• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Planning Needle Placement in Image-Guided Radiofrequency Ablation of Hepatic Tumors

    Chen, Chun-Cheng
    : https://etd.library.vanderbilt.edu/etd-12012006-162722
    http://hdl.handle.net/1803/14957
    : 2006-12-12

    Abstract

    In hepatic applications, radiofrequency ablation (RFA) produces ablation extents that are limited in size both as a result of local tissue properties as well as constraints in ablation device design and physics. Because RFA is a focal, nonconformal therapeutic modality, proper placement of the device is an important goal in producing successful treatment so that the resulting ablation extents overlap the detectable tumor as well as a suitably defined margin. This dissertation examines novel methods of treatment planning by using image-guided techniques to improve placement accuracy and computational modeling to predict ablation outcomes given suitable placements. A method is presented to search for needle placement that best satisfies a given therapeutic goal using outcomes predicted by finite element models of ablations. This search technique is applied to simulated scenarios requiring single as well as multiple ablations to study effects of nearby heat sinks on optimal placement. A phantom system is then constructed to conduct ablation experiments performed using a tracked RFA device. The phantom ablation results are compared against ablation extents predicted using computational models given the measured positional data from the tracked device. Metrics to quantify the model accuracy are introduced, and the effects of tracking inaccuracies are analyzed. Finally, the sensitivity of predicted ablations to needle placement inaccuracies is studied theoretically. Sensitivity analysis is conducted via a novel method that couples boundary element and finite element methods to obtain multiple simulations efficiently for different needle placements over a static mesh. This method is used with Monte Carlo simulations to generate a spatial map of the likelihood of ablation success given uncertainties in targeting accuracy. Using this technique, strategies to make treatment plans less sensitive to placement errors are studied. The results of this research demonstrate the feasibility of coupling image-guided techniques and computational modeling to produce predictive treatments plans for RFA that are robust to device placement uncertainties.
    Show full item record

    Files in this item

    Icon
    Name:
    Dissertation_final.pdf
    Size:
    6.479Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy