• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Reading the recorded history of soil mantled hillslopes

    Mudd, Simon Marius
    : https://etd.library.vanderbilt.edu/etd-03272006-104649
    http://hdl.handle.net/1803/11481
    : 2006-04-06

    Abstract

    Hillslope soils cover a large proportion of Earth’s terrestrial landscapes. This dissertation is a theoretical exploration of how chemical and mechanical processes affect the formation and dynamics of both hillslope soils and soil mantled landscapes. It explores how hillslopes adjust to time varying erosion rates. Statements of mass conservation for both the total soil layer and constitutive soil phases are derived that include terms describing both chemical and mechanical denudation. These statements are used to demonstrate that chemical processes are as important as mechanical processes in determining the morphology of landscapes, and that chemical properties of hillslope soils can be used to quantify chemical denudation rates. Analyses are performed for both the steady state case (where erosion rates do not change in time) and the transient case (where erosion rates are time-varying). Transient simulations show that hillslope soils respond to changes in channel incision over characteristic timescales, and changes in channel incision leave characteristic chemical and physical signatures on the landscape that last for tens of thousands to millions of years.
    Show full item record

    Files in this item

    Icon
    Name:
    Mudd_PhD_thesis.pdf
    Size:
    12.83Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy