• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    A clock-gated, double edge-triggered flip-flop implemented with transmission gates

    Wang, Xiaowen
    : https://etd.library.vanderbilt.edu/etd-03282011-102121
    http://hdl.handle.net/1803/11592
    : 2011-04-14

    Abstract

    Power is a critical issue in digital system design, especially with the emphasis on the portability of electronic devices. However, decreasing power does not necessarily lead to energy efficiency; designers need to consider the negative influence on performance when power is reduced. Trade-offs in circuit design should be evaluated using both power and performance. One important element of power consumption in a digital system is the flip-flop. This thesis surveys several previous designs of double edge-triggered flip-flops, and then proposes a transmission-gate-based, double edge-triggered flip-flop with a novel clock gating function. Two designs (with and without clock gating) are each compared against two benchmark circuit designs. Using the second benchmark circuit (from the literature), the Design II: P_DETFF with the clock gating function saved 33% power on average when the switching activity factor (α) ranged from 0 to 0.4. When the input is idle, it also can save up to 98% of the power compared to the baseline Benchmark I: SETFF. The Design I: T_DETFF showed better performance than any other designs when α was above 0.4. Comparing with the best benchmark in this range, it saved 23% of the power on average, and 27% when the input switches every clock cycle. The proposed designs required slightly more area than the benchmarks, but maintained performance across different frequencies.
    Show full item record

    Files in this item

    Icon
    Name:
    XiaowenWangMasterThesis2011spr ...
    Size:
    1.430Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy