• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Regulation of replication fork stability by ssDNA binding proteins

    Bhat, Kamakoti Prakash
    : https://etd.library.vanderbilt.edu/etd-02252018-145104
    http://hdl.handle.net/1803/10626
    : 2018-02-26

    Abstract

    The replication stress response (RSR) maintains genome stability and promotes the accurate duplication of the genome. ssDNA binding proteins are integral components of the RSR and have been extensively studied for years. However, the mechanisms by which they specifically direct enzymes to the right substrates and how they regulate replication fork remodeling is less well understood. My thesis projects have focused on the regulation of fork remodeling pathways by ssDNA binding proteins. In Chapter III, I discovered how RPA enforces SMARCAL1 substrate specificity to promote appropriate fork reversal. In chapter IV, I identified a new RPA-like ssDNA binding protein, RADX, at replication forks. I characterized the function of RADX as a negative regulator of RAD51 mediated fork reversal and described RADX loss as a chemo-resistance mechanism in BRCA2-deficient U2OS cells. In chapter V, I further explored the mechanisms by which RADX regulates RAD51. Utilizing RADX as a tool, I interrogated RAD51 functions in different pathways of fork protection and discovered the differential requirements of RAD51 in fork reversal and fork protection. Overall, my thesis has made significant contributions to our understanding of the processes of fork reversal and fork protection and has identified a potential chemo-resistance mechanism for BRCA2-mutant cancers.
    Show full item record

    Files in this item

    Icon
    Name:
    Bhat_Thesis.pdf
    Size:
    20.14Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy