• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Bright White Light Emission of Ultrasmall Nanocrystals for Use in Solid State Lighting

    Harrell, Sarah-Ann Michelle
    : https://etd.library.vanderbilt.edu/etd-04102013-001325
    http://hdl.handle.net/1803/12100
    : 2013-04-22

    Abstract

    White light-emitting diodes (LEDs) are the lighting of the future due to their potential energy savings and the proven success with monochromatic LEDs. However, white LEDs require an expensive fabrication process involving the incorporation of many different monochromatic semiconductors into a single LED; this is often referred to as color mixing. In 2005, a new class of semiconductors was discovered which is called ultrasmall CdSe quantum dots. This new class of material emits perfect, white light, so the integration of ultrasmall CdSe quantum dots into LEDs would result in the eradication of all the costs associated with color mixing. Since its discovery, the brightness of ultrasmall CdSe nanocrystals has increased over time from a ~2% quantum yield to ~31 with a brightening method which has been termed the formic acid treatment. This thesis pertains to the improvement and LED amalgamation of these brighter ultrasmall CdSe quantum dots. In particular, many experiments were done with the goal of improving the formic acid treatment, and in the process, much was discovered about the mechanics of the brightening method. The last chapter of the thesis concludes about the results and gives possible future directions including characterization methods and another possible brightening method.
    Show full item record

    Files in this item

    Icon
    Name:
    Harrell-thesis.pdf
    Size:
    22.07Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy