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CHAPTER 1

INTRODUCTION

According to the Merriam Webster dictionary, correlation is “a relation existing
between phenomena or things or between mathematical or statistical variables which
tend to vary, be associated, or occur together in a way not expected on the basis of
chance alone”. Some examples of correlated variables include education and income,
physical activity and body mass index (BMI), depression and the risk of death. Mea-
suring correlation is essential because it helps us learn and understand physical or
socio-economic phenomena. The correlation between variables can also be affected
by other factors, e.g., the correlation between physical activity and BMI may vary
with age. Therefore, it is also of interest to measure adjusted and conditional cor-
relations. The variables of interest, however, may not always be observed due to an
upper detection limit or other events, e.g., lost to follow-up or end of study. Such a
mechanism of missing data is called right-censoring. Right-censoring is very common
in practice and presents a challenge when estimating correlation. Excluding censored
observations may result in a biased estimate. Including censored observations requires
special statistical methods.

Statistical methods can be divided into three groups: parametric, semi-parametric,
and non-parametric. Ideally, researchers should be able to choose a clinically mean-
ingful population parameter (e.g., the overall correlation, partial, or conditional cor-
relation) independently from the estimation method. However, because of censoring,
the choices of the population parameter and the estimation method may affect each
other. For instance, with a parametric or semi-parametric estimation approach, it
is possible to estimate the overall correlation. But with a purely non-parametric
approach, it may no longer be possible. The problem gets even harder when the
correlation depends on other variables, and estimation of the adjusted or conditional
correlation is desired.

Parametric or semi-parametric methods work well for well-behaved distributions,
but the real data often do not fit into known statistical structures. Therefore, non-
parametric methods may be preferred. Specifically, Spearman’s rank correlation com-
bines robust performance in the presence of outliers and invariance to monotone
transformations with the familiar numeric scale of a well-known, but fully paramet-
ric, Pearson’s correlation. Despite the advantages of Spearman’s correlation, up until
now, it has been estimated with parametric or semi-parametric methods that make
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assumptions about the correlation structure, which contradicts the non-parametric
nature of Spearman’s correlation. Existing estimation methods for adjusted Spear-
man’s correlation also make assumptions about the correlation structure. To fill this
gap, I propose several non-parametric methods to estimate the unadjusted rank cor-
relation and semi-parametric methods to estimate partial and conditional rank corre-
lations. All of these methods are based on Spearman’s rank correlation; they address
the issue of estimation in the presence of censoring without making assumptions
about the correlation structure. In the following chapters, I study their performance
and apply them to estimate unadjusted, partial, and conditional correlations between
times to events. In Chapter 2, I present two non-parametric approaches to compute
Spearman’s correlation. To address the problem of end-of-study censoring, the first
approach, restricted Spearman’s correlation, ρS|ΩR , focuses only on the study period.
The second approach, the highest rank Spearman’s correlation, ρHS , aims to approx-
imate the overall Spearman’s correlation by accounting for the probability mass of
censored observations. Although asymptotically normal and consistent, estimates of
ρS|ΩR and ρHS require a non-parametric estimator of the bivariate survival surface,
which is difficult to fit in practice. These methods also rely on the bootstrap for
computing confidence intervals and are not easily adaptable to estimate the adjusted
or conditional correlation. To overcome these limitations, in Chapter 3, I propose a
method that does not require estimating a bivariate survival surface and uses only
marginal distributions. This method estimates the correlation of probability scale
residuals (PSRs), ρPSR, which has been shown to equal Spearman’s correlation when
there is no censoring. Because ρPSR is computed only from marginal distributions, it
tends to be less variable than ρS|ΩR and ρHS , although it is biased for Spearman’s corre-
lation when a high proportion of observations are censored. Confidence intervals can
be constructed based on large sample approximations obtained through M-estimation.
Moreover, ρPSR can be easily extended to partial (adjusted), conditional, and partial-
conditional correlations using parametric or semi-parametric models for each time to
event.

All estimators are illustrated in a study measuring the correlation between the
time to viral failure and the time to regimen change among HIV-positive persons
initiating antiretroviral therapy in Latin America. I implemented our methods as
open-source statistical software and included them in the R package PResiduals. In
Chapter 4, I demonstrate the use of this package by analyzing the correlation of time
to retinopathy in treated and untreated eyes for patients with diabetes.
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CHAPTER 2

NON-PARAMETRIC ESTIMATION OF SPEARMAN’S RANK CORRELATION
WITH BIVARIATE SURVIVAL DATA

2.1 Introduction
In many medical studies researchers are interested in measuring the correlation

between two time-to-event variables. For example, in studies of HIV/AIDS, there
is interest in studying the correlation between the time from antiretroviral therapy
(ART) initiation to viral failure and the time from ART initiation to regimen change.
These variables should be highly correlated, and it might be important to know if the
observed correlation is weaker than expected. Bivariate survival data may also come
from paired subjects. For example, researchers might be interested in assessing the
correlation between the time to cardiovascular disease for a patient and that for their
parents, or between times to events in twins.

Right censoring is a defining element of bivariate survival data: one or both of the
times to event may not be observed. When looking at correlation between times to
events that occur in a single subject (e.g. time to viral failure and time to regimen
change) the censoring time may be the same time for both outcomes. However, if
the times to events are in paired subjects (e.g. times to events in twins) then the
censoring times may differ. Our interest is in both scenarios, but we do not consider
the setting where an event occurring in one variable causes censoring of the other, i.e.
competing risks.

Several different methods have been proposed to measure and test the correlation
between two right-censored time-to-event variables. Clayton (1978) introduced a
bivariate hazard ratio or a cross ratio as a single number summary of correlation in
the context of a frailty model. Oakes (1982, 1989) suggested a test for independence
based on the cross ratio, showed its relationship with Kendall’s tau, and extended its
definition to a larger class of models. Fan et al. (2000) used a weighted average of the
inverse of the cross ratio and a limited region Kendall’s tau. Cuzick (1982) proposed
a model of correlation and several test statistics, one of which resembles Spearman’s
rank correlation for censored data. Dabrowska (1986) derived generalized statistics
to test the null hypothesis that the joint survival distribution is equal to the product
of the marginals. Under certain assumptions, one of these statistics is related to a
censored version of Spearman’s correlation, and another corresponds to a log-rank
test based on martingale residuals. Shih and Louis (1996) developed two additional
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statistics based on martingale residuals. Shih and Louis (1995) also suggested a
two-stage estimation procedures to evaluate the correlation in bivariate data using
copulas (Nelsen (2007)). Other approaches for measuring correlation using copulas
for bivariate survival data have been considered by Carriere (2000), Romeo et al.
(2006), Zhang (2008), and Schemper et al. (2013).

Spearman’s rank correlation is ubiquitous in biomedical research because of its
simple interpretation, robustness, and ability to capture non-linear correlations. It is
used much more frequently in practice than Kendall’s tau, perhaps because it closely
approximates Pearson’s correlation under normality (Kruskal, 1958), and it is much
easier to compute and interpret than a cross ratio. In the absence of censoring,
Spearman’s correlation is simply the correlation of the ranked data. However, de-
spite related work by Cuzick (1982), Dabrowska (1986), and Oakes (1989), there is
no non-parametric estimator of Spearman’s correlation for bivariate survival data.
Schemper et al. (2013) proposed a semi-parametric iterative multiple imputation
(IMI) method to estimate Spearman correlation (denoted as ρIMI throughout this
paper). Their method transforms bivariate survival data into a Gaussian dependency
structure using a normal copula, multiply imputes censored observations from this
induced bivariate distribution, and approximates Spearman’s correlation using Pear-
son’s correlation of the normal deviates. This approach is semi-parametric because it
does not require any assumptions about the marginal distributions. However, it uses
a Gaussian dependency structure, which may lead to bias due to misspecification.

The goal of this paper is to propose and study non-parametric estimators of Spear-
man’s correlation for right-censored data. Our methods use a non-parametric bivari-
ate survival surface estimator. A challenge with estimating a bivariate survival sur-
face, however, is that it may be non-parametrically estimable only within a certain
region, for example due to end-of-study censoring. This motivates us to propose two
correlation estimators: one that is defined only within the restricted region and an-
other one that implicitly assigns values outside of this region as having the highest
rank.

In Section 2.2 we express Spearman’s correlation for time to event data and de-
scribe target parameters of interest. In Section 2.3 we address estimation and in-
ference. In Section 2.4 we evaluate the performance of our estimators with several
sets of simulations. In Section 2.5, we apply our methods to an HIV study by ex-
amining the correlation between times from treatment initiation to viral failure and
regimen change. In Section 2.6, we discuss our methods and future directions. We
have implemented our methods as part of the PResiduals R-package (see Dupont
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et al. (2018)).

2.2 Population Parameters
2.2.1 Notation and Definitions

We are interested in estimating correlation between two time-to-event variables
denoted as (TX , TY ) defined on [0,∞)× [0,∞). Variables TX and TY can be observed
on a single subject or on a pair of subjects. Each time to event can be censored. We
denote time-to-censoring variables as (CX , CY ) and assume independence between
(TX , TY ) and (CX , CY ), but CX and CY can be dependent. If TX and TY are observed
on a single subject then it is likely that CX = CY . If CX = CY with probability
one, then we call this univariate censoring, otherwise censoring is bivariate. In most
studies, the follow-up period is bounded. We denote the maximum follow-up times
respectively as τX and τY , and consider these to be fixed by study design. Censoring
due to the end of study has been referred to as type I censoring (Kalbfleisch and
Prentice (2011)). With type I censoring, no events will be observed beyond the
restricted region Ω = [0, τX) × [0, τY ), or equivalently, CX ≤ τX and CY ≤ τY . For
our presentation, we distinguish between strict type I censoring, where censoring
occurs only at τX and τY (i.e., CX = τX , CY = τY ), and generalized type I censoring,
where censoring may also occur prior to τX and τY (i.e., CX ≤ τX , CY ≤ τY ). Strict
type I censoring is rarely observed in practice, but will be helpful for explaining
concepts; generalized type I censoring is quite common in practice, where follow-up
time is bounded due to the length of the study, while subjects may start the study
at different times or may drop out before the end of study. When the follow-up time
is unbounded (τX =∞ and τY =∞), we refer to the censoring as unbounded.

As a result of censoring, we only observe X = min(TX , CX) and Y = min(TY , CY )
and event indicators ∆X = 1(TX ≤ CX) and ∆Y = 1(TY ≤ CY ). We denote
marginal and joint cumulative distribution functions of TX and TY as FX(x) =
Pr (TX ≤ x), FY (y) = Pr (TY ≤ y), F (x, y) = Pr (TX ≤ x, TY ≤ y), and marginal
and joint survival functions as SX(x) = Pr (TX > x), SY (y) = Pr (TY > y), S(x, y) =
Pr (TX > x, TY > y). We define FX(x−) = limt↑x FX(t) and F (x−, y) = limt↑x F (t, y);
functions FY (y−) and F (x, y−) are defined similarly.
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2.2.2 Spearman’s Rank Correlation
As shown by Liu et al. (2018), in the absence of censoring, the population param-

eter for Spearman’s correlation between TX and TY can be defined as:

ρS = Cor
{
FX(TX) + FX(T−X )

2 ,
FY (TY ) + FY (T−Y )

2

}
. (2.1)

When both TX and TY are continuous the above definition translates into a better
known expression:

ρS = Cor {FX(TX), FY (TY )} , (2.2)

the grade correlation (Kruskal (1958)). Notice that if FX and FY are estimated
with their respective empirical distributions, then FX(TX) and FY (TY ) are simply
estimated as the ranks of TX and TY respectively, divided by the number of points in
the sample, corresponding to the well-known Spearman correlation estimator:

ρ̂S = Cor {rank(TX,i), rank(TY,i)} , (2.3)

where (TX,i, TY,i) for i = 1, ..., n are independent and identically distributed (iid)
draws of (TX , TY ). Liu et al. (2018) have shown that equation (2.1) can be presented
as:

ρS/cρ = ETX ,TY
[{
FX(TX) + FX(T−X )− 1

}{
FY (TY ) + FY (T−Y )− 1

}]
=
∫ ∞

0

∫ ∞
0

{
FX(x) + FX(x−)− 1

}{
FY (y) + FY (y−)− 1

}
F (dx, dy), (2.4)

where cρ =
[
Var

{
FX(TX) + FX(T−X )− 1

}
Var

{
FY (TY ) + FY (T−Y )− 1

}]−1/2
; and cρ =

3 when TX and TY are continuous. The right-hand side of (4.1) is the covariance of
probability-scale residuals (PSRs) proposed and studied by Li and Shepherd (2012)
and Shepherd et al. (2016) and defined as:

rX(tX , FX) = E {sign(tX − TX)}

= Pr (TX < tX)− Pr (TX > tX) = FX(t−X) + FX(tX)− 1, (2.5)

where sign(tX −TX) is −1, 0, and 1 for tX < TX , tX = TX , and tX > TX respectively.
We can rewrite definition (4.1) in terms of survival functions:

ρS/cρ =
∫ ∞

0

∫ ∞
0

{
1− SX(x)− SX(x−)

}{
1− SY (y)− SY (y−)

}
S(dx, dy). (2.6)
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Right censoring causes serious challenges for non-parametric estimation of (4.3).
First, non-parametric estimation of S(x, y) is challenging due to non-unique solutions
of the non-parametric likelihood in the presence of censoring and the fact that even
consistent estimators of S(x, y) may have negative mass for some x and y (Dabrowska
(1988), Pruitt (1991), and Kalbfleisch and Prentice (2011)). Second, non-parametric
estimation of SX(x), SY (y), and S(x, y) beyond the maximum follow-up time(s) is
not possible. To overcome the latter challenge, one could focus on estimating Spear-
man’s correlation in a restricted region Ω. Another possible approach is to focus on
Spearman’s correlation for an altered but estimable joint distribution. Population
parameters for these two non-parametric approaches are presented in the next two
subsections. Section 2.2.5 contains some examples.

2.2.3 Spearman’s Rank Correlation in a Restricted Region
Suppose a researcher is interested in a rank correlation only inside a restricted

region, denoted ΩR. This correlation can be computed as Spearman’s correlation
defined conditionally on ΩR, which we denote as ρS|ΩR . Typically, ρS|ΩR will be
different than the overall rank correlation, ρS, and will usually vary based on the
choice of ΩR. With failure time data, others have proposed and advocated the use
of estimators in restricted regions including restricted mean survival times (Royston
and Parmar (2013)) and limited region Kendall’s tau (Fan et al. (2000)).

A natural choice is ΩR = Ω = [0, τX) × [0, τY ), to estimate the restricted rank
correlation over the region for which estimation is possible; to avoid introducing new
notation, in this section we will use ΩR = Ω. However, investigators can vary ΩR

depending on their research question as long as ΩR ⊆ Ω; presumably ΩR would
generally be a rectangle that includes the origin (0, 0). The probability of double
failure happening in this rectangle is

PR = Pr (x < τX , y < τY ) = F (τ−X , τ−Y ) = 1− SX(τ−X )− SY (τ−Y ) + S(τ−X , τ−Y ). (2.7)

We consider the conditional distribution over ΩR. An example of a conditional distri-
bution is illustrated in the middle panel of Figure 2.1. Its probability mass function
is

S(dx, dy|ΩR) = S(dx, dy)/PR, (2.8)
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and its marginal survival function on the X-axis is

SX(x|ΩR) = 1− FX(x|ΩR) =

 0 x ≥ τX

1− F (x,τ−Y )
PR

x < τX
, (2.9)

where F (x, τ−Y ) = 1−SX(x)−SY (τ−Y ) +S(x, τ−Y ). The marginal survival function on
the Y -axis, SY (y|ΩR), is similarly defined. Spearman’s correlation in the restricted
region is

ρS|ΩR/cρ|ΩR =
∫∫
ΩR

{
1− SX(x|ΩR)− SX(x−|ΩR)

} {
1− SY (y|ΩR)− SY (y−|ΩR)

}
S(dx, dy|ΩR),

(2.10)

where

cρ|ΩR =
[
Var

{
1− SX(x|ΩR)− SX(x−|ΩR

}
Var

{
1− SY (y|ΩR)− SY (y−|ΩR)

}]−1/2
.

Note that the population parameter, ρS|ΩR , depends only on τX and τY and is invariant
to the censoring distribution within ΩR.

2.2.4 Spearman’s Rank Correlation with Highest Ranks
Suppose now that a researcher is interested in the overall rank correlation, but

the observations are only available within a restricted region. This is a typical situa-
tion in studies with a bounded follow-up time or when measurements have an upper
detection limit. In this case, SX(x), SY (y), and S(x, y) are only non-parametrically
estimable inside the region Ω = [0, τX) × [0, τY ), where τX < ∞ and τY < ∞. Since
we are interested in a rank correlation, one approach would be to define any obser-
vation censored at τX as receiving the highest rank value for TX and any observation
censored at τY as receiving the highest rank value for TY , which is the same as set-
ting TX = min(TX , τX) and TY = min(TY , τY ). Such an approach is sensible because
these censored observations at τX and τY do have the highest rank values and there
is no information to distinguish between these highest rank values without paramet-
ric modeling assumptions. Mathematically, this approach replaces S(dx, dy) with
a probability mass function SH(dx, dy) that is S(dx, dy) inside Ω and the left-over
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Figure 2.1: Illustration of bivariate distributions underlying the three population parameters. Left:
Original distribution over [0,∞)×[0,∞), which has Spearman’s correlation ρS . Middle: Conditional
distribution over ΩR = Ω, which has Spearman’s correlation ρS|ΩR

. Right: Mixture-like distribution
SH over region Ω ∪ [0, τX ]× τY ∪ τX × [0, τY ], which has Spearman’s correlation ρH

S .

probability mass outside of Ω. That is:

SH(dx, dy) =



S(dx, dy) x < τX and y < τY ,

S(τ−X , dy) x = τX and y < τY ,

S(dx, τ−Y ) x < τX and y = τY ,

S(τ−X , τ−Y ) x = τX and y = τY ,

0 x > τX or y > τY .

(2.11)

The new probability mass function SH(dx, dy) is depicted in the right panel of Figure
2.1. The part of SH(dx, dy) inside Ω is the same as S(dx, dy) but its part outside
of Ω is concentrated on the borders of Ω and at point (τX , τY ). The corresponding
population parameter for the rank correlation of this new distribution is ρHS , which
satisfies:

ρHS /c
H
ρ =

∫ τX

0

∫ τY

0

{
1− SHX (x)− SHX (x−)

}{
1− SHY (y)− SHY (y−)

}
SH(dx, dy),

(2.12)

where SHX (x) and SHY (y) are the marginal survival functions of SH(x, y), and

cHρ =
[
Var

{
1− SHX (TX)− SHX (T−X )

}
Var

{
1− SHY (TY )− SHY (T−Y )

}]−1/2
, (2.13)
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In other words, ρHS is Spearman’s correlation computed by setting TX = min(TX , τX)
and TY = min(TY , τY ). Note that the population parameter, ρHS , depends only on τX
and τY and is invariant to the censoring distribution within ΩR.

For practical applications and intuitively, ρHS can be viewed as the rank correlation
computed for data with an upper detection limit, where all values above the detection
limit are set to a common largest value. Note that although in general, ρHS 6= ρS (see
examples in Section 2.2.5), unlike ρS|ΩR , parameter ρHS is designed to take into account
all observations including those outside of ΩR. When the majority of the probability
mass is within the restricted region, ρHS can be viewed as an approximation of ρS.
When τX =∞ and τY =∞, then ρHS = ρS.

2.2.5 A Few Examples
Here, we illustrate how the restricted region can affect ρHS and ρS|ΩR . Having a

restricted region implies type I censoring. Although the figures in this section are
generated with strict type I censoring, ρHS and ρS|ΩR are the same for generalized type
I censoring because, as we have mentioned earlier, ρHS and ρS|ΩR depend only on τX
and τY .

In some settings, ρS, ρS|ΩR , and ρHS will be quite similar. For example, the values of
these parameters for the distribution shown in Figure 2.1 are 0.635, 0.549, and 0.634,
respectively. However, these parameters may be very different in some settings.

Figure 2.2 shows ρS|ΩR (left panel) and ρHS (right panel) as a function of ρS for
different τX and τY for Frank’s copula family. In this example, ρS and ρHS are very
similar. In contrast, ρS and ρS|ΩR are very different, especially when ρS is negative
and ΩR is small (e.g., region defined by 0 to the 0.5 quantiles). This is because in
these settings, only a small fraction of the underlying distribution is inside ΩR, and
therefore ρS|ΩR shows a weak negative correlation. Figure 2.3 contains three additional
examples; some of these distributions may not be realistic in practice, but are useful
for illustrative purposes. The left panel shows an X-like distribution, for which ρS = 0,
ρS|ΩR = 0.69, and ρHS = 0.06. Here, ρHS is similar to ρS because ρHS incorporates the
probability mass in the upper left, upper right, and lower right regions. However,
ρS|ΩR is very different from ρS because ΩR only contains a positively correlated subset
of the distribution. The middle panel of Figure 2.3 shows a distribution with highly
correlated values in ΩR, zero correlation in the upper right region, and no mass in
the upper left and lower right regions. For this distribution, ρS = 0.66, ρS|ΩR =
0.64, and ρHS = 0.99. Here, ρS|ΩR and ρS are similar because only the points in
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Figure 2.2: Restricted Spearman’s correlation, ρS|ΩR
(left panel) and highest rank Spearman’s

correlation, ρH
S (right panel) for Frank’s copula family for different restricted regions defined by τX

and τY (τX = τY ): 0.5th (50% censored), 0.6th (40% censored), 0.8th quantiles (20% censored). A
diagonal grey line is added for reference. Although the plots are generated based on data under
strict type I censoring, the population parameters are the same for generalized type I censoring and
are invariant to the rate of censoring within the restricted region.
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ρS= 0.00,    ρS | ΩR
= 0.69,    ρS

H= 0.06

0 τx

τ y

ρS= 0.66,    ρS | ΩR
= 0.64,    ρS

H= 0.99

0 τx

τ y

ρS= −0.90,    ρS | ΩR
= −0.39,    ρS

H= −0.74

0 τx

τ y

Figure 2.3: Example of bivariate distributions and their population parameters ρS with no censoring
and ρH

S , and ρS|ΩR
with strict type I censoring with ΩR = [0, τX) × [0, τY ). The proportions of

observed double events in the left, middle, and right panels are 25%, 43%, and 7% respectively.
Drawn are 1000 points randomly selected from the underlying distributions. Although the plots
are based on strict type I censoring, the population parameters are the same for generalized type I
censoring and are invariant to the rate of censoring within ΩR.

the restricted region are correlated. In contrast, ρHS is quite high because the large
probability mass of the upper right region is concentrated on a single highest-rank
point when computing ρHS , which pulls its value upwards considerably. The right
panel of Figure 2.3 shows a distribution with a highly negative overall correlation,
for which ρS = −0.90, ρS|ΩR = −0.39, and ρHS = −0.74. Here, ρHS and ρS are fairly
different because although the probability mass of censored observations outside of
ΩR are taken into account, there is some loss of information with the highest rank
assignment. The parameter ρS|ΩR is very different from ρS because only a small
fraction of the negatively correlated mass is included in ΩR. Note that parametric or
semi-parametric approaches also struggle with many of these settings because they
effectively use the information from the restricted region to impute what is occurring
outside the restricted region. For example, ρ̂IMI (see Schemper et al. (2013)) for the
middle panel is approximately 0.95.
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2.3 Non-parametric Estimation
2.3.1 Estimation of ρS|ΩR under Generalized Type I Censoring

We estimate ρS|ΩR using a plug-in estimator for equation (4.2):

ρ̂S|ΩR/ĉρ|ΩR =
∑

i:xi<τX

∑
j:yj<τY

[{
1− ŜX(xi|ΩR)− ŜX(x−i |ΩR)

}
×
{

1− ŜY (yj|ΩR)− ŜY (y−j |ΩR)
}
Ŝ(dxi, dyj|ΩR)

]
,

(2.14)

where

ĉρ|ΩR =
(
V̂arX · V̂arY

)−1/2
, (2.15)

V̂arX =
∑

i:xi<τX

([{
1− ŜX (xi|ΩR)− ŜX

(
x−i |ΩR

)}

−
∑

i:xi<τX

{
1− ŜX (xi|ΩR)− ŜX

(
x−i |ΩR

)}
ŜX (dxi|ΩR)

2

ŜX (dxi|ΩR)

 ,
and V̂arY is computed similarly. The conditional survival curves, ŜX(x|ΩR), ŜY (y|ΩR),
and Ŝ(x, y|ΩR) are estimated using plug-in estimators for (2.7), (2.8), and (2.9).

For Ŝ(dx, dy) we use the estimator of Dabrowska (1988). The marginal distribu-
tions of Dabrowska’s estimator, Ŝ(x) and Ŝ(y), are Kaplan–Meier estimators. There
are other choices for non-parametrically estimating S(dx, dy), including the estima-
tors proposed by Prentice and Cai (1992), van der Laan (1997), Campbell (1981), and
Lin and Ying (1993), to name a few. We considered the estimators of Campbell (1981)
and Lin and Ying (1993) because of their computational simplicity, but ultimately
chose Dabrowska’s estimator because it is consistent for S(dx, dy), straightforward
to compute, and tended to result in estimates of Spearman’s correlation with better
performance (see Section 2.4). The confidence interval of ρ̂S|ΩR is estimated using the
bootstrap.

The consistency of ρ̂S|ΩR for ρS|ΩR follows from the continuous mapping theo-
rem and the fact that it is a function of a consistent survival surface estimator (see
Dabrowska (1988)). When ρS|ΩR ∈ (−1, 1), estimator ρ̂S|ΩR is also asymptotically nor-
mal. Briefly, ρ̂S|ΩR is a function of Ŝ(x, y), ŜX(x), and ŜY (y), which are Hadamard
differentiable estimators that converge to Gaussian processes (see Dabrowska (1989),
van der Vaart and Wellner (1996), Gill et al. (1995), and van der Vaart (2000)). It
follows from the chain rule (van der Vaart (2000)) that ρ̂S|ΩR is also Hadamard differ-
entiable, and therefore from the functional delta method (van der Vaart and Wellner,
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1996) that ρ̂S|ΩR is asymptotically normal. In addition, the bootstrapped estimator
obtained by computing ρ̂S|ΩR from re-sampled data converges to the same Gaussian
process as ρ̂S|ΩR , justifying the use of the bootstrap to construct confidence intervals
(van der Vaart and Wellner, 1996).

A few problems can arise in practice when computing ρ̂S|ΩR , all due to nega-
tive mass at some points in Ŝ(dx, dy). First, in some extreme cases (e.g. small
sample sizes, strong positive or negative correlation, and heavy censoring), |ρ̂S|ΩR |
may exceed 1; if this happens, we correct it by setting it as sign(ρ̂S|ΩR). Sec-
ond, negative mass can also lead to problems computing ĉρ|ΩR in (2.15) because
V̂arX or V̂arY may be negative because ŜX (dx|ΩR) or ŜY (dy|ΩR) is negative at
some points. If this happens, we correct the guilty conditional marginal proba-
bility mass estimator by assigning negative values to 0, and by normalizing the
rest of the probability mass values; specifically, the corrected probability mass is
Ŝ∗X(dx|ΩR) = max

{
0, ŜX(dx|ΩR)

}
/
∑
x max

{
0, ŜX(dx|ΩR)

}
. Third, negative mass

may lead to a negative estimate of PR, the probability of both events occurring in ΩR

(see equation (2.7)); when this occurs, ρ̂S|ΩR is not defined.
Although the number of points with negative mass does not decrease as the sample

size increases (Pruitt, 1991), the amount of negative mass at each point does go to
zero, which therefore reduces the possibility of these problems occurring. Also, the
tendency of having negative mass is lower when a lower proportion of observations
are singly or doubly censored. To give a sense of the magnitude of these problems,
for a sample size of 50 with 70% bivariate censoring, V̂arX or V̂arY was negative for
1.3% of 1000 simulations, and P̂R was less than zero in 2.4% of simulations. With a
sample size of 100 and 70% bivariate censoring, these problems occurred in 0% and
0.8% of simulations, respectively.

2.3.2 Estimation of ρHS under Generalized Type I Censoring
Equation (2.12) provides a straightforward way of estimating ρHS , given a non-

parametric estimate of the bivariate survival surface, Ŝ(dx, dy):

ρ̂HS /ĉ
H
ρ =

∑
i∗

∑
j∗

{
1− ŜHX (xi∗)− ŜHX (x−i∗)

}{
1− ŜHY (yj∗)− ŜHY (y−j∗)

}
ŜH(dxi∗ , dyj∗),

(2.16)

where i∗ enumerates all the events for X plus τX , j∗ enumerates all the event for Y
plus τY , and ŜH(dxi, dyj) and ĉHρ are the plug-in estimators for (2.11) and (2.13),
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respectively. As before, we compute Ŝ(x, y) using Dabrowska’s estimator. The confi-
dence interval of ρ̂HS is estimated using the bootstrap. Following arguments similar to
those given in Section 2.3.1, the estimator ρ̂HS is consistent and asymptotically normal
for ρHS ∈ (−1, 1). In practice, for some extreme cases similar to those mentioned in
Section 2.3.1 for ρ̂S|ΩR , |ρ̂HS | may exceed 1; when this occurs we correct it to sign(ρ̂HS ).

2.3.3 Estimation of ρS under Unbounded Censoring
The estimator ρ̂HS may also be used to estimate ρS with unbounded censoring.

Under unbounded censoring, τX = τY = ∞ by definition, and one would naturally
estimate ρ̂S by plugging Ŝ(x, y), ŜX(x), and ŜY (y) into (4.3) in a manner similar to
that described above. However, if the maximum value of X, for example, is a censored
event (i.e., ∆X = 0) then Ŝ(dx, dy) will not sum to 1 resulting in improper integration
when using plug-in estimators in (4.3). A workaround is to assign the remaining mass
(which is typically very little) to a point just beyond the largest observed event time
of X and set τX to this point. We then estimate ρ̂S with ρ̂HS . Although in this
setting, τX is no longer fixed but unbounded, estimation of ρ̂S in this manner seems
to perform well (see Section 2.4). Under unbounded censoring, ρ̂HS is consistent for ρS
(see Appendix 2.A) and asymptotically normal for ρS ∈ (−1, 1) following arguments
similar to those earlier in this section.

2.4 Simulations
2.4.1 Simulation Set-up

We performed several simulations to investigate the finite sample performance
of our estimators. The random variables TX and TY were simulated using various
choices of copula families and parameters. Specifically, following Fan et al. (2000),
we simulated dependent random uniform variables, U and V , from Clayton’s and
Frank’s copula families; both copulas are defined by a single parameter, θ. The
dependence between U and V was specified by choosing the parameter θ in such
a way that the true Spearman’s correlation varied among no correlation (ρS = 0),
moderate correlation (ρS = −0.2 and 0.2 for Frank’s family and 0.2 for Clayton’s
family), and strong correlation (ρS = −0.6 and 0.6 for Frank’s family and 0.6 for
Clayton’s family). (Clayton’s family does not permit negative correlation.) We then
set TX = − log(1−U) and TY = − log(1−V ) such that TX and TY were exponentially
distributed with mean 1.

Four types of censoring scenarios were implemented: 1) unbounded univariate,
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2) unbounded bivariate, 3) generalized type I univariate, and 4) generalized type I
bivariate. Each censoring scenario was implemented for censoring proportions PC =
{0.3, 0.7}. Bivariate unbounded censoring times CX and CY for each observation were
simulated independently from an exponential distribution, Pr(CX ≤ t) = Pr(CY ≤
t) = 1−e−λt, with λ = PC/(1−PC). The event times TX and TY were censored if TX >

CX and TY > CY , respectively. Univariate unbounded censoring was implemented in
a similar manner except only one censoring event was generated per (TX , TY ) pair. For
generalized type I censoring, C∗X and C∗Y , were first simulated as designed above with
probability PC and then CX and CY were defined as min(C∗X , τX) and min(C∗Y , τY ),
respectively, with τX = τY set at the median survival time, S−1

X (0.5) = S−1
Y (0.5).

The resulting censoring proportions for generalized type I censoring were therefore
higher than PC : for example, for generalized type I bivariate censoring with PC = 0.3
and 0.7, the outcomes were censored for approximately 56% and 73% of observations,
respectively.

We evaluated the performance of ρ̂HS and ρ̂S|ΩR in the presence of unbounded and
generalized type I censoring using a sample size of 200 for strong, moderate, and no
correlation. For unbounded censoring, the population parameter of ρHS is the same as
ρS. For generalized type I censoring, the population parameters of ρHS and ρS|ΩR were
the same as ρS for Clayton’s family. For Frank’s family with the overall Spearman’s
correlation of −0.6, −0.2, 0.2, and 0.6, the population parameters of ρS|ΩR were
−0.098, −0.042, 0.058, and 0.261; and the population parameters of ρHS were −0.512,
−0.173, 0.180, and 0.545 respectively. These population parameters were empirically
estimated with a sample size of 106.

The bias, root mean squared error (RMSE), type I error rate, and power, com-
puted as the proportion of times that bootstrap confidence intervals (based on 1000
bootstrap samples) did not include zero, were also evaluated for sample sizes of 100
and 200 under unbounded censoring for moderate and no correlation. The perfor-
mance of ρ̂HS was compared to estimator ρ̂IMI proposed by Schemper et al. (2013) for
these simulation scenarios. We also evaluated the performance of ρ̂HS as an estimator
of ρS using survival surfaces proposed by Lin and Ying (1993) and Campbell (1981).

Lastly, we compared the performance of ρ̂HS to semi-parametric estimators ρ̂IMI

and ρ̂MLE
S (maximum likelihood estimator assuming Frank’s copula dependency struc-

ture). These comparisons were made in the context of a well-behaved dependency
structure induced by Frank’s copula and in the context of a complex dependency
structure, a mixture of 60% highly negatively correlated data (ρS = −0.8, Frank’s
copula with θ = −8) and 40% perfectly correlated data (ρS = 1) with the overall
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Spearman’s correlation being about −0.0813. This simulation scenario was loosely
motivated by data from the Mexican site in our real data analysis presented in Sec-
tion 2.5; Figure 2.10 in Appendix 2.A shows the scatter plot of the uncensored data.
Samples sizes of 200, 500, and 1000 were used and unbounded univariate censoring
with PC = 0.5 was applied as described above. The goal of these comparisons was
to show better efficiency of ρ̂MLE

S compared to ρ̂HS under a correctly specified model
and to demonstrate greater accuracy of ρ̂HS compared to ρ̂IMI and ρ̂MLE

S under model
misspecification.

All simulations used 1000 replications. All analyses were performed in statisti-
cal language R (R Core Team (2017)) and using R-libraries SurvCorr (Ploner et al.
(2015)), lcopula (Belzile and Genest (2017)), and cubature (Narasimhan and John-
son (2017)). Example code is posted online in the Supporting Information. Com-
plete simulation and analysis code is posted at http://biostat.mc.vanderbilt.edu/
ArchivedAnalyses.

2.4.2 Simulation Results
Figure 2.4 shows the mean point estimates and the 0.025th and 0.975th quantiles

of estimators ρ̂HS under unbounded censoring (row 1), the semi-parametric estimator
proposed by Schemper et al. (2013), ρ̂IMI , under unbounded censoring (row 2), ρ̂HS
under generalized type-I censoring (row 3), and ρ̂S|ΩR under generalized type-I cen-
soring (row 4). The sample size was 200, the censoring was bivariate with varying
censoring proportions and ρ̂HS and ρ̂S|ΩR were computed using Dabrowska’s survival
surface estimator.

For Clayton’s and Frank’s families under unbounded censoring (row 1), the mean
of ρ̂HS was very close to the true population parameter verifying the consistency of ρ̂HS
for ρS. When data were generated under Frank’s copula, the semi-parametric estima-
tor, ρ̂IMI (row 2), was similarly unbiased for unbounded censoring, and it tended to
be less variable than ρ̂HS . However, when data were generated using Clayton’s copula,
ρ̂IMI was biased for ρS (also noted by Schemper et al. (2013)).

Tables 2.2 and 2.3 in Appendix 2.A provide more details and additional compar-
isons between ρ̂IMI and ρ̂HS under unbounded censoring for different sample sizes and
censoring proportions in terms of bias, RMSE, type I error rate and power. In short,
the bias of ρ̂HS for ρS was low, even with fairly small numbers of events; both the bias
and RMSE decreased as the number of events increased. In general, ρ̂HS compared
favorably to ρ̂IMI .
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Figure 2.4: Point estimates (X-axis) vs population parameters (Y-axis) under different bivariate cen-
soring scenarios. The top and second rows are ρ̂H

S and ρ̂IMI as estimators of the overall Spearman’s
correlation, ρS . The third row is ρ̂H

S as an estimator of ρH
S . The bottom row is ρ̂S|ΩR

as an estima-
tor of ρS|ΩR

. The columns represent Clayton’s and Frank’s copulas. The population parameters for
Clayton’s family are 0, 0.2, and 0.6 for all estimates. For Frank’s family, the population parameters
of ρS are −0.6, −0.2, 0.2, and 0.6; the population parameters of ρH

S are −0.512, −0.173, 0.180, and
0.545; the population parameters of ρS|ΩR

are −0.098, −0.042, 0.058, and 0.261. The dots are the
mean point estimates based on 1000 simulations. The shaded areas represent the 0.025th and 0.975th

quantiles. For generalized type I censoring, the restricted region, ΩR, was defined by the median
survival times.
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Under generalized type I censoring (the third and fourth rows of Figure 2.4), the
means of ρ̂HS and ρ̂S|ΩR are very close to their true population parameters, suggesting
with n = 200, these estimators are essentially unbiased for ρHS and ρS|ΩR respectively.
The variance of our estimators naturally increased as the probability of censoring
increased. The variance of ρ̂S|ΩR was greater than that of ρ̂HS under generalized type
I censoring (rows 3 and 4), presumably because ρ̂S|ΩR only uses the events inside Ω =
ΩR, whereas ρ̂HS assigns probability mass to values outside of Ω. Note that the variance
of ρ̂HS under unbounded censoring was slightly larger than that under generalized
type I censoring in spite of the lighter censoring. This is probably because under
generalized type I censoring, the probability mass, ŜH(dx, dy), calculated outside of
Ω is concentrated on the same points, making its variance smaller compared to the
case of unbounded censoring. Results for univariate censoring were very similar to
those for bivariate censoring, except the estimators were slightly less variable (see
Figure 2.6 in Appendix 2.A).

With unbounded censoring of 50% and n = 200, the correctly specified semi-
parametric ρ̂MLE

S was more efficient than ρ̂HS (relative efficiency in terms of variance
ranging from 1.19 (for ρS = 0) to 1.60 (for ρS = 0.6), Figure 2.9 in Appendix 2.A);
both approaches yielded unbiased estimates of ρS. In contrast, when data were gen-
erated using a mixture of positively and negatively correlated bivariate distributions,
the misspecified semi-parametric estimators ρ̂MLE

S and ρ̂IMI were substantially biased
and this bias did not decrease with increasing sample size. On the other hand, the
non-parametric ρ̂HS was unbiased for ρS (see Figure 2.11 in Appendix 2.A). In this
more complicated setting, estimates of ρS|ΩR with ΩR being defined using the median
survival times were also unbiased (Figure 2.12 in Appendix 2.A).

The simulations reported above incorporated 1000 bootstrap replications; in gen-
eral, confidence interval coverage and width were stable and adequate with as few as
200 bootstrap replications (see Figure 2.13 in Appendix 2.A).

We also evaluated the performance of ρ̂HS with survival surfaces of Campbell (1981)
for univariate and bivariate censoring and of Lin and Ying (1993) for univariate
censoring only (see Figures 2.7 and 2.8 in Appendix 2.A). With univariate censoring,
using the estimator of Lin and Ying (1993) resulted in unbiased estimation although
with larger variance than that using Dabrowska’s estimator. Estimator ρ̂HS computed
using the survival surface estimator of Campbell (1981) was visibly biased for the
sample size of 200 under heavy censoring.
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2.5 Application
We apply our methods to a study of 6691 HIV-positive adults starting ART in

Latin America. We are interested in estimating the correlation between two right-
censored variables: 1) the time from ART initiation to viral failure and 2) the time
from ART initiation to major regimen change. Patients experience viral failure when
the amount of virus circulating in their blood (their viral load) is above a certain
threshold, which may make them infectious and vulnerable to HIV-related diseases.
Viral failure may be caused by many factors including poor adherence or drug resis-
tance; it often triggers changing a patient’s ART regimen. However, patients may also
change their ART regimens for reasons other than viral failure (e.g., poor tolerability,
discovery of a simpler regimen, or patient/provider choice).

Our study uses data from the Caribbean, Central, and South America network for
HIV Epidemiology (CCASAnet). The definitions of viral failure and regimen change
were the same as those used in a prior CCASAnet study (Cesar et al., 2015). In short,
viral failure was defined as a single viral load > 1000 copies/mL or two viral loads
> 400 copies/mL after a person’s virus had been suppressed or they had been on ART
long enough that it should have been suppressed (i.e., 6 months). Regimen change
was limited to major changes such that the patient switched drug classes or changed
multiple drugs. Each study subject may have had one, both, or neither of these
events. Follow-up ended at the last clinic visit; censoring was univariate. Our analy-
sis dataset includes patients from Brazil, Chile, Honduras, Mexico, and Peru. After
a median follow-up of 4.1 years (ranging from 1 day to 18.2 years), 1916 persons
(28.6%) had a viral failure and 1895 persons (28.3%) changed regimens. Approxi-
mately 16.1% of patients had both events over the follow-up period, 12.2% changed
regimens but did not have viral failure, 12.5% had viral failure but did not change
regimens, and 59.1% were not observed to have either event. The upper left panel of
Figure 2.5 shows Kaplan–Meier estimates for the marginal probabilities of viral failure
and regimen change as a function of time since ART initiation. Ten years after ART
initiation, the estimated probability of not having viral failure was 0.58 and the esti-
mated probability of remaining on the initial regimen was 0.51. The upper right panel
shows the estimated joint bivariate probability mass function, ŜH(dx, dy), based on
Dabrowska’s estimator; estimated marginal probability mass functions, ŜHX (dx) and
ŜHY (dy), are also included. Note that because a large proportion of patients experi-
enced only one or neither event, a large amount of mass has been assigned to τX = 18
and τY = 17 years.

The estimated highest rank correlation, ρ̂HS , between time to viral failure and
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Figure 2.5: Upper left: Kaplan–Meier curves for time to viral failure and time to regimen change,
where time is measured in years. Upper right: bivariate probability mass function for the mixture-
like distribution, ŜH(dx, dy). Lower left: conditional bivariate probability mass function for 15-
year follow-up. Lower right: conditional bivariate probability mass function for 10-year follow-up.
For probability mass functions, the bars on the left and on the bottom represent histograms of
the univariate survival mass for each event. The probability mass function was computed from
the Dabrowska’s survival surface and then aggregated over half-year bivariate time periods. After
aggregation, any negative values were set to 0. Lighter shade represents smaller values.
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time to regimen change was 0.35 with a 95% confidence interval (CI) based on 1000
bootstrap replications of 0.27 to 0.44. This result is fairly similar, albeit with a wider
confidence interval, to the estimator of Schemper et al., ρ̂IMI , that imputes censored
values: 0.37, 95% CI 0.33 to 0.41.

The estimated rank correlation over the restricted region, ρ̂S|ΩR , with ΩR =
[0, 15) × [0, 15) was substantially higher, 0.65, with a wide 95% CI of 0.30 to 0.97.
This can be explained by a careful look at the conditional probability mass over ΩR

(lower left plot of Figure 2.5). Notice that there are several points in the upper right
corner of this surface with large probability mass. Large amounts of mass are as-
signed to these points because a few events occurred at later follow-up times when
there were fairly small numbers of patients remaining in the risk set. This is also seen
in the Kaplan–Meier estimates, where relatively large drops in the marginal survival
curves are noted between 10 to 15 years. These points pushed the probability mass
function closer to the diagonal, leading to a larger estimated rank correlation. In
addition, since there were only a few points with substantial probability mass, their
inclusion/exclusion in various bootstrap samples led to wide variation in confidence
intervals. This example serves as a nice illustration of the potential perils of estimat-
ing rank correlations over restricted regions that include tail areas with small numbers
of events. Perhaps a more reliable rank correlation would be over the restricted re-
gion, ΩR = [0, 10) × [0, 10), in which case ρ̂S|ΩR was 0.26 (95% CI [0.17, 0.36]); the
lower right plot of Figure 2.5 shows the conditional probability mass over this smaller
region.

In addition to showing estimates of overall correlation, Table 2.1 shows estimates
based on sex and study site. For the most part, ρ̂HS is fairly close to ρ̂IMI , except
for those sites with small sample sizes (i.e., Chile, Mexico, and Honduras). Rank
correlations over the restricted region, ρ̂S|ΩR with ΩR = [0, 15)× [0, 15) were generally
more variable and typically higher than those over ΩR = [0, 10)× [0, 10).
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Subgroup N PV R PV R PV R PV R ρ̂HS ρ̂S|ΩR=[0,15)×[0,15) ρ̂S|ΩR=[0,10)×[0,10) ρ̂IMI

All 6691 16.1 12.2 12.5 59.1 0.35 [ 0.27, 0.44 ] 0.65 [ 0.30, 0.97 ] 0.26 [ 0.17, 0.36 ] 0.37 [ 0.33, 0.41 ]
Male 5185 14.8 12.0 12.3 60.9 0.32 [ 0.22, 0.42 ] 0.57 [ 0.14, 1.00 ] 0.32 [ 0.18, 0.44 ] 0.36 [ 0.30, 0.41 ]
Female 1506 20.7 13.1 13.3 52.9 0.45 [ 0.30, 0.57 ] 0.70 [ 0.20, 1.00 ] 0.13 [-0.04, 0.32 ] 0.40 [ 0.32, 0.48 ]
Brazil 2313 22.4 11.8 13.8 51.9 0.45 [ 0.36, 0.53 ] 0.42 [ 0.10, 0.73 ] 0.17 [-0.01, 0.34 ] 0.36 [ 0.30, 0.42 ]
Chile 1040 19.2 23.0 11.5 46.2 -0.06 [-0.21, 0.30 ] 0.73 [-0.24, 1.00 ] 0.19 [ 0.03, 0.34 ] 0.26 [ 0.00, 0.37 ]
Honduras 138 18.1 17.4 10.1 54.3 -0.18 [-0.53, 0.44 ] 0.21 [-1.00, 1.00 ] 0.50 [-0.09, 0.96 ] 0.29 [ 0.00, 0.55 ]
Mexico 975 13.7 16.3 11.9 58.1 0.52 [ 0.14, 0.74 ] -0.39 [-0.54, 0.41 ] -0.43 [-1.00, 0.08 ] 0.25 [ 0.10, 0.38 ]
Peru 2225 8.9 5.5 12.1 73.4 0.45 [ 0.37, 0.53 ] 0.69 [ 0.42, 0.93 ] 0.58 [ 0.34, 0.80 ] 0.55 [ 0.43, 0.66 ]

Table 2.1: Correlation of time to viral failure and time to regimen change in CCASAnet cohort measured using three estimators: ρ̂H
S , ρ̂S|ΩR

, and
ρ̂IMI . N is the number of subjects for each subgroup. Columns PV R, PV R, PV R, and PV R show the percent of subjects having both events (PV R),
having regimen change event but censored viral failure (PV R), having viral failure event but censored regimen change (PV R), and having both events
censored (PV R). For ρ̂

H
S and ρ̂S|ΩR

, the numbers inside brackets are 95% confidence intervals estimated from 1000 bootstrap samples. Column ρ̂IMI

shows the estimates of Schemper et al. (2013) and their confidence intervals.
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2.6 Discussion
We have proposed two non-parametric methods of quantifying correlation with

bivariate right-censored data. One estimator, ρ̂S|ΩR computes Spearman’s correlation
within a restricted region. The other estimator, ρ̂HS , computes Spearman’s correlation
for an estimable bivariate distribution, which is analogous to assigning data censored
beyond the estimable region to the highest rank values. Under unbounded censor-
ing, ρ̂HS is consistent for the overall Spearman’s correlation. Under generalized type I
censoring, with the majority of events happening in the restricted region, ρ̂HS can be
viewed an approximation of the overall Spearman’s correlation. Because our meth-
ods assume neither marginal nor joint parametric distributions, they have potential
advantages over parametric and semi-parametric methods.

The main limitations of our estimators stem from challenges with non-parametrically
estimating the bivariate survival surface. The first challenge is that with generalized
type I censoring, the bivariate survival surface, and hence Spearman’s rank correla-
tion ρS, cannot be identified beyond the region of data support without parametric
assumptions. Hence, our inference targets were the estimable parameters, ρS|ΩR and
ρHS . Although under generalized type I censoring they do not equal the overall Spear-
man’s correlation, both parameters have sensible interpretations. The alternative,
using parametric and semi-parametric models to estimate Spearman’s correlation –
an inherently non-parametric statistic – has other limitations. Parametric and semi-
parametric approaches assume a dependency structure; and as seen in our simulations,
semi-parametric estimators such as ρ̂IMI proposed by Schemper et al. (2013), may
be biased for certain dependency structures. In addition, they implicitly assume that
the dependency structure outside the region of observation is the same as that seen
inside the observation region. Although in the real data example, ρ̂IMI appeared
more stable than our non-parametric estimators, particularly for small sample sizes,
with complex real data there is the real possibility of model misspecification. As with
most statistics, there may be settings where one might prefer the non-parametric
estimators over the parametric estimators, or vice versa.

The second challenge is that even in regions where the bivariate survival curve
is identifiable, non-parametric estimators of the survival surface may have negative
mass, which leads to potential downstream problems with estimation of ρS|ΩR and ρHS .
Researchers have grappled with non-parametric approaches to avoid negative mass,
e.g. van der Laan (1996). Thankfully, in our simulations only a minor proportion
of our estimates encountered problems due to negative mass, the problems go away
as the numbers of events increase, and there are typically workaround solutions that
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appear to behave reasonably.
In our approach we considered a rectangular restricted region, [0, τX ] × [0, τY ].

An anonymous associate editor correctly pointed out that the top right corner of
this rectangle is not always identifiable non-parametrically. Alternatively, one could
consider defining estimators using the identifiable region ΩR = {(tX , tY ) : TX,k ≥
tX , TY,k ≥ tY for some k} (see Prentice and Zhao (2019)). Although this idea is
intriguing, we decided to keep the definition of ΩR as [0, τX ] × [0, τY ] due to easier
interpretation. Note that Dabrowska’s estimator can be computed and is consistent
for all points inside [0, τX ]× [0, τY ].

Although not studied here, our approaches can be directly applied to settings
where only one of the variables is right-censored. This special case allows non-
parametric estimation of the bivariate survival surface without negative mass (Stute,
1993). In future work, we plan to study semi-parametric methods for estimating
covariate-adjusted partial and conditional Spearman’s correlation for bivariate sur-
vival data.
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2.7 Appendix 2.A
2.7.1 Consistency of ρ̂HS for ρS under unbounded censoring

In the following proofs, for the sake of brevity, we omit subscript X or Y when
dealing with a marginal distribution of a single variable. We use notations a+ and a−

to denote values infinitesimally above and below a, respectively, and notation p−→ to
denote convergence in probability.

Let T and C be time to event and time to censoring and T ⊥ C. Let X = min(T,C).
Let ∆ = I(T ≤ C). Let F (x) = Pr(T ≤ x) and G(x) = Pr(C ≤ x) be cumulative
distribution functions (CDFs) for T and C, respectively. Let the maximum possible
value of T be tmax (tmax < ∞ or tmax = ∞). Unbounded censoring implies that the
maximum possible value of C is at least tmax. Let random variable V represent an
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uncensored event,

V =

 T , T ≤ C with probability
∫

[0,tmax] F (dx) {1−G(x−)} ,
0, T > C with probability

∫
[0,tmax] G(dx) {1− F (x)} .

(2.17)

Given n independent and identically distributed pairs (T1, C1), (T2, C2), ..., (Tn, Cn),
let variables V1, V2, ..., Vn be defined accordingly and let Vmax,n = max(V1, V2, ..., Vn).
Lastly, let τ̂ be V +

max,n if the last observed time is censored and τ̂ = tmax, otherwise.

Lemma 1.
We assume that if T is discrete and tmax <∞, then Pr(T = tmax) > 0. If tmax =∞

then for any tN there is such t > tN that Pr(T = t) > 0. If T is continuous, we assume
that there exists such t0 < tmax that for any t ∈ [t0, tmax), Pr(t ≤ T < tmax) > 0. If T
is a mixture of continuous and discrete random variables, then one of the conditions
mentioned above should hold. Under unbounded censoring,

1. Vmax,n
p−→ tmax;

2. τ̂ p−→ tmax.

Proof:
Because of (2.17), for any t < tmax

Pr (V < t) =
∫

[0,tmax]
G(dx) {1− F (x)}+

∫
[0,t)

F (dx)
{

1−G(x−)
}
. (2.18)

Because of (2.17),
∫

[0,tmax] G(dx) {1− F (x)} = 1 −
∫

[0,tmax] F (dx) {1−G(x−)}, so
(2.18) can be rewritten as

Pr (V < t) = 1−
∫

[t,tmax]
F (dx)

{
1−G(x−)

}
.

Note that 1−G(x−) > 0 for all x ∈ [0, tmax] because the maximum support value of C
is at least tmax. Because of the assumptions, if T is discrete, then F (dx) > 0 for some
x ∈ [t, tmax], for example tmax. If T is continuous, there exists such t0 that F (dx) > 0
for all x ∈ [t0, tmax). Therefore,

∫
[t,tmax] F (dx) {1−G(x−)} > 0 and thus Pr (V < t) =

1−
∫

[t,tmax] F (dx) {1−G(x−)} < 1. Because Pr (Vmax,n < t) = {Pr (V < t)}n, we have

Pr (Vmax,n < t) −→ 0 as n −→∞. (2.19)
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Because (2.19) holds for any t < tmax, Vmax,n
p−→ tmax.

For any t < tmax,

Pr(τ̂ < t) = Pr(V +
max,n < t, and the largest time is censored)

≤ Pr(V +
max,n < t) ≤ Pr(Vmax,n < t) −→ 0 as n −→∞.

Because this is true for any t < tmax, we have τ̂ p−→ tmax.

Theorem 1.
Let τ̂X and τ̂Y be defined as τ̂ for TX and TY respectively, and let ρ̂HS and ĉHρ be
defined as equations (12) and (13) in the main manuscript. Then ρ̂HS

P−→ ρS.

Proof: We recall the expressions for ρS, ρHS , ρ̂HS , cρ, cHρ , and ĉHρ :

ρS/cρ =
∫ ∞

0

∫ ∞
0

{
1− SX(x)− SX(x−)

}{
1− SY (y)− SY (y−)

}
S(dx, dy), (2.20)

ρHS /c
H
ρ =

∫ τX

0

∫ τY

0

{
1− SHX (x)− SHX (x−)

}{
1− SHY (y)− SHY (y−)

}
SH(dx, dy),

ρ̂HS /ĉ
H
ρ =

∑
i∗

∑
j∗

{
1− ŜHX (xi∗)− ŜHX (x−i∗)

}{
1− ŜHY (yj∗)− ŜHY (y−j∗)

}
ŜH(dxi∗ , dyj∗),

(2.21)

where i∗ enumerates all events for X plus τX and j∗ enumerates all events for Y plus
τY and SX(x−) = limt↑x SX(t); SHX (x) and SHY (y) are the marginal survival functions
of SH(x, y) (defined in (11) in the main manuscript), and

cρ =
[
Var

{
1− SX(TX)− SX(T−X )

}
Var

{
1− SY (TY )− SY (T−Y )

}]−1/2
,

cHρ =
[
Var

{
1− SHX (TX)− SHX (T−X )

}
Var

{
1− SHY (TY )− SHY (T−Y )

}]−1/2
,

ĉHρ =
[
Var

{
1− ŜHX (TX)− ŜHX (T−X )

}
Var

{
1− ŜHY (TY )− ŜHY (T−Y )

}]−1/2
.
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The righthand side of (2.21) can be written in the following way:

∑
i∗

∑
j∗

{
1− ŜHX (xi∗)− ŜHX (x−i∗)

}{
1− ŜHY (yj∗)− ŜHY (y−j∗)

}
ŜH(dxi∗ , dyj∗)

=
∑
i

∑
j

{
1− ŜX(xi)− ŜX(x−i )

}{
1− ŜY (yj)− ŜY (y−j )

}
Ŝ(dxi, dyj)︸ ︷︷ ︸

Â

+
∑
i

{
1− ŜX(xi)− ŜX(x−i )

}{
1− ŜY (τ̂−Y )

}
Ŝ(dxi, τ̂−Y )︸ ︷︷ ︸

B̂

+
∑
j

{
1− ŜX(τ̂−X )

}{
1− ŜY (yj)− ŜY (y−j )

}
Ŝ(τ̂−X , dyj)︸ ︷︷ ︸

Ĉ

+
{

1− ŜX(τ̂−X )
}{

1− ŜY (τ̂−Y )
}
Ŝ(τ̂−X , τ̂−Y )︸ ︷︷ ︸

D̂

, (2.22)

where i enumerates all events for X and j enumerates all events for Y . The following
two scenarios are possible:

1. Both maximum observed times are event times; ŜH(dxi, dyj) = Ŝ(dxi, dyj) and
B̂ = Ĉ = D̂ = 0.

2. The maximum observed time X and/or Y is censored; D̂ 6= 0 and B̂ 6= 0 or
Ĉ 6= 0.

In the first scenario, the righthand side of (2.21) converges in probability to the right-
hand side of (4.3) because of the consistency of Dabrowska’s estimator (Dabrowska,
1988) and continuous mapping theorem (van der Vaart and Wellner, 1996). The same
reasoning applies to ĉHρ

P−→ cρ and therefore ρ̂HS
P−→ ρS.

In the second scenario, ŜH(x, y) 6= Ŝ(x, y). For any two values vX and vY from
the support of TX and TY , respectively, let

α(vX , vY ) =
∫ vX

0

∫ vY

0

{
1− SX(x)− SX(x−)

}{
1− SY (y)− SY (y−)

}
S(dx, dy),

α̂(vX , vY ) =
∑

i:xi≤vX

∑
j:yj≤vY

{
1− ŜX(xi)− ŜX(x−i )

}{
1− ŜY (yj)− ŜY (y−j )

}
Ŝ(dxi, dyj).

Note that for the reasons described above, α̂(vX , vY ) is a consistent estimator of
α(vX , vY ), which in turn approaches the righthand side of (4.3) as vX → tmax,X and
vY → tmax,Y . Also, for any realizations Vmax,n,X = vX and Vmax,n,Y = vY , we have
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Â = α̂(vX , vY ), which by the continuous mapping theorem makes Â a consistent
estimator of α(vX , vY ) since Vmax,n,X → tmax,X and Vmax,n,Y → tmax,Y as n → ∞.
Therefore, Â is also a consistent estimator for the righthand side of (4.3).

From Lemma 1, it also follows that τ̂X P−→ t+X,max and τ̂Y
P−→ t+Y,max, therefore

ŜX(τ̂−X ) P−→ 0, ŜY (τ̂−Y ) P−→ 0, and Ŝ(τ̂−X , τ̂−Y ) P−→ 0, which leads to the following:

B =
∑

i

{
1− ŜX(xi)− ŜX(x−i )

}{
1− ŜY (τ̂−Y )

}
Ŝ(dxi, τ̂

−
Y ) ≤

∑
i

Ŝ(dxi, τ̂
−
Y ) = P̂r {X < τ̂X , Y ≥ τ̂Y }

= SY (τ̂−Y )− S(τ̂−X , τ̂
−
Y ) P−→ 0,

C =
∑

j

{
1− ŜX(τ̂−X )

}{
1− ŜY (yj)− ŜY (y−j )

}
Ŝ(τ̂−X , dyj) ≤ ŜX(τ̂−X )− Ŝ(τ̂−X , τ̂

−
Y ) P−→ 0,

D =
{

1− ŜX(τ̂−X )
}{

1− ŜY (τ̂−Y )
}
Ŝ(τ̂−X , τ̂

−
Y ) ≤ Ŝ(τ̂−X , τ̂

−
Y ) P−→ 0.

Because of the above

A+ (B + C +D) P−→
∫ ∫ {

1− SX(x)− SX(x−)
}{

1− SY (y)− SY (y−)
}
S(dx, dy),

which proves that the righthand side of (2.21) converges in probability to the right-
hand side of (4.3).
Now, we prove that ĉHρ

P−→ cρ. ĉHρ is a product of square roots of variances of
1− ŜHX (x)− ŜHX (x−) and 1− ŜHY (y)− ŜHY (y−). Let Z = 1− ŜHX (x)− ŜHX (x−). Then
Ê(Z) = ∑

i∗

{
1− ŜHX (xi∗)− ŜHX (x−i∗)

}
ŜHX (dxi∗) = 0 for any properly defined continu-

ous or discrete survival function (see proof of Property 8 in Li and Shepherd, 2012)
and

V̂ar(Z) = Ê(Z2) =
∑
i∗

{
1− ŜHX (xi∗)− ŜHX (x−i∗)

}2
ŜHX (dxi∗)

=
∑
i

{
1− ŜX(xi)− ŜX(x−i )

}2
ŜX(dxi)︸ ︷︷ ︸

Ĥ

+
{

1− ŜX(τ̂−X )
}2
ŜX(τ̂−X )︸ ︷︷ ︸

Ĵ

P−→
∫ {

1− SX(x)− SX(x−)
}2
SX(dx) + 0

= Var(1− SX(TX)− SX(T−X )).

In the above, Ĵ P−→ 0 because ŜX(τ̂−X ) P−→ 0 as τ̂X −→ t+X,max (see Lemma 1 ). Simi-
larly to the argument about the consistency of Â, we have Ĥ P−→ cρ. The proof for
the variance of 1 − ŜHY (y) − ŜHY (y−) is similar. We have proved that ĉHρ

P−→ cρ and
that the righthand side of (2.21) is consistent for the righthand side of (4.3), therefore,
by the continuous mapping theorem, ρ̂HS

P−→ ρS.
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2.7.2 Tables

Table 2.2: Bias [RMSE] of ρ̂H
S and ρ̂IMI as estimates of the overall Spearman’s correlation, ρS ,

under unbounded censoring.

N Censoring Percent Method Indep Clayton Frank Frank
Scenario Censored ρS = 0 ρS = 0.2 ρS = 0.2 ρS = −0.2

100 No Censoring ρHS -0.001 [0.103] -0.001 [0.100] -0.005 [0.099] 0.002 [0.100]
ρIMI 0.003 [0.102] 0.002 [0.095] -0.018 [0.095] 0.008 [0.097]

CX ≡ CY , 30% ρHS 0.001 [0.112] -0.001 [0.108] -0.004 [0.110] 0.003 [0.109]
ρIMI 0.001 [0.115] 0.032 [0.118] -0.002 [0.107] 0.000 [0.106]

70% ρHS 0.005 [0.217] -0.021 [0.216] -0.006 [0.219] 0.015 [0.215]
ρIMI -0.004 [0.159] 0.091 [0.176] -0.002 [0.153] 0.017 [0.157]

CX ⊥ CY , (30%, 30%) ρHS 0.003 [0.121] -0.004 [0.116] -0.002 [0.116] 0.003 [0.117]
ρIMI 0.004 [0.117] 0.036 [0.118] -0.004 [0.111] 0.005 [0.110]

(30%, 70%) ρHS 0.001 [0.201] 0.001 [0.191] -0.016 [0.193] 0.012 [0.195]
ρIMI -0.008 [0.142] 0.065 [0.156] -0.004 [0.138] 0.008 [0.139]

(70%, 70%) ρHS -0.010 [0.261] -0.016 [0.271] -0.036 [0.278] 0.022 [0.260]
ρIMI -0.007 [0.174]1 0.100 [0.197] -0.018 [0.169]1 0.019 [0.179]2

200 No Censoring ρHS 0.000 [0.068] 0.000 [0.068] -0.003 [0.067] 0.001 [0.065]
ρIMI 0.001 [0.069] 0.012 [0.069] -0.012 [0.069] 0.008 [0.067]

CX ≡ CY , 30% ρHS 0.002 [0.078] 0.000 [0.079] -0.003 [0.079] 0.002 [0.076]
ρIMI -0.005 [0.083] 0.034 [0.083] -0.005 [0.076] 0.003 [0.073]

70% ρHS 0.003 [0.164] -0.008 [0.159] 0.001 [0.156] 0.008 [0.158]
ρIMI 0.005 [0.120] 0.094 [0.143] -0.011 [0.110] 0.010 [0.114]

CX ⊥ CY , (30%, 30%) ρHS -0.003 [0.084] -0.001 [0.081] -0.001 [0.082] -0.002 [0.081]
ρIMI 0.001 [0.082] 0.040 [0.087] -0.006 [0.077] 0.004 [0.080]

(30%, 70%) ρHS 0.003 [0.148] 0.004 [0.139] -0.004 [0.145] 0.002 [0.148]
ρIMI -0.002 [0.102] 0.081 [0.126] -0.010 [0.097] 0.014 [0.100]

(70%, 70%) ρHS 0.007 [0.231] 0.004 [0.209] -0.010 [0.217] 0.009 [0.214]
ρIMI 0.003 [0.126] 0.115 [0.167] -0.012 [0.118] 0.015 [0.124]

1 In one out of 1000 cases ρ̂IMI was not successful in computing the correlation.

2 In four out of 1000 cases ρ̂IMI was not successful in computing the correlation.
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Table 2.3: Power and type I error rate for the overall Spearman’s correlation, ρS , measured by ρ̂H
S

and ρ̂IMI under unbounded censoring.

N Censoring Percent Method Indep Clayton Frank Frank
Scenario Censored ρS = 0 ρS = 0.2 ρS = 0.2 ρS = −0.2

100 No Censoring ρHS 0.056 0.497 0.491 0.497
ρIMI 0.055 0.532 0.447 0.488

CX ≡ CY , 30% ρHS 0.041 0.393 0.390 0.396
ρIMI 0.042 0.533 0.397 0.415

70% ρHS 0.031 0.137 0.152 0.130
ρIMI 0.004 0.201 0.075 0.028

CX ⊥ CY , (30%, 30%) ρHS 0.047 0.361 0.366 0.360
ρIMI 0.040 0.516 0.362 0.350

(30%, 70%) ρHS 0.048 0.166 0.162 0.170
ρIMI 0.013 0.311 0.132 0.129

(70%, 70%) ρHS 0.032 0.101 0.082 0.090
ρIMI 0.0011 0.132 0.0171 0.0102

200 No Censoring ρHS 0.042 0.802 0.803 0.819
ρIMI 0.039 0.858 0.756 0.792

CX ≡ CY , 30% ρHS 0.034 0.693 0.685 0.704
ρIMI 0.054 0.828 0.680 0.691

70% ρHS 0.034 0.239 0.237 0.233
ρIMI 0.010 0.497 0.149 0.112

CX ⊥ CY , (30%, 30%) ρHS 0.043 0.666 0.651 0.675
ρIMI 0.043 0.837 0.657 0.630

(30%, 70%) ρHS 0.038 0.314 0.299 0.307
ρIMI 0.018 0.657 0.291 0.283

(70%, 70%) ρHS 0.038 0.145 0.134 0.138
ρIMI 0.001 0.391 0.071 0.037

1 In one out of 1000 cases ρ̂IMI was not successful in computing the correlation.
2 In four out of 1000 cases ρ̂IMI was not successful in computing the correlation.
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2.7.3 Figures
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Figure 2.6: Point estimates (x-axis) vs population parameters (y-axis) under different univariate
censoring scenarios. The top and second rows are ρ̂H

S and ρ̂IMI as estimators of the overall Spear-
man’s correlation, ρS . The third row is ρ̂H

S as an estimator of ρH
S . The bottom row is ρ̂S|ΩR

as an
estimator of ρS|ΩR

. The columns represent Clayton’s and Frank’s copulas. The population param-
eters for Clayton’s family are 0, 0.2, and 0.6 for all estimates. For Frank’s family, the population
parameters of ρS are −0.6, −0.2, 0.2, and 0.6; the population parameters of ρH

S are −0.512, −0.173,
0.180, and 0.545; the population parameters of ρS|ΩR

are −0.098, −0.042, 0.058, and 0.261. The dots
are the mean point estimates based on 1000 simulations. The shaded areas represent the 0.025th

and 0.975th quantiles. For generalized type I censoring, the restricted region, ΩR, is defined by the
median survival times.
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Figure 2.7: Performance of ρ̂H
S with survival surface estimators of Dabrowska (1988) (top row)

and Campbell (1981) (bottom row) under bivariate unbounded censoring. The columns represent
Clayton’s and Frank’s copulas under moderate and heavy censoring. The x-axis is the true overall
Spearman’s correlation; the y-axis is an estimate. The dots are the mean point estimates based on
1000 simulations. The shaded areas represent the 0.025th and 0.975th quantiles.
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Figure 2.8: Performance of ρ̂H
S with survival surface estimators of Dabrowska (1988) (top row),

Campbell (1981) (middle row), and Lin and Ying (1993) (bottom row) under univariate unbounded
censoring. The columns represent Clayton’s and Frank’s copulas under moderate and heavy censor-
ing. The x-axis is the true overall Spearman’s correlation; the y-axis is an estimate. The dots are
the mean point estimates based on 1000 simulations. The shaded areas represent the 0.025th and
0.975th quantiles.
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S

respectively. The data are simulated 1000 times with 200 pairs generated from Frank’s copula family;
the univariate unbounded censoring at 50% is applied. The relative efficiency Var(ρ̂H

S )/Var(ρ̂MLE
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ranged from 1.19 (for ρS = 0) to 1.60 (for ρS = 0.6).
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Figure 2.10: Illustration of the mixture distribution composed of 60% highly negatively correlated
data (ρS = −0.8, Frank’s copula family with θ = −8) and 40% perfectly correlated data (ρS = 1)
with the overall Spearman’s correlation being about −0.0813. TX and TY are uniformly distributed.
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Figure 2.11: Bias and standard deviation as functions of the sample size for ρ̂S (first panel), ρ̂H
S

(second panel), ρ̂MLE
S (third panel), and ρ̂IMI (forth panel). Estimator ρ̂S is computed as Spear-

man’s rank correlation for uncensored data. Estimators ρ̂H
S , ρ̂MLE

S , and ρ̂IMI are computed under
50% random unbounded censoring. The bivariate survival data are simulated as a mixture of 60%
highly negatively correlated data (ρS = −0.8, Frank’s copula family with θ = −8) and 40% perfectly
correlated data (ρS = 1) with the overall Spearman’s correlation being about −0.0813 (see Figure
2.10 for illustration).
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Figure 2.12: Bias and standard deviation as functions of the sample size for estimates of Spearman’s
correlation within the restricted region with no censoring and therefore using standard methods (left
panel) and with censoring and therefore computing ρ̂S|ΩR

(right panel) as described in Section 3.1.
Estimator ρ̂S is computed as Spearman’s rank correlation for uncensored pairs with each event time
less than the median event time. The restricted region ΩR is defined by the median follow-up time for
both times to event. The bivariate survival data are simulated as a mixture of 60% highly negatively
correlated data (ρS = −0.8, Frank’s copula family with θ = −8) and 40% perfectly correlated data
(ρS = 1) with the true overall and restricted Spearman’s correlations being about −0.081 and 0.85
respectively. Unbounded 50% censoring is applied to the entire sample. The effective proportion
of uncensored events for ρ̂S|ΩR

is 25% for each time to event (Figure 2.10 illustrates an uncensored
sample).
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Figure 2.13: Coverage probability (left panel) and average width (right panel) of the bootstrap
confidence intervals for ρ̂H

S as an estimate of ρS under 50% unbounded censoring. The data are
simulated from Frank’s copula with parameters corresponding to Spearman’s correlation of −0.6,
−0.2, 0, 0.2, and 0.6. The sample size is 200 and the number of simulations is 1000. The 95%
bootstrap confidence bounds are computed as the 0.025th and 0.975th percentiles.
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CHAPTER 3

SPEARMAN-LIKE CORRELATION MEASURE ADJUSTING FOR
COVARIATES IN BIVARIATE SURVIVAL DATA

3.1 Introduction
Many scientific studies focus on measuring correlation between two variables. Cor-

relation can occur when one variable affects the other or when a third variable affects
both variables of interest. In either case, it can be measured using an unadjusted
correlation. However, to understand the mechanism behind the relationship between
two variables, it is essential to be able to compute the conditional and adjusted corre-
lation. For example, for people living with HIV infection and receiving antiretroviral
therapy (ART), an increase in viral load will likely prompt the treating physician to
change the person’s ART regimen. Therefore, time to viral load and time to regimen
change should be correlated. However, because of differences in clinical practices, this
correlation may vary depending on the country or region, and other factors such as
the patient’s age, lab results, or comorbidities may modify this correlation.

Measuring correlation can be challenging in the presence of right-censoring. Right-
censoring is a general term for data with values that are not always observed due to
either an upper detection limit (e.g., income is often collected with the highest cat-
egory of “$50, 000 or higher”) or due to the end of study. Sometimes an outcome
may be censored due to the occurrence of a competing event that is part of the re-
search question, but we do not consider the setting of competing risks here. We
are interested in the correlation between variables in a single subject (e.g., time to
viral failure and time to regimen change) or in paired subjects (e.g., education of
fathers and income of sons). Specifically, we are interested in Spearman’s correla-
tion, a non-parametric rank correlation measure. Unlike Pearson’s correlation, it is
invariant to variable transformation and can detect associations when variables are
non-linearly related. It also approximates well Pearson’s correlation for normally dis-
tributed variables (Kruskal, 1958). The interpretation of Spearman’s correlation is
straightforward for continuous and ordinal data (i.e., the correlation of the ranked
data) and is desirable in the context of right-censored data.

In the setting of right-censoring, several Spearman-like statistics have been sug-
gested. Test statistics of Cuzick (1982) and Dabrowska (1986) resemble Spearman’s
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correlation under certain assumptions and are effectively unscaled estimates of Spear-
man’s correlation when applied to uncensored data. Semi-parametric approaches for
measuring correlation using copulas have been considered by Carriere (2000), Romeo
et al. (2006), and Zhang (2008); although some of these authors did not estimate
Spearman’s correlation, it can be computed from the estimated copulas (Nelsen,
2007). Schemper et al. (2013) proposed a semi-parametric iterative multiple impu-
tation method to estimate Spearman’s correlation based on a normal copula. These
semi-parametric approaches tend to be stable and efficient when the copula is properly
specified but can be misleading in the presence of misspecification. In Chapter 2, we
proposed to estimate Spearman’s correlation based on non-parametric estimators of
the bivariate survival surface; we used the non-parametric and consistent estimator of
Dabrowska (1988). Although this approach does not make parametric assumptions,
its reliance on non-parametric estimators of the bivariate survival surface, which is
notoriously difficult to estimate (Kalbfleisch and Prentice, 2011), can lead to poor effi-
ciency as well as instability when the sample size is small and there is heavy censoring.

Additionally, it is desirable to measure the rank correlation between bivariate
right-censored data while adjusting for covariates. Several bivariate survival models
have been suggested to estimate adjusted correlation. To mention a few, Clayton
and Cuzick (1985) proposed a method of estimating a cross ratio, another associa-
tion measure used in bivariate survival (Clayton, 1978), in the context of a frailty
model that may include covariates. Shih and Louis (1995) estimated Kendall’s tau
by first fitting separate Cox models conditional on covariates for both of the time-to-
event variables, and then using maximum likelihood to estimate association assuming
different parametric dependency structures defined with copulas. Prentice and Hsu
(1997) developed a method that used Cox models to estimate marginal distributions
for each variable conditional on covariates and assumed a semi-parametric pairwise
dependency structure. To our knowledge, there is no estimator of Spearman’s partial
correlation adjusted for covariates for bivariate survival data.

In this manuscript, we derive unadjusted, partial, and conditional estimators of
Spearman’s correlation for bivariate survival data. Our estimators are extensions of
the approach of Liu et al. (2018), who showed that Spearman’s rank correlation for
uncensored continuous or discrete variables is equivalent to the correlation between
probability-scale residuals. Probability-scale residuals are well defined with continu-
ous, ordinal, and right-censored data (Shepherd et al., 2016), and can be computed

39



with unadjusted or adjusted estimates of the marginal survival distributions. This
is advantageous because it avoids computing estimates of the bivariate survival sur-
face, and it provides a straightforward extension for covariate-adjustment. In Section
3.2, we review the definition of PSRs, define our unadjusted Spearman’s correlation
estimator using PSRs, describe our approach to estimating its variance, discuss its
population parameter, and show how other Spearman-like test statistics are related to
our method. In Section 3.3, we focus on estimation and inference of partial, and con-
ditional Spearman’s correlation with right-censored data using PSRs. In Section 3.4,
we use simulations to estimate the performance of our statistics and compare them to
other approaches. In Section 3.5, we apply our method to an HIV study examining
the association between times from treatment initiation to viral failure and regimen
change. Finally, in Section 3.6, we discuss our approach and future directions.

3.2 Unadjusted Correlation of PSRs
3.2.1 Notation and Definitions

Let TX and TY be time to event variables for a single subject or a pair of sub-
jects. Time to events TX and TY can be censored at times CX and CY , respectively.
We assume independence between (TX , TY ) and (CX , CY ), but CX and CY can be
dependent. Without loss of generality we can assume that (TX , TY ) and (CX , CY ) are
defined on [0,∞) × [0,∞). If TX and TY are observed on a single subject then it is
likely that CX = CY . When CX = CY with probability 1, we call this univariate cen-
soring, otherwise censoring is bivariate. Often, studies are restricted by the maximum
follow-up time, which we denote as τX and τY for TX and TY , respectively. When
τX = τY = ∞, we call it unbounded censoring. When τX < ∞ or τY < ∞, we refer
to it as type I censoring. Type I censoring can be strict or generalized. Strict type
I censoring implies that all subjects start the study at the same calendar time, and
there is no censoring other than at the end of the study. Generalized type I censoring
allows other patterns of study entry and censoring before the end of the study as long
as the resulting censoring mechanism is uninformative.

If the relationship between TX and TY are confounded by a set of covariates ZZZ we
assume independence between TX and CX conditional on ZZZ and between TY and CY
conditional on ZZZ. As a result of censoring, we only observe X = min(TX , CX) and
Y = min(TY , CY ) and event indicators ∆X = 1(TX ≤ CX) and ∆Y = 1(TY ≤ CY ).
We denote marginal and joint cumulative distribution functions of TX and TY as

40



FX(x) = Pr (TX ≤ x), FY (y) = Pr (TY ≤ y), F (x, y) = Pr (TX ≤ x, TY ≤ y), and
marginal and joint cumulative distribution functions of CX and CY as GX(x) =
Pr (CX ≤ x), GY (y) = Pr (CY ≤ y), G(x, y) = Pr (CX ≤ x,CY ≤ y). We define
FX(x−) = limt↑x FX(t) and F (x−, y) = limt↑x F (t, y); functions FY (y−) and F (x, y−)
are defined similarly.

As mentioned by Liu et al. (2018), in the absence of censoring, the population
parameter for Spearman’s correlation between TX and TY can be defined as

ρS = Cor
{
FX(TX) + FX(T−X )

2 ,
FY (TY ) + FY (T−Y )

2

}
.

When both TX and TY are continuous the above definition translates into a bet-
ter known expression, ρS = Cor {FX(TX), FY (TY )}, the grade correlation (Kruskal,
1958), which according to Liu et al. (2018) can be presented as

ρS/cρ = Cov
[{
FX(TX) + FX(T−X )− 1

}{
FY (TY ) + FY (T−Y )− 1

}]
, (3.1)

where cρ =
[
Var

{
FX(TX) + FX(T−X )− 1

}
Var

{
FY (TY ) + FY (T−Y )− 1

}]−1/2
, and cρ =

3 when TX and TY are continuous. The right-hand side of (4.1) is the covariance of
probability-scale residuals (PSRs) proposed and studied by Li and Shepherd (2012)
and Shepherd et al. (2016) and defined as

r(tX , FX) = E {sign(tX , TX)}

= Pr (TX < tX)− Pr (TX > tX) = FX(t−X) + FX(tX)− 1,

where sign(tX , TX) is −1, 0, and 1 for tX < TX , tX = TX , and tX > TX , respectively.
Shepherd et al. (2016) extended this definition to right-censored time-to-event data.
When the time to event TX is unknown because of censoring, they suggested to use
the expectation of PSRs, r(x, FX ,∆X = 0) = E{r(TX , FX)|TX > x}. This led to
the following definition: r(x, FX , δX) = FX(x) − δX(1 − FX(x−)), where (x, δX) is a
realization of (X,∆X). PSRs can also be presented as a random variable,

r(X,FX ,∆X) = FX(X)−∆X(1− FX(X−)). (3.2)
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3.2.2 Correlation of Probability-Scale Residuals
Because in the absence of censoring the correlation of PSRs equals Spearman’s

correlation, it is natural to consider it as a measure of association in the presence of
censoring,

ρPSR = Cor {r(X,FX ,∆X), r(Y, FY ,∆Y )} = Cov {r(X,FX ,∆X), r(Y, FY ,∆Y )}√
Var {r(X,FX ,∆X)} Var {r(Y, FY ,∆Y )}

.

(3.3)

Shepherd et al. (2016) proved that PSRs have zero expectation when FX are FY are
properly specified and TX ⊥ CX and TY ⊥ CY ; therefore definition (3.3) can be
rewritten as

ρPSR/cρ = EX,Y,∆X ,∆Y
{r(X,FX ,∆X) r(Y, FY ,∆Y )} , (3.4)

where cρ = [EX,∆X
{r2(X,FX ,∆X)} EY,∆Y

{r2(Y, FY ,∆Y )}]−1/2. The estimation of
(3.4) is straight forward. Let (xi, δX,i, yi, δY,i) for i = 1, ..., n be independent and
identically distributed (iid) draws from (X,∆X , Y,∆Y ). Then

ρ̂PSR/ĉρ = 1
n

∑
n

{
r(xi, F̂X , δX,i)r(yi, F̂Y , δY,i)

}
, (3.5)

where ĉρ =
[{

1
n

∑
n r

2(xi, F̂X , δX,i)
}{

1
n

∑
n r

2(yi, F̂Y , δY,i)
}]−1/2

, and F̂X and F̂Y are
Kaplan-Meier estimates of FX and FY , respectively. The variance of the estimator
can be computed using a large sample approximation approach with M-estimation
and the delta-method (see Stefanski and Boos (2002)). M-estimation can be used un-
der very general assumptions and requires computing estimating equations and their
derivatives for each unknown parameter, including Kaplan-Meier (KM) estimates of
FX(xi) and FY (yi) for all i. We use the results of Stute (1995), who developed es-
timating equations for the Kaplan-Meier estimator. Appendix 3.C provides some
details.

3.2.3 Marginal Spearman-like Statistics in the Literature
In this section, we briefly review some Spearman-like statistics in the literature

and highlight their relationship to ρ̂PSR. The idea of testing association in bivariate
survival data using marginal distributions was suggested previously. Cuzick (1982)
studied a situation where the two underlying times TX and TY are assumed to be
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connected to a common latent variable: TX = aZ + eX , TY = bZ + eY , where the
parameters a and b are constrained to be b = aλ and both eX and eY follow a logistic
distribution. To test the null hypothesis a = 0, Cuzick suggested statistic ∑i(sX,i ·
sY,i), where s·,i = 1− 2F̂·,i for observed and 1− F̂·,i for censored observations, which
is “a statistic equivalent to Spearman’s rank correlation coefficient” when there is no
censoring. In comparison, for continuous time, r(·, F̂·, 1) = 2F̂·,i−1 (for observed) and
r(·, F̂·, 0) = F̂·,i (for censored times-to-event); therefore, the statistic of Cuzick is the
unscaled covariance of PSRs for uncensored and continuous time. Dabrowska (1986)
defined a more general version of ∑i(sX,i · sY,i) for testing the null of independence of
FX and FY when the underlying times are continuous, where s·,i = δ·,i − (1 + δ·,i)F̂·,i
is “the censored-data version of the Spearman test”. Since s·,i = δ·,i(1 − F̂·,i) −
F̂·,i = −r·,i(·, F̂·,i, δ·,i), Dabrowska’s statistic is the unscaled covariance of PSRs for
continuous time. To test independence for bivariate current status data, Ding and
Wang (2004) suggested to use statistic (1/n)∑i

[{
δX,i − F̂X(cX,i)

}{
δY,i − F̂Y (cY,i)

}]
,

where cX,i and cY,i are the times of collecting the status data. Their statistic is a
covariance of PSRs for current status data, as defined by Shepherd et al. (2016).
All three statistics above are scaled or unscaled covariances of PSRs under certain
conditions. The advantage of using the correlation instead of the covariance is that
it has a convenient range from −1 to 1, and therefore can be used not only as a test
but as a Spearman-like correlation measure.

3.2.4 Population Parameters of PSRs’ Correlation and Spearman’s Correlation
It is important to recognize that in the presence of censoring, ρPSR does not equal

Spearman’s correlation, ρS. Unfortunately, the population parameter, ρPSR, depends
on the censoring distribution. In addition, it is not possible to derive a general ex-
pression of ρPSR in terms of ρS. Some details are in Appendix 3.B. However, as will
be illustrated in Section 3.4 via simulations, the mean squared error of ρ̂PSR for ρS
is often smaller than that of other unbiased non-parametric estimators of ρS. The
difference between ρPSR and ρS is often quite small, particularly when the probability
of censoring is low. And if ρS = 0, ρPSR = 0 regardless of the censoring distribution
(see Appendix 3.A).

To illustrate the difference between ρPSR and ρS, we derived algebraic expressions
of ρPSR for four specific cases. We considered two correlation structures, perfect posi-
tive and negative Spearman’s correlation (ρS ∈ {−1, 1}), and two censoring scenarios,
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strict type I censoring and unbounded censoring, where CX ⊥ CY . The proportion
of censored observations, γ, was varied from 0 to 1/2. Details are in Appendix 3.B.
The population parameter ρPSR for each of the four cases (Spearman’s correlations
−1 and 1 for type I and unbounded censoring), is illustrated in Figure 3.1.
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Figure 3.1: Contour plots for the absolute value of ρP SR as a function of the proportion censored
when ρS = 1. The left and right columns represent scenarios of perfect positive and perfect negative
correlations, respectively. The top and bottom rows are strict type I and unbounded bivariate
censoring, respectively. Each contour represents a change of 0.016 absolute correlation value.

The Figure shows that heavier censoring results in lower absolute values of esti-
mated correlation except for strict type I censoring with equal proportions of censor-
ing for both events. The estimated absolute correlation values are also lower when
censoring is unbounded, and the correlation is negative. For example, for perfect
positive correlation and 50% strict type I censoring, ρPSR = ρS = 1. For perfect pos-
itive correlation and 50% unbounded censoring, ρPSR = 0.80. For perfect negative
correlation when both events are 50% censored, ρPSR = −0.86 for strict type I cen-
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soring and ρPSR = −0.70 for unbounded censoring. The performance of ρPSR is also
studied through simulations of other dependency structures and censoring scenarios
in Section 3.4.

3.3 Partial, Conditional, and Partial-conditional Correlation of PSRs
3.3.1 Population Parameters

Correlation between two variables is often confounded by another variable or a
set of variables, ZZZ. For instance, the correlation between the time to viral failure and
time to regimen change could be confounded by study site, age, sex, and CD4 count
at ART initiation. For uncensored data, Liu et al. (2018) showed that adjusted or
partial Spearman’s correlation could be computed as the correlation between PSRs
from models adjusting for confounders. For right-censored data, partial Spearman’s
correlation can be defined in a similar way:

ρPSR·ZZZ/cρ·ZZZ = Cov
{
r(X,FX|ZZZ ,∆X), r(Y, FY |ZZZ ,∆Y )

}
(3.6)

where cρ·ZZZ =
[
Var

{
r(X,FX|ZZZ ,∆X)

}
Var

{
r(Y, FY |ZZZ ,∆Y )

}]−1/2
, where FX|ZZZ is the dis-

tribution of TX conditional on ZZZ and FY |ZZZ is similarly defined.

In addition to studying adjusted correlation, we might be interested in studying how
the correlation is modified by another variable or a set of variables. For example, we
might ask whether the correlation between time to viral failure and time to regimen
change varies with the CD4 count at ART initiation. This question can be answered
by estimating a conditional correlation. Following Liu et al. (2018), we define an
extension of Spearman’s conditional correlation for right-censored data as

ρPSR|ZZZ/cρ|ZZZ = Cov
{
r(X,FX|ZZZ ,∆X), r(Y, FY |ZZZ ,∆Y )|ZZZ

}
, (3.7)

where cρ|ZZZ =
[
Var

{
r(X,FX|ZZZ ,∆X)|ZZZ

}
Var

{
r(Y, FY |ZZZ ,∆Y )|ZZZ

}]−1/2
. Note that unlike

partial correlation (3.6), which is a single number, the conditional correlation defined
in (3.7) is a set of numbers corresponding to different categories of ZZZ or as a contin-
uous function of ZZZ.

Finally, we may be interested in studying how association adjusted for variables ZZZ1

is modified by variables ZZZ2. This can be addressed by combining the previously de-
scribed approaches and computing a partial-conditional correlation. For example,
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we might be interested in estimating correlation for different levels of CD4 count
at ART initiation (ZZZ2) adjusted for study site, age, and sex (ZZZ1). Similar to Liu
et al. (2018), we define the extension of partial-conditional Spearman’s correlation
for right-censored data as

ρPSR·ZZZ1|ZZZ2/cρ·ZZZ1|ZZZ2 = Cov
{
r(X,FX|ZZZ ,∆X), r(Y, FY |ZZZ ,∆Y )|ZZZ2

}
, (3.8)

where cρ·ZZZ1|ZZZ2 =
[
Var

{
r(X,FX|ZZZ ,∆X |ZZZ2)

}
Var

{
r(Y, FY |ZZZ ,∆Y |ZZZ2)

}]−1/2
and ZZZ =

(ZZZ1,ZZZ2).

Similar to the unadjusted parameters described in Section 3.2, these covariate-adjusted
Spearman-like parameters depend on the censoring distribution and therefore are not
equal to Spearman’s correlation in the presence of censoring. However, they are
bounded between −1 and 1, they are equal to 0 when TX and TY are independent
conditional on ZZZ, and they do not require estimation of the joint distribution of TX
and TY conditional on ZZZ.

3.3.2 Estimation
Estimation of the parameters (3.6), (3.7), and (3.8) can be performed using the

steps suggested by Liu et al. (2018). Under correctly specified models and independent
censoring TX ⊥ TY |Z, Shepherd et al. (2016) showed that E

{
r(X,FX|ZZZ ,∆X)|ZZZ

}
=

E
{
r(Y, FY |ZZZ ,∆Y )|ZZZ

}
= 0, so the covariance and variance estimates can be approx-

imated as expectations of the product and squared PSRs. Therefore, a plug-in esti-
mator for the partial correlation is

ρ̂PSRsZZZ/ĉρZZZ = 1
n

∑
n

r(xi, F̂X|ZZZ=zzzi , δX,i)r(yi, F̂Y |ZZZ=zzzi , δY,i),

where ĉρ·ZZZ =
[{

1
n

∑
n r

2(xi, F̂X|ZZZ=zzzi , δX,i)
}{

1
n

∑
n r

2(yi, F̂Y |ZZZ=zzzi , δY,i)
}]−1/2

, and FX|ZZZ

and FY |ZZZ are fitted distributions.

Although one could use parametric survival models (e.g., exponential, Weilbull, or
log-normal regressions) to estimate FX|ZZZ and FY |ZZZ , this choice seems contrary to the
non-parametric nature of Spearman’s rank correlation. If we wanted to preserve its
non-parametric nature, we would fit a non-parametric model for each outcome. Still,
these models are hard to estimate with multivariable or continuous ZZZ. We can com-
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promise and use a rank-based semi-parametric model, for example, Cox proportional
hazards regression. Other choices could be the larger class of semi-parametric linear
transformation models proposed by Zeng and Lin (2007).

Estimating conditional and partial-conditional correlations is a little more compli-
cated. For conditional correlation, after obtaining PSRs, r(xi, F̂X|ZZZ=zzzi , δX,i) and
r(yi, F̂Y |ZZZ=zzzi , δY,i), we fit linear models of H = r(xi, F̂X|ZZZ=zzzi , δX,i)r(yi, F̂Y |ZZZ=zzzi , δY,i),
U = r2(xi, F̂X|ZZZ=zzzi , δX,i), and W = r2(yi, F̂Y |ZZZ=zzzi , δY,i) conditional on ZZZ. When ZZZ

is continuous, we use flexible modeling techniques (e.g., parametric models with ZZZ
expanded using restricted cubic splines). Next, we obtain predicted values Ĥ, Û , and
Ŵ conditional on ZZZ, and then calculate ρ̂PSR|ZZZ as Ĥ√

ÛŴ
conditional on ZZZ. The ratio∣∣∣∣ Ĥ√

ÛŴ

∣∣∣∣ can exceed 1 for some ZZZ, in which case we assign ρ̂PSR|ZZZ as sign
(

Ĥ√
ÛŴ

)
.

Estimating partial–conditional correlation is performed similarly, except estimating
Ĥ, Û , and Ŵ conditional on ZZZ2.

We estimate the variance of partial, conditional, and partial-conditional correla-
tions using the bootstrap or M-estimation. If PSRs are estimated using a parametric
regression, then score equations can be conveniently obtained from standard sta-
tistical software. If PSRs are estimated using Cox proportional hazards regression
(Cox, 1972), the estimating equations for β-coefficients are often easily extractable.
However, to obtain estimating equations for the baseline hazard, we use a full like-
lihood approach suggested by Breslow (1972). Variance estimation for conditional
and partial-conditional correlations also requires estimating equations from the linear
models that provide Ĥ, Û , and Ŵ . Although M-estimation is straightforward, it can
be tedious, and we do not provide all the details here. The process is similar to that
described by Liu et al. (2018). Appendix 3.C contains derivatives needed for comput-
ing the standard error of our estimators when fitting either Cox models or popular
parametric survival models. We have developed code in R that performs estimation
and inference using parametric and Cox survival models, which is available as part of
package PResiduals (Dupont et al., 2018).

3.3.3 Choice of Covariates
As an aside, the choice of adjustment variables, ZZZ, deserves some careful consid-

eration. Note that FX|ZZZ and FY |ZZZ are the distributions of TX and TY conditional on
the same set of covariates ZZZ. When times to event belong to different paired subjects,
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then ZZZ will contain the union of covariates relevant for both subjects. For example,
if one were interested in the prostate-specific antigen (PSA)-adjusted association be-
tween times to prostate cancer in father-son pairs, ZZZ would need to include both PSA
for the father and PSA for the son. Excluding the son’s PSA from the father’s model
of time-to-prostate cancer (or vice versa), would implicitly assume these variables are
independent conditional on the covariates remaining in the model. In contrast, when
times to event belong to the same subject (e.g., times from viral failure and regimen
change), it is more natural for ZZZ to be the same for FX|ZZZ and FY |ZZZ . Throughout this
paper, we assume that TX and TY are adjusted for the same covariates.

3.4 Simulations
To investigate the finite sample performance of our estimators, we applied them

to simulated data with different sample sizes, dependency structures, and censor-
ing scenarios. The dependency structures were simulated using copulas (see Nelsen
(2007)). For random variables TX and TY with marginal CDFs FX(x) and FY (y),
a copula is the joint CDF of random variables U = FX(TX) and V = FY (TY ),
CU,V (u, v) = Pr(U ≤ u, V ≤ v). Following Fan et al. (2000), we employed two com-
monly used copulas, Frank’s and Clayton’s. Clayton’s family produces only positive
association; the magnitude of the association is defined by parameter θ. Frank’s fam-
ily also has one parameter θ and can generate positive and negative correlations. Our
general approach for unadjusted, partial, and conditional correlation was to choose
parameter θ that corresponds to a target value of Spearman’s correlation, ρS. We
provide more details on simulating dependency structures below.

All simulations used 1000 replications and were performed in statistical language
R (R Core Team, 2017) using libraries survival (Therneau, 2015), lcopula (Belzile
and Genest, 2017), and cubature (Narasimhan and Johnson, 2017).
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3.4.1 Unadjusted Correlation
3.4.1.1 Simulation Set-up

The data (Xi,∆X,i, Yi,∆Y,i) were simulated in the following manner:

(Ui, Vi) ∼ CU,V (u, v, θ); (3.9)

TX,i = F−1
X (Ui), where FX(x) = 1− e−x; (3.10)

TY,i = F−1
Y (Vi), where FY (y) = 1− e−y; (3.11)

CX,i ∼ Exponential(rate = λX), CY,i ∼ Exponential(rate = λY ); (3.12)

Xi = min(TX,i, CX,i); Yi = min(TY,i, CY,i);

∆X,i = 1(TX,i ≤ CX,i); ∆Y,i = 1(TY,i ≤ CY,i);

where (3.9) was one of the following:

1. ρS = 0 implemented using CU,V (u, v) = uv;

2. ρS = 0.2 implemented using Clayton’s copula CU,V (u, v, θ = 0.311);

3. ρS = 0.2 implemented using Frank’s copula CU,V (u, v, θ = 1.224);

4. ρS = −0.2 implemented using Frank’s copula CU,V (u, v, θ = −1.224).

We studied samples sizes of 100 and 200 and simulated two types of unbounded
censoring, univariate (CX ≡ CY ) and bivariate (CX ⊥ CY ). The desired censor-
ing proportion, P , was achieved by choosing parameters λ = P/(1 − P ). For un-
bounded univariate censoring, we used censoring proportions (PX , PY ) of (0.3, 0.3)
and (0.7, 0.7). For unbounded bivariate censoring, the censoring proportions were
(0.3, 0.3), (0.3, 0.7), and (0.7, 0.7). For strict type I censoring, median survival time
was used as the follow-up period. To simulate data under generalized type I censoring,
we first simulated data under unbounded censoring and then censored all observations
after the median survival time. As a result, the censoring proportions for generalized
type I censoring were a little higher, (0.56, 0.56) and (0.73, 0.73).

Type I error rate and power of ρ̂PSR were compared to previously suggested methods:

1. Spearman’s correlation estimator, ρ̂HS , (see Chapter 2) with bootstrap confi-
dence intervals obtained with 1000 bootstrap samples;

2. Spearman-like statistic, Sn, proposed by Dabrowska (1986);

3. Log-rank statistic, Tn, proposed by Dabrowska (1986);
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4. Log-rank statistic, Un, as a special case of one of the martingale-based statistics
proposed Shih and Louis (1996);

5. Weighted log-rank statistic, Vn, with optimal weights by Shih and Louis (1996).

Bias and root mean squared error (RMSE) of ρ̂PSR and ρ̂HS were reported with respect
to ρS. For ρ̂PSR, bias and RMSE were also reported with respect to ρPSR. The
95%-confidence intervals of ρ̂PSR were computed using M-estimation with estimating
equations proposed by Stute (1995).

3.4.1.2 Results
Figure 3.2 shows the type I error rate and power for ρ̂PSR compared to the other

test statistics for n = 200. The type I error rate for ρ̂PSR tended to be at the nominal
0.05 level except at high levels of bivariate censoring. The power of ρ̂PSR tended
to be competitive with that of the other test statistics. The power of our method
tended to be similar or higher across the studied dependency structures compared to
the previously suggested methods.

The bias and RMSE of ρ̂PSR and ρ̂HS are reported in Figure 3.3. The Figure also
displays the population parameters of ρPSR and ρS as horizontal dashed lines. For
the studied simulation scenarios, ρ̂PSR was biased towards zero for ρS with larger bias
observed for heavier censoring. Although in the presence of censoring ρ̂PSR is biased
for ρS, the RMSE of ρ̂HS was generally lower than that of ρ̂HS , as the variance of ρ̂PSR
was typically much smaller than that of ρ̂HS .

Figures 3.8 and 3.9 in Appendix 3.A show simulation results for the sample size
of 100: the type I error rate of ρ̂PSR is more elevated; the bias is very similar, and
the RMSE is larger. Tables 3.2 and 3.3 in Appendix 3.A provide numeric values for
type I error rate, power, bias, and RMSE for the sample sizes of 100 and 200.
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Figure 3.2: Type I error rate and power for unadjusted correlation and sample size of 200. The
following methods are presented: 1) ρ̂P SR with Stute’s estimating equations; 2) ρ̂H

S (see Chapter 2);
3) ŜN (Dabrowska, 1986); 4) T̂N (Dabrowska, 1986); 5) ÛN (Shih and Louis, 1996); 6) V̂N (Shih
and Louis, 1996).
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Figure 3.3: Point estimate ±SD for unadjusted correlation and sample size of 200. The following
methods are presented: 1) ρ̂P SR with Stute’s estimating equations; 2) ρ̂H

S (see Chapter 2). The
numbers represent the corresponding RMSEs.
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3.4.2 Partial Correlation
3.4.2.1 Simulation Set-up

To simulate partial correlation, we followed steps similar to Section 3.4.1.1, but
instead of (3.10) and (3.11) we used

TX,i = F−1
X (Ui,ZZZi), where FX(x) = 1− e−(e−ZZZiβXβXβX )x;

TY,i = F−1
Y (Vi,ZZZi), where FY (y) = 1− e−(e−ZZZiβYβYβY )y;

whereZZZ = (Z0, Z1, Z2), Z0 ≡ 1, Z1 was normally distributed with mean 0 and variance
1, and Z2 was binary with Pr(Z2 = 1) = 1

2 , βββX = (1, 1, 0.5) and βββY = (0,−1, 2).
Times to censoring, CX and CY , were simulated from exponential distributions with
λ = P/(1 − P ), where the censoring proportion P was chosen so that the average
censoring proportion in both variates was either 0.3 or 0.7. For type I censoring, these
censoring proportions were approximately 0.56 or 0.73. We estimated the partial
correlation, as outlined in Section 3.3.2. We fit the following models for FX(·|ZZZ) and
FX(·|ZZZ):

1. Log-normal survival model (misspecified model);

2. Exponential survival model (true model);

3. Cox proportional hazards model (true model) with variance estimated using
partial likelihood score equations, and ignoring uncertainty in baseline hazard;

4. Cox proportional hazards model (true model) with variance estimated using full
likelihood score equations.

We evaluated the performance of our method for the sample sizes of 100 and 200
under correctly and incorrectly specified models. The type I error rate, power, bias,
and RMSE were reported with respect to ρS·ZZZ .

3.4.2.2 Results
Figure 3.4 shows the type I error rate and power for the sample size of 200. The

performance of partial ρ̂PSR·ZZZ for all models was quite similar. In general, the type I
error rate was near the nominal 0.05 level except with high rates of censoring. The
power for all four models was practically the same, with the Cox proportional hazards
models being slightly lower. Bias and RMSE were similar across all four models, even
the misspecified log-normal model. As expected, ρ̂PSR·ZZZ was further from ρS·ZZZ as
the proportion censored increased. Results were somewhat similar for n = 100 (see
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Figures 3.10 and 3.11, Appendix 3.A).
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Figure 3.4: Type I error rate and power for partial correlation and sample size of 200.
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Figure 3.5: Point estimate ±SD for partial correlation and sample size of 200.
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3.4.3 Conditional Correlation
3.4.3.1 Simulation Set-up

To simulate conditional correlation, we followed the steps similar to Section 3.4.2,
but instead of a vector of covariates (Z0, Z1, Z2), we simulated a single covariate
Z, a uniformly distributed random variable with support in [0, 3]. For conditional
correlation structure, we used Clayton’s copula with the following ρS(Z):

1. Constant correlation, ρS(Z) = 0.2;

2. Linear increasing correlation, ρS(Z) = 0.1331437Z;

3. Quadratic correlation (bell-shaped), ρS(Z) = 0.001 + 0.48Z − 0.16Z2.

The parameters for univariate censoring were chosen in such a way that the propor-
tions of censored events were approximately (0.3, 0.3). We studied the sample size of
500 simulated 1000 times. A Cox proportional hazards model was used to estimate
PSRs. All cases were analyzed using correctly specified models. For bell-shaped con-
ditional correlation, the linear regression models were fit with restricted cubic splines
with three knots at 0.1th, 0.5th, 0.9th percentiles. The performance of ρ̂PSR(Z) was
evaluated visually by plotting the bias and coverage probability of ρ̂PSR(Z) for ρS(Z)
and ρPSR(Z).

3.4.3.2 Results
Figure 3.6 shows the population parameters of ρS(Z) (in black) and ρPSR(Z) (in

gray), bias, and coverage probability of ρ̂PSR(Z) for ρS(Z) (in black) and ρPSR(Z)
(in gray) as functions of Z under (0.3, 0.3) unbounded univariate censoring. Survival
probabilities were modeled using Cox proportional hazards regression (true model)
with variance estimated using full likelihood score equations. Although ρPSR is not
the same as ρS, the bias of ρ̂PSR(Z) for ρS(Z) was reasonable, and the coverage was
mostly above 90%. Figure 3.12 in Appendix 3.A shows that our method performs
very well in the absence of censoring, although a small bias is still observed.
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Figure 3.6: Top row: the population parameters for ρS(Z) (in black) and ρP SR(Z) (in gray) as
functions of Z. Middle row: bias of ρ̂P SR(Z) for ρS(Z) (in black) and ρ̂P SR(Z) for ρP SR(Z) (in
gray) as functions of Z. Bottom row: coverage probability of ρ̂P SR(Z) for ρS(Z) (in black) and
ρ̂P SR(Z) for ρP SR(Z) (in gray) as functions of Z. Survival probabilities were modeled using Cox
proportional hazards regression (true model) with variance estimated using full likelihood score
equations. For bell-shaped conditional correlation, the linear models were fit with restricted cubic
splines with three knots at 0.1th, 0.5th, 0.9th percentiles. The data were simulated 1000 times with
a sample size of 500. Unbounded univariate censoring of (0.3, 0.3) was applied.

3.5 Application
We use our method to compute the correlation between the time from ART initia-

tion to viral failure and the time from ART initiation to major regimen change among
HIV positive persons living in Latin America and belonging to the Caribbean, Cen-
tral, and South America Network for HIV epidemiology (CCASAnet), see McGowan
et al. (2007). This dataset was also used in Chapter 2, and additional details can be
found in there. In short, viral failure and regimen change tend to be correlated as
failure to suppress the virus often triggers a regimen change. However, not all regi-
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men changes are due to viral failure, and not all viral failures lead to a regimen change.

Variable definitions were as defined elsewhere (Cesar et al. (2015); Chapter 2).
Censoring was univariate. Adults (18-year old or older when starting ART) and
children (under 18) were analyzed separately. The analysis datasets included 374
children from Brazil and Peru, and 6691 adults from Brazil, Chile, Honduras, Mex-
ico, and Peru. For adults and children, the median follow-up times were 4.1 years
(ranging from 1 day to 18.2 years) and 7.4 years (ranging from 1 day to 19.1 years),
respectively. For adults, about 28.6% had viral failure, 28.3% had regimen change,
58.6% had neither, and only 16.2% had both events. For children, 55.6% had viral
failure, 43.9% had regimen change, 36.2% had neither, and 36.7% had both events.

Table 3.1 presents rank correlation estimates for various subgroups. It shows that
ρ̂PSR was positive for all studied subgroups. The unadjusted correlations for adults
and children were very similar, 0.32 (95% confidence interval [CI] 0.29, 0.35) and
0.32 (95% CI 0.22, 0.42), respectively. For adults, the correlations across sites were
a little more variable with lower correlations in Chile (0.22) and Mexico (0.21) and
higher correlations in Peru (0.40) and Brazil (0.33). Estimates based on ρ̂HS , the
fully non-parametric approach that requires estimation of the bivariate survival sur-
face (see Chapter 2), and ρ̂IMI , the semi-parametric multiple imputation approach of
Schemper et al. (2013), are included in Tables 3.1 for comparison. Estimates ρ̂PSR
tended to be fairly similar to ρ̂HS and ρ̂IMI except in a few cases. However, confidence
intervals of ρ̂HS largely overlapped with or contained the confidence intervals of ρ̂PSR.

Table 3.1 also presents partial correlations computed using Cox proportional haz-
ards models. Each model was adjusted for five covariates: gender, age at ART ini-
tiation, CD4 count at ART initiation (square-root transformed), viral load at ART
initiation (log-transformed), and study site. Both CD4 count and viral load were in-
cluded using restricted cubic splines with three knots at 0.1th, 0.5th, 0.9th percentiles.
The Table shows that after covariate adjustment, the correlation was generally similar
to the unadjusted correlation, suggesting that the positive rank correlation between
times to viral failure and regimen change were likely not due to the confounding by
these covariates.

Figure 3.7 shows the rank correlation of time to viral failure and time to regimen
change conditional on CD4 and age. Both conditional correlations were adjusted for
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sex, CD4 count at ART initiation, viral load at ART initiation, study site, and age
at the time of first ART. The modeling techniques were the same as for partial corre-
lations. To allow for greater flexibility of the correlation’s functional form, the linear
regression models of PSRs (see Section 3.3) included the variable of interest using
restricted cubic spline with 3 knots (at 0.1th, 0.5th, 0.9th percentiles) for children and
5 knots (at 0.05th, 0.275th, 0.5th, 0.725th, 0.95th percentiles) for adults. We chose a
smaller number of knots for children because of the smaller sample size. The figure
shows that the partial-conditional correlation as a function of CD4 looks similar in
children and adults. However, for children, the results could be less robust because
of the smaller sample size. Note that for adults, there was a drop in the correlation
between CD4 counts of 200 and 350 cell/mm2, which are both clinical thresholds,
reflecting potential medical decisions to change regimens based on these thresholds.
The correlation conditional on age is about the same for children at the age right
below 18 and adults at age 18 and remains more or less the same (around 0.3) up
until the age of 60, where it starts declining towards zero.
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Figure 3.7: Partial-conditional correlation of PSRs between time to viral failure and time to regimen
change computed as a function of CD4 count at ART initiation and age at the time of first ART.
The correlations were adjusted for sex, CD4 count at ART initiation, viral load at ART initiation,
study site, and age at the time of first ART. The left column shows results for children, the right
column for adults. Cox proportional hazards regression was used to model survival probabilities.
The variance was estimated using full likelihood score equations.
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Table 3.1: Correlation between time to viral failure and time to regimen change measured using
ρ̂P SR, ρ̂P SR·ZZZ , ρ̂H

S (see Chapter 2), and ρ̂IMI (Schemper et al., 2013). The confidence intervals for
ρ̂P SR are computed using Stute’s estimating equations, for ρ̂P SR·ZZZ using Cox full likelihood score
equations, and for ρ̂H

S using bootstrap with 1000 bootstrap samples.

Group N ρ̂P SR ρ̂P SR·ZZZ ρ̂H
S ρ̂IMI

Adults 6691 0.32 (0.29, 0.35) 0.29 (0.26, 0.32) 0.35 (0.26, 0.43) 0.37 (0.32, 0.41)
Male adults 5185 0.31 (0.28, 0.34) 0.29 (0.25, 0.32) 0.32 (0.22, 0.42) 0.36 (0.30, 0.42)
Female adults 1506 0.35 (0.30, 0.40) 0.31 (0.25, 0.36) 0.45 (0.30, 0.58) 0.39 (0.31, 0.47)
Adults, Brazil 2313 0.33 (0.29, 0.37) 0.30 (0.26, 0.35) 0.45 (0.36, 0.53) 0.36 (0.29, 0.43)
Adults, Chile 1040 0.22 (0.16, 0.28) 0.21 (0.15, 0.28) -0.06 (-0.22, 0.29) 0.26 (0.16, 0.36)
Adults, Honduras 138 0.28 (0.08, 0.47) 0.27 (0.07, 0.47) -0.18 (-0.51, 0.48) 0.29 (-0.02, 0.55)
Adults, Mexico 975 0.21 (0.14, 0.28) 0.22 (0.15, 0.29) 0.52 (0.16, 0.75) 0.24 (0.10, 0.37)
Adults, Peru 2225 0.40 (0.35, 0.45) 0.39 (0.34, 0.44) 0.45 (0.37, 0.53) 0.55 (0.43, 0.65)
Children 374 0.32 (0.22, 0.42) 0.32 (0.22, 0.42) 0.36 (0.20, 0.53) 0.32 (0.20, 0.44)
Male children 191 0.26 (0.12, 0.40) 0.27 (0.12, 0.42) 0.33 (0.11, 0.52) 0.26 (0.06, 0.43)
Female children 183 0.38 (0.24, 0.52) 0.41 (0.28, 0.55) 0.34 (0.10, 0.63) 0.40 (0.22, 0.55)
Children, Brazil 301 0.31 (0.19, 0.43) 0.31 (0.19, 0.43) 0.36 (0.20, 0.53) 0.31 (0.17, 0.44)
Children, Peru 73 0.36 (0.15, 0.57) 0.40 (0.20, 0.61) 0.42 (0.15, 0.65) 0.41 (0.09, 0.65)
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3.6 Discussion
We proposed a method of measuring correlation between right-censored variables

by estimating the correlation of probability scale residuals. In the absence of cen-
soring, our method equals Spearman’s correlation; in the presence of censoring it
approximates Spearman’s. Our method has several advantages. It is based on ranks
and not affected by extreme values or by monotonic transformations. Together with
M-estimation, it provides an easy method to compute unadjusted correlation and
confidence intervals for bivariate right-censored data. For moderate censoring and
sample size of 200 or more, its power and type I error rate are comparable to pre-
viously suggested linear rank tests, while also providing an interpretable measure of
association. The unadjusted correlation of PSRs is purely non-parametric because it
does not assume the form of the marginal distributions and can be estimated using
non-parametric Kaplan-Meier estimates for marginal cumulative distribution func-
tions. Our method does not assume the dependency structure and does not require
estimating the joint bivariate survival distribution. The correlation of PSRs can be
easily extended to conditional, partial, or partial-conditional correlation. Although
parametric assumptions have to be made when computing the partial and partial-
conditional correlations, using Cox regression or other semi-parametric survival mod-
els maintain to some extent the non-parametric nature of Spearman’s correlation; and
partial correlations seemed to be quite robust to the choice of model. Our method
can be used with continuous and discrete data.

The main limitation of our approach is that in the presence of censoring, the
population parameter, ρPSR, depends on the censoring distribution. As seen from our
simulations, the bias of ρ̂PSR for ρS increases with heavier censoring. However, with
heavy censoring, all methods for estimating the bivariate correlation have limitations.
Semi-parametric approaches rely on parametric assumptions to extrapolate. The
other non-parametric approach proposed in Chapter 2 can be highly variable because
it requires estimation of the bivariate survival distribution, and it will also be biased
for ρS with type I censoring. Indeed, despite the bias of ρ̂PSR, its mean squared
error tended to be smaller than that of ρ̂HS in our simulations. Minor challenges
include computational complexity of estimating equations for the Kaplan-Meier curve
(see Stute (1995)). Estimating partial and partial-conditional correlations with Cox
regression and full likelihood can present some challenges because the dimensionality
of M-estimation matrices depends on the sample size. Our simulations show, however,
that assuming a fixed baseline hazards and using Cox partial likelihood results in very
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similar performance.

3.7 Acknowledgments
This work was partially supported by the US National Institutes of Health, grants

R01 AI093234, and U01 AI069923. We thank the members of CCASAnet for allowing
us to present their data and Cathy Jenkins for her help with constructing the analysis
dataset. We also thank Dr. Shih for sharing her code related to the paper of Shih
and Louis (1996).

3.8 Appendix 3.A
3.8.1 Figures

63



● 0

( 0%,  0%)

● ρ̂PSR

ρ̂S
H

ŜN
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Figure 3.8: Type I error rate and power for unadjusted correlation and sample size of 200. The
following methods are presented: 1) ρ̂P SR with Stute’s estimating equations; 2) ρ̂H

S (see Chapter 2);
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Figure 3.9: Point estimate ±SD for unadjusted correlation and sample size of 100. The following
methods are presented: 1) ρ̂P SR with Stute’s estimating equations; 2) ρ̂H

S (see Chapter 2). The
numbers represent the corresponding RMSEs.
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Figure 3.10: Type I error rate and power for partial correlation and sample size of 100.
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Figure 3.11: Point estimate ±SD for partial correlation and sample size of 100. The numbers above
and below the point estimates are RMSEs.
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Figure 3.12: Top row: the population parameters for ρS(Z) (in black) and ρP SR(Z) (in gray) as
functions of Z. Middle row: bias of ρ̂P SR for ρS (in black) and ρ̂P SR for ρP SR (in gray) as functions
of Z. Bottom row: coverage probability of ρ̂P SR for ρS (in black) and ρ̂P SR for ρP SR (in gray) as
functions of Z. Survival probabilities were modeled using Cox proportional hazards regression (true
model) with variance estimated using full likelihood score equations. For bell-shaped conditional
correlation, linear models were fit with restricted cubic splines with three knots at 0.1th, 0.5th, 0.9th

percentiles. The data was simulated 1000 times with a sample size of 500. No censoring was applied.
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3.8.2 Tables
Table 3.2: Type I error rate and power for unadjusted correlation.

N Censoring Method
ρ = 0

Clayton
ρ = 0.2

Frank
ρ = 0.2

Frank
ρ = −0.2

100 No Censoring ρ̂P SR; Stute 0.067 0.531 0.531 0.537
ρ̂H

S 0.056 0.497 0.491 0.497
ŜN ; Dabrowska 0.046 0.428 0.468 0.570
T̂N ; Dabrowska 0.028 0.190 0.326 0.293
ÛN ; Shih, Louis 0.040 0.170 0.303 0.412
V̂N ; Shih, Louis 0.041 0.504 0.536 0.539

C1 ≡ C2, 30% ρ̂P SR; Stute 0.066 0.477 0.495 0.469
ρ̂H

S 0.048 0.396 0.436 0.403
ŜN ; Dabrowska 0.056 0.406 0.363 0.477
T̂N ; Dabrowska 0.049 0.219 0.297 0.281
ÛN ; Shih, Louis 0.064 0.227 0.307 0.368
V̂N ; Shih, Louis 0.060 0.510 0.435 0.428

C1 ≡ C2, 70% ρ̂P SR; Stute 0.064 0.396 0.265 0.286
ρ̂H

S 0.036 0.152 0.125 0.128
ŜN ; Dabrowska 0.055 0.239 0.113 0.341
T̂N ; Dabrowska 0.031 0.184 0.117 0.252
ÛN ; Shih, Louis 0.045 0.292 0.219 0.240
V̂N ; Shih, Louis 0.060 0.425 0.248 0.225

C1 ⊥ C2, 30%, 30% ρ̂P SR; Stute 0.068 0.484 0.438 0.432
ρ̂H

S 0.047 0.361 0.366 0.360
ŜN ; Dabrowska 0.070 0.381 0.307 0.476
T̂N ; Dabrowska 0.049 0.207 0.258 0.278
ÛN ; Shih, Louis 0.067 0.208 0.271 0.349
V̂N ; Shih, Louis 0.076 0.479 0.399 0.425

C1 ⊥ C2, 30%, 70% ρ̂P SR; Stute 0.056 0.444 0.319 0.284
ρ̂H

S 0.028 0.158 0.176 0.140
ŜN ; Dabrowska 0.050 0.294 0.166 0.372
T̂N ; Dabrowska 0.037 0.213 0.166 0.247
ÛN ; Shih, Louis 0.043 0.253 0.210 0.271
V̂N ; Shih, Louis 0.045 0.439 0.277 0.287

C1 ⊥ C2, 70%, 70% ρ̂P SR; Stute 0.065 0.369 0.214 0.252
ρ̂H

S 0.032 0.101 0.082 0.090
ŜN ; Dabrowska 0.060 0.185 0.074 0.309
T̂N ; Dabrowska 0.047 0.159 0.090 0.244
ÛN ; Shih, Louis 0.054 0.284 0.187 0.189
V̂N ; Shih, Louis 0.048 0.411 0.200 0.182

C1 ≡ C2, 30%, τ = median ρ̂P SR; Stute 0.052 0.509 0.380 0.422
ρ̂H

S 0.044 0.439 0.359 0.379
ŜN ; Dabrowska 0.058 0.362 0.267 0.440
T̂N ; Dabrowska 0.045 0.296 0.273 0.412
ÛN ; Shih, Louis 0.046 0.367 0.337 0.374
V̂N ; Shih, Louis 0.057 0.487 0.379 0.368

C1 ≡ C2, 70%, τ = median ρ̂P SR; Stute 0.076 0.409 0.240 0.322
ρ̂H

S 0.062 0.235 0.186 0.210
ŜN ; Dabrowska 0.068 0.237 0.129 0.350
T̂N ; Dabrowska 0.067 0.194 0.132 0.299
ÛN ; Shih, Louis 0.050 0.313 0.228 0.212
V̂N ; Shih, Louis 0.057 0.423 0.261 0.208

C1 ⊥ C2, 30%, 30%, τ = median ρ̂P SR; Stute 0.062 0.502 0.351 0.374
ρ̂H

S 0.048 0.427 0.325 0.343
ŜN ; Dabrowska 0.048 0.344 0.234 0.456
T̂N ; Dabrowska 0.047 0.291 0.255 0.392
ÛN ; Shih, Louis 0.057 0.365 0.329 0.341
V̂N ; Shih, Louis 0.051 0.499 0.341 0.337

C1 ⊥ C2, 70%, 70%, τ = median ρ̂P SR; Stute 0.073 0.406 0.178 0.246
ρ̂H

S 0.039 0.182 0.115 0.116
ŜN ; Dabrowska 0.078 0.203 0.078 0.322
T̂N ; Dabrowska 0.064 0.181 0.084 0.288
ÛN ; Shih, Louis 0.052 0.314 0.188 0.187
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Table 3.2: Type I error rate and power for unadjusted correlation. (continued)

N Censoring Method
ρ = 0

Clayton
ρ = 0.2

Frank
ρ = 0.2

Frank
ρ = −0.2

V̂N ; Shih, Louis 0.053 0.416 0.204 0.172
200 No Censoring ρ̂P SR; Stute 0.048 0.814 0.822 0.828

ρ̂H
S 0.042 0.802 0.803 0.819
ŜN ; Dabrowska 0.046 0.767 0.777 0.817
T̂N ; Dabrowska 0.040 0.338 0.544 0.549
ÛN ; Shih, Louis 0.045 0.309 0.509 0.623
V̂N ; Shih, Louis 0.041 0.795 0.808 0.793

C1 ≡ C2, 30% ρ̂P SR; Stute 0.055 0.758 0.747 0.725
ρ̂H

S 0.043 0.683 0.711 0.686
ŜN ; Dabrowska 0.052 0.709 0.696 0.759
T̂N ; Dabrowska 0.036 0.386 0.540 0.532
ÛN ; Shih, Louis 0.043 0.381 0.540 0.600
V̂N ; Shih, Louis 0.052 0.758 0.743 0.723

C1 ≡ C2, 70% ρ̂P SR; Stute 0.059 0.656 0.419 0.445
ρ̂H

S 0.030 0.234 0.238 0.219
ŜN ; Dabrowska 0.059 0.555 0.340 0.498
T̂N ; Dabrowska 0.049 0.378 0.320 0.406
ÛN ; Shih, Louis 0.048 0.481 0.415 0.396
V̂N ; Shih, Louis 0.052 0.688 0.453 0.412

C1 ⊥ C2, 30%, 30% ρ̂P SR; Stute 0.057 0.787 0.698 0.723
ρ̂H

S 0.043 0.666 0.651 0.675
ŜN ; Dabrowska 0.055 0.678 0.652 0.715
T̂N ; Dabrowska 0.054 0.374 0.531 0.515
ÛN ; Shih, Louis 0.060 0.374 0.524 0.568
V̂N ; Shih, Louis 0.057 0.753 0.703 0.684

C1 ⊥ C2, 30%, 70% ρ̂P SR; Stute 0.066 0.699 0.512 0.530
ρ̂H

S 0.041 0.266 0.284 0.260
ŜN ; Dabrowska 0.044 0.643 0.414 0.599
T̂N ; Dabrowska 0.036 0.430 0.370 0.443
ÛN ; Shih, Louis 0.043 0.460 0.403 0.462
V̂N ; Shih, Louis 0.050 0.735 0.514 0.533

C1 ⊥ C2, 70%, 70% ρ̂P SR; Stute 0.074 0.634 0.359 0.379
ρ̂H

S 0.038 0.145 0.134 0.138
ŜN ; Dabrowska 0.040 0.539 0.247 0.450
T̂N ; Dabrowska 0.041 0.408 0.253 0.389
ÛN ; Shih, Louis 0.046 0.523 0.346 0.339
V̂N ; Shih, Louis 0.043 0.688 0.383 0.342

C1 ≡ C2, 30%, τ = median ρ̂P SR; Stute 0.050 0.794 0.659 0.662
ρ̂H

S 0.047 0.756 0.652 0.639
ŜN ; Dabrowska 0.060 0.732 0.557 0.702
T̂N ; Dabrowska 0.058 0.607 0.547 0.649
ÛN ; Shih, Louis 0.059 0.641 0.596 0.615
V̂N ; Shih, Louis 0.061 0.797 0.624 0.641

C1 ≡ C2, 70%, τ = median ρ̂P SR; Stute 0.051 0.681 0.409 0.457
ρ̂H

S 0.053 0.457 0.343 0.352
ŜN ; Dabrowska 0.055 0.577 0.299 0.493
T̂N ; Dabrowska 0.055 0.458 0.291 0.449
ÛN ; Shih, Louis 0.052 0.556 0.403 0.377
V̂N ; Shih, Louis 0.046 0.699 0.416 0.375

C1 ⊥ C2, 30%, 30%, τ = median ρ̂P SR; Stute 0.050 0.772 0.641 0.663
ρ̂H

S 0.045 0.711 0.618 0.640
ŜN ; Dabrowska 0.046 0.730 0.536 0.651
T̂N ; Dabrowska 0.037 0.587 0.520 0.628
ÛN ; Shih, Louis 0.041 0.635 0.577 0.584
V̂N ; Shih, Louis 0.046 0.790 0.602 0.597

C1 ⊥ C2, 70%, 70%, τ = median ρ̂P SR; Stute 0.069 0.603 0.346 0.385
ρ̂H

S 0.050 0.268 0.223 0.226
ŜN ; Dabrowska 0.072 0.510 0.216 0.466
T̂N ; Dabrowska 0.059 0.430 0.232 0.431
ÛN ; Shih, Louis 0.052 0.565 0.334 0.328
V̂N ; Shih, Louis 0.055 0.672 0.356 0.331
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Table 3.3: Bias and RMSE for unadjusted correlation.

N Censoring Method
ρ = 0

Clayton
ρ = 0.2

Frank
ρ = 0.2

Frank
ρ = −0.2

100 No Censoring ρ̂P SR -0.001 [0.103] -0.001 [0.100] -0.005 [0.099] 0.002 [0.100]
ρ̂H

S -0.001 [0.103] -0.001 [0.100] -0.005 [0.099] 0.002 [0.100]
C1 ≡ C2, 30% ρ̂P SR 0.000 [0.101] -0.008 [0.104] -0.008 [0.101] 0.015 [0.099]

ρ̂H
S -0.001 [0.111] -0.009 [0.114] 0.006 [0.112] 0.000 [0.108]

C1 ≡ C2, 70% ρ̂P SR 0.004 [0.115] -0.009 [0.120] -0.051 [0.124] 0.066 [0.127]
ρ̂H

S 0.003 [0.230] -0.007 [0.218] -0.003 [0.211] 0.013 [0.228]
C1 ⊥ C2, 30%, 30% ρ̂P SR 0.002 [0.101] -0.011 [0.101] -0.026 [0.101] 0.028 [0.102]

ρ̂H
S 0.003 [0.121] -0.003 [0.116] -0.002 [0.116] 0.003 [0.117]

C1 ⊥ C2, 30%, 70% ρ̂P SR 0.006 [0.097] -0.022 [0.104] -0.060 [0.116] 0.070 [0.117]
ρ̂H

S 0.015 [0.191] -0.012 [0.202] 0.002 [0.198] 0.013 [0.194]
C1 ⊥ C2, 70%, 70% ρ̂P SR 0.001 [0.100] -0.031 [0.111] -0.089 [0.137] 0.096 [0.134]

ρ̂H
S -0.010 [0.271] -0.009 [0.281] -0.029 [0.287] 0.015 [0.269]

C1 ≡ C2, 30%, τ, type I ρ̂P SR -0.003 [0.100] 0.003 [0.102] -0.033 [0.106] 0.032 [0.101]
ρ̂H

S -0.003 [0.104] 0.004 [0.106] -0.026 [0.109] 0.024 [0.103]
C1 ≡ C2, 70%, τ, type I ρ̂P SR -0.010 [0.116] -0.003 [0.121] -0.057 [0.127] 0.059 [0.123]

ρ̂H
S -0.013 [0.163] 0.000 [0.158] -0.023 [0.159] 0.016 [0.159]

C1 ⊥ C2, 30%, 30%, τ, type I ρ̂P SR -0.002 [0.099] -0.003 [0.099] -0.043 [0.105] 0.043 [0.103]
ρ̂H

S -0.002 [0.111] 0.006 [0.110] -0.028 [0.109] 0.026 [0.110]
C1 ⊥ C2, 70%, 70%, τ, type I ρ̂P SR -0.001 [0.099] -0.022 [0.112] -0.096 [0.142] 0.093 [0.133]

ρ̂H
S 0.003 [0.227] 0.019 [0.223] -0.039 [0.236] 0.025 [0.224]

200 No Censoring ρ̂P SR 0.000 [0.068] 0.000 [0.068] -0.003 [0.067] 0.001 [0.065]
ρ̂H

S 0.000 [0.068] 0.000 [0.068] -0.003 [0.067] 0.001 [0.065]
C1 ≡ C2, 30% ρ̂P SR 0.002 [0.073] -0.003 [0.073] -0.011 [0.072] 0.016 [0.072]

ρ̂H
S 0.002 [0.080] -0.004 [0.078] 0.001 [0.077] 0.002 [0.077]

C1 ≡ C2, 70% ρ̂P SR 0.004 [0.081] -0.001 [0.084] -0.054 [0.099] 0.064 [0.099]
ρ̂H

S 0.009 [0.162] -0.004 [0.157] 0.001 [0.165] 0.011 [0.158]
C1 ⊥ C2, 30%, 30% ρ̂P SR -0.001 [0.071] -0.008 [0.070] -0.026 [0.074] 0.026 [0.073]

ρ̂H
S -0.003 [0.084] -0.001 [0.081] -0.001 [0.082] -0.002 [0.081]

C1 ⊥ C2, 30%, 70% ρ̂P SR 0.000 [0.073] -0.022 [0.077] -0.062 [0.093] 0.062 [0.092]
ρ̂H

S 0.006 [0.145] -0.010 [0.145] -0.005 [0.145] 0.007 [0.143]
C1 ⊥ C2, 70%, 70% ρ̂P SR 0.004 [0.076] -0.025 [0.083] -0.085 [0.112] 0.095 [0.117]

ρ̂H
S 0.007 [0.235] 0.008 [0.213] -0.006 [0.221] 0.005 [0.218]

C1 ≡ C2, 30%, τ, type I ρ̂P SR -0.004 [0.073] 0.003 [0.075] -0.029 [0.079] 0.032 [0.076]
ρ̂H

S -0.005 [0.076] 0.003 [0.078] -0.021 [0.079] 0.023 [0.077]
C1 ≡ C2, 70%, τ, type I ρ̂P SR -0.001 [0.080] 0.001 [0.080] -0.060 [0.100] 0.066 [0.101]

ρ̂H
S 0.000 [0.113] 0.002 [0.101] -0.027 [0.112] 0.029 [0.115]

C1 ⊥ C2, 30%, 30%, τ, type I ρ̂P SR -0.002 [0.069] -0.003 [0.070] -0.038 [0.080] 0.041 [0.078]
ρ̂H

S -0.002 [0.077] 0.004 [0.077] -0.022 [0.081] 0.024 [0.078]
C1 ⊥ C2, 70%, 70%, τ, type I ρ̂P SR 0.001 [0.072] -0.031 [0.083] -0.087 [0.114] 0.096 [0.117]

ρ̂H
S -0.002 [0.153] -0.001 [0.147] -0.017 [0.159] 0.021 [0.150]

Table 3.4: Type I error rate and power for partial correlation.

N Censoring Method
ρ = 0

Clayton
ρ = 0.2

Frank
ρ = 0.2

Frank
ρ = −0.2

100 No Censoring Cox; Partial L. 0.069 0.485 0.540 0.541
Cox; Full L. 0.065 0.495 0.541 0.532
Exponential 0.065 0.498 0.554 0.552
Log-normal 0.066 0.525 0.521 0.532

C1 ≡ C2, 30% Cox; Partial L. 0.061 0.437 0.436 0.435
Cox; Full L. 0.054 0.430 0.418 0.423
Exponential 0.059 0.447 0.441 0.445
Log-normal 0.058 0.470 0.422 0.425

C1 ≡ C2, 70% Cox; Partial L. 0.073 0.293 0.189 0.243
Continued on next page
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Table 3.4: Type I error rate and power for partial correlation. (continued)

N Censoring Method
ρ = 0

Clayton
ρ = 0.2

Frank
ρ = 0.2

Frank
ρ = −0.2

Cox; Full L. 0.050 0.264 0.154 0.192
Exponential 0.072 0.289 0.200 0.235
Log-normal 0.080 0.294 0.181 0.247

C1 ⊥ C2, 30%, 30% Cox; Partial L. 0.061 0.433 0.414 0.414
Cox; Full L. 0.051 0.414 0.404 0.401
Exponential 0.053 0.428 0.419 0.427
Log-normal 0.065 0.456 0.390 0.408

C1 ⊥ C2, 30%, 70% Cox; Partial L. 0.063 0.336 0.253 0.251
Cox; Full L. 0.053 0.314 0.215 0.229
Exponential 0.061 0.347 0.263 0.262
Log-normal 0.066 0.344 0.237 0.268

C1 ⊥ C2, 70%, 70% Cox; Partial L. 0.084 0.264 0.156 0.219
Cox; Full L. 0.062 0.243 0.118 0.174
Exponential 0.088 0.280 0.165 0.212
Log-normal 0.091 0.273 0.149 0.217

C1 ≡ C2, 30%, τ = median Cox; Partial L. 0.062 0.382 0.286 0.333
Cox; Full L. 0.060 0.375 0.271 0.313
Exponential 0.067 0.394 0.287 0.337
Log-normal 0.066 0.395 0.269 0.324

C1 ≡ C2, 70%, τ = median Cox; Partial L. 0.076 0.309 0.183 0.232
Cox; Full L. 0.061 0.275 0.155 0.190
Exponential 0.077 0.299 0.189 0.235
Log-normal 0.075 0.302 0.183 0.238

C1 ⊥ C2, 30%, 30%, τ = median Cox; Partial L. 0.070 0.391 0.294 0.318
Cox; Full L. 0.064 0.377 0.270 0.301
Exponential 0.061 0.382 0.292 0.317
Log-normal 0.064 0.389 0.274 0.314

C1 ⊥ C2, 70%, 70%, τ = median Cox; Partial L. 0.083 0.268 0.144 0.197
Cox; Full L. 0.066 0.245 0.118 0.166
Exponential 0.085 0.268 0.158 0.206
Log-normal 0.089 0.262 0.139 0.222

C1 ≡ C2, τ = median Cox; Partial L. 0.063 0.418 0.344 0.364
Cox; Full L. 0.057 0.404 0.325 0.344
Exponential 0.063 0.421 0.336 0.358
Log-normal 0.065 0.421 0.312 0.355

200 No Censoring Cox; Partial L. 0.043 0.815 0.828 0.826
Cox; Full L. 0.043 0.815 0.825 0.825
Exponential 0.045 0.821 0.837 0.839
Log-normal 0.046 0.859 0.818 0.818

C1 ≡ C2, 30% Cox; Partial L. 0.058 0.762 0.702 0.711
Cox; Full L. 0.053 0.765 0.693 0.713
Exponential 0.051 0.763 0.705 0.732
Log-normal 0.053 0.796 0.685 0.714

C1 ≡ C2, 70% Cox; Partial L. 0.065 0.533 0.331 0.361
Cox; Full L. 0.058 0.507 0.308 0.335
Exponential 0.064 0.523 0.335 0.369
Log-normal 0.060 0.544 0.326 0.376

C1 ⊥ C2, 30%, 30% Cox; Partial L. 0.043 0.746 0.684 0.700
Cox; Full L. 0.040 0.743 0.678 0.684
Exponential 0.045 0.746 0.694 0.706
Log-normal 0.048 0.777 0.671 0.685

C1 ⊥ C2, 30%, 70% Cox; Partial L. 0.072 0.617 0.463 0.438
Cox; Full L. 0.063 0.604 0.432 0.426
Exponential 0.073 0.622 0.467 0.444
Log-normal 0.073 0.634 0.443 0.432

C1 ⊥ C2, 70%, 70% Cox; Partial L. 0.062 0.499 0.280 0.298
Cox; Full L. 0.053 0.479 0.252 0.280
Exponential 0.064 0.502 0.284 0.302
Log-normal 0.065 0.510 0.260 0.313

C1 ≡ C2, 30%, τ = median Cox; Partial L. 0.060 0.701 0.504 0.507
Cox; Full L. 0.057 0.702 0.496 0.502
Exponential 0.053 0.698 0.501 0.511
Log-normal 0.050 0.716 0.481 0.522

C1 ≡ C2, 70%, τ = median Cox; Partial L. 0.051 0.527 0.307 0.335
Cox; Full L. 0.041 0.516 0.284 0.312
Exponential 0.053 0.532 0.317 0.338
Log-normal 0.054 0.537 0.305 0.336

C1 ⊥ C2, 30%, 30%, τ = median Cox; Partial L. 0.057 0.677 0.495 0.500
Cox; Full L. 0.057 0.673 0.483 0.488
Exponential 0.056 0.669 0.491 0.504
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Table 3.4: Type I error rate and power for partial correlation. (continued)

N Censoring Method
ρ = 0

Clayton
ρ = 0.2

Frank
ρ = 0.2

Frank
ρ = −0.2

Log-normal 0.053 0.690 0.474 0.501
C1 ⊥ C2, 70%, 70%, τ = median Cox; Partial L. 0.059 0.488 0.244 0.289

Cox; Full L. 0.054 0.464 0.220 0.272
Exponential 0.061 0.487 0.242 0.300
Log-normal 0.061 0.494 0.225 0.304

C1 ≡ C2, τ = median Cox; Partial L. 0.057 0.719 0.558 0.572
Cox; Full L. 0.053 0.713 0.546 0.572
Exponential 0.057 0.719 0.563 0.578
Log-normal 0.048 0.741 0.542 0.580

Table 3.5: Bias and RMSE for partial correlation.

N Censoring Method
ρ = 0

Clayton
ρ = 0.2

Frank
ρ = 0.2

Frank
ρ = −0.2

100 No Censoring Exponential -0.005 [0.102] -0.007 [0.101] 0.001 [0.099] 0.000 [0.098]
Log-normal -0.005 [0.103] 0.012 [0.105] -0.002 [0.099] 0.003 [0.098]
Cox; Partial L. -0.006 [0.102] -0.010 [0.102] -0.001 [0.098] 0.002 [0.098]
Cox; Full L. -0.006 [0.102] -0.010 [0.103] -0.001 [0.098] 0.002 [0.098]

C1 ≡ C2, 30% Exponential -0.007 [0.102] -0.015 [0.104] -0.023 [0.101] 0.023 [0.101]
Log-normal -0.007 [0.102] 0.000 [0.106] -0.026 [0.102] 0.027 [0.101]
Cox; Partial L. -0.007 [0.101] -0.019 [0.104] -0.026 [0.101] 0.026 [0.102]
Cox; Full L. -0.008 [0.101] -0.018 [0.105] -0.025 [0.102] 0.026 [0.102]

C1 ≡ C2, 70% Exponential -0.008 [0.103] -0.045 [0.120] -0.087 [0.140] 0.091 [0.134]
Log-normal -0.008 [0.102] -0.037 [0.119] -0.089 [0.142] 0.093 [0.134]
Cox; Partial L. -0.009 [0.102] -0.047 [0.121] -0.089 [0.139] 0.093 [0.134]
Cox; Full L. -0.010 [0.103] -0.045 [0.121] -0.088 [0.140] 0.093 [0.134]

C1 ⊥ C2, 30%, 30% Exponential -0.006 [0.101] -0.020 [0.101] -0.031 [0.103] 0.032 [0.101]
Log-normal -0.006 [0.102] -0.005 [0.103] -0.033 [0.104] 0.035 [0.102]
Cox; Partial L. -0.007 [0.101] -0.023 [0.103] -0.034 [0.104] 0.034 [0.102]
Cox; Full L. -0.007 [0.101] -0.023 [0.103] -0.034 [0.104] 0.034 [0.103]

C1 ⊥ C2, 30%, 70% Exponential -0.007 [0.098] -0.047 [0.113] -0.078 [0.126] 0.076 [0.120]
Log-normal -0.006 [0.099] -0.035 [0.113] -0.079 [0.128] 0.077 [0.122]
Cox; Partial L. -0.007 [0.098] -0.049 [0.114] -0.080 [0.127] 0.078 [0.122]
Cox; Full L. -0.007 [0.098] -0.048 [0.114] -0.080 [0.127] 0.079 [0.122]

C1 ⊥ C2, 70%, 70% Exponential -0.003 [0.096] -0.062 [0.122] -0.109 [0.148] 0.113 [0.144]
Log-normal -0.004 [0.097] -0.053 [0.122] -0.109 [0.149] 0.112 [0.144]
Cox; Partial L. -0.004 [0.095] -0.064 [0.124] -0.111 [0.148] 0.114 [0.145]
Cox; Full L. -0.004 [0.096] -0.063 [0.124] -0.111 [0.149] 0.115 [0.146]

C1 ≡ C2, 30%, τ, type I Exponential -0.007 [0.099] -0.031 [0.108] -0.067 [0.121] 0.066 [0.115]
Log-normal -0.007 [0.100] -0.020 [0.109] -0.067 [0.123] 0.067 [0.115]
Cox; Partial L. -0.007 [0.098] -0.033 [0.109] -0.067 [0.121] 0.067 [0.115]
Cox; Full L. -0.007 [0.099] -0.032 [0.109] -0.067 [0.121] 0.067 [0.115]

C1 ≡ C2, 70%, τ, type I Exponential -0.008 [0.102] -0.046 [0.121] -0.095 [0.145] 0.099 [0.138]
Log-normal -0.008 [0.102] -0.039 [0.121] -0.096 [0.146] 0.099 [0.137]
Cox; Partial L. -0.009 [0.102] -0.049 [0.122] -0.096 [0.145] 0.099 [0.138]
Cox; Full L. -0.008 [0.102] -0.047 [0.122] -0.095 [0.145] 0.099 [0.139]

C1 ⊥ C2, 30%, 30%, τ, type I Exponential -0.009 [0.099] -0.034 [0.108] -0.070 [0.122] 0.070 [0.117]
Log-normal -0.008 [0.101] -0.022 [0.109] -0.070 [0.124] 0.071 [0.117]
Cox; Partial L. -0.009 [0.099] -0.036 [0.110] -0.071 [0.123] 0.071 [0.118]
Cox; Full L. -0.009 [0.099] -0.034 [0.110] -0.071 [0.123] 0.071 [0.118]

C1 ⊥ C2, 70%, 70%, τ, type I Exponential -0.003 [0.095] -0.064 [0.125] -0.115 [0.153] 0.120 [0.150]
Log-normal -0.003 [0.097] -0.056 [0.125] -0.115 [0.154] 0.119 [0.149]
Cox; Partial L. -0.004 [0.095] -0.066 [0.126] -0.116 [0.153] 0.120 [0.150]
Cox; Full L. -0.004 [0.095] -0.064 [0.125] -0.116 [0.153] 0.120 [0.150]

200 No Censoring Exponential 0.000 [0.068] -0.001 [0.067] 0.000 [0.066] 0.000 [0.066]
Log-normal -0.001 [0.069] 0.018 [0.071] -0.003 [0.067] 0.003 [0.067]
Cox; Partial L. 0.000 [0.069] -0.002 [0.068] -0.002 [0.066] 0.002 [0.067]
Cox; Full L. 0.000 [0.068] -0.002 [0.068] -0.002 [0.066] 0.002 [0.067]

C1 ≡ C2, 30% Exponential -0.002 [0.070] -0.008 [0.070] -0.023 [0.073] 0.024 [0.072]
Log-normal -0.002 [0.070] 0.007 [0.072] -0.026 [0.075] 0.027 [0.073]
Cox; Partial L. -0.002 [0.070] -0.009 [0.071] -0.025 [0.074] 0.026 [0.072]
Cox; Full L. -0.002 [0.070] -0.009 [0.071] -0.025 [0.074] 0.026 [0.072]

C1 ≡ C2, 70% Exponential -0.005 [0.074] -0.039 [0.089] -0.087 [0.117] 0.091 [0.116]
Log-normal -0.005 [0.074] -0.030 [0.087] -0.088 [0.117] 0.094 [0.117]

Continued on next page
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Table 3.5: Bias and RMSE for partial correlation. (continued)

N Censoring Method
ρ = 0

Clayton
ρ = 0.2

Frank
ρ = 0.2

Frank
ρ = −0.2

Cox; Partial L. -0.005 [0.074] -0.039 [0.090] -0.089 [0.118] 0.093 [0.118]
Cox; Full L. -0.005 [0.075] -0.039 [0.089] -0.089 [0.118] 0.093 [0.118]

C1 ⊥ C2, 30%, 30% Exponential -0.002 [0.069] -0.015 [0.071] -0.033 [0.075] 0.032 [0.074]
Log-normal -0.002 [0.069] 0.000 [0.071] -0.034 [0.076] 0.034 [0.075]
Cox; Partial L. -0.002 [0.068] -0.016 [0.071] -0.034 [0.076] 0.034 [0.075]
Cox; Full L. -0.002 [0.068] -0.015 [0.071] -0.034 [0.076] 0.034 [0.075]

C1 ⊥ C2, 30%, 70% Exponential -0.002 [0.070] -0.038 [0.080] -0.075 [0.103] 0.077 [0.102]
Log-normal -0.002 [0.071] -0.026 [0.078] -0.075 [0.103] 0.079 [0.103]
Cox; Partial L. -0.002 [0.070] -0.039 [0.082] -0.076 [0.104] 0.079 [0.103]
Cox; Full L. -0.002 [0.070] -0.038 [0.081] -0.076 [0.104] 0.079 [0.103]

C1 ⊥ C2, 70%, 70% Exponential -0.004 [0.068] -0.058 [0.093] -0.108 [0.128] 0.112 [0.129]
Log-normal -0.004 [0.069] -0.048 [0.091] -0.107 [0.128] 0.112 [0.129]
Cox; Partial L. -0.004 [0.068] -0.058 [0.094] -0.109 [0.129] 0.113 [0.130]
Cox; Full L. -0.004 [0.068] -0.057 [0.093] -0.109 [0.129] 0.114 [0.130]

C1 ≡ C2, 30%, τ, type I Exponential -0.001 [0.070] -0.022 [0.076] -0.066 [0.096] 0.071 [0.097]
Log-normal -0.002 [0.070] -0.011 [0.076] -0.065 [0.096] 0.071 [0.097]
Cox; Partial L. -0.001 [0.070] -0.023 [0.076] -0.066 [0.096] 0.071 [0.097]
Cox; Full L. -0.001 [0.070] -0.022 [0.076] -0.066 [0.096] 0.071 [0.097]

C1 ≡ C2, 70%, τ, type I Exponential -0.005 [0.072] -0.042 [0.090] -0.094 [0.122] 0.100 [0.122]
Log-normal -0.005 [0.072] -0.034 [0.088] -0.095 [0.123] 0.100 [0.122]
Cox; Partial L. -0.004 [0.072] -0.043 [0.091] -0.095 [0.122] 0.100 [0.123]
Cox; Full L. -0.004 [0.072] -0.042 [0.090] -0.095 [0.122] 0.100 [0.123]

C1 ⊥ C2, 30%, 30%, τ, type I Exponential -0.003 [0.068] -0.027 [0.076] -0.068 [0.096] 0.071 [0.097]
Log-normal -0.003 [0.068] -0.016 [0.075] -0.067 [0.097] 0.071 [0.097]
Cox; Partial L. -0.003 [0.068] -0.028 [0.077] -0.068 [0.097] 0.072 [0.098]
Cox; Full L. -0.003 [0.068] -0.028 [0.076] -0.068 [0.097] 0.072 [0.098]

C1 ⊥ C2, 70%, 70%, τ, type I Exponential -0.004 [0.066] -0.059 [0.094] -0.115 [0.134] 0.119 [0.134]
Log-normal -0.004 [0.067] -0.051 [0.091] -0.113 [0.134] 0.118 [0.134]
Cox; Partial L. -0.004 [0.066] -0.060 [0.094] -0.115 [0.135] 0.119 [0.135]
Cox; Full L. -0.004 [0.066] -0.059 [0.094] -0.115 [0.135] 0.119 [0.135]

3.9 Appendix 3.B
3.9.1 Notations

Let U = FX(TX), V = FY (TY ), and H(du, dv) be the joint probability mass
function of U and V . Let U0 = FX(CX), V0 = FY (CY ) and u0 and v0 be realizations
of U0 and V0, respectively. We use U , V , U0, and V0 instead of TX , TY , CX , and CY
to simplify the proofs.

3.9.2 Proofs
3.9.2.1 Variance and covariance of PSRs for continuous TX and TY conditionally

on censoring values
For continuous TX , the variance of PSRs conditionally on U0 = u0 is

Var {r(X,FX ,∆X)|u0} =
∫ u0

0
(2U − 1)2dU +

∫ 1

u0
u2

0dU = 1
2

(2U − 1)3

3

∣∣∣∣∣
u0

0
+ u2

0(1− u0)

= 1
3u

3
0 − u2

0 + u0. (3.13)
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For continuous TX and TY , the covariance of PSRs conditionally on U0 = u0 and
V0 = v0 is

Cov {r(X,FX ,∆X), r(Y, FY ,∆Y )|u0, v0} = A+B + C +D, (3.14)

where

A =
∫ v0

0

∫ u0

0
(2u− 1)(2v − 1)H(du, dv),

B =
∫ 1

v0

∫ u0

0
v0(2u− 1)H(du, dv),

C =
∫ v0

0

∫ 1

u0
u0(2v − 1)H(du, dv),

D =
∫ 1

v0

∫ 1

u0
u0v0H(du, dv).

3.9.2.2 ρPSR under general censoring scenario
The population parameter of ρPSR can be obtained from equations (3.13) and

(3.14), variance and covariance of ρPSR conditionally on censoring variables U0 =
FX(CX), V0 = FY (CY ),

ρPSR = EU0,V0Cov {r(X,FX ,∆X), r(Y, FY ,∆Y )|U0, V0}√
{EU0Var {r(X,FX ,∆X)|U0}} {EV0Var {r(Y, FY ,∆Y )|V0}}

, (3.15)

From (3.15), it is clear that ρPSR depends on the censoring distribution. To obtain
the expression for the bias of ρPSR for ρS we would have had to factor out the term
representing ρS. Although the numerator of the above expression can be presented
as a sum of terms similar to A, B, C, and D in (3.14), because of the denominator,
such representation does not help to factor out ρS.

Note that (3.15) can be considered as a general expression for continuous and
discrete TX and TY . Either way, ρPSR depends on the censoring distribution, and so
is the bias of ρPSR for ρS.

3.9.2.3 ρPSR for TX ⊥ TY

For continuous and independent TX and TY , H(dx, dy) = dxdy, and the condi-
tional covariance (3.14) is

Cov {r(X,FX ,∆X), r(Y, FY ,∆Y )|u0, v0} = (u2
0 − u0)(v2

0 − v0) + v0(1− v0)(u2
0 − u0)

+ u0(1− u0)(v2
0 − v0) + v0(1− v0)u0(1− u0)

= 0.
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Because the above is true for any u0 and v0, we have
EU0,V0Cov {r(X,FX ,∆X), r(Y, FY ,∆Y )|U0, V0} = 0, and it follows from (3.15) that
ρPSR = 0 regardless of the censoring distribution.

For discrete and independent TX and TY , we use our usual notations TX , TY , CX ,
and CY and let the support of TX be ti, where i = 0, ...,∞ and of TY be sj,
where j = 0, ...,∞. Let cX and cY be realizations of CX and CY respectively. Let
PX,i = Pr(TX = ti) = FX(ti)−FX(ti−1) and PY,j = Pr(TY = sj) = FY (sj)−FY (sj−1).
For discrete TX and TY , expression (3.14) can be rewritten as

Cov {r(X,FX ,∆X), r(Y, FY ,∆Y )|cX , cY }

=
∑

i:ti≤cX

∑
j:sj≤cY

{FX(ti) + FX(ti−1)− 1} {(FY (sj) + FY (sj−1 − 1}PX,iPY,j

+
∑

i:ti≤cX

∑
j:sj>cY

FY (cY ) {FX(ti) + FX(ti−1)− 1}PX,iPY,j+

+
∑

i:ti>cX

∑
j:sj≤cY

FX(cX) {FY (sj) + FY (sj−1 − 1}PX,iPY,j

+
∑

i:ti>cX

∑
j:sj>cY

FX(cX)FY (cY )PX,iPY,j

=
 ∑
i:ti≤cX

{FX(ti) + FX(ti−1)− 1}PX,i + FX(cX)
∑

i:ti>cX
PX,i


×

 ∑
j:sj≤cY

{(FY (sj) + FY (sj−1 − 1}PY,j + FY (cY )
∑

j:sj>cY
PY,j

 .
Because FX(ti) = ∑

i:tk≤ti PX,k, it is straight forward to show that ∑i:ti≤cX FX(ti)PX,i
= 1

2

{(∑
i:ti≤cX PX,i

)2
+∑

i:ti≤cX P
2
X,i

}
and∑

i:ti≤cX FX(ti−1)PX,i = 1
2

{(∑
i:ti≤cX PX,i

)2
−∑i:ti≤cX P

2
X,i

}
.

Therefore, term∑
i:ti≤cX {FX(ti) + FX(ti)− 1}PX,i+FX(cX)∑i:ti>cX PX,i can be rewrit-

ten as

1
2

{( ∑
i:ti≤cX

PX,i

)2

+
∑

i:ti≤cX

P 2
X,i

}
+

1
2

{( ∑
i:ti≤cX

PX,i

)2

−
∑

i:ti≤cX

P 2
X,i

}
−
∑

i:ti≤cX

PX,i + FX(cX) {1− FX(cX)}

= FX(cX)2 − FX(cX) + FX(cX) {1− FX(cX)}

= 0.

Similarly, it can be shown that[∑
j:sj≤cY {(FY (sj) + FY (sj−1 − 1}PY,j + FY (cY )∑j:sj>cY PY,j

]
= 0. Because the above

is true for any cX and cY , we have ECX ,CY Cov {r(X,FX ,∆X), r(Y, FY ,∆Y )|CX , CY } =
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0, and it follows from (3.15) that ρPSR = 0 regardless of the censoring distribution.

3.9.3 ρPSR for continuous TX and TY under strict type I censoring
3.9.3.1 ρPSR for perfectly positively correlated TX and TY

Because TX ≡ TY , we have: U = FX(TX) = FY (TY ) = V . The marginal
distributions of U and V are uniform on [0, 1] and their joint cumulative distri-
bution function (CDF) is H(u, v) = min(u, v) (see Nelsen (2007)). Because the
entire probability mass is concentrated on the diagonal u = v of length

√
2, the

probability density function (PDF) is h(u, v) = 1(u = v)(1/
√

2) and the integra-
tion is done over the curve u(t) = t and v(t) = t. The integral includes term√(

dU(t)
dt

)2
+
(
dV (t)
dt

)2
=
√

(t′)2 + (t′)2 =
√

12 + 12 =
√

2, so
√

2 and 1/
√

2 cancel
out in the following derivations. Using equation (3.14) we first compute the case
when u0 < v0. The terms A, B, C, and D from (3.14) are computed in the following
way:

A =
∫ u0

0
(2t− 1)2dt = 1

6
{

(2u0 − 1)3 − (0− 1)3
}

= 1
6
{

(2u0 − 1)3 + 1
}
,

C =
∫ v0

u0
(2t− 1)u0dt = u0

2

∫ v0

u0
(2t− 1)d(2t− 1) = u0

4
{

(2v0 − 1)2 − (2u0 − 1)2
}
,

B = v0

4
{

(2u0 − 1)2 − (2v0 − 1)2
}
,

D =
∫ 1

v0
v0u0dt = u0v0(1− v0).

When u0 ≥ v0, the expressions for A, B, C, and D are computed similarly. Sum-
ming up A, B, C, and D, and denoting Cov {r(X,FX ,∆X), r(Y, FY ,∆Y )|u0, v0}
and Cor {r(X,FX ,∆X), r(Y, FY ,∆Y )|u0, v0} as Cov+

PSR(u0, v0) as ρ+
PSR(u0, v0), re-

spectively, for perfectly positively correlated variables we have

Cov+
P SR(u0, v0) = 1

6
{

(2u0 − 1)3 + 1
}

+ u0

4
{

(2v0 − 1)2 − (2u0 − 1)2}+ u0v0(1− v0), when u0 < v0,

= 1
6
{

(2v0 − 1)3 + 1
}

+ v0

4
{

(2u0 − 1)2 − (2v0 − 1)2}+ v0u0(1− u0), when u0 ≥ v0.

Keeping in mind (3.13) for conditional variance, we have

ρ+
PSR(u0, v0) = Cov+

PSR(u0, v0)√(
1
3u

3
0 − u2

0 + u0
) (

1
3v

3
0 − v2

0 + v0
) .
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To obtain ρ+
PSR(u0, v0) in terms of censoring proportions γX and γY , we use the

following variable transformations: u0 = 1− γX and v0 = 1− γY .

3.9.3.2 ρPSR for perfectly negatively correlated TX and TY
When TX and TY are perfectly negatively correlated, the probability mass is con-

centrated on the curve u = 1− v or u(t) = t and v(t) = 1− t, and similar to Section
3.9.3.1, the integration is done over this curve. We first integrate the area u0 +v0 < 1,
where integral A (see Section 3.9.3.1) is 0, and

B =
∫ 1

1−v0
(−2t+ 1)u0dt = −u0

2

∫ 1

1−v0
(2t− 1)d(2t− 1) = −u0

4
{

(2v0 − 1)2 − 1
}

= u0v0(u0 − 1),

C =
∫ u0

0
(2t− 1)u0dt = u0v0(v0 − 1),

D =
∫ 1−v0

u0
u0v0dt = u0v0(1− u0 − v0).

Integration over the area u0 + v0 > 1, gives D = 0 and

A =
∫ u0

1−v0
−(2t− 1)2dt = −1

2

∫ u0

1−v0
(2t− 1)2d(2t− 1) = −1

6
{

(2u0 − 1)3 + (2v0 − 1)3
}
,

B =
∫ 1

u0
(−2t+ 1)u0dt = u2

0(u0 − 1),

C =
∫ 1−v0

0
(2t− 1)u0dt = v2

0(v0 − 1).

When u0 + v0 = 1, the derivations are similar except that A = D = 0. Sum-
ming up all four integrals, and denoting Cov {r(X,FX ,∆X), r(Y, FY ,∆Y )|u0, v0} and
Cor {r(X,FX ,∆X), r(Y, FY ,∆Y )|u0, v0} as Cov−PSR(u0, v0) as ρ−PSR(u0, v0), respec-
tively, for perfectly negatively correlated variables, we have we have the following
expressions:

Cov−PSR(u0, v0) = −u0v0, when u0 + v0 < 1,

= −1
6
{

(2u0 − 1)3 + (2v0 − 1)3
}

+ u2
0(u0 − 1) + v2

0(v0 − 1), when u0 + v0 ≥ 1,

ρ−PSR(u0, v0) = Cov−PSR(u0, v0)√(
1
3u

3
0 − u2

0 + u0
) (

1
3v

3
0 − v2

0 + v0
) .

To obtain ρ−PSR(u0, v0) in terms of censoring proportions γX and γY , we use the
following variable transformations: u0 = 1− γX and v0 = 1− γY .
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3.9.4 ρPSR for continuous TX and TY under unbounded censoring
We design the unbounded censoring mechanism in such a way that first, we choose

proportions γ∗X and γ∗Y of observations U and V , respectively, for potential censor-
ing. Second, we sample the censoring time for the selected observations using the
same marginal distributions as their corresponding time to event. As a result, the
probabilities of being actually censored for U and V are γX = γ∗X/2 and γY = γ∗Y /2,
respectively. For simplicity of derivations, we set γ∗X = γ∗Y = γ∗. Formally, this
censoring design implies that U0 and V0 have the following marginal distribution:

= 1, with probability 1− γ∗;

∼ Unif(0, 1), with probability γ∗.

Because U0 and V0 are independent, their joint PDF is

h(u0, v0) = (1, 1), with probability (1− γ∗)2,

= (1, v0), where v0 ∼ γ∗Unif(0, 1),

= (u0, 1), where u0 ∼ γ∗Unif(0, 1),

= (u0, v0), where u0 ∼ (γ∗)2Unif(0, 1) · Unif(0, 1). (3.16)

3.9.4.1 ρPSR for perfectly positively correlated TX and TY
Section 3.9.3.1 provides the expression for conditional covariance of PSRs, Cov+

PSR(U0, V0).
Taking its expectation with respect to the joint distribution (3.16) of U0 and V0, we
get

Cov+
PSR(γ∗) =

∫ 1

0

∫ 1

0
Cov+

PSR(u0, v0)h(u0, v0)du0dv0 =

= (1− γ∗)2 · 1
3 + (1− γ∗)γ∗

∫ 1

0

[1
6
{

(2v0 − 1)3 + 1
}

+ v0
4
{

1− (2v0 − 1)2
}]
dv0+

+ (1− γ∗)γ∗
∫ 1

0

[1
6
{

(2u0 − 1)3 + 1
}

+ u0
4
{

1− (2u0 − 1)2
}]
du0+

+ (γ∗)2
∫ 1

0

∫ 1

0
Cov+

PSR(u0, v0)du0dv0.
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The second and third terms in the above sum are equal to 1
4 . The last term is

∫ 1

0

∫ 1

0
Cov+

PSR(u0, v0)du0dv0

= 2
∫ 1

0

∫ v0

0

[1
6
{

(2u0 − 1)3 + 1
}

+
u0

4
{

(2v0 − 1)2 − (2u0 − 1)2
}

+ u0v0(1− v0)
]
du0dv0

= 2
∫ 1

0

(
1
6

[1
8
{

(2v0 − 1)4 − 1
}

+ v0

]
+

1
4

{
(4v2

0 − 4v0 + 1)
v2

0
2
−
(
v4

0 −
4
3
v3

0 +
v2

0
2

)}
+ v0(1− v0)

v2
0
2

)
dv0

=
2
15

+
2

120
+

2
40

=
1
5
.

The resulting covariance is

Cov+
PSR(γ∗) = (1− γ∗)2 · 1

3 + 2(1− γ∗)γ∗14 + (γ∗)2 · 1
5 .

According to Shepherd et al. (2016), under unbounded censoring, the mean of PSRs is
0, and the variance is 1

3 −EC·
[
(1− F (C·))3

]
. If the distribution of the censored data

is the same as the distribution of the time to event, then EC·
[
(1− F (C·))3

]
= 1

12 ,
which is the case here except only γ∗ th proportion of all observations is subject to
censoring, so the resulting variance is 1

3 − γ
∗ 1

12 , and the correlation of PSRs is

ρ+
PSR(γ∗) =

(1− γ∗)2 · 1
3 + 2(1− γ∗)γ∗ 1

4 + (γ∗)2 · 1
5

1
3 − γ∗

1
12

.

Similarly, it is straightforward to show that for γ∗X 6= γ∗Y

ρ+
PSR(γ∗X , γ∗Y ) =

(1− γ∗X)(1− γ∗Y ) · 1
3 + (1− γ∗X)γ∗Y · 1

4 + (1− γ∗Y )γ∗X · 1
4 + γ∗Xγ

∗
Y · 1

5√(
1
3 − γ

∗
X

1
12

) (
1
3 − γ

∗
Y

1
12

) .

To obtain ρ+
PSR(γ∗X , γ∗Y ) in terms of actual censoring proportions γX and γY , we use

the following variable transformations: γ∗X = 2γX and γ∗Y = 2γY .
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3.9.4.2 ρPSR for perfectly negatively correlated TX and TY
Using the results of Section 3.9.3.2, we have the following:

Cov−PSR(γ∗) =
∫ 1

0

∫ 1

0
Cov−(u0, v0)h(u0, v0)du0dv0 =

= −(1− γ∗)2 · 1
3 + (1− γ∗)γ∗

∫ 1

0

[
−1

6
{

1 + (2v0 − 1)3
}

+ v2
0(v0 − 1)

]
dv0−

+ (1− γ∗)γ∗
∫ 1

0

[
−1

6
{

1 + (2u0 − 1)3
}

+ u2
0(u0 − 1)

]
du0+

+ (γ∗)2
∫ 1

0

∫ 1

0
Cov−PSR(u0, v0)du0dv0.

After some tedious math, we obtain

ρ−PSR(γ∗) = −
(1− γ∗)2 · 1

3 + 2(1− γ∗)γ∗ · 1
4 + (γ∗)2 · 7

40
1
3 − γ∗

1
12

.

When γ∗X 6= γ∗Y , it is straight forward to show that

ρ−(γ∗X , γ∗Y ) = −
(1− γ∗X)(1− γ∗Y ) · 1

3 + (1− γ∗X)γ∗Y · 1
4 + (1− γ∗Y )γ∗X · 1

4 + γ∗Xγ
∗
Y · 7

40√(
1
3 − γ

∗
X

1
12

) (
1
3 − γ

∗
Y

1
12

) .

To obtain ρ−PSR(γ∗X , γ∗Y ) in terms of actual censoring proportions γX and γY , we use
the following variable transformations: γ∗X = 2γX and γ∗Y = 2γY .

3.10 Appendix 3.C
3.10.1 Notations

For brevity, we denote r(yi, FY , δY,i) as rY,i.

3.10.2 Estimating equations and derivatives of PSRs for unadjusted ρPSR
We assume that the number of unique time points is k. The estimating equations

for outcomes TX and TY are denoted as ψX and ψY , respectively. Let k be the number
of unique time points, so we have k estimating equations. Following the example of
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Shepherd et al. (2007), we have:

ψY (F̂1,Y (yi), yi) = V1,i,Y −
(
1− Ŝ1,Y (yi)

)
,

ψY (F̂2,Y (yi), yi) = V2,i,Y −
(
1− Ŝ2,Y (yi)

)
,

...

ψY (F̂k,Y (yi), yi) = Vk,i,Y −
(
1− Ŝk,Y (yi)

)
,

where functions Vj,i = φj(Yi)γ0(Yi)εi + γj1(Yi)(1 − εi) − γj2(Yi) are derived by Stute
(1995) and

φj(Yi) = I{Yi≤tj},

γ0(Yi) = exp

(∫ Y −i

−∞

H0(dw)
1−H(w)

)
,

γj,1(Yi) = 1
1−H(Yi)

∫
I{Yi<w}φj(w)γ0(w)H1(dw),

γj,2(Yi) =
∫ ∫ I{v<Yi, v<w}φj(w)γ0(w)

[1−H(v)]2 H0(dv)H1(dw),

H0(y) = P{Y ≤ y, ε = 0} =
∑
i(1− εi)I{Yi≤y}

N
,

H1(y) = P{Y ≤ y, ε = 1} =
∑
i εiI{Yi≤y}
N

,

H(y) = P{Y ≤ y} =
∑
i I{Yi≤y}
N

,

γj,2(Yi) =
∫ ∫ I{v<Yi, v<w}φj(w)γ0(w)

[1−H(v)]2 H0(dv)H1(dw).

To reduce computational time, we save γj,1(v) to compute γj,2(Yi):

γj,2(Yi) =
∫ ∫

I{v<Yi, v<w}φj(w)γ0(w)
[1−H(v)]2 H0(dv)H1(dw)

=
∫

I{v<Yi}
1−H(v)

[ 1
1−H(v)

∫
I{v<w}φj(w)γ0(w)H1(dw)

]
H0(dv)

=
∫
I{v<Yi}γj,1(v)

1−H(v) H0(dv).
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The derivatives of PSRs according to F̂i are

∂rY,i

∂F̂Y,i
=
∂
[
F̂Y (yi) + F̂Y (yi−1)δi − δi

]
∂F̂Y,i

= 1, if F̂Y,i = F̂Y (yi),

= δi, if F̂Y,i = F̂Y (yi−1)

= 0, otherwise.

3.10.3 Derivatives of PSRs for parametric survival models
Because we use the estimating equations provided by R, it is important to make

sure that the derivatives of PSRs are taken according to the correct parameters. In the
following sections, we review the parametrization of the parametric survival models
in R and derive the derivatives of PSRs based on this parametrization. According to
Zhang (2020) parametric survival models can be parametrized as following:

log(Ti) = β0 + β1zi1 + ...+ βpzip + σεi or Ti = eβ0+β1zi1+...+βpzip+σεi ,

STi(t) = P (Ti > t) = P
(
eβ0+β1zi1+...+βpzip+σεi > t

)
= P

(
eσεi > e−β0−β1zi1−...−βpzipt

)
= Seσεi (e−zzziβββt),

where eσεi can be Weibull, exponential, gamma, log-logistic, or log-normal distribu-
tion.

3.10.3.1 Exponential survival model
For exponential survival model, σ = 1, eεi ∼ Exponential(e−zzziβββ), and Feεi (yi) =

1− e−(e−zzziβββ)yi . The PSRs derivatives are

rY,i = 1− (1 + δi)e−(e−zzziβββ)yi ,

∂rY,i
∂β0

= −(1 + δi)e−(e−zzziβββ)yi
[
−(e−zzziβββ)yi

]
(−1) = −(1 + δi)yie−(e−zzziβββ)yi−zzziβββ,

∂rY,i
∂β1

= −(1 + δi) yi zi1 e−(e−zzziβββ)yi−zzziβββ,

∂rY,i
∂β2

= −(1 + δi) yi zi2 e−(e−zzziβββ)yi−zzziβββ.
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3.10.3.2 Weibull survival model
In R, Weibull distribution (rweibull()) is parameterized as

F (y) = 1− exp
(
−
(

y
scale

)shape)
, but the parameterization for survreg() is different:

scale = ezzziβββ, shape = 1
σ
,

F (yi) = 1− exp
(
−
(
y

ezzziβββ

) 1
σ

)
.

The PSRs and their derivatives by βj are

rY,i = (1 + δi)
[
1− exp

(
−
(
y

ezzziβββ

) 1
σ

)]
− δi,

∂rY,i
∂βj

= −(1 + δi)
zji
σ
y

1
σ
i e

(−yi·e−zzziβββ)
1
σ−zzziβββ

σ .

It appears that R provides score equations based on log(σ), so we compute the
derivatives accordingly:

γ = ln(σ), σ = eγ,
1
σ

= e−γ,

F (yi) = 1− exp
(
−
(
y

ezzziβββ

)e−γ)
,

rY,i = (1 + δi)
[
1− exp

(
−
(
yi
ezzziβββ

)e−γ)]
− δi,

∂rY,i
∂γ

= (1 + δi)
[
−exp

(
−
(
yie
−zzziβββ

)e−γ) ∂

∂γ

(
−
(
yie
−zzziβββ

)e−γ)]

= (1 + δi)exp
(
−
(
yie
−zzziβββ

)e−γ)
ln
(
yie
−zzziβββ

) (
yie
−zzziβββ

)e−γ (
−e−γ

)
= −(1 + δi) (ln(yi)− zzziβββ) ye−γi exp

{
−
(
yie
−zzziβββ

)e−γ
− zzziβββe−γ − γ

}
,

∂rY,i
∂γ

∣∣∣∣∣
γ=log(σ)

= −(1 + δi) (ln(yi)− zzziβββ) y
1
σ
i exp

{
−
(
yie
−zzziβββ

) 1
σ − zzziβββ

σ
− ln(σ)

}
.

3.10.3.3 Log-logistic survival model
According to DaÌĹtwyler (2011), for log-logistic distribution, R uses parametriza-

tion of accelerated failure time (AFT) model, FYi(yi) = 1
1+y−γi (e−zzziβββ)−γ . When com-
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puting score equations, R uses γ∗ = −log(γ), so the PSRs derivatives are

rY,i = 1− (1 + δi)
1

1 + [yie−zzziβββ]γ ,

∂rY,i
∂β0

= −γ(1 + δi)

[
yie
−zzziβββ

]γ
(1 + [yie−zzziβββ]γ)2 ,

∂rY,i
∂β1

= −γ(1 + δi)

[
yie
−zzziβββ

]γ
(1 + [yie−zzziβββ]γ)2 zi1,

∂rY,i
∂γ∗

∣∣∣∣∣
γ∗=−log(γ)

= γ(1 + δi)

[
yie
−zzziβββ

]γ
(1 + [yie−zzziβββ]γ)2 (log(yi)− zzziβββ).

3.10.3.4 Log-normal survival model

For log-normal model, we have f(y) = 1
yσ
√

2πe
− (log(y)−zzziβββ)2

2σ2 and F (y) = Φ
(
ln(y)−zzziβββ

σ

)
,

where Φ
(
ln(y)−zzziβββ

σ

)
is the CDF of normal distribution. The PSRs and their derivatives

according to βj are

rY,i = (1 + δi)F (y)− δi = (1 + δi)Φ
(
ln(yi)− zzziβββ

σ

)
− δi,

∂rY,i
∂βj

= −(1 + δi)zji
1√
2πσ

e−
(ln(yi)−zzziβββ)2

2σ2 .

To compute ∂rY,i
∂σ

we use Leibniz rule (see Wikipedia contributors (2020)) keeping in
mind that R seems to use parameter γ = log(σ),

γ = ln(σ); σ = eγ

∂rY,i
∂γ

= (1 + δi)
∫ yi

0

∂

∂γ

e−γ

t
√

2π
e−

(ln(t)−zzziβββ)2
2 e−2γ

dt

= (1 + δi)
∫ yi

0

1
t
√

2π
e−

(ln(t)−zzziβββ)2
2 e−2γ−γ

[
�
�
�−1
2 (ln(t)− zzziβββ)2 e−2γ

�
��(−2) − 1

]
dt

= (1 + δi)
[∫ yi

0

1
t
√

2π
(ln(t)− zzziβββ)2 e−

(ln(t)−zzziβββ)2
2 e−2γ−3γdt−

∫ yi

0

1
t
√

2π
e−

(ln(t)−zzziβββ)2
2 e−2γ−γdt

]
= (1 + δi) [A−B] .

It is straight forward to show (using γ = ln(σ)) that B = FY (yi) (the CDF of the
corresponding log-normal distribution). To compute A, we replace γ with ln(σ) and
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keep in mind that dt
t

= d (ln(t)):

A =
∫ yi

0

1
t
√

2πσ3 (ln(t)− zzziβββ)2 e−
(ln(t)−zzziβββ)2

2σ2 dt =
∫ yi

0

1√
2πσ3 (ln(t)− zzziβββ)2 e−

(ln(t)−zzziβββ)2

2σ2 d(ln(t)− zzziβββ).

Using the following variable substitution:

x = ln(t)− zzziβββ
σ

, e−
(ln(t)−zzziβββ)2

2σ2 = e−
x2
2 , (ln(t)− zzziβββ)2 = x2σ2, d(ln(t)− zzziβββ) = σdx,

if t = 0 then x = −∞,

if t = yi then x = ln(yi)− zzziβββ
σ

= x(yi),

we have

A =
∫ x(yi)

−∞

1
√

2π��σ3
x2

��σ
2e−

x2
2 �σdx = 1√

2π

∫ x(yi)

−∞
x2e−

x2
2 dx.

We apply integration by parts with

dV = e−
x2
2 xdx = −e−x

2
2 d

(
−x

2

2

)
, V = −e−x

2
2 U = x, dU = dx,

and get

A = 1√
2π

{
−x · e−

x2
2

∣∣∣∣x(yi)

−∞
+
∫ x(yi)

−∞
e−

x2
2 dx

}
dx

= 1√
2π

[
−x(yi) · e−

x(yi)
2

2 + 0
]

+ 1√
2π

∫ x(yi)

−∞
e−

x2
2 dx

= −(ln(yi)− zzziβββ)
σ
√

2π
· e−

(ln(yi)−zzziβββ)2

2σ2 + ΦSt.N.

(
ln(yi)− zzziβββ

σ

)
,

where ΦSt.N.(·) is the CDF of the standard normal distribution. Therefore,

∂rY,i
∂βj

= −(1 + δi)
zji

σ
√

2π
e−

(ln(yi)−zzziβββ)2

2σ2 ,

∂rY,i
∂γ

∣∣∣∣∣
γ=ln(σ)

= (1 + δi)
[
− (ln(yi)− zzziβββ) · φSt.N.

(
ln(yi)− zzziβββ

σ

)

+ΦSt.N.

(
ln(yi)− zzziβββ

σ

)
− FY (yi)

]
,

where φSt.N. and ΦSt.N. are the PDF and CDF of the standard Normal distribution,
and FY (yi) is the CDF of the log-normal distribution with µ = zzziβββ and σ.
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3.10.4 Estimating equations and derivatives of PSRs for Cox model
For Cox model, we have

S(yi) = e−Λ(yi)ezzziβββ ,

Λ(yi) =
∑

k:t(k)≤yi

(
t(k) − t(k−1)

)
λk(yi),

f(yi) = −∂S(yi)
∂yi

= e−Λ(yi)ezzziβββ · ezzziβββ · ∂Λ(yi)
∂yi

= e−Λ(yi)ezzziβββ · ezzziβββ · λk(yi),

Łi = f(yi)δiS(yi)1−δi =
[
f(yi)
S(yi)

]δi
S(yi) =

[
λk(yi) · ezzziβββ

]δi
e−Λ(yi)ezzziβββ ,

łi = δi[ln(λk(yi)) + zzziβββ]− Λ(yi)ezzziβββ = δi[ln(λk(yi)) + zzziβββ]−
∑

k:t(k)≤yi

(
t(k) − t(k−1)

)
λk(yi)ezzziβββ.

The first derivatives are

∂łi
∂βj

= δizij −

 ∑
k:t(k)≤yi

(t(k) − t(k−1))λk(yi)
 ezzziβββzij,

∂łi
∂λk(yi)

= δi
λk(yi)

−
(
t(k) − t(k−1)

)
ezzziβββ i, k : yi = t(k),

= −
(
t(k) − t(k−1)

)
ezzziβββ i, k : yi > t(k),

= 0 i, k : yi < t(k).

The second derivatives are

∂2łi
∂βj∂βj′

= −
 ∑
k:t(k)≤yi

(
t(k) − t(k−1)

)
λk(yi)

 ezzziβββzijzij′ ,
∂2łi

∂λk(yi)∂λk′(yi)
= − δi

λ2
k(yi)

i, k : k = k′ ∩ yi = t(k),

= 0 otherwise,
∂2łi

∂βj∂λk(yi)
= −

(
t(k) − t(k−1)

)
ezzziβββzij i, k : yi ≥ t(k),

= 0 otherwise.
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We recall that r̂Y,i = F̂ (yi) + δiF̂ (y−i )− δi = 1− Ŝ(yi)− δiŜ(y−i ) and

∂SYi
∂βj

= −e−Λ(yi)ezzziβββ · Λ(yi)ezzziβββ · zij

∂SYi
∂λk

= −e−Λ(yi)ezzziβββ · ezzziβββ(t(k) − t(k−1)) · 1(yi ≥ tk).

Therefore,

∂rY,i
∂βj

=
(
e−Λ(yi)ezzziβββΛ(yi) + δie

−Λ(y−i )ezzziβββΛ(y−i )
)
· ezzziβββ · zij,

∂rY,i
∂λk

=
(
e−Λ(yi)ezzziβββ + δie

−Λ(y−i )ezzziβββ
)
ezzziβββ(t(k) − t(k−1)) i, k : yi ≥ t(k),

= 0 otherwise.

If we assume continuity and denote martingale residuals as m(yi), we have:

∂rY,i
∂βj

= (1 + δi) (δi −m(yi)) em(yi)−δi · zij

∂rY,i
∂λk

= (1 + δi)em(yi)−δiezzziβββ(t(k) − t(k−1)) i, k : yi ≥ t(k),

= 0 otherwise.
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CHAPTER 4

EXTENSION TO R PACKAGE PRESIDUALS: UNADJUSTED, PARTIAL, AND
CONDITIONAL CORRELATION WITH BIVARIATE SURVIVAL DATA

4.1 Abstract
We present new methods for the analysis of correlation with bivariate survival

data. First, we review our methods and then illustrate their use by analyzing the
correlation of time to retinopathy in treated and untreated eyes in patients with
diabetes. These methods are implemented as part of the R package PResiduals
(Dupont et al., 2018).

Keywords: Spearman’s correlation, Bivariate survival data, Probability Scale Resid-
uals, covariate-adjustment.

4.2 Introduction
In Chapters 2 and 3, we have proposed several methods for estimating Spearman’s

rank correlation with right-censored data. The first method, restricted Spearman’s
correlation ρS|ΩR , computes the correlation only within a restricted region supported
by the data. The second method, the highest rank Spearman’s correlation ρHS , com-
putes the correlation on the entire probability space; it implicitly assigns the obser-
vations censored beyond the maximum observed event time to be the same highest
rank value. Both ρ̂S|ΩR and ρ̂HS (see Chapter 2) require estimating the joint bivariate
survival distribution non-parametrically. We also proposed a third non-parametric
correlation estimator that does not require estimating the joint survival distribu-
tions (see Chapter 3). Using marginal distributions only, this method computes the
correlation of probability scale residuals (PSRs), ρPSR, with censored data. Lastly,
following the semi-parametric approach of Liu et al. (2018), we extended ρPSR to com-
pute adjusted (partial), ρPSR·ZZZ , and conditional, ρPSR|ZZZ , estimators of correlations for
right-censored data (see Chapter 3). Although estimators ρPSR·ZZZ and ρPSR|ZZZ are semi-
parametric, their only assumptions are about the form of the marginal distributions
as functions of the adjustment covariates.

These estimators were extensively studied in Chapters 2 and 3 and shown to
have various strengths and limitations. We have implemented these methods in the
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PResiduals package of the R statistical language (Dupont et al., 2018; R Core Team,
2017). Here, we introduce these methods and software so that other analysts can
apply them. In Section 4.3, we review our methods. In Section 4.4, we provide
detailed examples of their use with the PResiduals package by estimating in various
manners the rank correlation between the times to retinopathy in the right and left
eyes of patients with diabetes (see package SurvCorr, Ploner et al. (2013)). We
conclude with Section 4.5.

4.3 Review of methods
We are interested in the correlation between two time-to-event variables, TX and

TY , possibly right-censored. Times to events can be observed on a single subject
or a pair of subjects. We assume independence between (TX , TY ) and times to cen-
soring (CX , CY ). However, CX and CY can be dependent. As a result of censor-
ing, we only observe X = min(TX , CX) and Y = min(TY , CY ) and event indicators
∆X = 1(TX ≤ CX) and ∆Y = 1(TY ≤ CY ). For events observed on a single sub-
ject, censoring is likely to be univariate (CX equals CY with probability one). When
CX 6= CY , the censoring is bivariate. In practice, follow-up is often bounded by design.
We denote the maximum follow-up times for TX and TY as τX and τY , respectively.
We refer to end-of-study censoring as type I censoring. Here we do not distinguish
between strict type I censoring (all subjects start the study at the same calendar time
and are observed until the end of the study) and generalized type I censoring (subjects
can start the study at different calendar times and can be censored before the end
of the study). Although rare in practice, some studies can have unbounded censoring
when τX = ∞ and τY = ∞ and censoring may happen throughout the study pe-
riod. We denote marginal and joint cumulative distribution functions of TX and TY
as FX(x) = Pr (TX ≤ x), FY (y) = Pr (TY ≤ y), F (x, y) = Pr (TX ≤ x, TY ≤ y), and
marginal and joint survival functions as SX(x) = Pr (TX > x), SY (y) = Pr (TY > y),
S(x, y) = Pr (TX > x, TY > y). We define FX(x−) = limt↑x FX(t) and F (x−, y) =
limt↑x F (t, y); functions FY (y−) and F (x, y−) are defined similarly.

The population parameter of Spearman’s correlation can be presented as

ρS/cρ = ETX ,TY
[{
FX(TX) + FX(T−X )− 1

}{
FY (TY ) + FY (T−Y )− 1

}]
=
∫ ∞

0

∫ ∞
0

{
FX(x) + FX(x−)− 1

} {
FY (y) + FY (y−)− 1

}
F (dx, dy), (4.1)
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where cρ =
[
Var

{
FX(TX) + FX(T−X )− 1

}
Var

{
FY (TY ) + FY (T−Y )− 1

}]−1/2
, and cρ =

3 when TX and TY are continuous (Liu et al., 2018). The right-hand side of (4.1) is
the covariance of probability-scale residuals (PSRs) proposed and studied by Li and
Shepherd (2012) and Shepherd et al. (2016) and defined as:

rX(tX , FX) = E {sign(tX − TX)} = Pr (TX < tX)− Pr (TX > tX) = FX(t−X) + FX(tX)− 1,

where sign(tX−TX) is −1, 0, and 1 for tX < TX , tX = TX , and tX > TX respectively.
We can rewrite definition (4.1) in terms of survival functions:

ρS/cρ =
∫ ∞

0

∫ ∞
0

{
1− SX(x)− SX(x−)

}{
1− SY (y)− SY (y−)

}
S(dx, dy).

4.3.1 Restricted region Spearman’s correlation, ρS|ΩR
When the follow-up period is limited either by design or by the fact that the

last observed time to event is censored, non-parametric estimation of the overall
correlation is not possible. It is possible, however, to estimate the correlation within
the follow-up period, Ω = [0, τX)× [0, τY ), or within some subregion of the follow-up
period, ΩR ⊆ Ω, (see Chapter 2):

ρS|ΩR/cρ|ΩR =
∫∫
ΩR

{
1− SX(x|ΩR)− SX(x−|ΩR)

} {
1− SY (y|ΩR)− SY (y−|ΩR)

}
S(dx, dy|ΩR),

(4.2)

where cρ|ΩR = [Var {1− SX(x|ΩR)− SX(x−|ΩR}Var {1− SY (y|ΩR)− SY (y−|ΩR)}]−1/2;
and SX(x|ΩR), SY (y|ΩR), and S(x, y|ΩR) are conditional marginal and joint survival
functions of TX and TY . In general, parameter ρS|ΩR is not the same as the overall
Spearman’s correlation, but it is well defined and interpreted as Spearman’s correla-
tion within ΩR. ρS|ΩR is computed by plugging in modified estimators of the marginal
and joint distributions conditional on ΩR using estimators proposed by Kaplan and
Meier (1958) and Dabrowska (1988). Confidence intervals for ρS|ΩR are estimated
using the bootstrap.

4.3.2 Highest rank Spearman’s correlation, ρHS
Although the correlation structure outside of Ω is not estimable, we can approxi-

mate the overall correlation using ρHS , the highest rank Spearman’s correlation. The
name highest rank Spearman’s correlation originates from the fact that for strict type
I censoring, this estimator is equivalent to Spearman’s correlation that assigns high-
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est ranks to the observations censored outside of the restricted region. Estimator ρHS
keeps track of the observations censored outside of Ω by accounting for their proba-
bility mass, which is the left-over mass from the total mass of 1 and the mass within
Ω. This left-over mass can be compared to dark matter in the universe. Dark matter
cannot be observed but is an essential part of the gravitational fabric of the universe.
So is the left-over probability mass of the observations censored outside of the re-
stricted region. Although not identifiable for each observation, this aggregated mass
provides critical information about the overall correlation. Technically, we account for
the left-over probability mass by replacing S(dx, dy) with a probability mass function
SH(dx, dy) that is defined as S(dx, dy) inside Ω, as S(τ−X , dy) for x = τX and y < τY ,
as S(dx, τ−Y ) for x < τX and y = τY , as S(τ−X , τ−Y ) for x = τX and y = τY , and zero
otherwise. Estimator ρHS is defined as the correlation of PSRs for this new distribu-
tion:

ρHS /c
H
ρ =

∫ τX

0

∫ τY

0

{
1− SHX (x)− SHX (x−)

}{
1− SHY (y)− SHY (y−)

}
SH(dx, dy),

where SHX (x) and SHY (y) are the marginal survival functions of SH(x, y), and

cHρ =
[
Var

{
1− SHX (TX)− SHX (T−X )

}
Var

{
1− SHY (TY )− SHY (T−Y )

}]−1/2
.

The estimator of ρHS is consistent in the presence of unbounded censoring. Again,
ρHS is estimated by plugging in modified Kaplan-Meier and Dabrowska’s estimators
of the marginal and joint survival functions SH(x, y). For type I censoring, however,
ρHS 6= ρS. Still, ρHS can be considered as an approximation of the overall Spear-
man’s correlation - the best guess made without any parametric assumptions. The
confidence intervals of ρHS are estimated using the bootstrap.

4.3.3 Correlation of probability scale residuals, ρPSR
Another way to approximate Spearman’s correlation is to use estimator ρPSR, the

correlation of the probability scale residuals for right-censored data. As shown by Liu
et al. (2018), in the absence of censoring, the population parameter of ρPSR is the
Spearman’s rank correlation defined in (4.1). For censored observations, Shepherd
et al. (2016) extended the definition of PSRs to the expectation of PSRs over the
area after the censoring point, r(x, FX ,∆X = 0) = E{r(TX , FX)|TX > x}; therefore,
for right-censored data, r(x, FX , δX) = FX(x) − δX(1 − FX(x−)), where (x, δX) is
a realization of (X,∆X). So the population parameter of ρPSR in the presence of
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right-censoring is

ρPSR/cPSR = Cov {r(X,FX ,∆X), r(Y, FY ,∆Y )}

where cPSR = [Var {r(X,FX ,∆X)}Var {r(Y, FY ,∆Y )}]−1/2, and the covariance/vari-
ances are taken over the distribution of (X, Y ) and (∆X ,∆Y ). Estimation of ρPSR,
unlike ρHS and ρS|ΩR does not require estimating the joint bivariate survival distribu-
tion, which can be difficult in practice, particularly with small sample sizes. Hence,
ρPSR is estimated using plug-in estimates based on Kaplan-Meier estimators. Unlike
for ρ̂S|ΩR and ρ̂HS , confidence intervals for ρ̂PSR can be computed using M-estimation
(Stefanski and Boos, 2002) (see the details in Chapter 3). When ρS = 0, ρPSR is also
zero regardless of the censoring distribution. When ρS 6= 0 and censoring is present,
ρPSR 6= ρS. However, with moderate censoring, the bias of ρ̂PSR is small, and its
standard error is much lower compared to that of ρ̂HS ; so ρ̂PSR can outperform ρ̂HS .
Finally, ρPSR allows for easy extensions to partial and conditional correlations.

4.3.4 Partial correlation of probability scale residuals, ρPSR·ZZZ
To evaluate whether or to what extent the correlation between two variables is

induced by other variables, it is helpful to compute adjusted or partial rank correla-
tion,

ρPSR·ZZZ/cρ·ZZZ = Cov
{
r(X,FX|ZZZ ,∆X), r(Y, FY |ZZZ ,∆Y )

}
,

where cρ·ZZZ =
[
Var

{
r(X,FX|ZZZ ,∆X)

}
Var

{
r(Y, FY |ZZZ ,∆Y )

}]−1/2
and FX|ZZZ , FY |ZZZ are

the distributions of TX and TY , respectively, conditional on covariates ZZZ and can be
easily estimated using available survival models.

When estimating F̂X|ZZZ and F̂Y |ZZZ , the decision on what covariates to include should
be made carefully. Since the goal of computing partial correlation is to remove the
confounding effects of ZZZ from the association, it makes sense to include covariates
that affect both variables. When observations are collected on the same subject,
both survival models will naturally have the same covariates with equal value for
one pair of observations. When observations are collected on two different subjects,
users have to be more careful. For example, each twin can have a body mass index
(BMI) recorded, and the BMI may be different for each of the twins. Adjusting each
model only for one twin’s BMI means that the other twin’s BMI does not affect the
correlation, which defeats the purpose of adjusting away the effect of BMI from the
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correlation. Including both BMI variables in both models with result in correlation
adjusted for both BMI variables.

Our software supports several survival regressions: exponential, Weilbull, log-
normal, log-logistic, and Cox proportional hazards regressions. The confidence in-
tervals of ρ̂PSR·ZZZ are computed using M-estimation (see Stefanski and Boos (2002);
Liu et al. (2018); Chapter 3), which requires score equations for model parameters.
These score equations can be obtained from the corresponding regression objects. For
Cox regression, we implemented two ways of obtaining score equations depending on
whether the variability of the estimated baseline hazard is taken account: 1) with par-
tial likelihood and 2) with full likelihood suggested by Breslow (1972). The problem
with the full likelihood approach is that the dimension of M-estimation matrices may
grow linearly with the number of observations, which may significantly increase the
computational time or result in singular matrices. When singularity occurs, the soft-
ware switches to the partial likelihood approach. Although computing ρ̂PSR·ZZZ with
partial likelihood will result in underestimating its variance, our simulations showed
that these two approaches perform very similarly (see Chapter 3).

4.3.5 Conditional correlation of probability scale residuals, ρPSR|ZZZ
There may be interest in estimating the rank correlation between two time-to-

event variables conditional (i.e., as a function of) a third variable. For example, we
might be interested in the correlation of time to retinopathy as a function of A1C level
(a protein in red blood cells that carries oxygen and is coated with sugar). Higher
A1C levels mean poorer blood sugar control, which may affect the correlation. The
correlation of PSRs can also be used to estimate the conditional correlation defined
as

ρPSR|ZZZ/cρ|ZZZ = Cov
{
r(X,FX|ZZZ ,∆X), r(Y, FY |ZZZ ,∆Y )|ZZZ

}
,

where cρ|ZZZ =
[
Var

{
r(X,FX|ZZZ ,∆X)|ZZZ

}
Var

{
r(Y, FY |ZZZ ,∆Y )|ZZZ

}]−1/2
.

Partial-conditional correlation can also be defined as
ρPSR·ZZZ1|ZZZ2/cρ·ZZZ1|ZZZ2 = Cov

{
r(X,FX|ZZZ ,∆X), r(Y, FY |ZZZ ,∆Y )|ZZZ2

}
, where

cρ·ZZZ1|ZZZ2 =
[
Var

{
r(X,FX|ZZZ ,∆X |ZZZ2)

}
Var

{
r(Y, FY |ZZZ ,∆Y |ZZZ2)

}]−1/2
and ZZZ = (ZZZ1,ZZZ2).

Similar to ρPSR·ZZZ , when estimating partial-conditional correlation, one should
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carefully consider what covariates to include. Regarding ZZZ2, both models should
include the same covariates. The method of computing confidence intervals for ρPSR|ZZZ
and ρPSR·ZZZ1|ZZZ2 is similar to ρPSR·ZZZ , but more involved (Liu et al., 2018).

4.4 Analysis of rank correlation
4.4.1 Diabetic retinopathy data

To illustrate our methods, we use the diabetes dataset available with the pack-
age SurvCorr (Ploner et al., 2015). This data contains 197 subjects diagnosed with
diabetes mellitus who underwent a laser treatment on one of their eyes to prevent
retinopathy, a disease that affects the retina’s blood vessels and may result in loss of vi-
sion. These subjects represent a subset of a larger cohort of the Diabetic Retinopathy
Study (DRS) (see National Eye Institute (1981)). According to the study protocol,
one eye of each patient was randomly assigned to treatment with photocoagulation.
The eye chosen for treatment was randomly assigned to either using an argon laser
or a xenon photocoagulator. Patients were tested for visual acuity at 4-month inter-
vals. The data contains time to diabetic retinopathy or censoring (in months), the
eye (right (1) or left (2)) that the treatment was applied to, the type of treatment
(xenon (1) or argon (2)), and age at diabetes diagnosis. The median follow-up time
was 42.23 and 32.63 months in the treated and untreated eye, respectively. The pro-
portions of censoring were 72.6% in the right eye, 48.7% in the left eye, 40.6% in both
eyes; only 19.3% of subjects had events for both eyes. Figures 4.1 visualizes events
and censoring events.

Our methods are temporarily contained in the survSpearman package (available
on GitHub) and will become part of the package PResiduals. The package is de-
pendent on the survival package (Therneau, 2015). We also call SurvCorr package
(Ploner et al., 2013) to access the diabetic retinopathy data. The first five rows of
the dataset are printed below.

> library(survival)
> library(SurvCorr)
> library(survSpearman)
> data(diabetes, package = "SurvCorr")

> diabetes[1:5,]
ID LASER TRT_EYE AGE_DX ADULT TIME1 STATUS1 TIME2 STATUS2

1 5 2 2 28 2 46.23 0 46.23 0
2 14 2 1 12 1 42.50 0 31.30 1
3 16 1 1 9 1 42.27 0 42.27 0
4 25 2 2 9 1 20.60 0 20.60 0
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5 29 1 2 13 1 38.77 0 0.30 1

The function visualBivarTimeToEvent() plots the bivariate survival data shown
in Figure 4.1, distinguishing between fully observed, singly censored, and doubly
censored observations.

> visualBivarTimeToEvent(timeX = diabetes$TIME1, deltaX = diabetes$STATUS1,
+ timeY = diabetes$TIME2, deltaY = diabetes$STATUS2,
+ labelX = "Time to retinopathy in the treated eye",
+ labelY = "Time to retinopathy in the untreated eye",
+ dotSize = 1, segLength=2, legendCex = .8,
+ scaleLegendGap = 2.5, xlim = c(0, 90), ylim= c(0, 90))
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Figure 4.1: Diabetic retinopathy data.

From Figure 4.1 it is hard to see if the data are correlated because of censoring.
Viewing the bivariate probability mass function may help visualize the correlation
structure better. The survPMFPlot() function plots the estimated bivariate prob-
ability mass function of Dabrowska (1988). This function takes as input an esti-
mate of Dabrowska’s bivariate survival distribution, which is obtained by function
survDabrowska(), illustrated in the code below. The survPMFPlot() function ag-
gregates probability mass into user-defined cells using arguments gridWidthX and
gridWidthY, which in the code below, resulting in Figure 4.2, aggregates probability
mass into cells of 2× 2 months.

The darker shade in the figure corresponds to regions with higher probability
mass. The estimated marginal probability mass is shown in the bottom and left
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margins of the plot. The arguments scaleHistX and scaleHistY regulate the height
of the marginal histograms, and arguments scaleGapX and scaleGapY regulate the
gap between the main plot and the axes’ labels.

> dabrSurface = survDabrowska(X = diabetes$TIME1, Y = diabetes$TIME2,
+ deltaX = diabetes$STATUS1, deltaY = diabetes$STATUS2)$DabrowskaEst
> survPMFPlot(dabrSurface, gridWidthX = 2, gridWidthY = 2,
+ XAxisLabel = "Time to retinopathy for the treated eye",
+ YAxisLabel = "Time to retinopathy for the untreated eye",
+ scaleHistX = 20, scaleHistY = 20,
+ scaleGapX = 1.5, scaleGapY = 1.5,
+ labelSkipX = 1, labelSkipY = 1,
+ lineXAxisLabel = -0.5, lineYAxisLabel = -0.25)
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Figure 4.2: Probability mass function for diabetic retinopathy data. The data was aggregated into
cells of 2× 2 months.

Figure 4.2 shows that larger probability mass is loosely concentrated along the
diagonal, suggesting some positive correlation. The lighter gray points located closer
to the axes represent the probability mass estimated mainly from the censored events.
The Kaplan-Meier plot helps visualize the marginal survival distributions and is shown
in Figure 4.3. According to Figure 4.3, the risk of having retinopathy event appears
to be smaller in the treated compared to the untreated eye.

> fit1 <- survfit(Surv(TIME1, STATUS1)~1, data = diabetes)
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> fit2 <- survfit(Surv(TIME2, STATUS2)~1, data = diabetes)
> plot(0, 0, type = "n", xlab = "Time to event", cex = 1, col = "black",
+ ylab = "Survival probability", xlim = range(c(fit1$time, fit2$time)),
+ ylim = c(0, 1), axes = TRUE)
> polygon(x=c(fit1$time, fit1$time[length(fit1$time):1]),
+ y=c(fit1$upper, fit1$lower[length(fit1$lower):1]),
+ col = "#22222222", border="#22222222")
> lines(fit1$time, fit1$surv, col="black")
> polygon(x=c(fit2$time, fit2$time[length(fit2$time):1]),
+ y=c(fit2$upper, fit2$lower[length(fit2$lower):1]), col = "#22222222", border="#22222222")
> lines(fit2$time, fit2$surv, col="black")
> text(x = c(max(fit1$time), max(fit1$time)) - 7,
+ y = c(min(fit1$surv), min(fit2$surv))+ 0.05, labels = c("Treated", "Untreated"))
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Figure 4.3: Kaplan-Meier estimates of the probability of not having a retinopathy in the treated
and untreated eyes.

4.4.1.1 Unadjusted correlation with ρ̂S|ΩR, ρ̂HS , and ρ̂PSR
In this exercise, we are interested in estimating the rank correlation between the

times to retinopathy in the treated and untreated eyes. In spite of the fact that the
treatment appears to be effective, we expect that the time to retinopathy in one eye
is positively correlated with that in the other eye. To evaluate this, we compute
the unadjusted rank correlation between the times to retinopathy in the treated and
untreated eyes. Because the maximum observed time for each eye corresponds to a
censored event,

> diabetes[diabetes$TIME1 >= max(diabetes$TIME1), c("TIME1", "STATUS1")]
TIME1 STATUS1

183 74.97 0
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> diabetes[diabetes$TIME2 >= max(diabetes$TIME2), c("TIME2", "STATUS2")]
TIME2 STATUS2

141 74.93 0

the overall Spearman’s correlation, ρS, is not estimable non-parametrically. We
can either approximate the overall correlation by computing ρ̂HS or focus on esti-
mating Spearman’s correlation in an estimable region and compute ρ̂S|ΩR . Function
survSpearman() computes both estimates:

> est = survSpearman(X = diabetes$TIME1, Y = diabetes$TIME2,
+ deltaX = diabetes$STATUS1, deltaY = diabetes$STATUS2,
+ tauX = Inf, tauY = Inf)
> est
$‘Restricted region set by user‘
tauX tauY

"Inf" "Inf"

$‘Effective restricted region‘
tauX tauY

"63.33 +" "61.83 +"

$Correlation
HighestRank Restricted

0.2675704 0.2511821

The output of function survSpearman() reports the estimated highest rank and
restricted region rank correlations. The output also includes the restricted region
set by the user, which defaults to no restrictions, [0,∞] × [0,∞], and the effective
restricted region, which is defined by the maximum observed event times in the re-
stricted region set by the user. In this example, these values are 63.33 and 61.83
months. The plus signs denote the fact that the highest rank correlation assigns
probability mass to values just outside this region. Estimate ρ̂HS incorporates this
information as the probability mass of the observations censored outside of the re-
stricted region. Estimate ρ̂S|ΩR focuses only on the effective restricted region and
disregards the partial information provided by the observations censored outside of
Ω.

Confidence intervals of these estimates are computed using the bootstrap:
> bootCI = matrix(NA, nrow = 200, ncol = 2)
> colnames(bootCI) = c("HighestRank", "Restricted")
> set.seed(2020)
> for (i in 1:nrow(bootCI)){
+ bsample = diabetes[sample(1:nrow(diabetes), nrow(diabetes), replace = TRUE), ]
+ bootCI[i, ] = survSpearman(X = bsample$TIME1, Y = bsample$TIME2,
+ deltaX = bsample$STATUS1, deltaY = bsample$STATUS2,
+ tauX = Inf, tauY = Inf)$Correlation

99



+ }
> CIs = apply(bootCI, 2, quantile, prob = c(0.025, 0.975))
> res = rbind(est, CIs)
> t(round(res, 3))

est 2.5% 97.5%
HighestRank 0.268 0.091 0.412
Restricted 0.251 -0.149 0.589

In this example, the two estimates of correlation are quite similar, with both
suggesting a moderate correlation between the time to retinopathy. Notice that the
confidence interval for ρS|ΩR is wider than that of ρHS because the former ignores in-
formation outside the restricted region, and this region is likely to be different for
different bootstrap samples.

We can also compute ρ̂S|ΩR in a smaller restricted region if such restricted corre-
lation makes clinical sense. For example, suppose we are interested in the correlation
during the first four years, Ω48 = [0, 48)× [0, 48). This is implemented by specifying
tauX = tauY = 48 in survSpearman().

> tauX = tauY = 48
> est = survSpearman(X = diabetes$TIME1, Y = diabetes$TIME2,
+ deltaX = diabetes$STATUS1, deltaY = diabetes$STATUS2,
+ tauX = tauX, tauY = tauY)
> bootCI = rep(NA, 200)
> set.seed(2021)
> for (i in 1:length(bootCI)){
+ bsample = diabetes[sample(1:nrow(diabetes), nrow(diabetes), replace = TRUE), ]
+ bootCI[i] = survSpearman(X = bsample$TIME1, Y = bsample$TIME2,
+ deltaX = bsample$STATUS1, deltaY = bsample$STATUS2,
+ tauX = tauX, tauY = tauY)$Correlation["Restricted"]
+ }
> res = c(est = est$Correlation["Restricted"], quantile(bootCI, prob = c(0.025, 0.975)))
> round(res, 3)
est.Restricted 2.5% 97.5%

0.299 -0.084 0.649

The resulting estimate is about 0.299, but the confidence interval contains zero.
Note that the function also outputs ρ̂HS within the more narrow restricted region,
but computing ρ̂HS while artificially disregarding the information about the overall
correlation makes less sense.

Similarly to ρ̂HS , estimator ρ̂PSR provides a way to approximate the overall Spear-
man’s correlation. The function unadjusted.CorPSRs() computes ρ̂PSR and its 95%
confidence interval.

> res = unadjusted.CorPSRs(X = diabetes$TIME1, Y = diabetes$TIME2,
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+ deltaX = diabetes$STATUS1, deltaY = diabetes$STATUS2)
> round(res[ c("est", "lower.CI", "upper.CI") ], 3)

est lower.CI upper.CI
0.271 0.132 0.410

Estimators ρ̂HS and ρ̂PSR have similar point estimates with ρ̂PSR having a narrower
confidence interval because it avoids estimating the bivariate survival surface, which
adds to the variability of ρ̂HS . Obtaining the confidence interval of ρ̂PSR using M-
estimation also saves computational time.

4.4.1.2 Partial correlation with ρ̂PSR·ZZZ
The correlation can be affected by different factors, e.g., age, what eye was treated,

and treatment type. We can adjust for these other variables by estimating the partial
correlation, ρ̂PSR·Z . To compute the partial correlation, we first need to fit separate
models for both of the time to event outcomes on the covariates. Here we fit Cox
models:

> survObjX = Surv(diabetes$TIME1, diabetes$STATUS1)
> survObjY = Surv(diabetes$TIME2, diabetes$STATUS2)
> modX = coxph(survObjX ~ TRT_EYE + AGE_DX + LASER,
+ data=diabetes, method = "breslow", timefix = FALSE)
> modY = coxph(survObjY ~ TRT_EYE + AGE_DX + LASER,
+ data=diabetes, method = "breslow", timefix = FALSE)

The function partial.corPSRs() then takes these model objects as input and
computes the partial correlation:

> round(partial.corPSRs(modX, modY)[ c("est", "lower.CI", "upper.CI") ], 3)
est lower.CI upper.CI

0.301 0.162 0.441

In this example, the correlation slightly increased after adjusting for age, treat-
ment eye, and type of treatment.

When the survival probabilities are modeled using Cox proportional hazards model,
the confidence interval of ρ̂PSR·ZZZ is computed using score equations from the Cox re-
gression partial likelihood. Using partial likelihood results in slightly underestimated
variability of ρPSR because it does not take into account the variability of the baseline
hazard. The user can choose the full likelihood option instead:

> round(partial.corPSRs(modX, modY, likelihood = "full")[c("est", "lower.CI", "upper.CI") ], 3)
est lower.CI upper.CI

0.301 0.163 0.439
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The confidence intervals obtained from the full and partial likelihoods are almost
the same. Note that Cox regression should be fit with timefix = FALSE because of
issues related to the floating point round-off error of the time to event stored in the
Cox regression object.

Instead of Cox proportional hazards, parametric survival models can be used, for
example, the log-logistic model:

> modX = survreg(survObjX ~ AGE_DX, data=diabetes, dist = "loglogistic")
> modY = survreg(survObjY ~ AGE_DX, data=diabetes, dist = "loglogistic")
> round(partial.corPSRs(modX, modY)[ c("est", "lower.CI", "upper.CI") ], 3)

est lower.CI upper.CI
0.290 0.153 0.427

The correlation computed using log-logistic model is very similar.

4.4.1.3 Conditional and partial-conditional correlation with ρ̂PSR|ZZZ and ρ̂PSR·ZZZ1|ZZZ2

In addition to the partial correlation, there is an interest in computing correlation
conditional on other variables. Suppose we are interested in estimating the rank
correlation conditional on age at diagnosis. The function conditional.corPSRs()
can be used to estimate ρPSR|Z . The function requires inputting models of the times-
to-event conditional on age; Cox models are a natural choice and are implemented
below. Since age is a continuous variable, conditional.corPSRs() allows the user
to specify how to model the rank correlation. Specifically, ρPSR|Z can be modeled
linearly (numKnots = 0) or using restricted cubic splines with numKnots set to a
whole number between 3 and 7. The location of the spline knots is defined in terms
of quantiles suggested by Harrell Jr (2015). The code below estimates and plots
ρPSR|Z with restricted cubic splines with three knots.

> modXC = coxph(survObjX ~ AGE_DX, data=diabetes, method = "breslow", timefix = FALSE)
> modYC = coxph(survObjY ~ AGE_DX, data=diabetes, method = "breslow", timefix = FALSE)
> z = diabetes[["AGE_DX"]]
> newZ = diabetes[["AGE_DX"]]
> par(mfrow = c(1, 2))
> for(n_knots in c(0, 3)){
+ resultXY = conditional.corPSRs(modXC, modYC, z, newZ, numKnots = n_knots)
+ plotData = data.frame(x = newZ, y = resultXY$est,
+ yLower = resultXY$lower.CI, yUpper = resultXY$upper.CI)
+ plotData = plotData[order(plotData$x),]
+ plot(plotData$x, plotData$y, type = "n", ylim = c(0, 1))
+ points(plotData$x, plotData$y, pch = 19, col = plotCol, cex = .3)
+ lines(plotData$x, plotData$yLower, col = plotCol)
+ lines(plotData$x, plotData$yUpper, col = plotCol)
+ abline(h=0, lty = 3, col = plotCol)
+ }
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Note that the current version of function conditional.corPSRs() computes cor-
relation conditional only on one variable.
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Figure 4.4: ρ̂P SR|Z conditional on age at diagnosis. Left: age is modeled as a linear variable. Right:
age is modeled with restricted cubic splines with three knots at 0.1th, 0.5th, 0.9th percentiles.

Note that argument z contains variable Z, and newZ contains only those values of
Z, for which ρPSR|Z is computed. Figure 4.4 shows ρ̂PSR|Z computed as a function of
age, where age is modeled as a linear (left panel) and quadratic (right panel) variable.
The panels generally show the rank correlation increasing with age, suggesting that
the association between times to retinopathy for different eyes in the same patient
is likely stronger for older patients. Larger sample sizes are needed to determine the
functional form of the correlation with greater precision.

The same function conditional.corPSRs() can also compute the partial-conditional
correlation. We may want to estimate the rank correlation conditional on age after
adjusting for which eye was treated (TRT_EYE) and the type of treatment (LASER).
This can be estimated using the same code except inputting objects from models that
include TRT_EYE and LASER covariates:

> plotCol = "#44444444"
> modXC = coxph(survObjX ~ TRT_EYE + AGE_DX + LASER, data=diabetes,
+ method = "breslow", timefix = FALSE)
> modYC = coxph(survObjY ~ TRT_EYE + AGE_DX + LASER, data=diabetes,
+ method = "breslow", timefix = FALSE)

103



> z = diabetes[["AGE_DX"]]
> newZ = diabetes[["AGE_DX"]]
> par(mfrow = c(1, 2))
> for(n_knots in c(0, 3)){
+ resultXY = conditional.corPSRs(modXC, modYC, z, newZ, numKnots = n_knots)
+ plotData = data.frame(x = newZ, y = resultXY$est,
+ yLower = resultXY$lower.CI, yUpper = resultXY$upper.CI)
+ plotData = plotData[order(plotData$x),]
+ plot(plotData$x, plotData$y, type = "n", ylim = c(0, 1))
+ points(plotData$x, plotData$y, pch = 19, col = plotCol, cex = .3)
+ lines(plotData$x, plotData$yLower, col = plotCol)
+ lines(plotData$x, plotData$yUpper, col = plotCol)
+ abline(h=0, lty = 3, col = plotCol)
+ }
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Figure 4.5: ρP SR·Z1|Z2 - correlation of PSRs adjusted for left/right eye and conditional on age at
diagnosis. Left: age is modeled as a linear variable. Right: age is modeled as a restricted cubic
spline with three knots at 0.1th, 0.5th, 0.9th percentiles.

There is not much difference between the correlation conditional on age (Figure
4.4) and the partial correlation conditional on age (Figure 4.5).

To check if the correlation is the same, whether the right eye or left eye is treated
or for the two types of treatment, we compute the partial rank correlation adjusted
for age and conditional on the treated eye and treatment type.

> par(mfrow = c(1, 2))
> nameList = list(TRT_EYE = c("Right", "Left"), LASER = c("Xenon", "Argon"))
> xList = list(TRT_EYE = 2:1, LASER = 1:2)
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> newZ = c(1, 2)
> for(var_i in c("TRT_EYE", "LASER")){
+ z = diabetes[[var_i]]
+ resultXY = conditional.corPSRs(modXC, modYC, z, newZ, numKnots = 0)
+ resultXY[[var_i]] = newZ
+ resultXY[["NAMES"]] = nameList[[var_i]][newZ]
+ plot(0, 0, type = "n", xlim = c(0, 3), ylim = range(-0.2, 1),
+ axes = FALSE, xlab = "", ylab = "")
+ abline(h = 0, col = "gray", lty = 3)
+ box()
+ points(xList[[var_i]], resultXY[, "est"], pch = 18)
+ segments(x0 = xList[[var_i]], y0 = resultXY$lower.CI,
+ x1 = xList[[var_i]], y1 = resultXY$upper.CI)
+ axis(side = c(2), at = seq(-0.2, 1, .2))
+ axis(side = c(4), at = seq(-0.2, 1, .2))
+ mtext(resultXY$NAMES, side = 1, line = 1, at = xList[[var_i]])
+ }
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Figure 4.6: Partial-conditional correlation of PSRs. Left: ρP SR·Z1|Z2 , where Z1 is age and treatment
type, and Z2 is whether the right or left eye was treated. Right: ρP SR·Z1|Z2 , where Z1 is age and
whether the right or left eye was treated, and Z2 is the type of treatment.

Figure 4.6 shows estimates of the partial rank correlation conditional on eye (left
panel) and treatment (right panel). Interestingly, it appears that the correlation be-
tween the times to retinopathy for different eyes within the same patient was higher
when the left eye was treated than when the right eye was treated. In contrast, there
appears to be no difference in correlation between the two treatment groups.
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We can also compute ρ̂HS for these subgroups; see the following code and Figure
4.7. From Figures 4.6 and 4.7, we observe that ρ̂PSR·Z1|Z2 and ρ̂HS give consistent
results. Note that the former estimate adjusts for covariates whereas the latter does
not. Covariate adjustment for ρS|ΩR and ρHS has not been developed because it would
require estimating bivariate survival distributions conditional on covariates, which is
quite complicated.

> d1 = diabetes[diabetes$TRT_EYE == 1,]
> d2 = diabetes[diabetes$TRT_EYE == 2,]
> l1 = diabetes[diabetes$LASER == 1,]
> l2 = diabetes[diabetes$LASER == 2,]
>
> estD1 = survSpearman(X = d1$TIME1, Y = d1$TIME2, deltaX = d1$STATUS1, deltaY = d1$STATUS2)
> estD2 = survSpearman(X = d2$TIME1, Y = d2$TIME2, deltaX = d2$STATUS1, deltaY = d2$STATUS2)
> estL1 = survSpearman(X = l1$TIME1, Y = l1$TIME2, deltaX = l1$STATUS1, deltaY = l1$STATUS2)
> estL2 = survSpearman(X = l2$TIME1, Y = l2$TIME2, deltaX = l2$STATUS1, deltaY = l2$STATUS2)
>
> pEst = c(estD1$Correlation["HighestRank"], estD2$Correlation["HighestRank"],
+ estL1$Correlation["HighestRank"], estL2$Correlation["HighestRank"])
> names(pEst) = c("Right", "Left", "Xenon", "Argon")
>
> bootCI = matrix(NA, nrow = 200, ncol = 4)
> colnames(bootCI) = c("Right", "Left", "Xenon", "Argon")
> set.seed(238)
> for (i in 1:nrow(bootCI)){
+ bD1 = d1[sample(1:nrow(d1), nrow(d1), replace = TRUE), ]
+ bD2 = d2[sample(1:nrow(d2), nrow(d2), replace = TRUE), ]
+ bL1 = l1[sample(1:nrow(l1), nrow(l1), replace = TRUE), ]
+ bL2 = l2[sample(1:nrow(l2), nrow(l2), replace = TRUE), ]
+ estBD1 = survSpearman(X = bD1$TIME1, Y = bD1$TIME2, deltaX = bD1$STATUS1, deltaY = bD1$STATUS2)
+ estBD2 = survSpearman(X = bD2$TIME1, Y = bD2$TIME2, deltaX = bD2$STATUS1, deltaY = bD2$STATUS2)
+ estBL1 = survSpearman(X = bL1$TIME1, Y = bL1$TIME2, deltaX = bL1$STATUS1, deltaY = bL1$STATUS2)
+ estBL2 = survSpearman(X = bL2$TIME1, Y = bL2$TIME2, deltaX = bL2$STATUS1, deltaY = bL2$STATUS2)
+ bootCI[i, ] = c(estBD1$Correlation["HighestRank"], estBD2$Correlation["HighestRank"],
+ estBL1$Correlation["HighestRank"], estBL2$Correlation["HighestRank"])
+ }
Restricted Spearman’s correlation was corrected.
Restricted Spearman’s correlation was corrected.
Warning messages:
1: In HighestRankAndRestrictedSpearman(bivarSurf, tauX = tauX, tauY = tauY) :

Restricted Spearman’s correlation was corrected.
2: In HighestRankAndRestrictedSpearman(bivarSurfForHR, tauX = Inf, :

Restricted Spearman’s correlation was corrected.
>
> CIs = apply(bootCI, 2, quantile, prob = c(0.025, 0.975))
> res = rbind(pEst, CIs)

Note the warnings given by function survSpearman(). This means that the re-
stricted Spearman’s correlation, ρ̂S|ΩR was corrected (see Chapter 2) to remedy the
problem of negative mass of the Dabrowska’s estimator (Dabrowska, 1988; Pruitt,
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1991). This problem did not affect ρ̂HS , which is not as sensitive to the negative mass
problem.

> pList = list(c("Right", "Left"), c("Xenon", "Argon"))
> par(mfrow = c(1, 2))
> xList = list(TRT_EYE = 2:1, LASER = 1:2)
> for(list_i in c(1, 2)){
+ x = xList[[list_i]]
+ plot(0, 0, type = "n", xlim = c(0, 3), ylim = range(-0.2, 1), axes = FALSE, xlab = "", ylab = "")
+ abline(h = 0, col = "gray", lty = 3)
+ listData = res[, pList[[list_i]]]
+ box()
+ points(x, listData["pEst", ], pch = 18)
+ segments(x0 = x, y0 = listData["2.5%", ], x1 = x, y1 = listData["97.5%", ])
+ axis(side = c(2), at = seq(-0.2, 1, .2))
+ axis(side = c(4), at = seq(-0.2, 1, .2))
+ mtext(colnames(listData), side = 1, line = 1, at = x)
+ }
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Figure 4.7: ρ̂H
S for the right and left treated eye (left panel) and for Xenon and Argon treatment

(right panel).

4.5 Summary
We have developed methods to estimate unadjusted, partial, and conditional rank

correlations with bivariate survival data. These methods will be available as part of
the R package PResiduals. We hope these methods will be a useful addition to the
statistical toolbox of researchers working with bivariate survival data.
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CHAPTER 5

CONCLUSION

In this dissertation, I proposed several non-parametric and semi-parametric meth-
ods of estimating unadjusted, partial, and conditional rank correlations with bivariate
right-censored data. These methods are based on Spearman’s rank correlation and,
unlike previously suggested methods, do not make assumptions about the underlying
correlation structure and, therefore, are less prone to bias.

Censoring presents serious technical and conceptual challenges when estimating
correlation. For example, in the presence of end-of-study censoring, researchers may
be faced with a dilemma: making more parametric assumptions and possibly get-
ting a biased estimate (e.g., the semi-parametric method of Schemper et al. [2013])
or assuming less and being able to estimate an approximation to the desired pa-
rameter (e.g., the highest rank Spearman’s correlation). There are situation when
the parametric methods are justified and should be applied. However, estimating a
well-interpreted approximation without making assumptions is also of practical value.

This work also illuminates bias-variance tradeoffs between various estimators.
Specifically, when computing the highest rank Spearman’s correlation by plugging
in an estimator of the bivariate survival distribution, we obtain a consistent estima-
tor of Spearman’s rank correlation in the setting of unbounded censoring, but this
estimator tends to have much greater variability and a larger mean-squared error
than the correlation of probability scale residuals, which does not require an esti-
mator of the bivariate survival distribution but is biased for Spearman’s correlation.
The choice between a more variable or a more biased estimator is not always obvious.
Still, I hope that this work provides some guidance on how to navigate the analysis
of correlation with bivariate survival data.

Lastly, I hope that making these methods available using open-source software will
lead to their application in biomedical research, where bivariate survival data are not
uncommon. These methods and software are useful tools to include in researchers’
analytical toolboxes.
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