• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Comprehensive Analysis of the Spatial Distribution of Missense Variants in Protein Structures Reveals Patterns Predictive of Pathogenicity

    Sivley, Robert Michael
    : https://etd.library.vanderbilt.edu/etd-02272017-124227
    http://hdl.handle.net/1803/10634
    : 2017-03-16

    Abstract

    The spatial distribution of genetic variation within proteins is shaped by evolutionary constraint and thus can provide insights into the functional importance of protein regions and the potential pathogenicity of protein alterations. To facilitate the spatial analysis of coding variation in protein structure, we develop PDBMap, an automated pipeline for mapping genetic variants into all solved and predicted protein structures. We then comprehensively evaluate the 3D spatial patterns of constraint on human germline and somatic variation in 4,568 solved protein structures. Different classes of coding variants have significantly different spatial distributions. Neutral missense variants exhibit a range of 3D constraint patterns, with a general trend of spatial dispersion driven by constraint on core residues. In contrast, germline and variants are significantly more likely to be clustered in protein structure space. Finally, we demonstrate that this difference in the spatial distributions of disease-associated and benign germline variants provides a signature for accurately classifying variants of unknown significance (VUS) that is complementary to current approaches for VUS classification.
    Show full item record

    Files in this item

    Icon
    Name:
    ms_thesis_manuscript_etd.pdf
    Size:
    1.375Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy