• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Analysis of High-k Dielectric Thin Films with Time-of-Flight Medium Energy Backscattering

    Geil, Robert Druhan
    : https://etd.library.vanderbilt.edu/etd-05192005-125336
    http://hdl.handle.net/1803/12341
    : 2005-06-07

    Abstract

    Time-of-flight medium backscattering (TOF-MEBS) is a powerful analytical technique for characterizing high-k dielectric thin films and their interface with Si. The amount of information that can be obtained from backscattering experiments can be maximized by carefully choosing a detailed thin film model for simulations and by implementing an experimental configuration that optimizes depth resolution. This thesis presents four main studies. In the first study a thin film model for simulating backscattering spectra is developed and used to extract interfacial information from thin dielectric films. A sufficient film model was found to consist of three layers: 1) dielectric material 2) interfacial silicate and 3) substrate. In the next study, the influence of multiple scattering and surface roughness on the shape of backscattering spectra was evaluated by generating spectra using Monte Carlo simulations. For TOF-MEBS analysis of thin (~50 Å) ZrO2 films on Si, multiple scattering and surface roughness were found to have a negligible influence on the shape of a backscattering spectrum. The third study presents calculations and measurements of the energy and depth resolution of the TOF-MEBS system, and the experimental configuration for optimizing depth resolution was determined. For the analysis of thin films (~50 Å), the depth resolution of the TOF-MEBS system can be improved by operating at a beam energy around 150 keV and by using a glancing tilt angle (~54°). However, if the angle is too glancing, multiple scattering and surface roughness can significantly degrade depth resolution and distort the shape of the backscattering spectrum. ZrO2 films deposited on H-terminated Si and native Si oxide surfaces were characterized with TOF-MEBS for the final study. The deposition surface was found to significantly affect the physical and chemical properties of MOCVD ZrO2 films and their interface with Si. ZrO2 films deposited on H-terminated Si are low in density and susceptible to the formation of an interfacial layer of a Zr-silicate. ZrO2 films deposited on native Si oxide surfaces results in dense films that are less susceptible to interfacial layer formation, although some silicate formation is likely.
    Show full item record

    Files in this item

    Icon
    Name:
    geil_thesis_2005.pdf
    Size:
    2.067Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy