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Identification of drug-specific public TCR driving
severe cutaneous adverse reactions
Ren-You Pan1, Mu-Tzu Chu2,3, Chuang-Wei Wang1,2, Yun-Shien Lee4, Francois Lemonnier 5,

Aaron W. Michels6, Ryan Schutte7, David A. Ostrov 7, Chun-Bing Chen 1,2,8, Elizabeth Jane Phillips 9,10,

Simon Alexander Mallal9,10, Maja Mockenhaupt11, Teresa Bellón 12, Wichittra Tassaneeyakul 13,

Katie D. White9, Jean-Claude Roujeau14, Wen-Hung Chung 1,2,8,15,16 & Shuen-Iu Hung 2,3

Drug hypersensitivity such as severe cutaneous adverse reactions (SCAR), including

Stevens–Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN), could be life-

threatening. Here, we enroll SCAR patients to investigate the T cell receptor (TCR) repertoire

by next-generation sequencing. A public αβTCR is identified from the cytotoxic T lympho-

cytes of patients with carbamazepine-SJS/TEN, with its expression showing drug/pheno-

type-specificity and an bias for HLA-B*15:02. This public αβTCR has binding affinity for

carbamazepine and its structural analogs, thereby mediating the immune response. Adoptive

transfer of T cell expressing this public αβTCR to HLA-B*15:02 transgenic mice receiving oral

administration of carbamazepine induces multi-organ injuries and symptoms mimicking

SCAR, including hair loss, erythema, increase of inflammatory lymphocytes in the skin and

blood, and liver and kidney dysfunction. Our results not only demonstrate an essential role of

TCR in the immune synapse mediating SCAR, but also implicate potential clinical applications

and development of therapeutics.
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Drug hypersensitivity is an important clinical issue, which
shows different presentations and pathogenesis1,2. T-cell-
mediated delayed-type drug hypersensitivity ranges from

mild skin rash to life-threatening severe cutaneous adverse
reactions (SCAR), including Stevens–Johnson syndrome (SJS),
toxic epidermal necrolysis (TEN), and drug reaction with eosi-
nophilia and systemic symptoms (DRESS)3,4. Most of SCAR are
unpredictable and carry high mortality rates. Some of
drug hypersensitivity reactions have shown HLA (human leu-
kocyte antigen) genetic predisposition, e.g., HLA-B*15:02 for
carbamazepine (CBZ)-induced SJS/TEN5, HLA-A*31:01 for CBZ-
DRESS6, HLA-B*58:01 for allopurinol-SCAR7,8, HLA-B*13:01 for
dapsone hypersensitivity9,10, and HLA-B*57:01 for abacavir
hypersensitivity11,12. In addition to HLA, the genetic poly-
morphisms of drug metabolic enzyme CYP2C9 have been linked
to phenytoin-induced SCAR13,14. However, both the HLA and
CYP genetic variants have low positive predictive values (PPV)
(e.g., the PPV of HLA-B*15:02 for CBZ-SJS/TEN is only 3%)1,15,
suggesting that other factors are involved in the pathogenesis of
SCAR.

T lymphocytes are suggested to play important roles in SCAR,
as the cytokine/biomarker signatures reveal the Th1 pathway for
DRESS and cytotoxic T lymphocytes (CTL) profile for SJS/
TEN16,17. Our previous studies discovered that CTL pre-
dominately infiltrated in the skin lesions of SJS/TEN, and
expressed inflammatory cytokines and cytotoxic proteins,
including granulysin, a key mediator to cause keratinocyte death
in SJS/TEN18,19. The in vitro lymphocyte activation tests confirm
the presence of drug-specific T cells/clones in SCAR20. However,
it remains unclear how T cells recognize the drug antigens, how
the T-cell receptor (TCR) repertoire is used, and whether drug-
specific TCR clonotypes mediate the hypersensitivity reactions. In
this study, we enroll patients with various drug-induced SCAR
(65 SJS/TEN, 8 DRESS) from different ethnic populations, and
tolerant/healthy controls. We apply next-generation sequencing
(NGS) and single-cell sequencing to investigate TCR repertoire,
and further perform functional analyses, molecule modeling, co-
cultures, and adoptive cellular transfer of TCR-T to HLA-
transgenic mice to elucidate the roles of TCR in the immune
synapse of SCAR.

Here, we report the discovery of preferential TCR clonotypes
from the blister cells of the skin lesions of SJS/TEN patients. We
identify a public TCR composed of a paired TCRα CDR3 (third
complementarity-determining region) “VFDNTDKLI” and TCRβ
CDR3 “ASSLAGELF” clonotypes from CBZ-SJS/TEN patients
recruited from Asia and Europe. This public TCR shows drug-
specificity and phenotype-specificity in an HLA-B*15:02-favored
manner. Our data of functional assays, co-cultures, and adoptive
transfer of TCR-T cells in the mouse model further support that
the drug-specific TCR of CTL is essential for the immune synapse
that mediates CBZ-SJS/TEN.

Results
Clinical demographics of patients and controls. We recruited a
total of 73 patients of SCAR, including 8 cases with CBZ-DRESS,
and 65 with SJS/TEN caused by carbamazepine (CBZ) (n= 42),
oxcarbazepine (OXC) (n= 3), lamotrigine (LTG) (n= 4), phe-
nytoin (PHT) (n= 6), and allopurinol (ALP) (n= 10). The
demographics and HLA genotype data of patients are listed in
Supplementary Tables 1 and 2. Among the 42 cases of CBZ-
induced SJS/TEN, HLA-B*15:02 allele was found in all 24
(100.00%) of Chinese, 4 of 5 (80.00%) Thai patients, and 2 of 13
(15.38%) subjects enrolled from Europe (Supplementary Table 1).
In addition, all three patients with OXC-SJS carried HLA-B*15:02
(Supplementary Table 2). We also enrolled drug-tolerant controls

(n= 12) who had taken CBZ for more than 6 months without
adverse reactions, and six of them carried HLA-B*15:02 (Sup-
plementary Table 3). Furthermore, we recruited 44 healthy
donors to represent the general population, who had the phe-
notype frequency of HLA-B*15:02 as 9% (Supplementary
Table 4).

TCR usage in the blister cells of patients with SJS/TEN. We
investigated the TCRβ variable (TRBV) gene usage of the blister
cells and peripheral blood mononuclear cells (PBMC) of SJS/TEN
patients by NGS, and normalized the expression of TRBV tran-
scripts of each sample to the mean value of the corresponding
subtype of healthy donors’ PBMC (n= 44) (Fig. 1a). Compared
with other subtypes, TRBV12-4 exhibited the highest increase of
expression (~10- to 100-fold) in the PBMC and blister cells of
patients with CBZ-induced SJS/TEN (Fig. 1a; Supplementary
Fig. 1). The principal components analysis (PCA) showed the
unique pattern of TRBV gene usage in CBZ-SJS/TEN (Fig. 1b).
The mean frequency of TRBV12-4 was 31.62% in blister cells
(n= 7) and 4.95% in PBMC (n= 11) of patients with CBZ-SJS/
TEN, but only 0.69% in the PBMC of CBZ-tolerant controls (n=
12) (Fig. 2a). In addition, the TRBJ2-2 gene highly expressed in
the blister cells of CBZ-SJS/TEN patients (n= 7) with a mean
frequency of 22.15% (Supplementary Fig. 1). We then mapped
the V–J junction Circos plot and found the significant increase of
TRBV12-4/TRBJ2-2 pairing in the blister cells and PBMC of CBZ-
SJS/TEN patients, but not in the CBZ-tolerant controls
(Fig. 2b–d; Supplementary Fig. 2).

Identification of a public TCRβ clonotype from CBZ-SJS/TEN.
We investigated the CDR3 assemblies of TCRβ clonotypes in the
samples of blister cells of patients with SJS/TEN. Preferential and
oligoclonal TCRβ clonotypes were noticed in the blister samples
of patients with CBZ-SJS/TEN (Table 1). Remarkably, an abun-
dant TCRβ CDR3 clonotype “ASSLAGELF” was identified in all
of the blister samples (n= 7, mean: 13.57%, range: 1.08–42.85%)
(Table 1 and Fig. 2e). By comparison, this TCRβ clonotype was
undetectable or scarce (<0.001%) in the PBMC of CBZ-tolerant
controls or healthy donors (Table 1). The expression of TCRβ
“ASSLAGELF” clonotype showed drug-specificity, as it was pre-
sent only in the blister cells of SJS/TEN caused by CBZ, but not
other culprit drugs (e.g., phenytoin or allopurinol) (Supplemen-
tary Fig. 3). In addition to the public CDR3 “ASSLAGELF”, there
were similar clonotype clusters with one residue difference (e.g.,
“ASSLSGELF”, “ASSFAGELF”, etc.) identified in the blister cells
of patients with CBZ-SJS/TEN (Fig. 2f; Supplementary Table 5).
The data of flow cytometry further revealed that the specific
TRBV12-4 TCR was predominantly expressed by memory CD8+

CTL, which accounted for the majority (72.4%) of the blister cells
of CBZ-SJS/TEN (Fig. 2g, h; Supplementary Figs. 4, 5).

Expression patterns of the public TCRβ. We analyzed the
expression of this public TCRβ clonotype “ASSLAGELF” in the
PBMC samples of CBZ-SJS/TEN patients enrolled from different
ethnic populations. This specific CDR3 clonotype was detected in
0.1–3.6% (mean: 1.34%) of the total TCR reads of NGS data in the
PBMC of Han Chinese patients; all had HLA-B*15:02 (Fig. 3a–d).
In addition, this specific clonotype was also found in the PBMCs
of European patients (n= 6; range: 0–4.2%; mean: 1.28%), though
most of them had no HLA-B*15:02 allele (Fig. 3b–d). We found
that the expression of this public TCRβ clonotype is phenotype-
specific, as it was predominately in the PBMC of CBZ-SJS/TEN
(n= 11; mean: 1.31%), but scarce or absent in CBZ-DRESS (n=
8; mean: 0.32%), CBZ-tolerant controls (n= 12; mean: <0.001%)
or healthy donors (n= 44; mean: <0.001%) (Fig. 3c, d).
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Furthermore, we validated the NGS data by quantitative PCR,
and confirmed that the public TCRβ expression showed corre-
lation with the disease states of CBZ-SJS/TEN, which had the
highest levels in blister cells, moderate in the PBMC from the
active stage of patients, decrease in the recovery stage, but
undetectable in the tolerant controls or healthy donors (Fig. 3e, f;
Supplementary Table 6).

TRVA/TRVB pairing and gene profile of the CTL. We com-
prehensively analyzed the TCRα/TCRβ repertoire and the genes
expression profile of the corresponding T lymphocytes in the
blister cells of patients with CBZ-SJS/TEN by NGS and single-cell
sequencing. The pooled data of the blister cells suggested oligo-
clonal expansion of T lymphocytes with paired TCRα CDR3
“VFDNTDKLI” and TCRβ CDR3 “ASSLAGELF” clonotypes,
which accounted for 44.81 and 42.85%, respectively, in a repre-
sentative data set (Supplementary Fig. 6). To validate the TRVA/
TRVB pairing and gene expression profile, we sorted 30 single
cells using flow cytometry with monoclonal antibodies (mAb)
against TRBV12-3/TRBV12-4. Then the paired TRVA/TRVB,
and 18 phenotypic genes were determined by single-cell
sequencing. All (100%) of the 30 cells expressed the same spe-
cific TCRβ CDR3 clonotype “ASSLAGELF”, and 25 (83.33%) cells
expressed the TCRα CDR3 clonotype “VFDNTDKLI” (Fig. 4a, b).
Two other TCRα CDR3 clonotypes “AASPPDGNQFY” and
“ALDIPNFGNEKLT” were found to pair with the specific TCRβ,
but presented in low frequencies (13.33 and 3.33%, respectively)
in the blister cells (Fig. 4a, b). The expression of the specific TCRɑ

CDR3 clonotype “VFDNTDKLI” was further validated by Taq-
Man quantitative real-time PCR in the blister cells (n= 5) or
PBMC samples (n= 6) of CBZ-SJS/TEN patients, CBZ-DRESS
patients (n= 5), and controls (n= 4) (Supplementary Table 6
and Supplementary Fig. 7). The expression levels of TCRα CDR3
“VFDNTDKLI” and TCRβ CDR3 “ASSLAGELF” showed a
similar trend, supporting the correct pairing (Supplementary
Fig. 7).

Single-cell sequencing on the 30 T lymphocytes with the public
TCRβ “ASSLAGEL” clonotype revealed the abundant transcripts
of genes, including GNLY, GZMB, IL17A, IL12A, IL10, and RORC
(Fig. 4c). GNLY and GZMB encode cytotoxic proteins, which are
produced by CTL and responsible for disseminated keratinocyte
death in SJS/TEN18. IL17A and IL12A are inflammatory
cytokines21,1, and RAR-related orphan receptor C (RORC) is
important for lymphoid organogenesis and thymopoiesis22.
Taken together, the public αβTCR was expressed by CD8+

cytotoxic T lymphocytes with abundant cytotoxic proteins (e.g.,
granulysin and granzyme B), and inflammatory cytokines,
including IL17A, IL12A, and RORC.

The public TCR shows binding affinity toward CBZ. To
investigate the functional role of the public αβTCR, we generated
the cDNA construct encoding for a soluble single-chain αβTCR
(scTCR) recombinant protein composed of the paired TCRα
CDR3 “VFDNTDKLI” and TCRβ CDR3 “ASSLAGELF” (Sup-
plementary Table 7). The scTCR construct was transfected to
HEK293F cells, and the recombinant protein was purified from

2

TRBV

a

b

CBZ
OXC

LT
G

PHT
ALP

3–1

11–3

–100

5

CBZ-SJS/TEN
OXC-SJS/TEN
LTG-SJS/TEN
PHT-SJS/TEN
Allopurinol-
SJS/TEN
Healthy donor

0

–5

TEBV PC1 (18.4%)
–7.5 –5.0 –2.5 0.0 2.5 5.0

T
R

B
V

 P
C

2 
(1

0%
)

0 100

12–3
12–4
12–5

13

4–1
4–2
4–3
5–1
5–4
5–5
5–6
5–8
6–1
6–2
6–3
6–4
6–5
6–6
6–8
6–9
7–2
7–3
7–4
7–6
7–7
7–8
7–9

10–1
10–2
10–3
11–1
11–2
11–3
12–3
12–4
12–5

13
14
15
16
18
19

20–1
24–1
25–1

27
28

29–1
30

9

A
LP

-P
B

M
C

 (
ca

se
65

)
A

LP
-P

B
M

C
 (

ca
se

61
)

A
LP

-P
B

M
C

 (
ca

se
60

)
A

LP
-P

B
M

C
 (

ca
se

59
)

A
LP

-P
B

M
C

 (
ca

se
58

)

C
B

Z
-B

C
 (

ca
se

1)
C

B
Z

-B
C

 (
ca

se
2)

C
B

Z
-B

C
 (

ca
se

3)
C

B
Z

-B
C

 (
ca

se
4)

C
B

Z
-B

C
 (

ca
se

5)
C

B
Z

-B
C

 (
ca

se
6)

C
B

Z
-B

C
 (

ca
se

7)
C

B
Z

-P
B

M
C

 (
ca

se
2)

C
B

Z
-P

B
M

C
 (

ca
se

3)
C

B
Z

-P
B

M
C

 (
ca

se
4)

C
B

Z
-P

B
M

C
 (

ca
se

8)
C

B
Z

-P
B

M
C

 (
ca

se
9)

C
B

Z
-P

B
M

C
 (

ca
se

25
)

C
B

Z
-P

B
M

C
 (

ca
se

26
)

C
B

Z
-P

B
M

C
 (

ca
se

27
)

C
B

Z
-P

B
M

C
 (

ca
se

28
)

C
B

Z
-P

B
M

C
 (

ca
se

29
)

C
B

Z
-P

B
M

C
 (

ca
se

30
)

O
X

C
-P

B
M

C
 (

ca
se

44
)

O
X

C
-P

B
M

C
 (

ca
se

45
)

LT
G

-B
C

 (
ca

se
46

)
LT

G
-B

C
 (

ca
se

47
)

LT
G

-P
B

M
C

 (
ca

se
48

)
LT

G
-P

B
M

C
 (

ca
se

49
)

P
H

T
-B

C
 (

ca
se

50
)

P
H

T
-B

C
 (

ca
se

51
)

P
H

T
-B

C
 (

ca
se

52
)

P
H

T
-B

C
 (

ca
se

53
)

P
H

T
-B

C
 (

ca
se

54
)

P
H

T
-B

C
 (

ca
se

55
)

A
LP

-B
C

 (
ca

se
56

)
A

LP
-B

C
 (

ca
se

57
)

A
LP

-B
C

 (
ca

se
62

)
A

LP
-B

C
 (

ca
se

63
)

A
LP

-B
C

 (
ca

se
64

)

O
X

C
-B

C
 (

ca
se

43
)

Fig. 1 Preferential TCR usage in blister cells and PBMC from patients with SJS/TEN. The PBMC and blister cells were isolated from patients with SJS/TEN
caused by carbamazepine (CBZ; n= 18), oxcarbazepine (OXC; n= 3), lamotrigine (LTG; n= 4), phenytoin (PHT; n= 6), or allopurinol (ALP; n= 10). The
expression profiles of TCR repertoire in the samples were analyzed by next-generation sequencing. a Heatmaps display the expression values of the TRBV
genes from each sample, which were normalized to the mean values of the corresponding gene of the healthy donors’ PBMC (n= 44), respectively. The
definition of TRBV and TRBJ was based on the IMGT (ImMunoGeneTics) database. b Principal component analysis (PCA) of TRBV gene usage across
samples from patients (n= 41) with SJS/TEN caused by different drugs, and healthy donors (n= 44)
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the serum-free cultured medium (see the Methods section and
Supplementary Fig. 8). We coated the scTCR recombinant pro-
tein on the chip of the BIAcore surface plasmon resonance (SPR)
system. Different drugs and metabolites flowed through the chip,
and only CBZ, CBZ-10,11-epoxide (CBZ-E), and OXC showed
binding response to the public scTCR recombinant protein
(Fig. 5; Supplementary Fig. 9). By comparison, the control scTCR
protein composed of TCRα CDR3 “AGHDYKLS” and TCRβ

CDR3 “ASTSGPNEQF” did not display binding response to CBZ,
CBZ-E or OXC (Supplementary Fig. 10).

We further performed in silico modeling to investigate the
potential interaction of the public αβTCR, the drug antigen, and
HLA-B*15:02. First, we modeled a peptide complexed to HLA-
B*15:02 based on the crystal structure of HLA-B*15:01 (PDB
1XR8) and a peptide motif identified from CBZ-treated cells23.
We then modeled the public αβTCR interaction with the peptide/
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HLA-B*15:02 complex in a conventional docking orientation24.
Molecular docking was applied to predict CBZ binding to the
HLA-B*15:02/peptide/TCR complex25. Molecular docking sug-
gests that CBZ is more likely to bind the solvent exposed portion
of the interface between the public αβTCR and HLA-B*15:02
compared with other sites, such as those within the antigen-
binding cleft. CBZ was predicted to bind this TCR/HLA interface
site with an estimated ΔG -7.9 kcal mol−1, which was comprised
the α1 helix of HLA-B*15:02, TCRα CDR3 VFDNTDKLI, and
TCR β CDR2 (Supplementary Fig. 11).

Public TCR mediates immune response to the drug and HLA.
To investigate the functional role of the public αβTCR in the

immune synapse, we generated the C1R-HLA-B*15:02 transfec-
tants (C1R-B*1502) as the antigen presenting cells (APC) and the
αβTCR transfectants (5KC-TCR) expressing the public TCRα
CDR3 and TCRβ CDR3 (Supplementary Table 8). Incubation of
5KC cells with CBZ and C1R-HLA-B*1502 showed no reactivity
(Fig. 6a, b). By comparison, the cultures of 5KC-TCR and C1R
displayed increased IL-2 production upon CBZ drug stimulation
(Fig. 6a, b). The strongest IL-2 enzyme-linked immunospot
(ELISPOT) response was observed in the co-cultures of 5KC-TCR
transfectants, C1R-B*15:02 cells, and CBZ (Fig. 6a, b). In addition
to CBZ, 5KC-TCR transfectants also reacted to CBZ-10,11-
epoxide and OXC (Fig. 6c). CBZ of 100 μmol L−1 or CBZ-10,11-
epoxide of 50 μmol L−1 stimulated the maximal number of 5KC-
TCR cells producing IL-2 (Fig. 6d). These results suggested that

Table 1 Preferential TCRβ CDR3 clonotypes in blister cells from patients with CBZ-SJS/TEN

Case no. Culprit drug Symptom CDR3 clonotypes TRBV TRBJ Frequency (%) Specific CDR3
reads/total reads

Frequency (%) in PBMC
of healthy donorsa

Case 1 CBZ SJS/TEN 1 ASSLSDTIY 12–4 1–3 24.45 182480/746406 0
2 ASSLGGAPY 12–4 2–7 8.41 62776/746406 0
3 ASSYNPGTGTEEYEQY 6–1 2–7 6.50 48516/746406 0
4 ASTHTGELF 12–4 2–2 4.60 34325/746406 0
5 ASSLAGELF 12–4 2–2 3.73 27829/746406 <0.001
6 ASSPRLAGSTDTQY 27 2–3 2.11 15748/746406 <0.001

Case 2 CBZ SJS 1 ASSLAGELF 12–4 2–2 19.39 153620/792164 <0.001
2 ASSLSGYEQY 27 2–7 4.01 31781/792164 0.0026
3 ASSSAGEVF 12–4 2–1 2.27 17990/792164 0

Case 3 CBZ SJS 1 ASSLAGELF 12–4 2–2 6.64 5411/81449 <0.001
2 ATSGPNQETQY 24–1 2–5 2.08 1697/81449 0

Case 4 CBZ TEN 1 ASSLAGELF 12–4 2–2 42.85 31148/72692 <0.001
2 ASSYRDGYEQY 6–5 2–7 2.73 1986/72692 <0.001
3 ASSRRAVVGSYNEQF 7–2 2–1 2.62 1905/72692 0
4 ATHGTGYLEQY 25–1 2–7 2.15 1565/72692 0

Case 5 CBZ SJS/TEN 1 ASSLAGELF 12–4 2–2 17.41 143248/822649 <0.001
2 ASSSRLAGGTDTQY 27 2–3 12.11 99586/822649 0.0025

Case 6 CBZ SJS/TEN 1 ASSPSDRSSYEQY 18 2–7 4.69 57694/1229012 0
2 ASSSLTSSWVEQF 28 2–1 3.81 46784/1229012 0
3 ASTSGPNEQF 12–4 2–1 2.99 36759/1229012 <0.001
4 ASSYSSTDTQY 6–5 2–3 2.80 34429/1229012 0.0029
5 ASSQYRYNEQF 14 2–1 2.60 32006/1229012 0
6 ASSFAGELF 12–4 2–2 2.22 27338/1229012 <0.001
7 ASSLAGELF 12–4 2–2 1.08 13273/1229012 <0.001

Case 7 CBZ TEN 1 ASSWDPTIY 12–3 1–3 10.21 81449/798017 0
2 ASSLAGELF 12–4 2–2 4.00 31881/798017 <0.001
3 ASIDGSSLNEQF 27 2–1 3.57 28498/798017 0
4 ASSLSGYEQY 27 2–7 2.90 23122/798017 0.0026
5 ASSYSDTIY 6–6 1–3 2.50 19948/798017 0

CDR3 third complementarity-determining region, PBMC peripheral blood mononuclear cell, SJS Stevens–Johnson syndrome, TEN toxic epidermal necrolysis, TRBJ T-cell receptor β joining, TRBV T-cell
receptor β variable
aThe mean frequencies of the corresponding CDR3 clonotypes in PBMC of healthy donors (n= 44)

Fig. 2 Identification of a public TCR from the blister cells of patients with CBZ-SJS/TEN. The TCR repertoire of samples was analyzed by next-generation
sequencing. a The frequencies of TRBV12-4 gene usage were significantly higher in PBMC (n= 11) and blister cells (n= 7) of patients with CBZ-SJS/TEN,
when compared with the PBMC of CBZ-tolerant controls (n= 12). The results are expressed as mean ± s.e.m. with each dot representing the data of an
individual. Statistical analysis was generated using an unpaired, two-tailed Student’s t test. **P < 0.01. b A representative TRBV–TRBJ junction Circos plot of
blister cells of a CBZ-SJS/TEN patient (case 4). Arcs correspond to different V and J segments. Ribbons represent V/J pairings with sizes scaled to pairing
frequency. c The mean frequencies (%) of TRBV/TRBJ pairings in the blister cells from CBZ-SJS/TEN patients (n= 7). The x- and y-axis represent the TRBV
and TRBJ regions, respectively, and the z-axis indicates the mean frequencies of TCRβ rearrangements. d The pairwise overlap Circos plot shows the
overlapping CDR3 clonotypes among the seven blister samples of cases 1–7. e Treemaps of TCRβ CDR3 clonotypes for the representatives of blister cells of
patients with CBZ-SJS/TEN (upper panel) and the PBMC of CBZ-tolerant controls (lower panel). Colors represent individual specific CDR3 clonotypes, and
the area of each color square represents the frequency in the sample. The specific TCRβ CDR3 “ASSLAGELF” is labeled in red. f The frequencies of “CDR3
ASSLAGELF cluster” which includes the TCR clonotypes carrying similar CDR3 sequences with one amino acid difference in the blister cells of CBZ-SJS/
TEN patients. g, h Flow-cytometry analysis of the cell populations expressing the markers of CD4, CD8, CD56, TRBV 12–3/12–4, CD45RA, and CD197 in
the blister cells of patients with CBZ-SJS/TEN
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the public αβTCR reacts to CBZ and its structural analogs, and
the HLA-B*15:02 presenting promotes the immune recognition.

Adoptive transfer of TCR-T cells to HLA-B*15:02 transgenic
mice. We generated HLA-B*15:02 transgenic mice and confirmed
the stable expression of transgene (Supplementary Fig. 12). The
transgenic mice were assigned to three groups: (I) the vehicle

controls; (II) oral administration of carbamazepine (328 mg kg−1

per day); (III) given carbamazepine and adoptive transfer of the
public αβTCR-T lymphocytes. In the group II, the transgenic
mice had received carbamazepine for more than 3 months;
however, no phenotypes of SCAR developed. By comparison, the
HLA-B*15:02+αβTCR+CBZ+ mice (group III) displayed phe-
notypes mimicking SCAR with multi-organ injuries after 4 weeks
of adoptive cell transfer (Fig. 7). The group III transgenic mice
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Fig. 3 Expression of the public TCRβ CDR3 clonotype in the CBZ-SCAR patients. a, b The frequencies of the specific CDR3 “ASSLAGELF” were determined
by TCR NGS using the PBMC of patients of Han Chinese (n= 5) and Europeans (n= 6) with CBZ-SJS/TEN. c, d Comparison of the frequencies of the
CDR3 “ASSLAGELF” in the blister cells (BC) and PBMC of patients with CBZ-SCAR, CBZ-tolerant controls, and healthy donors (HD). The results are
expressed as mean ± s.e.m. with each dot representing the data of an individual. Statistical analysis was generated using an unpaired, two-tailed Student’s
t test. e Determination of the expression levels of the specific CDR3 by quantitative real-time PCR in the samples of BC and PBMC of patients with CBZ-
SCAR of different ethnic populations including Han Chinese (H), Thai (T), and Europeans (E). The samples used for analysis include blister cells of CBZ-
SJS/TEN (Han Chinese (n= 8)), PBMC of CBZ-SJS/TEN (Han Chinese (n= 15); Europeans (n= 13); Thai people (n= 5)), PBMC of CBZ-DRESS (Han
Chinese (n= 6)), PBMC of tolerant controls (Han Chinese (n= 6)), and PBMC of healthy donors (Han Chinese (n= 6)). The expression level of the
specific TCRβ clonotype was normalized by that of CD3, and the detection limit of the TCRβ clonotype/CD3 ratio was 0.0001. The results are expressed as
mean ± s.e.m. with each dot representing the data of an individual. Statistical analysis was performed using an unpaired, two-tailed Student’s t test.
f Determination of the expression levels of the specific CDR3 by quantitative real-time PCR in the samples of BC and PBMC of patients with CBZ-SCAR
in the active or recovery disease states. The results are representative data of three cases and each with triplicate measurements. The data are expressed
as mean ± s.e.m. with each dot representing the data of one sample. Statistical analysis was performed using an unpaired, two-tailed Student’s t test.
**P < 0.01
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showed hair loss, perioral/paranasal mucositis, skin erythema
with telangiectasia, and conjunctivitis (Fig. 7a). Histology and
immunohistochemistry of the biopsies of affected skin showed
marked dermal inflammatory cell infiltration with epidermal
dyskeratosis (Supplementary Fig. 13), and elevated levels of
cytotoxic proteins and inflammatory cytokine (e.g. granzyme B,
IFNγ, and TNFα) (Fig. 7b–e). In addition, there were increased
amounts of IFNγ+ CD4+ or IFNγ+ CD8+ T cells in the per-
ipheral blood (Fig. 7f–j). Furthermore, compared with the con-
trols, the HLA-B*15:02+αβTCR+CBZ+ mice (group III)
displayed the impaired liver and kidney function with elevated
serum ALT/GPT, BUN, and CRE levels (Fig. 7k–m). Taken
together, these data support the essential role of the public αβTCR
in the formation of an immune synapse that mediates SCAR.

Discussion
Different genetic and nongenetic factors predispose individuals to
SCAR. The germline HLA alleles and CYP variants have been
linked to SCAR, and some of the genetic markers have been
translated to clinical applications to prevent the drug hypersen-
sitivity reactions8,12,14. The functional studies further demon-
strated that the associated HLA alleles possess increased affinity
to the culprit drugs/metabolites26,27 and drug-specific T cells
serve the immunological basis of SCAR18,28,29. The genetic
defects on drug metabolism enzymes or impaired renal function
in SCAR patients caused increase of drug allergen and induced
lymphocyte activation and hypersensitivity reactions13,30. How-
ever, most of SCAR do not show a strong genetic predisposition
in the germline HLA or drug metabolism genes. Herein, we
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Fig. 5 Binding response of the public TCR to different drugs and structural
analogs. Surface plasmon resonance (SPR) was applied for analyzing the
binding response between the soluble single-chain αβTCR (scTCR)
recombinant protein and drug compounds. The scTCR composed of the
TCRα CDR3 “VFDNTDKLI” and TCRβ CDR3 “ASSLAGELF” was purified
from the cultured medium of HEK293F transfectants. The scTCR protein
was coated to the chip, and different drugs or metabolites flowed through
the chip. The binding response of the scTCR protein toward CBZ and
related compounds was examined by SPR. The results are representative of
three independent experiments, and expressed as mean ± s.e.m. with each
dot representing the data of one sample. Statistical analysis was generated
using an unpaired, two-tailed Student’s t test. **P < 0.01
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investigate the immune repertoire of SCAR, and evaluate the role
of TCR in the pathogenesis of SCAR.

The development of NGS advances the understandings of TCR
repertoire. This study applies NGS and uncovers an abundant,
public, and unique TCR clonotype from SCAR. The TCR clo-
notype identified in this study is different from our previous
report, which utilized the traditional cloning and Sanger
sequencing method with the samples of co-cultures of EBV-
transformed B cells as the APC and the PBMC of CBZ-SJS/TEN
patients31. The in vitro expansion of T cells by co-culturing with
EBV-transformed B cells as APC may distort the T-cell reper-
toire32. To reduce the methodological biases, we here use the
blister cells of SJS/TEN patients enrolled from a large cohort, and
apply multiplex PCR of TCR subtype-specific primers (i.e., iRe-
pertoire® library preparation system) for NGS and single-cell
sequencing, and validate the TCR function by transfection and
adoptive T-cell transfer into the HLA-B*15:02-transgenic mice.
The iRepertoire®-based PCR library preparation system and
single-cell sequencing method used in this study have been
applied by many studies described in the literature33–36. Rosati
et al. compared the methods of different library preparation
systems, including iRepertoire®-based PCR, 5′ RACE-based PCR
with or without UMI correction, and showed that the percentages

of sequences representing abundant clonotypes captured by
these three methods are similar37. Following NGS, our quanti-
tative real-time PCR and functional assays further proved that the
public TCR clonotype is essential for the formation of the
immune synapse of CBZ-SJS/TEN.

To explain the interaction of HLA, drug antigen, and TCR in
drug hypersensitivity, there are different hypotheses, including
the “hapten” theory38, the “pharmacological interaction with
immune receptors (p-i)” concept2, the “altered peptide reper-
toire” model23,39, and the “altered TCR repertoire” model40.
We previously applied mass spectrometry to evaluate the pep-
tide repertoire of HLA-B*1502, but found no evidence suggests
the presence of CBZ haptenated peptide41. Our previous studies
further demonstrated that the chemical antigens (e.g., CBZ or
oxypurinol) could directly interact with HLA proteins without
the involvement of the antigen-processing pathway, which
supports the “p-i” model42–44. In this study, we identified a
predominate and public αβTCR clonotype, which can directly
bind to CBZ and its structural analogs (e.g., CBZ-10,11-epoxide
and OXC), and the immune response was promoted by the
presence of HLA-B*15:02. The oligoclonal TCR clonotype
identified in CBZ-SJS/TEN further supports the “p-i” concept,
but not the “altered peptide repertoire” model, which induces
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polyclonal TCR23,39. These T lymphocytes with a public TCR
recognizing a small chemical antigen presented by the preferred
HLA molecule, may arise from the preexisting memory T cells
by heterologous immune response4. Whether the public TCR
could be generalized to SJS/TEN caused by other drugs needs
further studies.

Different animal models for drug hypersensitivity have been
reported. Saito et al. transplanted the PBMCs and skin tissue of
patients with SJS/TEN to mice, and the mice showed marked
conjunctival congestion and dead keratinocytes in the darkening
skin-grafted areas upon receiving the causative drug45. However,
xenografts induced immune rejection could not be excluded in
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Fig. 7 Adoptive transfer of TCR-T lymphocytes to HLA-B*15:02 transgenic mice. HLA-B*15:02 transgenic mice were assigned to the group (I) the vehicle
controls (n= 5); group (II) given carbamazepine daily (328mg/kg/day) by oral gavage (n= 4); and group (III) given carbamazepine daily and adoptive
transfer of the public TCR-T (n= 4). Photographs, biopsies of the affected skin, and peripheral blood were obtained. a Representative photos of the
affected skin and eyes of the group III mice are shown. b–e Immunohistochemistry staining of the skin biopsies of the mice. Compared with the group II, the
group III mice showed augmented expression of cytotoxic protein granzyme B (GzB), and inflammatory cytokines, including IFNγ and TNFα. The results are
representative of three independent experiments. Scale bar indicates 100 µm. f–j The frequencies of CD4+, CD8+, and/or IFN+ lymphocytes in the
peripheral blood of the mice group I (n= 3), group II (n= 3), and group III (n= 4). The results are expressed as mean ± s.e.m. with each dot representing
the data of an individual mouse. Statistical analysis was performed using an unpaired, two-tailed Student’s t test. k–m The plasma levels of ALT (alanine
aminotransferase), BUN (blood urea nitrogen), and CRE (creatinine) were determined in the mice group I (n= 5), group II (n= 4), and group III (n= 4).
The levels of each parameter are plotted as the mean ± s.e.m. with each dot representing the data of an individual mouse. Statistical analysis was
performed using an unpaired, two-tailed Student’s t test. *P < 0.05; **P < 0.01
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the study. Recently, Cardone et al. generated HLA-B*57:01-
transgenic mice and showed that the drug was tolerated in vivo;
depletion of CD4+ T cells prior to abacavir administration was
required to induce the reactive CD8+ T cells infiltration and
inflammation in the drug-sensitized skin of mice46. In this study,
we generated an animal model of SCAR. The adoptive transfer of
the public TCR-T and oral administration of CBZ led to the
development of symptoms of SCAR in the HLA-B*15:02-trans-
genic mice. The method of TCR-T adoptive cell transfer has been
applied in many studies, especially in the field of cancer immu-
notherapy targeting neoantigens47–50. The absence of blistering
skin reactions in our animal model may relate to the fact that
mice lack granulysin (GNLY) gene, which mediates the extensive
epidermal necrosis in SJS/TEN18. Our animal studies demon-
strate the essential role of TCR in the pathogenesis of SCAR.

In summary, we identify the preferential TCR usage in patients
with SCAR. A public TCR composed of a paired TCRα CDR3
“VFDNTDKLI” and TCRβ CDR3 “ASSLAGELF” clonotypes and
its similar TCR clusters are found in the blister cells and per-
ipheral blood of CBZ-SJS/TEN patients enrolled from different
ethnic populations. The public αβTCR is expressed by CTL that
also possess abundant cytotoxic proteins and inflammatory
cytokines. Our in vitro functional analyses and co-culture
experiments show that the public αβTCR on T cells triggers the
immune response against drug antigen presented by HLA-
B*15:02. Our animal study further reveals that HLA-B*15:02-
transgenic mice received adoptive transfer of the public TCR-T
cells and oral administration of CBZ develop symptoms
mimicking SCAR in humans. In conclusion, our results not only
support the essential role of this public TCR in the formation of
immune synapse that mediates SCAR but also have great
potential for clinical applications and development of ther-
apeutics for the disease.

Methods
Patients and samples. We enrolled a total of 129 subjects, including 73 patients
with SCAR (65 with SJS/TEN and 8 with DRESS) (Supplementary Tables 1, 2), 12
tolerant controls (Supplementary Table 3), and 44 healthy donors of Han Chinese
origin (Supplementary Table 4). Among 73 patients with SJS/TEN or DRESS, there
were 55 Chinese enrolled from the Chang Gung Memorial Hospital Health System
and Taiwan severe cutaneous adverse reactions (T-SCAR) consortium (including
National Taiwan University Hospital, Taichung Veterans General Hospital,
National Cheng Kung University Hospital, and Kaohsiung Medical University, and
Chung-Ho Memorial Hospital) in Taiwan, 5 from Thailand, and 13 recruited by
the RegiSCAR group from Europe, during 2011 and 2018. The diagnosis of SJS/
TEN or DRESS was based on the definition of the RegiSCAR study group51–53.
Only patients with a probable or definite diagnosis of SJS/TEN, or DRESS, were
enrolled in this study. The Naranjo algorithm54 and the algorithm of drug causality
assessment for SJS/TEN (ALDEN)55 were applied to identify the offending drug. In
addition, we also enrolled drug-tolerant subjects of Han Chinese (n= 12), who had
received the drug for more than 6 months without adverse reactions. We collected
clinical information and biological samples, including skin biopsies, blister fluids/
cells, and the PBMC from patients in the acute or recovery stage. The HLA-B
genotypes of enrolled subjects were determined by SeCore® HLA Sequence-based
typing (Invitrogen, Life Technologies, USA). This study complied with all relevant
ethical regulations for work with human participants, and approval for the study
was obtained from the institutional review board of the study sites (103-2562C,
104-2664A3, 201601761BO, YM106026F-1, IRB00001189, R.1235-9). Informed
consent was obtained from each participant.

TCR repertoire analysis and single-cell sequencing. We applied PCR amplifi-
cation and high-throughput NGS for the VDJ junction and the rearranged CDR3s
of TCR36,56,57. Briefly, ~100–500 ng of RNA per sample was isolated from blister
cells of the skin lesions or from PBMC of the enrolled subjects. The cDNA library
of TCR beta chain was produced by multiple PCR using a panel of TCR primers
specifically targeting to the V, D, and J gene regions, and the amplicons were
sequenced by Illumina Miseq. Single cells from blister samples were sorted by flow
cytometry, and the reads and sequences of TCRα/TCRβ and 18 functional genes
with granulysin (GNLY) in the panel were determined36. A series of quality control
procedures were established to exclude the false assignments of samples, and
eliminate the low-quality sequencing reads36,56,57. The CDR3 interval of TCR
transcripts was identified as comprising all the amino acids between the Y[YFLI]C

at the 3′ end of the V gene segment and [FW]GXGT (X represents any amino acid)
within the J segments56. The TRBV (T-cell receptor beta variable genes), TRBJ (T-
cell receptor beta joining genes), and CDR3 clonotypes were defined according to
the ImMunoGeneTics information (IMGT) database (www.imgt.org)36,56–58.

Flow cytometry. Flow cytometry was carried out using distinct fluorochrome-
conjugated mAb that recognize human CD4, CD8, CD56 (Beckman Coulter),
CD45RA, CD197 (BioLegend), human TRBV12-3/TRBV12-4 (Beckman Coulter),
and mouse CD4 and CD8 (eBioscience). These mAbs were labeled with Alexa
Fluor 488, phycoerythrin (PE), phycoerythrin-Texas Red (ECD), phycoerythrin-
cyanin 5 (PC5), or phycoerythrin-cyanin 7 (PC7). The cells were examined by
means of multicolor flow cytometry on the Cytomics FC500 flow cytometer
(Beckman Coulter), and data were analyzed with CXP software (Beckman Coulter).

Quantitative real-time PCR. We isolated the total RNA and obtained cDNA of
the PBMC or blister cells by reverse transcription. We quantified the amount of the
specific TCRβ CDR3 “ASSLAGELF” of the cDNA samples by Taqman real-time
PCR (forward primer: 5′-TTCTCAGCTAAGATGCCTAATGCA-3′, reverse pri-
mer: 5′-AAACAGCTCCCCGGCTAAA-3′, probe: 5′-TGAAGATCCAGCCCTC-
3′) (Life Technology). The Taqman real-time PCR assay for detecting the TCRα
clonotype “VFDNTDKLI” was designed as the forward primer: 5′-CTCAGT-
GATTCAGCCACCTACCT-3′, reverse primer: 5′-TGGTCCCAGTCCCAAA-
GATG-3′, and probe: 5′-TCGATAACACCGACAAGC-3′ (Life Technology). The
expression level of the specific TCR clonotypes was normalized by that of CD3, and
the detection limit of the TCR clonotype/CD3 ratio was 0.0001. The number of
cycles necessary to reach threshold fluorescence for each gene or β-actin control
reaction was calculated at the crossing point (cycle threshold), and the cycle
threshold of CD3 or β-actin in each reaction was used as the internal control in
parallel experiments.

Generation of single-chain TCRα/TCRβ recombinant protein. We generated
single-chain TCRα/TCRβ expression constructs (scTCR)59. The cDNA of TCRα
and TCRβ clonotyps were cloned from the RNA samples of the blister cell from the
SJS/TEN patients. The cDNA fragments of TCRα and TCRβ connected by a linker,
and then attached to a human antibody Fc region. The single-chain TCRα-linker-
TCRβ-Fc insert was cloned into a pcDNA vector (pcDNA/scTCR-Fc) (Supple-
mentary Table 7). The scTCR-Fc plasmid was transfected into the HEK293F cells
(Thermo Fisher, Cat: R79007), and the soluble single-chain scTCR-Fc recombinant
protein was purified from the culture medium by protein A beads60.

Surface plasmon resonance analysis. A Biacore T200 surface plasmon resonance
(SPR) biosensor (GE Healthcare, Piscataway, NJ) was used to analyze the inter-
action between the scTCR recombinant protein and drugs. For SPR assay, we
immobilized the anti-human IgG (Fc) antibody (AP113, Millipore) on sensor chips
using an amine-coupling reaction at a density of 10,000 response units. The scTCF-
Fc protein flowed through the channel and bound to immobilized antihuman IgG
(Fc) antibody, with a binding signal of ~3000 response units. Drugs dissolved in
PBS or 5% DMSO/PBS were used, and response of the interaction was reference
subtracted and corrected with a standard curve to compensate for solvent effects.
The data were analyzed using BIA Evaluation Version 3.1 (GE Healthcare).

Modeling TCR/peptide/HLA and CBZ. Homology models of HLA-B*15:02 and a
TCR clonotype with CBZ-specific TCRα CDR3 “VFDNTDKLI” and TCRβ CDR3
“ASSLAGELF” were generated using the SWISS-MODEL workspace61. HLA-
B*15:02 presenting the peptide HLASSGHSY was superimposed on HLA-B*57:01
(PDB 3UPR)39. HLASSGHSY was selected for modeling because of similarity to a
published motif for peptides eluted from HLA-B*15:02 in the presence of carba-
mazepine in drug-treated cells23. A TCR in the conventional docking orientation,
crystallized in complex with HLA-B*27:05 and peptide (PDB 4G8G)24, was posi-
tioned by aligning the structure to modeled HLA-B*15:02. Homology modeled
αβTCR chains were superimposed onto the TCR reference structure. Superposition
was conducted with COOT62 using the Secondary-Structure Matching (SSM)
program, and subsequent geometry/energy minimization performed using PHE-
NIX63. Molecular docking was conducted with AutoDock Vina25 based on drug-
binding sites identified by F pocket64,65. Images were generated with PyMOL
(PyMOL Molecular Graphics System, Version 1.2, Schrodinger LLC, New
York, NY).

Co-cultures of HLA transfectants and TCR hybridomas. C1R is a HLA class I-
deficient lymphoblastoid cell line (ATCC, CRL-2371™), and we have generated the
C1R-HLA-B*15:02 stable clone APC41. The murine 5KC hybridoma lacking TCRα
and TCRβ chains was used to reconstitute TCR transfectants66,67. Briefly, the full-
length cDNA fragments containing the TCRα CDR3 “VFDNTDKLI” and the
TCRβ CDR3 “ASSLAGELF” were obtained from the blister cells of SJS/TEN
patients. The unique TCR α and β chains were linked to the mouse TCR constant
domain by the PTV1.2A sequence (Supplementary Table 8). Then, the cDNA were
cloned into MSCV-based retroviral vectors carrying green fluorescent protein
(GFP) (pMIGII), followed by production of replication-incompetent retroviruses
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encoding TCR sequences68. Phoenix cells were co-transfected with pMIGII plas-
mids and the pCL-Eco packaging vector to produce replication-incompetent ret-
rovirus encoding TCR sequences69. The transduced 5KC hybridomas expressing
the specific αβTCR CDR3 (5KC-TCR) were used for the antigen specificity assay.
We co-cultured the 5KC-TCR transfectants (1 × 105 cells) and C1R/C1R-HLA-
B*15:02 cells (1 × 105 cells) with drugs (25 µg/mL). After 48-h incubation, we
measured mouse IL-2 production using a direct cytokine ELISPOT assay (Mab-
tech). Plates were scanned and analyzed using an ImmunoSpot reader (CTL Cel-
lular Technology).

Generation of HLA-transgenic mice and adoptive cell transfer. This study
complied with all relevant ethical regulations for animal testing and research,
and Experimental Animal Ethics Committee of the institute (National Yang-
Ming University) approved the animal protocols of this study (IACUC no.:
1031232; 1041238). This investigation conformed to the US National Institute of
Health (NIH) guidelines for the care and use of laboratory animals (Publication
no. 85–23, revised 1996). We generated the mono-chain homozygous HLA-
B*15:02 transgenic mice in the C57BL/6 genetic background with triple-
knockout of the mouse MHC class I genes H-2b and H-2d, and β2-microglobulin
genes70. The stable expression of the HLA-B*15:02 protein in the transgenic mice
was confirmed (Supplementary Fig. 12). The TCR-T lymphocytes were gener-
ated by transducing the specific αβTCR construct to the splenocytes of donor
mice using the ViraPowerTM Lentiviral Expression System (Invitrogen). Adop-
tive cell transfer was performed by intravenous injection of the CTL isolated
from the splenocytes expressing the human public αβTCR into the recipient
mice with a dose of 1 × 106 cells. We divided the HLA-B*15:02 transgenic
mice into three groups: (I) vehicle controls, (II) given carbamazepine daily
(328 mg kg−1 per day) (Tegretol tablets, Novartis) by oral gavage, and (III)
received both carbamazepine and adoptive transfer of the public αβTCR-
transfected T lymphocytes (TCR-T) via intravenous injection. The affected skin
and eyes were evaluated by dermoscopy using a DermLite 3 Gen dermatoscope
in polarized mode at ×10 magnification. Biopsies of the skin and peripheral
blood were obtained for immunohistochemistry, flow cytometry, and bio-
chemistry analyses. The mouse serum ALT, BUN, and CRE levels were deter-
mined using a chemistry analyzer (FUJI, DRI-CHEM 4000i).

Histopathological and immunohistochemical staining. We performed H&E
staining and immunohistochemical analyses using the paraffin sections of mouse
skin biopsies with mAb against mouse granzyme B (clone TA312131, OriGene),
IFNγ (clone bs-0480R, Bioss), or TNFα (clone ab6671, Abcam). The secondary
antibodies conjugated to peroxidase and the DAB Detection Kit (Dako) were used
for the following staining. The control slides were incubated with the secondary
antibody, or isotype control antibodies alone.

Statistical analysis. Significant differences between the groups were analyzed
using an unpaired, two-tailed Student’s t test. The heatmaps were generated
using the built-in R heatmap() function in stats package, the Circos plots by
VDJtools software (MiLaboratory), and the treemaps by the treemap() function
version 1.2.0.1 (MATLAB Central File Exchange), respectively. Graphs were
produced using Graphpad Prism (version 7.02), and the data are shown as
mean ± standard error of the mean (s.e.m.) unless stated otherwise. The results
were considered statistically significant when P ≤ 0.05. Significance levels were
ns; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001 as suggested by
Graphpad Prism.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The source data underlying Figs. 1a, 1b, 2a, 2c, 2f, 3a, 3b, 3c, 3d, 3e, 3f, 4b, 4c, 5, 6a, 6c,
6d, 7f–j, 7k–m, and Supplementary Figs. 1, 2, 7, 8, 10 are provided as the Source Data file.
The sequence data that support the findings of this study have been deposited in the
NCBI sequence read archive (SRA) database with links to BioProject accession ID
PRJNA550004. All other data are available from the authors upon reasonable requests.
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