• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Topological properties of asymptotic cones

    Kent, Curtis Andrew
    : https://etd.library.vanderbilt.edu/etd-03202013-104718
    http://hdl.handle.net/1803/10930
    : 2013-04-09

    Abstract

    Gromov asked whether an asymptotic cone of a finitely generated group was always simply connected or had uncountable fundamental group. We prove that Gromov's dichotomy holds for asymptotic cones with cut points as well as HNN extensions and amalgamated products where the associated subgroups are nicely embedded. We also show a slightly weaker dichotomy for multiple HNN extensions of free groups. We define an analogue to Gromov's loop division property which we use to give a sufficient condition for an asymptotic cone of a complete geodesic metric space to have uncountable fundamental group. This is used to understand the asymptotic cones of many groups currently in the literature. As a corollary, we show that an infinite group is virtually cyclic if and only if an asymptotic cone of the group has exactly two-ends. As well we show that in every asymptotic cone of a finitely generated group which contains a cut-point, the maximal transversal trees are universal R-trees with continuum branching at every point.
    Show full item record

    Files in this item

    Icon
    Name:
    kent.pdf
    Size:
    434.0Kb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy