• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Assessing the Components of the eIF3 Complex and Their Phosphorylation Status

    Farley, Adam Richard
    : https://etd.library.vanderbilt.edu/etd-12012011-180347
    http://hdl.handle.net/1803/14980
    : 2011-12-09

    Abstract

    BIOCHEMISTRY ASSESSING THE COMPONENTS OF THE eIF3 COMPLEX AND THEIR PHOSPHORYLATION STATUS ADAM RICHARD FARLEY Dissertation under the direction of Professor Andrew J. Link The eukaryotic initiation factor 3 (eIF3) is a highly conserved multi-protein complex that is an essential component in the recruitment and assembly of the translation initiation machinery. To better understand the molecular function of eIF3, I examined its composition and phosphorylation status in Saccharomyces cerevisiae. The yeast eIF3 complex contains five core components: Rpg1, Nip1, Prt1, Tif34, and Tif35. I hypothesized that for eIF3, there are unexpected and unidentified eIF3 protein-protein interactions and protein phosphorylations that regulate its function and activity in the process of translation initiation. 2-D LC-MS/MS mass spectrometry analysis of affinity purified eIF3 complexes showed that several other initiation factors (Fun12, Tif5, Sui3, Pab1, Hcr1, and Sui1) and the casein kinase 2 complex (CK2) co-purify with the core complex. These novel identifications expand the knowledge base for what is known about the function of eIF3 in yeast and expands its role to additional steps in protein synthesis. In vivo metabolic labeling of proteins with 32P revealed that Nip1 is phosphorylated. Using 2-D LC-MS/MS analysis of eIF3 complexes, I identified Prt1 phosphopeptides indicating phosphorylation at S22 and T707 and a Tif5 phosphopeptide at T191. Additionally, I used immobilized metal affinity chromatography (IMAC) to enrich for eIF3 phosphopeptides and tandem mass spectrometry to identify phosphorylated residues. I found that three CK2 consensus sequences in Nip1 are phosphorylated: S98, S99, and S103. Using in vitro kinase assays, I showed that CK2 phosphorylates Nip1 and that a synthetic Nip1 peptide containing S98, S99, and S103 competitively inhibits the reaction. Replacement of these three Nip1 serines with alanines causes a slow growth phenotype. Quantitative growth assay studies revealed that mutant strains lacking the phosphorylation have a doubling time that is increased by 33% relative to a control yeast strain. I propose that the observed phosphorylations stabilize interactions with the Prt1 protein as this region of Nip1 is suspected to be involved in Nip1-Prt1 contacts.
    Show full item record

    Files in this item

    Icon
    Name:
    Farley.pdf.pdf
    Size:
    1.846Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy