• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Design, Modeling, and Experimental Validation of a Stirling Engine with a Controlled Displacer Piston

    Winkelmann, Anna
    : https://etd.library.vanderbilt.edu/etd-03102015-154845
    http://hdl.handle.net/1803/10723
    : 2015-03-12

    Abstract

    This work presents the design, first-principles model, and experimental setup of a Stirling pressurizer. The Stirling pressurizer is a Stirling engine with an independently controlled displacer piston. The directly controlled, loose-fit displacer is actuated with a small linear motor and moves the pre-pressurized working fluid (helium) between the hot and cold side of the sealed engine section; therefore inducing a pressure change. The position of the displacer is the only control input to the first-principles model. The first-principles model is validated with experimental results for different controlled displacer piston motion profiles. Modeled and experimentally measured pressures are compared for average pressures ranging from 10 – 20 bar, and heater head temperatures ranging from 250°C – 500°C. The first-principles model is intended for: 1) the design and sizing of the pressurizer and power piston / power extraction, 2) specification of a displacer piston motion profile to optimize the efficiency and/or power output, and 3) the general design of Stirling devices, beyond the design of the experimental prototype investigated here, through the use of a lumped parameter model with well-defined and measurable parameters. The Stirling pressurizer combined with a power extraction unit is intended to fill the technological gap of a compact, quiet, un-tethered, and high energy density power supply.
    Show full item record

    Files in this item

    Icon
    Name:
    MS_Thesis_Anna_Winkelmann.pdf
    Size:
    2.950Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy