• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Advancements of MRI Measurements of Bound and Pore Water Concentration of Cortical Bone for Evaluation of Fracture Risk

    Manhard, Mary Katherine
    : https://etd.library.vanderbilt.edu/etd-05312016-110707
    http://hdl.handle.net/1803/12436
    : 2016-06-01

    Abstract

    The current standard for diagnosing fracture risk comprises measurements of bone mineral density (BMD), primarily by dual-energy X-ray absorptiometry (DXA). However, bone strength is affected by many factors other than BMD, such as architecture, collagen content, and porosity. Nuclear magnetic resonance (NMR) measures of the water bound to the collagen matrix (bound water) and free water occupying pore space (pore water) have shown promise in further assessing fracture risk. This dissertation work translated NMR based techniques into Magnetic Resonance Imaging (MRI) methods; the Double Adiabatic Full Passage (DAFP) sequence for measuring pore water concentration and the Adiabatic Inversion Recovery (AIR) sequence to measure bound water concentration. These imaging methods can be used to obtain maps of bound and pore water content throughout the cortical bone volume. MRI methods were first validated against NMR methods and shown to have good repeatability in vivo, and then were compared to whole bone material properties and found to show significant correlations with strength and toughness. The AIR and DAFP methods, initially carried out with 3D data acquisition, were further improved by implementing 2D quantitative imaging sequences which significantly reduced scan time. The sequences are being applied in populations of healthy and osteoporotic patients for longitudinal evaluation. In short, measures of bound and pore water concentration have the potential to give a new and more thorough evaluation of bone characteristics and health that is not obtainable with currently used methods.
    Show full item record

    Files in this item

    Icon
    Name:
    dissertation_Manhard.pdf
    Size:
    3.714Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy