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ABSTRACT

Standard present-day large-scale structure (LSS) analyses make a major assumption in their
Bayesian parameter inference — that the likelihood has a Gaussian form. For summary statistics
currently used in LSS, this assumption, even if the underlying density field is Gaussian,
cannot be correct in detail. We investigate the impact of this assumption on two recent LSS
analyses: the Beutler et al. power spectrum multipole (P,) analysis and the Sinha et al.
group multiplicity function (¢) analysis. Using non-parametric divergence estimators on mock
catalogues originally constructed for covariance matrix estimation, we identify significant non-
Gaussianity in both the P, and ¢ likelihoods. We then use Gaussian mixture density estimation
and independent component analysis on the same mocks to construct likelihood estimates
that approximate the true likelihood better than the Gaussian pseudo-likelihood. Using these
likelihood estimates, we accurately estimate the true posterior probability distribution of the
Beutler et al. and Sinha et al. parameters. Likelihood non-Gaussianity shifts the fo'g constraint
by —0.440, but otherwise does not significantly impact the overall parameter constraints
of Beutler et al. For the ¢ analysis, using the pseudo-likelihood significantly underestimates
the uncertainties and biases the constraints of the Sinha et al. halo occupation parameters. For
log M, and «, the posteriors are shifted by +0.430 and —0.510 and broadened by 42 per cent
and 66 per cent, respectively. The divergence and likelihood estimation methods we present
provide a straightforward framework for quantifying the impact of likelihood non-Gaussianity
and deriving more accurate parameter constraints.

Key words: methods: data analysis—methods: statistical —galaxies: statistics —cosmology:
observations — cosmological parameters —large-scale structure of Universe.

1 INTRODUCTION

Bayesian parameter inference provides the standard framework for
deriving cosmological parameters from observation of large-scale
structure (LSS) studies. Using Bayes’s rule,

p@]x) o p(x |6) p(6). M
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the posterior probability distributions of cosmological parameters
can be derived from observed measurements such as the galaxy
power spectrum. All that is required is the prior distribution of the
parameters, p(6), and the likelihood, p(x |6) — probability of the
data (observation) given the theoretical model. Priors are selected
in analyses; so parameter inference ultimately reduces to evaluating
the likelihood. Analyses can only yield unbiased constraints if the

likelihood evaluation is correct.
In present-day LSS analyses, two major assumptions go into

evaluating the likelihood. First, the likelihood is assumed to have a
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Gaussian functional form:

1
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where d is the dimension of the data vector x, m(6) is the theoretical
predictions given the model parameters 6, and C is the covariance
matrix. Second, the covariance matrix used in evaluating the Gaus-
sian pseudo-likelihood is assumed to be independent of cosmology
or the model parameters. The covariance matrix is evaluated only
at a selected fiducial cosmology with fiducial model parameters
and is assumed to be fixed throughout the analysis. In principle,
the covariance matrix depends on 6, and the dependence has been
shown to have a significant effect on parameter constraints (e.g.
Eifler, Schneider & Hartlap 2009; Morrison & Schneider 2013;
White & Padmanabhan 2015). In this paper, we focus on the first, the
Gaussian pseudo-likelihood assumption. Even when analyses use
covariance matrices that account for non-Gaussian covariance (e.g.
Scoccimarro, Couchman & Frieman 1999; Hu & White 2001;
O’Connell et al. 2016), the likelihood is still assumed to have a
Gaussian functional form (equation 2). They therefore still employ
a Gaussian pseudo-likelihood. We will test the assumption and
quantify the impact of this Gaussian pseudo-likelihood assumption
on cosmological parameter constraints.

The motivation for the Gaussian pseudo-likelihood ultimately
stems from the ‘central limit theorem’. Take the power spectrum of
the density field, for example. On large scales, the density field is
approximately a Gaussian random field and the power spectrum of a
specific Fourier mode would follow a chi-squared distribution, not
a Gaussian. However, with sufficiently many independent modes
contributing, the likelihood of the power spectrum would approach
a Gaussian distribution by the central limit theorem. In practice,
we expect the Gaussian assumption to fail in low-signal-to-noise
regimes. The assumption is also further invalidated by correlations
among different modes caused by finite survey volume, shot noise,
and systematic effects. The breakdown of Gaussianity is clearly
illustrated in earlier surveys such as IRAS, where limited survey
volume and sparse sampling cause the probability distribution
function of the galaxy power spectrum to deviate significantly from
Gaussian (see fig. 9 in Scoccimarro 2000). Hartlap et al. (2009) and
Sellentin & Heavens (2018) similarly illustrate the breakdown of
the Gaussian likelihood assumption for the cosmic shear correlation
function likelihood.

Even if the likelihood is Gaussian, Sellentin & Heavens (2016)
argue that since an estimate of the covariance matrix is used for
the likelihood, for accurate parameter inference the true covariance
matrix must be marginalized over. This marginalization leads to
a likelihood that is no longer Gaussian, but rather a multivariate
t-distribution. Fortunately, the Gaussian pseudo-likelihood assump-
tion is not necessary for parameter inference. Outside of LSS, in
cosmic microwave background power spectrum analyses, for in-
stance, the Planck collaboration uses a hybrid likelihood, which only
assumes a Gaussian pseudo-likelihood for C, on small scales (Ade
et al. 2014; Aghanim et al. 2016; see also Efstathiou 2004, 2006).
On large scales (low £), the likelihood is instead computed directly
in pixel space and extensively validated. Testing for likelihood
non-Gaussianity and non-Gaussian likelihoods in general are not
currently part of the standard practice in LSS studies. For more
precise parameter constraints from LSS, however, analyses must go
beyond the Gaussian pseudo-likelihood.

In this paper we investigate the impact of the likelihood Gaus-
sianity assumption on the two recent LSS analyses of Beutler et al.
(2017) (hereafter B2017) and Sinha et al. (2017) (hereafter S2017).
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B2017 analyse the power spectrum multipoles (P,; monopole,
quadrupole, and hexadecapole) to measure redshift-space distor-
tions along with the Alcock—Paczynski effect and baryon acoustic
oscillation scale. Meanwhile S2017 analyse the group multiplicity
function (¢) in order to constrain parameters of the halo model.
Using the B2017 and S2017 analyses, we show in this paper that
the assumption of likelihood Gaussianity in LSS is not necessary.
We will also show that the mock catalogues used in standard LSS
analyses for covariance matrix estimation can be used to quantify
the non-Gaussianity. More importantly, we will directly use the
mocks to estimate the ‘true’ non-Gaussian likelihood.

We begin in Section 2 by describing the mock catalogues that
we use throughout the paper, constructed originally for covariance
matrix estimation in B2017 and S2017. Next in Section 3, we
present non-parametric divergence estimators and quantify the
non-Gaussianity of the P, and ¢ likelihoods using them. Then
in Section 4, we introduce two methods for estimating the ‘true’
likelihood using the mock catalogues. We then use the likelihood
estimates to quantify the impact of likelihood non-Gaussianity on
the posterior parameter constraints of B2017 and S2017 in Section 5.
We discuss and conclude the paper in Section 6.

2 MOCK CATALOGUES

Mock catalogues are indispensable for standard cosmological
analyses of LSS studies. They are used for testing analysis
pipelines (Beutler et al. 2017; Grieb et al. 2017; Tinker et al.
in preparation), testing the effect of systematics (Guo, Zehavi &
Zheng 2012; Vargas-Magafia et al. 2014; Hahn et al. 2017a; Pinol
et al. 2017; Ross et al. 2017), and, most relevantly for this paper,
estimating the covariance matrix (Parkinson et al. 2012; Kazin et al.
2014; Alam et al. 2017; Beutler et al. 2017; Grieb et al. 2017;
Sinha et al. 2017). In fact, nearly all current state-of-the-art LSS
analyses use covariance matrices estimated from mocks to evaluate
the likelihood.

While some argue for analytic estimates of the covariance
matrix (e.g. Mohammed, Seljak & Vlah 2017) or estimates directly
from data by subsampling (e.g. Norberg et al. 2009), covariance
matrices from mocks have a number of advantages. Mocks allow us
to incorporate detailed systematic errors present in the data as well
as variance beyond the survey volume. Even for analytic estimates,
alarge ensemble of mocks is crucial for validation (e.g. Slepian et al.
2017). Moreover, as we show later in this paper, mocks present an
additional advantage: They allow us to quantify the non-Gaussianity
of the likelihood and more accurately estimate the true likelihood
distribution.

In this paper, we focus on two LSS analyses: the power spectrum
multipole (P,) analysis of B2017 and the group multiplicity function
(¢) analysis of S2017. Throughout the paper we will make extensive
use of the mock catalogues used in these analyses. In this section,
we give a brief description of these mocks and how the observables
used in the analysis — Py(k) and ¢ (/) — are calculated from them.
Afterwards, we will describe how we compute the covariance matrix
from the mocks and pre-process the mock observable data.

2.1 MultiDark-PATCHY mock catalogue

B2017 use the MultiDark-PATCHY mock catalogues from Kitaura
et al. (2016) mocks generated using the PATCHY code (Kitaura,
Yepes & Prada 2014; Kitaura et al. 2015). These mocks rely on
large-scale density fields generated using augmented Lagrangian
perturbation theory (ALPT; Kitaura & Hefl 2013) on a mesh,
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which are then populated with galaxies based on combined non-
linear deterministic and stochastic biases. The mocks from the
PATCHY code are calibrated to reproduce the galaxy clustering in
the high-fidelity BigMultiDark N-body simulation (Klypin et al.
2016; Rodriguez-Torres et al. 2016). Afterwards, stellar masses are
assigned to galaxies using the HADRON code (Zhao et al. 2015).
Finally, the SUGAR code (Rodriguez-Torres et al. 2016) combines
different boxes, incorporates selection effects, and masks to produce
mock light-cone galaxy catalogues. The statistics of the resulting
mocks are then compared to observations and the process is iterated
to reach the desired accuracy. We refer readers to Kitaura et al.
(2016) for further details.

In total, Kitaura et al. (2016) generated 12 228 mock light-cone
galaxy catalogues for BOSS Data Release 12. In B2017, they use
2045 and 2048 for the Northern Galactic Cap (NGC) and Southern
Galactic Cap (SGC) of the LOWZ + CMASS combined sample.
B2017 excluded three mock realizations due to notable issues. These
issues have since been addressed, so in our analysis we use all
2048 mocks for both the NGC and SGC of the LOWZ + CMASS
combined sample. In B2017, they conduct multiple analyses, some
using only the power spectrum monopole and quadrupole and
others using the monopole, quadrupole, and hexadecapole. They
also separately analyse three redshift bins: 0.2 < z < 0.5,04 < z
< 0.6,and 0.5 < z < 0.75. In this paper, for simplicity, we focus on
one of these analyses: the analysis of the power spectrum monopole,
quadrupole, and hexadecapole for the 0.2 < z < 0.5 bin.

2.2 Sinha et al. (2017) mocks

The simulations used in the Sinha et al. (2017) analysis are
from the Large Suite of Dark Matter Simulations (LasDamas)
project (McBride et al. 2009), which were designed to model galaxy
samples from SDSS DR7. The initial conditions are generated
with the 2LTPIC code (Scoccimarro 1998; Crocce, Pueblas &
Scoccimarro 2006), and evolved using the N-body GADGET-2
code (Springel 2005). Haloes are identified from the dark matter
distribution outputs using the ntropy-fofsv code (Gardner,
Connolly & McBride 2007), which uses a friend-of-friends (FoF)
algorithm (Davis et al. 1985) with a linking length of 0.2 times the
mean interparticle separation. S2017 use two configurations of the
LasDamas simulations for the SDSS DR7 samples with absolute
magnitude limits M, < —19 and M, < —21. The ‘Consuelo’
simulation contains 1400° dark matter particles with mass of
1.87 x 10° ="My, in a cubic volume of 420 /h~'Mpc per side
evolved from zj,; = 99. The ‘Carmen’ simulation contains 11203
dark matter particles with mass 4.938 x 102~ Mg, in a cubic
volume of 1000 4! Mpc per side evolved from zini = 49.

The FoF halo catalogues are populated with galaxies using the
‘Halo Occupation Distribution’” (HOD) framework. The number,
positions, and velocities of galaxies are described statistically
by an HOD model. S2017 adopt the ‘vanilla’ HOD model of
Zheng & Weinberg (2007), where the mean number of central
and satellite galaxies is described by the halo mass and five
HOD parameters: My, Olog m» Mo, My, and «. Lastly, once the
simulation boxes are populated with galaxies, observational sys-
tematic effects are imposed. The peculiar velocities of galaxies
are used to impose redshift-space distortions. Galaxies that lie
outside the redshift limits or sky footprint of the SDSS sample are
removed. For further details regarding the mocks, we refer readers
to S2017.

To calculate their covariance matrix, S2017 produced 200
independent mock catalogues from 50 simulations using a single
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set of HOD model parameters. The methods we propose in this
paper rely on a large number of mocks to accurately sample high-
dimensional distributions. We utilize an additional 99 sets of HOD
parameters, sampled from the Monte Carlo Markov Chain (MCMC)
in  S2017, with 200 mocks each. Thus, we have a total of 20 000
mocks for this work. In this paper we focus on the GMF analysis of
the SDSS DR7 M, < —19 sample presented in S2017.

2.3 Mock observable X™f and covariance matrix C

To get from the mock catalogues described above to the covariance
matrices used in B2017 and S2017, the observables were measured
for each mock in the same way as the observations. We briefly
describe how Py(k) and ¢(N) and the corresponding covariance
matrices are measured in B2017 and S2017. We then describe how
we pre-process the mock observables for the methods we describe
in the next sections.

To measure the power spectrum multipoles of the BOSS DR12
galaxies and the MutliDark-PATCHY mocks (Section 2.1), B2017 use
a fast Fourier transform (FFT)-based anisotropic power spectrum
estimator based on Bianchi et al. (2015) and Scoccimarro (2015).
This estimator estimates the monopole, quadrupole, and hexade-
capole (¢ = 0, 2, 4) of the power spectrum using FFTs of the
overdensity field multipoles for a given survey geometry. For further
details on the estimator we refer readers to Section 3 of B2017. The
power spectrum is computed in bins of Ak = 0.01 A Mpc™! over
the range k = 0.01 — 0.15 A Mpc~! for ¢ = Oand2and k = 0.01 —
0.10 A Mpc™" for € = 4. From the P® = [P" k), P\ (k), P{" (k)]
of the MultiDark-PATCHY mocks, B2017 compute the (i, j) element
of the covariance matrix of all multipoles as

Nmock
1 - _ - _
- - n) _ p. n) .
Cij= Noox — 1 ;:1: [P, Pi] x [Pj Pj]. (€)
Niock = 2048 is the number of mocks and P; is the mean of
the mock power spectra: P; = ﬁ ZS’QT““ Pi("). Since Py and P,

each have 14 bins and P, has 9 bins, C is a 37 x 37 matrix.
In this work, we compute the P,(k) using a similar FFT-based
estimator of Hand et al. (2017b) instead of the B2017 estimator. Our
choice is purely based on computational convenience. A PYTHON
implementation of the Hand et al. (2017b) estimator is publicly
available in the NBODYKIT package' (Hand et al. 2017a). We
confirm that the resulting P,(k)s and covariance matrices from the
Hand et al. (2017b) and B2017 estimators are consistent with one

another.
Next, the S2017 group multiplicity function analysis starts with

the Berlind et al. (2006) FoF algorithm to identify groups in the
SDSS and mock data. S2017 adopt the Berlind et al. (2006) linking
lengths in units of mean intergalaxy separation: b, =0.14 and b, =
0.75. In comoving lengths, the linking lengths for the SDSS DR7
M, < —19 sample correspond to (ry, ry) = (0.57, 3.05) A~ Mpc.
Once both the SDSS galaxy and mock galaxy groups are identified,
C(N) is derived by calculating the comoving number density of
groups in bins of richness N — the number of galaxies in a galaxy
group. For the M, < —19 sample, S2017 use eight N bins: (5 — 6),
(7 —=9), (10 — 13), (14 — 19), (20 — 32), (33 — 52), (53 — 84),
(85 — 220). For further details on the GMF calculation, we refer
readers to Section 4.2 of S2017. From the ¢ "™ (N)s of each mock,

Thttp:/nbodykit.readthedocs.io/en/latest/index.html
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S2017 compute the (i, j) element of the covariance matrix as

Nmock
S e N = END] x [N = BN 4

n=1

1

Cij=—"
v Nimock — 1

S2017 compute the covariance matrix using 200 mocks generated
using a single fiducial set of HOD parameters. As we describe in
Section 2.2, in this paper we use 20 000 mocks from 100 different
sets of HOD parameters sampled from the MCMC chain. The GMF
covariance matrix we use in this paper is computed with Nyocx =
20000 mocks. For the rest of the paper, in order to discuss the two
separate analyses of B2017 and S2017 in a consistent manner, we
define the matrix D™ of the mock observables (P, and ¢) as

P®™  for B2017,

¢m for S2017. )

Dmock — {D:lock} where D:lnock {
D™ has dimensions of 2048 x 37 and 20000 x 8 for B2017 and
S2017, respectively.

For the methods in Sections 4.1 and 4.2, the mock observable
data (D™ need to be pre-processed. This pre-processing involves
two steps: mean-subtraction (centring) and whitening. For mean
subtraction, the mean of the observable is subtracted from D™k,
Then D™ — D™ is whitened using a linear transformation to
remove the Gaussian correlation between the bins of D™°°%:

Xmock =L (Dmock _ I—)mock)' (6)

This linear transformation is derived such that the covariance
matrix of the whitened data, X™K, is the identity matrix . Such
a whitening linear transformation can be derived in infinite ways.
One way to derive the linear transformation is through the eigen-
decomposition of the covariance matrix (e.g. Hartlap et al. 2009;
Sellentin & Heavens 2018). We, alternatively, derive the linear
transformation L using Cholesky decomposition of the inverse
covariance matrix (Press etal. 1992): C~! = L LT. We have checked
that different methods for whitening do not impact the results of the
paper. With this pre-processed mock observable data, we proceed
to quantifying the non-Gaussianity of the P, and ¢ likelihoods in
the next section.

3 QUANTIFYING THE LIKELIHOOD
NON-GAUSSIANITY

The standard approach to parameter inference in LSS studies
does not account for likelihood non-Gaussianity. However, we
are not the first to investigate likelihood non-Gaussianity in LSS
analyses. Nearly two decades ago, Scoccimarro (2000) examined
the likelihood non-Gaussianity for the power spectrum and reduced
bispectrum using mock catalogues of the /RAS redshift catalogues.
More recently, Hartlap et al. (2009) and Sellentin & Heavens (2018)
examined the non-Gaussianity of the cosmic shear correlation
function likelihood using simulations of the Chandra Deep Field
South and CFHTLenS, respectively.

While these works present different methods for identifying
likelihood non-Gaussianity, they do not present a concrete way
of quantifying it. Hartlap et al. (2009), for instance, identify the
non-Gaussianity of the cosmic shear likelihood by looking at the
statistical independence/dependence of principal components of the
mock observable. In Sellentin & Heavens (2017), they use the
mean integrated squared error (MISE) as a distance metric between
Gaussian random variables and the whitened mock observable data
vector to characterize non-Gaussian correlations between elements
of the data vector. These indirect measures of non-Gaussianity are
challenging to interpret or apply more generally to LSS studies.
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A more direct approach can be taken to quantify the non-
Gaussianity of the likelihood. We can calculate the divergence
between the distribution of our observable, p(x), and g(x) a mul-
tivariate Gaussian described by the average of the mocks and the
covariance matrix — i.e. the pseudo-likelihood. The following are
two of the most commonly used divergences: the Kullback—Leibler
(KL) divergence
Dt ) = [ po) tog 20 ax %)

q(x)

and the Rényi-« divergence

Dro(pllq) = log/p"‘(X)q““(X)dX- (®)

a—1
In the limit as o approaches 1, the Rényi-a divergence is equivalent
to the KL divergence.

Of course, in our case, we do not know p(x) —i.e. the probability
distribution function of our observable. If we did, we would simply
use that instead of bothering with the covariance matrix or this
paper. We can, however, still estimate the divergence using non-
parametric divergence estimators (Wang, Sanjeev & Sergio 2009;
Péczos, Xiong & Schneider 2012a; Krishnamurthy et al. 2014).
These estimators allow us to estimate the divergence, 5(X 1l
Y1), directly from samples X;., = {Xi, ..X,} and Y;.,, = {V1,
...Y,, } drawn from p and ¢, respectively. For instance, the estimator
presented in Poczos et al. (2012a) allows us to estimate the kernel
function of the Rényi-« divergence,

Du(p Il @) = / Pg () d, ©)

using the kth nearest neighbour density estimators. Let p;(x) denote
the Euclidean distance of the kth nearest neighbour of x in the
sample X;., and vi(x) denote the Euclidean distance of the kth
nearest neighbour of x in the sample Y;. ,,. Then

1—a
pl(X)
> <ug<x,>) . (10)

N Bk,a n—1 l—a n
Do(p | @) % Do(Xion || Yim) = —— | ——
n m p

(F(k))?
Fk—a+ DI'tk+a—1)
prove that this estimator is asymptotically unbiased:

im E[Du(X1 || Yion)] = Du(p 1| 9). (11

where By, = Péczos et al. (2012a)

Plugging ﬁu(Xk,, || Y1.,) into equation (8), we get an estimator for
the Rényi-«o divergence. Wang et al. (2009) derive a similar estima-
tor for the KL divergence (equation 7). These divergence estimates
have been applied to support distribution machines and used in the
machine learning and astronomical literature with great success (e.g.
Péczos, Szabé & Schneider 2011; Pdczos et al. 2012a,b; Xu et al.
2013; Ntampaka et al. 2015, 2016; Ravanbakhsh et al. 2017). For
more details on the non-parametric divergence estimators, we refer
readers to Péczos et al. (2012a) and Krishnamurthy et al. (2014).
With these estimators, we can now explicitly quantify the non-
Gaussianity of the likelihood by computing the divergence between
the likelihood distribution and the Gaussian pseudo-likelihood
distribution, £Psvdo, Xmock jg in principle sampled from p(x). Then
with a reference sample Y™ drawn from L£P¥'® we can use
the estimators to compute D( p(x) || £P*id) ~ B(Xm"Ck | Yreh.
Similar to the experiments detailed in Pdéczos et al. (2012a), we
construct Y™ with a comparable sample size as X™°°: 2000 and
10000 for the P, and ¢ analyses, respectively. For a sample size
of 1000, Sutherland et al. (2012) use k = 5. Based on the larger
sample size of XM we calculate the divergences using the k = 10
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nearest neighbours. We note that the divergence estimates are not
significantly impacted by our choice of k within the range 5 < k <
20.

In Fig. 1, we present the resulting Rényi-o (left) and KL (right)
divergences (orange) between the likelihood and the Gaussian
pseudo-likelihood for the B2017 P, (top) and S2017 ¢ (bottom)
analyses: 5RD, and ﬁKL. For reference, we also include (in blue)
divergence estimates of the pseudo-likelihood on to itself, which
we calculate as D(X™ || Y*). X™f is a data vector with the same
dimension as XMk sampled from the pseudo-likelihood. D are
estimates of the true divergence; therefore, we resample Y™ and
compute each D estimate 100 times. In Fig. 1, we present the
resulting distributions of D, which illustrate the uncertainty of
D. We also note that for the B2017 P, analysis, some of the
BKL estimates are negative, which violates Gibb’s inequality. This
is due to the limited number of p(x) samples (only Nyok =
2048 samples of a 37-dimensional distribution) that results in
non-uniformity of the distribution near each sample point and
biases the 5KL estimates (Kraskov, Stogbauer & Grassberger 2004;
Wang et al. 2009). To account for this bias, instead of using
D(X™k || Y™ to directly quantify the discrepancy between the
likelihood and the pseudo-likelihood, we use the difference between
the D(X™* || Y™) distributions and the reference D(X™ || Y™)
distributions (A 5). Since X™f has the same dimensions as XMk,
AD more accurately reflects the discrepancy between the likelihood
and the pseudo-likelihood. Each panel of Fig. 1 shows significant
discrepancy between the two distributions — both the P,(k) and ¢ (N)
likelihoods are significantly non-Gaussian.

The Gaussian pseudo-likelihood assumption for P, is motivated
by the central limit theorem. If enough modes contribute to the
power spectrum, then the likelihood approaches a Gaussian. Given
the survey volume of BOSS DR12 and the restrictive k range of
the B2017 analysis (0.01 < k < 0.15 for £ = 0 and 2; 0.01 <
k < 0.10 for £ = 4), one would expect this to be mostly true.
Although relatively small, we find significant AD and therefore
likelihood non-Gaussianity. In order to better understand the source
of this non-Gaussianity, we repeat the divergence comparisons
for different k ranges. If we exclude the largest scales and set
kmin = 0.05, AD decreases. Meanwhile, if we exclude the smallest
scales and set kyax = 0.1 for all multipoles, AD increases. This
suggests that the largest scales (low k) contribute most to the P,
likelihood non-Gaussianity. Furthermore, when we compare the
divergences for just the monopole and quadrupole, AD decreases.
Among the multipole, the hexadecapole contributes most to the
non-Gaussianity of the P, likelihood. In both the low-k regimes and
the hexadecapole, the contribution to the non-Gaussianity is likely
caused by low signal-to-noise and failure to satisfy the central limit
theorem.

For ¢, the discrepancies between the D distributions are consis-
tent with the fact that the true ¢ likelihood distribution is likely
Poisson — not Gaussian — similar to the likelihood of observed
cluster counts (Cash 1979; Collaboration et al. 2014; Ade et al.
2016). Although the groups identified with an FoF algorithm do
not correspond to clusters, we nevertheless expect the likelihood
to be non-Gaussian. We again repeat the divergence comparison
for different N ranges to better understand the source of non-
Gaussianity. Excluding the lowest N bin does not significantly
impact AD. However, when we exclude the highest N bin, AD
decreases significantly. We therefore find that the high-richness end
of ¢ contibutes most to the non-Gaussianity of the ¢ likelihood. The
contribution to the non-Gaussianity, similar to the P, case, comes
most from the low-signal-to-noise regime. Besides likelihood non-
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Gaussianity, biases that arise from estimating the covariance matrix
from a limit number of mocks may also contribute to AD. With
>2000 mocks, however, this bias is likely unimportant for the P,
analysis and even less so for the ¢ analysis where we use 20 000
mocks (Hartlap et al. 2009). None the less, this underlines another
limitation of using pseudo-likelihoods for parameter inference in
LSS studies.

4 ESTIMATING THE NON-GAUSSIAN
LIKELIHOOD

In the previous section, we estimate the divergence between
the P, and ¢ likelihoods and their respective Gaussian pseudo-
likelihoods. These divergences identify and quantify the significant
non-Gaussianity in the likelihoods of LSS studies. Our ultimate
goals, however, are to quantify the impact of likelihood non-
Gaussianity on the final cosmological parameter constraints and
to develop more accurate methods for parameter inference in LSS.
From the divergence estimates alone, it is not obvious how they
propagate on to the final parameter constraints. Therefore, in this
section, we present two methods for more accurately estimating the
true non-Gaussian likelihoods of P, and ¢ from their corresponding
mocks. These methods provide more accurate estimates of the
likelihood than the Gaussian pseudo-likelihood. Moreover, we will
use them later to quantify the impact of likelihood non-Gaussianity
on the B2017 and S2017 parameter constraints.

4.1 Gaussian mixture likelihood estimation

When mock catalogues are used for parameter inference in LSS
analyses, they essentially serve as data points sampling the like-
lihood distribution. For the pseudo-likelihood, this distribution
is assumed to have a Gaussian functional form, which is why
we estimate the covariance matrix from mocks. However, the
Gaussian functional form, or any functional form for that matter,
is not necessary to estimate the likelihood distribution. Instead, the
multidimensional likelihood distribution can be directly estimated
from the set of mock catalogues — for instance using Gaussian
mixture density estimation (Press et al. 1992; McLachlan & Peel
2000). Besides its extensive use in machine learning and statistics,
in astronomy, Gaussian mixture density estimation has been used
for inferring the velocity distribution of stars from the Hipparcos
satellite (Bovy, Hogg & Roweis 2011), classifying galaxies in the
Galaxy And Mass Assembly Survey (Taylor et al. 2015), classifying
pulsars (Lee et al. 2012), and much more (see also Hogg, Bovy &
Lang 2010; Kuhn & Feigelson 2017).

Gaussian mixture density estimation is a ‘semi-parametric’
method that uses a weighted sum of k Gaussian component densities,
a Gaussian mixture model (hereafter GMM)

k
Plx:0)=> 7 N(x:0)), (12)
i=1
to estimate the density. The component weights (7r;; also known as
mixing weights) and the component parameters @; are free param-
eters of the mixture model. Given some data set Xy = {xi, ..., xy},
these free GMM parameters are, most popularly, estimated through
an expectation-maximization (EM) algorithm (Dempster, Laird &
Rubin 1977; Neal & Hinton 1998). The EM algorithm begins by
randomly assigning 8? to the k Gaussian components. The algorithm
then iterates between two steps. In the first step, the algorithm
computes x,, a probability of being generated by each component
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Figure 1. Rényi-o and KL divergence estimates (DRQ and Dgy; orange) between the likelihood distribution and the Gaussian pseudo- llkehhood tor the
B2017 P, (top) and S2017 ¢ (bottom) analyses. We include in blue, as reference, the divergence estimates of the pseudo-likelihood on to itself. D R and DKL
are computed usmg the non-parametric k<-NN estimator (Section 3) on the mock data X™°K and a reference sample Y™ drawn from the pseudo-likelihood. We
compute DRO, and DKL 100 times and plot their distribution in order to illustrate the uncertainty of the D estimator. The significant discrepancy between the
two divergence distributions in each of the panels identifies the significant non-Gaussianity of the P¢(k) and ¢ (N) likelihoods.

of the model, for every data point. These probabilities can be thought
of as weighted assignments of the points to the components. Next,
given the x, assignment to the components at some step 7, 6! of each
component are updated to 6’;4rl to maximize the likelihood of the
assigned points. At this point, 7r; can also be updated by summing
up the assignment weights and normalizing it by the total number
of data points, N. This entire process is repeated until convergence
— i.e. when the log-likelihood of the mixture model log p(Xy;0")
converges. As demonstrated in Wu (1983), the EM algorithm is
guaranteed to converge to a local maximum of log p(Xy;8). In
practice, instead of arbitrarily assigning the initial condition, 9 is
derived from a k-means clustering algorithm (Lloyd 1982). The
k-means algorithm clusters a data set, Xy, into k clusters, each
described by the mean (or centroid) u; of the samples in the cluster.
The algorithm then iteratively chooses centroids that minimize the
average squared distance between points in the same cluster. For
our GMMs, we initialize the EM algorithm using the k-means++
algorithm of Arthur & Vassilvitskii (2007).

So far in our description of GMMs, we have kept the number of
components k fixed. k, however, is a free parameter and selecting
k is a crucial step in Gaussian mixture density estimation. With
too many components the model may overfit the data, while with
too few components the model may not be flexible enough to
approximate the true underlying distribution. In order to address
this model selection problem when selecting k, we make use of the
Bayesian information criterion (BIC; Schwarz 1978). BIC has been
widely used for determining the number of components in mixture
modelling (e.g. Leroux 1992; Roeder & Wasserman 1997; Fraley &
Raftery 1998; Steele & Raftery 2010) and for model selection in
general in astronomy (e.g. Liddle 2007; Broderick et al. 2011;
Wilkinson et al. 2015; Vakili & Hahn 2016). According to BIC,
models with higher likelihood are preferred; however, to address
the concern of overfitting, BIC introduces a penalty term for the
number of parameters in the model:

BIC = —21n £ 4 Npar In Nugo. (13)

We select k based on the number of components in the model with
the lowest BIC.

With Gaussian mixture density estimation we can directly es-
timate the likelihood distribution using the mock catalogues. We
first fit GMMs with k < 30 components to the whitened mock data
X™k ysing the EM algorithm for each model. For each of the
converged GMMs, we calculate the BIC and then select the model
with the lowest BIC as the best density estimate of the likelihood
distribution: pgvm(x). For the B2017 and S2017 analyses, we
find GMMs with k = 1 and 5 components, respectively, have the
lowest BIC. These selected density estimates can then be used to
calculate the likelihood and quantify the impact of likelihood non-
Gaussianity on the parameter constraints of B2017 and S2017.
But first, we test whether pgyw provides a better estimate of
the non-Gaussian likelihoods over Gaussian pseudo-likelihoods by
repeating the divergence estimates from Section 3.

To estimate the divergence between our Gaussian mixture density
estimate, pgmwm, and the likelihood distribution, we take the same
approach as our ﬁ(Xm"Cleref) calculation in Section 3. Instead
of Y™ drawn from the pseudo-likelihood, we draw samples from
DPoym(x) with the same dimensions. Then we calculate k-NN Rényi-
a and KL divergence estimates between this sample and X™*k, To
get a distribution of divergence estimates that reflects the scatter in
the estimator, we repeat the estimates 100 times resampling Pomm
each time (exactly the same method as for Fig. 1). In Fig. 2, we
present the resulting distribution of divergences between pgyvm and
the likelihood distribution in purple for the Py(k) (top) and ¢(N)
(bottom) analyses. For comparison, we include the D distributions
for Gaussian pseudo-likelihoods from Fig. 1.

From Fig. 2, we see that the Gaussian mixture density estimate
significantly improves the divergence discrepancy compared to
the pseudo-likelihood for the ¢(N) analysis of S2017. In other
words, our Gaussian mixture density estimate is a significant
better estimate of the ¢ likelihood distribution than the pseudo-
likelihood. On the other hand, the Gaussian mixture density estimate
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Figure 2. Rényi-« and KL divergence estimates (ﬁ Ro and D kL purple) between the likelihood distribution and the Section 4.1 GMM likelihood estimate for
the B2017 P, (top) and S2017 ¢ (bottom) analyses. We include the divergence estimates for the Gaussian pseudo-likelihood from Fig. 1 (blue) for comparison.
The Gaussian mixture likelihood does not significantly improve the discrepancy in divergence for the Py analysis. This is due to the high dimensionality (37
dimensions) of the P, likelihood. For the ¢ analysis, our Gaussian mixture likelihood estimate is a significantly better estimate of the likelihood than the

pseudo-likelihood.

for the Py(k) analysis of B2017 does not improve the divergence
discrepancy. This is expected since the P, Gaussian mixture density
estimate that we select based on BIC only has one component and
therefore is equivalent to the pseudo-likelihood. Also, one would
expect a direct density estimation to be more effective for the
S2017 case, where we estimate an eight-dimensional distribution
with Npock = 20000 samples, compared to the B2017 case where
we estimate a 37-dimensional distribution with only Nk = 2048
samples. Given the unconvincing accuracy of the Gaussian mixture
density estimate of the P, likelihood, in the next section we present
an alternative method for estimating the non-Gaussian likelihood.

4.2 Independent component analysis

Gaussian mixture density estimation fails to accurately estimate
the 37-dimensional P, likelihood distribution of B2017. Rather
than estimating the likelihood distribution directly, if we can
transform the observable x (e.g. P,) into statistically independent
components x' the problem becomes considerably simpler. Since
x'C is statistically independent, the likelihood distribution becomes

Noin

p) =[] pac (14)

n=1

where Ny, is the number of bins in the observable and the
number of independent components. For the B2017 case, this
reduces the problem of estimating a 37-dimensional distribution
with 2048 samples to a problem of estimating 37 one-dimensional
distributions with 2048 samples each. The challenge is in finding
such a transformation.

Efforts in the past have attempted to tackle this sort of high-
dimensional problem (e.g. Scoccimarro 2000; Eisenstein & Zaldar-
riaga 2001; Gaztafiaga & Scoccimarro 2005; Norberg et al. 2009;
Sinha et al. 2017). They typically use singular value decomposition
or principal component analysis (PCA; Press et al. 1992). For a
Gaussian likelihood, the PCA components of it are statistically
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independent. However, when the likelihood is nor Gaussian, the
PCA components are uncorrelated but not necessarily statistically
independent (Hartlap et al. 2009). Since the P, and ¢ likelihoods are
non-Gaussian, we cannot use PCA. Instead, we follow Hartlap et al.
(2009) and use independent component analysis (ICA; Hérault &
Ans 1984; Comon 1994; Hyvirinen & Oja 2000; Hyvarinen 2001).

In order to find the transformation of x to x'© we first assume
that x is generated by some linear transformation x = M x'C. Then
the goal of ICA is to invert this problem, y = Wx, and find W
and y that best estimate x' ~ y. The basic premise of ICA
is simple, maximizing non-Gaussianity maximizes the statistical
independence. Consider a single component of y:

Y, =w x=w Mx'© (15)

where w!, is the nth row of W. Since y, is a linear combination of the
independent components x'C, from the central limit theorem y, is
necessarily more Gaussian than any of the components unless y,, is
equal to one of the x'* components. In other words, we can achieve
x'€ ~ y by finding W that maximizes the non-Gaussianity of y. For
a more rigorous justification of ICA we refer readers to Hyvarinen
(2001). In practice, non-Gaussianity is commonly measured using
differential entropy — ‘negentropy’. For y, with density function p,,
the entropy is defined as

H,, = - / Py, (¥) log py, (y)dy. (16)

Since the Gaussian distribution has the largest entropy among all
distributions with a given variance, the negentropy can be defined
as

J

o = Hguss — H,, . a7
Finding the statistically independent components is now a mat-

ter of finding the W that maximizes ) Jy, — the negentropy

n
of y. In this paper, we make use of the FastICA fixed-point
iteration algorithm (Hyvarinen 1999). The algorithm starts with
randomly selected w,; then it uses approximations of negentropy
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from Hyvirinen (1998) and Newton’s method to iteratively solve
for W that maximizes negentropy. For details on the FastICA
algorithm, we refer readers to Hyvarinen (1999).

Performing ICA on the whitened observable data X™%, we
derive the matrix W that transforms X™¢ into Npi, approximately
independent components:

XICA = WXk = (XA, XA (18)

From these statistically independent components and equation (14),
we can estimate the likelihood distribution. p,ic(x), from equa-
tion (14), is the one-dimensional distribution function of the nth ICA
component. This distribution is sampled by Xf,CA, the transformed
mock data. That means X'“* can be used to estimate Pyica using a
method like kernel density estimation (KDE; Hastie, Tibshirani &
Friedman 2009; Feigelson & Babu 2012). With KDE, the density

estimate, ﬁdc/a, is constructed by smoothing the empirical distribu-

ICA
n

Nmock i
. 1 x — X(HICA
paca(x) = K (7’1 ) s (19)
o b N, mock ; b

where b is the bandwidth and K is the kernel function. Following
the choices of Hartlap et al. (2009), we use a Gaussian distribution
for K and the ‘rule of thumb’ bandwidth (also known as Scott’s rule;
Scott 1992; Davison 2008) for b. Combining the ﬁxLCA estimates for
alln =1, ..., Ny, into equation (14), we can estimate the likelihood
distribution p(x) = [] pica(x)

tion of the ICA component x,~* using a smooth kernel:

We again check v&;’hether the likelihood estimate from the ICA
is actually a better estimate of the true likelihood distribution
compared to the Gaussian pseudo-likelihood. Following the same
procedure as we did for the Gaussian mixture likelihood in Sec-
tion 4.1, we calculate the divergence between our ICA likelihood,
[ P,ica(x), and the likelihood distribution, p(x). We draw a sample
from [ p,ica with the same dimensions as Y™’ (Section 3), apply the
mixing matrix (undoing the ICA transformation), and then calculate
the k-NN Rényi-o and KL divergence estimates between the sample
and XMk We repeat these steps 100 times to get the distribution
of estimates that reflects the scatter in the estimator. In Fig. 3, we
present the resulting distribution of D (X"“OCk I~T1I ﬁxﬁCA) in green
for the P, (k) (top) and ¢ (V) (bottom) analyses. For comparison, we
include the distributions for the Gaussian pseudo-likelihood from
Fig. 1.

For both B2017 and S2017, our ICA likelihood significantly
improves the divergence discrepancy compared to the pseudo-
likelihood. For S2017, however, the ICA likelihood proves to be less
accurate than the Gaussian mixture likelihood in Section 4.1. More
importantly, for B2017 where the Gaussian mixture likelihood did
not improve upon the pseudo-likelihood, the ICA method provides a
significantly more accurate likelihood estimate. This demonstrates
that the ICA method is an effective alternative to the more direct
Gaussian mixture method. The effectiveness of the ICA method
in estimating higher dimensional likelihoods with fewer samples
(mocks) is particularly appealing for LSS, since analyses continue
to increase the size of their observable data vector. In Hartlap
et al. (2009), they suggest that a low Npok may bias the ICA
likelihood estimate. By examining the divergence discrepancy as
we did in Figs 2 and 3, we ensure that the likelihood estimation
methods provide a better estimate of the true likelihood than the
Gaussian pseudo-likelihood. Multiple methods can easily be tested
to construct the best estimate of the likelihood distribution for each
specific analysis. Based on the performances of the GMM and ICA
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methods, we chose the ICA likelihood for the B2017 analysis and
the GMM likelihood for the S2017 analysis.

5 IMPACT ON PARAMETER INFERENCE

To derive the posterior distribution of their model parameters,
both B2017 and S2017 use the standard Monte Carlo Markov Chain
approach with the Gaussian pseudo-likelihood. The B2017 analysis
includes 11 parameters,

{fag, ap, a, bwGCag, bfGCag, b;IGCGx, b?GCJS, G‘NGC, ach, NNCGC | and NSGC},

while the S2017 analysis includes 5 parameters,
{log Mpin, Olog v, log My, log M,, and oe}.

Using the improved likelihood estimates of Sections 4.1 and 4.2, we
can now better estimate the true posteriors for the parameters and
quantify the impact of likelihood non-Gaussianity on parameter
constraints. The ideal method to determine the true posterior
distributions would be to run new MCMC chains with non-Gaussian
likelihood estimators. While re-running MCMC chains is relatively
tractable for the B2017 analysis, for S2017 this is significantly
more involved. Rather than a perturbation theory based model
from B2017, the S2017 model is a forward model, identical to their
mocks (Section 2.2). Re-running the MCMC samples would involve
evaluating the computationally costly forward model of $2017 ~10°
times and is prohibitively expensive.

Without having to re-run the MCMC chains, we instead use
importance sampling to derive the new posteriors from the original
chains (see Wasserman 2004 for details on importance sampling).
The target distribution we want is the new posterior. To sample
this distribution, we re-weight the original posterior as the proposal
distribution with importance weights. In our case, the importance
weights are the ratio of the (non-Gaussian) likelihood estimates
over the (Gaussian) pseudo-likelihood. If we let P(x|6#) be the
original pseudo-likelihood and P’(x|@) be our ‘new’ likelihood, then
the new marginal likelihood can be calculated through importance
sampling:

P'(x10)
P(x|0)

P’(X|91):/P’(x\0)d02...d9m :/ P(x]0)db;...do,,. (20)

Then through Monte Carlo integration,

/ N P'(x|0)
PI6 ~ D 5o gy @n
0i)es
where S is the sample drawn from P(x|6). S is simply the original
MCMC chain in our case. The only calculation required is the
importance weights in equation (21), P'(x|0%)/P(x|0”) for each
sample 8% of the original MCMC chain. For B2017, P(x|0®) is
the ICA likelihood; for S2017, P(x|0?) is the GMM likelihood.
In Fig. 4 we present the resulting posterior distributions using the
non-Gaussian ICA likelihood for the {fog, a,,, &t , b Ca, b ay,
bI;GCag, bchag} parameters in the B2017 P, analysis (orange).
We include the original B2017 posteriors for comparison in blue.
At the bottom of each panel, we also include box plots marking
the confidence intervals of the updated and original posteriors.
The boxes and ‘whiskers’ represent the 68 per cent and 95 per cent
confidence intervals, respectively. The median and 68 per cent
confidence intervals of the posteriors are also listed in Table 1. fog
and b3 oy are the main parameters with noticeable changes in their
posteriors. After accounting for the non-Gaussian likelihood, the
posterior of b3%ay broadens from 0.47611352 to 0.4227}3)7. More

importantly, the fo g posterior shifts from 0.478™0:0% t0 0.456003,
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Figure 3. Rényi-o and KL divergence estimates (5 Re and BKL; green) between the likelihood distribution and the Section 4.2 ICA likelihood estimate for the
B2017 Py (top) and S2017 ¢ (bottom) analyses. We include the divergence estimates from Fig. 1 for comparison. The ICA likelihood significantly improves
the divergence discrepancy for both the P, and ¢ analyses. For ¢, the improvement of the ICA likelihood over the pseudo-likelihood is more modest than our
GMM estimate from Section 4.1. However, for P, where the GMM method struggled, our ICA likelihood provides a significantly better estimate of the true
Py likelihood than the pseudo-likelihood.
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Figure 4. The posterior distribution for {fo'g, o, & |, bII\IGch, bfGCUg, bZNGCUg, bcho'g, } in the B2017 P, analysis using the non-Gaussian ICA likelihood
(orange). We include in blue the original B2017 posteriors for comparison. At the bottom of each panel we include box plots that mark the 68 per cent and
95 per cent confidence intervals of the posterior. The discrepancies between the posteriors are most evident for the parameters fo g and bgccag. The fo g constraint
shifts by —0.440. Hence, using the pseudo-likelihood in the P, analysis biases the posteriors of these parameters. However, likelihood non-Gaussianity does
not have a significant impact on the overall parameter constraints of the P, analysis.
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Table 1. Impact of likelihood non-Gaussianity on the posterior parameter constraints of B2017 and S2017.

B2017 P, analysis

bNCCoy b3Cay pYCCoy b5CCay
fos o o
+0.040 +0.056 +0.697 +1.262
B2017 1.34175:099 1.33370:056 1.293%0:5%7 0.47611-352
0.478700%3 100379038 1.01410:023
: +0.040 +0.063 +0.746 +1.517
non-Gaussian 1.3517 5 049 1.3357 5 060 1.2957 708 0.4227 357
+0.059 +0.039 +0.024
Lica 0.456700% 1.00170:93 1.01470:024
S2017 ¢ analysis
log Mmin Olog M log My log M, o
+0.148 +0.255 +2.074 +0.064 +0.042
$2017 11.6875158 0.585792% 9.154739% 12.6275:9% 0.92870:042
Gaussian Lpseudo 11.6870132 0.5867036 9.19572:08¢ 12.6179070 0.936700%3
non-Gaussian
Lemm 11.6970-1%8 0.554793%7 9.15973178 12,6459 0.909*0:957

which corresponds to a shift of —0.440. The other parameter
constraints, however, remain largely unaffected by likelihood non-
Gaussianity.

Focusing on the main cosmological parameters fog, «,, and
oy, we present their joint posterior distributions in Fig. 5. The
contours mark the 68 per cent and 95 per cent confidence intervals
of the posteriors. The shift in the fog distribution is reflected in
the (fog, @) and («_, fog) contours (left-hand and middle panels,
respectively). The («,, 1) distribution (right), however, shows
nearly no change from the non-Gaussian likelihood. Despite its
impact on fog and b5 oy, likelihood non-Gaussianity does not
significantly impact the overall parameter constraints of the P,
analysis. b5%Cog is a poorly constrained nuisance parameter and
although using the pseudo-likelihood biases fo'g, the impact relative
to its uncertainty is small — less than 0.50. Furthermore, some of
the impact may be from statistical fluctuation, although this is likely
not an important contributor since the PATCHY mocks are calibrated
so that their P, is consistent with the BOSS P,. Some uncertainty
is also introduced by the finite sampling of the MCMC chains. As
mentioned in Section 3, some of the impact may also come from
biases in covariance matrix estimation. Never the less, the fact that
the P, analysis is largely unaffected by likelihood non-Gaussianity
is consistent with the relatively small divergences found in Fig. 1.
It also illustrates the remarkable effectiveness of the central limit
theorem.

Next, in Fig. 6, we present the posterior distributions calculated
using the non-Gaussian GMM likelihood for the HOD parameters in
the S2017 ¢ analysis (orange). We include the posteriors calculated
using the pseudo-likelihood for comparison in blue. The box plots
at the bottom of each plot mark the 68 per cent and 95 per cent
confidence intervals of the posteriors. In the dotted lines, we plot
the original S2017 posteriors, which differ slightly from the blue
distribution. This discrepancy is caused by the difference in the
covariance matrix we use in the pseudo-likelihood (see Section 2.3).
The difference, however, is negligible and goes to illustrate that
the covariance matrix of ¢ does not have a strong dependence on
HOD parameters. In other words, our analysis is not significantly
affected by our use of mocks generated from multiple HOD
parameters.

Besides the poorly constrained parameters o,y and log My,
likelihood non-Gaussianity significantly impacts the posterior dis-
tributions of the HOD parameters. Each of the parameter constraints

for log M, log M}, and « is significantly broadened and shifted
from the pseudo-likelihood constraints (see Table 1 for details).
The logM,; constraint, for instance, is shifted by +0.430 and
its 68 per cent confidence interval is expanded by 42 per cent.
Similarly, the o constraint is shifted by —0.51¢ and its 68 per cent
confidence interval is expanded by 66 per cent. The impact of like-
lihood non-Gaussianity is further emphasized in the joint posterior
distributions in Fig. 7. The log My, versus o,y and log Miyin
versus « contours are both shifted and broadened compared to the
L£pseude posterior. Figs 6 and 7 reveal that using the Gaussian pseudo-
likelihood significantly underestimates the uncertainty and biases
the HOD parameter constraints of the S2017 ¢ analysis.

The contrast between the pseudo-likelihood posteriors and our
posteriors in Figs 6 and 7 reflect the divergences in Fig. 1, which
revealed significant discrepancy between the ¢ likelihood and the
pseudo-likelihood. These divergences and posteriors are consistent
with the expectation that the true ¢ likelihood distribution is
likely Poisson. Although we expect the likelihood to be similar to
the observed cluster count likelihood, the complicated connection
between FoF groups and the underlying matter overdensity makes
writing down the exact ¢ likelihood function tremendously difficult.
None the less, the GMM likelihood estimation method we present
provides an accurate estimate of the non-Gaussian likelihood.

The updated posteriors of the S2017 ¢ analysis highlight the
importance of accounting for likelihood non-Gaussianity in pa-
rameter inference of LSS studies. One of the main results of the
S2017 HOD analysis is that the lambda cold dark matter (ACDM)
+ HOD model can successfully fit either {(N) or the projected
two-point correlation function w,(r,) separately, but struggles to
jointly fit both (see fig. 10 in S2017). Such a tension suggests that
the ‘vanilla” HOD model is not sufficiently flexible in describing
the galaxy-halo connection. Likelihood non-Gaussianity is likely
to impact this result. Once the non-Gaussianity is included in the
analysis, the posteriors are broadened and shifted towards relaxing
the tensions. We examine the effect of likelihood non-Gaussianity
for HOD parameter constraints in more detail in Hahn et al. (in
preparation).

Even for the P, analysis, the impact of likelihood non-Gaussianity
on the parameter constraints cannot be easily dismissed as we
demand increasingly more precise constraints from future exper-
iments. Using the pseudo-likelihood biases the fog constraints by
~0.5 per cent. Meanwhile, the Dark Energy Spectroscopic Instru-
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Figure 5. Joint posterior distributions of fog, «,, and « | in the B2017 P, analysis, computed using the non-Gaussian ICA likelihood (orange). We include, in
blue, the original B2017 posteriors for comparison. The contours in the left-hand and middle panels reflect the shift in fo g caused by likelihood non-Gaussianity.
Otherwise, the contours illustrate that likelihood non-Gaussianity has little impact on the cosmological parameters for the P, analysis.

ment (DESI; Levi et al. 2013), for instance, seeks to constrain fog to
within a per cent.? The future, however, may be encouraging in this
regard. The next surveys will expand the cosmic volumes probed by
galaxies and therefore increase the number of modes on all scales.
Even as they seek to extend the k range of analyses, thanks to
the central limit theorem, we expect likelihood non-Gaussianity to
have a smaller effect. However, without precisely quantifying the
impact, as we have done in this paper, it remains to be determined
whether likelihood non-Gaussianity will significantly impact future
P, analyses.

Constraints on primordial non-Gaussianity (fyr,) from LSS (e.g.
Dalal et al. 2008; Slosar et al. 2008; Ross et al. 2013; Giannantonio
et al. 2014) will likely be significantly impacted by likelihood non-
Gaussianity. In fact, the constraining power for fy;. comes from the
largest scales. These are the scales that we find contribute most to
the likelihood non-Gaussianity in Section 3 due to the low signal-
to-noise and failure to satisfy the central limit theorem. Future
experiments such as Euclid (Amendola et al. 2018), which seek to
measure o(fyr) < 5 (Giannantonio et al. 2012; Amendola et al.
2018), will need to robustly account for likelihood non-Gaussianity
for accurate parameter constraints. Fortunately, the methods we
present in this paper can easily be extended to other observables
and analyses.

For higher order statistics, likelihood non-Gaussianity will also
have a more significant effect. Scoccimarro (2000) found that the
reduced bispectrum likelihood is significantly more non-Gaussian
than the power spectrum likelihood. However, these higher order
statistics, and observables from future surveys in general, will also
have the added challenge of higher dimensional data. Even for the
B2017 P, analysis, we found significant bias in the KL divergence
from sampling the 37-dimensional likelihood distribution with
only 2048 samples (Section 3). In current bispectrum analyses,
which exclude a significant number of triangle configurations,
data vectors exceed >700 dimensions (e.g. Gil-Marin et al. 2017).
Accurately estimating such high-dimensional distributions and their
divergences will surely require more than 2048 samples. Fortunately
a number of methods have been presented in the literature for

2DESI Final Design Report: http://desi.Ibl.gov/wp-content/uploads/2014/0
4/fdr-science-biblatex.pdf
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optimal massive data compression (Tegmark, Taylor & Heavens
1997; Alsing & Wandelt 2018; Heavens et al. 2017; Charnock,
Lavaux & Wandelt 2018). Some massive data compression methods
have already been utilized to reduce the dimensionality of data-
space for likelihood-free inference (Papamakarios & Murray 2016;
Alsing, Wandelt & Feeney 2018). In a similar fashion, massive
data compression can be combined with the methods we present
in this paper to robustly account for likelihood non-Gaussianity in
analysing high-dimensional data from future surveys.

6 SUMMARY AND DISCUSSION

Current LSS analyses make a major assumption in their parameter
inference — the likelihood has a Gaussian functional form. Although
this assumption is motivated by the central limit theorem, in detail
the assumption cannot be true. In this paper, we investigate the
impact of this Gaussian likelihood assumption on two recent LSS
analyses: the B2017 power spectrum multipole (¢ = 0, 2, and 4)
analysis and the S2017 group multiplicity function analysis. Using
mock catalogues, originally constructed for covariance matrix esti-
mation in these analyses, and non-parametric divergence estimators,
used in machine learning, we measure the divergences between the
Py and ¢ likelihoods and the Gaussian pseudo-likelihoods from
B2017 and S2017. For both the P, and ¢ likelihoods, the divergences
reveal significant likelihood non-Gaussianity. For the P, likelihood,
large scales (low k) and the hexadecapole contribute most to the
relatively small non-Gaussianity. For the ¢ likelihood, the high-
richness end of ¢ contributes most to the non-Gaussianity. In both
likelihoods, we find that the low-signal-to-noise regime contributes
the most to the likelihood non-Gaussianity.

From the same mock catalogues of B2017 and S2017, we estimate
the true non-Gaussian P, and ¢ likelihoods with two different
non-parametric density estimates — Gaussian mixture density and
independent component analysis. For the ¢ likelihood, we find
more accurate estimates of the likelihood with the Gaussian mixture
density method. For the B2017 P, analysis, which has fewer mocks
and a higher dimensional likelihood, we use independent component
analysis to transform the likelihood distribution into statistically
independent components. By estimating the one-dimensional dis-
tribution of these independent components, we derive an estimate
of the high-dimensional likelihood distribution for the B2017 P,
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Figure 6. The posterior distribution for HOD parameters log Mpin, Olog M» l0g My, log My, and « in the S2017 ¢ analysis using the non-Gaussian GMM
likelihood (orange). We include in blue the posteriors calculated from the pseudo-likelihood for comparison. We also include the original S2017 posterior
(dotted; see text for details). At the bottom of each panel we include box plots that mark the 68 per cent and 95 per cent confidence intervals of the posterior.
Besides the poorly constrained parameters o105 and log My, the posteriors of log My, log My, and « are significantly broader and shifted compared
to the pseudo-likelihood constraints. Likelihood non-Gaussianity significantly impacts the parameter constraints of the zeta analysis. Therefore, using the
pseudo-likelihood underestimates the uncertainty and biases the HOD parameter constraints.

analysis. The divergence between our two likelihood estimates and
the P, and ¢ likelihoods demonstrate that we derive more accurate
estimates of the true likelihoods than the assumed Gaussian pseudo-
likelihoods.

Finally, with these better estimates for the non-Gaussian P
and ¢ likelihoods and importance sampling, we calculate more
accurate posterior parameter constraints for the B2017 and S2017
analyses. By comparing our posteriors to the parameter constraints
from B2017 and S2017, we find that likelihood non-Gaussianity
significantly impacts both analyses. Among the non-nuisance pa-
rameters in the P, analysis of B2017, accounting for likelihood
non-Gaussianity shifts fog constraints by —0.440. Meanwhile for
the S2017 ¢ analysis, likelihood non-Gaussianity significantly
impacts the posterior distributions of the HOD parameter. Using
the pseudo-likelihood significantly underestimates the width of the
log Myin, log M, and « posteriors and significantly biases the
S2017 constraints. For log M, and «, the posteriors are broadened
by 42 per cent and 66 per cent and shifted by +0.430 and —0.510,

respectively. Accounting for likelihood non-Gaussianity likely
eases the tension between the ¢ and wp(rp) constraints found in
S2017. Our comparisons of the posteriors highlight the importance
of incorporating likelihood non-Gaussianity in parameter inference
of LSS studies.

Based on our results, it is unclear whether future P, analyses will
be significantly impacted by likelihood non-Gaussianity. Future
surveys (e.g. DESI, Euclid, WFIRST) will expand the cosmic
volumes probed by galaxies and therefore increase the number of
modes included in P, analyses on all scales. Over the same k range,
this will reduce likelihood non-Gaussianity due to the central limit
theorem and therefore reduce the impact on parameter constraints.
However, future analyses seek to extend analyses to both higher
and lower k, which will introduce likelihood non-Gaussianity from
these scales. Meanwhile, for ¢ analyses with the same multiplicity
range, we expect future surveys to reduce the impact of likelihood
non-Gaussianity, since larger cosmic volumes will probe more
high-multiplicity groups. For a wider multiplicity range, however,
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Figure 7. Joint posterior distributions of select HOD parameters in the S2017 ¢ analysis, computed using the non-Gaussian GMM likelihood (orange). We
include, in blue, the posteriors computed using the pseudo-likelihood; we also include the original S2017 posterior (dotted; see text for details). The contours
confirm that that due to likelihood non-Gaussianity, posteriors from the pseudo-likelihood underestimate the uncertainties and significantly bias the parameter

constraints of the S2017 analysis.

likelihood non-Gaussianity may still be a significant effect. For
higher order statistics such as the galaxy bispectrum or three-point
function, even for future surveys, likelihood non-Gaussianity will
likely be a significant effect to consider for parameter inference. We
also expect it to significantly impact primordial non-Gaussianity
(fnL) constraints from LSS, which derive most of their constraining
power from the largest, most non-Gaussian, scales. Regardless of
our expectation, for more accurate parameter inference the Gaussian
likelihood assumption must be extensively tested. The divergence
and likelihood estimations we introduce in this paper provide a
straightforward framework for testing and quantifying the impact
of likelihood non-Gaussianity on the final parameter constraints.

Our likelihood estimation methods also allow us to go beyond
the pseudo-likelihood and derive more accurate estimates of the
likelihood. With a similar motivation at addressing likelihoods that
are non-Gaussian or difficult to write down, methods for likelihood-
free inference such as approximate Bayesian computation (ABC;
Hahn et al. 2017b; Kacprzak et al. 2018) have recently been
introduced to LSS studies. Although as a likelihood-free inference
method ABC has the advantage of relaxing any assumption on
the likelihood, even with smart sampling methods like population
Monte Carlo, it requires an expensive generative forward model to
be computed far more times than the number of mocks required
for covariance matrix estimation. Our methods (especially the
ICA method) do not require any more mocks than those already
constructed for accurate covariance matrix estimation. For future
analyses that will analyse even higher dimensional data, our method
can easily be combined with optimal massive data compression
methods (e.g. Heavens et al. 2017; Alsing et al. 2018). Therefore,
the methods for likelihood estimation we present in this paper
provide both accurate and practical methods for Bayesian parameter
inference in LSS.
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