• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Design and Analysis Considerations for Complex Longitudinal and Survey Sampling Studies

    Mercaldo, Nathaniel David
    : https://etd.library.vanderbilt.edu/etd-09062017-100115
    http://hdl.handle.net/1803/14093
    : 2017-09-21

    Abstract

    Pre-existing cohort data (e.g., electronic health records) are being increasingly available, and the need for novel and efficient uses of these data is paramount due to resource constraints. This dissertation consists of three chapters relating to the design and analysis of longitudinal and survey sampling studies when utilizing these types of data. In chapter one, we extend outcome-dependent sampling (ODS) designs for longitudinal binary data to permit data collection in two stages. We consider two subclasses of designs: fixed designs where the designs at each stage are pre-specified, and adaptive designs that utilize stage one data to improve design choice at stage two. We demonstrate that data from both stages can be aggregated to generate valid parameter estimates using ascertainment-corrected maximum likelihood methods. Efficiency gains are observed compared to random sampling, and in certain situations, single-stage ODS sampling designs. In chapter two, we investigate the effects of utilizing an imperfect sampling frame on the design, and analysis of complex survey data. We explore the impact of stratum misclassification on the choice of study design, on the operating characteristics of survey estimators, and on the appropriateness of two common approaches to survey design analysis. Stratified sampling is recommended over random sampling if interest lies in making inferential statements regarding rare subgroups. In the presence of misclassification, the relative efficiency depends on the subgroup prevalence, and analytic methods that account for the design are still required for valid inferences. In chapter three, we introduce the MMLB R package which is used to estimate parameters from marginalized regression models for longitudinal binary data. These models are described, and estimation procedures outlined under random, and ODS schemes. We provide examples to demonstrate how to fit these models, and how data may be generated under a pre-specified marginal mean model. We hope these chapters provide specific and general insights that will improve our ability to conduct efficient research studies under resource constraints.
    Show full item record

    Files in this item

    Icon
    Name:
    mercaldo.pdf
    Size:
    921.0Kb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy