• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Growth Hormone Splicing and Treatment of Disease Using RNA Interference

    Shariat, Nikki
    : https://etd.library.vanderbilt.edu/etd-02272008-094210
    http://hdl.handle.net/1803/10630
    : 2008-02-28

    Abstract

    Splicing is the regulated removal of introns and the concurrent ligation of exons to produce mature mRNA transcripts. Variability in this tightly regulated process is responsible for an extraordinarily diverse proteome from a relatively small mammalian genome. Alternative splicing can lead to differential exon inclusion or exclusion, as can aberrant splicing, and such transcripts therefore differ from constitutively spliced transcripts. Where mistakes in splicing cause disease, the resulting mutant transcripts appear to be ideal targets for RNA interference (RNAi). In the case of inappropriate exon inclusion, small interfering RNAs (siRNAs) can be targeted to specific exons. When exon skipping prevails, siRNAs can be designed complementary to the specific exon-exon junctions that are not present in normal transcripts. The human growth hormone gene, GH-1, nicely illustrates these points. Constitutive splicing of all 5 exons produces the normal hormone but aberrant skipping of exon 3 can lead to the production of a dominant negative isoform and associated Isolated Growth Hormone Deficiency type II (IGHD II). This thesis describes research into understanding the causes of exon 3 skipping and shows that siRNAs targeting the unique exon 2-exon 4 sequence in mutant transcripts can prevent onset of IGHD II in a mouse model.
    Show full item record

    Files in this item

    Icon
    Name:
    ShariatDissertation.pdf
    Size:
    8.455Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy