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Chapter 1 

Introduction 

1.1 Motivation 

 The ultimate goal of studying human genetics is to understand genome 
function and its effects on the human phenotype. One avenue by which to study the 
genome is through patterns of genetic variation within modern populations, which 
provide insight into functional and evolutionary constraints on different loci. For 
example, a lack of common genetic variation in a locus is often indicative of 
functional constraint against variation, suggesting that sequence changes 
negatively influence reproductive fitness1. Similar to how co-segregation of a 
genetic marker with disease is evidence of disease association, the absence of 
variation across thousands of healthy individuals is evidence that variation in the 
locus is associated with poor health. By this logic, we can begin to interrogate the 
human genome for regions potentially contributing to human disease using data 
derived from the general population.  
 The first systematic examinations of fully sequenced human genomes 
established consistently stronger constraint (i.e., less genetic variation) in protein-
coding regions compared to non-coding sequences2–5; exons harbor approximately 
half the level of genetic variation as introns and non-coding flanking sequences. 
Furthermore, early candidate gene sequencing studies identified lower rates of 
non-synonymous variation than synonymous variation within protein-coding 
regions6, highlighting the increased constraint on protein-altering mutations. 
Patterns of constraint observed in the general population are driven by selective 
pressures on that population, and may serve as markers to indicate which parts of 
the genome are most important for human health. By quantifying these patterns 
with measures of selective constraint, we can potentially use this information to 
interpret the phenotypic effects of rare and novel genetic mutations.7,8. Building on 
exome-sequencing data from over one hundred thousand individuals, we are now 
able to expand beyond targeted sequencing and whole-genome genotyping of 
disease-specific pedigrees and cohorts and quantify constraint genome-wide, 
across the frequency spectrum, and for individuals representing many continental 
and regional ancestries. In this dissertation, we explore three avenues by which 
constraint on protein-coding variation can be used to better understand human 
biology and elucidate the genetic drivers of disease. We first integrate human 
genetics with protein structural biology to identify proteins with evidence for 
constraint on where germline variation is and is not tolerated; we then use this 
information to predict whether new variants will contribute to disease. Next, we 
investigate somatic mutations from human tumors to identify proteins with 
evidence of constraint on the location of these potentially cancer-driving variants. 
Finally, we investigate genes that, across tens of thousands of individuals, appear 
significant less tolerant to loss-of-function mutations; using genetic data from 
hospital patients, we explore the phenotypic impact of these genes and to better 
understand their importance to human health. 
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1.2 Background 

The basic dogma of protein structural biology is that genes encode mRNA, mRNA 
is translated into a protein sequence, and the protein sequence folds into a three-
dimensional conformation by which it performs its function, either independently, 
in conjunction with other proteins, or with other copies of the same protein. A 
genetic variant that changes a protein’s sequence can impact its overall three-
dimensional conformation, disrupt the morphology of functional domains, or alter 
local biochemical environments necessary for interactions with other molecules. 
When we study the phenotypic impact of protein-coding genetic variation, we are 
ultimately studying the phenotypic impact of conformational and biochemical 
changes to a protein structure. 
 For many proteins, we have experimentally-determined models of their 
three-dimensional structures. These models are only a snapshot, and represent one 
of potentially many biologically relevant conformations, but they provide 
invaluable information about protein function. The Protein Data Bank9 serves as 
the central repository for experimentally derived protein structural information, 
and currently includes data for nearly 25% of human proteins. For those proteins 
without structural information, computational techniques exist to predict their 
three-dimensional conformations using the known structures of homologous 
proteins. Large-scale endeavors like ModBase10 aim to predict protein structure for 
the entire proteome, filling the information gap between the proteome and 
structome and increasing partial coverage of the human proteome to approximately 
75%. While computational approaches produce structures of lesser quality and are 
typically insufficient for precise energetics calculations, they provide a good 
interim source of structural information suitable for many other tasks. 
 By integrating human genetics with structural biology, we can study 
protein-coding genetic variation within its functional context: protein structure. 
The workflow for mapping a protein-coding variant into a protein structure is 
conceptually straightforward: a genetic variant alters a protein-coding nucleotide, 
which alters the translated amino acid, that amino acid is mapped to a specific 
position in the protein sequence, and that position is then mapped to a specific 
coordinate in a relevant protein structure. In practice, this process is complicated 
by the integration of multiple, independently maintained databases and resources 
that are often in disagreement with one another. Furthermore, performing the task 
of mapping genetic variants into protein structures becomes computationally 
demanding at scale. Thus, the task of integrating entire genetic datasets—many 
derived from whole-exome sequencing and containing hundreds of thousands of 
protein-coding variants—required the creation of a novel resource and database. In 
previous work, I developed PDBMap, a high-throughput pipeline for the 
integration of genetics and structural biology, capable of mapping entire genetic 
datasets into all solved and predicted protein structures while identifying and 
correcting for disagreements between the component datasets. With this resource, 
we are able to investigate patterns of constraint on protein-coding genetic variation 
directly within protein structure.  
 Also in previous work, we developed a spatial statistic—based on Ripley’s 
K11—for measuring the degree of clustering or dispersion of missense variation 
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within protein structure, which is discussed in detail in Chapter 3. Briefly, the 
approach identifies significantly non-random spatial patterns of genetic variants in 
protein structure. It can recognize localized clustering of variants as well as larger 
spatial patterns, like variant depletion within a structural domain. Using this 
measure, we can identify proteins in which the spatial distribution of genetic 
variation appears to be under significant constraint. We have already made several 
interesting discoveries with this approach; in our analysis of germline disease-
causing variation from ClinVar12 and population-derived, putatively neutral 
variation from the Genome Aggregation Database7 (gnomAD), we found that 
germline disease-causing variants are often significantly clustered within protein 
structure, while variants from the general population are often spatially dispersed, 
typically occupying the protein surface where variation is better tolerated. Using a 
simple metric—spatial proximity to known disease-causing variants—we 
discovered that non-random spatial patterns have the potential to predict variant 
pathogenicity. These findings, summarized in Chapter 1, motivated us to explore 
whether constraint on variation in protein structure could classify variants of 
unknown significance. 

Predicting the pathogenicity of variants of unknown significance 
Variants in many genes are known to contribute to heritable diseases, and this 
information is useful for clinical diagnosis. For example, prenatal screening of the 
gene Phenylalanine-4-hydroxylase (PAH) can identify mutations known to cause 
phenylketonuria (PKU), a severe pediatric disease in which individuals cannot 
metabolize phenylalanine. Without treatment, phenylketonuria leads to a build up 
of phenylalanine in the brain, and the development of permanent intellectual 
disability. While many mutations in PAH are known to cause PKU, the challenge 
comes when sequencing identifies a variant that has not been shown to cause PKU; 
novel and rare variants identified in disease-associated genes are usually classified 
as variants of unknown significance (VUS). For a VUS in PAH, a clinician may 
suggest a diet low in phenylalanine and monitor phenylalanine levels over time to 
determine if the patient has PKU. The handling of VUS becomes more challenging 
for genes like the breast cancer-associated genes BRCA1 and BRCA2, where 
incorrect classification of a VUS could mean that a low-risk patient undergoes a 
major, but unnecessary surgery.  
 As clinical sequencing of the human exome becomes more affordable, 
interpreting the clinical impact of VUS is becoming a major challenge for 
physicians. Sequencing technologies provide information on all genetic variants, 
including rare and novel mutations; the clinical relevance of these mutations is 
often unknown, even when they occur within genes with known disease 
associations. Improvements in our ability to assess variant pathogenicity in the 
clinic has the potential to improve diagnosis of the underlying cause of disease in 
patients and guide personalized treatment, Thus, the ability to differentiate 
between variants that do and do not cause disease is of paramount importance to 
genetic testing, precision medicine and the future of clinical care.  
 A number of algorithms provide predictions for missense pathogenicity by 
analyzing patterns of evolutionary conservation and/or biochemical characteristics 
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of amino-acid substitutions. SIFT13 is one of the earliest predictors, and also one of 
the most popular. Using a combination of multiple sequence alignment and the 
BLOSUM62 amino acid substitution matrix, SIFT calculates the probability that 
an amino acid will be tolerated within a given protein sequence.  A close rival to 
SIFT, PolyPhen214 also uses multiple sequence alignment, but incorporates 
sequence information like protein domain boundaries and structural information 
like solvent accessibility, and derives its predictions using a naïve Bayesian 
classifier trained on either HumDiv (a dataset of variants causing Mendelian 
disease and putatively neutral sequence differences between humans and 
mammalian homologs) or HumVar (a dataset of human disease-causing variants 
and putatively neutral common variants from human populations). While popular, 
disagreement between these algorithms is frequent; in one report, the correlation 
between SIFT and PolyPhen2 scores was only 0.416. Newer pathogenicity 
prediction methods have also attempted to incorporate protein structure more 
directly; VIPUR17 adds computational structural biology to sequence- and 
structure-derived features to estimate changes in thermodynamic stability caused 
by a mutation, however it only slightly improves prediction performance at the 
expense of runtime. Several other pathogenicity prediction methods are discussed 
and compared in a recent review, which found the accuracy of all methods 
considered to range between 0.60 and 0.8215. While these methods make frequent 
use of evolutionary conservation and in some cases protein structural information, 
none consider spatial patterns of variation within human protein structures, which 
provide information on functional constraints, and may improve prediction 
performance. 
 As stated earlier, we found that the spatial distributions of disease-causing 
and non-disease-causing variants are distinct from one another and have the 
potential to predict the pathogenicity of uncharacterized variants. To evaluate the 
practical application of this approach to the classification of variants of unknown 
significance in a clinical setting, we focused our efforts on variation in the 
regulator of telomere elongation helicase 1 (RTEL1). RTEL1 is responsible for 
telomere maintenance, and the dysregulation of RTEL1 is associated with familial 
idiopathic pneumonia (FIP). Short telomeres are frequently observed in patients 
with FIP, but the specific mechanisms by which variation in RTEL1 causes FIP is 
still poorly understood, thus predicting the effects of VUS is quite challenging; 
some variants are tolerated while others lead to dramatic alterations in protein 
structure, trafficking/localization, or function15. Classical genetic approaches, 
including linkage analysis, may also be confounded for telomere-related genes by 
the inheritance of short telomeres (and thus increased disease risk) without 
inheritance of the causal allele. Assigning pathogenicity to VUS has important 
implications for genetic testing and family counseling. 
 We present a novel approach that utilizes the distribution of disease-causing 
variants in the protein structure of RTEL1 for pathogenicity prediction. The 
analysis uses the spatial distribution of variants of known effect to classify variants 
of unknown significance. 
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Constraint on the spatial distribution of somatic mutations in cancer 
We have so far exclusively discussed selective constraint in the context of 
germline variation. Cancer genomics presents an interesting challenge in the 
measurement of constraint because many of our basic assumptions are either 
incorrect or reversed. For example, germline variants are subject to selective 
constraint within every tissue, throughout the entire lifespan of an organism, and 
across generations. Thus, germline variants rising to high frequency in the general 
population must not negatively impact reproductive fitness. In contrast, somatic 
mutations in a tumor context arise in a highly dysregulated environment, impact 
only the tissue in which they occur, and are subject to very different selective 
pressures; variants that increase the fitness of tumor cells, rather than the whole 
organism, are positively selected. Somatic mutations are inherently a mixture of 
two mutation types. Driver mutations cause or promote the progression of cancer, 
and are important for determining personalized treatment. The identification of 
driver mutations is complicated by the presence of passenger mutations, which 
arise as a result of the dysregulated tumor context and do not necessarily contribute 
to the development of the cancer. Ultimately, protein-coding somatic driver 
mutations are not dissimilar to protein-coding germline pathogenic variation. Both 
variant types cause phenotypic effects that negatively impact organismal fitness, 
and each often do so by altering the structure and/or function of a protein. By 
comparing the mutational landscape between individuals with cancer, we can 
identify regions of proteins more often affected by somatic mutations than 
expected at random. 
 Indeed, clusters of highly recurrent somatic mutations in both protein 
sequence and structure have been observed in several thoroughly studied cancer 
genes and are believed to be a hallmark of driver mutations. It follows that the 
identification of this spatial signature in other genes may identify previously 
unknown cancer genes and isolate regions of proteins most relevant to 
tumorigenesis. 

Detecting cancer genes and driver mutations with somatic mutation clustering 
Recognizing the importance of large reference datasets for cancer, two projects 
have compiled data on tens of thousands of somatic mutations. The Catalogue of 
Somatic Mutations in Cancer18 (COSMIC) is a submission-based system for 
somatic mutations observed in individuals with cancer. This resource provides an 
unparalleled amount of mutational data, but submission-based ascertainment, 
targeted sequencing of known cancer genes, and selective reporting of mutations 
has potentially biased the data available for analysis. For tasks that require an 
unbiased population reference, data from The Cancer Genome Atlas19 (TCGA) is 
more appropriate. All data from TCGA is derived from whole-exome sequencing 
studies of individuals with specific cancer types. This approach has yielded less 
overall data, but provides a somatic reference dataset that can be used for general 
cancer research, or for comparison between different types of cancer. 
 Several recent studies in cancer have searched for spatial clusters of somatic 
mutations. The first systematic assessment of somatic mutation clustering across 
many protein structures was performed by Stehr et al.20, who calculated the sum of 
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inverse pairwise distances between somatic mutations from COSMIC. This 
approach was not designed to identify specific mutation clusters, but rather to 
determine whether somatic mutations were significantly clustered in the protein 
structures of known oncogenes and tumor suppressors (as catalogued by COSMIC 
at the time of publication). Although the analysis included only 24 proteins, they 
conclude that somatic mutations in oncogenes, but not tumor suppressors, were 
significantly more clustered (were more nearby one another) than common, 
population-derived variants from the 1000 Genomes Project21. Their findings 
suggested that the spatial clustering was primarily a characteristic of gain-of-
function somatic mutations. This conclusion was challenged by Kamburov et al.22 
three years later. Using whole-exome sequencing data from TCGA and an 
improved measure of spatial clustering that considered mutation recurrence, they 
quantified the degree of somatic mutation clustering in a comprehensive set of 
4,062 proteins. Their approach also used a transformation of the Euclidean 
distance between mutations to up-weight mutations at biologically meaningful 
distances (~5Å) and down-weight mutations at greater distances (~15Å).  Counter 
to the previous findings by Stehr et al., this approach identified significant 
clustering in both oncogenes and tumor suppressor genes, suggesting that spatial 
analysis of somatic mutations may be of broad relevance in cancer genetics. To 
further improve the clinical utility of somatic cluster analysis, Meyer et al.23, 
Tokheim et al.24, and Niu et al.25 each developed clustering algorithms to identify 
specific clusters of somatic mutations. In contrast to the approaches described 
above, which quantify clustering of variants within a protein structure as a function 
of their proximity to one another, a formal clustering algorithm has the benefit of 
detecting mutation hotspots and structural regions of tumorigenic importance with 
specificity; rather than stating that variants are clustered, this approach identifies 
the specific mutations that form those clusters. Cluster-based approaches have 
many similarities; Meyer et al. and Niu et al. both employ hierarchical clustering 
algorithms, Tokheim et al. and Niu et al. both identify hotspot mutations before 
defining their clusters. These and other methods are discussed in a recent review of 
methods for detecting cancer driver mutations26. 
 Despite the subtle differences in the underlying methodology and dataset 
selection of these studies, all have identified somatic mutation clustering in either 
protein sequence27,28 or structure20,22–25. However, the genes identified have been 
inconsistent across studies. We expect this discordance is due primarily to 
differences in three factors: (1) methods for identifying (and defining) clusters of 
somatic mutations, (2) protein structural dataset selection, and (3) somatic 
mutation dataset selection. Using our previously developed framework for 
measuring spatial distributions (described in detail in Chapter 3), we reanalyzed 
previously considered genetic and structural datasets with a consistent 
methodology to quantify the prevalence of somatic clustering in protein structures 
and to identify a high-confidence, high-coverage set of proteins with significant 
spatial constraint on somatic mutations in cancer. 
Quantifying selective constraint at the gene level 
Ultimately, the analysis of protein-coding variation within its structural context 
will provide the highest resolution information about the functional effects of 
disease-causing variants. However, we can also use measures of selective 
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constraint in the absence of known disease associations to identify regions of 
functional importance. Much in the way that evolutionary conservation is 
informative as to what parts of the genome have been important across 
evolutionary timescales, patterns of genetic variation in modern populations 
provide information about where variation is and is not tolerated within the human 
genome.  
 One approach to measuring constraint at the gene-level is the Residual 
Variance Intolerance Score29 (RVIS), which uses data from the Exome Sequencing 
Project4 (ESP). RVIS works by regressing the amount of observed common 
missense and protein-truncating variants on the total number of variants (including 
rare and synonymous) to identify genes with large studentized residuals; large 
residuals are interpreted as either an increase in or relaxation of selective pressures 
for that gene. This approach performs well in identifying genes associated with 
Mendelian traits, in particular those associated with dominant-negative and 
haploinsufficient phenotypes.  
 A slightly more recent method, the probability of loss-of-function (LoF)-
intolerance7 (pLI), uses whole-exome sequencing data from the Exome 
Aggregation Consortium30 (ExAC) and focuses specifically on protein-truncating 
variants (PTVs), including nonsense, splice acceptor, and splice donor variants; i.e. 
variants expected to disrupt translation of the gene transcript, resulting in an 
incomplete and putatively non-functional protein. To calculate the pLI for a gene, 
the number of missing protein-truncating variants (PTVs) is first estimated. The 
probability of observing all possible protein-truncating mutations is calculated by 
simulating all possible single nucleotide mutations and evaluating whether that 
mutation would be protein-truncating. This count is then adjusted by the estimated 
mutation rate of the gene, as derived from the regional divergence between humans 
and macaques8. Finally, the expected number of PTVs is estimated from number 
the number of possible PTVs, the estimated mutation rate, the sample size, and 
sequencing depth (observing a variant is inherently less likely in poorly sequenced 
regions). A score is defined that quantifies the amount of missing PTVs per gene, 
defined as the one minus the observed number of PTVs divided by the expected 
number of PTVs, such that scores approaching one are indicative of loss-of-
function intolerance.  Using this score, genes are then assigned using the 
expectation-maximization algorithm to one of three groups: genes tolerant of LoF 
variation, genes for which heterozygous PTVs are tolerated, and haploinsufficient 
genes (heterozygous PTVs are not tolerated). The ratio of observed to expected 
PTVs in the latter two categories is estimated from known recessive and 
haploinsufficient disease genes. Finally, the probability of LoF-intolerance (pLI) is 
defined as the likelihood that a gene is belongs in the haploinsufficient category; 
genes with a pLI≥0.9 are predicted to be LoF-intolerant7. 
 Genes predicted to be LoF-intolerant are broadly and highly expressed, are 
depleted for expression quantitative-trait loci (eQTL), enriched for core biological 
pathways, have many physical interaction partners, and include most 
haploinsufficient disease genes; in short, LoFi genes appear to very important. We 
would thus expect genetic variants affecting these genes to increase risk for human 
disease. However, despite abundant evidence for functional importance and 
selective constraint, 72% of the 3,230 LoFi genes are not currently associated with 
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any human disease phenotype. A recent set of meta-analyses of whole-exome 
sequencing studies aimed to quantify the impact of PTVs in LoF-intolerant genes 
for 13 quantitative traits and 10 human diseases31. Genome-wide burden of PTVs 
in LoF-intolerant genes was significantly associated with increased risk for several 
psychiatric disorders, including bipolar disorder, autism, schizophrenia, intellectual 
disability, and attention deficit hyperactivity disorder. Genome-wide burden 
analysis of predicted pathogenic missense variants in LoF-intolerant genes 
identified similar associations, suggesting that deleterious missense variants and 
protein-truncating variants may contribute to similar phenotypic outcomes. Other 
complex diseases, like type II diabetes and inflammatory bowel disease, showed 
no association with the burden of PTVs in LoF-intolerant genes. This study 
benefited from the availability of whole-exome sequencing data for over 100,000 
individuals, but not all phenotypes were available for all samples, limiting the 
power of each individual association analysis. Furthermore, while whole-exome 
sequencing data provides an excellent source for low-frequency and de novo 
PTVs, focusing these analyses exclusively on PTVs in genes known to be depleted 
for PTVs greatly reduces the amount of available data, lowering the likelihood of 
identifying significant associations and effectively eliminating the possibility of 
gene-level analysis, which this study did not perform. Finally, phenotypic 
information for only a small number of quantitative traits and diseases means that 
this study did not fully interrogate the phenotypic spectrum. 
 One interpretation for the extreme constraint observed for LoF-intolerant 
genes is that any disruption of their function leads to deleterious phenotypes 
detrimental for survival or reproduction7. This implies not only that different PTVs 
can cause the deleterious effect, but also that these effects could be caused by 
mutations of other types, like missense variants. Thus, a model of allelic 
heterogeneity is most appropriate when testing for significant associations with 
disease. In the study described above, two aggregate association strategies were 
used: burden analysis and sequence-kernel association testing (SKAT). Burden 
tests assume a logistic relationship between the number of variants observed in an 
individual and the likelihood of developing a disease or trait. This approach is 
statistically powerful when the assumption is true and all variants are associated 
with the phenotype and affect risk in the same direction: either increasing or 
decreasing, collectively. This assumption can be relaxed using SKAT to 
accommodate variants impacting the phenotype in opposing directions: some 
increasing and some decreasing, as well as variants with neutral effects32. In 
practice, the truth of this underlying assumption is often unknown, so an optimized 
method (SKAT-O) was developed to balance the contribution of each approach 
and maximize statistical power33. Aggregate association statistics are invaluable 
when many low-frequency causal variants (as opposed to a single causal common 
variant) are hypothesized to affect risk for a disease; e.g. cystic fibrosis can be 
caused by many variants within CFTR [MIM: 602421]. This hypothesis is 
especially relevant for diseases caused by protein loss-of-function (rather than 
gain-of-function) because of the many ways of disrupting protein function, making 
it an ideal choice for interrogating the phenotypic impact of variation in loss-of-
function intolerant genes. 
 Although the extreme level of constraint on LoF variation suggests the 
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importance of LoF-intolerant genes, and while disruption of these genes is 
expected to have severe phenotypic consequences, the pLI metric does not supply 
any hypotheses regarding which phenotypes to expect; it is very likely that the 
most common phenotype for LoF variants in LoF-intolerant genes is embryonic 
lethality. However, we hypothesize that variants causing less severe disruptions to 
protein function are associated with human disease, and that these diseases can 
provide new insights into why the complete disruption of LoF-intolerant genes is 
incompatible with life. To interrogate a spectrum of possible phenotypes for a 
gene, we perform a Phenome Wide Association Study34,35 (PheWAS). This 
approach is typically enabled by a clinical biobank linked with an electronic 
medical record (EMR), from which we can derive both genetic and broad 
phenotypic information from clinical samples. Standard phenotyping algorithms 
for PheWAS aggregate groups of related ICD9 billing codes into PheWAS codes 
that reflect clinical phenotypes. The assignment of case, control, and exclusion 
status for each sample is determined by the presence or absence of the relevant 
billing codes. Because billing codes are not diagnoses, and may often be assigned 
during routine course of treatment before a final diagnosis is made, phenotyping 
algorithms typically require multiple occurrences of the same code for a sample to 
be classified as a case. Once the case/control status of each sample is determined 
for each phenotype, a PheWAS is conducted as a series of independent association 
tests, similar to a genome-wide association study (GWAS). When multiple loci are 
included, a PheWAS is conducted for each locus. Like GWAS, PheWAS involves 
thousands to millions of association tests, so correction for multiple testing is 
critical to avoid spurious findings. 
 Although access to the electronic-medical record provides an invaluable 
catalogue of phenotypic information, the clinical cohorts used for PheWAS 
introduce several caveats and considerations. The medical record is not a closed-
world system, so it is possible that some controls used for any given analysis are 
not true controls; no mention of a disease does not preclude the possibility that an 
individual was diagnosed elsewhere or will develop the disease later in life. 
Because clinical populations are often curated from a single hospital, there is also 
an increased risk that study findings will not generalize beyond the hospital or 
region in which the study was performed. Similarly, a regionally curated clinical 
population is likely to include many families, which must be considered for any 
statistical analysis assuming un-related individuals. For these reasons, it is 
advisable to view the results of a PheWAS as data-driven hypotheses requiring 
additional statistical and biological support. Despite these caveats, EMR-linked 
biobanks provide the most comprehensive phenotypic information available for 
analysis, and have been successful in identifying novel phenotypic associations 
with uncharacterized genes and variants of predicted functional importance35–38. 
 Using dense whole-exome genotyping in an EMR-linked biobank, we use 
gene-level aggregate association tests to interrogate all protein-coding variants in 
predicted LoF-intolerant genes for association with clinically derived phenotypes. 

 

 



 

 
10 

1.3 Chapters 

In chapter 2, we hypothesize that disease-causing missense variants in the protein 
structure of RTEL1 are spatially clustered in functionally important regions that, 
when disrupted, contribute to the development of pulmonary fibrosis. We evaluate 
this hypothesis using spatial analytics that measure the degree of clustering or 
dispersion of variants within protein structures, and use spatial information to 
classify missense VUS identified through Sanger sequencing of RTEL1 in families 
with familial idiopathic pneumonia. 
 In chapter 3, we hypothesize that somatic cancer-driver mutations exhibit 
spatial patterns similar to what has been previously observed for germline disease-
causing variants, due to similar contributions to human disease. Because driver and 
passenger mutation data is limited, we analyze all somatic mutations for spatial 
clustering, using recurrence to enrich our dataset for potential driver mutations. We 
explore the spatial distribution of somatic mutations from two data databases of 
cancer genetics, in the context of solved and predicted protein structures. Finally, 
we compare and contrast the results of our analysis with previous comprehensive 
analyses of somatic mutation clustering protein structure. 
 In chapter 4, we shift our focus to genes without existing associations with 
human disease, but for which whole-exome sequencing of healthy individuals 
suggests biological and phenotypic importance. Using a collection of genes 
predicted to be loss-of-function intolerant, we use gene-level aggregate analysis of 
rare variation to perform a phenome-wide association study (PheWAS) using 
clinical phenotypes derived from the electronic medical record. We compare and 
contrast the phenotypic associations of loss-of-function tolerant and intolerant 
genes, present novel gene-phenotype associations, and demonstrate existing mouse 
model support for several of the significant associations. 
 In chapter 5, we discuss the implications and limitations of this dissertation, 
and propose future work, including the adaptation of a new measure of selective 
constraint for protein structure, and the replication of our PheWAS results using 
whole-exome sequencing data from a large EMR-linked biobank.
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Chapter 2 

Classifying variants of unknown 
significance in RTEL1 using spatial 

constraint 

The content of this chapter is adapted from a submitted manuscript: Sivley, R.M., 
Sheehan, J., Kropski, J., Cogan, J., Blackwell, T.S., Phillips, J.A., Bush, W.S., Meiler, J., 
Capra, J.A., Three-dimensional spatial analysis of missense variants in RTEL1 identifies 

pathogenic variants in patients with Familial Interstitial Pneumonia. In revision. 

2.1 Introduction 

For many genes, associations with disease are limited to a handful of genetic 
variants that collectively fail to explain the heritability of the disease39. Often, the 
presence of multiple disease-causing variants within a single gene suggests that the 
missing heritability may be explained by additional, currently uncharacterized 
genetic variants. However, large-scale population sequencing has made it 
abundantly clear that not every variant in a disease-associated gene causes that 
disease7,21. By analyzing the patterns of constraint on disease-causing and 
putatively neutral variants, in particular patterns of spatial constraint in protein 
structure, we can identify regions of proteins in which mutations are more or less 
likely to cause disease and help to elucidate the underlying mechanism of disease. 
In previous work, we demonstrated the predictive potential of this approach; we 
now aim to explore its practical application to variants of unknown significance 
identified in a clinical setting. 
 The use of next-generation sequencing to study families with pulmonary 
diseases has led to the identification of novel genes and mechanisms associated 
with the inherited forms of pulmonary arterial hypertension40–44 and pulmonary 
fibrosis45–47. Genetic variation in telomere-related genes is the predominant cause 
of pulmonary disease (when genetic etiology is known). Even when the genetic 
cause is unknown, such as with idiopathic pulmonary fibrosis, telomere shortening 
in peripheral blood mononuclear cells48–50 and type II alveolar epithelial cells45,50 is 
commonly observed in patients and families. The mechanism through which 
telomere dysfunction leads to lung fibrosis is not clear, but may involve premature 
senescence of progenitor cells in the distal lung51–53. Among families with 
pulmonary fibrosis (familial interstitial pneumonia, FIP), whole exome sequencing 
(WES) studies have identified that variation in a few genes is responsible for 
disease risk. The most commonly mutated genes in FIP patients are TERT (10–
15% of cases)54,55, RTEL1, and PARN (3–4% of cases each)45,46. Most FIP 
mutations identified to date are very rare or novel. Rare variation presents 
challenges when using genetic information in clinical practice, since most newly 
identified variants in FIP-associated genes are considered variants of unknown 
significance (VUS).  
 We screened FIP families from our registry for rare variants in RTEL1 and 
identified 13 rare missense VUS. We hypothesized that pathogenic RTEL1 variants 
likely affect critical functions and/or protein interactions and thus would co-
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localize in three-dimensional space. To test this hypothesis, we used homology 
modeling to predict the tertiary structure of RTEL1 and identified a spatial cluster 
of variants with known disease-association in RTEL1’s helicase domains. We then 
developed an algorithm to classify missense VUS based on their spatial proximity 
to known pathogenic and neutral variants with the expectation that VUS near the 
pathogenic cluster are more likely contribute to disease. The approach 
outperformed two common pathogenicity prediction methods in cross-validation 
and predicted the pathogenicity of disease-segregating VUS with high accuracy. 
Our study supports the likely pathogenicity of novel FIP-associated rare variants, 
generates a new homology model of RTEL1’s 3D structure, supports quantitative 
spatial analysis in protein structure as a powerful approach to classify VUS in 
RTEL1, and suggests this technique may have broad applicability to other genes 
and genetic diseases. 

2.2 Methods 

Subjects and Samples 
We trained our spatial proximity prediction algorithm using putatively neutral 
RTEL1 missense variants from the 1000 Genomes Project21 that were not 
otherwise associated with disease and pathogenic missense variants causing severe 
pediatric, autosomal recessive Hoyeraal-Hreidarsson syndrome collected from 
previous literature56–62. We evaluated the performance of our prediction algorithm 
using rare missense variants of unknown significance from patients with Familial 
Interstitial Pneumonia (FIP). Subjects were identified from the Familial Interstitial 
Pneumonia (FIP)/Familial Pulmonary Fibrosis (FPF) registries at Vanderbilt 
University, the University of Colorado, and National Jewish Hospital45.  FIP was 
defined by the presence of Idiopathic Interstitial Pneumonia (IIP) in two or more 
family members, including IPF in at least one individual. Phenotypes of subjects 
selected for sequencing were ascertained using ATS/ERS criteria for IIP63. The 
affected status of deceased individuals was determined by review of available 
medical records, autopsy material, or by death certificates. DNA was isolated from 
blood and/or paraffin-embedded lung tissue using a PureGene Kit (Gentra 
Systems, Minneapolis, MN). Rare missense variants (MAF < 0.001) in RTEL1 
were curated from whole-exome sequencing data as previously reported 45 (n=189 
families) or targeted modified Sanger sequencing of RTEL1 (n=184 families) 
(Figure 1). Co-segregation and telomere length measurements were performed as 
previously described45. VUS co-segregation with disease and short telomeres was 
considered evidence for pathogenicity and represent true-positives in our analysis. 
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Figure 1: Familial Idiopathic Pneumonia (FIP) pedigrees. Genotyping of 373 FIP patients identified 13 
missense variants of unknown significance (VUS) in RTEL1. Analysis of pedigrees of FIP patients 
demonstrated that seven VUS segregate with disease. Telomere percentages are provided below each mutation 
when available. 

Protein Structural Analysis 
We quantified the spatial proximity of each VUS to each known pathogenic and 
neutral variant using the NeighborWeight transformation of the 3D Euclidean 
distance between the centroid of each amino acid side chain64, 

 
where dx,y is the distance between VUS x and variant y from set Y (pathogenic or 
neutral) and the bounds give upper and lower bounds in angstroms. This 
transformation up-weights the contribution of nearby variants and down-weights 
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distant variants that are less likely to have similar functional effects (Figure 2). To 
capture neighboring residues with the potential for direct interaction, the lower 
bound was set to 8 Å. The upper bound was set to 24 Å to capture variants 
potentially impacting the same functional domain or element. We then calculated 
the proximity P of each VUS x to variants in dataset Y using the weighted-average 
of transformed distances, 

 
To classify VUS, we calculated the difference in the pathogenic and neutral 
proximity scores, 

 
such that candidate VUS in closer proximity to pathogenic variation than neutral 
variation receive positives scores. We refer to ∆𝑃 as the pathogenic proximity 
score. 

 
Figure 2: Neighbor Weight as a function. The Neighbor Weight function transforms distance using a lower bound of 8Å 
and an upper bound of 24Å to up-weight nearby variants and downweights distant variants. 

 We evaluated the predictive power of the pathogenic proximity score using 
leave-one-out cross-validation on the known pathogenic and neutral variants 65; 
each variant was predicted to be pathogenic or neutral by its proximity to all other 
variants. We quantified the performance of each prediction method using the area 
under the receiver operating characteristic curve (ROC AUC). The ROC curve 
plots true positive rate, the proportion of true positives (pathogenic variants) 
predicted to be positive, versus false positive rate, the proportion of true negatives 
(neutral variants) predicted to be positive, as a function of prediction rank. The 
ROC AUC is equivalent to the probability that a randomly selected positive is 
ranked higher than a randomly selected negative; thus, perfect separation of 
positives and negatives produces a ROC AUC of 1.0 and random ordering 
produces a ROC AUC of 0.5. We compared the performance of the pathogenic 
proximity score with other pathogenicity prediction methods, including ConSurf 
evolutionary conservation scores 66, SIFT 13, and PolyPhen2 14. A brief description 
of each approach is provided in the Supplemental Methods. 
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Pathogenicity prediction methods 
ConSurf 66 calculates the relative evolutionary conservation of each amino acid 
within a protein sequence, with scores ranging from –1.5 (most conserved) to 1.5 
(least conserved). Variants were ranked by increasing ConSurf score; amino acid 
substitutions at the most conserved residues were predicted to be deleterious, and 
at the least conserved residues to be neutral. SIFT 13 and PolyPhen2 14 are machine 
learning classifiers designed to predict the impact of amino acid substitutions using 
a combination of sequence- and/or structure-derived features. SIFT uses multiple 
sequence alignments of closely-related homologs to calculate the probabilities of 
amino acid substitutions. Substitutions with low likelihoods are predicted to be 
deleterious while those with moderate or high likelihoods are predicted to be 
benign. PolyPhen2 provides posterior probability estimates of pathogenicity 
ranging from 0 (benign) to 1 (damaging). SIFT and PolyPhen2 scores were 
calculated by the Ensembl Variant Effect Predictor 67. 

2.3 Results 

Constructing a structural model of RTEL1 
The protein structure for RTEL1 has not yet been experimentally determined, so 
we constructed a computationally derived homology model. To begin, we applied 
nine computational modeling algorithms to the protein sequence: GeneSilico 68, 
HHpred 69, I-TASSER 70, M4T 71, Pcons5 72, Phyre2 73, RaptorX 74, Robetta 75, and 
SWISS-MODEL 76. RaptorX produced the highest-coverage model, which 
consisted of two well-folded domains spanning residues 1-769 and 881-1151. This 
model was based on seven PDB structures: 4a15 77, 3crv 78, 2fi7 79, 2gm7 80, 4pjq 
81, 2vrw 82, 4a64 83. To improve quality, the model was relaxed using Rosetta 
version 2015.19 84, and then subjected to 1000 rounds of loop_modeling 85 using 
perturb_kic_with_fragments. 

Known pathogenic missense variants in RTEL1 cluster in 3D structure 
To analyze the 3D distribution of disease-associated RVs in RTEL1, we mapped 
known pathogenic and neutral variants onto the sequence and structure of RTEL1 
(Figure 1). Because the relative orientation of the N- and C-terminal models 
(residues 1-769 and 881-1151) is unknown, we analyzed variants in these models 
separately. In the N-terminal model, we observed spatial clustering of pathogenic 
variants in helicase domain II (Figure 3a) and near the structural interface of 
helicase domains I and II (Figure 1b). This tendency was not observed among 
neutral variants, which were distributed throughout the protein structure. The 
distinct spatial distributions of pathogenic and neutral variation suggest that 
clustering is characteristic of pathogenic variation in RTEL1 and that disease-
causing missense RVs in RTEL1 disrupt similar protein functions. In the C-
terminal model there were relatively few candidate VUS relative to the N-terminal 
model, leading to poor performance (Figure 4). We focused the remainder of our 
analyses on the N-terminal model. 
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Figure 3: Identification and classification of novel pathogenic FIP variants in RTEL1. (a) The locations of 
known pathogenic (red), putatively neutral 1000 Genomes (blue), and FIP VUS (yellow) missense variants are 
plotted in the context of the RTEL1 protein sequence and known domains. (b) The locations of pathogenic, 
putatively neutral, and candidate variants in the RTEL1 N-terminal structural model. (c) Leave-one-out cross 
validation of the pathogenic proximity score applied to characterized RTEL1 variants yielded an improved area 
under the ROC curve (AUC) relative to PolyPhen2 and SIFT, but was outperformed by evolutionary 
conservation scores. These results demonstrate that considering the 3D spatial distribution of known pathogenic 
and neutral variants can identify pathogenic hotspots and assist in the classification of VUS. 
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Figure 4: Reduced performance of spatial proximity in the variant-sparse C-terminal model of RTEL1. 
(a) The locations of known ClinVar pathogenic (red), putatively neutral 1000 Genomes (blue), and new 
candidate FIP (yellow) missense variants in the RTEL1 C-terminal structural model. (b) Receiver operating 
characteristic (ROC) curves for variants in the C-terminal model of RTEL1. ConSurf did not provide 
conservation scores for most residues in the C-terminal model. Only four pathogenic variants were present in 
the C-terminal model and predictive performance was notably worse than in the larger N-terminal model.  

Spatial proximity analysis accurately classifies pathogenic and neutral RTEL1 
variants 
Based on the observed differences between neutral and pathogenic variant 
distributions, we hypothesized that candidate VUS could be classified by their 
relative spatial proximity to known pathogenic and neutral variants. To evaluate 
this, we used leave-one-out cross-validation to calculate pathogenic proximity 
scores (ΔP) for each known pathogenic and neutral variant in the N-terminal 
model of RTEL1 and then plotted ROC and PR curves to measure how accurately 
the proximity score predicts pathogenicity. Classifying variants by their pathogenic 
proximity score performed well (Figure 1c); the approach yielded a ROC AUC of 
0.85.  
 To estimate the sensitivity of the proximity-based prediction method to the 
number of known pathogenic variants, we recomputed pathogenic proximity 
scores using all possible subsets of pathogenic variants, and then calculated the 
ROC and PR AUC for each subset (Figure 5). As expected, performance increases 
as the number of known pathogenic mutations considered increases; the mean 
ROC AUC is 0.62 when only two pathogenic variants are known and 0.82 when 
six variants are considered. This suggests that performance will increase as more 
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pathogenic variants are identified. However, we caution that the number of known 
pathogenic variants required will likely vary substantially based on the structure 
and function of the protein of interest.  

 
Figure 5: Estimation of the sensitivity of pathogenic-proximity-based prediction to the number of known 
pathogenic variants. ROC AUC (a) and PR AUC (b) were computed based on all subsets of the seven known 
pathogenic variants in RTEL1’s N-terminal domain. The black dots represent the mean performance across all 
subsets of each size (subsets of 2 to 6 variants) and the bars represent the standard deviation. The blue curve 
was fit to the log-AUC using linear regression. 

 We then compared the performance of our pathogenic proximity score to a 
representative set of current methods for in silico pathogenicity prediction: 
ConSurf evolutionary conservation 66, SIFT 13, PolyPhen2 14 (Figure 1c). The 
pathogenic proximity score outperformed PolyPhen2 (ROC AUC=0.81) and SIFT 
(ROC AUC=0.80); evolutionary conservation had the best performance (ROC 
AUC=0.89). The competitive ROC AUC with current methods and the relatively 
strong performance obtained with small numbers of known pathogenic variants 
demonstrates the predictive potential of spatial statistics, which are not currently 
used for variant pathogenicity prediction. 

The pathogenic proximity score identifies nearly all disease-segregating VUS as 
pathogenic 
 Given the predictive potential of the pathogenic proximity score, we applied 
our methodology to the 13 missense VUS identified from our FIP registry; six that 
segregate with disease, five that do not segregate with disease, and two for which 
segregation data was unavailable. The pathogenic proximity score classified eight 
VUS as deleterious (Table 1), including five VUS (V516L, S540A, F559I, S688C, 
D719G) that co-segregated with disease and were found in subjects with short 
telomeres in peripheral blood mononuclear cells, a biomarker of reduced RTEL1 
activity 48–50 (Figure 1). Two false positives (A528E, R574W) did not co-segregate 
with disease or were found in subjects with normal length telomeres. The VUS 
receiving the highest pathogenic proximity score was the uncharacterized W512C 
variant; there was not sufficient DNA for telomere length measurement or DNA 
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available from other affected individuals in this family for co-segregation analysis. 
Of the five VUS predicted to be neutral by the pathogenic proximity score, four 
(H161Q, Q397E, P1107L, F1110L) did not co-segregate with disease. For 
comparison, no prediction method correctly classified all segregating variants, all 
prediction methods misclassified the two false positives, and only evolutionary 
conservation correctly classified the single false negative. Detailed structural 
hypotheses for the pathogenicity of W512C and the disease co-segregating VUS 
are provided in the Conclusions. 

Pos Ref Alt Telomere % Segregation PPH2 SIFT ConSurf PathProx Model 

55 T S 3% Seg 0.00 1.00 -0.56 -0.02 N-terminal 

516 V L 1% Seg 0.05 0.62 -0.15 0.41 N-terminal 

540 S A 2% Seg 0.57 0.09 -0.80 0.21 N-terminal 

559 F I 6% Seg 1.00 0.00 -1.11 0.44 N-terminal 

688 S C 1% Seg 0.91 0.14 -0.62 0.27 N-terminal 

719 D G 8% Seg 0.03 0.22 0.21 0.05 N-terminal 

512 W C Unknown Unknown 0.17 0.48 0.31 0.47 N-terminal 

161 H Q Unknown NonSeg 0.40 0.16 -0.35 -0.13 N-terminal 

397 Q E 94% NonSeg 0.08 0.20 0.40 -0.09 N-terminal 

528 A E 58% Unknown 0.62 0.05 -0.75 0.08 N-terminal 

574 R W 45% NonSeg 0.95 0.00 -0.53 0.07 N-terminal 

1107 P L 6% NonSeg 0.63 0.01 
 

-0.13 C-terminal 

1110 F L Unknown NonSeg 0 1 
 

-0.17 C-terminal 
Table 1: Variant segregation, telomeric length, and pathogenic proximity information. Variants are 
grouped by evidence for pathogenicity, which is inferred from disease co-segregation and patient telomere 
lengths. Variants that segregate with disease and short telomeres are treated as pathogenic (Figure 1). Scores in 
bold indicate deleterious predictions. All thresholds were applied as recommended by each method. 

RTEL1 pathogenic proximity scores correlate with decreased ATPase activity in 
XPD mutants 
RTEL1 is a RAD3-related helicase in the DEAH subfamily of the Superfamily 2 
(SF2) helicases and many FIP-associated variants in RTEL1 occupy domains that 
are highly conserved among proteins in this family 86. To explore the mechanistic 
basis for the association of RTEL1 mutations with disease, we mapped 
mutagenesis data from two studies of the homologous protein, XPD, onto our 
human model of RTEL1 (Figure 6; N=15 Fan et al.; N=10 Kuper et al.) 77,78. 
Spatial proximity to pathogenic variants in RTEL1 was significantly correlated 
with decreased ATPase activity (Pearson r = –0.65, p = 0.0004, Figure 7a), but not 
with helicase activity (Pearson r = –0.36, p = 0.08, Figure 7b). This suggests that 
pathogenic mutations in RTEL1 may perturb ATPase activity in a manner that 
leads to disease. Further detailed molecular hypotheses about how the individual 
segregating missense variants disrupt the structure and function of RTEL1—e.g., 
by disrupting protein-protein interactions (W512C) or DNA binding (F559I)—are 
provided in the Conclusions. 
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Figure 6: ATPase and helicase reported activity. Activity is reported as the percentage of wild type for 
missense mutations in saXPD and taXPD.  
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Figure 7: Pathogenic proximity scores in RTEL1 are correlated with decreased ATPase activity in 
mutagenesis studies of the homologous XPD protein. Pathogenic proximity scores were calculated for each 
missense mutation (N=25) using their position relative to known pathogenic and neutral missense variants in 
RTEL1. (A) Pathogenic proximity was significantly correlated with a decrease in ATPase activity (Pearson r=–
0.65, p = 0.0004), but (B) not significantly correlated with changes in helicase activity (Pearson r=-0.36, p = 
0.08) in the homologous XPD protein. 

2.4 Conclusions 

Genetic variation in RTEL1 is a common cause of FIP in families with known 
genetic etiology. Most disease-causing RTEL1 variants are private or very rare 
mutations and appear to reduce RTEL1 levels and/or activity45,57. Determining the 
pathogenicity of newly identified candidate VUS, particularly missense variants, 
presents a significant challenge in the diagnosis and treatment of patients and their 
family members that may be at risk87. Missense RVs in RTEL1 are potentially 
actionable, so improved approaches to predicting pathogenicity could have a 
substantial clinical impact. In this report, we describe a novel, quantitative 
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structural approach to predicting VUS pathogenicity, applied to 13 rare missense 
VUS in RTEL1.  
 We constructed a homology model of the structure of RTEL1 and analyzed 
missense VUS relative to the spatial distribution of known pathogenic and neutral 
variation. Five of six VUS that segregated with FIP in families were predicted to 
be pathogenic by our method, as well as one VUS without disease co-segregation 
or telomere length data. Below, we outline potential structural mechanisms of 
action – ranging from disruption of protein-protein or protein-DNA interactions to 
destabilization of the tertiary structure of the protein – for each segregating VUS. 
 W512C: W512 is a bulky aromatic residue found on the surface of the 
structural model (Figure 8a). Surface-exposed aromatic side-chains are 
uncommon, and are often found to be important anchors for protein-protein 
binding surfaces. Replacing the tryptophan sidechain with the smaller, less 
hydrophobic cysteine may alter the shape and physicochemical character of a 
critical protein-binding surface of RTEL1, compromising its ability to perform its 
normal physiological function. This hypothesis is bolstered by the observation that 
this variant is ranked highest by our proximity score, indicating that other 
mutations found in close proximity to W512C – i.e. on or adjacent to the surface 
and likely to act through a common mechanism – are disease-linked. The 
importance of protein-protein interactions to RTEL1 function is underscored by 
the 46 unique interactions reported by the BioGrid database 88. 
 V516L: V516 is a moderately conserved, hydrophobic residue buried in the 
interior of the helicase II domain. It forms a small well-packed hydrophobic core, 
which lies under a patch of positively charged surface residues (R518, H713, 
R729, H731) (Figure 8b). Insertion of a leucine residue in this position is predicted 
to be destabilizing because of the additional steric bulk. Moreover, the structural 
rearrangement could disrupt the conformation of the basic surface patch, 
presumably affecting interaction with DNA. 
 S540A: S540 is a polar residue predicted to lie on a surface-exposed alpha 
helix in the helicase II domain (Figure 8c). Mutation of the hydroxyl group to an 
isopropyl group is predicted to have one of two effects. Either the character of the 
protein surface will be changed from polar to hydrophobic at that location, or, by 
altering the amphipathic nature of that helix, the mutation could affect the helix 
packing and positioning, resulting in a larger structural change such as rotation of 
the helix. Either of these two effects could explain the functional consequence of 
the variant. 
 F559I: F559 is a bulky aromatic residue found on the interior of the protein 
model, within 9 Å of the predicted DNA-binding interface (Figure 8d). 
Replacement of the large volume of the phenylalanine side chain with the smaller 
volume of isoleucine could alter the geometry of the DNA-binding cavity 
sufficiently to disrupt that interaction. Notably, while F559 is in the second shell of 
residues responsible for DNA contact, it is predicted to be directly adjacent to two 
first-shell residues, E591 and A621, which have been previously reported as 
disease-associated 59. 
 S688C: S688 is located on a buried helix one turn (5.9 Å) away from 
disease-associated residue R684. The mutation of serine to cysteine does not result 
in major changes in bulk, branching, charge, or hydrophobicity. However, the 
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presence of the sulfhydryl group in the cysteine could potentially promote 
misfolding and aggregation upon incorrect formation of disulfide bonds, if exposed 
to oxidation. 
 D719G:  D719 is located on a surface-exposed helix near the pathogenic 
cluster (Figure 8e). Replacing the large charged aspartate sidechain with the single 
hydrogen of a glycine removes a bulky charge from the protein surface and likely 
disrupts the helix in that region. 
 T55S: T55 is a polar residue predicted to lie at the interface between alpha 
helices 1 and 2 (Figure 8f). Relative to the other segregating variants, T55S is 
distal to the pathogenic cluster and is relatively equidistant to pathogenic and 
neutral variation. Both threonine and serine are unusual residues to find in a helix-
helix interface, and suggest that this position may be functionally important. 
Replacement of a threonine sidechain with that of serine does not alter the 
hydroxyl character of the residue, though it reduces the steric bulk by one methyl 
group. This is not a major volumetric change, but the removal of a beta-branching 
amino acid could affect inter-helical packing. This steric change could result in a 
relative repacking of the helix-helix interface, or could change the strength of 
interaction between the helices. Another mutation in this helix (K48R) has been 
shown to abolish ATPase activity when mutated to arginine 89, though this 
mutation is also physically closer to the ATP-binding cleft. Although T55 is 
evolutionarily conserved, SIFT and PolyPhen2 each confidently predict the serine 
substitution to be benign. Ultimately, there is no obvious structural basis for the 
pathogenicity of T55S and its distance from the pathogenic cluster suggests that 
any functional effects are likely impacting alternative mechanisms. 
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Figure 8: Structural hypotheses about the effects of six segregating RTEL1 VUS. (a) W512 is predicted to 
lie on the surface of the protein. A mutation to cysteine has the potential to interfere with functionally important 
protein-protein interactions. (b) V516 forms a small well-packed hydrophobic core, which lies under a patch of 
positively charged surface residues. Mutation to leucine adds steric bulk and may induce structural 
rearrangements that disrupt DNA binding. (c) S540 is a polar residue predicted to lie on a surface-exposed 
alpha helix in the helicase II domain. Mutation to alanine may alter surface charge or cause rotation of the alpha 
helix. (d) F559 is buried in the core of the protein, in close proximity to residues predicted to form part of the 
DNA-binding cavity, including A621 and E591. Mutation to isoleucine removes steric bulk and is likely to 
leave a void in the hydrophobic core of the protein, disrupting structure and reducing stability. (e) D719 is 
predicted to fall in a surface-exposed helix. Mutation to glycine drastically reduces both the bulk and charge of 
the protein’s surface, and likely disrupts the helix at that point. (f) T55 is predicted to form part of the interface 
between helices 1 and 2 in RTEL1. Mutation to a serine would reduce the steric bulk and alter the packing 
between the two helices. 

 In comparison to general pathogenicity-prediction algorithms, this approach 
makes use of dense population and disease-association data for variants 
specifically in RTEL1 using conservative assumptions of pathogenicity. 
Consequently, the availability of well-characterized pathogenic and neutral 
variants in the protein-of-interest is essential. The incorporation of variants and 
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mutagenesis data from functional homologs may help to overcome this limitation. 
For example, the spatial distribution of disease-causing missense variants in 
RTEL1 suggests that the ATP-binding cleft between helicase domains I and II and 
the DNA-binding pore along helicase domain II are functionally critical regions of 
RTEL1. This finding is consistent with observed patterns of missense variants 
associated with Xeroderma pigmentosum (XP) in the homologous protein XPD 78. 
While variants in XPD have different phenotypic presentations than those in 
RTEL1, the overlapping regions of pathogenicity suggest similar functional 
effects, with higher-order phenotypes driven by cellular context or unique 
functional domains (e.g. RTEL1 harmonin-N-like domains). This hypothesis is 
supported by the significant correlation between RTEL1-derived pathogenic 
proximity scores and reduced ATPase activity in XPD. This algorithm can be 
iteratively enhanced as additional disease-associated variants and 
primary/homologous mutagenesis data become available. 
 Assigning pathogenicity to missense variants in RTEL1 presents unique 
challenges. An ideal biomarker/assay of RTEL1 activity has not been defined, and 
likely differs based on the specific mutation. Short PBMC telomeres appear to be a 
common feature associated with RTEL1 mutations, but it is not yet clear whether 
this is a uniform feature; telomere length in RTEL null mouse embryonic stem 
cells appears stable 90, so preserved telomere length alone may not sufficiently 
exclude deleterious function of RTEL1 variants. In light of these complexities, for 
algorithm training, we conservatively defined variants as pathogenic only if they 
had been reported to be associated with severe pediatric disease in a recessive 
genetic model. For testing on novel VUS, we considered segregation with disease 
and telomere length in defining likely pathogenic variants. Our method classified 
five of the six VUS that co-segregated with FIP as pathogenic, but it also 
misclassified three VUS. This may demonstrate a lack of specificity when 
considering only the location of variants within protein structure. Spatial 
information demonstrates predictive potential, but it does not directly capture the 
impact of specific amino acid substitutions, evolutionary conservation, or 
biochemical information critical for interpretation. However, the specificity of our 
approach is comparable with other prediction methods, nearly all of which also 
misclassified the three VUS. It is also possible that these “misclassified” variants 
do adversely affect RTEL1 function without leading to a direct effect on telomere 
length 90; comprehensive evaluation of these variants and others over-time should 
lend more clarity. At present, technical issues have limited the ability to perform 
in-vitro studies in overexpression systems 90. In addition, it is possible that more 
than one dominant risk mutation could be found in a family; in this case, lack of 
co-segregation would not exclude a pathogenic effect. 
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Chapter 3 

Quantifying spatial constraint on somatic 
missense mutations 

The content of this chapter is adapted from a submitted manuscript: Sivley, R.M., Doux, 
Xiaoyi, Meiler, J., Bush, W.S., Capra, J.A., Comprehensive Analysis of Constraint on the 

Spatial Distribution of Missense Variants in Human Protein Structures. In revision. 

3.1 Introduction 

Studying the mutational landscape of tumor cells is complicated by the presence of 
two types of somatic mutation: those that promote the progression of cancer 
(driver mutations) and those that arise or persist as a result of the cancer (passenger 
mutations). Because passenger mutations occur within a highly dysregulated, 
somatic context, we expect them to experience very little selective constraint. In 
contrast, driver mutations must create or disrupt functional regions with 
tumorigenic potential; thus, driver mutations must be under selective constraint. 
By quantifying the spatial distribution of somatic mutations in protein structures, 
we can identify proteins in which somatic mutations significantly deviate from 
random distributions, suggesting the presence of driver mutations and identify 
cancer-related genes. As described in Chapter 1, we have developed a spatial 
analysis that tests for significant clustering (or dispersion) of missense variants 
within protein structure. Using this approach, we have previously demonstrated 
that germline disease-causing variants are spatially clustered in many protein 
structures. We hypothesize that somatic cancer-driving mutations exhibit similar 
spatial patterns due to similar contributions to disease. We further expect that 
clustered regions are enriched for driver mutations and will aide in the 
classification of driver and passenger somatic mutations. 
 We examined in detail four previous studies that comprehensively 
quantified clustering within protein structures, each of which proposed a novel 
methodological approach for defining and identifying spatial clusters of somatic 
mutations. Kamburov et al. identified clusters of nearby (<10Å) somatic mutations, 
weighting more heavily mutations appearing in multiple independent tumor 
samples, and determined significance by the extremity of the clustering score over 
the entire protein22. Tokheim et al. first identified mutations with significantly high 
local mutation density, and then clustered any significant hotspots within 10Å24. 
Meyer et al. first identified clusters using complete-linkage hierarchical clustering 
(maximum diameter of 15Å) and then measured the significance of those clusters 
according to their density23. Finally, Niu et al. filtered amino acids pairs to those at 
distances >20 amino acids in the primary sequence, <10Å in the protein structure, 
and with a significant pairwise distance within the structure, and then mapped 
somatic mutations into these amino acid clusters, again limiting to a somatic 
mutation cluster radius <10Å, measuring significance by cluster density and local 
recurrence rates25. Each of these approaches was heavily influenced by classic 
examples of somatic mutation clustering, and each aimed to identify slightly 
different patterns of somatic variation. 
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 The discrepancy between these studies is further confounded by the use of 
different genetic and protein structural datasets. All studies included 
experimentally derived protein structures from the Protein Data Bank91, but 
Tokheim et al. and Meyer et al. expanded protein coverage with the inclusion of 
computationally predicted homology models from ModBase92. Tokheim et al. and 
Niu et al. each used somatic mutation data from The Cancer Genome Atlas19 
(TCGA), Kamburov et al. used data from the PanCancer analysis (a subset of first 
dozen TCGA profiled tumor types), and Meyer et al. used somatic mutation counts 
from the Catalogue of Somatic Mutations in Cancer (COSMIC)18. These numerous 
methodological differences make it difficult to determine whether somatic 
clustering in a protein is due to real selective constraint or methodological artifacts. 
 Unlike previous methods, the methodology that we previously developed to 
analyze the spatial distribution of missense variants in protein structures is not 
trained or parameterized with respect to known examples of driver mutation 
clusters. Thus, our approach is capable of identifying clusters of somatic mutations 
that do not follow previously observed patterns. Furthermore, by analyzing each 
dataset using our consistent methodology, we facilitate direct comparison between 
the proteins identified by each. Finally, we evaluate the agreement between the 
results of our analysis and previous studies. We expect that clusters of somatic 
mutations identified by at least two different methods are likely true positives. 
Following this assumption, we compile a consensus set of genes in which 
significant clustering was identified by at least two spatial analyses. Our analysis is 
the first to analyze all previously evaluated datasets using a consistent 
methodology and to present the overlap in proteins identified by previous methods. 

3.2 Methods 

Somatic mutation and structural datasets 
We analyzed somatic mutations from COSMIC version 74 and 18 cancer studies 
from The Cancer Genome Atlas (TCGA). COSMIC mutations were only included 
if they were observed in two more tumor samples to enrich the dataset for potential 
driver mutations. This approach was impractical for the smaller TCGA dataset, so 
all TCGA mutations were analyzed without regard to recurrence. Variant 
consequences and annotations were determined using v82 of the Ensembl Variant 
Effect Predictor for genomic build GRCh3767. Mutations were mapped into 
representative protein structures using Ensembl93 transcript models, which were 
matched with UniProt94 accession and Protein Data Bank91 (PDB, 01-07-2017) IDs 
using cross-reference tables provided by UniProt. PDB structures were included if 
they were determined through x-ray crystallography or solution NMR and 
contained at least 20 amino acids. Reference protein sequences were aligned with 
observed sequences in the PDB using SIFTS95. Discrepancies were corrected by 
Needleman-Wunsch pairwise alignment with Biopython96,97. Computational 
homology models from ModBase10 (Human 2013 and 2016) were also included to 
extend coverage of the proteome.  
 To reduce redundancy, each structural dataset was independently reduced to 
a minimally overlapping set of protein structures or homology models following an 
approach similar to Kamburov et al.22. For each structural dataset, we iteratively 
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selected the structure/model that provided the greatest coverage of the target 
protein, skipping structures with >10% sequence overlap with the existing set. For 
structures/models with similar sequence coverage, we selected the highest quality 
structure (by resolution for the PDB and the ModBase Quality Score for 
ModBase).  

Quantifying the spatial distribution of somatic mutations in protein structure 
In previous work, we developed a framework for evaluating hypotheses about the 
spatial distributions of genetic variants in protein structures based on Ripley’s K, a 
spatial descriptive statistic commonly used in ecology and epidemiology11,98,99. In 
brief, Ripley’s K quantifies the spatial heterogeneity of a set of variants by 
comparing the proportion of variants within a given distance from one another to 
the expected proportion under a random spatial distribution. Mutations are 
considered clustered if the proportion of neighbors exceeds the expectation and 
dispersed if the number of neighbors is lower than the expectation (Figure 9A-C). 
K is calculated across a range of distance thresholds (enabling the identification of 
clustering or dispersion at different scales) (Figure 9D). The distance-based scores 
are then summarized into a single Z-based score for each protein, determined 
through random permutation of mutations within the structure, where positive 
values indicate that mutations in the protein are clustered, and negative values 
indicate that mutations in the protein are dispersed (Figure 9E). 
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Figure 9:  Schematic of our framework for evaluating the spatial distribution of genetic variants. (A) 
Spatial distributions can diverge from random in two ways; they may have fewer neighbors than expected by 
chance (dispersed) or more neighbors than expected by chance (clustered). Example distributions are illustrated 
in reference to a random spatial distribution in 2D. Below each set of points, the resulting K statistic at multiple 
distance thresholds (red) is plotted in reference to the expected K distribution under a random distribution 
(gray). K values below the range expected at random indicate dispersion, and K values above indicate 
clustering. (B) Definition of the K statistic. For a range of distance thresholds (t), the number of variants 
neighboring each variant is computed and normalized by the total number of variant pairs. The indicator 
function I evaluates to 1 when two variants are neighbors (the distance between them (Dij) is less than t) and 0 
otherwise. (C) The observed K values are evaluated in reference to an empirical null distribution generated 
from 100,000 random permutations of variant locations within the protein structure. (D) The spatial distribution 
trend for each protein is summarized by calculating the area between the observed K values (red points) and the 
median permuted K values (black points). (E) This process is repeated for the K values resulting from each 
permuted set to generate an empirical null distribution. From this distribution, we calculate a Z-score and p-
value for the observed area. Positive Z-scores indicate clustering, negative Z-scores indicate dispersion, and Z-
scores near zero indicate a lack of spatial constraint. 

3.3 Results 

Quantifying Constraint on Spatial Patterns of Genetic Variation 
We mapped genetic variants from three large variant data sets into a representative 
subset of 6,604 experimentally derived human protein structures from the Protein 
Data Bank9 (representing 5,209 distinct proteins) and 33,144 computationally 
derived homology models from ModBase100 (representing 17,984 distinct 
proteins). We considered the spatial distribution of 725,267 recurrent somatic 
missense mutations (observed in at least two human tumor samples) from the 
Catalogue of Somatic Mutations in Cancer18 (COSMIC) and 31,426 somatic 
missense mutations from TCGA. 
 To evaluate the use of homology models to extend structural coverage of the 
proteome, we compared the COSMIC results from PDB and ModBase on shared 
proteins. We found that when both experimentally derived and computationally 
predicted structural models were available for a protein (>95% sequence overlap 
and excluding models for which the solved structure was used as a template, 
N=3,316), the spatial analysis results were highly correlated (Figure 10). Relative 
to the PDB, the ModBase results identified three of four significant proteins. Thus, 
while the analysis of computational models appears to have somewhat less power, 
no false positives were observed. For all analyses, we report the results on solved 
structures and predicted models separately. To reduce redundancy, the PDB-
overlapping ModBase models were excluded from all other analyses. 
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Figure 10: Spatial statistics derived from PDB structures and ModBase homology models are 
significantly correlated. PDB-derived spatial statistics are plotted against ModBase-derived spatial statistics 
on shared, sequence-matched proteins for each genetic dataset. The distribution over all pairs is shown as a 
density plot, with black indicating higher density. Proteins significant in the PDB analysis are shown in yellow, 
significant by the ModBase analysis shown in blue, and significant by both in green. We required >95% 
sequence overlap for each pair of PDB and ModBase structural models, and excluded any pair where the PDB 
structure was used as the initial template for the ModBase model. 

Spatial analysis identifies clustering for both gain- and loss-of-function mutations 
Early studies suggested that spatial clustering was an exclusive characteristic of 
oncogenes20; later studies have disputed the initial claim and identified somatic 
clusters in tumor suppressor genes as well22–25. Somatic driver mutations in 
oncogenes and tumor suppressor genes can usually be attributed to gain- and loss-
of-function, respectively. Protein sequence analyses have revealed that loss-of-
function variants can disrupt numerous critical elements of a protein structure, 
while gain-of-function variants are limited to a smaller subset of regions with 
functional potential101. We evaluated whether this relationship holds for protein 
structure using the dataset of dominant and recessive variants from the Human 
Gene Mutation Database (HGMD)102 curated by Turner et al.101. Both dominant 
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and recessive variants are significantly clustered in structure (Figure 11); however, 
dominant variants are clustered at shorter distances (median peak significance: 8Å) 
than recessive variants (median peak significance: 14Å) indicating more focal 
clustering. The smaller clusters formed by dominant variants support the 
hypothesis that gain-of-function mutations are limited to specific sites with 
functional potential, while loss-of-function mutations more generally disrupt 
regions of functional importance. In summary, the frequent clustering of germline 
pathogenic missense variants underscores the spatial constraint on protein-coding 
variation and likely highlights regions of protein structures that are functionally 
and clinically relevant. 

 
Figure 11: Autosomal dominant and recessive missense variants from the Human Gene Mutation 
Database (HGMD) are both spatially clustered in protein structure. However, within proteins with 
significantly clustered variation, dominant variants (NAD=19) formed significantly smaller clusters (median 
peak significance distance threshold: 8Å) than recessive variants (NAR=29; median peak significance: 14Å; p = 
0.0005, Mann–Whitney U test). These findings support previous conclusions that both gain- and loss-of-
function variants are more clustered than neutral variants. The smaller clusters formed by dominant variants 
additionally support the hypothesis that gain-of-function mutations are localized to specific sites with functional 
potential, while loss-of-function mutations more generally disrupt regions of functional importance. 

Recurrent somatic mutations are clustered in a small subset of protein structures  
Several studies of tumor-derived somatic mutations have identified clustering in 
both sequence and structure that may highlight protein regions important for 
tumorigenesis20,22–25,27. We hypothesized that recurrent somatic mutations 
identified from tumor samples would exhibit patterns of spatial constraint similar 
to germline pathogenic missense variants. Surprisingly, we found that recurrent 
somatic mutations from COSMIC exhibited a weak overall trend towards spatial 
dispersion (Figure 12A, PDB: median Z=–0.11, ModBase: median Z=–0.12). 
Consistent with previous studies, we also identified significant clustering in only a 
small fraction of protein structures (18 of 3,080, 0.6%) and models (8 of 12,573, 
0.06%).  
 We observed no significant difference in the overall spatial patterns between 
the PDB-based COSMIC and TCGA analyses (Figure 12B, PDB: median Z=-0.14, 
p=0.19 Wilcoxon). The TCGA analysis identified only three protein structures (of 
2,884, 0.1%) with significantly clustering of somatic mutations, but these were 
three known cancer proteins (TP53, STK11, and PTEN), two of which were not 
identified by the COSMIC recurrent somatic mutation analysis (TP53 and STK11). 
This finding demonstrates that although we reach the same general conclusions 
with either somatic dataset, the specific proteins identified are not necessarily the 
same. This may help to explain the discrepancy between some of the previous 
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methods, despite all identifying proteins with significant clustering. 
 

 
Figure 12: Distribution of spatial results for COSMIC recurrent somatic mutations and TCGA somatic 
mutations. Analyses are stratified by genetic dataset and the use of the Protein Data Bank or ModBase. No 
significant difference was observed between the overall distributions of spatial results, however the specific 
proteins identified as having significant clustering differ by dataset. 

Overlap in significant clusters identified by different methods and datasets 
The collection of 27 unique proteins we identified as containing significant clusters 
of somatic mutations includes many known cancer proteins103. 24 of the proteins 
we identified have been reported by at least one previous study of somatic 
mutation clustering20,22–25 (Figure 13). Five proteins were identified by all 
methods: BRAF, EGFR, FBXW7, PIK3CA, and TP53. To our knowledge, somatic 
mutation clustering in the remaining 13 proteins has not been previously reported: 
AR, CBL, CCDC160, COMP, CREBBP, DDX3X, ITLN2, MROH2B, PCDHAC1, 
SEZ6, SIRPA, SMO, and TET2. Of the total 140 genes reported by any study, 32 
were identified by at least two independent methods: BRAF, CDKN2A, CHEK2, 
EGFR, EP300, ERBB2, ERCC2, FBXW7, FGFR3, GNAS, HLA-B, HRAS, IDH1, 
IDH2, KEAP1, KRAS, MAP2K1, MTOR, NRAS, PIK3CA, PIK3R1, PPP2R1A, 
PTEN, PTPN11, RAC1, SF3B1, SMAD4, SPOP, STK11, TGFBR2, TP53, and 
VHL. All except HLA-B are known cancer genes included in the COSMIC cancer 
gene consensus. We consider these to be a high-confidence set of genes in which 
somatic mutations are significantly clustered in protein structure and likely to 
indicate clusters of driver mutations impacting functional sites important for 
tumorigenesis. 
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Figure 13: Proteins identified as containing significant clustering of somatic mutations. We compared the 
results of our comprehensive, uniform analysis of COSMIC and TCGA distributions in PDB structures and 
ModBase models to previous studies of somatic mutations in cancer. There is a large variance in the number of 
proteins identified by different studies, but there is also substantial overlap. 

 
Spatial clustering re-identifies functional clusters of driver mutations: PTPN11  
An important assumption of this analysis is that significant clustering of somatic mutations 
is indicative of driver mutations densely affecting a functional site important for 
tumorigenesis. We present here one example of a cancer-relevant functional site identified 
by our data-driven spatial analysis. Recurrent somatic mutations in PTPN11 [MIM: 
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176876], which encodes the protein tyrosine-protein phosphatase non-receptor type 11 
(SHP-2), are clustered at the structural interface between the protein tyrosine phosphatase 
(PTP) and Src-homology 2 (SH2) domains (Figure 14). Germline pathogenic missense 
variants at this interface are associated with LEOPARD syndrome (LPRD1 [MIM: 
151100]), Noonan syndrome (NS1 [MIM: 163950]), and increased risk for juvenile 
myelomonocytic leukemia (JMML [MIM: 607785]). Somatic mutations to PTPN11 are 
often found in leukemias and several solid tumors104. The relative orientation of the PTP 
and SH2 domains determines whether SHP-2 is in its active or inactive state. Disease-
causing mutations have been shown to disrupt the interaction interface between these 
domains, with mutations causing NS1 leading to a more energetically favorable active state 
relative to wild-type105 (gain-of-function) and mutations causing LPRD1 resulting in an 
inactive state106 (dominant negative). Our analysis identified significant spatial clustering 
of somatic mutations in several known cancer genes. This example demonstrates how these 
clusters can identify functional sites within protein structures and help to elucidate the 
structural mechanisms driving tumorigenic effects. 
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Figure 14: Distribution of COSMIC recurrent somatic mutations in SHP-2. Our analysis identified 
significant clustering of PTPN11 somatic mutations in the structure of its protein, SHP-2. Mutations were 
primarily located at the structural interface of the PTP and SH2 domains, and impact the affinity of the two 
domains. Increase and decreased binding affinity at this interface each lead to distinct clinical phenotypes. This 
example demonstrates how the identification of somatic mutation clusters can help to identify tumorigenic sites 
and the molecular basis of driver mutations. 

 
Analysis of protein structure reveals significant patterns of spatial constraint not 
identified from protein sequence  
Experimentally derived protein structures are available for approximately 22% of 
human proteins. Computationally derived homology models expand coverage (of 
at least part of the protein) to 77%, but there are thousands of human proteins for 
which we do not have reliable structural information. The linear protein sequence 
is available for all proteins, but does not represent the functional context of the 
protein. Thus, we hypothesized that significant spatial patterns within the three-
dimensional protein structure may not be identifiable from protein sequence alone. 
We repeated our analysis using the protein sequence of each experimentally 
derived protein structure to compute the linear K statistic and measured the overall 



 

 
37 

correlation and predictive performance compared to structure-based K analyses. 
There is little overlap in the proteins identified as significantly constrained by each 
analysis. Sequence-based analyses of missense variation identified only 37% of 
the significant spatial patterns identified in protein structure, suggesting that many 
significant spatial patterns in protein structure are introduced by protein folding. 
Conversely, the sequence analysis, relative to the structural analysis, had a 
precision of 0.58, which indicates that significant spatial patterns of variants in 
protein sequence are often disrupted in the folded protein structure. Overall, the 
statistics for sequence and structure are correlated (Spearman’s rho=0.37 
p=9.6x10-101; Figure 15), but proteins without significant constraint in either 
sequence or structure drive this pattern. These results demonstrate that sequence-
based analyses do not accurately predict significant spatial constraint on missense 
variation in protein structure. 
 



 

 
38 

 

Figure 15: Protein sequence is a poor predictor of spatial patterns in protein structure. The Ripley’s K Z-
score for significant spatial constraint on each protein in the PDB set computed over its 3D structure is 
contrasted with the K Z-score computed using its 1D sequence. The distribution over all structures is shown as 
a density plot, with black indicating higher density. Large circles indicate structures with spatial distributions 
significantly different from random; circles are colored blue if significant in the structural analysis, yellow if 
significant in the sequence analysis, and green if significant in both analyses. The sequence- and structure-
derived Z-scores are (Spearman’s rho=0.37 p=9.6x10-101), but sequence analysis identified very few proteins 
with significant spatial distributions in protein structure. 

3.4 Conclusion 

By projecting hundreds of thousands of somatic mutations observed in human 
tumors into three-dimensional protein structures, we comprehensively quantified 
patterns of spatial constraint on human somatic mutations within their functional 
and structural context. In contrast to the strong and consistent clustering of 
germline pathogenic missense variation observed in our previous work, significant 
clustering of recurrent somatic mutations was identified in relatively few proteins. 
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The stronger clustering of germline disease-causing variation compared to 
recurrent somatic variants may reflect differences in spatial constraint and 
phenotypic effects of variation outside of the germline107. There are likely 
differences in variant tolerance between germline and somatic contexts; germline 
variants are present in all tissues and are subject to many powerful constraints 
throughout development. In contrast, somatic variants influence only a subset of 
tissues and developmental time points, and thus may be tolerated in contexts that 
would be lethal in the germline. Alternatively, germline and somatic differences 
may be attributable to relaxed constraint within the tumor context, which is already 
highly dysregulated. Somatic datasets also likely contain many unconstrained, 
neutral passenger mutations, which may further explain the spatial randomness of 
somatic mutations across most protein structures. 
 Several studies have examined the spatial clustering of somatic mutations 
within protein structures.  The number of proteins exhibiting somatic mutation 
clustering varies greatly between studies: Kamburov et al. identified only 17 
proteins with significant somatic clustering while Meyer et al. identified 75 
proteins with high-scoring somatic clusters. Our analysis identified 27 proteins 
with significantly clustered recurrent somatic mutations, of which 24 had been 
previously identified. The variation between methods is attributable to differences 
in many aspects of the studies, including clustering algorithms, mutation cluster 
definitions, limits on cluster size, and the genetic and structural datasets 
considered. Prior approaches have also focused on the identification of clusters of 
somatic variants and were parameterized using known examples in the cancer 
literature, which may not be applicable in a germline context and cannot capture 
spatial dispersion. Key advances of our approach to characterizing spatial 
distributions are that it identifies both significant clustering and dispersion (at any 
distance) compared to a random distribution and makes no domain-specific 
assumptions. As a result, our method captures additional patterns of spatial 
constraint of genetic variation over all proteins. This may consequently reduce its 
power to identify some somatic mutation clusters detected by cancer-targeted 
approaches, in particular those that detect clusters of one or two highly recurrent 
mutations. However, we note that our method identifies a similar number of 
proteins as Kamburov et al., who similarly aimed to identify proteins with 
significant overall clustering of somatic mutations. This may suggest that the large 
number of proteins identified by other methods is largely attributable to 
disagreement as to what constitutes somatic mutation clustering, rather than better 
power to detect clusters that we failed to identify. 
 The selection of mutation datasets also influences the power of different 
methods to detect spatial patterns. COSMIC is a submission-based database of 
somatic mutations, and maximizes the number of available variants for analysis. 
However, the use of a submission-based system introduces the potential for 
reporting bias into the representation of proteins and mutations. In contrast, the 
Cancer Genome Atlas (TCGA) provides consistent, whole-exome sequencing data 
from many cancer studies and tumor types, but has much smaller sample size; data 
from 18 TCGA studies did not include enough recurrent mutations to satisfy our 
inclusion criteria. COSMIC identified significant clustering in far more proteins 
than TCGA, and we observed no significant difference in the overall distribution 
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of COSMIC and TCGA results, suggesting that bias in the COSMIC dataset 
improved our power, but did not critically affect our general findings. 
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Chapter 4 

Identifying the Clinical Impact of Loss-
of-Function Intolerant Genes using 

PheWAS 

4.1 Introduction 

We have thus far focused our analyses of selective constraint on refining disease-
associations within the context of protein structure. However, we can likewise use 
selective constraint to guide the discovery of novel phenotypic associations. Large-
scale efforts to whole-exome sequence tens of thousands of individuals has 
provided a wealth of information about where genetic variation is and is not 
tolerated throughout the human genome7. This information led to the identification 
of over three thousand genes with evidence of loss-of-function (LoF) intolerance 
(LoFi). The high degree of constraint on variation within these genes suggests 
critical importance to human health, yet most are not associated with any human 
disease. Using constraint as a guide, we explore the phenotypic impact of protein-
coding variation in LoFi genes to elucidate their function and clinical relevance.  
 Using phenotypic information derived from the Vanderbilt EMR and dense 
exome genotyping from Vanderbilt’s BioVU biobank, we performed a targeted 
gene-level phenome-wide association study (PheWAS) to characterize the clinical 
impact of genetic variation within LoF-intolerant (LoFi) genes. By definition, we 
do not expect to find many (if any) LoF variants within most of these genes. 
However, we expect that within a gene, single-nucleotide variants (SNVs) and LoF 
variants are associated with similar phenotypes 31. Because we’re interested in 
characterizing entire genes, we use gene-level sequence-kernel association test 
(SKAT-O) that aggregate information across all SNVs within each gene for 
association with each phenotype. Using this approach, we interrogate LoFi genes 
for association with clinical phenotypes and contrast the clinical and mammalian 
phenotypes associated with loss-of-function tolerant and intolerant genes. 

4.2 Methods 

Dataset curation and quality control 
The dataset used in the analyses described were obtained from Vanderbilt 
University Medical Center’s BioVU, which is supported by institutional funding 
and by the CTSA grant ULTR000445 from NCATS/NIH. Genome-wide 
genotyping was funded by NIH grants RC2GM092618 from NIGMS/OD and 
U01HG004603 from NHGRI/NIGMS. Consent for participation in the BioVU 
resource during the ascertainment period for data included in this study was opt-
out. We identified 26,577 samples with dense exome genotyping on the Illumina 
HumanExome BeadChip v1.0. These samples were ascertained from six partially 
overlapping patient cohorts: pediatrics, elderly, cancer, rare phenotypes, 
longitudinal, and samples included in previous GWAS. Presence or absence within 
each of these cohorts was included as covariates in all association tests. We 
removed all samples with genotyping efficiency less than 95%, followed by the 
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removal of all remaining variants with genotyping efficiency less than 95%. We 
next identified and removed duplicate variants. We then identified and removed 
any samples with estimated proportion of identify by descent greater than 0.2 and 
all samples with gender inconsistencies. 
 To reduce confounding by continental ancestry, we filtered the dataset to 
samples of predominantly European ancestry. We first merged the BioVU dataset 
with samples from the 1000 Genomes21 and performed principal components 
analysis (PCA) using ancestry-informative markers available on the Illumina 
HumanExome BeadChip. Using model based clustering—trained on 1000 
Genomes continental ancestry—we assigned continental ancestry to each BioVU 
sample108 and retained only those samples classified as having European ancestry. 
We then performed a second iteration of PCA using only the BioVU samples of 
European ancestry with all 1000 Genomes samples, and selected the top five 
principal components for use as covariates in all association tests.  
 To identify variants in the protein-coding regions of genes, we processed the 
BioVU European-ancestry dataset with the Ensembl Variant Effect Predictor67 
(VEP) and reduced the dataset to missense, synonymous, and protein-truncating 
variants. The gene annotation provided by VEP was used to group variants for all 
association tests. LoF-intolerant genes with fewer than two protein-coding variants 
were excluded from analysis. In summary, we tested 173,385 protein-coding 
variants in 2,457 genes for association with 1,480 EMR-derived phenotypes in 
21,388 clinical samples of predominantly European ancestry; not all samples were 
included in all association tests (phenotype-specific exclusions, gender-specificity, 
etc). 

Gene-level rare variant PheWAS for EMR-derived phenotypes 
Gene-level, rare-variant (maximum MAF < 0.05) association tests were performed 
using the optimized sequence-kernel association test32,33 (SKAT-O). We required a 
minimum of 20 cases for a phenotype to be included in the analysis; this criteria 
was met by 1,480 of 1,816 phenotypes. BioVU is an EMR-derived clinical cohort, 
and thus most association tests for any particular phenotype will have a large 
imbalance between cases and controls; additionally, all variants included in the 
analysis are low frequency. To account for these aspects of the dataset, we employ 
the (default) SKAT-O hybrid method for calculating p-values , which selects a p-
value correction method (no adjustment, efficient resampling (ER), adaptive ER, 
moment matching adjustment, or quantile adjusted moment matching) on the basis 
of minor allele count, the number of individuals with the minor allele, and the 
degree of case-control imbalance 109. For each association test, we first construct a 
null model containing age, sex, ascertainment cohort, and the first five principal 
components. We then run SKAT-O on the binary PheWAS code for each EMR-
derived phenotype. Finally, we applied a false discovery rate (FDR) threshold of 
1% to account for multiple testing. 

Validating statistically significant results with mouse knockout phenotypes 
To determine if biological support was available for significant associations with 
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ICD9-derived phenotypes, we merged our results with data from the Mouse 
Genome Informatics110 (MGI) Human-Mouse Disease Connection (HMDC), 
which links mouse model phenotypes to homologous human genes Significant 
associations were considered biologically supported if the PheWAS category 
associated with the ICD9-derived phenotype matched semantically with any of the 
top-level mammalian phenotype categories assigned to the associated gene. This is 
not intended to replace biological validation, nor is it intended to classify 
unsupported associations as spurious. Rather, data from the HMDC is intended to 
assess the proportion of significant clinical associations with existing evidence for 
biological support and the highest likelihood of biological validation. 

Clinical phenotype enrichment amongst LoFi genes 
Each ICD9-derived phenotype is assigned to a PheWAS category; for example, 
rheumatoid arthritis is assigned to the musculoskeletal category. To determine if 
certain PheWAS categories were enriched for significant associations with LoFi 
genes, we constructed a 2x2 contingency table of all association tests by significant 
(q<0.1)/not significant (q>=0.1) and annotated/annotated with each PheWAS 
category. Odds ratios represent the enrichment or depletion of statistically 
significant associations within each PheWAS category, exclusively among LoFi 
genes. To determine if these enrichments were specific to LoFi genes, we repeated 
the analysis using all other genes.  To determine if significantly-associated 
phenotype categories were significantly enriched for LoFi genes relative to all 
other genes, we constructed a 2x2 contingency table of significant associations by 
loss-of-function tolerance/intolerance and annotated/not annotated with each 
PheWAS category; odds ratios represent the enrichment or depletion for 
significantly associated LoFi genes within each PheWAS category. 

4.3 Results 

Dataset quality control and continental ancestry determination 
Using samples from the 1000 Genomes Project21, we performed principal 
components and model-based clustering to determine the predominant continental 
ancestry of each BioVU sample (Figure 16A-C). We then filtered the dataset to the 
21,388 samples classified with predominantly European ancestry, and repeated the 
analysis to generate principal components to be used as covariates during 
association testing (Figure 16D). After quality control and ancestry filtering, the 
dataset included 21,388 samples with genotyping data for 173,385 protein-coding 
variants. In total 2,457 LoFi genes and 11,916 non-LoFi genes included at least 
two genotyped rare variants. 
 



 

 
44 

 
Figure 16: BioVU genetic ancestry assignment and principal components analysis. Principal components 
analysis (PCA) was performed using all BioVU samples passing quality control along with samples from the 
1000 Genomes Project. (A) The first three principal components are plotted for ancestry-labeled 1000 Genomes 
samples and (B,C) ancestry-assigned BioVU samples. (D) A second iteration of PCA was performed using only 
the BioVU samples with predominantly European ancestry along with samples from the 1000 Genomes; the top 
five principal components were included as covariates in all association analyses. 

Replication rate of known gene-phenotype associations 
To assess the ability of our approach to identify gene-level associations with 
clinical phenotypes, we first determined the proportion of all genes with known 
gene-phenotype associations for which we identified significant associations in our 
comprehensive analysis (not limited to LoFi genes). In total, we identified 
significant associations for 164 (of 3,073, ~5%) genes with known gene-phenotype 
associations from OMIM. These included many gold standard examples of allelic 
heterogeneity, including the association of CFTR with cystic fibrosis (CF, 
Ncases=116, p=1.70x10-10, SKAT-O) and of PAH with phenylketonuria (PKU, 
Ncases=23, p=4.43x10-26, SKAT-O). However, other well-characterized phenotypes 
were notably absent; for example, we did not detect a significant association 
between HGD and alkaptonuria (AKU, Ncases=43, p=0.52, SKAT-O). This may 
reflect a lack of specificity in the ICD9 code for AKU (270.2), which captures all 
disturbances of aromatic amino-acid metabolism, including clinically distinct 
phenotypes like albinism and Waardenburg syndrome. Alternatively, it may 
indicate an overuse of more general ICD9 codes, as evidenced by the 260 samples 
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billed with ICD9 270, which encompasses all disorders of amino acid transport and 
metabolism. These findings suggest that ICD9-derived are capable of replicating 
known phenotypic associations, but may lack sensitivity for phenotypes that are 
not well captured by billing codes. 
 Amongst LoFi genes with known gene-phenotype associations in OMIM, 
39 (of 625, ~6%) were significantly associated with clinical phenotypes in our 
analysis. This was only slightly higher than the proportion of genes without 
previous association to disease significantly associated with clinical phenotypes 
(81 of 1,832, ~4%). In summary, the 81 LoFi genes with significant associations to 
clinical phenotypes likely represent a small proportion of the phenotypic impact of 
LoFi genes, but nonetheless provide novel insights about their phenotypic effects. 

Rare variant PheWAS of LoFi genes identifies significant phenotypic associations 
We performed a rare-variant PheWAS using SKAT-O and 1,480 ICD9-derived 
clinical phenotypes for 2,457 genes predicted to be loss-of-function intolerant 
(LoFi)7. We identified 129 gene-phenotype associations significant at a false 
discovery rate (FDR) of 1% (Table 2, Figure 17A) and replicated several known, 
unambiguous gene-phenotype associations. For example, rare variants in 
SERPINA1 [MIM 107400], which encodes the protein Alpha-1 antitrypsin, were 
significantly associated with Alpha-1 antitrypsin deficiency (p=5.30x10-272, 
A1ATD [MIM 613490]). The most significant associations were four genes 
associated with rheumatoid arthritis (RA [MIM 180300]): PTPRB (p=3.23x10-37, 
DMXL1 (p=1.45x10-35), KRT6A (p=8.54x10-34), and PCLO (p=2.32x10-30), none 
of which have been previously associated with RA. To test for enrichment for 
specific phenotypes amongst LoFi genes, we performed association tests for all 
non-LoFi genes meeting the inclusion criteria as well (Figure 17B). 
 

Gene Name PheWAS Category PheWAS Description Cases P-value 

PTPRB musculoskeletal Rheumatoid arthritis 836 3.23E-37 

DMXL1 musculoskeletal Rheumatoid arthritis 836 1.48E-35 

KRT6A musculoskeletal Rheumatoid arthritis 836 8.54E-34 

PCLO musculoskeletal Rheumatoid arthritis 836 2.32E-30 

PTPRB musculoskeletal Rheumatoid arthritis and other inflammatory polyarthropathies 1066 1.24E-28 

DMXL1 musculoskeletal Rheumatoid arthritis and other inflammatory polyarthropathies 1066 4.03E-27 

KRT6A musculoskeletal Rheumatoid arthritis and other inflammatory polyarthropathies 1066 5.02E-27 

PCLO musculoskeletal Rheumatoid arthritis and other inflammatory polyarthropathies 1066 1.67E-22 

NUMA1 musculoskeletal Cyst of bone 22 9.74E-11 

CLUH musculoskeletal Other and unspecified disc disorder 36 6.47E-09 

KIAA1468 musculoskeletal Contracture of tendon (sheath) 69 1.22E-08 

PIKFYVE musculoskeletal Contracture of tendon (sheath) 69 2.88E-08 

KMT2A musculoskeletal Arthropathy associated with other disorders classified elsewhere 85 6.23E-08 

CHAMP1 musculoskeletal Pathologic fracture of femur 58 1.34E-07 

GIGYF2 musculoskeletal Other and unspecified disorders of back 154 2.01E-07 

SNAP91 musculoskeletal Flat foot 58 2.45E-07 

CRAMP1L musculoskeletal Kyphosis (acquired) 77 3.08E-07 
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BCR musculoskeletal Juvenile osteochondrosis 20 3.38E-07 

SLC4A4 endocrine/metabolic Alpha-1-antitrypsin deficiency 21 6.35E-22 

PRR14L endocrine/metabolic Alpha-1-antitrypsin deficiency 21 5.42E-16 

DST endocrine/metabolic Lipoprotein disorders 24 2.01E-11 

CD72 endocrine/metabolic Pituitary hyperfunction 47 3.84E-10 

SSH2 endocrine/metabolic Cushing's syndrome 40 8.45E-10 

SUPT16H endocrine/metabolic Disorders of urea cycle metabolism 25 6.47E-09 

ARHGAP31 endocrine/metabolic Morbid obesity 822 1.03E-08 

IGF2R endocrine/metabolic Other immunological findings 221 1.23E-08 

USP47 endocrine/metabolic Autoimmune disease NEC 26 3.09E-08 

PHC3 endocrine/metabolic Nonspecific abnormal results of other endocrine function study 50 4.93E-08 

CDC5L endocrine/metabolic Carcinoid syndrome 32 6.45E-08 

DST endocrine/metabolic Other disorders of lipoid metabolism 37 6.33E-08 

CAMK1D endocrine/metabolic Deficiency of humoral immunity 57 1.38E-07 

NRP1 endocrine/metabolic Nonspecific abnormal results of other endocrine function study 50 2.53E-07 

KANSL3 endocrine/metabolic Abnormal results of function study of thyroid 70 3.41E-07 

NUP98 mental disorders Acute reaction to stress 41 1.25E-13 

BMP7 mental disorders Acute reaction to stress 41 1.81E-09 

CELSR3 mental disorders Mental disorders durring/after pregnancy 31 2.12E-08 

PCNX mental disorders Decreased libido 26 2.40E-08 

LMNB1 mental disorders Symptoms involving head and neck 25 2.91E-08 

RAP1GAP mental disorders Symptoms involving head and neck 25 4.78E-08 

MAML2 mental disorders Paranoid disorders 28 5.51E-08 

SHANK2 mental disorders Vascular dementia 81 5.67E-08 

MON2 mental disorders Mental disorders durring/after pregnancy 31 9.09E-08 

FST mental disorders Aphasia/speech disturbance 433 1.14E-07 

MAP7 mental disorders Paranoid disorders 28 2.66E-07 

HTT infectious diseases Sexually transmitted infections (not HIV or hepatitis) 24 5.05E-13 

FMN2 infectious diseases H. pylori 32 7.76E-11 
RP11-
1055B8.7 infectious diseases Infestation (lice, mites) 31 3.08E-10 

DNMT3B infectious diseases H. pylori 32 6.44E-09 

PAX3 infectious diseases Sexually transmitted infections (not HIV or hepatitis) 24 6.42E-08 

UST infectious diseases Viral hepatitis B 75 1.06E-07 

PRDM1 infectious diseases Sexually transmitted infections (not HIV or hepatitis) 24 1.53E-07 

ACIN1 circulatory system Aneurysm and dissection of heart 28 5.81E-12 

ERBB2 circulatory system Polyarteritis nodosa 27 6.01E-10 

PHLPP1 circulatory system Mobitz II AV block 20 6.81E-10 

PRR12 
pregnancy 
complications Infections of genitourinary tract during pregnancy 24 7.77E-12 

GPHN 
pregnancy 
complications Excessive vomiting in pregnancy 26 7.72E-11 

PML 
pregnancy 
complications Missed abortion/Hydatidiform mole 39 1.14E-08 

RELN 
pregnancy 
complications Miscarriage; stillbirth 91 4.40E-08 

LPHN3 
pregnancy 
complications Early onset of delivery 51 1.01E-07 
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NEURL4 
pregnancy 
complications Other complications of pregnancy NEC 51 1.58E-07 

PLEKHO1 
pregnancy 
complications Interstitial emphysema and related conditions of newborn 20 2.93E-07 

SCUBE1 neoplasms Benign neoplasm of other female genital organs 24 1.60E-11 

SEMA6A neoplasms Benign neoplasm of other female genital organs 24 4.18E-08 

CBX2 neoplasms Cancer of the gums 37 8.60E-08 

PRKCQ neoplasms Radiotherapy 453 1.38E-07 

PTPRT neoplasms Bone marrow or stem cell transplant 21 2.58E-07 

PRDM2 neoplasms Benign neoplasm of eye, uveal 55 3.14E-07 

AKAP8 neoplasms Cancer of major salivary glands 71 3.25E-07 

PIKFYVE congenital anomalies Other congenital anomalies of lower limb, including pelvic girdle 56 5.44E-11 

PIKFYVE congenital anomalies Congenital hip dysplasia and deformity 50 1.99E-10 

NUP85 congenital anomalies Obstructive genitourinary defect 65 1.42E-08 

AHDC1 congenital anomalies Congenital anomalies of female genital organs 23 3.18E-07 

USP19 digestive Anomalies of tooth position/malocclusion 88 6.13E-11 

USP19 digestive Dentofacial anomalies, including malocclusion 97 4.94E-10 

TRAPPC8 digestive Hepatomegaly 68 5.08E-10 

HTR1A digestive Anomalies of jaw size/symmetry 26 2.86E-08 

ZC3H13 digestive Leukoplakia of oral mucosa 42 6.74E-08 

ARHGAP31 digestive Bariatric surgery 163 2.50E-07 

ZNF609 injuries & poisonings Complication of amputation stump 40 7.54E-11 

KIF1B injuries & poisonings Muscle/tendon sprain 37 5.03E-10 

BCAS3 injuries & poisonings Subarachnoid hemorrhage (injury) 61 2.83E-09 

PRR12 injuries & poisonings Poisoning by water, mineral, and uric acid metabolism drugs 57 2.47E-08 

PLXNC1 injuries & poisonings Spinal cord injury without evidence of spinal bone injury 22 2.66E-08 

RAVER1 injuries & poisonings Subarachnoid hemorrhage (injury) 61 5.99E-08 

MIER2 injuries & poisonings Postoperative shock 39 1.12E-07 

DGKZ injuries & poisonings 
Adverse effects of sedatives or other central nervous system 
depressants and anesthetics 59 1.29E-07 

ZNF407 injuries & poisonings Open wound of foot except toe(s) alone 41 3.16E-07 

NOL6 symptoms Nonallopathic lesions NEC 27 8.72E-11 

SCYL2 symptoms Abnormal posture 118 2.18E-10 

PCNX symptoms Symptoms of the muscles 120 1.64E-08 

HOXC6 symptoms Cramp of limb 62 2.93E-08 

PLK1 symptoms Rhabdomyolysis 45 3.41E-08 

CBX2 symptoms Elevated carcinoembryonic antigen [CEA] 93 3.15E-07 

TNFAIP3 neurological Parasomnia 21 2.16E-10 

YTHDC2 neurological Cerebral cysts 36 2.37E-09 

C18orf25 neurological Trigeminal nerve disorders [CN5] 130 3.80E-08 

FAM208B neurological Nerve root lesions 58 3.54E-07 

FCHO1 respiratory Abnormal results of function study of pulmonary system 31 2.79E-10 

QSER1 respiratory Acute tonsillitis 20 3.35E-10 

PRR12 respiratory Tracheostomy complications 49 6.59E-09 

LCP2 respiratory Chronic obstructive asthma with exacerbation 29 3.37E-08 
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FRYL respiratory Disorders of diaphragm 64 6.10E-08 

PCLO respiratory Respiratory complications 47 2.79E-07 

WDR1 sense organs Corneal opacity 75 3.00E-10 

KMT2A sense organs Mastoiditis & related conditions 29 7.27E-10 

KIAA1429 sense organs Pain, swelling or discharge of eye 68 1.71E-09 

SPTBN2 sense organs Tympanosclerosis and middle ear disease related to otitis media 26 1.73E-09 

CLASP2 sense organs Toxic maculopathy of retina 30 2.51E-08 

COL1A1 sense organs Aphakia and other disorders of lens 54 9.89E-08 

CACNA1D sense organs Corneal edema 47 1.90E-07 

CPEB1 sense organs Otorrhea 72 3.42E-07 

TCF20 dermatologic Other specified erythematous conditions 76 9.76E-10 

MYRF dermatologic Sarcoidosis 206 1.10E-07 

CUX1 genitourinary Other inflammatory disorders of male genital organs 28 3.44E-09 

CSMD3 genitourinary Acute cystitis 45 3.87E-09 

HIVEP1 genitourinary Acute glomerulonephritis, NOS 28 1.70E-08 

GCN1L1 genitourinary Renal colic 21 2.76E-08 

SON genitourinary Other inflammatory disorders of male genital organs 28 3.22E-08 

ADCY1 genitourinary Irregular menstrual bleeding 27 4.60E-08 

DLGAP1 genitourinary Renal sclerosis, NOS 72 1.02E-07 

MAML2 genitourinary Urethritis and urethral syndrome 22 1.12E-07 

CAPZA1 genitourinary Stricture/obstruction of ureter 205 1.65E-07 

CBFA2T2 genitourinary Bladder neck obstruction 75 2.44E-07 

CASKIN1 genitourinary Non-proliferative glomerulonephritis 69 3.20E-07 

BRWD1 hematopoietic Hemolytic-uremic syndrome 21 1.23E-08 

PHLPP1 hematopoietic Disorders of iron metabolism 50 3.87E-08 

PAN2 hematopoietic Polycythemia vera, secondary 31 1.09E-07 

ATRNL1 hematopoietic Other hereditary hemolytic anemias 40 1.36E-07 

SEC24C hematopoietic Defibrination syndrome 38 2.59E-07 

Table 2: Significant PheWAS associations with LoF-intolerant genes. A false discovery rate of 1% was 
enforced to account for multiple testing. A total of 129 significant gene-phenotype associations were identified. 
PheWAS categories are sorted by the most significant association in that category; gene-phenotype associations 
are sorted within each category by p-value. 
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Figure 17: QQ-plot for (a) LoFi and (b) non-LoFi gene-phenotype associations. We observed no p-value 
inflation, and identified (A) 129 significant associations with LoFi genes and (B) 674 significant associations 
with non-LoFi genes at a false discovery rate of 1%. The extreme LoFi outlier is the association of rare variants 
in alpha-1 antitrypsin with alpha-1 antitrypsin deficiency. 

Enrichment for clinical and mammalian phenotypes amongst LoFi genes 
To determine whether LoFi genes were associated with a clinically distinct 
collection of phenotypes, we measured whether certain phenotype categories were 
enriched for significant associations with LoFi genes, relative to non-significant 
associations, as described in the methods for this chapter. We identified significant 
depletion for circulatory system phenotypes, and significant enrichment for 
pregnancy complications and congenital anomalies (Figure 18A). However, we 
observed these same enrichments amongst non-LoFi genes (Figure 18C), and we 
observed no significant enrichment or depletion for phenotypes between LoFi and 
non-LoFi genes with significant associations (p=0.61 to 0.79, Fisher Exact). These 
shared enrichments may therefore represent differences in the heritability of 
different phenotype categories or biases in the ascertainment of heritable diseases 
within a clinical setting. Significant depletion may also identify phenotype 
categories in which genetic disruption causes severe dysregulation more often 
resulting embryonic lethality, rather than a disease phenotype. 
 We next evaluated whether mammalian phenotypes known for the 
significantly associated genes could provide additional information about disease 
etiology. We tested for enrichment or depletion for mammalian phenotypes 
derived from mouse model systems for all LoFi and non-LoFi genes significantly 
associated with any clinical phenotype. Despite the consistency in phenotypic 
associations observed, LoFi and non-LoFi genes displayed distinct patterns of 
mammalian phenotype enrichment (Figures 18B and 18D). Notably, significantly 
associated LoFi and non-LoFi genes were significantly enriched and depleted for 
phenotypes relating to embryonic development in mice, respectively. Despite their 
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association with similar phenotype categories, this may indicate that LoFi genes 
are active earlier in development, increasing the severity of any deleterious effects. 
Alternatively, these differences may suggest that although there is no significant 
difference between the clinical phenotypes associated with LoFi and non-LoFi 
genes, the biological mechanisms underlying their contribution to disease are 
different. 
 

 
Figure 18: Significant associations with LoFi genes are not evenly distributed among phenotype 
categories. (A) LoFi genes are significantly depleted for associations with circulatory system and respiratory 
phenotypes, and significantly enriched for associations with congenital anomalies, pregnancy complications, 
injuries and poisonings, and sense organ phenotypes. (B) Non-LoFi genes that significantly associated with any 
clinical phenotype are significantly depleted for mammalian phenotypes relating to homeostasis and 
metabolism, the immune system, and the hematopoietic system, and significantly enriched embryonic, muscle, 
and craniofacial phenotypes. 

Biological validation using existing mouse model phenotypes 
Approximately 72% of LoFi genes are not currently associated with a human 
disease phenotype7. The discrepancy between the apparent functional importance 
of LoFi genes and their lack of known disease associations makes them an 
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interesting target for PheWAS. However, this property also limits the amount of 
phenotypic and functional support for any significant associations, and could 
reduce the likelihood of these associations being carried forward for future 
research. To estimate the proportion of statistically significant gene-phenotype 
associations with existing support from model systems, we incorporated data from 
the Mouse Genome Informatics (MGI) Human Gene Disease Connection (HGDC). 
Of the 129 significant LoFi gene-phenotype associations, 26 (20%) were consistent 
with observed mammalian phenotype categories (Table 3), twice the proportion of 
significant non-LoFi gene-phenotype associations with MGI support (69 of 674, 
~10%). For example, PRDM2 is significantly associated with benign neoplasms of 
the eye (p=3.14x10-07), and is reported by MGI to increase the incidence of tumors 
in mice. Furthermore, PRDM2 is included in the COSMIC Cancer Gene 
Consensus as a tumor suppressor gene, and contains somatic mutations found in 
human cancers18. However, we found no previous mention of germline variation in 
PRDM2 playing a role in neoplasms. While specific phenotypes observed in mice 
rarely match the specific clinical phenotypes associated with each gene, this data 
supports the biological plausibility of significant associations. 
 

Gene p-value PheWAS Category PheWAS Description MGI Phenotype Category 

SLC4A4 6.35E-22 endocrine/metabolic Alpha-1-antitrypsin deficiency homeostasis/metabolism 

DST 2.01E-11 endocrine/metabolic Lipoprotein disorders homeostasis/metabolism 

CD72 3.84E-10 endocrine/metabolic Pituitary hyperfunction homeostasis/metabolism 

IGF2R 1.23E-08 endocrine/metabolic Other immunological findings endocrine/exocrine gland 

USP47 3.09E-08 endocrine/metabolic Autoimmune disease NEC homeostasis/metabolism 

HTT 5.05E-13 infectious diseases 
Sexually transmitted infections (not HIV or 
hepatitis) immune system 

DNMT3B 6.44E-09 infectious diseases H. pylori immune system 

PAX3 6.42E-08 infectious diseases 
Sexually transmitted infections (not HIV or 
hepatitis) immune system 

PRDM1 1.53E-07 infectious diseases 
Sexually transmitted infections (not HIV or 
hepatitis) immune system 

PIKFYVE 5.44E-11 congenital anomalies 
Other congenital anomalies of lower limb, 
including pelvic girdle growth/size/body region 

NUP85 1.42E-08 congenital anomalies Obstructive genitourinary defect mortality/aging 

WDR1 3.00E-10 sense organs Corneal opacity hearing/vestibular/ear 

KMT2A 7.27E-10 sense organs Mastoiditis & related conditions hearing/vestibular/ear 

COL1A1 9.89E-08 sense organs Aphakia and other disorders of lens hearing/vestibular/ear 

CACNA1D 1.90E-07 sense organs Corneal edema hearing/vestibular/ear 

ERBB2 6.01E-10 circulatory system Polyarteritis nodosa cardiovascular system 

BMP7 1.81E-09 mental disorders Acute reaction to stress behavior/neurological 

CELSR3 2.12E-08 mental disorders Mental disorders durring/after pregnancy behavior/neurological 

SHANK2 5.67E-08 mental disorders Vascular dementia behavior/neurological 

CUX1 3.44E-09 Genitourinary 
Other inflammatory disorders of male 
genital organs renal/urinary system 

CASKIN1 3.20E-07 Genitourinary Non-proliferative glomerulonephritis renal/urinary system 

LCP2 3.37E-08 Respiratory 
Chronic obstructive asthma with 
exacerbation respiratory system 

RELN 4.40E-08 pregnancy complications Miscarriage; stillbirth reproductive system 
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PRKCQ 1.38E-07 Neoplasms Radiotherapy neoplasm 

PTPRT 2.58E-07 Neoplasms Bone marrow or stem cell transplant neoplasm 

PRDM2 3.14E-07 Neoplasms Benign neoplasm of eye, uveal neoplasm 

Table 3: Significant LoFi gene-phenotype associations with mouse model support. Of the 129 LoFi genes 
significantly associated with BioVU phenotypes, 26 match a mammalian phenotype category reported by 
Mouse Genome Informatics. Each PheWAS category was assigned to the closest semantically-matching MGI 
phenotype category.  

4.4 Conclusion 

The extreme depletion of protein-truncating variants within a gene is evidence of 
selective constraint against gene loss-of-function and suggests that the loss of gene 
function leads to embryonic lethality. Despite clear evidence for their functional 
importance, disease associations are known for less than a third of genes predicted 
to be loss-of-function intolerant. This study is the first comprehensive, gene-level 
PheWAS characterizing the phenotypic impact of missense variation within loss-
of-function intolerant genes. We present 129 novel associations between LoFi 
genes and clinical phenotypes, 26 of which (20%) are concordant with existing 
mouse phenotypes. We also demonstrate that the phenotypic spectrum of LoFi 
genes is not statistically distinct from other genes, suggesting that the importance 
of the gene and/or severity of the phenotype, rather than the class of phenotype, are 
what drive the selective constraint against LoF variants. 
 We identified no significant enrichment or depletion for particular clinical 
phenotypes among significantly associated LoFi genes, relative to non-LoFi genes. 
We interpret this to mean that these genes are not responsible for a clinically 
distinct subset of phenotype, but rather that these genes are critical for the function 
of many physiological systems. The shared enrichments and depletions we observe 
likely reflect the statistical power available for different phenotypes within our 
clinical cohort. Alternatively, these statistics may be suggestive of both the genetic 
heritability and severity of perturbations to different physiological systems. For 
example, the significant depletion for circulatory system phenotypes may indicate 
low genetic heritability, or it may indicate that variants disrupting circulatory 
system phenotypes are significantly more likely to result in embryonic lethality, 
and are thus less likely to be observed in our clinical cohort. This interpretation is 
supported by research in mouse model systems, where the mutations most likely to 
disrupt early development and result in early lethality are those causing 
cardiovascular defects. Within this logical framework, it may be possible to infer 
genetic association from significant phenotypic depletion; despite a significant 
depletion for significant associations, cardiovascular phenotypes may thus be the 
most common cause of embryonic lethality in LoFi gene knockouts. 
 We identified significant associations with human phenotypes for 129 LoFi 
genes, 89 of which had no previous association with human disease; existing 
mammalian phenotypes from mouse model systems support many of these 
associations. The selective constraint against protein loss-of-function suggests an 
extreme relationship between these genes and their phenotypes. Combined with the 
mouse-model support, pharmaceutical interventions targeting these genes may 
identify novel therapies relating to the associated traits. For example, CELSR3 
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encodes CELR3, a G-coupled protein receptor (GPCR), and is significantly 
associated with mental disorders during or after pregnancy. CELR3 is also 
involved in dopaminergic and serotonergic neuron axon guidance during 
development94, and is annotated to interact with the pregnancy-specific beta-1-
glycoprotein (PSG) family of proteins88. It may be that the association of CELSR3 
with pregnancy-related mental disorders is related to interactions between CELR3 
and PSG proteins during pregnancy. Although additional functional 
characterization is clearly necessary, GPCRs are highly druggable targets, and 
inhibition of CELR3-PSB interactions during pregnancy may provide a novel 
treatment for pregnancy-related disorders like postpartum depression. 
 This study is limited by the use of an exome genotyping array, rather than 
whole-exome sequencing. We are thus limited to known variants, which are 
already at very low frequency within LoFi genes. This limitation is somewhat 
mitigated by the inclusion of other protein-coding variation, but the analysis would 
be best conducted in a large whole-exome sequencing dataset linked with 
electronic medical records111. Another limitation of the study is the use of samples 
exclusively of European ancestry. While this decision is intended to reduce 
confounding within the statistical analysis, it may also limit the generalizability of 
our results to individuals of non-European descent. 
 We conducted this study under an assumption of allelic heterogeneity, and 
chose to perform our gene-level association tests using SKAT-O. We note that 
genes with significant associations to any phenotype had approximately twice as 
many variants as all genes (median 14 and 7 variants per gene, respectively). Using 
single-marker association tests to follow-up significant gene-phenotype 
associations, we estimate that significant associations are typically driven by ~14% 
of variants in each gene, with a median of 2 nominally significant (p<0.05) single-
marker associations per significantly associated gene. It is possible that with 
whole-exome sequencing, the proportion of nominally significant single-marker 
associations contributing to significant gene-level associations would be increased. 
However, caution should be used when interpreting the current results within the 
framework of allelic heterogeneity. 
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Chapter 5 

Discussion 

In this dissertation, we explore ways in which constraint on rare protein-coding 
variation can be used to better understand the genetic basis for human disease. 
Specifically, we focus on two structure-based methods, one for variant 
pathogenicity prediction and another for the detection of constraints on the 
distribution of somatic mutations, and one gene-level method for phenotypic 
discovery through aggregate analysis of rare protein-coding variation in loss-of-
function intolerant genes.  
 Our first analysis explored the use of existing phenotypic associations, 
combined with protein structural information, to evaluate a method for variant 
pathogenicity prediction based on spatial proximity to known pathogenic variants. 
We focused our analysis on disease-causing variants in RTEL1, with a particular 
interest in predicting variants that increase risk for FIP. This analysis served as a 
demonstration of the practical application of spatial predictors for classifying 
variants of unknown significance. The methodology is dependent only on the 
availability of protein structural information (whether experimentally derived or 
computationally predicted) and the assumption that disease-causing variants are 
spatially clustered within the protein structure. Solved proteins structures are 
available for nearly a quarter of human proteins, and the inclusion of 
computationally predicted homology models can increase that coverage to over 
three quarters of human proteins. The tendency for cancer-associated somatic 
mutations to form spatial clusters in protein sequence and structure is well 
established26, and evidence for spatial clustering has likewise been observed for 
germline disease-causing variants23,101 and demonstrated in our previous work. 
Furthermore, our previous research demonstrated that spatial proximity to 
pathogenic variation was a useful predictor of variant pathogenicity in hundreds of 
proteins. Thus, the methodology proposed here will likely be broadly useful in the 
identification of disease regions of interest within protein structure and variant 
pathogenicity prediction. However, predictors relying exclusively on spatial 
statistics cannot discern between variants affecting the same amino acid position 
(which may have drastically different severities), and lack many other informative 
features that can be derived from protein structures. Therefore, spatial statistics 
will be most effective when integrated with other pathogenicity prediction methods 
that take this information into account. 
 Our results demonstrate that considering the 3D spatial landscape of 
missense variation in RTEL1 has the potential to improve pathogenicity prediction 
and identify functional regions of protein structure important to the development of 
disease. We implicate the ATP-binding cleft between helicase domains I and II as 
well as the DNA-binding pore along helicase domain II as functional regions of 
RTEL1 contributing to the development of FIP. The similar distributions of 
disease-associated variants and a significant correlation with ATPase activity in 
the homologous protein XPD support this finding and suggest that including 
additional variants from homologous proteins may improve predictive power and 
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discover shared biochemical etiology. More generally, we propose incorporating 
the spatial distributions of known pathogenic and neutral variation into 
pathogenicity prediction methods to complement existing predictive features, 
particularly for proteins in which pathogenic variants appear to form clusters 
within protein structure. Ultimately, the use of this information has the potential to 
enhance the utility of genetic data in elucidating the etiology of FIP and other 
heritable diseases. 
 The measure of pathogenic proximity we developed to classify missense 
variants of unknown significance in the protein structure of RTEL1 is built upon 
Euclidean distance and proximity comparisons. This predictor ignores a wealth of 
useful information about population genetics and mutagenic processes, like variant 
allele frequencies, inconsistent mutation rates across a gene, and differences in the 
number and severity of amino acid substitutions possible for any given single-
nucleotide polymorphism. To fully exploit the predictive potential of spatial 
information, we need to develop a robust algorithm with a solid foundation in 
selective constraint. Thoughtful approaches are currently in development for 
sequence-based analyses at both the whole-gene29,30 and sub-gene8,112 levels. We 
suggest a modular solution for measuring selective constraint within protein 
structure that incorporates structural information into a well-conceived, sequence-
based metric. This approach would focus our efforts on the integration of structural 
information, and facilitate iterative improvements to, or replacement of the 
underlying constraint metrics developed by other researchers. This approach would 
best allocate the expertise of those involved and produce a well-supported, highly 
maintainable measure of selective constraint in protein structure. 
 In our analysis of somatic mutations, we used a consistent statistical 
framework to identify significant clustering in solved and predicted protein 
structures. Structural analysis of these spatial clusters has the potential to uncover 
previously unknown disease etiology and suggest potential drug targets. More 
broadly, our results indicate that selective constraint within the tumor context 
influences the spatial distribution of somatic mutations in protein structure, and 
support the use of large reference datasets to highlight regions of tumorigenic 
importance. In contrast to our analysis of known disease-causing variation in the 
protein structure of RTEL1, this analysis demonstrates how the spatial distribution 
of unlabeled protein-coding variants in protein structure can itself be used to 
identify functional subsets of variants and potentially identify driver mutations. 
However, compared to our previous analysis of germline disease-causing variants, 
we find that somatic mutations are much less likely to be clustered in protein 
structure. This may be partially attributable to an abundance of passenger 
mutations disrupting the detection of driver mutation clusters, or may accurately 
detect relaxed constraint in the somatic or tumor context. Regardless of the cause, 
our results indicate that the spatial analysis of germline disease-causing variation 
will produce as many, and likely more insights about the genetic basis of inherited 
disease, relative to the study of somatic driver mutations in cancer. This conclusion 
further supports development of the structure-based measure of selective constraint 
described above. 
 Not all genes contain well-characterized variants with known associations to 
disease. Loss-of-function intolerant (LoFi) genes are under extreme selective 
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constraint, and are likely of critical functional importance to human health and 
viability. Despite evidence of their functional importance, the phenotypic 
relevance of these genes is largely unknown. We leveraged dense whole-exome 
genotyping of protein-coding variation in an EMR-linked biobank to quantify the 
phenome-wide impact of LoF-intolerant genes, capturing over one hundred 
significant associations with clinical phenotypes, many of which constitute the first 
association with human disease.  
 In future work, we plan to replicate these significant associations using 
whole-exome sequencing data linked with electronic medical records, which will 
greatly improve the coverage of low-frequency and loss-of-function variants, and 
enable the detection of de novo and ultra-rare variants. We propose to carry out the 
replication analysis using data from the Geisinger-Regeneron DiscovEHR 
cohort111, which is composed primarily (98%) of individuals of European ancestry, 
which are likely to match the genetic background of our study population; the 
DiscovEHR cohort also more than doubles our discovery sample size. We will first 
attempt to replicate our findings using only the genetic variants included in our 
discovery analysis, and then conduct a follow-up study in which all available 
whole-exome sequencing data is considered. However, there are still potential 
confounding factors inherent with replicating our results in another clinical cohort. 
Most notably, while our study populations are well-matched on genetic ancestry, 
they are ascertained from geographically distinct locations (Tennessee/Kentucky 
and Pennsylvania), which introduces an unknown number of environmental 
differences that may affect the replication of any associations contingent on 
environmental exposures. Additionally, because the clinical phenotypes used in 
our PheWAS are derived from insurance billing codes, different hospitals 
(especially those in different states) are likely to have different prescribing and 
billing practices. For example, if related billing codes are reimbursed differently in 
different states or by different insurance companies, two hospitals may assign 
different billing codes for the same disease to maximize reimbursement. Some of 
this variance in billing will be mitigated by the aggregation of related ICD9 codes 
into PheWAS codes, but it is important to recognize that the replication of a 
PheWAS association may not necessarily require an exact match with the original 
PheWAS code. For phenotypes exactly or approximately replicating in the 
DiscovEHR cohort, we can then pursue more sophisticated phenotyping 
algorithms that incorporate additional information (e.g. procedure codes, 
quantitative lab measurements, and clinical notes) from the EMR to more 
accurately identify cases and controls from the clinical cohort.  
 Ultimately, phenotypic associations with LoF-intolerant genes are expected 
to reveal genes critical to early development and may also assist in the 
identification of highly effective drug targets for therapeutic intervention. Our 
analysis takes the first steps in identifying gene-level associations with clinical 
phenotypes; they also differ from previous genome-wide associations with protein-
truncating variants (PTVs) in LoF-intolerant genes identified by Ganna et al. This 
unpublished study predominantly identified genome-wide associations with 
psychiatric phenotypes, while we identified gene-level associations no significant 
enrichment for psychiatric disorders. Ganna et al. also found that their phenotypic 
associations were specific to PTVs in LoF-intolerant genes, while we found that 
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our phenotype enrichments were not specific to LoF-intolerant genes, and reflected 
a similar pattern of phenotype enrichment and depletion as other genes. These 
differences may be attributable to sample ascertainment strategies; samples from 
Ganna et al. were ascertained specifically for psychiatric disorders, while our 
samples are derived from a clinical cohort with no phenotypic ascertainment 
strategy. However, the same ascertainment strategies used for the psychiatric 
cohorts were also used for other phenotypic cohorts that showed no significant 
associations. The disagreement may instead be attributable to differences in whole-
exome sequencing and genotyping; however, it is unclear whether this difference 
is driven by access to lower frequency variants (low-frequency vs. ultra-rare and 
de novo) or by the types of variants available for analysis (all protein-coding vs. 
loss-of-function). In either case, if differences between our results are attributable 
to whole-exome sequencing and whole-exome genotyping, we should observe 
increased similarity between the results of our replication analysis and those 
reported by Ganna et al. If we do not, it is more likely that carefully defined 
cohorts are required to identify significant associations with psychiatric disorders. 
Finally, to control for differences between genome-wide and gene-level analyses, 
we will perform an analogous genome-wide aggregate association test for direct 
comparison with the methodology employed by Ganna et al. As the only two 
studies characterizing the phenotypic impact of LoF-intolerant genes, it is 
important that any difference in the phenotypic associations identified is carefully 
addressed and well understood.  
 This dissertation makes a significant advance in our understanding of how 
selective constraint on protein-coding genetic variants can help to explain their 
contribution to disease. We demonstrate utility in variant pathogenicity prediction, 
the detection of putative driver mutations in cancer, and the identification of novel 
phenotype associations with highly constrained genes. These approaches will 
continue to improve as whole-exome and whole-genome sequencing becomes 
increasingly prevalent, and developing these methods now is critical to 
maximizing the scientific impact of this data.
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