• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Complexity and Avoidance

    Jananthan, Hayden Robert
    0000-0001-6877-0923
    : http://hdl.handle.net/1803/16728
    : 2021-06-08

    Abstract

    While close connections between recursively bounded $\mathrm{DNR}$ sequences and complex sequences have been well-documented, explicit bounds on growth rates in these results has not been possible due to the nature of $\mathrm{DNR}$'s definition. Recent observations show that this problem can be circumvented, opening the door to quantification of those relationships. We follow the approach of Simpson, replacing $\mathrm{DNR}$ with a class we term $\mathrm{LUA}$ (\textbf{L}inearly \textbf{U}niversal \textbf{A}voidance). In this dissertation we examine the relationships between the several hierarchies, including the complexity, $\mathrm{LUA}$, and shift complexity hierarchies, with an eye towards quantitative bounds on growth rates therein. We show that for suitable $f$ and $p$, there are $q$ and $g$ such that $\mathrm{LUA}(q) \leq_\mathrm{s} \mathrm{COMPLEX}(f)$ and $\mathrm{COMPLEX}(g) \leq_\mathrm{s} \mathrm{LUA}(p)$, as well as quantify the growth rates of $q$ and $g$. In the opposite direction, we show that for certain sub-identical $f$ satisfying $\lim_{n \to \infty}{f(n)/n}=1$ there is a $q$ such that $\mathrm{COMPLEX}(f) \leq_\mathrm{w} \mathrm{LUA}(q)$, and for certain fast-growing $p$ there is a $g$ such that $\mathrm{LUA}(p) \leq_\mathrm{s} \mathrm{COMPLEX}(g)$, as well as quantify the growth rates of $q$ and $g$. Concerning shift complexity, explicit bounds are given on how slow-growing $q$ must be for any member of $\mathrm{LUA}(q)$ to compute $\delta$-shift complex sequences. Motivated by the complexity hierarchy, we generalize the notion of shift complexity to consider sequences $X$ satisfying $\operatorname{KP}(\tau) \geq f(|\tau|) - O(1)$ for all substrings $\tau$ of $X$ where $f$ is any order function. We show that for sufficiently slow-growing $f$, $f$-shift complex sequences can be uniformly computed by $g$-complex sequences, where $g$ grows slightly faster than $f$. The structure of the $\mathrm{LUA}$ hierarchy is examined using bushy tree forcing, with the main result being that for any order function $p$, there is a slow-growing order function $q$ such that $\mathrm{LUA}(p)$ and $\mathrm{LUA}(q)$ are weakly incomparable. Using this, we prove new results about the filter of the weak degrees of deep nonempty $\Pi^0_1$ classes and the connection between the shift complexity and $\ldnr$ hierarchies.
    Show full item record

    Files in this item

    Icon
    Name:
    JANANTHAN-DISSERTATION-2021.pdf
    Size:
    1.024Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy