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Chapter 1

Introduction

Reinforcement Learning is a branch of Artificial Intelligence that deals with learning over

a delayed feedback. This means that at each given moment, an agent does not attempt

to maximize its immediate reward, but the sum of total rewards it expects to get in the

future. This is akin to how a chess master only cares about winning the game, and may

sacrifice pieces in the short-term to gain a long-term advantage. RL algorithms learn the

long-term effects of their actions by averaging the results of multiple simulations of the

environment. The action chosen by an agent at any given moment is modeled as a random

variable, where the underlying probability distribution is exactly what the agent sets out

to learn. This probability distribution is called the policy and is usually denoted by π(s),

where s is the state. The action at a state is then sampled from the policy: a ∼ π(s). For

complex environments and tasks (which comprise most of the real world) the policy function

may become very complex, and so the method used to model this function must allow

for arbitrarily complex functions. For this reason, in recent years, Neural Networks have

come into use to model the policy function. This spawned the field of Deep Reinforcement

Learning.

While there are multiple methods to train a Neural Network, such as the Backpropaga-

tion Algorithm, or various Evolutionary Algorithms, in general the former is used since the
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computational costs of the others are prohibitory. However, there is a fundamental incon-

gruity between how the Backpropagation Algorithm works, and how RL agents learn. A

Neural Network learning through the Backpropagation Algorithm requires immediate feed-

back for each input, whereas in RL the feedback at each moment should encompass all the

rewards gained in the future as well. To work around this, the method of Experience Replay

is used, wherein the agent initially generates a trajectory of an episode before going back and

annotating each moment in the trajectory with the now available future reward information.

The Neural Network is then trained on the annotated trajectory. This process of generating,

annotating, and training trajectories (which will loosely be called an iteration of the Deep

RL algorithm in this thesis) is then repeated multiple times until the optimal policy has

been learned.

While Deep Reinforcement Learning is powerful in the sense that it can learn to solve

relatively complex tasks, it suffers from large inefficiencies. One such inefficiency, known

as Sample Inefficiency, is the focus of this research. Sample Inefficiency refers to the large

number of trajectories an RL agent needs to learn over before it converges to an optimal

policy. Part of this is due to the very nature of Reinforcement Learning, which was created

to average over multiple trajectories so that the variance in learning caused by the inherent

variance of visited states and received rewards in any individual trajectory is smoothed over.

There is, however, another inefficiency introduced by the use of Neural Networks.

Although Neural Networks and the Backpropagation Algorithm are very powerful, and

can learn any arbitrary real-valued[1] function, other than for specified inputs it is difficult to
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Figure 1.1: Sample Inefficiency caused by using Neural Networks

know what exactly is being learned. Moreover, for each given training input i, it is difficult

to tell what region of the input space around i is being benefited by training on i. This means

that if the region around i that should benefit from learning on i (say S) is larger than the

region that actually benefits (say S ′), then the algorithm would need to see multiple training

samples in S to learn what could have been learned from just one training sample. This is

pictorially represented in Figure 1.1 where multiple other inputs (red dots) are required to

spread the learning throughout S.

To overcome this contributor to Sample Inefficiency, in this work the RL agent will be

encouraged to generate a minimal set of clusters over the input space (here the state space of

the RL task) such that whatever is learned for a training sample in a cluster is more widely

learned for all points in the cluster. In this way, the number of trajectories required to reach

the optimal policy should be decreased.

During the course of this research, a baseline method (Proximal Policy Optimization with
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GRU-policy) was implemented before being augmented by a method to generate and learn

over clusters. The PPO with clustering was shown to produce a policy with higher return

per episode than the baseline. For the entirety of this thesis, return is defined as the sum

of all the rewards obtained by an agent in an episode. Upon further investigation of the

clusters being formed, it was found that the cluster formation itself was not very reliable,

in that sometimes the Neural Network fell into local minima corresponding to degenerate

clusterings. This will be discussed in more detail in section 6.2.

Throughout the rest of this thesis, first, an overview of related Deep RL algorithms will

be given. Next, the environment and task will be defined, before the baseline algorithm is

discussed, followed by an explanation of the method of cluster augmentation. Although the

concept of cluster augmentation can be applied generally to all Deep RL algorithms and

tasks, due to time constraints, this thesis only experiments with one type of algorithm, and

one task. After the cluster augmentation method is explained, the results will be shown

and discussed. At the end, a conclusion will summarize the work and briefly go over future

directions for research.
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Chapter 2

Related Deep RL Algorithms

Reinforcement Learning algorithms can loosely be broken into two categories: model-based

and model-free. Model-based algorithms attempt to learn the dynamics of the environment,

that is, they try to understand how states change as different actions are taken. Model-free

algorithms on the other hand rely completely on sampled trajectories of the environment

to associate a value (expected sum of future rewards from that state) with every state

or state-action pair (q-value). An advantage model-based algorithms have over model-free

algorithms is that once they’ve seen enough trajectories of the actual environment, they

can build an internal model of the environment, and then train exclusively on this internal

simulation. This means that after the internal model has been learned, they no longer

need to sample trajectories from the actual environment. Training over trajectories sampled

from an internal simulation is known as Hallucinating, and the sampled trajectories are

called Hallucinations[2]. This drastically improves sample efficiency. However, if the learned

internal model is incorrect, then the subsequent training will suffer and it will become more

difficult, if not impossible, to find an optimal policy. Since the goal of this thesis is to improve

sample efficiency, the focus will be on model-free algorithms, since they suffer from it the

worst. Throughout the rest of this chapter, various model-free Deep RL algorithms will be

discussed and the use of the Proximal Policy Optimization algorithm for the baseline will be
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motivated. Deep RL algorithms that incorporate clustering, whether explicitly or implicitly,

will also be briefly discussed.

2.1 Model-Free Algorithms

One cannot talk about model-free RL algorithms without bringing up Q-Learning[3].

Though it was not a Deep RL algorithm, it inspired the Deep Q Network[4] (DQN), which

sparked a flurry of activity in the Deep RL community. Q-learning attempts to find the

optimal policy by associating each state-action pair with a value (called the q-value). This q-

value is found by - as is the norm for model-free algorithms - running through the environment

multiple times, making somewhat random actions - and then averaging the sum of future

rewards for each state-action pair across all the sampled trajectories. Once the q-values have

been learned, the optimal policy is constructed as choosing the action with the highest q-value

at every state. A point to note here is that Q-learning was developed for environments with a

discrete state space and discrete action space. This was then adapted to work for continuous

(specifically image, but in general any) state space in the DQN. The DQN algorithm works by

trying to minimize an objective on the q-value function: the difference between the network

predicted q-values and the actual q-values. An alternative way to do Deep Reinforcement

Learning is to maximize an objective on the actual policy function. Such methods are

aptly called Policy Gradient methods. The actual objective to be maximized is derived

from a maximization objective on the expected return of an episode, and is known to be

an unbiased estimate of this expected return. It can be found in the seminal textbook
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”Reinforcement Learning: an Introduction” by Sutton and Barto[5]. In this book, they also

describe REINFORCE, one of the first policy gradient reinforcement algorithms. This is a

very simple algorithm and amounts to using Monte-Carlo methods to sample trajectories

and learn by trying to maximize the policy gradient objective. Since then, many policy-

gradient algorithms have been proposed. Some of the more recent ones are the SAC[6],

IMPALA[7], D4PG[8], MADDPG[9] (for Multi-Agent systems), SVPG[10], ACER[11] and

many more. Among the large category of policy gradient methods, is the class of actor-critic

algorithms that aim to both minimize the value objective as well as maximize the policy

gradient objective. In doing so, these actor-critic algorithms tend to perform better than

the algorithms which learn the value function or the policy function exclusively.

2.1.1 Advantage Actor Critic Model

The actor-critic model was first published as the Asynchronous Advantage Actor Critic

(A3C) algorithm[12]. After which it was found that similar results are obtained with and

without synchronicity[13]. This lead to the development of the A2C model: Advantage Actor

Critic. Actor-critic models aim to reduce noise in the values calculated from trajectories by

subtracting a baseline from the calculated values. This baseline is quite familiar and is

just the predicted value for that state, which is calculated by the critic. This new quantity

(after subtracting the predicted value from the actual value) is called the Advantage and

can be interpreted as a measure of how good the chosen action was compared to the average

goodness of that state. This makes sense because a positive advantage implies that the
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chosen action gave the state a better value than the predicted value of the state. Similarly a

negative advantage implies that the chosen action resulted in a worse value than the average

value of that state. The critic function learns to minimize the value objective, so that it

accurately predicts the value function. Replacing the actual value along the trajectory in

the policy gradient objective with an advantage formulated in this manner is known to keep

the modified policy gradient objective unbiased[14]. The actor portion of actor-critic models

corresponds to the part of the algorithm that aims to maximize this modified policy gradient

objective. The realization of the actor and critic models is through Neural Networks, and

can even be done with the same Neural Network splitting into two branches at the very end

to predict the policy and value respectively.

There is an issue with the way Deep RL algorithms are trained though. As was laid out in

the Introduction, one iteration of an algorithm consists of sampling a trajectory, annotating

it, then training the Neural Network for a few epochs. However, it is possible that during

this training, the network overfits and the learned policy is destabilized. Though this can be

somewhat mitigated by a careful choice of how many epochs the neural network is trained

for, this can take a lot of experimenting to find, and sometimes a single choice might not

be suitable throughout the entirety of the training. To overcome this, Trust Region Policy

Optimization [15] (TRPO) was introduced.
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2.1.1.1 Trust Region Methods

Trust Region methods attempt to train a neural network while ensuring that during learning,

the neural network doesn’t learn to predict a policy that is outside of some region around

the original policy which generated the trajectory.

To do this, TRPO introduced a new policy gradient objective, again based on maximizing

the return of an episode, using Importance Sampling Theory from Monte Carlo methods

that solve Reinforcement Learning tasks[5]. A similar formulation is done in the DPG

algorithm[16]. Effectively, this replaces the log of the policy in the modified policy gradient

objective with a ratio of the probabilities of picking the action in the trajectory according

to the current policy, to picking it with the policy that generated the trajectory (this will

hereby be referred to as just ratio or ratio of probabilities). The objective function to be

maximized for each state and action pair is now just the product of this ratio with the

advantage of the action at that state. A point to note here is that the gradients for the

purpose of backpropagation are only generated for the current policy, and both the policy

that generated the trajectory and the advantage are considered constants.

Crucial in this formulation of the objective function in TRPO is that it must be maxi-

mized while under the constraint that the new learned policy is within some Kullback–Leibler

Divergence (KL Divergence) of the policy which generated the trajectory that is currently

being trained on. The importance sampling estimation is used as a scaling factor to attempt

to ensure that even though the policy function has changed after training a few epochs,
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training at that current epoch approximates what the Advantage of an action would be if

it had been sampled with the policy function at that epoch. The KL Divergence constraint

ensures that the network predicts a policy close to the original policy that generated the tra-

jectory, which is a roundabout way of trying to keep overfitting down. However, in practice,

updating a neural network under a hard constraint like KL Divergence can become compu-

tationally intensive, and so sometimes the constraint is relaxed somewhat by tagged a KL

Divergence term to the Neural Network loss function. This can be interpreted as attempting

to minimize the average KL Divergence throughout training, as opposed to ensuring that the

maximum KL Divergence remains below a threshold. The calculation of the KL Divergence

and its gradients can still be computationally intensive though, and it does not guarantee

that the policy during learning remains within the Trust Region. This is where the Proximal

Policy Optimization comes in.

The Proximal Policy Optimization Algorithm[17] (PPO) was developed to cut back on

the computational load of the KL Divergence. This is done in a two step process. In the

first step, they introduce what they call a surrogate loss function which sets gradients to 0

if the ratio of probabilities is outside some small region around 1 (called the PPO clipping

hyperparameter η, and usually set to 0.2). The actual objective for maximization is now

formulated as the minimum of this surrogate objective and the original objective. Through

this, the authors ensured that if the advantage is positive, learning only occurs when the

ratio is less than 1 + η, and if the advantage is negative, the learning only occurs when the

ratio is greater than 1−η. This ensures that learning only occurs if the policy hasn’t already
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moved too far away from original trajectory generating policy. There is criticism however

that this algorithm doesn’t ensure the learned policy stays close to the original, just that if

it is already too far away, no further learning will take place. Nevertheless, this algorithm is

shown to do well on many complex RL tasks. A major drawback of this objective formulation

is that there may be many wasted training epochs, dependent on what part of the task is

currently being learned and for how many epochs the network is trained on per trajectory.

In other words, this algorithm is known to be heavily sample inefficient. This is why the

PPO was chosen as the baseline for this thesis. It is known to be a good algorithm, as well

as be highly sample inefficient.

2.2 Clustering in Deep RL

Clustering has rarely been explicitly learned and used by a Neural Network in Deep RL.

Usually, if clustering is present, it is done implicitly through the architecture of the Neural

Network. One highly successful method for doing this is by learning a hierarchy of actions.

Algorithms dedicated to doing this are called Hierarchical Deep Reinforcement Learning

Algorithms.

Consider the task of operating the legs of an ant to navigate it through a maze. This

task can loosely be broken into a hierarchy where the lower level involves learning how to

move the ant in a certain direction, and the higher level learns the sequence of movements of

the ant that solves the maze. This task was solved by creating an algorithm that learns to

chain together low level actions (moving each individual limb of the ant) to learn high level
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behaviors (moving left, right, forward, and backward)[18]. The success of this algorithm

is attributed to two key components: a hierarchical structure in the Neural Network, and

training each level of this hierarchy at different time scales. The hierarchical structure allows

for the higher level (the initial part of the Neural Network) to select which branch of the

lower level (each of which corresponds to a behavior) should be activated at each time step.

All the branches are implemented as a Neural Network with the same architecture, they just

end up learning different policies. The differing time scales allows the higher level to focus on

long term objectives, while the lower level attempts to perfect its individual, more granular

policy (such as moving left in the task described above). A significant contribution of this

paper was in showing how after the low level policies have been learned for a task, the agent

can be trained to solve a different task in the same environment much more easily. That is,

the learning could be transferred. In the context of the task described above, this means

that after the agent has learned to solve one maze, at can solve another much more easily

since it already knows how to move, it just needs to learn the higher policy which tells the

agent in which direction to move. A similar hierarchical method uses differing time scales

and an intrinsic reward to learn a high-level goal function[19]. This goal and the intrinsic

reward are then used to train the low-level policy.

Another subfield of Deep RL where clustering has been used is in Imitation Learning.

Imitation Learning (IL) refers to learning a policy through observing the actions taken by

another policy that is assumed to be good. An IL algorithm that has experienced much

success is the ILPO[20], and it does something akin to k-means clustering. The algorithm
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itself consists of two parts: relating state transitions to actions, and learning the good policy

over these actions. In the first part, a Forward Dynamics model is trained, which given a

state and action, predicts the next state. For each input state, this is done for all possible

actions, and the network is trained on whichever action best predicted the next state. This

is implicitly doing k-means clustering by first assigning an action to the closest cluster, and

then moving the cluster closer to that action.

In this thesis, the clustering will be done more explicitly. An initial part of the network

will be used (with its own recurrent structure) to classify every state into a cluster. The

recurrent structure ensures that the clustering mechanism incorporates temporal informa-

tion, so that the clustering is actually over the state space, instead of just the per time step

observation space. This clustering will then be concatenated to the input observation and

passed through the rest of the network (the usual A2C architecture) to do policy and value

prediction. A shortcut connection will also be made between the clustering and the value

prediction (explained in more detail in Section 5.1.1). This shortcut connection explicitly

tells the neural network how to use the clustering to inform the value prediction.
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Chapter 3

Environment and Task

3.1 Environment

Although the methods that will be described in Chapter 5 should work for any environ-

ment and task, in this thesis, the experimentation will be done on the Cart-pole Swing-up

task. The environment and task themselves are available in the DeepMind Control Suite[21],

which is a repository of continuous action tasks with a standardized return calculation and

Python API, coded on top of the MuJoCo physics engine[22]. In all these environments, each

episode consists of 1000 transitions, where each transition refers to the process of the agent

supplying an action to the environment, the environment updating its state according to the

laws of physics, and returning the observations and reward to the agent. The observations

for this task are the angular velcoity of the pole and the velocity of the cart. However, in

this thesis, instead of using these observations, the direct image of the environment will be

passed to the agent. This compounds the difficulty of the problem while bringing it closer

to a real-world task.

3.2 Task

The Cart-pole Swing-up task is a continuous control task wherein the agent is allowed

to apply a force (between -1 and 1) to the cart along the x-axis in order to swing the pole
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Figure 3.1: Cart-pole Environment

hinged to the center of the cart up until it is vertically balanced above the cart. The agent

must then move the cart to ensure that the pole remains balanced above the cart. An image

of the task is shown in Figure 3.1. The task begins with the pole vertically below the cart.

In this task, the reward provided at each state continuously varies from 0, when the pole

is vertically below the cart, to 1 when the pole is vertically above the cart. Specifically, if

θ is the angle made by the pole with the upward vertical, then the reward is calculated as

1
2
(cos(θ) + 1).

An important note to make here is that since the observation sent to the agent at each

time step is just a single image of the environment, the agent would not be able to obtain any

velocity or angular velocity information. However, obviously this information is required for

the agent to solve the task. For example, knowing if the pole is moving up or down requires

images from previous time steps, and is vital for the agent to decide which way the cart

needs to be moved. This means a method to encode temporal information across time steps

of the environment is required. In this thesis, this will be done through the use of an RNN

structure, specifically, the Gated Recurrent Unit as proposed in [23].
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3.2.1 Intuition for the Optimal Policy

The goal of the Cart-pole Swing-up task is to swing the pole above the cart, and then

balance it for as long as possible. To accomplish the swing-up, the cart must be given a

strong impulse in one direction, say the right. This would cause the pole to swing clockwise.

Once the pole is above the cart, the agent must provide an impulse in the opposite direction,

to further swing the pole towards the vertical, and bring the cart to rest. Once the pole

is near the vertical, the agent must provide small impulses to keep the pole balanced. For

example, if the pole is at the vertical, but seems to be tipping towards the left, the cart must

be moved slightly to the left to swing the pole back to the vertical. The task eventually ends

after 1000 transitions have been made, and the sum of the rewards across all transitions is

considered the return of the episode.

3.3 Computing Environment

Since this work utilizes Neural Networks and the GPU through CUDA APIs, it is im-

portant to note the exact configuration of the hardware and software set up. This will be

laid out throughout the rest of this section, and this same configuration will be used for

implementing both the baseline and clustering augmented algorithm.

3.3.1 Hardware Specification

The processor on the system is the Intel Core i7-8750H @2.2GHz (9M cache, up to

4.10 GHz), the Graphics card is the NVIDIA GeForce 1070 (8GB GDDR5), and the RAM

16



available is 16GB DDR4 (2400MHz).

3.3.2 Software Specification

The operating system on the machine is Windows 10 home addition. The Deep Learning

framework that was used is PyTorch (Python) version 1.1.0, while the CUDA version is 10.0

17



Chapter 4

Baseline Method

In this chapter, the baseline algorithm will be described, which consists of an initial β-

Variational Autoencoder[24], followed by the actor-critic network for the Proximal Policy

Optimization algorithm[17].

4.1 Variational Autoencoder

The observation available to the RL agent at every time step is the image of the environ-

ment at that time step. These images are high-dimensional and highly-correlated. Due to

the high-dimensionality of images, a Neural Network attempting to learn a policy with an

image as input will take a very large amount of training data. This is because the effective

feedback given to the neural network for each input image is the value of the state represented

by the image and the goodness of the chosen action; both of which have high variance since

they are calculated from a single trajectory. This makes it difficult for the neural network

to learn the feature extractors it needs to decode the high-dimensional image, which in turn

contributes to sample inefficiency. However, if there were a method available to quickly learn

feature extractors that preserve all the semantic information in the image, and feed just this

low-dimensional semantic vector to the RL agent, then we can feel comfortable that all the

relevant information is being passed to the agent, and the agent does not need to spend
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a great number of trajectories learning with high-variance feedback to create the required

feature extractors.

The Autoencoder is just such a method. Through the network architecture design, the

autoencoder can be forced to condense a high-dimensional highly-correlated input into a low-

dimensional weakly-correlated semantic vector, which is then once more forced to expand

into the high-dimensional highly-correlated input. The expansion process is used to enforce

that the semantic vector encodes all the information in the input, since otherwise, the input

could not be reproduced.

Now, if an autoencoder is trained to encode the image observations, and the encoded

semantic vector is used as the input to the RL agent network, then the RL agent will not

need to learn image feature extractors at all. This is exactly what was done in [2]. In

this thesis, a similar approach is followed, and a β-Variational Autoencoder[24] is used to

encode the image observations. The network architecture is the same as in [2] and the

hyperparameters are available in the appendix. The β-Variational Autoencoder was initially

trained on a training set of 10,000 images generated by making random movements on the

task environment. The network was trained for 50 epochs, though it was found that 10 were

usually enough. The encoded semantic vector had a dimension of 32. The same trained

β-Variational Autoencoder network was used for both the baseline and augmented methods.

Furthermore, since it is entirely possible that as the RL agent learns it sees new parts of

the observation space that the β-VAE did not initially train on, during each iteration of the

PPO algorithm, the β-VAE is first trained on the sampled trajectories for 1 epoch. The
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other hyperparameters are the same as for when it was initially trained.

4.2 PPO-GRU

The baseline Deep RL algorithm that is used in this thesis is the Proximal Policy Op-

timization Algorithm[17]. This algorithm is an improvement over the Trust Region Policy

Optimization Algorithm[15], and is based on the A2C algorithm model[13], which in turn is

based on the A3C algorithm[12].

The Proximal Policy Optimization algorithm was chosen because it is considered com-

petitive and one of the best Deep RL algorithms out there today. Furthermore, Sample

Inefficiency is a known drawback of the PPO. Even for this specific task, PPO finds some

difficulty since the agent must first luckily stumble upon the exact sequence of actions it

must take (move the cart one way to swing the pole above the horizontal, and then move the

other way to swing the pole further from the horizontal to the vertical) over multiple differ-

ent episodes, to be able to learn the optimal policy. This is unlike the D4PG Algorithm[8]

which through a prioritized experience replay buffer, is able to train over good sequences of

actions across multiple episodes.

As mentioned in Chapter 2, a GRU will be used to encode temporal information into the

state. In addition to the usual PPO algorithm, in the baseline, the advantages are first cal-

culated through the Generalized Advantage Estimation[25] (GAE) and are then normalized

across all the episodes in each iteration of the algorithm so as to stabilize training.
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4.2.1 Network Architecture and Loss Function

The network architecture is shown in Figure 4.1. Each arrow corresponds to a layer.

Every linear layer is followed by a ReLU nonlinearity. The initial shaded rectangle represents

the image input (depth for 3-channels), and all subsequent rectangles represent some tensor.

Below each rectangle is a number specifying the dimensions of the tensor. If there is a letter

or word above the dimension number, this specifies the name of the tensor. As can be seen

from the image, there are three output tensors from the network. The first two correspond

to the actor portion of the A2C which is supposed to predict a probability distribution. As is

common practice for continuous valued actions, the probability distribution is modeled as a

Gaussian, with the parameters µ and σ2 obtained from the network as µ = mean, 2log(σ) =

logvariance. The log of the variance is predicted instead of the variance itself to improve

numerical stability. The last output tensor corresponds to the critic portion of A2C, and

predicts the value of the current state.

The loss function for the actor LCLIP (θ) is exactly the same as the one in the original PPO

paper[17], where θ represents the network parameters. The critic loss Lcritic is formulated

as the L2 loss between the value predicted by the network, and the exponentially-weighted

sum of rewards returned by the GAE. Finally, an entropy regularization loss Lentr[6] is also

used. The total loss function is thus:

Lbaseline = LCLIP + (critic coef)(Lcritic) + (entr coef)(Lentr) (1)

where critic coef and entr coef are hyperparameters.
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Figure 4.1: Neural Network for Baseline

All the hyperparameters used for this baseline PPO implementation are listed in the ap-

pendix.
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Chapter 5

Cluster Augmentation

5.1 Cluster Formation

The hypothesis behind this research is that if the RL agent can be encouraged to create

a minimal set of clusters over the state space, and more generously distribute knowledge it

learns for any single input across the entire cluster to which it belongs, then the RL agent

should be able to learn the optimal policy with lesser training data. As briefly discussed

in Section 2.2, the main components of the algorithm are an initial clustering done with a

recurrent neural network over the per time step observations, followed by concatenation of

this clustering to the observations before passing it onto the rest of the network (the usual

A2C architecture). A shortcut connection is also made between the clustering and the value

prediction to more explicitly enforce the relationship between the clustering and the value

of a state. Throughout the rest of this chapter, the exact mechanisms to form and use the

clustering will be motivated and explained.

The first step in this process is obviously the cluster formation itself. How exactly do we

want the clusters to be formed? In the A2C model, we would want our clusters to inform

the rest of the agent about which regions in the state space require similar actions to be

taken, and should have similar values. This means that we are carving up not the input

space, but the state space into clusters. The difference between the two being that the input
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to the Neural Network is just a single image, whereas the state space also contains temporal

information. From this, we can conclude that whatever method is used to generate the

clusters, it must also consider temporal information.

Since we must include temporal information, the immediate conclusion we might draw

is that the output of the GRU in the baseline might be used as the input to the cluster

generation method. However, this would not work for our ultimate goal since we want to

augment the current observation with the cluster information to generate our policy and

value. We could not do this if the cluster itself is formed at the end of processing the

observation input. This creates somewhat of a chicken and egg problem, wherein we want

the GRU output to generate the clusters, and we want the clusters to inform the GRU in

generating the output. To avoid this, we can have the cluster formation occur through a

second path branching from the input, and passing though its own GRU. The output of this

clustering GRU would be a probability vector wherein each index of the vector corresponds

to a cluster, and the value at that index is the probability that the current state belongs

to the cluster of that index. The reason for returning a probability vector instead of a

hard clustering is so that eventually the loss can be backpropagated through the probability

vector.

The actual probability vector is formed by taking the output of the GRU, passing it

though a linear layer and Sigmoid nonlinearity, followed by dividing each element of this

vector by the sum of all elements of the vector. This enforces that the vector represents

a valid categorical probability distribution. As an implementation note, to avoid dividing
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Figure 5.1: Neural Network with Cluster Formation

by 0, 0.000001 was first added to each element of the clustering GRU output. In this

implementation, the number of clusters is a hyperparameter.

Now that we have generated our clustering, the next step is to utilize this clustering to

inform the rest of the network in its prediction of a policy and value.

A point to note here, is that although the cluster formation and utilization is being

developed for the A2C architecture, the method of forming clusters is generic to most Deep

RL architectures. It is only the method in which the clusters are used to inform the policy

that might need to be adapted.
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5.1.1 Informing Value Prediction

In the context of value prediction, our original interpretation of clustering was that it

would split the state space into regions such that the value of every point in a region is

roughly the same. One way to model this is by assuming an average value for each cluster,

and then predicting the offset from this average for each state in the cluster:

V (s) = V (c) + V (s|c) (2)

where V (s) is the value at state s, V (c) is the average value of a cluster c, and V (s|c) is the

offset of the value of the state from the average value of the cluster

This then becomes very easy for us to incorporate into a neural network by generating V (c)

through the addition of a single linear layer after the probability vector. This layer would

then predict a single number (the average value or vclus in Figure 5.1) and could be trained

by using an L2 loss between vclus and the actual sum of rewards returned by the GAE.

Let this loss be called Lclus value. As an implementation detail, the network seemed to learn

better if the gradients generated from Lclus value were not allowed to flow into the cluster

formation network.

5.1.2 Informing Policy Prediction

Using clustering to inform policy prediction isn’t as cut-and-dry as it was to inform value

prediction. This is because the policy is itself a probability distribution, and so an analogous

interpretation of average probability distribution and offset probability distribution might
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not make much sense. In such an average-offset formulation, the final policy distribution

would be the sum of two Gaussian distributions. While this is known to be Gaussian itself,

the variance of the summed distribution would be the sum of the variances of the individual

distributions. In Deep RL, the variance of the predicted policy is an important scaling factor

during learning, and can be interpreted as the confidence the algorithm has in its policy

prediction. Thus, saying that the variance of the summed policy is larger than the variances

of the individual distributions from which it was composed is equivalent to saying that the

model had more confidence in predicting the average cluster policy and the offset distribution

than the final predicted policy. This clearly doesn’t make much sense. If anything, the offset

distribution should function to improve the confidence the model has on the average cluster

policy.

An alternative at this point is to use the cluster not to generate an average probability

distribution, but a shifting parameter. This shifting parameter can then be added to the

policy predicted in the usual way and can be interpreted as shifting the mean of the policy

distribution. However, when this was tried, the results didn’t change in any significant way.

In the end, the method adopted in this thesis is to take the probability vector, and

concatenate it to the latent observation vector z before passing it onto the normal A2C

network. This can be seen in Figure 5.1 as a dashed arrow. This way, the policy and value

predicted by the A2C network can be thought of as the policy and value conditioned on the

cluster. This architecture also allows for the gradients from the PPO Loss LCLIP and Lcritic

to inform the cluster formation itself. Roughly speaking, this would ensure that the network
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forms clusters in such a way as to improve its overall performance. This might not be the

best way to inform the cluster formation however, and an explicit loss function for cluster

formation might provide better results. Nevertheless, this was the implementation used in

this thesis.

5.2 Augmented Loss Function

Since the augmented Neural Network was formed on top of the baseline A2C network,

the loss function is also built on top of the baseline loss function Lbaseline. As was discussed

in Section 5.1.2, the gradients for cluster formation are generated from LCLIP and Lcritic

themselves, so nothing new must be added for that. In Section 5.1.1, we stated that the loss

needed to learn vclus was Lclus value.

During the course of training, it was found that using a regularization loss for the cluster

formation helped in keeping the network from falling into a local minimum. The regulariza-

tion loss is constructed by first squaring every term of the probability vector, normalizing

this squared vector so that the sum of all elements is 1, and then using this normalized

squared vector as the target of an L2 loss between the original probability vector and the

normalized squared vector. It was found during training that multiplying this L2 loss with

the advantage of that state further helped in avoiding local minima. Let the regularization

loss constructed in this way be called Lclus.

Finally, the loss function used to train the Augmented PPO network is:

Laug = Lbaseline + (cval coef)(Lclus value) + (clus coef)(Lclus) (3)
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where cval coef and clus coef are hyperparameters

All the hyperparameters that were used are included in the appendix.
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Chapter 6

Results

Both the baseline and the augmented method were implemented as described in Chapters

4 and 5 respectively. The computational environment was described in Section 3.3 and the

other hyperparameters that were used have been listed in the appendix.

6.1 Episodic Return

The goal of any RL agent is to maximize the sum of the rewards obtained throughout an

episode. In Figure 6.1 we show a graph of the baseline (in red) and the augmented network

(in blue) during training. The x-axis corresponds to the training episode number, and the

Figure 6.1: Avg. Return Comparison
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y-axis corresponds to the sum of rewards obtained in that episode averaged across all the

training workers. The best return for the baseline and the augmented method are tabulated,

along with the corresponding training episode, in Table 6.1.

Algorithm Largest Return Episode Number
Baseline 191 77

Augmented PPO 217 30

Table 6.1: Baseline and Augmented PPO Comparison

From both the graph and the table, it can be seen that the clustering augmented Neural

Network achieved a higher maximum return at an earlier training episode. Specifically, the

clustering Neural Network had a peak 13.6% higher than the baseline, after seeing only 39%

as many training episodes.

A video of the policy at the peak of the Augmented Network was generated and every 20th

frame was extracted and placed in Figure 6.2. The number below each frame corresponds to

the frame number in the video. From the figure, it can be seen that the agent has learned to

swing the pole up above the cart - and does this multiple times - but is not able to balance

it indefinitely. It does manage to balance the pole for a good portion of the video though,

from frame 160 to 260 and 600 to 800. This is 300 frames out of 1000, and is considered as

solving the Cart-pole Swing-up task. This is clearly not the optimal policy though, which

was described in section 3.2.1.
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Figure 6.2: Frames from rollout of a good policy
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6.2 Cluster Formation

The Augmented Network clearly got better results than the baseline, but does this mean

that it is making diverse, informative clusters? To investigate this, extra information that

the DeepMind Control Suite[21] provides about the state of the agent is used. Although

in this thesis the actual image of the environment is used as the observation sent to the

RL agent, the DeepMind Control Suite offers us alternate observations in the form of the

velocity of the cart, and the angular velocity of the pole. In fact, these velocity and angular

velocity observations contain all the information required for the agent to learn. This means

we can use these alternate observations to verify the quality of the formed clusters.

As was explained in Chapter 5, the actual gradients used for learning the clustering neural

network come through the final policy and value predictions, through the A2C network.

This means that the cluster formation is driven by just the RL objective and a critic loss.

Consequently, the network is encouraged to form clusters based on the loose objective that

the formed clusters must be helpful in obtaining high return. Although this is the best

description of what we would want the policy prediction of a generic RL algorithm to do, it

may be too vague to drive the network to make good clusters. This subsection investigates

whether the current method of informing cluster formation seems sufficient to consistently

and reliably make good, informative clusters.

Figures 6.3, 6.4, and 6.5 give examples of a good clustering, a somewhat good clustering,

and a bad clustering respectively. Each row corresponds to a cluster, the first column shows
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Figure 6.3: Good Clustering

Figure 6.4: Somewhat Good Clustering
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Figure 6.5: Bad Clustering

the distribution of cart velocities for all states in that cluster, and the second column does

the same for the pole’s angular velocity. The total number specifies how many states in

the sampled trajectory were assigned to that cluster. A state was considered to belong to a

cluster if the probability of that state belonging to that cluster was at least 1
2
. This threshold

was chosen somewhat arbitrarily, with the loose justification that if a state has greater than 1
2

probability of being in one cluster, then there is no way the probability of it being in another

cluster is larger, irrespective of how many clusters were formed. This has the drawback that

some states will not be assigned any cluster, unlike in an alternative assignment scheme

wherein the state is assigned to the cluster for which it has the highest probability. There is

an issue with this alternate scheme as well though. It occurs many times that the network
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predicts a state to exist in multiple clusters with about equal probability. In this situation,

it doesn’t make much sense to assign a state to one cluster if the probability of being in

another cluster is just slightly lesser. For these reasons, 1
2

was taken as a hard threshold.

The number preceded by Total associated with each cluster refers to how many states were

assigned to that cluster.

Figure 6.3 is considered a good clustering because the plots for all three clusters are so

different. Just from inspection, one can intuit that the first cluster (cluster 0 in the figure)

seems to represent the case when the pole is above the cart and the agent is attempting

to balance it there. This is because the velocity of the cart is almost always zero, and the

angular velocity of the pole is mostly zero, except for possibly when the pole is falling out

of balance. The argument can be made that this cluster could also be representing the case

when the pole is below the cart and the cart is trying to swing it up. However, knowing

that the policy is unable to balance the pole above the cart for long, the total number of

states assigned to this cluster seems to imply that the cluster represents the balancing case

and not the swinging up case. The second cluster formed (cluster 1 in the figure) seems

to correspond to the situation where the cart is moving and the pole is in the process of

swinging up. The third cluster (cluster 2 in the figure) seems to represent the situation when

the pole is rotating quickly in circles around the cart because even though the impulses the

agent applied to the cart eventually caused the cart to come close to rest, they were so strong

that the pole just kept rotating instead of slowing and stopping near the top.

Figure 6.4 on the other hand is a somewhat good clustering because although the third
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cluster (cluster 2 in the figure) seems to represent the situation when the cart is moving and

the pole is slowly being swung up, the first two clusters (clusters 0 and 1 in the figure) are

degenerate and seem to represent roughly the same scenario.

Finally, Figure 6.5 is completely degenerate since all the plots look the same. Clearly

the Neural Network has fallen into the local minimum of predicting all the clusters are

equivalent. This isn’t the only type of degeneracy observed though. Sometimes the Neural

Network predicts that all the states belong to a single cluster.

From these graphs, it can be seen that although the algorithm is capable of generating

diverse clustering, it is still prone to destabilizing and collapsing into degenerate clusters.
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Chapter 7

Conclusion and Future Work

Although Deep Reinforcement Learning is a very powerful technique for learning to solve

tasks approaching Real-World complexity, due to the inherent nature of Reinforcement

Learning and Neural Networks, Deep RL suffers from Sample Inefficiency. A major contrib-

utor to this sample inefficiency can be found in how when a Neural Network trains through

the Backpropagation Algorithm, there is no guarantee that the entirety of the region of the

input space that can benefit from a training example, actually benefits from training on that

example. Due to this, the RL agent may need to repeat similar trajectories multiple times,

thus exorbitantly increasing the training data and time.

In this thesis, clustering was suggested and implemented as a method to force the neural

network to more equally distribute knowledge across the entire region which should benefit

from training on an example. The PPO algorithm (described in Chapters 2 and 4) was chosen

as a baseline since it is known to suffer from sample inefficiency, and it was augmented with

clusters (described in Chapter 5) in the hopes of decreasing this inefficiency and improving

the performance of the RL agent as a whole.

In Chapter 6, the baseline and the augmented algorithms were compared and it was

shown that the augmented algorithm managed to produce an agent that reached a higher

episodic return at an earlier episode than the baseline agent. This shows that the augmented
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algorithm used a lesser number of samples to learn a better policy than the baseline. This was

however only shown for a single task, with a single baseline algorithm. In the future, work

should be done to verify that these gains are not environment, task, or baseline algorithm

specific.

Some immediate environments and tasks to test this algorithm on would be other tasks

available in the DeepMind Control Suite[21]. Of these, tasks of particular interest would

be the humanoid-walker or cheetah-runner tasks. These tasks attempt to simulate the real-

world tasks of walking for bipedal and quadrupedal robots. Combined with grasping tasks,

this would allow robots to replace humans in hazardous jobs, such as roofers, or any task

requiring the need to get to high places in construction. They could also be used in dangerous

situations, like in fossil fuel mining and extraction. Theoretically, these robots could replace

warehouse workers as well. However, solving atomic tasks in a simulated environment is a

far cry from being able to deal with tasks in the real world, and we are still at least a few

years away from reaching that level of competency from robots, if not decades.

An important consideration to make here is also the mass unemployment that would be

caused by indiscriminately replacing humans with robots in these jobs. Such unemployment

could drive an already lower-middle class or poor family into destitution. This illustrates

the need for careful regulations and reforms to be put in place to ensure that robots are used

only in those circumstances that constitute a possibility of bodily harm or death. This is

necessitated not by any failing in the robots themselves, but due to the economic structure

of our society. On a more positive note, robots trained to do basic cleaning tasks could
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be a huge help for the elderly who are living on their own. These examples highlight the

potential good that Deep RL algorithms can do in our society, as long as they are deployed

responsibly to improve the quality of life of workers, and not to outright replace them.

Returning to the work done in this thesis, after comparing the results of the baseline

and augmented algorithms, the actual clusters that were formed were investigated. It was

found that sometimes, what appeared to be diverse cluster formation occurred, while other

times, the clusters were all very similar to each other. This shows that the current cluster

formation scheme is not sufficient to reliably form diverse clusters. In the future, more

experimentation could be done in developing a loss function specifically to drive informative

cluster formation. The development of this loss function could go hand-in-hand with the

development of a better method to augment the actual Neural Network architecture.

Another possible avenue of future research could involve using the Gumbel-Softmax Repa-

rameterization trick[26] to form a harder clustering while still being able to backpropagate

gradients through it. While this might force the Neural Network to form more diverse

clusters, it would also introduce another hyperparameter and thus complicate the training

further.

Finally, interpreting the formed clusters as a semantic vector offers another direction of

research. The versatility of human reasoning comes from the ability to abstract away low-

level details and apply logic or heuristics to high-level semantic categories. If it is possible to

devise an algorithm that interprets these clusters as abstracted state representations, learns

high-level actions to move across these abstracted states, and learns what low-level actions
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and behaviors comprise those high-level actions, then this algorithm would be much better

equipped to plan and solve tasks it never trained on. A very good environment to test this

in would be the AnimalAI-Olympics[27], which provides tasks to test RL agents for basic

animal cognitive functions.
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Appendix A

Appendix

A.1 Hyperparameters for β-Variational Autoencoder:

The encoded vector is of dimension 32.

Batch Size = 50

β = 0.000001

Optimizer: Adam

Learning Rate = 0.001

Adam Epsilon = 0.0001

All other Adam parameters are the PyTorch default

A.2 Hyperparameters for the Baseline:

A.2.1 PPO specific hyperparameters:

γ = 0.99

λ = 0.95

ε = 0.2

No. of Workers = 6

No. of episodes per PPO learning iteration = 12 (2 per worker, 12000 total transitions)

Exploration Noise is drawn from a normal distribution = N(0, 0.09)
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No. PPO epochs = 25

critic coef = 0.5

entr coef = 0.002

grad clipping norm = 1000

A.2.2 Neural Network hyperparameters

Batch Size = 300

Batch Size for GRU = 6

Sequence Length = 50

Learning Rate = 0.01

Optimizer: Adam

Adam Epsilon = 0.0001

All other Adam parameters are the PyTorch default.

A.3 Hyperparameters for Augmented PPO:

num clusters = 3

A.3.1 Augmented PPO specific hyperparameters:

γ = 0.99

λ = 0.95
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ε = 0.2

No. of Workers = 6

No. of episodes per PPO learning iteration = 12 (2 per worker, 12000 total transitions)

Exploration Noise is drawn from a normal distribution = N(0, 0.09)

No. PPO epochs = 25

critic coef = 0.5

entr coef = 0.012

cval coef = 0.9

clus coef = 0.01

grad clipping norm = 1000

A.3.2 Neural Network hyperparameters

Batch Size = 300

Batch Size for GRU = 6

Sequence Length = 50

Learning Rate = 0.0004

Optimizer: Adam

Adam Epsilon = 0.0001

All other Adam parameters are the PyTorch default.
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A.4 Supplemental Files

The code that was used to train and test both the baseline and the augmented method

was included in a supplemental file that was submitted along with this thesis. The file itself

is a zipped archive, composed of four python scripts: train.py, utils.py, env wrapper.py, and

models.py

train.py contains the main training code, and the baseline and augmented models can be

toggled in the main() function at the bottom of the script. To do this, the appropriate

model must be loaded, and the last argument to the ppo() function must be toggled between

True and False. True refers to the augmented algorithm, while False refers to the baseline

algorithm.

utils.py contains helper functions for neural network weight initialization, as well as for

training the Variational Autoencoder.

env wrapper.py provides an API over the DeepMind Control Suite to train on multiple

instances of an environment at once.

Finally, models.py contains all the network architectures. The first one is the Variational

Autoencoder architecture, called VAE. The second and fourth models refer to non-RNN

architectures that were used initially to test the code itself, but were not used to generate

any of the results in this thesis. The third (A2Cgru) and fifth (A2Cmgru) models represent

the baseline and augmented networks respectively.
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