• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Manipulating Elections by Selecting Issues

    Lu, Jasper
    0000-0002-5120-3727
    : http://hdl.handle.net/1803/15951
    : 2020-08-22

    Abstract

    Constructive election control considers the problem of an adversary who seeks to sway the outcome of an electoral process in order to ensure that their favored candidate wins. In this thesis, we first consider the computational problem of constructive election control via issue selection. In this problem, a party decides which political issues to focus on to ensure victory for the favored candidate. We also consider a variation in which the goal is to maximize the number of voters supporting the favored candidate. We present strong negative results, showing, for example, that the latter problem is inapproximable for any constant factor. On the positive side, we show that when issues are binary, the problem becomes tractable in several cases, and admits a 2-approximation in the two-candidate case. Finally, we develop integer programming and heuristic methods for these problems. We also consider the related problem of constructing ideological point estimates for a population when given the past voting history of that population. We develop a technique to generate point estimates in any number of dimensions using a simple neural network, and relate how the derived point estimates can be used in an instance of constructive election control via issue selection.
    Show full item record

    Files in this item

    Icon
    Name:
    LU-THESIS-2020.pdf
    Size:
    667.5Kb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy