation, and then map the source
and target images together [88, 89]. Intensity-based methods drive the registration by comparing the
similarities of the intensity-based metrics [90, 91]. With regard to the transformation mode, image
registration can be roughly classified as rigid, affine, and non-rigid, where different DoFs are allowed.
Rigid registration permits only translation and rotation; affine registration [92] allows scaling and
shearing in addition, while the transformation stays linear; non-rigid registration enables non-linear
transformation [93], i.e., local warping, to align images, where the local warping can be modeled with
thin-plate spline [94], free form deformation [95], diffeomorphisms [96], and etc.
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4. Modern Segmentation Techniques

Several modern segmentation techniques mentioned in the later chapters are introduced below.
We note that this is not a comprehensive review of image segmentation techniques; thresholding [97, 98],
watershed [99], active contour models [48, 49], and graph-based segmentation [100, 101] methods are not

currently covered.

4.1. Bayesian Methods
In the statement of Bayes’ theorem,

P(B|A) P(A
P(A|B) = % (2.3)
A is considered as an outcome event, B is an observed event, P(A) is the prior probability (initial belief)
that event A occurs, P(B|A) represents a generative model that characterizes the probability distribution
of the random observations given a latent outcome, P(B) is the total probability of observation, and act as
a partition function (normalization term), P(A|B) represents the posterior probability of the outcome
given observations.

The Bayes’ theorem provides a very basic framework for image segmentation. Specifically,
considering A as the segmentation decision, B as the image features, then the Bayes’ theorem naturally
determines the segmentation estimate based on the image features, which can be just a scalar of intensity
value, or a feature vector that includes various image contexts. While in Eq. 3, the prior is usually
estimated roughly and the partition function serves for normalization, the generative model is very critical
for the posterior estimate. Typically, the generative model can be learned with examples, i.e., data with
both observations and outcome, and then applied to Eq. 3 for the outcome estimate on newly observed
data. This training-testing scheme with Bayes’ theorem has been the basis of many supervised machine
learning [102] and image segmentation techniques [103, 104].

In practical image segmentation, the generative model can be characterized by Gaussian mixture

models (GMMs) [105, 106]. On a voxel-wise basis, let x € R%*represent a d dimensional image feature
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vector, m € M indicate the segmentation estimate, where M = {1, ..., M} is the set of possible outcomes.
The probability of the observed features given the segmentation is m can be represented with the mixture
of N; Gaussian distributions,

Ng

At 1 _
faim=t =% — % oxp -2 (x - o) TR (x — i) (2.4)
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where ay, € R, pp, € R¥*1 | and Cp, € RY*? are the unknown mixture probability, mean, and
covariance matrix to estimate for each Gaussian mixture component k of each tissue type t by the
Expectation-Maximization (EM) algorithm following [107]. After the generative model is learned from
datasets with known segmentations, the segmentation estimate on unknown datasets can be by Bayesian

expansion with extracted feature vectors.

 faim=0ftm=0)
fm =0 = & Gem = ¢y f(m = 0

(2.5)

4.2. Clustering

Data clustering is process to partition observations into different clusters with minimum within-
cluster sum of squares (WCSS) based on the observed features. It can be considered as an unsupervised
counterpart of Bayesian methods, where no model training is required, instead a number of desired
clusters should be defined. k-means clustering [108] is a basic clustering method, where after partitioning,
each data point belongs completely to the assigned cluster. Fuzzy c-means (FCM) clustering allows data
points with partial membership (fuzziness) of each cluster [109].

Consider X={xq, x5, ..., X,} as a set of feature observations for an image with n voxels, where
xj € R%*1represent a d dimensional image feature vector, fuzzy c-means clustering aims to divide the n
observations into ¢ sets with the cluster centers defined as € = {cq, ¢, ..., c.}. Partition coefficients are
measured as y;; € [0, 1] for the cluster membership j of the observation i, wherei = 1,...,n,j =1, ...,c.

The goal is the minimize a objective function,
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where m is a real number no less than 1, defined as a fuzziness coefficient. The fuzzy partition is carried

out through an iterative optimization with the update of the voxel-wise membership y;; and the cluster

centers c;
c 2 !
x; — ¢\ T
X;—¢C
=1 | i k”
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Cj = —~n . m (28)
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and the iteration with stop when the maximum update increment of y;; is less than a small number
€ € (0,1). Note that when m = 1, the membership u;;j converges to 0 or 1, and the FCM clustering

approaches k-means clustering.

4.3. Active Shape Model (ASM)

ASM represents a parametric deformable model that statistically characterizes the shape
variations from the training set. ASM is often built to regularize the shape of the desired structure while
segmenting it [66].

Classic ASM employs point distribution model (PDM). The building of PDM requires a
collection of corresponding points along the shape boundaries or salient features on the training sets,
where the shapes from all datasets are usually aligned by registration to a normalized reference coordinate.
The shape variations are modeled following a Principle Component Analysis (PCA) procedure. In a 3-D
case, the coordinates of n shape points along the it* of m training sets in the aligned coordinate are first

defined as

xi = (Xi1, Viv, Zits -» Xin» Yins Zin) " (2.9)
Then the mean shape can be given as
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X = EZ X; (2.10)
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The modes of variations are given by the singular value decomposition (SVD) of the covariance matrix

m
T 1 ¥ T

UxXu' = —Z(x,- —-x)(x; — Xx) (2.11)

me
where X is a diagonal matrix with its diagonal values as the eigenvalues A, and U denotes an eigenspace
with each column as an eigenvector, i.e., one mode of variation u, associated with the corresponding
eigenvalue A;.The value of the eigenvalue indicates the dominance of its associated mode of variation,
while the modes with relatively small eigenvalues are usually ignored due to their limited variances
provided. K eigenvectors representing the most variances remain and form a eigenspace Uk with reduced
dimensions. With the shape model built, a shape instance can be reconstructed by deforming the mean

shape by a linear combination of eigenvectors

K
x=x(b) =%+ Z bty (2.12)
k=1
where by, is denotes the shape parameter associated with its mode of variation.
For practical segmentation, ASM usually works by alternating over local profile fitting and shape
regularizing. Specially, after initialization, a shape is first generated by searching around each point for a
position that matches the modeled local profile better [22, 110], usually at strong edges [72]. Then the

newly generated shape X is constrained by the shape model

b=Ux(x-% (2.13)
where b represents the projected shape parameter that can generate a conformed shape by the shape

model through Eq. 12. In addition, b is often constrained within certain range of the variations of the
shape model represented by the eigenvalues A.

Building training sets for ASM is very challenging and time-consuming, especially to provide
corresponding points. Several techniques have been developed to generate corresponding points

automatically [111, 112]. Some studies use signed distance function (SDF) over the whole image instead
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of PDM to build ASM after all training sets are co-registered so that corresponding points are not required

[113-115].

4.4. Level Set

Level set segmentation provides a numerical approach to track the surfaces of objects [116-118].
Level set methods is very similar to active contour models (ACM), e.g., snake [49], for that both methods
define cost / energy functions to minimize as the criteria for segmentation, and derive Euler-Lagrange
equation to numerically propagate the segmentation surface to approach to the objects of interest. Level
set, however, has two main advantages over ACM: (1) it is free from parameterization of the propagating
surface, and (2) it is easier to change topology to fit the underlying object (e.g., split and merge shapes).
Level set segmentation is broadly used to extract smooth deformable surfaces of desired structures in
images.

In the level set approach, an evolving surface is embedded as the zero level set of a higher
dimensional level set function ¢ (x,t), and propagates implicitly through the temporal evolution of ¢ in
terms of a given speed function F. ¢(x, t) is defined as signed distance function (SDF) to the evolving
surface with negative value inside the surface and positive outside. The speed function, which can be
spatially varying, is usually determined by advection forces (e.g., constant inward or outward motion),
intrinsic geometry (e.g., mean curvature), and image attributes (e.g., intensity, and its gradient). The

temporal evolution of the level set function is usually described in the following form

¢ —F|Vep| =0 (2.14)
where |VO| represents the normalized gradient of the level set function. Note that &, is the Euler-

Lagrange equation to update the surface.
Generally, level set segmentation is classified into two categories: region-based and edge-based.
Region-based level set methods rely on the global homogeneity of spatial localized features and
properties [119-121], among which Chan-Vese algorithm [119] is one of the mostly used. Chan-Vese

algorithm aims to propagate the curve by minimizing the variances inside and outside the curve while
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constrained the total curve length. Consider uy(x, y) as a 2-D input image, H(-) as a Heaviside function,

6(+) as a Dirac function, the derived Euler-Lagrange equation of Chan-Vese method can be written as

¢r = 8(P)[v ke — (ug — ¢1)* = (up — )] (2.15)
where v is a parameter to constrain the length of the contour, c;and ¢, are the average of u, outside and

inside the current zero level set, respectively, and x represents the curvature of ¢ that enforcing the

smoothness of the curve.

J, uo(e,y) H(gp(t,x,y)dxdy

¢ (@) = (2.16)
J, H(®(t, x,y)dxdy
0 (8) = [, (e y) (1 — H($(t,x,))dxdy o
Jo (1 - H(¢(t,x,y))dxdy
_ (Ve
K = div (|V_¢|> (2.18)

where 2 represents the whole domain of image. Note that H(-) and §(-) requires a continuous
approximation in implementation to enable the actual curve evolution.

Edge-based level set methods drive the surface propagation through the local differences [50-52],
typically the edges, in the image, among which Geodesic Active Contours (GAC) model [50] is very
commonly used. Basically, GAC pushes the curve by an inward / outward normal pressure force, i.e.,

balloon force, and stops it based on an edge map defined by the image gradient.

¢: = glVol(c + k) + VD - Vg (2.19)
where k is the curvature as in Eq. 18, c is a parameter that controls the strength of balloon force, g is

called edge stopping function, proposed by Malladi et al. [122] to stop the level set evolution at the
boundaries of objects, which can be typically measured for an image I in the form as follows

1
14 |VGg *I|P
where p controls the steepness of the edge stopping function, typically 1 or 2, and G,denotes a Gaussian

g= (2.20)
smoothing (convolution) kernel with a standard deviation of o. Back to Eq. 19, the balloon force is seen
reasonably constrained by the edge stopping function as it can be diminished at strong edges. In addition,
the term V@ - Vg performs to further preserve the curve from propagating through the edges.
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In addition, re-initialization of level set is usually required during the surface evolution to keep
the pattern of SDF, and thus preserve the properties of the ¢ -related terms []. The standard re-

initialization is solved by

¢ = sign(do)(1 — Vo) (2.21)

where ¢, denotes the SDF to be re-initialized, sign(-) indicates a sign function. Recently, Li et al.
proposed an internal regularization energy term, i.e., Froy = V2d — k, that enables the level set evolution

free from additional re-initialization [123].

4.5. Multi-Atlas Label Fusion

As registration does not necessarily (is actually challenging to) align the atlas image perfectly at
the region of interest, single-atlas-based segmentation is not robust, and almost solely depends on the
guality of registration. Several studies have demonstrated that the combined information of multiple
atlases registered to a single target image yields significantly improved segmentation [13, 124]. Multi-
atlas label fusion is such a technique for transferring and combining information from multiple canonical
atlases to target images via registration.

By definition, a natural workflow of multi-atlas label fusion includes multiple pair-wise
registrations from atlas to target based on the intensity images, the propagation of the atlas labels (existing
segmentations) to the space of the target image via the geometrical transformation that align the intensity
images together, a process that fuses the propagated labels into one segmentation estimate, called label
fusion. In practice, especially when the registrations are not robust due to large variations of the datasets,
an additional process, i.e., atlas selection can substantially improve the segmentation by choosing the
most appropriately registered atlases for fusion. Thus we focus on the three critical components in a
multi-atlas label fusion framework: (1) registration (including intensity-based registration, and label

propagation), (2) atlas selection, and (3) label fusion.
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4.5.1. Registration

The image registration in multi-atlas label fusion aims to align the structures in the atlas images to
those in the target image so that the atlas labels become valuable references to the segmentation estimate.
By default, intensity-based similarity metrics including are used to drive the registration, where NCC, Ml,
NMI are qualified with the alignment involving intensity inconsistencies. To avoid getting to local
minima, a coarse-to-fine scheme is often used, in which registrations are carried out between the images
with downsampling levels, and the registered transformation between the coarser images are used as the
initialization for further registrations between finer images. Similarly, rigid and affine registrations are
often used to align atlas and target image roughly, followed by a non-rigid registration that allows local

deformation to match up the details [28].

4.5.2. Atlas Selection

Atlas selection is a process to alleviate registration problems. Although in some sophisticated
label fusion techniques, the global and local weighting of atlases can be considered as a fuzzy version
atlas selection, the presence of the bad atlases can bias the evaluation of other atlases, and thus influence
the fusion results [125]. Therefore, a crisp determination of whether an atlas should be included for label
fusion becomes necessary, especially when substantial problematic registrations exist. Traditional image
similarity metrics between the registered atlas images and the target image have been considered as the
proxies of for atlas-target similarity, while the summations of these voxel-wise metrics over regions of
interest are used as the selecting criteria [76, 77, 126]. On the other hand, Selective and Iterative Method
for Performance Level Estimation (SIMPLE) [127]provides a compact solution for selecting atlases and
fusing segmentation iteratively based on the overlapping regions of atlas labels with the intermediate
fusion result, which demonstrates better correlation with the registration performances than the image

similarity metrics [77].
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4.5.3. Label Fusion

Label fusion attempts to estimate the underlying segmentation through combining individual
estimates from multiple sources [128, 129]. It was proven that a collection of estimates only slightly
better than chance could be fused (or “boosted”) to form a single estimate with arbitrarily high accuracy
[130-132]. In the context of multi-atlas label fusion, label fusion yields an estimated segmentation the
target image and the multiple registered atlases (including both intensities and labels) [13, 124]. The
simplest way to fuse the register atlases is through a majority vote of the registered atlas labels [129],
where the mode label is selected at every voxel as the estimated segmentation for target. However,
majority vote fails to assess both the likelihood of the estimate and the quality of the observed
segmentations. Today, label fusion is an extremely popular topic for ongoing research.

In general, consider a target intensity image represented as a vector, I € R¥N*1, Let T € LV* be
the latent representation of the true target segmentation, where L = {0, ...,L — 1} is the set of possible
labels that can be assigned to a given voxel. Additionally, consider a collection of R registered atlases
with associated intensity values, A € RV*R and label decisions, D € LN*R. Throughout, the index
variables i will be used to iterate over the voxels, s and [ over the labels, and j over the registered atlases.
Given this information, the goal of any label fusion framework is to accurately estimate the following

probability density function:

Wsi = f(T; = s|1,A, D) (2.22)
where W;; can be interpreted as the probability that the true label at voxel i is equal to label s given the

provided contextual information. Then using a Bayesian expansion, Eq. 23 can be re-written as:

_ [Ty =s)f(D,A|T; =s,1)
Y f(Ti=DfDAIT; = L)

where, f(T; =s) denotes the a priori distribution governing the underlying segmentation and

W (2.23)

f(D,A|T; = s, 1) is the generative model that represents distribution governing the relationships between
the observed atlas information and the latent target segmentation. Lastly, with the assumption that the

observed atlas labels and the observed atlas intensities are conditionally independent [133]:
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W = f(T; = s)f(DIT; = s)f (AlI)
N f(T = DFDIT = Df(AID

where the information gained by direct incorporation of the atlas-target intensity relationships, i.e., f(4|I),

(2.24)

is assumed to accurately approximates the complex relationships through the assumed conditional
independence.

With Eqg. 25, any label fusion method can be considered as the specification of (1) the a priori
segmentation distribution, (2) the relationships between the atlas labels and the latent target segmentation
(3) the relationships between the atlas intensities and the target intensity, and (4) the dependence /
independence of the information from multiple atlases. For example, majority vote considers the
segmentation estimate as the combination of equally weighted independent atlases label decisions
regardless of the intensity information with a flat segmentation prior, which simplifies Eq. 25 as

_ %;8(Dyj.s)

R 8(Dy0)

where §(:,") is the kronecker detla function.

(2.25)

Using this general framework, there are two primary categories of label fusion techniques: (1)
voting label fusion attempts to find optimal weights in order to determine which atlases are optimally
representative in terms of some local/semi-local/global metric [76, 77, 126, 133, 134], and (2) statistical
label fusion techniques attempt to model atlas performance using a statistically driven rater performance

model [125, 135-141].

5. Post-Processing
Segmented structures are generally expected to have high spatial consistency (e.g., smooth
surfaces, free from speckles and pores, and etc.). Several post-processing techniques are available to

provide segmentation refinement.

5.1. Markov Random Field (MRF)

The theory of MRF provides a mechanism for enforcing spatial consistency across images. Many

segmentation techniques (e.g., multi-atlas label fusion [142], Bayesian methods [103, 104], Graph Cut
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[69, 143]) have intermediate stages with probabilistic segmentation estimate, representing the
segmentation result fuzzily. MRF can serve to regularize the voxel-wise probabilistic segmentation
estimate by simultaneously considering the current segmentation estimate of the voxel itself and the
neighboring voxels [107]. A neighborhood (or clique) structure is carefully designed to suppress the
spatial inconsistency. Thus MRF provides a theoretically sound procedure to increase the consistency of

the underlying segmentations.

5.2. Morphological Operation

Mathematical morphology (typically binary morphology) provides the several shift-invariant
basic operations to regularize the geometrical structures of segmentation [144, 145]. A structuring
element (a simple shape, e.g., a disk, square, or cross in 2-D, or corresponding geometrics in 3-D) needs
to be defined so that the morphological operations take effect on how the structuring element fits or
misses the underlying binary segmentation.

Specifically, erosion turns a foreground voxel into background when the structuring element fits
the voxel as its center, but does not have an entire match with the local binary image. The erosion of a
binary image usually “peels” one layer of the foreground object, and diminishes thin lines and speckles.
On the contrary, when having a miss with the center matched up for the given structuring element,
dilation turns the background into foreground on the voxels on the binary image corresponding to the
missing regions of the structuring element. Dilation works for inflating foreground objects, where gaps
and pores might be filled. Opening (i.e., erosion followed by dilation) and closing (i.e., dilation followed
by erosion) can clear speckles and pores, respectively while keeping the most other parts of the binary

image the same.

6. Performance Validation Criteria

The validation of segmentation performances is very necessary to evaluate the quality of specific

segmentation approaches. Qualitatively, the segmentation results can be overlaid on the original image (in
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the form of a solid region, or an outline surface) to see how the segmentation fits the underlying structure.
This yields a straightforward representation of how the segmentation method performs on the tested data.
More objective validation requires quantitative criteria, based on which the dis-similarities of the
segmentation result to the ground truth (usually manually segmented by expert) are examined, and thus
different segmentation approaches can be compared against each other statistically. Generally, volumetric
accuracy and surface error are two main categories of quantitative validation criteria for medical image

segmentation.

6.1. Volumetric Accuracy

Volumetric accuracy criteria compare the segmentation result against the ground truth voxel-by-
voxel, collect the numbers of True Positives (TP), True Negatives (TN), False Positives (FP), and False
Negatives (FN), and combine them in specific manners to represent the overlapping degrees between the
segmentation and truth.

Consider A as the segmentation result, B the truth volume, and |-| the L! norm operation, Dice
Similarity Coefficient (DSC, [146]) is the most commonly used accuracy metric in recent studies of

image segmentation.

psca By = 2ANBL_ 2ITP] (2.26)
’ |A| +|B|  2|TP|+ |FP|+ |FN|
Jaccard index is another commonly used metric for segmentation accuracy, where
Jaccard(A,B) = 140 Bl = ITP] (2.27)
’ |AUB| |TP|+ |FP|+ |FN|
Sensitivity and specificity are two well-known statistical measures of performances, where
Sensitivity(A,B) = 140 B| = IP] (2.28)
’ |B| ITP| + |FN|
o |AnB| ITN|
Specificity(A,B) = 5] = FPI+ TN (2.29)

however they are occasionally used for segmentation validation because sensitivity ignores FP and thus
allows over-segmentation, and specificity focus on TN which is not a discriminative measure when the
image background is large.
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6.2. Surface Error

Surface error criteria characterize how far the surfaces of the segmentation and truth are from
each other. These metrics are especially important when the segmentation and further clinical interests lie
on the target surface rather than the target volume. Vertices are collected from the surfaces of both the
segmentation and truth, based on which distances between the sets of vertices are measured in terms of
their spatial coordinates. We define the vertices on the segmentation and truth surface as X and Y,
respectively, and d(:,*) as an indicator of distance measure. Then typically, mean surface distance (MSD)

error and Hausdorff distance (HD) error from the segmentation to the truth can be measured as below.

MSD(X,Y) = avginfd (X,Y) (2.30)
yEY x€X .

HD(X,Y) = supinf d (X,Y) (2.31)
YEY x€X

where sup represents the supremum, inf the infinum, avg the average. Note that MSD and HD can be
measured symmetrically (calculate once from X to Y, and the other from Y to X, and then get the average)

to provides more robust measures on surface errors.
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PART 2

ABDOMINAL WALL

In this part, we investigate the abdominal wall from the perspectives of (1) clinical significance,
(2) visual representation, and (3) automatic segmentation. The abdominal wall is not only a protective
boundary for all internal abdominal organs, but also a critical structure to characterize some compound
abdominal diseases, such as ventral hernia. We approach the problem by proposing a framework to
provide objective criteria for clinical ventral hernia analyses (Chapter I11). Within the framework, robust
manual labeling protocol has been designed to guide the automated processes in further study including
the segmentation of abdominal wall, and the derivation of hernia-related characteristics. Next, we explore
the impact of the marriage of image segmentation and virtual reality (Chapter 1V). We design a fully
interactive interface within immersive virtual reality environment, and combine surface rendering of
abdominal wall segmentation with volume rendering to enhance the visualization of abdomen CT for
better understanding of the anatomic structures. Then, we focus on the automatic segmentation of outer
surface of abdominal wall on a retrospective cohort of ventral hernia patients (Chapter V). Specifically,
we integrate texture analysis into level set approach to improve the robustness of segmentation given the
commonly observed irregular structures induced by ventral hernias. And finally, we propose an automatic
framework to segment both outer and inner surfaces of the abdominal wall ranging from xiphoid process
to pubic symphysis (Chapter VI1). An augmented active shape model system integrating multi-atlas label
fusion and level set techniques is presented to improve the segmentation robustness and enable accurate

subcutaneous/visceral fat measurement.
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CHAPTER III

QUANTITATIVE CT IMAGING OF VENTRAL HERNIAS: PRELIMINARY VALIDATION OF

AN ANATOMICAL LABELING PROTOCOL

1. Introduction

Ventral abdominal hernia (VH) repair is one of the most commonly performed general surgery
procedures worldwide. In the United States, nearly 350,000 repairs are performed annually at an
estimated total direct cost of $3.2 billion [147]. Despite the frequency of VVH repair, failure rates are high,
with recurrence rates estimated at between 24 and 43 percent [5]. One possible reason for these
suboptimal outcomes is a lack of evidence on the most appropriate surgical approach for different
patients. At present, decisions on laparoscopic versus open repair, mesh type, mesh position, and method
of mesh fixation are typically driven more by the surgeon’s personal preference than by objective data
[148, 149].

Multiple factors impact the success of VH repair. These factors include preoperative conditions
(e.g., obesity, nicotine use, previous infections), hernia characteristics, operative technique and
perioperative care (e.g., perioperative antibiotics, operative time). To date, there is no standardized
method for VH classification that consistently and efficiently describes hernia characteristics. The most
well-known VH classification system is the European Hernia Society Classification for Ventral Hernia
(EHSCVH) [1]. This manual system can be cumbersome to use, has been unevenly accepted by surgeons,
and is inconsistently applied, especially for complex hernias. The EHSCVH is semi-quantitative in that
VH’s are classified based on categorical locations with limited direct assessment of hernia size. The
Ventral Hernia Working Group (VHWG) proposed a hernia grading system to access patients’ risk for

surgical-site occurrences based on more comprehensive clinical factors of patients and wounds [150];
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however this classification system and its variant [151] are also not commonly used given that the
involved factors are complicated to access. We hypothesize that a quantitative imaging approach will
provide a more objective, efficient, and reproducible means of describing VH, and that this approach may
inform future evidence-based research to improve VH repair outcomes.

The purpose of this paper is to present a standardized method for quantitative anatomical labeling
of VH using standard of care computed tomography (CT). We propose a detailed anatomical labeling
protocol to capture the clinically relevant geometric properties of both VH and the abdominal wall. Then,
using a test dataset of human subjects with VH, we demonstrate both intra- and inter-rater reproducibility
of our labeling protocol for generating key quantitative descriptive parameters, including VH volumes
and the relationship of VH to relevant anatomical landmarks. We perform preliminary statistical tests on
the ability of the derived VH properties to predict a relevant clinical endpoint (requirement for mesh
bridge closure during VHR), with comparisons to predictions from EHSCVH metrics. In discussion, we
present the main contributions of our approach and its potential clinical impact, compare its practical

efficacy with other related efforts on VH characterization [2, 3, 152], and envision the future work.

2. Methods

2.1. Ethics Statement

All clinical data was collected from the Vanderbilt electronic medical records systems under
institutional review board approval. The full name of the institutional review board is VVanderbilt Human
Research Protection Program. All procedures followed were in accordance with the ethical standards of
the responsible committee on human experimentation (institutional and national) and with the Helsinki
Declaration of 1975, as revised in 2008 (5). Written informed consent was obtained from all patients for

being included in the study. An addendum was also obtained for the specific use for this study.
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Table I11.1. Clinically relevant quantitative parameters for describing VH.

Category Example quantitative Description Significance
parameters
Location Point distance from Relative location of VH with Reference for hernia
xiphoid process, respect to bony landmarks and  classification [1]
umbilicus, linea alba, fascial boundaries

linea semilunaris, ASIS,
and pubic symphysis

Size/shape  Defect area Area of abdominal wall fascial
defect
Maximum dimensions VH range on three orientations
Vhernial Vabdomen Ratio of volume size between
hernia sac and abdominal cavity
Mechanical Compliance? Ability of muscular tissues to

yield elastically on a force

Critical to selection of
surgical techniques for
hernia repair [2]
Reference for hernia
classification [1]

A normalized indicator
of hernia severity [3]
An indicator that
correlates with ease of
repair and recurrence
rate [4]

2 Not currently accessible via CT imaging.

2.2. Quantitative anatomical description of VH

Since our objective was to create a comprehensive anatomical description of VH using
guantitative parameters derived from CT, we began by assembling a set of quantitative parameters that
would be relevant for informing clinical decision-making on VH repair (Table 111.1). These quantitative
parameters are divided into those describing location of the VH relative to key anatomical landmarks
(including the xiphoid process, umbilicus, linea alba, linea semilunaris, anterior superior and inferior iliac
spines, and pubic symphysis), those describing size and shape characteristics of the VH itself (including

hernia volume, ratio of hernia volume to abdominal cavity volume [3], and defect area), and those

describing mechanical properties (chiefly compliance) of the abdominal wall.

42



2.3. Labeling protocol

We then designed a standardized anatomical labeling protocol to enable algorithmic calculation
of the above parameters (Figures 111.1, 111.2). The protocol was created for manual implementation by a
research associate with experience in anatomical labeling but without specific experience in either
abdominal radiology or general surgery; the protocol is also flexible enough to be used as a foundation for
future semi-automated or fully automated approaches. The detailed protocol is provided in the supporting
information. Briefly, it involves the following steps: (1) Select the axial and sagittal image slices on

which to label the abdominal wall. (2) Label the anterior and posterior abdominal wall, and label the linea

Left ASIS

Y~

Figure 111.1. Overview of the anatomical labeling protocol. (a) Axial and sagittal slices to label are
determined in terms of the size and resolution of the volume. (b) On the selected axial slices, the
anterior (outer and inner borders) and posterior abdominal wall is traced. At the same time, linea
alba and linea semilunaris are labeled on the appropriate axial slices. (c) The VH is labeled
entirely on every axial slice where the hernia exists. (d) On the selected sagittal slices, the outer
and inner borders of the anterior abdominal wall are traced. Note the previous VH and
abdominal wall labels can be helpful references. () The umbilicus and skeletal landmarks are

labeled. (f) The complete set of labels is reviewed.
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Figure 111.2. Anatomical structures included in the CT labeling protocol. (a) rectus muscles; (b)
obliqgue abdominal muscles; (c) linea alba; (d) linea semilunaris; (e¢) umbilicus; (f) xiphoid
process; (g) anterior superior iliac spines; and (h) pubic symphysis.

alba and linea semilunaris on the appropriate axial slices. (3) Label the herniated region entirely. (4) Label
the anterior abdominal wall on selected sagittal slices. (5) Label the skeletal landmarks and the umbilicus.
(6) Review the overview of all labels. For manual labeling by a trained research associate, the entire

labeling process takes approximately 1 hour for a complete abdominal CT volume.

2.4. Data

Retrospective, clinically acquired CT data on 61 patients with suspected VHs were collected
anonymously under institutional review board approval. Abdominal scans (covering from Xiphoid process
superiorly to pubic symphysis inferiorly) were available for the 61 patients. 18 patients were randomly
selected for protocol development; an additional random 43 patients were included for a preliminary
guantitative evaluation based on the protocol. Large variations were seen among the volumes in voxels
(512x512x90 ~ 512x512x200) and resolution (0.6x0.6x5 mm ~ 1.0x1.0x3 mm). Average field of view in
millimeters was approximately 400x400x500 mm. Various sizes of VH were observed among the

involved patients (Figure 111.3).

44



Figure 111.3. Examples of various ventral hernia sizes. (a), (b), (c) demonstrate a small, medium,

and large hernia, respectively in axial slices. The herniated regions are highlighted in red.

2.5. Manual labeling

A research associate was trained on the protocol using the Medical Image Processing And
Visualization (MIPAV) [153] software (National Institutes of Health, Bethesda, MD) and a high
resolution tablet input (Wacom, Tokyo, Japan) on a 64-bit Linux workstation. The research associate
labeled all 61 datasets, with 18 of them labeled twice in randomized order with a minimum of 3 weeks
between repeated volumes to ensure washout. All labels were created independently so that the research
associate could not see his own prior labels. For efficiency, normal wall anatomy was evaluated on slices
spaced every 5 cm. Labeling time ranged between 60 and 90 minutes per dataset. A general surgeon was
also trained on the protocol and labeled a randomly selected subset of 10 of the 18 datasets.
Independently, a general surgeon applied the EHSCVH protocol to the 26 patients who underwent

surgical repair.

2.6. Protocol validation

Intra- and inter-rater reliabilities were estimated from the differences between the paired results for
labeling the abdominal wall, key anatomical landmarks, and the VH. For the abdominal wall, reliability
was calculated using the mean surface distance (MSD) and Hausdorff distance (HD) between the two sets
of labels. For key anatomical landmarks, reliability was calculated with the Euclidian distance (ED) of
centroids using the centermost subcutaneous point for the umbilicus; the centroids for the Xiphoid

process, linea alba, and linea semilunaris; the most superior point for the pubic symphysis, and the most
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Table 111.2. Quantitative evaluations on 20 derived metrics.

Index?

Metric?

mean [min, max]

A

Hernia volume (cm?)

Hernia L-R diameter (cm)

Hernia A-P diameter (cm)

Hernia C-C diameter (cm)

Hernia anterior surface area (cm?)
Hernia posterior surface area (cm?)
Average A-P hernia thickness (cm?)
Normalized horizontal hernia location
Normalized vertical hernia location
Distance from hernia to left ASIS (cm)
Distance from hernia to right ASIS (cm)
Distance from hernia to XP (cm)

526.26 [3.99, 3946.51]
10.69 [2.63, 30.70]
5.11[0.70, 17.76]
11.64 [2.10, 30.50]

313.75 [15.28, 1269.79]

265.27 [10.14, 1103.02]

1.16 [0.19, 3.58]

0.60 [0.25, 1.34]

0.16 [-0.08, 0.65]
15.30 [2.24, 24.87]
16.44 [5.16, 25.12]
23.91[8.89, 42.92]

Body volume over abdomen (cm?®)
Abdominal cavity volume (cmq)

Ratio of hernia to abdominal cavity volume
Mean abdominal wall thickness (cm)

Std. of abdominal wall thickness (cm)
Visceral fat volume (cm?®)

Subcutaneous fat volume (cm?®) 16528.55 [296.69, 33288.25]
Evaluated height of abdominal region (cm) 34.46 [25.00, 40.50]

2 Each index represents its corresponding metric in a simpler form. A-G are considered as shape-

30331.23 [19057.96, 57735.54]
8809.37 [4384.98, 18611.35]
0.06 [0, 0.41]

1.38 [0.76, 2.58]

0.80 [0.33, 2.30]
2073.50 [5.94, 10322.78]

400 IO U O0OZZIrxae—IOTMMUOUO®

related, G-L as location-related, and M-T as body-related metrics.

® Note that (1) the quantitative values of the shape-related metrics are only collected among the
subjects with identified hernias; (2) the normalized horizontal location represents the relative position
from left ASIS to right ASIS, the normalized vertical location represents the relative position from the
level of left and right ASIS to xiphoid process; (3) the volumetric body-related metrics are evaluated
over the vertical range with labeled abdominal walls, represented as T, i.e., the evaluated height of

abdominal region.
anterior points for the anterior superior and inferior iliac spines. For the VH, reproducibility of hernia
volume was assessed by Cohen’s kappa statistic[154]. Intra-rater reliabilities were calculated on all 18
datasets. Inter-rater reliabilities were calculated on the 10 datasets for which labels were available from

both the research associate and the general surgeon.

2.7. Metrics derivation
Based on the manual labels on 61 datasets, 20 metrics were automatically derived to describe the

shape, location, and surrounding environment of hernias (Table 111.2). Generally, the hernia shapes were

46



directly derived from the labeled hernia volume, the hernia locations were measured from the centroids of
hernia volumes to the landmarks, and the surrounding body-related metrics were calculated based on
interpolated abdominal wall surfaces and segmented body masks. Thin-plate spline interpolation [155]
was applied to the label meshes of the abdominal walls, which yielded an outer surface for the abdominal
wall as well as a closed inner surface for the entire abdominal cavity. Fuzzy C-means clustering was used
to extract the patient’s body from the scan table and background based on intensity. A further intensity
clustering was applied to the extracted body region to separate fat tissue from muscles after excluding the
bones and air, and thus the visceral and subcutaneous fat were discriminated by the interpolated
abdominal wall surfaces [32]. Note that these 20 metrics are only a subset of quantitative parameters that

we are interested in this preliminary study.

2.8. Statistical tests

Of all 61 evaluated datasets, 26 patients underwent VH repair with intent for primary fascial
closure and mesh sublay. In general, primary fascial closure is desirable during VHR whereby the hernia
defect is re-approximated. When this cannot be achieved, a mesh bridge is required, leaving the original
hernia defect in situ. In other words, a patient who fails to have the primary fascial closure after VHR
meets the bridge requirement. These 26 patients can be classified into two groups, where 9 patients
required a bridge for closure and the other 17 did not. A series of statistical tests were used to explore the
clinical correlation between the derived metrics with the technical outcomes of fascial closure.

Firstly, unpaired one-tail t-test was used to examine the significant differences between the two
groups for each of the 20 derived metrics.

Then, two complementary analyses based on elastic net regularized logistic regression were
operated to evaluate the compound outcome prediction using multiple metrics. The goal is to construct a
regression model, based on which provide an intercept 8, and a set of regression coefficients f € RP*1
associated with the p metrics to minimize the deviance of model fit to the responses given N

observations.
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Bo, f = argmin (%Deviance(ﬁo,ﬁ) + APa(ﬁ)> (3.1)

0

where the Deviance(:,") was computed under binomial distribution for logistic regression [156] to
deal with binary categorical cases while estimating the odds in a continuous form. A represents a non-

negative regularization parameter for the penalty term P, ().

1
Pa(B) =~ 1B I3 + lBll (32)

where both the L1 and L2 norms of the regression coefficients were used for elastic net
regularization [157] to constrain the regression, where some highly related metrics can be ignored (the
regression coefficient approaches zero). The regularization effect is controlled by a parameter, i.e., alpha
(or a), ranging from 0 to 1, which effectively determines the proportions of ignored regression
coefficients - a larger « value leads to more metrics to be ignored. Note when performing the tests, the
largest value was determined among a sequence of valid candidates for A such that the deviance is within
one standard error of the minimum, leaving a as the only variable.

Here, the 20 derived metrics were all included to construct the regression model that represents
how multiple metrics are combined with regression coefficients to predict the technical outcomes.
Specifically,

(1) A predictive analysis was conducted to assess the accuracy of the predictive model using a
leave-one-out cross-validation (LOOCV) scheme, i.e., building a regression model on 25 observations,
and then testing it on the one left over. The continuous estimated outcomes were rounded into binary
predictions for validation. By iterating this cross-validated analysis over a from 0 to 1 with a step size of
0.01, the numbers of remaining metrics, and those of false predictions were recorded.

(2) A follow-up exploratory test was conducted by building the regression model on all 26
observations (without cross-validation) with a of 0.9 to identify the most predictive metrics for mesh

bridge requirement after VH repair.
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An additional predictive analysis using elastic net regularized logistic regression with LOOCV
was conducted with the variables proposed in EHSCHYV for reference. According to EHSCHYV, four
categorical variables, i.e., medial hernia location, lateral hernia location, recurrence of hernia, and hernia
width categories, and two quantitative variables, hernia width (L-R diameter) and length (C-C diameter)

acquired by clinicians were considered in place of the 20 labeling-derived metrics for regression.

3. Results

3.1. Labeling reproducibility

Of the 18 patients evaluated for labeling reliability, mean age was 50 years with 50 percent
women. The mean body mass index (BMI) was 33.1 kg/m?. The prevalence of hernia in this population
was 78%, and all of the ventral hernias were related to a previous operation (i.e. incisional hernias). The

mean transverse dimension of the hernia defects was 11.4 cm.

3.1.1. Abdominal wall

Our protocol yielded high intra-rater and inter-rater reproducibility for labeling the anterior
abdominal wall, with MSDs of around 2 mm and HDs of around 30 mm (Table I11.3). There was
moderate reproducibility for the posterior abdominal wall, with an intra-rater MSD of 2.5 mm and an
inter-rater MSD of 7.7 mm. The different choices on the starting and ending point of structure labeling

cause the relatively large values of HD (up to 9 cm), while the MSD values are not greatly affected.

Table 111.3. Abdominal wall reliability measured by mean surfaces distances (MSD) and

Hausdorff distance (HD) in mm.

MSD Axial Outer  Axial Inner Sag. Outer Sag. Inner Rear Abd.
Intra-rater 1.24+1.34 1.18+1.62 0.9640.49 1.23+.21 2.4741.37
Inter-rater 1.1640.46 1.344).73 1.93+.91 2.14H .47 7.73+2.58

HD Axial Outer  Axial Inner Sag. Outer Sag. Inner Rear Abd.
Intra-rater 19.93+17.05 16.28416.17 19.84+13.66 20.55322.49 36.17424.30
Inter-rater 16.81+10.88 22.85419.82 33.60+18.25 36.36422.74 90.3649.74
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Table 111.4. Fascial boundaries and bony structures reliability measured by Euclidean distance

(ED) of centroids in mm.

ED Xiphoid Process Left ASIS Right ASIS Umbilicus
Intra-rater 2.6143.93 3.00+1.99 2.30+1.81 1.88+1.89
Inter-rater 2.43+1.84 3.5143.15 1.83+1.39 4.6935.91

ED Linea Alba Linea Semilunaris Pubic Symphysis
Intra-rater 4.5945.91 4.3843.04 1.16+1.15
Inter-rater 3.5942.65 4.55+1.20 2.51+1.74

3.1.2. Key anatomical landmarks
Reproducibility of labels for key anatomical landmarks was moderate to high, with both intra-

rater and inter-rater Euclidian distances below 5 mm (Table 111.4).

3.1.3. Hernia volumes
Reproducibility of hernia volumes was high, with an intra-rater Cohen’s kappa of 0.8 and an

inter-rater Cohen’s kappa of 0.9 (Table 111.5).

3.2. Quantitative evaluation

Of the 61 patients evaluated for metrics derivation, the prevalence of hernia was 72%. The mean
age was 52 years with 66 percent women. The mean BMI was 33.0 kg/m?2. The mean and range of 20

derived metrics were calculated (Table 111.2).

Table 111.5. Hernia volume reliability.

Comparison Cohen’s kappa
Intra-rater 0.8340.05
Inter-rater 0.9240.02
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Table 111.6. Statistical comparison of 20 metrics between two groups of patients with distinct

outcomes.

Index? p-value

mean [min, max] (required bridge

closure)

mean [min, max] (no bridge
required)

0.0001"
0.0000"
0.0029"
0.0004"
0.0000"
0.0000"
0.0001"
0.2955
0.3980
0.3704
0.1834
0.4817
0.1416
0.4412
0.0005
0.0539
0.0083"
0.0655
0.1794
0.3847

W >

40 IVOUVOZZIrXe—ITOTMOO

823.56 [57.8, 2300.04]

15.74 [8.51, 24.15]

6.27 [3.05, 10.46]

16.99 [4.50, 26.70]
512.22 [78.93, 1036.63]
448.13 [64.13, 1022.69]

1.40 [0.73, 2.22]
0.63 [0.33, 1.01]
0.10 [0, 0.19]

16.46 [2.24, 22.84]

18.54 [11.37, 25.12]

19.66 [13.00, 30.48]

32384.43 [22725.75, 42339.98]
9233.44 [6007.36, 15065.04]
0.09 [0.01, 0.31]

1.55 [0.83, 2.44]

0.98 [0.39, 1.89]

32.48 [7.12, 65.90]
22960.45 [12114.26, 33288.25]
35.68 [33.00, 38.00]

107.65 [3.99, 367.81]

7.20 [2.80, 12.80]

3.60 [0.70, 7.24]

8.14 [2.40, 22.20]
123.24 [16.30, 283.31]
105.59 [14.98, 271.81]

0.720.19, 1.61]

0.68 [0.25, 1.34]

0.09 [-0.02, 0.24]

15.83 [8.03, 24.87]

16.91 [5.16, 23.72]

19.55 [8.89, 30.96]

29078.13 [19727.07, 46436.02]
9074.89 [4683.12, 15141.70]
0.01 [0, 0.04]

1.31[0.76, 1.62]

0.65 [0.33, 1.07]

23.11 [5.94, 48.88]

20346.47 [8218.99, 31283.60]
35.39 [30.30, 39.90]

@ Each index refers to a metric in Table I11.2.

“indicates significant difference between the two groups.

3.3. Clinical correlation

Of the 26 patients who underwent VVH repair with intent for fascial closure and were evaluated for

statistical tests, the mean age was 51 years with 81 percent female with 32.1 kg/m? mean BMI.

3.3.1. Unpaired one-tail t-test

Significant differences (p<0.05) were observed between two groups of patients separated by

bridge closure requirement after \VH repair over nine individual metrics (Table 111.6).

3.3.2. Predictive regression analysis

With cross-validation, the regression model based on labeling-derived metrics and the one based
on EHSCHYV variables were tested. In neither case, perfect prediction was achieved. For the best case

along different selection of the alpha value, the regression model using the labeling-derived metrics yields
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four false predictions out of 26 subjects (84.6% accuracy), where two (“hernia L-R diameter” and “hernia
anterior surface area”, with @ = 0.95 or 1.00) to five (“hernia L-R diameter”, “hernia C-C diameter”,
“hernia anterior surface area”, “hernia posterior surface area”, and “average A-P hernia thickness”, with
a = 0.80 or 0.89) metrics were used. On the other hand, the regression model using the EHS variables
made at least six false predictions (76.9% accuracy), where five (except for the hernia width category) to
all six variables were included (Figure 111.4a, 4b). With a closer look, all false predictions mentioned
above were the subjects who required bridge repair but predicted as not required. These false predictions

were confusing in terms of their similar hernia sizes to those having primary fascial closure after VHR.

3.3.3. Exploratory regression analysis
Only two metrics ("hernia L-R diameter" and "hernia anterior surface area") remained as the key
factors for predicting mesh bridge requirement when building a logistic regression model with an alpha

value of 0.9. This regression model, although used all observations, yielded the same four false estimates
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Figure 111.4. Results of preliminary statistical analyses. (a) and (b) shows the number of false
predictions and number of included variables over different alpha values using cross-validated
elastic net regularized logistic regression, respectively. Generally, a larger alpha value yields
stronger regularization, and thus involves less variables for the regression model. Note that the
blue dashed curves represent the regression results using EHSCHYV variables, while the green
solid curves use the variables derived from labeling. (c) presents a hyper-plane using support
vector machine to separate the two groups of patients with distinct technical outcomes by the two
remaining labeling-derived variables of an exploratory regression model built upon all

observations.
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as the best cases using labeling-derived metrics in the predictive analysis. These two metrics can be used
to identify a separating hyper-plane (a discriminative function of the two metrics) between two groups
using support vector machine (SVM) [158], which represents the quantitative threshold for mesh bridge
requirement. Two cases requiring bridge repair were misclassified (Figure I11.4c). We note that the
uneven numbers between the two groups (9 vs. 17) can affect the regression model regarding its optimal
threshold (we use 0.5 for logistic regression) for making predictions. Applying a SVN classifier following

the regularized regression model may raise the predictive power.

4. Discussion

4.1. Main contributions

This preliminary study is intended to lay the foundation for a quantitative imaging approach to
determine optimal management strategies for different subtypes of VH, and improve the surgical
treatments.

First, we created a set of clinically relevant, quantitative anatomical descriptors for VH, and we
designed a standardized labeling protocol to enable extraction of these parameters from routine clinical
CT datasets as the foundation for future automated modeling of the relationships between VVH anatomical
characteristics and treatment outcomes.

Second, our protocol validation study showed acceptable inter-rater and intra-rater reproducibility
for labeling the abdominal wall, key anatomical landmarks, and the VH itself. In terms of anatomical
labeling, we found that abdominal wall surfaces could be appreciated on either axial or sagittal views
without extensive three-dimensional visualization, while the hernia volume required tri-planar
manipulation. We also found that abdominal wall surfaces are sufficiently smooth such that, for
efficiency, normal wall anatomy can be labeled every 5 cm on sparse, evenly spaced slices; the entire

surfaces can then be approximated by interpolation.
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Next, we derived 20 quantitative parameters to describe the shape, location, and surrounding
environment of VH from the anatomical labeling automatically. The collection of these metrics provide
more comprehensive characteristic of VH than the available clinical measurements using EHSCHV
system.

Lastly, we showed the clinical correlation between the derived quantitative parameters and the
technical outcomes of primary fascial closure after VH repair with preliminary statistical tests. 9
individual metrics were shown to be significantly different between patients required bridge closure and
those who did not. Through predictive analyses, we presented a regression model using multiple metrics
that were capable of identifying all patients who did not require bridge closure (17 out of 17), and over
half of the patients who required (5 out of 9). We also found our labeling-derived metrics more predictive
than EHSCHYV variables for this technical outcome. We note this is the first work to correlate VH

quantification into clinically meaningful disease processes.

4.2. Potential clinical impact

Clinically, the requirement of bridging remains uncertain pre-operatively. Surgeons may give a
rough prediction by eyeballing the hernia on pre-operative imaging, i.e., a larger hernia is more likely to
require a mesh bridge repair. Subjective predictions can be inaccurate. Because of this uncertainty, some
techniques like myofascial release are used to avoid bridging, but may cause other problems. For
example, data from our institution suggests that the extra dissection of a myofascial release significantly
increases the risk of surgical site infection post-operatively [159]. Thus, objective criteria for accurately
predicting the bridge requirement can be clinically relevant, and change the clinical procedure
significantly. For pre-operative planning, surgeons can provide objective quantities rather than subjective
size description when counseling patients and planning operations. The patient and surgeon could have an
estimated probability of the need for bridge closure, and this option could be weighed while taking into
account other patient factors which increase the risk of postoperative infectious complications. This could

also result in lifestyle modifications prior to embarking upon a surgical repair in order to decrease the

54



morbidity of the procedure. In some instances, the knowledge that a bridge will likely be required in a
patient who has significant risk of infectious complications might lead to surgeon to accept a bridge
configuration and counsel the patient accordingly.

Our labeling protocol vyields reasonable objective criteria for the predication of bridge
requirement. Predictive (cross-validated) statistical analysis indicates that one needs two to four metrics to
yield the best prediction of the bridge requirement. This suggests that multiple metrics should be
considered together for prediction. In explanatory analysis (not cross-validated), only two variables
("hernia L-R diameter" and " hernia anterior surface area ") are needed to identify a separating hyper-
plane (a discriminative function of the two variables) between the groups, which represents the
guantitative threshold for the requirement of bridge repair. We note that a hernia with large L-R diameter
but small anterior surface area may not necessarily require a bridge requirement, which is difficult to
judge visually from 3-D CT. Therefore, these metrics are helpful as objective criteria for bridge
requirement prediction. We also note that while “hernia L-R diameter” has been commonly considered as
an important factor, “hernia anterior surface area” has never been focused on for VH characterization.
Our labeling protocol provides the access to these parameters potentially critical to correlate specific
technical outcomes. On the other hand, we find the current metrics fail to discriminate some small hernias
in need of bridge repair. This is partially due to the insufficient (26) and unbalanced datasets (17 vs. 9)
available in the experiment. Inclusion of more datasets could help augment the prediction of primary
fascial closure. Many other factors, in addition to hernia characteristics, influence the decision to perform
bridge repair. The intended goals of the operation (definitive versus staged repair), level of contamination,
amount of tension on the fascia when closed, need for tissue coverage, and surgeon training can

contribute to the decision-making.

4.3. Comparison to other related efforts

Our approach takes advantage of the fact that most VH patients undergo pre-surgical CT scanning

to evaluate their abdomen. At present, however, no well accepted method of VVH classification exists for
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routine use, and therefore information from imaging is used qualitatively and subjectively to make
clinical decisions based on little empirical data. The EHSCVH is the only potential classification system
that has been presented as a means to classify all ventral hernias. The EHSCVH system codes for (1)
categorical assignment based on the location of the hernia and cause of hernia (primary or incisional), (2)
categorical assignment of hernia size (small, medium, large), and (3) linear measures of hernia size
(length, width). The actual implementation of this classification system can be cumbersome, however,
and although the EHSCVH was published several years ago, it has not gained widespread acceptance
among surgeons. The time required of a surgeon in a busy clinical practice to determine the classification
for a particular patient’s hernia often prevents its use. Additionally, there is no incentive in place for the
surgeon to spend the time determining the classification since the classification scheme has not been
linked to specific patient outcomes or advantageous operative techniques. Finally, there are
inconsistencies between surgeons when classifying complex hernias using this system. Our predictive
regression analysis showed that the EHSCVH variables were not adequate to predictive the bridge closure
requirement after VH repair (Figure 111.4a, 4b) despite its simplicity.

A quantitative approach is attractive for two reasons: (1) it may be implemented by a trained
associate or, in the future, by a semi-automated or fully automated computer algorithm, thus offloading
the time for VH classification from the surgeon; and (2) its standardized nature provides a foundation for
rigorous statistical correlation against patient outcomes, both retrospectively using large clinical databases
and prospectively in clinical trials. At present, however, quantitative description of ventral hernias is
rather rudimentary, with transverse size being the most commonly used metric. Transverse hernia size
captures very little of the actual heterogeneity of VHs. Hernia volume is also inadequate for describing
VH, as two VHs of the same volume may have very different shapes and may require different surgical

techniques (Figure 111.5).

56



Figure I11.5. Two VH cases in volume rendering and tri-planar views. Although the two examples
have almost the same hernia volume size (a = 125 cm?, b = 109 cm?®), (a) is a long, shallow rupture
at the umbilicus, while (b) is a short, deep protrusion of the abdominal wall. In addition, the
patients’ body sizes are quite different, and the hernia in (b) is further away from the umbilicus.

For these reasons, and for its obvious clinical implications, characterization of VH has been of
interest to the image processing community in recent years. Tanaka et al. derived the volumes of the
hernia sac and abdominal cavity by assuming them as ellipsoid structures with the measurement of the
cranio-caudal, latero-lateral, anterior-posterior radial distances [152]. Sabbagh et al. determined the
intraperitoneal volumes (including both VH and abdominal cavity) after the volume boundaries were
defined using a blind-side method by a surgeon and a radiologist [3]. Yao et al. marked the required range
on 3-D reconstructed CT, and measured the volumes with measurement-voluminal software [2].

While notable, these efforts have not addressed the fundamental challenge of measuring the
complex interaction of the hernia with its biological context. Our labeling protocol allows for estimation
of different geometrical properties of VH from the labeled data (Figures I11.6, 111.7, Table 111.2). We
consider the hernia shapes (volumetric sizes and dimensional diameters) as the chief quantitative
parameters to characterize the degree of abnormality of VH. We suggest that the location of the hernia
defect with respect to bony landmarks and facial boundaries is critical to VH classification. We also
append metrics of surrounding structures (e.g., abdominal wall thickness, visceral and subcutaneous fat
volume) as referential body status of the VH patients. These characteristics give a robust description of
the hernia itself, which can then be correlated to clinical outcomes. Elastic net regularized logistic

regression can be used to reduce all available variables to several key factors to predict specific technical
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outcomes, while sometimes a larger number of variables are required to yield better prediction. Certainly

other non-hernia related factors are important in the overall definition of hernia complexity, including

e

Figure 111.6. (Left) Illustration of VH characteristics on CT for four patients. In each section, the

h
k

first row illustrates the location of the VH; the second row illustrates the VH defect size at the
anterior abdominal wall; the third row demonstrates the volume size of the hernia sac (red) and
the abdominal cavity (blue).

Figure 111.7. (Right) Illustration of VH characteristics in terms of processed label results. The
first row, from (a) to (c), demonstrates a matchup between the original image data and the
processed labels, where the abdominal walls were interpolated. The second row, from (d) to (f),
demonstrates the coherence of interpolated abdominal walls with the original image in three
different views. The third row, from (g) to (i), illustrates a combined model of abdominal wall and
hernia volume for shape-related VH characteristics, the relative location of VH with respect to
the linea alba and linea semilunaris, and the relative location of VH with respect to skeletal
landmarks and the umbilicus. The fourth row, from (j) to (I), demonstrates feasibility of
measuring the VH defect size, width and length of VH, and ratio of volume size between the

hernia sac and the abdominal cavity.

58



many clinical and patient-related factors[160], but the method described in this manuscript offers a

precise and reproducible description of ventral hernia based upon specific imaging characteristics.

4.4. Future work

One important property of VH not currently accessible via CT imaging is muscular compliance,
i.e., the ability of muscular tissues to yield elastically to an applied force. This patient-specific property
influences the ease of repair and may correlate with post-operative recurrence rates. Future studies may
investigate the use of ultrasound or magnetic resonance elastography to estimate this property.

Also, we note that the CTs in our study were acquired at rest without performing a Valsalva
maneuver. Valsalva maneuvers can be beneficial to show the potential visceral drift around the herniated
region. In theory, the anatomical changes would not disrupt implementation of the proposed protocol.
However, further study would be needed to explore the examine differences between scans with and
without Valsalva maneuvers.

It is important to emphasize the clinical relevance of these findings. If a reproducible,
guantitative, and automated method of classifying VH can be developed, the field of VH management
could be significantly advanced. Namely, a reliable metric would be established whereby comparisons
can be made to determine best practices—akin to cancer staging in the management of malignant disease.

Relevant automated efforts are in progress[38].
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CHAPTER IV

IMMERSIVE VIRTUAL REALITY FOR VISUALIZATION OF ABDOMINAL CT

1. Introduction

Modern medical imaging techniques produce large data sets that are difficult to visualize and
understand by both medical professionals and patients. There are several difficulties that these large data
sets present. First, the amount of data means that viewing axial sections becomes problematic, simply
because of the large number of slices that must be navigated. The navigation modalities for these slices,
such as sliders and mouse wheels, become increasingly cumbersome as the number of slices increases.
Secondly, as the complexity of medical image data grows, restricting the viewing modality to a traditional
two-dimensional view may be sub-optimal. Such data is inherently three-dimensional (3D), and exploring
it as a 3D quantity, through displays that offer stereoscopic depth perception, may give better insights and
comprehension into the overall imaging data.

Immersive virtual reality (IVR) may offer a solution to the issues described above. In this paper,
we describe IVRs presented through head-mounted displays (HMDs), stereoscopic display devices that
allow the wearer to perceive a three-dimensional virtual environment as though present in it. Immersive
virtual reality facilitates the investigations of situations that are difficult to study in the real world,
whether for reasons of cost or complexity. It can provide visualization modalities that render complex
data more comprehensible and interaction modalities that make large amounts of data more accessible. In
this paper, we discuss IVR that uses an HMD to view the virtual world, and articulated data gloves to
interact with it.

In this paper, we consider visualization of ventral hernias. Ventral hernias occur in up to 28% of

patients undergoing abdominal operations — even in optimal conditions [161, 162]. Repair of these
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hernias is fraught with failure; recurrence rates ranging from 24-43% [5]. Recurrence of previously
repaired VHs increases costs and morbidity to patients and can sometimes require multiple repairs. In
some patients, repair of their end-stage VH may produce a worse outcome than a non-operative strategy
[163]. Communication is a significant problem for clinicians and patients with ventral hernias.

In care planning, it is essential that the patient understand the urgency, degree of severity, and
impact of a hernia (and potential repair) on patient quality of life. Hernias are defined by ruptures in the
abdominal wall (i.e., the absence of healthy tissues) rather than a growth (e.g., cancer); therefore,
understanding a hernia necessitates understanding the entire abdomen. Our proposed environment allows
surgeons and patients to view body scans at scale and interact with these virtual models using a data
glove.

IVRs have, of course, been used to visualize medical imaging data before. Some systems use a
single imaging modality or semi-immersive environments [164-166]. Using the hands to manipulate the
3D data has also been recognized as having value [165, 167]. In particular, Indhumathi et al. [168] use
both an HMD and a high-fidelity data glove to manipulate medical imaging data. The novelty of the
present system is coupling of the manual interface with the IVR to achieve improved understanding of

large imaging datasets.

2. Methods

2.1. Data and Processing

Our abdominal segmentation method has been evaluated in separate work [38]. Briefly,
retrospective, clinically acquired CT data on three male patients and one female patient with suspected
VHs (three with confirmed hernia) were acquired in anonymous form under institutional review board
supervision from the clinical PACS in DICOM format. Volumes were approximately 512x512x157
voxels with a resolution of 0.89x0.89x3 mm. A low threshold (200 HU) is used to identify the whole bone

skeleton. Then, a high threshold (800 HU) is used to divide the skeleton into different components based
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on relative shape and position information. The skin and abdominal wall are segmented using level set
techniques. The outer surfaces of each object (i.e., pelvis, femurs, spinal column, ribs, skin) were
tessellated and exported for visualization. Surface colors and transparency were authored for each object
using Mayavi, a 3D scientific visualization tool. These models were then exported into the virtual

environment.

2.2. Materials and Apparatus

Our immersive virtual environment emulates a free-walking space (approximately 8m > 7m x
4m). The virtual environment is viewed through a full color stereo Nvis (Reston, VA) Nvisor SX60 HMD
with 1280x1024 pixels per eye, a nominal field of view of 60° diagonally, and a frame rate of 60Hz. An
InterSense 1S-900 precision motion tracker updates the user’s rotational movements around all three axes,
supplemented by optical tracking by four cameras of two infrared LEDs on the HMD to provide position
and orientation information. The virtual environment is rendered using Vizard (Worldviz, Santa Barbara,
CA). A wireless Cyberglove Il data glove (Cyberglove Systems, San Jose, CA) for the right hand is used
to track the fingers, enabling gesture control in our system. The data glove is instrumented with 22 high-
accuracy sensors and can track the finger movements accurately. The global position and orientation of

the hand is tracked with an eight camera Vicon (Los Angeles, CA) MX-F40 optical tracking system.

2.3. Mechanisms for Viewing the 3d Model the CT Slices in Immersive Virtual
Environment

In the virtual environment, registered computed tomography (CT) images and the 3D model were
superimposed. The CT images were made semi-transparent to make the 3D model visible and to give a
volumetric effect to the ensemble. A user can interact with a given model by touching (with the index
finger of the virtual hand) a CT slice to expose it. When exposed, the CT slice “pops” outside the model

and becomes opaque for optimal viewing. The image can be made to disappear by brushing the image
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fist gesture

fist gesture

fist gesture

Figure IV.1. The four states of the model in IVR.

with the palm of the hand or by selecting another slice. An accordion-like affect can be achieved by
running the virtual hand through the model.

Since the CT slices are along three axes, it can be difficult to select an individual slice from a
complete grid. Therefore each axial direction is toggled by making a fist with one’s hand. The state
transition was controlled by human making a fist gesture of right hand and releasing immediately. When
the fist-gesture was captured by the data glove, the system transitioned to the next state immediately. The
initial state had no CT images in it; this process is shown in Figure 1V.1. In the state with the images in

the scene, a user can select the image they want to observe as mentioned in the previous paragraph.

2.4. Volume Rendering in the Immersive Virtual Environment

In scientific visualization and computer graphics, volume rendering is a set of techniques used to
display a 2D projection of a 3D discretely sampled data set. Here the 3D data set is a group of 2D slice

images acquired by a CT scanner. These are acquired in a regular pattern as one slice approximately every
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Figure 1V.2. lllustrations of the proposed system in use. (a) Surgeon using the system. (b) Virtual

hand interacting with 3D abdominal model. (c) Navigation of axial slices. (d) Navigation of

sagittal slices.

millimeter and have a regular number of image pixels in a regular pattern. To render a 2D projection of
the 3D data set, first we define a camera in space relative to the volume. The opaci