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Abstract

Streptococcus gordonii and Streptococcus sanguinis are primary colonizers of the tooth sur-

face. Although generally non-pathogenic in the oral environment, they are a frequent cause of

infective endocarditis. Both streptococcal species express a serine-rich repeat surface adhe-

sin that mediates attachment to sialylated glycans on mucin-like glycoproteins, but the specific

sialoglycan structures recognized can vary from strain to strain. Previous studies have shown

that sialoglycan binding is clearly important for aortic valve infections caused by some S. gor-

donii, but this process did not contribute to the virulence of a strain of S. sanguinis. However,

these streptococci can bind to different subsets of sialoglycan structures. Here we generated

isogenic strains of S. gordonii that differ only in the type and range of sialoglycan structures to

which they adhere and examined whether this rendered them more or less virulent in a rat

model of endocarditis. The findings indicate that the recognition of specific sialoglycans can

either enhance or diminish pathogenicity. Binding to sialyllactosamine reduces the initial colo-

nization of mechanically-damaged aortic valves, whereas binding to the closely-related trisac-

charide sialyl T-antigen promotes higher bacterial densities in valve tissue 72 hours later. A

surprising finding was that the initial attachment of streptococci to aortic valves was inversely

proportional to the affinity of each strain for platelets, suggesting that binding to platelets circu-

lating in the blood may divert bacteria away from the endocardial surface. Importantly, we

found that human and rat platelet GPIbα (the major receptor for S. gordonii and S. sanguinis

on platelets) display similar O-glycan structures, comprised mainly of a di-sialylated core 2

hexasaccharide, although the rat GPIbα has a more heterogenous composition of modified

sialic acids. The combined results suggest that streptococcal interaction with a minor O-glycan

on GPIbαmay be more important than the over-all affinity for GPIbα for pathogenic effects.

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007896 June 24, 2019 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Bensing BA, Li L, Yakovenko O, Wong M,

Barnard KN, Iverson TM, et al. (2019) Recognition

of specific sialoglycan structures by oral

streptococci impacts the severity of endocardial

infection. PLoS Pathog 15(6): e1007896. https://

doi.org/10.1371/journal.ppat.1007896

Editor: Michael R. Wessels, Boston Children’s

Hospital, UNITED STATES

Received: February 12, 2019

Accepted: June 5, 2019

Published: June 24, 2019

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All relevant data are

within the manuscript.

Funding: This work was supported by the

Department of Veterans Affairs, NIH grants

IA106987 (to PMS, WET and TMI), IA41513 (to

PMS) and GM080533-05 (to CRP), the American

Heart Association grant 17SDG33660424 (to BAB),

and the Center for Research in Influenza

Pathogenesis (an NIAID funded Center of

Excellence in Influenza Research and Surveillance)

contract HHSN272201400008C (to CRP). The

http://orcid.org/0000-0002-6288-2323
http://orcid.org/0000-0003-3571-8058
http://orcid.org/0000-0001-6283-4543
http://orcid.org/0000-0001-8816-6352
http://orcid.org/0000-0002-1836-6655
http://orcid.org/0000-0001-8602-0819
http://orcid.org/0000-0003-4446-5320
https://doi.org/10.1371/journal.ppat.1007896
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1007896&domain=pdf&date_stamp=2019-07-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1007896&domain=pdf&date_stamp=2019-07-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1007896&domain=pdf&date_stamp=2019-07-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1007896&domain=pdf&date_stamp=2019-07-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1007896&domain=pdf&date_stamp=2019-07-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1007896&domain=pdf&date_stamp=2019-07-05
https://doi.org/10.1371/journal.ppat.1007896
https://doi.org/10.1371/journal.ppat.1007896
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/


Author summary

Infective endocarditis (IE) is a life-threatening infection of heart valves, and streptococci

that normally reside in the mouth are a leading cause of this disease. Some oral streptococ-

cal species express a protein on their surface that enables attachment to glycan (sugar)

modifications on saliva proteins, an interaction that may be important for colonization of

the tooth and other oral surfaces. These "Siglec-like adhesins" are hypervariable in the

type and number of glycan structures they bind, ranging from just one to more than six of

the structures displayed on the saliva proteins. If streptococci enter into the bloodstream,

the Siglec-like adhesin can mediate attachment to similar glycans that decorate platelet or

plasma proteins, which can impact the overall virulence of the organism. This study high-

lights how recognition of a specific type of glycan structure can cause a generally beneficial

or neutral microbe to create damage to specific tissues—in this case the heart valves, illus-

trating one means by which commensal bacteria can become opportunistic or accidental

pathogens. The findings further indicate that certain glycan-binding streptococci among

the oral microbiota may be predisposed to produce infective endocarditis.

Introduction

Infective endocarditis (IE) is a life-threatening cardiovascular disease in which microbes colo-

nize and persist in platelet-fibrin thrombi on cardiac valve surfaces. The interaction of bacteria

with platelets is thought to play a central role in the pathogenesis of IE [1, 2]. Most bacterial

species are unable to colonize an intact cardiac valve endothelium, but instead attach to plate-

let-fibrin thrombi or "sterile vegetations" that have deposited on damaged valve surfaces [3–5].

The subsequent deposition of platelets onto the infected endocardium, along with bacterial

proliferation, contributes to the progression of disease, and results in the formation of macro-

scopic endocardial lesions [6–8].

Streptococcus gordonii and Streptococcus sanguinis are oral commensal bacterial species that

are primary colonizers of tooth surfaces [9]. Although generally associated with oral health,

these closely-related species are frequently found as the causative agent of infective endocardi-

tis, especially infections of the aortic valve [10–14]. Only a small number of virulence factors of

S. sanguinis or S. gordonii that contribute to IE have been verified using animal models of this

disease [15–22]. Among the best characterized for S. gordonii are the platelet-binding proteins

GspB and Hsa, expressed by strains M99 and DL1, respectively. These cell wall anchored adhe-

sins are two members of the highly-conserved family of serine-rich repeat (SRR) glycoproteins

expressed by Gram-positive bacteria (Fig 1). The ligand-binding regions (BRs) of the SRR gly-

coproteins are modular and often species-specific [23, 24]. SRR glycoprotein sequences have

been found in the genomes of all S. sanguinis and S. gordonii strains sequenced to date [25],

and invariably contain "Siglec-like" BRs that confer high-affinity binding to α2–3 linked sialic

acid [23, 26]. This sialoglycan modification is displayed at the termini of O-glycans that deco-

rate the salivary mucin MUC7 [27, 28], and binding of S. gordonii and S. sanguinis to MUC7 is

thought to be important for oral colonization. In addition, previous studies indicate that when

oral streptococci enter the bloodstream, binding to similar O-glycans on platelet GPIbα (the

receptor for von Willebrand factor, or vWF) can contribute to the pathogenesis of IE [29, 30].

The Siglec-like BRs are an intriguing group of hypervariable adhesive domains, displaying

both conserved and divergent features (Fig 1). They all contain Siglec and Unique domains

that are important for sialoglycan binding [23, 26, 30–32]. The BRs of some S. sanguinis and
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most S. gordonii SRR adhesins, such as GspB, also include a CnaA domain, but this region

appears not to have a role in sialoglycan binding [23]. The Siglec domain has a V-set Ig fold

resembling that of mammalian Siglecs, and includes a conserved "YTRY motif" that makes

important contacts with Neu5Acα2-3Gal at the termini of larger glycans [31, 32]. The Unique

domain does not appear to make direct contacts with sialoglycans, but may modulate the con-

formation and thus influence the binding properties of the Siglec domain. Despite a conserved

Fig 1. Comparison of the GspB, Hsa and 10712 BRs. The upper diagram shows the general domain organization of the SRR

glycoproteins. SP/AST, signal peptide and accessory Sec transport domain; BR, ligand binding region; CWA, cell wall anchor. The

SRR1 and SRR2 regions undergo glycosylation in the bacterial cytoplasm, prior to transport by the accessory Sec system. The lower

portion shows high-resolution crystal structures of the binding regions of GspB, Hsa and the SRR glycoprotein from the S. gordonii
strain UB10712. The GspBBR structure was reported previously [30]. Partially refined structures of the HsaBR and 10712BR were

provided by T. Iverson (manuscript submitted; PDB files 6EFC and 6EFF pending release). Note that the GenBank entry for the

10712BR sequence originally listed the source strain as Streptococcus mitis NCTC10712 (GenBank JYGN00000000) [66]. The S.

gordonii SK12 BR sequence is identical to that of UB10712, and was obtained by translation of the publicly available partially

assembled SK12 genome (NZ_LAWP01000015). The CnaA domain is found in some Siglec-like BRs but does not contribute to

sialoglycan binding. The sialoglycan ligand preferences thus far appear to be dictated by the Siglec domains. The YTRY motif

residues are shown as black sticks. The Unique domain may modulate the conformation of the Siglec domain.

https://doi.org/10.1371/journal.ppat.1007896.g001
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structural fold, the Siglec domain sequences can vary by more than 50%, and both small and

large sequence variations can impact the number and type of sialoglycan structures recog-

nized. Specific glycan targets have been identified for nearly a dozen of the Siglec-like BRs, and

the ligand repertoires range from a single type of sialylated trisaccharide, to a broad set of

related sialoglycans [23, 26]. For example, GspB is highly selective for sialyl T-antigen (sTa)

[23, 26], whereas the 10712BR (from the SRR adhesin of S. gordonii UB10712) preferentially

binds 3’sialyllactosamine (sLn; Fig 2) [23]. Hsa has a broader ligand range and can bind both

sTa and sLn [23, 26]. The differences in binding to defined, synthetic glycans are also reflected

in the interaction with O-glycosylated plasma proteins [33]. GspB most readily binds proteins

Fig 2. Ligand repertoires determined for three Siglec-like BRs. The high affinity sialoglycan ligands for the recombinant BRs

were determined by analysis on a custom sialoglycan array and by enzyme-linked assays [23, 26]. The O-glycan ligand

preferences were determined by analyzing glycan profiles of affinity-captured plasma proteins [33]. Note that 10712BR was

previously referred to as NCTC10712BR. Binding of strains M99 and DL1 to array glycans paralleled binding of the respective

recombinant BRs [26]. Monosaccharide symbols follow the Symbol Nomenclature for Glycans system [67]. Neu5Ac, N-acetyl

neuraminic acid; Gal, galactose; GalNAc, N-acetyl galactosamine; GlcNAc, N-acetyl glucosamine; Fuc, fucose. sTa, sialyl T-

antigen; sLeC, sialyl Lewis C; 3’sLn, 3’sialyllactosamine; sLeX, sialyl Lewis X. Throughout the manuscript, 3’sLn is referred to

simply as "sLn". The "core 1" and "core 2" designations refer to the protein-proximal glycan structures.

https://doi.org/10.1371/journal.ppat.1007896.g002
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bearing sTa (a core 1 O-glycan; Fig 2), while 10712BR prefers proteins with sLn at the termini

of larger, branched, and often extended core 2 glycans. The ligand repertoire also impacts the

strength of binding of the recombinant BRs to platelet GPIbα, with binding to sLn generally

conferring a higher affinity for platelets and GPIbα compared with binding to sTa [23, 33]. As

measured by surface plasmon resonance, the affinity of recombinant GspBBR for GPIbα is

2.38 × 10−8 M, whereas HsaBR has approximately 5-fold higher affinity (KD values of

3.05 × 10−8 M and 5.05 × 10−9 M when fit to a heterogenous ligand model, which is consistent

with the ability to bind two glycan moieties) [29].

The role of the Siglec-like adhesins and sialoglycan binding in streptococcal endocarditis is

not entirely clear. Deletion of gspB or hsa from S. gordonii strains, or even just a single amino

acid substitution in the YTRY motif of GspB (GspBR484E), resulted in two-log lower levels of

bacteria in aortic valve vegetations using a rat model of IE [15, 16, 30]. In contrast, deletion of

srpA did not adversely impact the virulence of S. sanguinis SK36 in a rabbit model of IE [21].

Although the precise sialoglycan ligand for SrpA has not been determined, it does not readily

bind sTa, but instead may recognize a core 2 hexasaccharide or larger di-sialylated O-glycan

[32, 33]. Supporting the possibility that the type of sialoglycan recognized might influence dis-

ease progression, S. gordonii strain SK12 was found to be significantly less virulent than S. gor-
donii DL1 in a rat model of IE [34]. SK12 encodes an SRR glycoprotein with a BR identical to

that of the 10712BR (see legend to Fig 1), and thus is likely to bind sLn rather than sTa. Addi-

tional analysis of Siglec-like BRs from a small number of streptococcal strains suggested that

IE and commensal strains might bind different glycan structures, in that IE isolates were more

often GspB-like, whereas oral isolates were more SrpA-like [23, 25]. However, the question of

whether binding to a particular sialoglycan structure, versus sialic acid binding in general,

affects the propensity of bacteria to establish endovascular infections has never been formally

assessed. In this study, we generated a set of isogenic strains that display distinctly different sia-

loglycan binding properties and different levels of binding to platelets. We then compare the

relative virulence of these strains in two rat models of IE. The results indicate that the sialogly-

can binding spectrum can impact the overall virulence of streptococci, displaying different

effects on the initial colonization of aortic valves, as well as the post-colonization progression

of endocardial infection.

Results

Platelet and sialoglycan binding by isogenic variant strains

Our first goal was to generate isogenic variants of S. gordonii strain M99 that differ in their sia-

loglycan binding phenotypes. We selected three BRs that were previously determined to have

distinctly different binding properties (Fig 2): 1) GspBBR demonstrates sTa selectivity (core 1

O-glycans), 2) the 10712BR has high affinity for sLn and related structures (core 2 O-glycans),

and 3) HsaBR shows high-affinity binding to both sTa and sLn (core 1 and core 2 glycans). The

design of these isogenic strains was not trivial, since SRR glycoprotein expression relies on a

complex and highly specialized system that coordinates post-translational modification and

transport to the bacterial cell surface. For example, in S. gordonii M99 and Streptococcus para-
sanguinis FW12, elements in the preprotein mature region, as well as the N-terminal signal

peptide, must be matched to the dedicated SecA2/Y2 transporter [35–38]. It was also impor-

tant to avoid any alterations in the flanking SRR regions, since the post-translational modifica-

tion of these domains can impact binding [39–43]. In view of these issues, we chose to replace

the entire BR of GspB with that of Hsa, or with the 10712BR, using the conserved SRR1-BR and

BR-SRR2 junctions (Fig 3A), while retaining the native GspB signal peptide, AST, SRR1 and

SRR2 domains. To ensure native expression levels in vivo we opted to replace a portion of the
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Fig 3. Design of isogenic variant strains of S. gordonii M99. Strains were designed to express GspB variants in which amino acid residues 248 to

604 of GspB (GenBank accession number AAL13053) were replaced with residues 242 to 448 of Hsa (ABV10391) or 241 to 446 of the SRR

glycoprotein homolog from S. gordonii UB10712 (WP_045635027). A: Alignment of the BR domain junctions. Conserved amino acids are

indicated in red type. T248 and S604 of GspB, A242 and Q448 of Hsa, and V241 and Q446 of the UB10712 homolog are underlined. B: Strategy to

replace the GspB BR coding region in the native S. gordonii chromosomal locus. PS2114 is a derivative of S. gordonii M99 that has a deletion of

gspB codons 1 to 486 and a cat gene in the upstream non-coding region [30]. Chimeric sequences were introduced into the S. gordonii
chromosome via a strategy that involved recombination by double-crossover between gspB codons 605–703 and the upstream pdxU gene.

https://doi.org/10.1371/journal.ppat.1007896.g003
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gspB gene in the native chromosomal locus, using a "knock in" strategy previously used to gen-

erate single amino acid substitutions in the YTRY motif of the Siglec domain (Fig 3B). This

resulted in strains PS3515 (GspB::HsaBR) and PS3516 (GspB::10712BR). Importantly, the vari-

ant strains showed growth rates and cell-surface SRR glycoprotein expression levels (i.e. SDS

migration patterns and western blot intensity) that were indistinguishable from the parental

M99 strain (Figs 4A and 4B and S1).

We next examined bacterial binding to synthetic sialoglycans or to immobilized human

platelets. The binding of these strains to sialoglycans resembled that of the respective recombi-

nant BRs: M99 readily bound to sTa but not sLn, PS3515 bound both sialoglycan structures,

and PS3516 bound sLn rather than sTa (Fig 4C). Likewise, strain PS3516 showed higher levels

of binding to platelets as compared with the parental strain M99 or with PS3515 (p = 0.0001 or

0.0397, respectively; Fig 4C), paralleling what was previously reported for the recombinant BRs

[23, 31, 33]. Thus, the isogenic strains display the anticipated sialoglycan binding specificities.

Impact of sialoglycan binding on streptococcal endocarditis

To assess the impact of binding to sTa versus sLn on endocarditis, we used two versions of a

well-established animal model for this disease. The first was a competition assay, in which rats

were catheterized to induce aortic valve damage and platelet-fibrin deposition, and then

infected intravenously with an inoculum containing 2 x 105 CFU of M99 and an isogenic vari-

ant at a 1:1 ratio. At 72 h post-infection, animals were sacrificed and the relative number of

each strain in aortic valve vegetations, kidneys and spleens were determined. Using this

model, trends were apparent, with PS3515 showing higher average numbers in vegetations,

kidney and spleen, and PS3516 showing lower densities compared with M99 (Fig 5A and 5B

and Table 1). However, despite these trends (5 of 6 animals in the latter case) the differences

were found not to reach statistical significance (p>0.05).

We then used a second established model of IE, in which catheterized animals were infected

intravenously with 105 CFU of a single strain. At 72 h post-infection, animals infected with

strain M99 or PS3515 had comparable levels (CFU/g) of bacteria within aortic valve vegeta-

tions (Fig 5C and Table 2). In contrast, rats infected with strain PS3516 had significantly lower

densities of bacteria within aortic valve vegetations, when compared with either M99 or

PS3515 (p = 0.011 and p = 0.002, respectively). Levels of bacteria within the kidneys of animals

infected with strain M99 were significantly higher than in animals infected with either PS3515

or PS3516 (p = 0.049 and p = 0.001, respectively; Table 2). Importantly, no differences were

seen in the number of bacteria in the blood or spleen 72 h post-infection (Table 2), indicating

that the differences seen in the heart and kidney were not likely due to differences in the bacte-

rial susceptibility to innate host defenses. These results indicate that the ability to bind sTa

(M99 and PS3515) contributes to increased virulence, as measured by bacterial levels within

aortic valve vegetations. In addition, selective binding to sTa (M99 versus PS3515 or PS3516)

results in higher densities within kidneys, suggesting a greater tendency to disseminate from

the heart to other organs.

Impact of sialoglycan binding on colonization of aortic valves

We next examined whether the differences in bacterial densities within aortic valve vegetations

at 72 h post-infection were likely due to differences in the initial attachment of circulating bac-

teria to valve surfaces. Catheterized rats were infected intravenously with 108 or 107 CFU of

M99, PS3515 or PS3516. At one hour after infection with 108 CFU, rats given M99 had higher

levels of bacteria on aortic valves, compared with either PS3515 or PS3516 (Fig 6A; p = 0.020

or 0.009, respectively). After infection with 107 CFU, levels of PS3516 on valves were again

Sialoglycan recognition and streptococcal endocarditis
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significantly lower than those of M99 (p = 0.001). Levels of PS3515 were intermediate between

those of M99 and PS3516, but not significantly different from either (Fig 6B). No significant

differences were seen in the numbers of bacteria in the peripheral blood at either inoculum

Fig 4. Characteristics of the chimeric SRR glycoprotein S. gordonii strains. A: The isogenic variant strains show

growth rates similar to M99. Strains were grown for 17 h in Todd-Hewitt broth, then diluted 1:10 into fresh medium

and incubated at 37˚C for 23 h. B: The chimeric SRR glycoproteins display normal cell-surface expression levels and

apparent molecular masses. Each lane contains cell wall proteins extracted from bacteria in 75 μl of stationary-phase

cultures (roughly 75 x 106 CFU). Blots were probed with polyclonal antibodies that recognized the glycan moieties on

GspB. C: Binding properties of the isogenic variant strains. Fixed human platelets or biotinylated glycans were

immobilized in 96-well plates. Binding is reported as the mean ± standard deviation of the percent of input

streptococci adherent after 90 min (n = 6). Asterisks indicate p<0.05.

https://doi.org/10.1371/journal.ppat.1007896.g004
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level (Fig 6C and 6D). These results indicate that binding of bacteria to sLn rather than sTa

(PS3516 versus M99) results in diminished initial colonization. The lower extent of initial colo-

nization does not fully account for the reduced numbers of PS3516 seen at 72 h, since the

Fig 5. Relative virulence of S.gordonii M99 and the isogenic variant strains in two rat models of endocarditis.

Animals were infected with 105 CFU of each of a pair of strains (A and B; n = 7 and n = 6, respectively) or with 105

CFU of a single strain (C; n = 7 for M99, n = 6 for PS3515 and n = 7 for PS3516). The number of bacteria in aortic

valve vegetations was assessed 72 h post-infection. Asterisks indicate p<0.05.

https://doi.org/10.1371/journal.ppat.1007896.g005

Table 1. Competition model of endocarditis in rats, 72 h post-infection.

Strains

(Number of animals)

Log10 CFU/g tissue (mean ± SD)

Vegetationa Kidney Spleen

M99 (n = 7) 7.92 ± 1.04 3.12 ± 0.58 3.55 ± 1.04

PS3515 (n = 7) 8.25 ± 0.72 3.57 ± 1.10 3.92 ± 0.74

M99 (n = 6) 8.14 ± 1.39 2.99 ± 1.44 2.98 ± 1.42

PS3516 (n = 6) 7.52 ± 1.63 2.85 ± 1.23 2.73 ± 1.36

a data are also shown in Fig 5A and 5B

https://doi.org/10.1371/journal.ppat.1007896.t001

Sialoglycan recognition and streptococcal endocarditis

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007896 June 24, 2019 9 / 24

https://doi.org/10.1371/journal.ppat.1007896.g005
https://doi.org/10.1371/journal.ppat.1007896.t001
https://doi.org/10.1371/journal.ppat.1007896


initial attachment of this strain was similar to that of PS3515 (Fig 6A and 6B), yet the latter

showed two-log higher density in vegetations after 72 h (Fig 5C). Thus, the combined in vivo
animal studies indicate that streptococcal binding to sTa contributes to higher bacterial densi-

ties subsequent to colonization of the damaged endocardium.

Initial colonization is inversely proportional to platelet binding

A number of studies have linked bacterial binding to platelets with increased virulence in ani-

mal models of IE [15, 16, 30, 44–47]. It was therefore surprising that the isogenic variant strain

Table 2. Single strain infection model of endocarditis in rats, 72 h post-infection.

Strain

(Number of animals)

Log10 CFU/g tissue (mean ± SD) Log10 CFU/ml (mean ± SD)

BloodVegetationa Kidney Spleen

M99 (n = 7) 8.33 ± 0.67 5.04 ± 0.72c 3.62 ± 0.97 1.96 ± 0.92

PS3515 (n = 6) 8.73 ± 0.64 3.90 ± 0.53 3.53 ± 0.31 2.26 ± 0.48

PS3516 (n = 7) 6.83 ± 1.13b 3.12 ± 1.02 3.44 ± 0.47 2.21 ± 1.13

a data are also shown in Fig 5C
b p<0.05 compared with both M99 and PS3515
c p<0.05 compared with both PS3515 and PS3516

https://doi.org/10.1371/journal.ppat.1007896.t002

Fig 6. Initial colonization of mechanically-damaged aortic valves. Animals were infected with 108 or 107 CFU of the indicated strain. At the 108 CFU

inoculum, n = 7 for M99, and n = 6 for PS3515 and PS3516. For the 107 CFU inoculum, n = 8 for M99 and PS3516, and n = 7 for PS3515. Numbers of bacteria

attached to aortic valve vegetations (A and B) or in the peripheral blood (C and D) were assessed 1 h post-infection. Asterisks indicate p<0.05.

https://doi.org/10.1371/journal.ppat.1007896.g006
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that had the highest level of binding to human platelets in vitro (Fig 4C) showed lower binding

to rat valves in vivo. One possibility was that the isogenic variants might be impaired for bind-

ing to rat platelets. In addition, since the SRR adhesins exhibit mechanically activated shear-

enhanced adhesion [48, 49], it was conceivable that the isogenic variants could not bind to

platelets on valve surfaces, due to the high shear conditions present in vivo. To assess these pos-

sibilities, we compared binding of the strains to immobilized human and rat platelets under

various shear levels. At low shear (0.1 dyne/cm2), the strains bound to human platelets simi-

larly to what was seen earlier (Fig 4C), although M99 displayed significantly lower adherence

than both PS3515 and PS3516 (Fig 7A). The same relative binding of strains was observed with

Fig 7. Binding of S. gordonii M99 and the isogenic variant strains to immobilized human or rat platelets under shear. The gspB deletion strain PS846 has previously

been used to assess GspB-dependent binding and virulence [15, 26, 30, 36, 49]. Suspensions of bacteria were washed through microfluidic chambers containing

immobilized human (A) or rat (B) platelets, at flow rates corresponding to the indicated shear stresses, and adherent bacteria recorded using videomicroscopy and

counted. To measure detachment from human (C) or rat (D) platelets, bacteria that initially bound at 1 dyne/cm2 were subjected to stepwise lower or higher flow rates,

and the fraction of bacteria remaining bound at the indicated shear stresses were counted. Asterisks indicate p<0.05 compared with M99.

https://doi.org/10.1371/journal.ppat.1007896.g007
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rat platelets (Fig 7B), with M99 less adherent than the isogenic variants. Binding to human or

rat platelets at high shear (1.0 dyne/cm2) increased 2- to 4-fold for all strains as compared with

binding under low shear. Thus, the lower attachment of PS3515 and PS3516 seen in vivo is not

likely due to lower binding of these strains to rat platelets, or to differences in shear-enhanced

binding.

We also measured the ability of bacteria to remain bound to platelets in variable flow condi-

tions. After allowing the strains to attach under flow at 1 dyne/cm2, the shear stress was either

decreased to low levels, or increased to the high levels found near the heart valve surfaces (20–

80 dyne/cm2). In both cases, M99 detached from rat and human platelets at similar or greater

levels than did PS3515 and PS3516 (Fig 7C and 7D). Therefore, the lower levels of PS3515 and

PS3516 relative to M99 found on aortic valves at 1 h in vivo do not reflect a lesser ability of the

variant strains to maintain attachment in the very high shear stress of the intracardiac environ-

ment. However, the results are consistent with an increased ability for M99 to detach from car-

diac valves and disseminate to other organs via the bloodstream.

Differences between human and rat GPIbα sialoglycans

We previously determined that GspB and the 10712BR bind less readily to sialoglycans terminat-

ing in the Neu5Gc versus Neu5Ac form of sialic acid, whereas Hsa binds readily to both [23,

26]. We postulated therefore that the slightly lower binding of M99 and PS3516 to rat versus

human platelets, at least at low shear, might be due to the presence of Neu5Gc on the former

(unlike rats and many other mammals, humans do not produce Neu5Gc [50]). To examine this

directly, we assessed the sialic acid composition of GPIbα from rat versus human platelets. We

chose to examine a minimally-processed sample, to avoid the loss of labile groups (e.g. O-acetyl)

or the unintentional selective enrichment of glycoform sub-populations that can occur during

purification. GPIbα was the major sialylated glycoprotein in the crude extracts of both rat and

human platelets, as determined by western blotting and by probing the samples with the sialic

acid-binding lectin Mal-II (Fig 8A). HPLC of chemically-released sialic acids from both the

human and rat GPIbα had minor amounts of O-acetylated sialic acids (contributing to 5% or

13% of the total sialic acids, respectively; Table 3). However, more than half of the sialic acid

content of the rat platelet GPIbα extract was Neu5Gc, rather than Neu5Ac. This finding largely

explains why M99 and PS3516 showed somewhat lower binding to rat versus human platelets.

We also examined the O-glycan structures, in order to look for differences in core 1 glycans

such as sTa, versus core 2 glycans which typically have sLn branches. We found that a core 2

hexasaccharide constitutes 87% of the total O-glycans in the human GPIbα extract (Fig 8B and

Table 4), consistent with earlier reports showing this as the major O-glycan on purified human

GPIbα [51, 52]. Also consistent with previous reports, a relatively minor amount of sTa was

detected. However, a larger core 2 octasaccharide. rather than di-sialylated core 1 glycan, was

evident as an additional minor glycan. In comparison, the rat GPIbα sample had a more heter-

ogenous distribution of O-glycans, largely due to the variety of modified sialic acid forms (Fig

8C and Table 5). In agreement with the total sialic acid analysis, slightly more Neu5Gc than

Neu5Ac was evident. An unexpected finding was the presence of neuraminic acid (Neu), in

addition to Neu5Ac and Neu5GC, and thus adding to the heterogeneity of O-glycans on rat

GPIbα. Di-sialylated core 2 hexasaccharides were still the most abundant structures (although

as a mixed population), and di-sialylated core 2 octasaccharides were also evident. Although

lectin blotting with Mal-II indicated that sTa was present on rat platelet GPIbα (Fig 8A), the

amount was apparently below the level of detection by mass spectrometry. The higher abun-

dance of sLn-bearing core 2 glycans versus sTa (epitopes recognized by Hsa and 10712BR but

not GspB) may explain why M99 shows relatively low binding to human and rat platelets,
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Fig 8. Comparison of human and rat platelet GPIbα O-glycans. A: Western and lectin blot analysis showing GPIbα as the major sialylated

glycoprotein in the crude platelet extracts. Lanes contain 2 μl of the GPIbα preparations. Proteins were separated by electrophoresis on 3–8%

polyacrylamide, transferred to nitrocellulose, and then probed as indicated. Mal-II is a lectin commonly used to detect α2–3 sialic acids, and is specific

for sTa and di-sialylated T-antigen [68]. The anti-GPIbα antibody is specific for the human protein. An antibody that recognizes the rat homolog in

western blots is not currently available. B: Putative structures of the O-glycans released from the human GPIbα sample. The structures are based on the

precise masses and inferred monosaccharide composition (Table 4) in addition to the MS/MS fragmentation patterns. Brackets indicate cases where the

position of monosaccharides could not be assigned. Monosaccharide symbols follow the Symbol Nomenclature for Glycans system [67]. C: Putative

structures of the O-glycans released from the rat GPIbα sample. The structures are based on the precise masses and inferred monosaccharide

composition (Table 5) in addition to MS/MS fragmentation data. Brackets indicate cases where the position of monosaccharides could not be assigned.

https://doi.org/10.1371/journal.ppat.1007896.g008
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compared with the levels of binding by PS3515 and PS3516. The combined results suggest that

streptococcal interaction with a minor O-glycan on GPIbα may be more important than the

over-all affinity for GPIbα for pathogenic effects.

Discussion

These studies aimed to determine whether the binding of streptococci to different sialoglycan

structures has an impact on the pathogenesis of IE. Our results indicate that there are at least

two means by which sialoglycan binding can impact virulence. First, binding to sLn is corre-

lated with a reduced initial colonization of the aortic valves, as compared with sTa binding.

Since binding to sLn versus sTa does not appear to promote clearance from the blood, it is

likely that binding to one or more sLn-modified targets could divert bacteria away from the

damaged endocardium. The potential "off-target" glycans could be displayed on plasma pro-

teins or blood cells. The most likely off-targets for the GspB::10712BR expressed by PS3516 are

the core 2 sialoglycans of GPIbα on circulating platelets. Support for core 2 sialoglycan off-tar-

gets in blood was seen in a previous study of S. sanguinis and S. gordonii, where one or more

components of whole blood diverted a SrpA+ S. sanguinis strain (which has high affinity for

platelet GPIbα and core 2 sialoglycans), but not S. gordonii M99, away from surfaces under

Table 3. Sialic acid composition of human versus rat platelet GPIbα extract. a

Neu5Gc Neu5Ac Neu5Gc8Ac Neu5,8Ac2 Neu5,9Ac2 Neu4,5Ac2 total

Human n/d 94.91 n/d 2.63 2.46 n/d 100

Rat 58.37 28.32 5.37 n/d 4.77 3.17 100

a values represent the percent of total sialic acids; Neu5Gc8Ac, 8-O-acetyl Neu5Gc; Neu5,8Ac2, 8-O-acetyl Neu5Ac; Neu5,9Ac2, 9-O-acetyl Neu5Ac; Neu4,5Ac2, 4-O-

acetyl Neu5Ac; n/d not detected

https://doi.org/10.1371/journal.ppat.1007896.t003

Table 4. Identification by mass spectrometry of O-glycans released from human platelet GPIbα.

RT (min)a Massb m/zc Volume % Total Compositiond

13.818 676.259 677.264 55954 0.1 1-1-0-1

15.621 896.351 897.355 66130 0.2 2-2-1-0

21.22 1041.385 1042.393 1109306 2.9 2-2-0-1

21.423 1058.403 1059.408 34603 0.1 3-2-1-0

22.534 1042.406 1043.414 86869 0.2 2-2-2-0

24.62 896.34 897.357 34603 0.1 3-2-1-0

24.641 1187.442 594.729 995826 2.6 2-2-1-1

24.894 1041.386 1042.393 892163 2.3 2-2-0-1

24.913 750.287 751.296 321269 0.8 2-2-0-0

28.375 1332.473 667.248 202429 0.5 2-2-0-2

29.585 1332.482 667.249 33180240 86.0 2-2-0-2

31.03 1697.612 849.818 112008 0.3 3-3-0-2

32.243 1332.49 667.253 224937 0.6 2-2-0-2

34.9 1697.618 849.815 1199390 3.1 3-3-0-2

34.904 1041.396 1042.402 66130 0.2 2-2-0-1

aRetention time
bDaltons
cPrecursor ion mass to charge ratio
dHex-HexNAc-Fuc-NeuAc

https://doi.org/10.1371/journal.ppat.1007896.t004
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conditions of flow [49]. The finding that binding to sLn and core 2 sialoglycans in vitro is asso-

ciated with a negative impact on aortic valve colonization is also consistent with IE studies

using S. sanguinis SK36, in which a ΔsrpA variant was slightly more virulent than the parental

strain [21]. However, whether the ΔsrpA variant showed increased initial attachment was not

determined. It is also likely that initial colonization of aortic valves by S. gordonii is strongly

influenced by other surface adhesins, such as PadA (binding the IIbIIIa fibrinogen receptor on

activated platelets), CshA (adherence to fibronectin), and SspA/B [53–57]. The relative contri-

bution of these adhesins has not been assessed in vivo, and such studies would benefit from

better in vitro models of damaged cardiac valve endothelium.

In addition to the negative impact of sLn binding on the initial colonization of aortic valves,

sTa binding appears to enhance disease progression. That is, strains that can bind sTa (M99

and PS3515) had two-log higher levels of bacteria (CFU/g) within aortic valve vegetations at 72

h post-infection, compared with the strain that does not bind sTa (PS3516; Fig 5). These differ-

ences in bacterial densities are on par with previous assessments of ΔgspB or Δhsa strains [15,

16]. The findings confirm that binding to sTa, rather than to sialic acid per se, is a virulence

property. In addition, the growth of PS3515 to high densities, despite lower initial coloniza-

tion, indicates that sTa binding contributes to later stages in the formation of macroscopic veg-

etations. If platelet GPIbα is the key sTa-modified target, sTa-binding adhesins such as GspB

and Hsa may play a critical role in the subsequent capture of circulating platelets, or in modu-

lating the aggregation or activation of the captured platelets. Since sTa was confirmed to be a

minor glycan on platelet GPIbα, the results suggest that binding to a unique glycosite on

GPIbα is important for these events. For example, binding to sT-modified glycosites near the

N-terminal leucine-rich repeat domain of GPIbα, which encompasses the binding sites for

vWF and thrombin and contributes to dozens of indirect interactions with other clotting fac-

tors [58], could have localized effects on properties of the platelet-fibrin thrombus. In turn,

this could impact the ability of streptococci to persist within aortic thrombi, thus contributing

to the severity of disease. The impact of GspB and Hsa on platelet function and thrombus

properties likely occurs in concert with other interactions, especially PadA with platelet IIbIIIa

(the fibrinogen receptor) and secreted factors such as Challisin, which has been reported to

cleave fibrinogen [44, 54, 59–61].

Table 5. Identification by mass spectrometry of O-glycans released from rat platelet GPIbα.

RT (min)a Massb m/zc Volume % Total Compositiond

19.004 1057.379 529.698 195074 3.0 2-2-0-0-1-0

20.048 1306.461 654.238 1413851 21.6 2-2-0-1-0-1

21.463 1306.465 654.24 1422112 21.7 2-2-0-1-0-1

21.987 1219.424 610.722 219467 3.4 3-2-0-0-1-0

27.08 1364.468 683.241 895174 13.7 2-2-0-0-2-0

27.596 1348.477 675.244 877659 13.4 2-2-0-1-1-0

28.244 1332.481 667.249 555317 8.5 2-2-0-2-0-0

31.083 1729.599 865.808 406896 6.2 3-3-0-0-2-0

31.467 1713.611 857.813 348183 5.3 3-3-0-1-1-0

31.889 1697.613 849.817 214646 3.3 3-3-0-2-0-0

aRetention time
bDaltons
cPrecursor ion mass to charge ratio
dHex-HexNAc-Fuc-NeuAc-NeuGc-Neu

https://doi.org/10.1371/journal.ppat.1007896.t005
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Aside from the role of sialoglycan binding in pathogenesis, a second question addressed in

these studies is whether the rat and human GPIbα O-glycans are similar or different. We

found that GPIbα from both species has a disialylated core 2 hexasaccharide as the major O-

glycan, but the rat O-glycans display a greater variety of modified sialic acid forms. An unex-

pected finding was the presence of Neu, in addition to Neu5Ac and Neu5Gc, thus adding to

the heterogeneity of O-glycans on rat GPIbα. Possibly due to a mix of Neu, Neu5Ac and

Neu5Gc forms, sTa was not detected by mass spectrometry of the rat platelet GPIbα O-glycans.

However, the binding of M99 versus the ΔgspB strain PS846 to rat platelets (Fig 7), and the

strong reactivity seen with the Mal-II (Fig 8A), are strongly indicative of the presence of sTa.

Since Hsa can readily bind the Neu5Gc form of sTa [23, 26], this may explain why PS3515 pro-

duced high bacterial densities in the aortic valve vegetations 72 hours after infection (Fig 5),

despite the lower initial attachment (Fig 6). Based on our aggregate findings, we would predict

that a variant of S. gordonii that is selective for sTa, but that can readily bind both the Neu5Ac

and Neu5Gc forms, would be the most virulent in animal models of IE. Future studies will

address this question.

An ongoing challenge in determining the precise mechanisms by which sialoglycan binding

can drive or attenuate virulence, and whether interactions with sialylated glycoproteins beyond

platelet GPIbα contribute to pathogenesis, is the limited knowledge regarding where and

when specific O-glycan structures are expressed within the endovascular space. Regarding the

role of sTa binding, it is possible that interactions with O-glycosylated proteins other than

platelet GPIbα could contribute to streptococcal survival in the infected endocardium. How-

ever, the other sTa-modified glycoprotein ligands for Siglec-like adhesins identified thus far

(red blood cells and several plasma proteins) are not known components of the aortic valve

vegetations. Similarly, for sLn and core 2 glycans as off-targets, it is unknown whether other

blood cells display a higher density of sialylated O-glycans than do platelets. Other potentially

important off-target glycan ligands not yet specifically addressed, but recognized by the

10712BR and several other Siglec-like BRs, include sulfated or fucosylated derivates of sLn,

such as sialyl Lewis X (Fig 2). Although there is little, if any, of these other structures on GPIbα
or plasma proteins recognized by the Siglec-like BRs [33], in samples obtained from healthy

individuals, it is unknown whether they may be more abundant in conditions of vascular dam-

age or chronic valve disease that occur in susceptible human patient populations. As we con-

tinue to hone our understanding of the ligand specificities of the Siglec-like BRs, we can use

the recombinant adhesins as probes to monitor spatial and temporal changes in specific sialo-

glycan epitopes in different human tissues and in the animal models of disease.

Methods and materials

Ethics statement

Human blood was collected from volunteers under a protocol approved by the Committee on

Human Research at UCSF (IRB number 11–06207) or at the University of Washington (IRB

number 29332). All donors provided written informed consent. Animal studies were approved

by the Los Angeles Biomedical Research Institute animal use and care committee (IACUC

number 31311–01, reference number 044163), and followed the United States Public Health

Service Guide for the Use and Care of Laboratory Animals.

Media and other reagents

Todd-Hewitt broth (THB; Difco Laboratories), or Todd-Hewitt agar (THA) containing 8% (v/

v) defibrinated sheep blood (Hardy Diagnostics) were used as bacterial culture media.
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Spectinomycin (100 μg/ml) or chloramphenicol (15 μg/ml) was added to solid media as indi-

cated. Antibiotics and Dulbecco’s phosphate buffered saline (DPBS) were from Sigma.

S. gordonii strains and construction of isogenic variants

S. gordonii M99 is a previously-described strain that was recovered from the blood of an endo-

carditis patient [62]. Strains PS846 (M99ΔgspB) and PS2114 (M99Δ5’gspB::cat) lack expression

of GspB and were described elsewhere [30, 36]. Replacement of the BR region of gspB in strain

PS2114 was accomplished using a "knock in" strategy (Fig 3) similar to that used for generating

point mutations in gspB [30]. We initially sought to replace just the Siglec domain of the BR,

since this is the only region that contacts sialoglycans. However, when examining recombinant

BRs, we found that fusing the Siglec domain to a heterologous Unique domain rendered the

chimeric BR prone to degradation when expressed in E.coli. We learned subsequently that this

was likely due to a mis-match at the domain interface, i.e. the inter-domain angle is quite dif-

ferent in HsaBR or the 10712BR versus GspBBR (manuscript submitted, and see Fig 1). We

therefore chose to replace the entire BR as follows. Chimeric sequences spanning codons 222

to 703 of gspB, but with the BR coding sequence altered as detailed in Fig 3 and including a 3’

NotI restriction site, were synthesized (Life Technologies GeneArt Strings) and used to replace

the SalI-NotI fragment spanning codons 231 to 602 of gspB in plasmid pS326B602 (pS326 car-

rying 3’pdxU::spec::gspB1-602; the SalI restriction site is at gspB codon 231). The resulting plas-

mid was introduced to strain PS2114 by natural transformation. Note that this strategy was

designed to force downstream recombination within the ~300 nucleotide stretch of the SRR2

coding region spanning codons 605 to 703, which is substantially different from the remainder

of the SRR2 coding region, in order to avoid indiscriminate recombination further down-

stream and potential alteration of the length of SRR2. Colonies were selected on spectinomycin

and scored for loss of chloramphenicol resistance, indicative of double crossover and gene

replacement rather than plasmid insertion. To confirm the expected replacement, chromo-

somal DNA was extracted using the Wizard Genomic DNA Purification Kit (Promega). A 4

kb region spanning 5’pdxU to gspB codon 1060 was amplified by PCR, and then subjected to

DNA sequence analysis (Sequetech). The insertion of spec upstream of gspB (PS2161) was pre-

viously determined not to affect virulence [30].

S. gordonii growth rate determination and GspB variant expression

To determine growth rates, strains were grown in THB for 17 h at 37˚C, diluted 1:10 into fresh

medium and split to 9 × 1 ml in 5 ml snap-cap tubes. The cultures were incubated in a 37˚C

water bath without shaking, and tubes were removed after 1 to 23 h, vortexed, and the contents

transferred to a cuvette to determine the optical density at 600 nm. The experiment was

repeated twice, and a representative experiment is shown. To assess surface expression of the

GspB variant adhesins, cell wall proteins were extracted with mutanolysin, and proteins were

monitored by western blotting with a polyclonal antibody that recognizes the glycan moieties

on GspB, as described previously [63].

Preparation of human and rat platelets

Human platelets were prepared from citrate-anticoagulated blood donated by healthy volun-

teers as described [62]. Rat platelets were prepared from sodium citrate-treated pooled Spra-

gue-Dawley rat blood (Innovative Research, Novi MI). Prostaglandin I2 (Cayman Chemical

Company) was added to 1 μg/ml final concentration. Platelet-rich plasma was obtained by cen-

trifugation of whole blood for 15 min at 250 × g, followed by 10 min at 500 × g. Platelets were

separated by centrifugation at 1000 × g for 10 min. Platelets were washed twice with 140 mM
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NaCl, 6 mM dextrose, 1 mM EDTA, 20 mM Hepes pH 6.6, and then either fixed [64] or used

for GPIbα extraction as indicated.

Binding to immobilized platelets or glycans

Washed, formaldehyde-fixed platelets were immobilized in microtiter wells, and the binding

of S. gordonii was determined as described [63]. To assess binding to immobilized synthetic

glycans, biotinylated glycans (Glycotech) were immobilized in NeutrAvidin-coated microtiter

wells (Thermo Scientific). After incubating 1 h at RT, wells were rinsed twice with DPBS to

remove any unbound glycans. Wells were blocked with 50 μl of a Blocking Reagent (Roche)

1X in DPBS. Excess block was removed, and 50 μl of S. gordonii strains that had been grown 17

h in THB, washed twice in DPBS, sonicated briefly to disrupt any chains, and then suspend at

~5 x 108 per ml in DPBS were added. Plates were incubated for 1.5 h at RT with moderately

vigorous mixing on a rotational platform, and any unbound bacteria were removed by aspira-

tion and washing the wells twice with 100 μl DPBS. Bound bacteria were released by adding

50 μl of a trypsin solution (1 mg/ml DPBS), incubating 30 min at 37˚C followed by 30 min at

RT, and then plating dilutions on sheep blood agar to enumerate the percent of the inoculum

bound. Differences between means were compared for statistical significance using a one-way

ANOVA, followed by the Sidak’s multiple comparisons test, and using p�0.05 as the threshold

for significance.

Binding to immobilized human or rat platelets under shear

S. gordonii binding to immobilized human or rat platelets under shear, using microfluidic flow

chambers (GlycoTech), was performed as described previously for human platelets [49] and

using rat platelets prepared as described above. Differences in the binding of M99 versus each

of the variant strains were assessed by comparing the means for statistical significance using a

one-way ANOVA, followed by the Dunnett’s multiple comparisons test, using p�0.05 as the

threshold for significance. Differences in detachment were assessed only at the lowest and

highest shear levels.

Rat model of endocarditis

Infective endocarditis was produced in Sprague-Dawley female rats (250–300 g; Envigo) as

described previously [15], with the following modifications. Animals were anesthetized with

ketamine (35 mg/kg) and xylazine (10 mg/kg). A sterile polyethylene catheter was surgically

placed across the aortic valve of each animal, such that the tip was positioned in the left ventri-

cle, and left in place throughout the experiment. Three days post-catheterization rats were

infected IV with an inoculum of either 1 x 105 CFU of single S. gordonii strains, or with 2 x 105

CFU of a pair of strains at a 1:1 ratio, as indicated. At 72 h post-infection, animals were sacri-

ficed with pentobarbital (200 mg/kg, intraperitoneally). All cardiac vegetations, as well as sam-

ples of the kidneys and spleens, were harvested, weighed, homogenized in saline, serially

diluted, and plated onto THA to determine the number of bacteria in the homogenized tissues.

For the competition studies, bacterial colonies were plated onto THA and THA containing

spectinomycin, in order to determine the CFU/g of M99 and the isogenic variant strain. The

number of bacteria within tissues was expressed as the log10 CFU per gram of tissue. Differ-

ences between means were compared for statistical significance using a paired t-test (for com-

petition studies), or by one-way ANOVA, followed by the Tukey correction for multiple

comparisons (for single strain infections), using p�0.05 as the threshold for significance.

Differences in the initial in vivo adherence of these strains to the endocardium were

assessed using the single strain infection model described above, except that rats were infected
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with either 108 or 107 CFU (levels determined to be at or above the level of detection, and

below the level of saturated binding). At 1 h post-infection, blood samples were obtained, ani-

mals were sacrificed and the cardiac vegetations harvested for quantitative culture.

Preparation of platelet GPIbα extracts

A crude extract containing platelet GPIbα was prepared using the method of Korrel et al [52],

with the following modifications. Washed platelets, obtained from 25 ml of healthy human

donor blood or pooled rat blood as described above, were suspended in 1.5 ml DPBS supple-

mented with 2 mM CaCl2. The platelet suspension was sonicated for 15 sec, and then incu-

bated at 37˚C for 1 h. Cellular debris was removed by centrifugation at 16,000 × g, and the

GPIbα-containing supernatant was filtered through a 0.45 μm membrane, and then stored at

-20˚C.

Western and lectin blotting of platelet GPIbα
Human or rat platelet extracts were combined with LDS sample buffer (Invitrogen) and dithio-

threitol (50 mM final concentration), boiled for 5 min, and then loaded to wells of a 3–8%

polyarylamide gradient gel (Invitrogen). Following separation by electrophoresis, proteins

were transferred to BioTraceNT (Pall Corporation) and then probed via western blotting with

anti-GPIbα (Abcam anti-CD42b) or via lectin blotting with Mal-II (Vector Laboratories) as

described [33].

Identification and quantitation of sialic acid content of the GPIbα extracts

Sialic acids were released from platelet GPIbα by treating the extract with acetic acid (2N final

concentration) at 80˚C for 3 h, filtered through a 10kD centrifugal filter (Microcon), and dried

using a vacuum concentrator (SpeedVac). The released sialic acids were labeled with 1,2-dia-

mino-4, 5-methylenedioxybenzene (DMB, Sigma Aldrich) for 2.5 h at 50˚C [65]. HPLC analy-

sis was performed using a Dionex UltiMate 3000 system with an Acclaim C18 column

(ThermoFisher) under isocratic elution in 7% methanol, 7% acetonitrile, and 86% water. Sialic

acid standards were derived from commercially available bovine submaxillary mucin, Neu5Gc

and Neu5Ac (Sigma Aldrich) as well as from normal horse serum.

GPIbα O-glycan profiling

The analysis of O-glycans was performed on the same GPIbα extract used for sialic acid analy-

sis. The glycoprotein sample was suspended in 5 mM dithiothreitol in 100 mM ammonium

bicarbonate buffer (pH = 7.5) and denatured by heating in boiling water for 1 min. The N-gly-

cans were released from the protein by digestion with peptide:N-glycosidase F (PNGase F,

New England Biolabs), and the de-N-glycosylated proteins were precipitated with chilled etha-

nol. The O-glycans were chemically released via beta elimination by resuspending the precipi-

tated proteins in 1 M sodium borohydride and 0.1 M sodium hydroxide. After 18 h at 45˚C,

the reaction was quenched with acetic acid. The released O-glycans were purified using solid

phase extraction with porous graphitic carbon and hydrophilic interaction liquid chromatog-

raphy. Glycan samples were analyzed on an Agilent 6520 Accurate Mass Q-TOF LC/MS

equipped with a porous graphitic carbon microfluidic chip. A binary gradient consisting of

(A) 0.1% formic acid in 3% acetonitrile, and (B) 1% formic acid in 89% acetonitrile was used

to separate the glycans at a flow rate of 0.3 μl/min. Data were processed with Agilent Mas-

sHunter B.07 software, using the Find by Molecular Feature algorithm with an in-house library

of O-glycan masses and chemical formulae to identify and quantitate the O-glycan signals.
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Supporting information

S1 Fig. Coomassie stain and uncropped Western blot and of cell wall proteins extracted

from S. gordonii M99 and isogenic variant strains. Lanes contain cell wall proteins extracted

from bacteria in 75 μl of stationary-phase cultures cultures (roughly 7.5 x 107 CFU; lanes 1–4)

or, to enhance visibility of the proteins, from 200 μl of stationary-phase cultures (roughly 2 x

108 CFU; lanes 5–8). Gels were either stained with Coomassie (left panel) or transferred to

nitrocellulose and probed with polyclonal antibodies that recognize the glycan moieties on

GspB (right panel). Lanes 1 and 5, the Δ5’gspB strain PS2114 (no GspB expressed); lanes 2 and

6, M99 (GspB wild-type); lanes 3 and 7, PS3515 (GspB::HsaBR); lanes 4 and 9, PS3516

(GspB::10712BR); lanes marked "M" contain molecular weight markers (250, 150, 100, 75, 50

and 37 kDa from top to bottom).

(TIF)
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