• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    The role of hydrogen in defect formation and passivation in bipolar and MOS oxides

    Hughart, David Russell
    : https://etd.library.vanderbilt.edu/etd-07262010-121643
    http://hdl.handle.net/1803/13609
    : 2010-08-05

    Abstract

    Ambient hydrogen has been shown to enhance the degradation of several types of linear bipolar devices. Recently, it has been seen that hydrogen exposure can cause increased degradation at high dose rates. This has created interest in investigating the possibility of an accelerated hardness assurance test involving irradiation at high dose rates during a hydrogen soak. This thesis investigates the various factors that determine the effects of hydrogen on bipolar and MOS devices and discusses the risks involved in using hydrogen screening as an accelerated hardness assurance test. Hydrogen soaking experiments are performed to evaluate the dependence of defect buildup and annealing in gated lateral bipolar transistors on hydrogen exposure. Comparisons of the radiation responses of transistors tested in 2009 to identical devices from the same wafer tested in 2003 show that aging has reduced the amount of radiation-induced interface trap and oxide trapped charge formation in most cases. These results demonstrate that hydrogen has a dual role and that the way in which the radiation response of a hydrogen-sensitive device evolves with age depends on whether hydrogen is diffusing into or out of the device, and whether the initial defect concentration favors passivation or depassivation reactions. These results strongly suggest that hydrogen exposure cannot replace low-dose-rate irradiation in ELDRS tests for bipolar devices and ICs without extensive characterization testing.
    Show full item record

    Files in this item

    Icon
    Name:
    Hughart_MS_Thesis_Final.pdf
    Size:
    4.574Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy