• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Effects of Convection on Sound Radiation

    Schmidt, Peter Leo
    : https://etd.library.vanderbilt.edu/etd-07252006-144034
    http://hdl.handle.net/1803/13560
    : 2006-07-31

    Abstract

    This dissertation explores the effects of convection on the structural response and sound radiation behavior of a simple structure. This behavior will be studied over a wide range of flow velocities, with a maximum of Mach 2. Previous work has established behavior for subsonic flow, so the first task is to expand this method for supersonic flow speeds. A method for modeling the structure is presented, along with a complimentary method for modeling the fluid flow. Coupling these two subsystems is discussed, along with a development for the equations that will be used to describe both structural response and energy flow between the structure and the flowing fluid. This is accomplished by analyzing the frequency response of a coupled aerodynamic and structural model. The difference in structural response is demonstrated as compared to that previously established for subsonic flow, and provides data on the nature of the power flow between the structure and the convected fluid at high flow velocities. A negative net power flow from the structure to the fluid is shown at high flow velocities. This method is then expanded to accommodate structures with externally imposed stresses. The subsystem used for modeling the structure is modified to allow variable states of stress to be imposed on the coupled model. This new coupled model is evaluated at both subsonic and supersonic flow speeds. Established relationships are used to evaluate the effect of the imposed stress on the structural response and on the energy flow between the structure and the flowing fluid. The effect of the state of stress in the structure is shown to affect the radiation efficiency of the structure. The effects of both unidirectional and bidirectional stresses are discussed. Finally, the method is further extended by making use of non-dimensional relationships in both the structural model and the aerodynamic model to allow an overview of the convection problem for a wide range of structural and fluid parameters. Engineering rules of thumb are established for when coupling the aerodynamic model and structural model are important for accurate predictions of the structural response and for the power flow between the structure and the convected fluid. The fact that the fluid dynamics must be included in the system model for accurate prediction of both phenomena is also established.
    Show full item record

    Files in this item

    Icon
    Name:
    dissertation_PLS_final_rev.pdf
    Size:
    528.9Kb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Related items

    Showing items related by title, author, creator and subject.

    • Pulsed Laser Irradiation for Discrete Component Dose-Rate Model Development 
      Nation, Sarah A. (2008-01-21)
      Pulsed-laser irradiation is used to simulate dose-rate effects in discrete devices. A methodology is established to correlate laser pulse energy results to an equivalent dose rate value without LINAC validation. It is ...
    • Layout-Aware Modeling and Analysis Methodologies for Transient Radiation Effects on Integrated Circuit Electronics 
      Kauppila, Jeffrey Scott (2015-03-25)
      The development of integrated circuits intended for use in transient radiation environments must account for the impact of the environment on the operation of the circuit. The design of integrated circuits is increasingly ...
    • Radiation-induced charge trapping studies of advanced Si and SiC based MOS devices 
      Dixit, Sriram Kannan (2008-04-28)
      This dissertation presents the radiation-induced charge trapping studies of upcoming material systems of Si and SiC for future low power and high power technologies. HfO2/Si with metal gates has already been announced as ...

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy