• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Ankle and Foot Biomechanics during Human Walking: Powerful Insights on Multiarticular Muscles, Soft Tissues, and Toe Joint Dynamics

    Honert, Eric Christian
    : https://etd.library.vanderbilt.edu/etd-03152019-084955
    http://hdl.handle.net/1803/10801
    : 2019-03-15

    Abstract

    The goal of my research is to investigate the biomechanical contributions of the human foot to walking. We examined the role of mono- and multi- jointed musculatures across the human ankle and foot during walking through an electromyography-driven musculoskeletal model. We also examined an assumption made in many gait analyses: the entire human foot is a single rigid-body segment. This assumption neglects power generated/absorbed within the foot which can lead to misunderstandings related to (biological and prosthetic) foot function and thus distort our understanding of ankle and underlying muscle-tendon dynamics. Additionally, we examined the contributions of the foot and the shoe versus the rest-of-the-body to the soft tissue energy absorption during early stance of human walking. Lastly, through a custom-designed prosthesis, we examined the role of ankle stiffness, toe joint stiffness, toe shape, foot arch length (from heel to toe joint) and toe length as well as toe joint axis angle to walking biomechanics. This biological and non-biological understanding of the foot can inform design parameters for assistive devices such as prostheses to enhance walking for persons with amputation.
    Show full item record

    Files in this item

    Icon
    Name:
    echonert_dissertation_upload2.pdf
    Size:
    9.278Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy